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Abstract

One may ask howmuch of the classical theory of complex multiplication translates
to K3 surfaces. This question looks natural and it is justified by the deep similarities
between K3 surfaces and Abelian varieties, that are geometric (they are the only
Calabi-Yau surfaces) or motivic (in some appropriate category, the motive of every
K3 is Abelian) or moduli-space theoretical, since both objects are parametrised by
Shimura varieties. The aim of this thesis is to assemble all these similarities to
obtain a theory for CM K3 surfaces which bears many resemblances and yet many
interesting differences to the classical one of Abelian varieties. Since our original
motivation was to understand the Brauer groups of CM K3 surfaces, the results
obtained will also have practical applications in this direction. In particular, given
a number field K and a CM number field E, we are able to write down the finitely
many Brauer groups Br(X)GK of any K3 surface X∕K with CM by E. A second
question we are going to be interested in regards fields of definition. It was known
since Piatetski-Shapiro and Shafarevich that every complex K3 surface with CM
can be descended over ℚ, so one would like to know if there is a natural choice
for a field of definition, as it happens for elliptic curves. We show that this is true
under some mild condition on the quadratic form associated to the transcendental
lattice T (X), and this allows us to give an elementary proof of a finiteness theorem
only recently proved by Orr and Skorobogatov.
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1 Introduction

The purpose of this thesis is twofold: on the one hand, we develop a ‘classical’
approach to the theory of complex multiplication for K3 surfaces while, on the
other, we apply our results to the study of Brauer groups, fields of definition and
other inherent arithmetic properties. Let us begin with a definition:
Definition 1.0.1. AK3 surfaceX∕ℂ has CM if theMumford-Tate group ofH2

B(X,ℚ)
is Abelian, i.e. a torus.
Let NS(X) ⊂ H2

B(X,ℤ)(1) be the Neron-Severi group of X (see ?? for a def-
inition) and T (X) = NS(X)⟂ be the lattice of transcendental cycles. The latter
is an integral, irreducible Hodge structure of weights (1,−1), (0, 0) and (−1, 1).
Zarhin [56] showed that the definition above is equivalent to the following two
properties of T (X):

1. EndHdg(T (X)ℚ) = E, a CM field, and
2. dimE T (X)ℚ = 1, i.e. [E ∶ ℚ] = dimℚ T (X)ℚ.

Therefore, complex multiplication can be read off the transcendental lattice T (X)
of X and, since dimℚ(T (X)ℚ) ≤ 20, by point 2) in the above definition we always
have [E ∶ ℚ] ≤ 20. Following the results of Rizov [41] (or the Corollary 4.4 from
Madapusi Pera’s paper [26]) we know that the Galois action on K3 surfaces with
CM is the one predicted by Deligne in the definition of the canonical models of
Abelian Shimura varieties. This is an analogue of the main theorem of CM for
K3 surfaces. The first examples of K3 surfaces satisfying Definition 1.0.1 occur
when X∕ℂ has maximal Picard rank, i.e. �(X) = 20. These are called singular
K3 surfaces and always have CM by an imaginary quadratic field, generated by the
square root of the discriminant of T (X). Their geometry was studied by Shioda
and Inose in [44], who related them to CM elliptic curves with a construction now
called Shioda-Inose structure. Another class of examples is given byX = Km(A),
where A is an Abelian surface with CM. Note that in the instances above we al-
ways have [E ∶ ℚ] = dimℚ(T (X)ℚ) ∈ {2, 4}; using the Torelli Theorem for K3
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surfaces and some results on rational quadratic forms, Taelman [49] was able to
show that for any CM field E with 2 ≤ [E ∶ ℚ] ≤ 20 there are infinitely many
ℂ−isomorphism classes of K3 surfaces with CM by E, and some other examples
were produced byKondo in [20]. In recent years, much research has been published
on the Brauer group of CMK3 surfaces. IfX∕L is a K3 surface over a number field
and Br(X) ∶= H2

ét(X,Gm) its Brauer group, one has a natural filtration Br0(X) ⊂
Br1(X) ⊂ Br(X) given by Br0(X) ∶= Im(Br(L) → Br(X)), the constant classes
of Br(X), and Br1(X) ∶= ker(Br(X) → Br(X)), the algebraic Brauer group of
X. The first graded piece of this filtration, namely Br1(X)∕ Br0(X), is naturally
isomorphic to H1(L,Pic(X)), which is a finite group because Pic(X) ≅ NS(X)
is a free ℤ-module. It was noted that also the classes of Br(X) that survive in
Br(X) can obstruct the Hasse principle, so that one is left to understand the second
graded piece Br(X)∕ Br1(X), a subgroup of Br(X)GL . Skorobogatov and Zarhin
proved in [46] that Br(X)GL is always finite, and since then much work has been
done to the study of these groups in some particular cases, especially when X has
CM. Ieronymou, Skorobogatov and Zarhin in [17, 18, 47] have studied the cases
when X is a Kummer surface, in particular associated to a product of two elliptic
curves, or a diagonal quartic surface defined over ℚ. Newton’s paper [34] is more
class field theory-oriented and her results are quite general whenX is the Kummer
surface associated to a product of two elliptic curves with CM. Várilli-Alvarado
and Viray [52] have studied the existence of universal bounds for the growth of
(

Br(X)∕ Br1(X)
)

odd under a field extension of bounded degree, for some particu-
lar Kummer surfaces. They proved the existence of such a bound when restricting
to l-torsion (Br(X)∕ Br1(X)

)

[l∞], with l an odd prime number. Finally, a sim-
ilar question was studied by Cadoret and Charles in [5]. Given a prime number
l, they prove the existence of a universal bound for Br(X)GL[l∞], at least when
X is allowed to vary in a one-dimensional family (see Theorem 1.2.1 in loc. cit.
for a precise statement). Before stating our results in this direction, we first need a
definition.
Definition 1.0.2. LetX∕ℂ be a K3 surface with CM. We say thatX is principal if
EndHdg(T (X)) is the maximal order of the CM field EndHdg(T (X)ℚ).
Remark 1.0.3. One says that an Abelian variety A∕ℂ with CM by E is principal
if End(A) is the ring of integers of E. It is a classical result of Shimura that iso-
morphism classes of principal Abelian varieties with CM by E are parametrised
by Cl(E), so that in particular they are only finitely many. Things are different for
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K3 surfaces. In Proposition 3.1.11 we prove that for any given CM number field
E with 2 ≤ [E ∶ ℚ] ≤ 10 one has infinitely many principal K3 surfaces with CM
by E. It is not clear what happens when 10 < [E ∶ ℚ] ≤ 20, but as the proof of
Proposition 3.1.11 shows, the problem of finding K3 surfaces with CM by E can
be stated in purely lattice-theoretical terms.
We have (see section 4.2).

Theorem 1.0.4. There is an algorithm that, given as a input a CM number field E
and a number field L, returns a finite list of groups Br(E,L) such that, for every
K3 surface X∕L such that Xℂ is a principal K3 surface with CM by E,

Br(X)GL ∈ Br(E,L).

This result appears in [50]. To see why it is useful, consider the case L = E =
ℚ(i). Running the algorithm above we found that Br(E,L) consists of
{

0, ℤ∕3×ℤ∕3, ℤ∕5, ℤ∕5×ℤ∕5, ℤ∕2, ℤ∕2×ℤ∕2, ℤ∕4×ℤ∕2, ℤ∕4×ℤ∕4, ℤ∕8×ℤ∕4,

ℤ∕8×ℤ∕8, ℤ∕3×ℤ∕3×ℤ∕2, ℤ∕3×ℤ∕3×ℤ∕2×ℤ∕2, ℤ∕5×ℤ∕2, ℤ∕5×ℤ∕5×ℤ∕2,

ℤ∕5 × ℤ∕2 × ℤ∕2, ℤ∕5 × ℤ∕5 × ℤ∕2 × ℤ∕2
}

.

If one were interested in computing the Brauer-Manin obstruction for a diagonal
quartic surfaceXa,b,c∕ℚ given by the equation x4 + ay4 + bz4 + cw4 = 0, then one
would automatically know that

Br(Xa,b,c)Gℚ ⊂ Br(Xa,b,c)GL ∈ Br(E,L),

making the computations effective for every parameter a, b, c ∈ ℚ.
In the paper [42] Schütt, building up on the results of Shioda and Inose, was able
to produce lower and upper bounds on the field of definition of K3 surfaces with
�(X) = 20. In another paper with Elkies, they associated an explicit K3 surface
X∕ℚ with Picard group defined over ℚ to any known Hecke eigenform of weight
three with rational coefficients. Moreover, for any CM imaginary quadratic field
of class number one, Elkies found that there exists a unique K3 surface X∕ℚ with
Pic(X) = Pic(X) and CM by E, and he provided explicit equations and generators
for their Picard group. This kind of results can be generalised to principal K3
surfaces with CM.
To see how, let T (X) be the transcendental lattice of X, T (X)∨ be its dual lattice
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and DX ∶= T (X)∨∕T (X) its discriminant form. It is a finite group and, since
T (X) is an even lattice, there is a well-defined quadratic form q onDX with values
in ℚ∕2ℤ. We denote by (q) the group of automorphisms of DX that preserve q.
Note that there is a natural bijection between roots of unity inE and integral Hodge
isometries of T (X), so that there is always a canonical map �(E)→ (q).

Definition 1.0.5. X has big discriminant if the natural map �(E)→ (q) is injec-
tive.
It is not difficult to show that all but finitely many (ℂ-isomorphism classes of)

principal K3 surfaces with CM by E have big discriminant. The classification
becomes explicit when �(X) = 20: in this case, there exist only two complex
K3 surfaces that do not have big discriminant, and their associated quadratic forms
T (X) are isomorphic respectively to

[

2 0
0 2

]

and to
[

2 1
1 2

]

. Coincidentally, these
were also studied by Vinberg in [53], who called them ’the two most algebraic K3
surfaces’. The following is Theorem 5.2.3, and appeared originally in [51].
Theorem 1.0.6. Let X∕ℂ be a principal K3 surface with CM by E. Assume that
X has big discriminant. There exists an explicit Abelian extension FX =∶ F of E
and a model Xcan∕F of X over F with �(Xcan) = �(Xcan). The pair (Xcan, F ) is
canonical in the following sense: if Y ∕L is any K3 surface with: E ⊂ L, Yℂ ≅ X
and �(Y ) = �(Y ), then F ⊂ L and Xcan

L ≅ Y .

Note that the condition �(Xcan) = �(Xcan) can prevent F from being the ‘small-
est’ field of definition of X, i.e. X could admit models over subfields of F . On
the other hand, the difference between a smaller field of definition of X and F
can be universally bounded, see Lemma 2.6, Chapter 17 of [16]. This observa-
tion, together with the finiteness of the Fourier-Mukai partners and a theorem of
Stark [48], allowed us to prove the following finiteness result, see Theorem 6.0.4.
Theorem 1.0.7. LetN > 0 be any given number. Then there are only finitely many
ℂ−isomorphism classes of principal K3 surfaces with CM that can be defined over
a number field K with [K ∶ ℚ] < N

This statement was known to Shafarevich when �(X) = 20, and it was later
generalised by Orr and Skorobogatov [37] to any K3 surface with CM, i.e. not
only the principal ones. This also leads to a proof of Conjecture 1.10 of [52] for
principal CM K3 surfaces, and we refer the reader to [38] for an account on uni-
formity conjectures for K3 surfaces. Theorem 1.0.6 sheds also some light on the
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surfaces found by Elkies and Schütt. Indeed, ifX∕ℚ is a principal K3 surface with
�(X) = �(X) and big discriminant, then the universal property of Theorem 1.0.6
assures that XE ≅ (Xℂ)can.
In this last paragraph, let us spend some words on the proof of the results above. To
any CMfieldE and ideal I ⊂ E we associate an abelian field extensionFI∕E. By
class field theory, this is equivalent to give its norm group insideA×E,f (we consider
finite idèles because E has only complex embeddings) and we put

SI ∶= {s ∈ A×E,f ∶ ∃ e ∈ E
× such that se

se
∈ ̂×E and se

se
≡ 1 mod I}.

Since SI = SI = SI∩I , we can assume without loss of generality that I = I . In
sections 3.4 and 3.5 one can find a detailed study of these field extensions and a
closed formula for the indices [FI ∶ E]. When E is quadratic imaginary we can
easily describe the FI ’s as follows: let KI and ClI be respectively the ray class
field and the ray class group modulo I . Then E ⊂ FI ⊂ KI is the fixed field of
{x ∈ ClI ∶ x = x} ⊂ ClI ≅ Gal(KI∕E).
If X∕ℂ is a principal K3 surface with CM by E, there is a natural action of E on
Br(X), and if we put Br(X)[I] ∶= {� ∈ Br(X)∶ ∀ i ∈ I i� = 0} we have the
following.
Proposition 1.0.8. The field of moduli (over E) of the pair (T (X),Br(X)[I]) cor-
responds to FI .

Here with field of moduli we mean the fixed field of

{� ∈ Aut(ℂ∕E)∶ ∃ Hodge isometry f ∶ T (X)→ T (X�)∶ f∗◦�∗|Br(X)[I] = Id}.

Let us now see how the algorithm in Theorem 1.0.4 works. If X is defined over
a number field L containing E, there exists a unique ideal I ⊂ E such that
Br(X)GL = Br(X)[I] ≅ E∕I , and we conclude that FI ⊂ L because of Proposi-
tion 4.1.3. Therefore, we can write

Br(E,L) = {E∕I ∶ FI ⊂ E ⋅ L},

or, less precisely but more efficiently,

Br(E,L) = {E∕I ∶ [FI ∶ E] divides [L ⋅ E ∶ E]}.

Finally, to every X∕ℂ with CM by E , we associate the discriminant ideal X ⊂
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E . It has the property that E∕X ≅ DX and X ≅ T (X)∨∕T (X), and if X∕ℂ
has big discriminant one is able to produce a unique model Xcan over F = FX

satisfying the condition �(Xcan∕F ) = �(X∕ℂ).
As a final application, let us point out an easy criterion to decide whether a singular,
principal K3 surface X∕ℂ can be defined over its CM field, thus generalising the
work of Elkies and Schütt.
Proposition 1.0.9. LetX∕ℂ be a singular K3 surface with CM by the ring of inte-
gers of a quadratic imaginary extensionE. Assume that T (X) is neither isomorphic

to

[

2 0
0 2

]

nor to

[

2 1
1 2

]

. ThenX admits a model with full Picard group overE if

and only if the complex conjugation acts trivially on ClX
(E), the ray class group

modulo X .

Notations

General notations

• IfK is a field, we denote byK a fixed algebraic closure and byGK its absolute
Galois group. For every schemeX∕K we writeX for the base changeX ×K
K .

• We denote by A the ring of adéles over ℚ and by Af ⊂ A the subring of
finite adéles. Moreover, we denote by ℤ̂ ⊂ Af the pro-finite completion of
ℤ, so that ℤ̂⊗ℚ = Af .

• For any number field K , we denote by K its ring of integers, by AK ∶=
A ⊗ℚ K the ring of adéles over K and by AK,f ∶= Af ⊗ℚ K ⊂ AK the
subring of finite adéles. We also adopt the notation ̂E ∶= E ⊗ ℤ̂.

• Ig A is a ℤ−module, we write Aℚ for A⊗ℤ ℚ.
• For any setS, |S|will denote its cardinality, and for any two integers a, b ∈ ℤ

we write a|b for ‘a divides b’.

Notations concerning K3 surfaces

• If l is a prime number and K is algebraically closed with char(K) ≠ l, we
have a natural inclusion c1 ∶ NS(X) → H2

ét(X,ℤl)(1) and we denote by
Tl(X) ∶= {v ∈ H2

ét(X, ℤ̂)(1)∶ (v, n)X = 0 ∀ n ∈ NS(X)}, where (−,−)X
is the pairing given by Poincaré duality.
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• Similarly, if K is algebraically closed of char(K) = 0, we let T̂ (X) ⊂
H2

ét(X, ℤ̂)(1) be the orthogonal complement of NS(X).
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2 Basic properties of K3 surfaces with
complex multiplication

2.1 Generalities on Hodge structures

We begin by reviewing the notion of integral and rational Hodge structures. We
mainly follow Moonen’s survey [32] and Chapter 2 in Milne’s notes on Shimura
varieties appearing in [1].
Definition 2.1.1. Let V be a finitely generated, freeℤ-module (respectively, a finite
dimensional ℚ-vector space). An integral (respectively, rational) Hodge structure
of weight m ∈ ℤ on V is a decomposition

V ⊗ ℂ =
⨁

p+q=m
V p,q (2.1.0.1)

such that V p,q = V q,p. Here, the tensor product is taken over ℤ (respectively,
over ℚ), the p and q are allowed to vary in ℤ, and the bar denotes the complex
conjugation. One says that the Hodge structure V is of type T , where T ⊂ ℤ2, if
V p,q ≠ 0 precisely when (p, q) ∈ T .
Remark 2.1.2. To gain more flexibility, we shall also allow direct sums of Hodge
structures of different weights.
There are two other equivalent definition that are also useful. Instead of giving

a decomposition like in (2.1.1), one can endow V with a Hodge filtration, i.e. a
descending and finite filtration F p on Vℂ ∶= V ⊗ ℂ, such that for every p, q ∈ ℤ
with p + q = m + 1 one has F p ∩ F q = {0} and F p ⊕ F q = Vℂ. To obtain the
Hodge filtration given (2.1.1), one simply puts

F p ∶=
⨁

i≥p
V i,m−i.

Whereas, to go the other way around, one can show that V p,q ∶= F p ∩ F q satisfies
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(2.1.1). The third definition is due to Deligne, and is phrased in the language of
algebraic groups. One defines theDeligne torus to be the real algebraic group S ∶=
Resℂ∕ℝGm, where ‘Res’ denotes the Weil restriction of scalars, so that S(ℝ) = ℂ×.
The character group X∗(S) is generated by the two characters z and z, that act on
the ℝ-points of S, respectively, as the identity and the complex conjugation. One
also has the following important characters and cocharacters:

• The weight cocharacter w∶ Gm,ℝ → S given, on ℝ−points, by the natural
inclusion ℝ× → ℂ×;

• The Norm character Nm∶ S → Gm,ℝ given by zz;
• The cocharacter �∶ Gm,ℂ → Sℂ defined to be the only cocharacter such that
z◦� = 1 and z◦� = Id.

With this in mind, one can define a Hodge structure on V of weight m ∈ ℤ as a
morphism of algebraic groups

ℎ∶ S → GL(V )ℝ

such that ℎ◦w∶ Gm,ℝ → GL(V )ℝ is given by z↦ z−m Id. In this case, we see that
V p,q corresponds to

{v ∈ Vℂ ∶ for every (z1, z2) ∈ S(ℂ) = ℂ××ℂ× one has ℎℂ(z1, z2)⋅v = z−p1 z−q2 v}.

Let us briefly explain how Hodge structures appear naturally in the context of Käh-
ler geometry, as a consequence of Hodge’s theory. Let X be a compact Kähler
manifold, and consider the Hodge-de Rham spectral sequence

Hp(X,ΩqX)⇒ Hp+q(X,ℂ).

Here, both cohomology groups refer to sheaf cohomology, the first corresponding
to the sheaf of holomorphic q−forms, and the other to the locally constant sheaf
with ℂ-coefficientes. Using harmonic analysis, Hodge proved that this spectral
sequence degenerates at the E1-page, so to obtain a natural isomorphism

⨁

p+q=n
Hp(X,ΩqX) ≅ H

p+q(X,ℂ). (2.1.0.2)
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Therefore, thanks to the de Rham isomorphism

Hp+q
B (X,ℤ)⊗ℤ ℂ ≅ Hp+q(X,ℂ)

(where the first cohomology group denotes now Betti or singular cohomolgy), one
concludes that the Betti cohomology groups of Kähler maniolds are naturally en-
dowed with a Hodge structure (once we quotient out the torsion) by putting

Hp,q(X) ∶= Hq(X,ΩpX).

In the next paragraph we shall only consider integral Hodge structures, but all the
following constructions can be easily generalised to the rational case. A morphism
between two Hodge structures V and W is a ℤ-linear map f ∶ V → W such
that fℂ ∶ Vℂ → Wℂ maps V p,q to W p,q. The definition readily implies that in
order for a morphism to exist V andW must have the same weight. A sub-Hodge
structure W ⊂ V is an inclusion of ℤ-modules W ↪ V that is also a morphism
of Hodge structures. Usually, the map W ↪ V is primitive, i.e., the quotient
V ∕W is torsion-free. One can perform some natural linear-algebra construction
with Hodge structures too: if V is a Hodge structure of weight n, then one can
endow the dual V ∨ = Hom(V ,ℤ) with a natural Hodge structure of weight −n.
Similarly, if V and W are two Hodge structures of weight n and m respectively,
then also V ⊗ℤW admits a natural Hodge structure of weight n+m. In particular,
Hom(V ,W ) = V ∨ ⊗ℤ W is a Hodge structure of weight m − n.
Some trivial but extremely important Hodge structures are given by the Tate-twists.
These are denoted byℤ(n), with n ∈ ℤ, and consists of theℤ-module (2�i)nℤ ⊂ ℂ
endowed with the only Hodge-structure of type (−n,−n). Tate-twists allow one to
shifts the weight of Hodge structures, in the sense that if V is a integral Hodge
structure of weight m, then V (n) ∶= V ⊗ℤ ℤ(n) is an integral Hodge structure of
weight m − 2n. Similarly, one can define ℚ(n) ∶= ℤ(n)⊗ℚ. The "(2�i)" in the
definition comes from the exponential sequence

0→ (2�i)ℤ → ℂ
exp
←←←←←←←←←←←←←→ ℂ× → 0, (2.1.0.3)

and plays a role mostly when computing periods.
Definition 2.1.3. (Hodge classes) Let V be a Hodge structure of weight 0. The
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space of Hodge classes of V is defined to be

Hdg(V ) ∶= V ∩ V 0,0.

Let us make some examples of the notions introduced until now.
Examples. 1. A complex torus is a compact Kähler manifold of the form A =

ℂn∕Λ, where Λ ⊂ ℂn is a lattice (that is, a discrete subgroup isomorphic
to ℤ2n). To every complex torus A one can associate a Hodge structure of
weight 1, namelyH1(A,ℤ), of type (1, 0) and (0, 1). One can check that this
association defines an equivalence of categories

{complex tori} ∼
←←←←←←←→ {Integral Hodge structures of type (1, 0), (0, 1)}

2. If X, Y are compact Kähler manifolds, then the Künneth decomposition

Hn(X × Y ,ℤ)
∼
←←←←←←←→

⨁

p+q=n
Hp(X,ℤ)⊗Hq(Y ,ℤ)

is an isomorphism of Hodge structures (after quotienting out both sides by
the torsion).

3. Let X, Y be as above, and consider a morphism f ∶ X → Y of complex
manifolds. Then the induced pullback map

f ∗ ∶ Hn(Y ,ℤ)→ Hn(X,ℤ)

is amorphism ofHodge structures. In particular, f ∗ ∈ Hn(X,ℤ)∨⊗Hn(Y ,ℤ)
is a Hodge class.

4. (Hodge conjecture) LetX∕ℂ be a compact Kälher manifold, and let CHn(X)
be the Chow group of codimension-n cycles on X. We denote by

cn ∶ CHn(X)→ H2n(X,ℤ)(n),

the cycle class map, whose image is contained in the space of Hodge classes
of H2n(X,ℤ)(n). When n = 1, we have that CHn(X) = Pic(X), and Lef-
schetz proved that c1(CH1(X)) = Hdg(H2(X,ℤ)(1)). In general, Groethendieck
showed that the equality cn(CHn(X)) = Hdg(H2n(X,ℤ)(n)) does not need
to hold when n > 1, for more or less trivial reasons. Nevertheless, things
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change drastically when we consider rational coefficients, and the question
of whether cn(CHn(X)) ⊗ℤ ℚ = Hdg(H2n(X,ℚ)(n)) for any X and any n
is called the Hodge conjecture, one of the most important open problems in
complex geometry.

There are two other notions in Hodge theory that we shall introduce before con-
cluding this section, namely, polarisations and Mumford-Tate groups.
Definition 2.1.4. (Weil operator) Let V be a Hodge structure, the Weil operator
is the morphism C ∶ Vℂ → Vℂ given by multiplication by ip−q on V p,q. Since
V p,q = V q,p, one can easily check that C respects Vℝ, i.e., it is defined over ℝ.
Moreover, if the Hodge structure is given by ℎ∶ S → GL(V )ℝ, one can easily
check that C = ℎ(i).
Note that C2 = (−1)m, where m is the weight of V .

Remark 2.1.5. The Weil operator commutes with morphisms of Hodge structures,
in the sense that if f ∶ V → W is a morphism of Hodge structures, then f◦CV =
CW ◦f , where CV and CW denote, respectively, the Weil operator on V andW .
Definition 2.1.6. Let V be an integral Hodge structure of weightm. A polarisation
on V is a morphism of Hodge structures

�∶ V ⊗ V → ℤ(−m)

such that the bilinear form on Vℝ given by (x, y)↦ (2�i)m�(Cx⊗y) is symmetric
and positive-definite.
Note that by Remark (2.1.5) one has the following equalities for every x, y ∈ Vℝ:

�(Cx ⊗ y) = C�(Cx ⊗ y) = �(C2x ⊗ Cy) = (−1)m�(x, Cy).

Therefore, since by definition the form (x, y) ↦ (2�i)m�(Cx ⊗ y) is symmetric,
we conclude that � is symmetric if m is even, and alternating if m is odd. Vaguely
speaking, a polarisation on a Hodge structure reflects the presence of an ample line
bundle, in the following sense. Let X∕ℂ be a projective manifold of dimension
n = dim(X), and let  be an ample line bundle on X. The Lefschetz operator

L∶ Hm(X,ℤ)→ Hm+2(X,ℤ)(1)

is defined to be the cup-product with the class c1() ∈ H2(X,ℤ)(1). It is a mor-
phism of Hodge structures. Working with rational coefficients, for 0 ≤ m ≤ n the
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mth-primitive cohomology group is defined to be

Hm(X,ℚ)prim ∶= ker[Ln−m+1 ∶ Hm(X,ℚ)→ H2n+2−m(X,ℚ)(n − m + 1)].

It is a sub-Hodge structure ofHm(X,ℚ). One can show (see Section 7.1.2 of [54])
that the pairing Hm(X,ℚ)prim × Hm(X,ℚ)prim → H2n(X,ℚ)(n − m) ≅ ℚ(−m)
defined by (x, y) ↦ (−1)mc1()n−m ∪ x ∪ y is a polarisation. Finally, to obtain a
polarisation on the wholeHm(X,ℚ) one uses the Lefschets decomposition

Hm(X,ℚ) =
⨁

j≥0
c1()j ∪Hm−2j(X,ℚ)prim(−j).

Not every Hodge structure admits a polarisation, and when it does it is said to be
polarisable. Perhaps the best way to understand this is to look at point 1) in Exam-
ples (2.1), where we had an equivalence of categories between complex tori and
integral Hodge structures of type (1, 0) and (0, 1). Under this equivalence, inte-
gral Hodge structures of type (1, 0) and (0, 1) that admit a polarisation corresponds
precisely to Abelian varieties, i.e., we have an equivalence of categories

{Ab. varieties} ∼
←←←←←←←→ {Integral, polarisable Hodge structures of type (1, 0), (0, 1)}.

The last concept we need to introduce is the one of Mumford-tate group attached
to a Hodge structure. This can be defined in two different ways, either via the
formalism of Tannakian categories, or in more down-to-earth terms, as we shall
do. For a nice introduction to Tannakian categories and related concepts, we refer
the interested reader to the relevant article by Deligne appearing in [12].
Definition 2.1.7. Let V be a rational Hodge structures, given by the morphism
ℎ∶ S → GL(V )ℝ. The Mumford-Tate group of V , denoted by MT(V ), is defined
to be the smallest algebraic subgroup of GL(V ) such that ℎ factorises as ℎ∶ S →

MT(V )ℝ ↪ GL(V )ℝ.

Note thatMT(V ) is connected since S is connected and, moreover, if V is polar-
isable, thenMT(V ) is reductive (see Proposition 4.9. inMoonen’s notes). Mumford-
Tate groups allow us to detect sub-Hodge structures in tensor constructions: let
� ⊂ ℤ2 be a finite subset, � = {(ai, bi)}i=1,⋯,n, and define

V � ∶=
n

⨁

i=1
V ⊗ai ⊗ (V ∨)bi .
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We have a natural action ofMT(V ) on V �.
Proposition 2.1.8. A rational subspaceW ⊂ V � is a sub-Hodge structure if and
only if it is invariant under the action ofMT(V ). Moreover, an element t ∈ V � is
a Hodge class if and only if it is fixed byMT(V ).

Definition 2.1.9. Let V be a rational Hodge structure. Following Milne, we say
that V is special if its Mumford-Tate group is a torus.

Note that this definition is very similar to Definition 1.0.1. The only differences
are some technical conditions that are automatically satisfied for K3 surfaces, but
need to be imposed for general Hodge structures (see Definition 12.5 in Milne’s
notes). Let V be a special Hodge structure and let T be its Mumford-Tate group,
that by definition is an algebraic torus defined overℚ. The cocharacter � introduced
before gives us a morphism of algebraic tori �∶ Gm,ℂ → Tℂ.
Definition 2.1.10. Let ℎ∶ S → GL(V )ℝ be a special Hodge structure, and let T
be its Mumford-Tate group. The reflex field of V , denoted by E(ℎ), is the field of
definition of the cocharacter �∶ Gm,ℂ → Tℂ.
Note that the reflex field is always a finite extension of ℚ. Before concluding

this section, let us quickly recall the statement of the Mumford-Tate conjecture. Let
K ⊂ ℂ be a number field, and consider X∕K a smooth, projective, geometrically
irreducible variety. For any l a prime number, one has a canonical comparison
isomorphism

H ∙
ét(X,ℤl) ≅ H

∙
B(X

an(ℂ),ℤ)⊗ℤ ℤl (2.1.0.4)
between the l−adic étale cohomology and the Betti cohomology of the analytic
space associated to Xℂ (see Theorem 3.12 in [31]). Attached to H ∙

ét(X,ℤl) one
has a natural Galois representation

�l ∶ GK → GL(H ∙
ét(X,ℚl)),

and we denote by G ∶= Im(�l)
◦ the identity component of the Zariski-closure of

the image of �l.
Conjecture 2.1.1. (Mumford-Tate conjecture) LetM be the Mumford-Tate group
ofH ∙

B(X
an(ℂ),ℚ). Under the comparison isomorphism (2.1.0.4), one has

G =M × Spec(ℚl).
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2.2 Generalities on K3 surfaces

In this section we introduce K3 surfaces and recollect the basic properties that will
be needed during the thesis. We mainly follow Huybrechts’ book [16], especially
Chapter 1.
Let K be any field. By a variety over K , we mean a separated, geometrically inte-
gral scheme of finite type defined over K .
Definition 2.2.1 (Algebraic K3 surfaces). A K3 surface over K is a smooth, com-
plete variety X∕K with dim(X) = 2, such that !X∕K ≅ X andH1(X,X) = 0.
Here, !X∕K denotes the canonical bundle of X∕K , i.e., !X∕K = ⋀2ΩX∕K .

Remark 2.2.2. As Remark 1.2 of Chapter 1 in [16] explains, every smooth, com-
plete surface is automatically projective. Therefore, algebraic K3 surfaces are al-
ways projective.

Classical examples of K3 surfaces are smooth quartics in ℙ3K , complete intersec-
tions of type (2, 3) in ℙ4, and complete intersections of type (2, 2, 2) in ℙ5. Also
smooth, projective surfaces that can be realised as a 2 ∶ 1 branched covering of
ℙ2K ramified over a curve of degree 6 are K3 surfaces. Finally, one can construct
K3 surfaces starting from Abelian surfaces via a process due to Kummer: let A∕K
be an Abelian surface, and consider the involution �∶ A → A given by x ↦ −x.
The quotient A∕� is a surface with 16 double points, and blowing them up yields
a K3 surface denoted Km(A), called the Kummer surface associated to A. The
first step to study K3 surfaces is to compute their Picard groups. To this extent,
let PicX∕K be the Picard scheme of X introduced by Grothendieck, and Pic0X∕K
the connected component of the identity. The Picard group of X∕K , denoted by
Pic(X), is nothing but the group of K−rational points of PicX∕K , i.e.

Pic(X) = PicX∕K (K).

We shall denote by Pic0(X) ∶= Pic0K∕K (K) the subgroup of algebraically trivial
line bundles, and the quotient NS(X) ∶= Pic(X)∕ Pic0(X) is called the Néron-
Severi group of X. A famous theorem of Severi asserts that NS(X) is a finitely
generated Abelian group. Recall that when X is a smooth, complete surface, one
has a natural intersection pairing Pic(X)×Pic(X)→ ℤ, that sends1,2 ∈ Pic(X)
to the intersection number

(1,2) = �(X,X) − �(X,∗1) − �(X,
∗
2) + �(X,

∗
1 ⊗ ∗2). (2.2.0.1)
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Here, � denotes the Euler-Poincaré characteristic and ∗ the dual of . The sub-
group Pic�(X) ⊂ Pic(X) of numerically trivial line bundles corresponds to the
kernel of the above pairing:

Pic�(X) ∶= { ∈ Pic(X)∶ for every ′ ∈ Pic(X) we have (,′) = 0}.

One can easily show that Pic0(X) ⊂ Pic�(X). Then, the quotient Pic(X)∕ Pic�(X)
represents the numerical classes of line bundles, and it is denoted by Num(X). It
is a finitely generated, free Abelian group.
Theorem 2.2.3. Let X∕K be a K3 surface. Then the quotient maps

Pic(X)↠ NS(X)↠ Num(X)

are all isomorphisms.

In particular, Pic(X) is a finitely generated, free Abelian group. Its rank is de-
noted by �(X) and it is called the Picard number of X.
The next class of invariants to compute are theHodge numbersℎp,q ∶= dimK Hq(X,ΩpX∕K ).They are classically grouped into the Hodge diamond, that for surfaces assumes the
following form:

ℎ2,2

ℎ2,1 ℎ1,2

ℎ2,0 ℎ1,1 H0,2

ℎ1,0 ℎ0,1

ℎ0,0.

Using the Hirzebruch-Riemann-Roch and the properties in the definition of K3
surfaces, one can show that if X∕K is a K3 surface, then its Hodge diamond cor-
responds to

1

0 0

1 20 1

0 0

1.

(2.2.0.2)
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Let us now assume thatK = ℂ, so that we can employ techniques from complex
geometry, topology and Hodge theory to study K3 surfaces. In the following, we
shall identify a K3 surface X∕ℂ with the complex space Xan(ℂ) naturally associ-
ated to it. The first thing to notice is that in the algebraic setting, K3 surfaces are
always projective (see Remark (2.2.2)). On the other hand, in complex geometry,
we can give this more general definition of K3 surface.
Definition 2.2.4. A complex K3 surface is a compact, connected manifoldX with
dim(X) = 2 such that !X ≅ X andH1(X,X) = 0.

For example X ∶= Km(A), where A is a complex torus that is not projective, is
a complex K3 surface that is not algebraic. Every complex K3 surface is simply
connected, i.e., �1(X) = 0. The Betti-cohomology groups of a K3 surface can be
computed to beH1

B(X,ℤ) = H
3
B(X,ℤ) = 0 andH2

B(X,ℤ) ≅ ℤ22. The topologi-
cal intersection form turnsH2

B(X,ℤ) into a lattice, that is unimodular by Poincaré
duality. The isomorphism class of this lattice does not depend on the chosen X,
since it can be proven that every two K3 surfaces are deformation equivalent (see
Chapter 7, Theorem 1.1. of [16]); it is usually denoted by Λ and called the K3
lattice. Finally, thanks to the Hodge index theorem, one knows that the signature
of Λ is (3+, 19−).
A convenient way to understand complex K3 surfaces is via their Hodge structures;
as explained in the previous section, the Betti cohomology groups of smooth, com-
plete varieties are naturally endowed with a Hodge structure. In the K3 situation,
the only non-trivial Hodge structure is the one associated to H2

B(X,ℤ), with the
Hodge decomposition given by

H2
B(X,ℤ)⊗ℤ ℂ ≅ H0(X,Ω2X)⊕H1(X,ΩX)⊕H2(X,X),

and we shall simply denoteHq(X,ΩpX) byHp,q(X). The Hodge diamond (2.2.0.2)
tells us that dimℂH2,0(X) = dimℂH0,2(X) = 1 and dimℂH1,1(X) = 20. If ! ∈
H2,0(X) − 0, one can show that

• (!,!) = 0;
• (!,!) > 0;
• (!,H1,1(X)) = 0.

Here, (−,−) denotes the extension toH2(X,ℤ)⊗ℂ of the intersection form. This
implies that the whole Hodge structure can be reconstructed by !, since H1,1(X)
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corresponds to the complexification of ⟨Re(!), Im(!)⟩⟂ ⊂ H2(X,ℝ), see Chapter
6, Proposition 1.2 of [16].
Definition 2.2.5. A Hodge structure of weight two on Λ with dimℂ Λ2,0 = 1 and
such that any ! ∈ Λ2,0 − 0 satisfies the three condition above is called of K3 type.

The first Chern classmap induces an injection c1 ∶ Pic(X) ≅ NS(X)↪ H2
B(X,ℤ)(1),

and the intersection form introduced in (2.2.0.1) is nothing but the restriction of the
topological intersection form to NS(X).
Definition 2.2.6. The transcendental lattice T (X) ⊂ H2(X,ℤ)(1) is defined to be
the orthogonal complement of NS(X).
Remark 2.2.7. Clearly, T (X) ⊂ H2(X,ℤ)(1) is a primitive embedding, and it is
possible to show that T (X)ℚ = T (X)⊗ℤℚ is an irreducible Hodge structure when
X is projective (i.e., algebraic).
The importance of Hodge theory in the study of complex K3 surfaces lies in the

global Torelli theorem (see Chapter 7, Theorem 5.3. of [16]).
Theorem 2.2.8. Two complex K3 surfaces X and Y are isomorphic if and only if
there exists a Hodge isometry �∶ H2(X,ℤ)

∼
←←←←←←←→ H2(Y ,ℤ) (i.e., � is an isomor-

phism of integral Hodge structures that respect the intersection form). Moreover,
if � sends a Kähler class of X to a Kähler class of Y , there exists a unique iso-
morphism f ∶ Y

∼
←←←←←←←→ X such that f ∗ = �, where f ∗ denotes the induced map in

cohomology.

The theorem above shares a deep resemblance to what happens in the case of
complex tori, and it tells us that all the information of a complex K3 surface is
encoded in its Hodge structure. Finally, the surjectivity of the period map (Chapter
6, Remark 3.3. of loc. cit.) asserts that every Hodge structure of K3 type (in the
sense of Definition 2.2.5) comes from a complex K3 surface.
Theorem 2.2.9. Let us consider Λ endowed with a Hodge structure of K3 type.
Then there exists a complex K3 surface X with a Hodge isometry Λ ≅ H2(X,ℤ).

Remark 2.2.10. As explained in the proof of Proposition 3.1.11, X is projective
(i.e., algebraic) if and only if there exists a class L ∈ Λ1,1 ∩Λ such that (L,L) > 0.
The only other ingredient we shall need from the theory of K3 surfaces is the

notion of Fourier-Mukai partners.
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Definition 2.2.11. Two complex K3 surfacesX and Y are said to be Fourier-Mukai
partners if there exists a Hodge isometry T (X) ≅ T (Y ).
Remark 2.2.12. This is an ad-hoc definition. The original definition comes from the
theory of bounded derived categories, a subject that we should not touch upon in
this thesis. The interested reader can consult Chapter 16 of Huybrechts’ book [16].
The equivalence of our ad-hoc definition and the ’real‘ one is proved in Chapter 16,
Corollary 3.7. of loc. cit..
The only theorem we shall need is the following finiteness one.

Theorem 2.2.13. Let X be a complex K3 surface. Then there exists only finitely
many isomorphism classes of complex K3 surfaces Y such thatX and Y are Fourier-
Mukai partners.

2.3 Absolute Hodge cycles

The idea of absolute Hodge cycle was first introduced by Deligne in his seminal
paper [12], which we follow as the main reference. Absolute Hodge cycles allow
one to build a meaningful category of motives, and thanks to them Deligne was
able to prove one inclusion of the Mumford-Tate conjecture for Abelian motives,
i.e., the ones that can be obtained by linear algebra constructions from the mo-
tives of Abelian varieties. To illustrate the main ideas, consider k an algebraically
closed field of finite transcendence degree over ℚ and X∕k a smooth projective
variety. Every embedding � ∶ k ↪ ℂ defines a variety over ℂ that we denote by
X� . Grothendieck in his paper [14] proved that there is a canonical comparison
isomorphism

H ∙
dR(X

�∕ℂ) ≅ H ∙
B(X

�(ℂ),ℚ)⊗ ℂ (2.3.0.1)
between the algebraic de Rham cohomology of X� and the Betti cohomology

of its analytification with ℂ-coefficientes. Following Deligne, we put H ∙
�(X) ∶=

H ∙
B(X

�(ℂ),ℚ). The canonical morphism of schemes

X� → X,

induces a pullback map

�∗ ∶ Hn
dR(X∕k)→ Hn

dR(X
�∕ℂ)
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and an isomorphism

�∗ ⊗ 1 =∶ �∗dR ∶ H
n
dR(X∕k)⊗k,� ℂ → Hn

dR(X
�∕ℂ).

In étale cohomology, we have an isomorphism (since k is algebraically closed)

�∗ét ∶ H
n
ét(X,Af )→ Hn

ét(X
� ,Af ).

Here, byHn
ét(X,Af )we simply meanHn

ét(X, ℤ̂)⊗ℤℚ. One now defines, for n ≥ 0
and m ∈ ℤ,

Hn
A(X)(m) ∶= H

n
dR(X∕k)(m) ×H

n
ét(X,Af )(m);

it is a free (k × Af )-module. For every � ∶ k ↪ ℂ there is a canonical diagonal
embedding

Δ� ∶ Hn
� (X)(m)↪ Hn

A(X
�)(m),

that is constructed using (2.3.0.1) and the comparison isomorphism

H ∙
ét(X

� , ℤ̂) ≅ H ∙
B(X

�(ℂ),ℤ)⊗ ℤ̂ (2.3.0.2)

between étale cohomology and Betti cohomology, and a canonical isomorphism
(the product of �∗ét and �∗dR)

�∗ ∶ Hn
A(X)(m)⊗ (ℂ ×Af )→ Hn

A(X
�)(m).

Definition 2.3.1 (Absolute Hodge). An element t ∈ H2n
A (X)(n) is said to be abso-

lute Hodge if
1. �∗(t) ∈ Δ�(H2n

� (X)(n)) for every � ∶ k↪ ℂ,
2. The first component of t lies inF 0H2n

dR(X∕k)(n), whereF ∙ denotes theHodge
filtration.

For X∕k as above, denote by CnAH (X) ⊂ H2n
A (X)(n) the subset of absolute

Hodge cycles. It is a finite dimensional space over ℚ.
We list now some facts about absolute Hodge cycles, whose proofs can be found
in [12] (except for point 5.)
Proposition 2.3.2. The following hold true:

1. The class of every algebraic cycle is absolute Hodge;
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2. The Kunneth components of the diagonal are absolute Hodge;

3. The map in the hard Lefschetz theorem is absolute Hodge;

4. For abelian varieties, the notion of Hodge and absolute Hodge cycle coin-
cide;

5. For K3 surfaces, one can prove that the Kuga-Satake map is absolute Hodge
(see Deligne’s paper where he proves the Weil conjectures for K3 surfaces
[11]). Therefore, also for K3 surfaces the notion of Hodge and absolute
Hodge coincide;

6. If k ⊂ k′ are algebraically closed fields of finite transcendence over ℚ, and
X is defined over k, then C ∙AH (X) = C ∙AH (X

′
k), where the isomorphism is

given by the base-change in cohomology;

7. Suppose that K is a number field, and suppose that X is defined over K .
Then GK acts on C ∙AH (X) through a finite quotient.

Using the last property, we can make the following definition.
Definition 2.3.3. Let X∕K be a smooth projective variety over a number field K .
Define C ∙AH (X) ⊂ C ∙AH (X) to be

C ∙AH (X) ∶= C
∙
AH (X)

GK .

Remark 2.3.4. If X, Y ∕K are smooth complete varieties and

f ∶ H ∙
B(Xℂ,ℚ)→ H ∙

B(Yℂ,ℚ)

is a correspondence whose class inH ∙
B(Xℂ×Yℂ,ℚ) is absolute Hodge and defined

over K , then the induced map

f ⊗ 1∶ H ∙
ét(X, ℤ̂)→ H ∙

ét(Y , ℤ̂)

is GK -invariant.

2.4 K3 surfaces with CM and their Hodge structures

LetX∕ℂ be aK3 surface and letH2
B(X,ℤ) be its second Betti cohomology. Recall

that the transcendental lattice of X, denoted by T (X), is defined as the orthogonal
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complement of NS(X) with respect to the intersection form onH2(X,ℤ)(1).
Definition 2.4.1. We say thatX has complex multiplication (CM) if the Mumford-
Tate groupMT(X) of T (X)ℚ is abelian.
Remark 2.4.2. It is easy to show that the inclusion T (X)ℚ ⊂ H2(X,ℚ)(1) in-
duces an identification between the Mumford-Tate group of T (X)ℚ and the one of
H2(X,ℚ)(1).
In this case (see Zarhin [56]) one can prove that E(X) ∶= EndHdg(T (X)ℚ) is

a CM field (where complex conjugation acts like the adjunction with respect to
the intersection form) and that dimE(X) T (X)ℚ = 1. Since the elements of E(X)
are endomorphisms of Hodge structures, we obtain a natural map �X ∶ E(X) →
End(H1,−1(X)) = ℂ. Since T (X)ℚ is irreducible, Schur’s lemma shows that �X
is actually an embedding. Therefore, E(X) is always canonically a subfield of ℂ,
and in proposition 2.4.3 we shall show that it corresponds to the reflex field of the
Hodge structure T (X)ℚ. The Hodge structure T (X)ℚ can be described using the
torus ResE(X)∕ℚ Gm, whose ℚ-points are naturally identified with E(X)×. If we
decompose

(ResE(X)∕ℚ Gm)(ℂ) =
⨁

�∶E(X)↪ℂ
ℂ×�

where

ℂ×� ∶= {z ∈ (ResE(X)∕ℚ Gm)(ℂ) ∶ ∀e ∈ E(X), e ⋅ z = �(e)z}

we have that the Hodge structure on T (X)ℚ is given by the morphism of algebraic
groups (defined over ℝ) whose action on ℂ-points is

ℎ∶ S(ℂ) ≅ ℂ× × ℂ× → ℂ×�X ⊕⋯⊕ ℂ×�X = ResE(X)∕ℚ Gm(ℂ) ⊂ GL(T (X))(ℂ)

(z,w)↦ (zw−1, 1,⋯ , 1, wz−1),

where S ∶= Resℂ∕ℝ Gm is the Deligne torus and �X is the distinguished embedding
E(X)↪ ℂ. Denote by UE(X) the E(X)-linear unitary subgroup of ResE(X)∕ℚ Gm,
i.e. the one cut out by the equation ee = 1. Zarhin in his paper [56] proved that
inside GL(T (X))ℚ we have an identification

MT(T (X)) = UE(X) .
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When taking ℂ-points, the natural inclusion UE(X) ⊂ ResE(X)∕ℚ Gm becomes

UE(X)(ℂ) =
{

(z)� ∈
⨁

�∶E(X)↪ℂ
ℂ×� ∶ z�z� = 1

}

.

Therefore, the cocharacter � associated to ℎ is the map

�∶ Gm(ℂ)→ ℂ×�X ⊕⋯⊕ ℂ×�X (2.4.0.1)
z↦ (z, 1,⋯ , 1, z−1)

with image inside UE(X)(ℂ).
Proposition 2.4.3. The reflex field of theHodge structure T (X)ℚ is �X(E(X)) ⊂ ℂ.

Proof. By definition, the reflex field of T (X)ℚ is the field of definition of the
cocharacter �. By the discussion above, we see that � ∈ Aut(ℂ) fixes � if and
only if ��X = �X , i.e. if and only if � ∈ Aut(ℂ∕�X(E(X))).
Remark 2.4.4. The embedding �X normalises the action of E(X) in the sense that
if � ∈ �X(E(X)), then the Hodge endomorphism �−1X (�) acts as multiplication by
� on the (1,−1) part of cohomology.
One can show that the CM fields E can be spanned, as ℚ-vector spaces, by

elements � ∈ E such that �� = 1 (for a proof, see Proposition 4.4. in [15]).
In E(X), these correspond to rational Hodge isometries, since for every v,w ∈
T (X)ℚ we have

(�v, �w)X = (��v,w)X = (v,w)X .

As proved in Corollary 1.10 of [33], if �(X) ≥ 11 there exist integral algebraic
cycles Ci ⊆ X × X and rational numbers qi ∈ ℚ for i = 1,⋯ , n such that the
cohomology class of � inH4(X ×X,ℚ)(2) can be expressed as

� =
∑

i
qi[Ci].

(Here, we denote by [Ci] the image of Ci under the cycle class map CH2(X×X)→
H4(X×X,ℚ)(2)). Nikulin [36] improvedMukai’s result to cover all the cases with
�(X) ≥ 5, i.e. [E ∶ ℚ] ≤ 16 and, finally, Buskin [4] took care of all the remaining
cases. In particular, if X∕ℂ has complex multiplication, the Hodge conjecture is
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true for X ×X. Therefore, if X is defined over K ⊆ ℂ we can ask whether a class
� ∈ E(Xℂ) is defined over K too.
Definition 2.4.5. Let X∕K ⊆ ℂ (this notation means that K is considered as a
subfield of ℂ) with CM over ℂ.

1. For every � ∈ Aut(ℂ) we define the map �ad ∶ E(Xℂ)→ E(X�
ℂ) as

�ad(�) ∶=
∑

i
qi�

∗[Ci],

where E(Xℂ) ∋ � =
∑

i qi[Ci] and �∗ denotes the pullback of algebraic
cycles via the isomorphism of schemes � ∶ X�

ℂ → Xℂ.
2. We say that � ∈ E(Xℂ) is defined over K if for every � ∈ Aut(ℂ∕K)

�ad(�) = �.

Definition 2.4.6. Let X be a K3 surface over a field K , and assume that K has
finite transcendence degree over ℚ. Like in Definition 2.3.3, we define E(X) to be
the subfield of E(Xℂ) of absolute Hodge endomorphism that are defined over K .
If Xℂ has CM, then we say that X has CM over K if E(X) = E(Xℂ).

Remark 2.4.7. In order to define E(X) one has to choose an embedding K ↪ ℂ,
but one can check that E(X) does not depend on the chosen embedding.
We will now give an equivalent condition forX∕K to have complex multiplica-

tion over K , similar to the one for Abelian varieties.
Proposition 2.4.8. Let X∕K be as in Definition 2.4.6 such that Xℂ has CM, and
let �∶ K ↪ ℂ be an embedding. Then X has CM over K if and only if

�Xℂ
(E(Xℂ)) ⊆ �(K),

i.e. if and only if �(K) contains the reflex field of Xℂ. Moreover, the condition
�Xℂ

(E(Xℂ)) ⊆ �(K) does not depend on �.

Proof. Let � ∈ Aut(ℂ) be an automorphism of the complex numbers and con-
sider the base change X�

ℂ ∶= Xℂ ×� Specℂ. Again, we have a natural isomor-
phism �ad ∶ E(Xℂ)

∼
←←←←←←←→ E(X�

ℂ), given by conjugation of algebraic cycles. If ! ∈
T 1,−1(Xℂ) is a non-zero 2−form, we can conjugate it via � (since it is an alge-
braic object) to obtain a non zero 2−form !� on T 1,−1(X�

ℂ). Now, denote by
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�X ∶ E(Xℂ) ↪ ℂ and by �X� ∶ E(X�
ℂ) ↪ ℂ the two embeddings given by evalu-

ation on a non-zero 2−form and let � ∈ �X(E(Xℂ)); we have:

(�ad�−1X �)!� = ((�−1X �)!)� = (�!)� = �(�)!�

i.e.
�X�◦�ad = �◦�X . (2.4.0.2)

Therefore, the following diagram commutes
E(Xℂ) E(X�

ℂ)

ℂ ℂ.

�X

�ad

�X�

�

If � fixes K , then X�
ℂ = Xℂ, so that E(X) = E(Xℂ) if and only if the map

�ad ∶ E(Xℂ) → E(Xℂ) is the identity. But the diagram above tells us that this
happens if and only if � fixes also �X(E(Xℂ)). Finally, to prove that the condition
�Xℂ

(E(Xℂ)) ⊆ �(K) does not depend on �, we need to show that it is true for one
embedding if and only if it is true all. But if � ∈ Aut(ℂ) is any element, equation
2.4.0.2 tells us that

�X� (E(X�
ℂ)) = �(�X(E(Xℂ))),

so we conclude the proof.
Definition 2.4.9. LetX∕ℂ be aK3 surfaceswith CM.We define the order(X) ∶=
EndHdg(T (X)) ⊂ E(X), and we say thatX is principal if(X) is the maximal one.
Remark 2.4.10. We do not use the full power of the Hodge conjecture in this thesis.
One can defineE(X) and(X) in the same fashion for every K3 surfaceX∕ℂ (i.e.,
without CM). By the results obtained in [56] by Zarhin, E(X) is always going to
be a field, either totally real or CM, and (X) ⊂ E(X) an order in it. Proposition
2.3.2 tells us that every � ∈ E(X) is an absolute Hodge class, hence we can define
�ad ∶ E(X) → E(X�) to be the natural conjugation of absolute Hodge classes. In
Proposition 2.4.12 we will show that �ad sends (X) isomorphically to (X�).
Working with absolute Hodge classes is particularly useful if one whishes to gen-
eralise these ideas to more general CM hyperkähler manifolds, where the Hodge
conjecture for self-products is not known.
Remark 2.4.11. From now on, we will only considerK3 surfaces with CM that are
principal.
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One has to prove that the ring (X) is an algebraic invariant of X, i.e. that it
depends only on the scheme structure ofX. What we mean by this is the following:
consider X∕k any K3 surface, and suppose there exists an embedding �∶ k ↪ ℂ.
Base-changing X via �, we obtain a K3 surface X � over ℂ, and we can compute
the ring (X �) = EndHdg(T (X �)). We need to prove that this ring does not depend
on �. The analogous statement for Abelian varieties is trivial, as the analogue of
EndHdg(T (X)) would be the endomorphism ring of the variety, and conjugation of
an endomorphism is still an endomorphism. In the K3 surface case, though, it is
not clear that if � ∈ (X) ⊂ E(X) then also �ad(�) ∈ (X�) ⊂ E(X�) (we only
know, so far, that �ad(�) ∈ E(X�)).
Theorem 2.4.12 (Invariance of (X)). Let X∕ℂ be any K3 surface and let � ∈
Aut(ℂ). Then the natural map �ad ∶ E(X) → E(X�) sends (X) isomorphically
to (X�).

Proof. Consider the two natural embeddings

�B ∶ E(X)↪ Hdg4(X ×X) ∶= H0,0(X ×X) ∩H4
B(X ×X,ℚ(2))

�ét ∶ E(X)↪ H4
ét(X ×X,Af (2)).

Since for K3 surfaces every Hodge cycle is absolute Hodge, for every � ∈ Aut(ℂ)
we have a well-defined map

�B ∶ Hdg
4(X ×X)→ Hdg4(X� ×X�)

and a natural inclusion

Hdg4(X ×X)↪ H4
ét(X ×X,Af (2))

such that the following commutes (note the abuse of notation in the vertical arrows)
E(X) E(X�)

Hdg4(X ×X) Hdg4(X� ×X�)

H4
ét(X ×X,Af (2)) H4

ét(X
� ×X� ,Af (2)).

�ad

�B �B

�B

�∗

where �∗ is the natural pullback in étale cohomology via the isomorphism of schemes
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� ∶ X� → X, and the composition of the vertical arrows is �et. Consider now the
isomorphism of ℤ̂-lattices

�∗ ∶ T̂ (X)→ T̂ (X�)

and let f ∈ (X). The commutativity of the above diagram tells us that

�ad(f ) = �∗◦f◦�∗−1,

this equality happening in H4
ét(X

� ×X� ,Af (2)). Now, �ad(f )(T (X�)) ⊂ T (X�)ℚ
since �ad(f ) ∈ E(X�), and [�∗◦f◦�∗−1]T̂ (X�) ⊂ T̂ (X�) since �∗ ∶ T̂ (X) →

T̂ (X) is an isomorphism. Thus, the equality �ad(f ) = �∗◦f◦�∗−1 implies that
�ad(f )(T (X�)) ⊂ T (X�)ℚ ∩ T̂ (X�) = T (X�), i.e. �ad(f ) ∈ (X�). Hence the
map

�ad ∶ E(X)→ E(X�)

restricts to an isomorphism between (X) and (X�).

2.5 Computing the order of singular K3 surfaces

In this section we will explicitly compute the order (X) for every X∕ℂ with
maximal Picard rank �(X) = 20, so to have an easy criterion to decide whether
(X) is principal or not. If X∕ℂ is a singular K3 surface, the order (X) ∶=
EndHdg(T (X)) can be easily computed in the following standard way. Choose a
ℤ-basis e1, e2 of T (X) and write the intersection matrix as

M =

[

2a b
b 2c

]

(2.5.0.1)

with a, b, c ∈ ℤ andΔ ∶= b2−4ac < 0. Let 2q(x, y) ∶= (xe1+ye2, xe1+ye2)X
be the binary quadratic form associated to (−,−)X , i.e.

q(x, y) = ax2 + bxy + cy2.

Up to orientation, the only Hodge structure on T (X) of K3 type is given by

T (X)1,−1 = ℂ

[

s
1

]
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where s is a solution of q(x, 1) = 0, let’s say s = −b+
√

Δ
2a . This follows by the fact

that a non-zero 2-form ! must satisfy q(!,!) = 0. Denote by E the field ℚ(
√

Δ)
and write Δ = f 2ΔE , with ΔE the discriminant of the field E.
Proposition 2.5.1. The ring homomorphism

Φ∶ E →M2×2(ℚ)

x + y
√

ΔE ↦ x Id +
y
f

[

−b −2c
2a b

]

realizes E as EndHdg(T (X)ℚ)

Proof. The fact that the above map is a morphism of rings is an easy computation.
The only thing left to check is that Φ(E) ⊂ EndHdg(T (X)ℚ), and this is equivalent
to Φ(√ΔE) ∈ EndHdg(T (X)ℚ). Now,

Φ(
√

ΔE) =
1
f

[

−b −2c
2a b

]

and we have

1
f

[

−b −2c
2a b

][

s
1

]

= 1
f

[

Δ−b
√

Δ
2a
√

Δ

]

=
√

ΔE

[

s
1

]

We are now ready to prove
Theorem 2.5.2. LetX∕ℂ be a singular K3 surface, let q(x, y) ∶= ax2+ bxy+ cz2

the quadratic form associated to a ℤ-basis of T (X), of discriminant Δ = f 2ΔE ,
with ΔE the discriminant of the field E = ℚ(

√

Δ). Then

(X) ≅ ℤ + f
(a, b, c)

E .

In particular, X is principal if and only if f = (a, b, c).

Proof. From the discussion above, we have that the order (X) corresponds to

(X) ≅
{

x, y ∈ ℚ∶

[

x − b
f
y −2c

f
y

2a
f
y x + b

f
y

]

∈M2×2(ℤ)
}

.
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This is equivalent to 2x ∈ ℤ, 2(a,b,c)
f

y ∈ ℤ and x − b
f
y ∈ ℤ, i.e.

(X) ≅
{

x
2
+

fy
2(a, b, c)

√

ΔE ∶ x, y ∈ ℤ , x + b
(a, b, c)

y ≡ 0mod 2
}

.

We also have
(

b
(a, b, c)

)2

≡
(

f
(a, b, c)

)2

ΔE mod 4

If ΔE ≡ 0 mod 4 then the above equations forces
(

f
(a, b, c)

)2

≡
(

b
(a, b, c)

)2

≡ 0 mod 4

and (X) corresponds to

(X) ≅
{

x
2
+

fy
2(a, b, c)

√

ΔE ∶ x, y ∈ ℤ , x ≡ 0 mod 2
}

= ℤ + f
(a, b, c)

E

If ΔE ≡ 1 mod 4 and f
(a,b,c) is odd, the order (X) corresponds to

(X) ≅
{

x
2
+

fy
2(a, b, c)

√

ΔE ∶ x, y ∈ ℤ , x+y ≡ 0 mod 2
}

= ℤ+ f
(a, b, c)

ℚ(
√

Δ′)

And finally, if ΔE ≡ 1 mod 4 and f
(a,b,c) is even, (X) corresponds to

(X) ≅
{

x+
fy

2(a, b, c)
√

ΔE ∶ x, y ∈ ℤ
}

= ℤ+ f
2(a, b, c)

(

ℤ+2E

)

= ℤ+ f
(a, b, c)

E .

Corollary 2.5.3. Let E be an imaginary quadratic extension of ℚ. Then there are
infinitely many ℂ−isomorphism classes of K3 surfaces with CM by E .

Proof. As proved in [39], K3 surfaces with maximal Picard rank correspond bi-
jectively to isomorphism classes of positive-definite oriented even lattices of rank
two, via X ↦ T (X). Let E be any imaginary quadratic field and choose a lattice
M like (2.5.0.1), withE = ℚ(

√

b2 − 4ac) and f = (a, b, c). WriteXM for the only
K3 surface with T (XM ) ≅ M . By Theorem (2.5.2), XM has CM by E . But for
every n ∈ ℤ>0 we have that also XnM has CM by E and XM is not isomorphic
to XnM if n > 1.
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In Proposition (3.1.11) we will extend this result to all E with [E ∶ ℚ] ≤ 10.

2.6 Brauer groups

In this section we briefly recall some essential facts about Brauer groups. We refer
the reader to Section 4.3. of [10] for a thorough explanation. Let K be a field of
characteristic zero, K a fixed algebraic closure and GK its absolute Galois group.
For any smooth, geometrically integral variety X∕K let Br(X) ∶= H2

ét(X,Gm) be
its Brauer group, and Br(X) ∶= H2

ét(X,Gm) be the Brauer group ofX. Both these
groups are torsion abelian groups, sinceX is smooth. The Kummer exact sequence

1→ �n → Gm
n
←←←←←←→ Gm → 1

gives rise to the short exact sequence

0→ Pic(X)⊗ ℤ∕nℤ → H2
ét(X, �n)→ Br(X)[n]→ 0,

which becomes

0→ NS(X)⊗ ℤ∕nℤ → H2
ét(X, �n)→ Br(X)[n]→ 0,

since Pic(X) is an extension ofNS(X) by a divisible group. After taking projective
limits, this implies that

Br(X) ≅
(

H2
ét(X, ℤ̂)(1)∕N̂S(X)

)

⊗ℚ∕ℤ.

Let X∕k be a K3 surface, and let T̂ (X) ∶= N̂S(X)⟂ be the orthogonal comple-
ment of N̂S(X) ⊂ H2

ét(X, ℤ̂)(1). If there exists an embedding K ↪ ℂ, we have a
canonical comparison isomorphism T (Xℂ)⊗ ℤ̂ ≅ T̂ (X). The intersection pairing
together with Lefschetz’s (1, 1)-Theorem leads to an isomorphism

(H2
B(Xℂ,ℤ)(1)∕NS(Xℂ)

∼
←←←←←←←→ Hom(T (Xℂ),ℤ)

v + NS(Xℂ)↦ (x→ (x, v)),

so that we have

Br(X) ≅ Hom(T (Xℂ),ℚ∕ℤ) ≅ Hom(T̂ (X),ℚ∕ℤ).
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Note that from the equation above one gets a natural action of (X) on Br(X).
A Hodge isometry f ∶ T (Xℂ)

≃
←←←←←←←→ T (Yℂ) naturally induces two maps on Brauer

groups: f ∗ ∶ Br(Yℂ)→ Br(Xℂ) given by applying the contravariant functorHom(−.ℚ∕ℤ)
and f∗ ∶ Br(Xℂ)→ Br(Yℂ) given by identifying

Hom(T (Xℂ),ℤ) ≅ {v ∈ T (X)ℚ ∶ (v, x)X ∈ ℤ for all x ∈ T (X)}.

They are one the inverse of the other. Assume now that X has CM.
Definition 2.6.1. By a level structure on T (X) we mean a finite subgroup B ⊂
Br(X) that is invariant under the action of (X).
It is clear that level structures on T (X) corresponds bijectively to freeℤ-modules

Λ
Hom(T (X),ℤ) ⊂ Λ ⊂ Hom(T (X),ℚ)

that are invariant under the action of (X).
Lemma 2.6.2. Let X∕K ⊂ ℂ be a K3 surface defined over a number field K , and
suppose that X has CM over K . Then Br(X)GK ⊂ Br(X) is a level structure on
T (Xℂ).

Proof. By the results in [46], we know that Br(X)GK is finite. If X∕K ⊂ ℂ has
CM over K , then Br(XK )

GK is also invariant under the (X)-action, since every
cycle in E(X) is defined over K .

2.7 The main theorem of complex multiplication

In his paper [41], Rizov proves an analogue of the main theorem of complex mul-
tiplication for Abelian varieties, in the K3 case. As a matter of fact, it is a formal
consequence of the fact (also proved by Rizov) that the moduli stack of polarized
K3 surfaces over ℚ is related to the canonical model of the K3 Shimura variety
via an étale morphism defined over ℚ (the period morphism). As pointed out by
Madapusi Pera in [26], Rizov’s theorem could also be proved using the theory of
motives for absolute Hodge cycles, see loc. cit. Corollary 4.4. In this section we
follow Rizov’s and Milne’s article ‘Introduction on Shimura varieties’ (appearing
in [1]) notations.
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2.7.1 A summary of class field theory

Before stating the main theorem of complex multiplication, let us quickly recall the
main statements of class field theory. Let K be a number field. Class field theory
provides us with a description of Gal(Kab∕K) by the reciprocity map, which is a
surjective, continuous morphism

recK ∶ A×K → Gal(Kab∕K)

whose kernel contains K×. It induces an isomorphism K̂×∖A×K
∼
←←←←←←←→ Gal(Kab∕K),

where K̂×∖A×K denotes the profinite completion of K×∖A×K . For our purposes, it
is also useful to introduce the Artin map:

artK ∶ A×K → Gal(Kab∕K)
�↦�−1
←←←←←←←←←←←←←←←←←←←←←←←←←←→ Gal(Kab∕K). (2.7.1.1)

The reciprocity map enjoys the following properties
1. If L∕K is an Abelian extension, we have a commutative diagram

K×∖A×K Gal(Kab∕K)

K×∖A×K∕NmL∕K (A×K ) Gal(L∕K).

recK

�↦�
|L

∼

2. If v is a prime of K that is unramified in L and � ∈ Kv is a prime element,
then the idéle (⋯ 1⋯�⋯ 1⋯) with � at the v-component and 1 elsewhere
is sent by recK to the Frobenius element (v, L∕K) ∈ Gal(L∕K).

3. If K is totally imaginary, then the reciprocity map factors through the quo-
tient A×K ↠ A×K,f .

Back to our discussion, let V be a finite dimensional ℚ-vector space and let
ℎ∶ S → GL(V )ℝ be a rational Hodge structure. Suppose that ℎ is special, i.e.,
that it satisfies the condition in Definition (2.1.9). In particular, there exists a torus
T ⊂ GL(V ) defined over ℚ such that the morphism ℎ factors through Tℝ:

ℎ∶ S → Tℝ ↪ GL(V )ℝ.

Recall that the reflex field E(ℎ) introduced in (2.1.10) is the field of definition of
the composition

Gm,ℂ
�
←←←←←←→ Sℂ

ℎ
←←←←←←→ Tℂ,
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so that we can consider the map

ℎ◦�∶ Gm,E(ℎ) → TE(ℎ).

By the functoriality of the Weil restriction of scalars, we also have a map

ResE(ℎ)∕ℚ(ℎ◦�)∶ ResE(ℎ)∕ℚ(Gm,E(ℎ))→ ResE(ℎ)∕ℚ(TE(ℎ)),

and we define the map r′ℎ as the composition

ResE(ℎ)∕ℚ(Gm,E(ℎ))→ ResE(ℎ)∕ℚ(TE(ℎ))
N
←←←←←←←→ T ,

whereN is the Norm map, acting on ℚ-points as

ResE(ℎ)∕ℚ(TE(ℎ))(ℚ) ≅
⨁

� ∶ E(ℎ)↪ℚ

T (ℚ)� → T (ℚ)

(t�)� ↦
∏

�
t� .

Finally, we define rℎ ∶ A×E(ℎ) → T (Af ) as the composition

A×E(ℎ) = ResE(ℎ)∕ℚ(Gm,E(ℎ))(A)
r′ℎ
←←←←←←←←←→ T (A)

proj
←←←←←←←←←←←←←←→ T (Af ).

In our case, where T = UE = MT(X), we have
Proposition 2.7.1. After naturally identifyingMT(X) with the norm-1 torus UE ⊂
ResE∕ℚ Gm, we have that the map r corresponds to

r∶ A×E ↦ A×E,f

s →
sf
s̄f

Proof. Remember that the reflex fieldE is naturally embedded intoℂ, via the eval-
uation map. Denote by Ẽ ⊂ ℂ its Galois closure, and consider the natural embed-
ding

E ↪ E ⊗ℚ Ẽ

e→ e ⊗ 1.
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We can multiply every element x ∈ E ⊗ℚ Ẽ by an element of e ∈ E in two ways,
respectively e ⋅ x and x ⋅ e. Denote by  ∶= {�∶ E ↪ Ẽ} the set of embeddings.
The Galois group G ∶= Gal(Ẽ∕ℚ) acts transitively on S by � ↦ g�. We have a
decomposition

E ⊗ℚ Ẽ =
⨁

�∈
Ẽ�

where
Ẽ� = {x ∈ E ⊗ℚ Ẽ ∶ e ⋅ x = x ⋅ �(e) ∀ e ∈ E}.

One can show that exists a unique element 1� ∈ Ẽ� such that the map Ẽ → Ẽ�,
ẽ ↦ 1� ⋅ ẽ is an isomorphism of fields (multiplication on Ẽ� being the one induced
by E ⊗ℚ Ẽ). If we let G act on the right side, i.e. g(z ⊗ w) ∶= z ⊗ g(w) for
every g ∈ G, we have g(1� ⋅ ẽ) = 1g� ⋅ g(ẽ). In particular, the natural embedding
E ↪ E ⊗ℚ Ẽ becomes

E ↪
⨁

�∈
Ẽ� (2.7.1.2)

e↦ ⊕�1� ⋅ �(e). (2.7.1.3)

In our case, denote by � ∶ E ↪ Ẽ the canonical inclusion. The cocharacter is given
by

�∶ E → E ⊗E ⊂ E ⊗ Ẽ

e↦ (1� ⋅ �(e),⋯ , ⋅1� ⋅ �(e)−1),

where all the other entries are 1. Denote by S ⊂ G the stabiliser of �, the map r′ is
finally given by

∏

[g]∈G∕S
[g]�(e) =

∑

�∈
1� ⋅ �

(

e
ē

)

= e
ē
,

(note that [g]�(e) is well defined) where in the last equality we use the identification
(2.7.1.2).
We can now state the main theorem of CM for K3 surfaces:

Theorem 2.7.2 (Rizov). LetX∕ℂ be aK3 surface with complex multiplication and
let E ⊂ ℂ be its reflex field. Let � ∈ Aut(ℂ∕E) and s ∈ A×E,f be a finite idèle such
that art(s) = �

|Eab . There exists a unique Hodge isometry �∶ T (X)ℚ → T (X�)ℚ
such that the following triangle commutes
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T̂ (X)ℚ T̂ (X�)ℚ

T̂ (X)ℚ

�⊗Af

s
s̄

�∗

where �∗ is the pull-back in étale cohomology of � ∶ X� → X.

Proof. The diagram above, as found in [41], reads a bit differently:

PB(X,Af )(1) PB(X� ,Af )(1)

PB(X,Af )(1),

�̃⊗Af

rX (s)
�∗

where PB(X,Af )(1) is the primitive cohomology of X with respect to some po-
larisation l ∈ NS(X), �̃∶ PB(X,ℚ)(1) → PB(X� ,ℚ(1)(1) is a Hodge isometry
and rX is the reciprocity map associated to the torus MT(PB(X,ℚ)(1)). Now,
PB(X,ℚ)(1) = T (X)ℚ ⊕ A, where A is the rational (0, 0)-part of PB(X,ℚ)(1),
i.e. A = {v ∈ NS(X)ℚ ∶ (v,l) = 0}. It is therefore clear that the inclusion
T (X)ℚ ↪ PB(X,ℚ)(1) induces an isomorphism of Mumford-Tate groups

GL(T (X)ℚ) GL(PB(X,ℚ)(1))

MT(T (X)ℚ) MT(PB(X,ℚ)(1)).
≅

This identification implies rX(s) = s
s̄
and �̃ = (�, �∗), where �∗ ∶ NS(X) →

NS(X�) is the pull-back via �.
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3 Types and class field theory

3.1 Ideal lattices and idèles

Ideal lattices provide the natural framework to work with CM, polarised Hodge
structures, since they allow us to faithfully translate the information contained in
a polarised CM Hodge structure into some arithmetic data on the CM field. In the
summary below, we mainly follow [3].
Definition 3.1.1. LetE be a CM number field, by an ideal lattice we mean the data
(I, q) where I ⊂ E is a fractional ideal and

q∶ I × I → ℝ

is a non-degenerate symmetric ℚ-bilinear form such that q(�x, y) = q(x, �y) for
every x, y ∈ I and � ∈ E .

By the non-degeneracy of the trace, it follows that there exists � ∈ E such that
� = � and q(x, y) = trE∕ℚ(�xy). So that, from now on, we will denote with (I, �)
the ideal lattice (I, q) with q(x, y) = trE∕ℚ(�xy).
Definition 3.1.2. An ideal lattice (I, �) is said to be integral if q takes value in ℤ,
and even if q(x, x) ∈ 2ℤ for every x ∈ I .
Recall that the inverse different ideal−1

E is defined to be the maximal fractional
ideal of E where trE∕ℚ takes integral values. Hence, if � ∈ E is like above, (I, �)
is integral if and only if

(�)II ⊂ −1
E . (3.1.0.1)

Let (I, q) be an integral ideal lattice. Its dual is defined as (I∨, q) where

I∨ = {x ∈ E ∶ q(x, I) ⊂ ℤ}. (3.1.0.2)

Note that the quadratic form induces a natural isomorphism I∨
∼
←←←←←←←→ Hom(I,ℤ)

given by x ↦ q(x,−). We also have a natural inclusion (I, q) ⊂ (I∨, q). From the
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definition, it follows that also (I∨, q) is an ideal lattice (usually non integral) and
that

I∨ =
(

�IE
)−1;

the inclusion I ⊂ (

�IE
)−1 is hence also a consequence of (3.1.0.1).

Definition 3.1.3. We say that two ideal lattices (I, �) and (J , �) are equivalent,
(I, �) ≅ (J , �), if there exists e ∈ E× such that J = eI and � = ee�.
This means exactly that multiplication by e

e∶ I → J

is an isometry. Note that the two lattices (I, �) and (J , �) can be isometric without
being equivalent (because a general isometry between the two might not be E-
linear).
Remark 3.1.4. We will prove later (see Lemma (3.1.9)) that if (I, �) ≅ (J , �) via
e ∈ E×, then (I∨, �) ≅ (J∨, �) via e as well.
If (I, �) is an ideal lattice, the quotient of Abelian groups E∕I ≅ I ⊗ ℚ∕ℤ is

a torsion Abelian group, and also an E−module. We now make the analogue of
Definition (2.6.1).
Definition 3.1.5. By a level structure on the ideal lattice (I, �) we mean a finite,
E-invariant subgroup G ⊂ I∨ ⊗ℚ∕ℤ.
Remark 3.1.6. To give a level structure is equivalent to give a fractional ideal J such
that I∨ ⊂ J , i.e. J = �−1(G) where � ∶ E → E∕I∨ is the canonical projection.
From now on we will not make any distiction between one or the other definition.
We want now to extend the definition of equivalence keeping track of level struc-

tures. So let (I, �, G) and (J , �,H) be two ideal lattices with level structures. We
say that (I, �, G) ≅ (J , �,H) if there exists e ∈ E× as before such that the map
induced by multiplication by e

E∕I∨ → E∕J∨

restricts to an isomorphism between G andH .
In general, what we have is a way to ’multiply’ an ideal lattice with a level structure
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by an element e ∈ E× by putting

e ⋅ (I, �, G) ∶=
(

eI, �
ee
, eG

)

where eG is the image of G under the map

e∶ E∕I∨ → E∕eI∨,

where the last equation makes sense since eI∨ = (eI)∨ thanks to the above remark.
The following facts are well-known, see Lang [21] Chapter 6 or Shimura [43] for
a proof.
Proposition 3.1.7. Let I, J ⊂ E be fractional ideals. We have:

1. For all but finitely many finite places v of E, I ⊗ E,v = J ⊗ E,v,

2. I ⊂ J if and only if I ⊗ E,v ⊂ J ⊗ E,v for every finite place v,

3. If (Iv)v is a collection ofE,v−modules Iv ⊂ Ev, such that for all but finitely
many v’s we have that Iv = E,v, than there exists unique a fractional ideal
I such that I ⊗ E,v = Iv for every v.

Let now s ∈ A×E,f be a finite idèle and I a fractional ideal. In virtue of the facts
above, there exists a unique fractional ideal J such that

Jv = sv ⋅ Iv

since for all but finitely many v’s we have that sv ⋅ Iv = Iv. To construct such a J ,
denote by sE the fractional ideal associated to s:

sE =
∏

p
pordp(s),

then one can see that J = sI . To extend the action of E× on triples (I, �, G) to a
subgroup of A×E,f containing E×, note first that we have an isomorphism (pag. 77
in Lang’s book [21])

E∕I ≅
⨁

Ep∕Ip

where the sum is taken over all the prime ideals of E , Ep is the completion of E
at p and Ip ∶= I ⊗ E,p. So we get a natural homorphism

AE,f → E∕I

44



whose kernel is exactly ⊕Ip. If s ∈ A×E,f is an idèle, we have seen before that
J ∶= sI is the only fractional ideal of E such that Jp = spIp. Hence, we obtain a
commutative square

AE,f E∕I

AE,f E∕sI

s  

where  is given at the p-component by multiplication by sp. If G ⊂ E∕I is a
subgroup, we denote by sG ⊂ E∕sI the image ofG under  in the diagram above.
In order to extend the action of E×, we make the following definition.
Definition 3.1.8. Let F ⊂ E be the fixed field of the complex conjugation, we
define KE ⊂ A×E,f to be the kernel of

A×E,f
NmE∕F
←←←←←←←←←←←←←←←←←←←←←←←←←←→ A×F ,f ↠ CF

whereCF is the idèle class group of F . Equivalently, s ∈ KE if and only if ss ∈ F ×

Let now (I, �) be an ideal lattice and s ∈ KE . Define

s ⋅ (I, �) ∶=
(

sI, �
ss

)

.

If (I, �) is integral, then also s ⋅ (I, �) is integral. We have to prove that this con-
struction commutes with formation of duals.
Lemma 3.1.9. Let (I, �) be an ideal lattice, and let s ∈ KE . Then the dual of
s ⋅ (I, �) is s ⋅ (I, �)∨.

Proof. Indeed, the dual of s ⋅ (I, �) is
(

(ss̄)(�−1)−1
E (s̄

−1)Ī−1, �
ss̄

)

=
(

(s)(�−1)−1
E Ī

−1, �
ss̄

)

and
s ⋅ (I, �)∨ = s ⋅

(

(

�ĪE
)−1, �

)

=
(

(s)(�−1)−1
E Ī

−1, �
ss̄

)

.

This commutativity allows us to make the following definition.
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Definition 3.1.10. Let (I, �, G) be an ideal lattice with level structure, and let s ∈
KE . Then we define

s ⋅ (I, �, G) ∶=
(

sI, �
ss
, sG

)

,

where sG is the image of G under multiplication by s

E∕I∨ → E∕sI∨ = E∕(sI)∨.

Before concluding this section, let us prove the following proposition.
Proposition 3.1.11. Let E be a CM number field with [E ∶ ℚ] ≤ 10. Then there
are infinitely many ℂ−isomorphism classes of principal K3 surfaces with CM by
E.

Proof. This is basically a consequence of Corollary 1.12.3 in Nikulin’s famous
paper [35]. Let S be an even lattice of signature (t(+), t(−)) and let Λ be an even
unimodular lattice of signature (l(+),l(−)). Nikulin’s result says that a primitive
embedding S ↪ Λ exists if the following conditions are satisfied:

1. l(+) − l(−) ≡8 0;
2. l(−) − t(−) ≥ 0 and l(+) − t(+) ≥ 0;
3. Let g be the minimum number of generators of S∨∕S. Then l(+) + l(−) −
t(+) − t(−) > g.

Note that, in our case, where the lattices are non-degenerate, l(+)+l(−) = rank(Λ)
and t(+)+ t(−) = rank(S). Moreover, g ≤ rank(S) always. In particular, a primitive
embedding exists every time that

rank(Λ) > 2 ⋅ rank(S) (3.1.0.3)

Let us now prove the proposition. Write [E ∶ ℚ] = 2n with n ≤ 5. Consider
� ∈ F × with �E ⊂ E , so that the ideal lattice (E , �) is an even integral lattice,
and assume that for only one embedding �′ ∶ F ↪ ℂ we have �′(�) > 0. Let us
denote by � ∶ E ↪ ℂ an extension of �′ (the other extension will be given by �̄).
This choice of � ensures that the signature of (E , �) is (2, 2n− 2). We would like
to produce an algebraic K3 surface using the surjectivity of the period map. To do
so, let us write Λ for the K3 lattice, which is isomorphic to H2(X,ℤ) for any K3
surfaceX∕ℂ. It is an even-unimodular lattice of rank 22 and signature (3, 19), and
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every pure Hodge structure of weight 2 onΛ, such that dimℂ Λ2,0 = 1 and for which
the pairing Λ × Λ → ℤ induces a polarisation, comes from a complex K3 surface.
Since [E ∶ ℚ] ≤ 10 and by the choice of �, we easily see that conditions 1, 2, 3
above are satisfied, so we can find a primitive embedding of lattices (E , �) ⊂ Λ.
Wewant now to endowΛwith a Hodge structure which corresponds to a K3 surface
with CM by E . To do so, consider again the decomposition

E ⊗ ℂ =
⨁

� ∶ E→ℂ
ℂ�

and put Λ2,0 ∶= ℂ� , where we consider E ⊗ ℂ ⊂ Λ ⊗ ℂ. Let us call X
the corresponding K3 surface. It is easy to show that T (X) = (E , �), and that
EndHdg(T (X)) = E . To show that this K3 surface is algebraic it is sufficient to
find a class L ∈ NS(X) with L2 > 0 by Theorem IV.6.2 of [2]. But this class must
exists because the signature ofNS(X) is (1, 21−2n), so thatX is algebraic. Finally,
note that we can produce infinitely many �’s such that the ideal lattices (E , �)
are pairwise non-isomorphic, so that we obtain infinitely many ℂ−isomorphism
classes of K3 surfaces with CM by E .
Remark 3.1.12. It is not known whether the same proposition is true in any degree.
The best result in this direction so far is the one of Taelman [49] already mentioned
in the introduction: for every CM number field E with [E ∶ ℚ] ≤ 20 there exist a
complex K3 surface with CM byE. Moreover, if [E ∶ ℚ] ≤ 18, there are infinitely
isomorphism classes of complex K3 surfaces with CM by E.

3.2 Type of a principal K3 surface with CM

In this section we introduce the type of a K3 surface with CM.We have seen during
the proof of Proposition (3.1.11) how to construct Hodge structures of K3 type with
CM starting from an integral ideal lattice: one starts with a CM number field E
and an embedding � ∶ E ↪ ℂ, and consider an ideal lattice with level structure
(I, �, G), with � ∈ F × such that (�)E ⊂ E and only �, �̄ ∶ E ↪ ℂ satisfies
�(�) > 0. To this data we can associate a polarised Hodge structure of weight zero
together with a ‘level structure’ that we will denote by (I, �, G, �), with I1,−1 =
ℂ� . Let now (X,B, �) be a principal CM K3 surface X∕ℂ with level structure
B ⊂ Br(X) and an isomorphism �∶ E → E(X). Via the map �, we consider T (X)
an E-module.
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Definition 3.2.1. We say that (T (X), B, �) is of type (I, �, G, �) if there exists an
isomorphism of E−modules

Φ∶ T (X)
∼
←←←←←←←→ I

such that:
1. (v,w)X = trE∕ℚ

(

�Φ(v)Φ(w)
)

for every v,w ∈ T (X);
2. If Φ∨ ∶ T (X)∨ → I∨ is the induced map on dual lattices, then

Φ∨ ⊗ℚ∕ℤ∶ E∕I∨ → Br(X)

sends isomorphically G to B;
3. �X◦� = �.

Remarks 3.2.2.
1. Here, with Φ∨ we mean the induced map

T (X)∨ = {v ∈ T (X)ℚ ∶ (v, x) ∈ ℤ for all x ∈ T (X)} → I∨,

where I∨ was defined in (3.1.0.2).
2. It may seem that fixing an abstract field E together with the maps � and � is

redundant; to every K3 surface X∕ℂ with CM, we have canonically associ-
ated its reflex fieldE (already embedded inℂ) together with an isomorphism
�X ∶ E(X)→ E. We chose this definition to keep track of theAut(ℂ)-action
on E(X): if � ∈ Aut(ℂ), we put (T (X), B, �)� = (T (X�), �∗B, �ad◦�). See
Lemma (3.2.4). Also, one can check that proposition (3.2.6) would not hold
without fixing such an isomorphism.

3. Every CM K3 surface has a type: let E �
←←←←←←→ ℂ be its reflex field, put � ∶=

�−1X and choose 0 ≠ v ∈ T (X). The inverse image of T (X) under the
isomorphism E → T (X)ℚ, e ↦ �(e) ⋅ v is a lattice in E fixed by E , hence
a fractional ideal. By the non-degeneracy of the trace, we can find unique
� ∈ E as in Definition (3.2.1).

Definition 3.2.3. Let X, Y ∕ℂ be two principal K3 surfaces with CM. We say that
the two triples (T (X), B, �X) and (T (Y ), C, �Y ) are isomorphic if there exists a
Hodge isometry f ∶ T (X) ≃

←←←←←←←→ T (Y ) such that
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1. f ad◦�X = �Y , where f ad ∶ E(X)→ E(Y ) is the induced isomorphism and
2. f∗ ∶ Br(X) → Br(Y ) restricts to an isomorphism between B and C , where
f∗ is the induced map on Brauer groups (introduced in the discussion before
Definition 2.6.1).

The following is an instance of point 1) in the remark above.
Lemma 3.2.4. LetX∕ℂ be a principal K3 surface with CM and let �∶ E → E(X)
be an isomorphism. Let � ∈ Aut(ℂ), and suppose that (T (X), �) ≅ (T (X�), �ad◦�).
Then � fixes the reflex field of X.

Proof. Since f is a Hodge isometry, we have that �X = �X�◦f ad . During the proof
of Proposition (2.4.8), we have also proved that �X�◦�ad = �◦�X . By assumption,
we have f ad◦� = �ad◦�, i.e. f ad = �ad . Hence, �X = �◦�X , i.e. � fixed the reflex
field of X.

Note that ifX can be defined overℚ, then T (X) ≅ T (X�) for every � ∈ Aut(ℂ).
Lemma 3.2.5. Suppose that (T (X), B, �) is of type (I, �, G, �) and letΦ andΦ′ be
two maps as in Definition (3.2.1). Then there exists a root of unity � ∈ ×E such
that Φ = �Φ′.

Proof. Indeed, the map Φ′◦Φ−1 ∶ (I, �) → (I, �) is an integral isometry, hence a
root of unity.

We are ready to prove the following proposition.
Proposition 3.2.6. Let (T (X), B, �X) be of type (I, �, G, �) and let (T (Y ), C, �Y ) be
of type (J , �,H, �). Then (T (X), B, �X) ≅ (T (Y ), C, �Y ) if and only if (I, �, G) ≅
(J , �,H) and � = �.

Proof. Let us prove the implication (T (X), B, �X) ≅ (T (Y ), C, �Y ) ⇒ (I, �, G) ≅
(J , �,H) and � = �. Consider the square

T (X) I

T (Y ) J ,

ΦX

f
ΦY

where f is a map as in Definition (3.2.3) and ΦX ,ΦY are the maps realising the
types ofX and Y respectively. By linearity, we see that the dashed arrow is induced
by multiplication by some e ∈ E×, which is also an isometry between the two ideal
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lattices (I, �) and (J , �) , i.e. eI = J and ee� = �. The induced square on Brauer
groups is

Br(X) E∕I∨

Br(Y ) E∕J∨,

Φ∨X

f∗ e

ΦY ∨

which implies eG = H , since f∗(B) = C , Φ∗X(B) = G and ΦY ∨(C) = H . By
the definition of type, we have that �X◦�X = � and �Y ◦�Y = �. Moreover, we
also have f ad◦�X = �Y (by Definition (3.2.3)) and �X = �Y ◦f ad (since f is a
Hodge isometry). Hence, we see that � = �. On the other hand, suppose that
(I, �, G) ≅ (J , �,H) and that � = �, and let e ∈ E× be an element realising the
equivalence. Consider the diagram

T (X) I

T (Y ) J ,

ΦX

e

ΦY

and call f the dashed arrow. Then, f is an isometry between the lattices T (X)
and T (Y ) and satisfies condition 2 in Definition (3.2.3). We need to prove that it
respects the Hodge decomposition and that f ad◦�X = �Y . Since � = �, we have
that �X◦�X = �Y ◦�Y . Let 0 ≠ ! ∈ T 1,−1(X) be a non-zero two form, and let
x ∈ E. We want to prove that �Y (x) ⋅ f (!) = �Y (�Y (x))f (!). We have

�Y (x) ⋅f (!) = �Y (x) ⋅Φ−1Y
(

eΦX(!)
)

= Φ−1Y
(

xeΦX(!)
)

= Φ−1Y
(

eΦX(�X(x) ⋅!)
)

=

= f (�X(x) ⋅ !) = f (�X(�X(x))!) = �X(�X(x))f (!) = �Y (�Y (x))f (!).

Hence, f respects the Hodge decomposition. As a consequence of this, we must
also have that �X = �Y ◦f ad . Pre-composing with �X and using again the fact that
�X◦�X = �Y ◦�Y , we conclude.

3.3 Main theorem of CM for K3 surfaces (after Shimura)

The next step is to translate Theorem (2.7.2) in the language of ideal lattices.
Theorem 3.3.1. Let X∕ℂ be a principal K3 surface with complex multiplication
and reflex field E ⊂ ℂ. Let � ∈ Aut(ℂ∕E) and let s ∈ A×E,f be a finite idèle
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such that art(s) = �
|Eab . Suppose that (T (X), B, �) is of type (I, �, G, �). Then

(T (X�), �∗B, �ad◦�) is of type

s
s̄
⋅
(

I, �, G, �
)

.

Moreover if ΦX is a map realising the type of X, there exists a unique map ΦX�

realising the above type of X� , such that the following commutes

Br(X) E∕I∨

Br(X�) E∕ s
s̄
I∨

Φ∨X

�∗
s
s̄

Φ∨X�

Proof. Rizov’s Theorem tells us that there exists a uniqueHodge isometry �∶ T (X)ℚ →

T (X�)ℚ such that the following diagram commutes

T̂ (X)ℚ T̂ (X�)ℚ

T̂ (X)ℚ

�⊗ℤ̂

s
s̄

�∗

If we consider T̂ (X) ⊂ T̂ (X)ℚ and T̂ (X�) ⊂ T̂ (X�)ℚ, then the Galois action �∗
restricts to an isomorphism of ℤ̂-lattices

�∗ ∶ T̂ (X)
∼
←←←←←←←→ T̂ (X�)ℚ.

This means that the two lattices T (X�) and �( s
s̄
T̂ (X)

)

∩T (X�)ℚ inside T̂ (X�)ℚ are
actually the same. Since both � and multiplication by s

s̄
are isometries and since �

fixes the reflex field by assumptions, wemust have that the type of (T (X�), �∗B, �ad◦�)
is

s
s̄
⋅
(

I, �, G, �
)

.

Choose a map Φ′

X� realising the above type for X� .
Claim: there exists a unique root of unity � ∈ ×E such that the following commute

T̂ (X) T̂ (X�)

I ⊗ ℤ̂ s
s̄
I ⊗ ℤ̂.

�∗

ΦX⊗ℤ̂ Φ′X�⊗ℤ̂

s
s̄�
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Indeed, consider the following
T (X)ℚ T (X�)ℚ

E = I ⊗ℚ s
s
I ⊗ℚ = E,

�

ΦX⊗ℚ Φ′X�⊗ℚ

We can complete the dashed arrow uniquely with multiplication by some element
� ∈ E× with �� = 1, since � is a Hodge isometry. Everything now fits into the
commutative diagram

T̂ (X)ℚ

T̂ (X)ℚ T̂ (X�)ℚ

IAf

IAf
s
s̄
IAf .

s
s̄ �∗

ΦX⊗Af

�⊗Af

ΦX⊗Af s
s̄

s
s̄�

�

Φ′X�⊗Af

And we see that � must send the ℤ̂−lattice s
s̄
Iℤ̂ into itself, because �∗ does so. So

that � ∈ (̂E ∩E = E . The condition �� = 1 forces � to be a root of unity. Now
put ΦX� ∶= � ⋅ Φ′

X� . We obtain another commutative diagram analogous to the
one above

T̂ (X)ℚ

T̂ (X)ℚ T̂ (X�)ℚ

IAf

IAf
s
s̄
IAf ,

s
s̄ �∗

ΦX⊗Af

�⊗Af

ΦX⊗Af s
s̄

s
s̄

1

ΦX�⊗Af

so that ΦX� is the required map. The unicity comes from Lemma (3.2.5).

52



3.4 K3 class group and K3 class field

Before starting this section, let us fix some classical notations from class field the-
ory that we are going to use through the rest of this thesis. Let E∕F be a cyclic
extension of number fields and write G ∶= Gal(E∕F ) = ⟨�⟩. In this section, E
will always be a CM field and F its maximal totally real subfield, but in Section
(3.5) it will just be a general cyclic extension and most of these notations will not
be used until then. Let I ⊂ E be an ideal, we denote by

• E the group of fractional ideals of E;
• IE ⊂ E the group of fractional ideals coprime to I ;
• EI ∶= {e ∈ E× ∶ eE ∈ IE};
• EI,1 ∶= {e ∈ E× ∶ v(e − 1) ≥ v(I) ∀ finite valuations such that v(I) > 0};
• I

E ∶= ×E ∩ E
I,1;

• I
E ∶= {eE ∶ e ∈ EI,1} ⊂ IE ;

• ClI (E) ∶= IE∕
I
E the ray class group modulo I ;

• We say that the ideal I is invariant if �(I) = I ;
• If I is invariant, we denote by Cl′I (E) ∶= ClI (E)∕ ClI (E)G. In particular,

we have Cl′(E) ∶= Cl(E)∕ Cl(E)G;
• N ∶ E× → F × the norm morphism.
• If I ⊂ E is a proper ideal, we will denote its support by

S(I) ∶= {p prime ideal of E ∶ I ⊂ p}.

• Ifm is amodulus forF , i.e. a formal product of a proper ideal and archimedean
valuations, we will denote by e(E∕F ,m) ∶= ∏

v∤m e(v), where the product
is taken over all the places (both finite and archimedean) of F that do not di-
videm and e(v) denotes their ramification index in the field extension E∕F ;

• Let E be any number field, for every ideal I ⊂ E we denote by �E(I) ∶=
|(E∕I)×| the associated Euler’s totient function.
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Given a CM number fieldE, Theorem (3.3.1) suggests the introduction of a class
group (as meant in Shimura’s book [43]) which we will call the K3 class group
GK3(E) of E, and of its related class field, an Abelian extension of E obtained via
class field theory, with Galois group isomorphic to GK3(E). These object will be
of essential use later on, especially in the computations of the fields of moduli in
the next section. In order to introduce them, we recall that by

UE ⊂ ResE∕ℚ(Gm)

we mean E-linear unitary group, cut out by the equation ee = 1.
Definition 3.4.1. Let E be a CM number field. We define the K3 class group of E
to be the double coset

GK3(E) ∶= UE(ℚ)∖UE(Af )∕Ũ,

where Ũ is the subgroup generated by all the u ∈ UE(Af ) such that for every finite
place v, uv is a unit, i.e., Ũ = {u ∈ UE(Af )∶ uE = E}.
There is a canonical, continuous map from the finite idèles of E to GK3(E),

namely

A×E,f → GK3(E) (3.4.0.1)
s↦ s

s̄
,

which is a surjection due to Hilbert’s Theorem 90 for idèles.
Definition 3.4.2. The kernel of the above map A×E,f → GK3(E) is denoted by SE .
We have

SE = {s ∈ A×E,f ∶ ∃e ∈ UE(ℚ)∶ e
s
s̄
E = E}

Note that also E× ⊂ SE .
Definition 3.4.3. The Abelian extension of E obtained via class field theory from
the subgroup SE of A×E,f is denoted by FK3(E). We call it the K3 Class Field of
E.
Understanding these class fields (the one just introduced and the others to come)

will occupy the next two sections. The first step is to relate them to the Abelian
extensions of E that we already know, i.e. ray class fields. As a first step, we have:
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Proposition 3.4.4. Denote by K(E) the Hilbert Class field of E and by K ′(E) the
sub-extension ofK(E) with Galois group ≅ Cl′(E). We have a diagram of Abelian
extensions

K(E)

FK3(E)

K ′(E)

E

with

Gal(FK3(E)∕K ′(E)) ≅
×F ∩N(E

×)
N(×E)

.

Proof. Indeed, consider the group

S̃E = {s ∈ A×E,f ∶ ∃e ∈ E
× ∶ es

s̄
E = E}

Clearly, SE ⊂ S̃E . The first step is to understand the quotient S̃E∕SE . Let s ∈ S̃E
and consider e ∈ E× such that e s

s̄
E = E . We must have (ee) = E , i.e.

ee ∈ ×F ∩N(E
×). If e′ ∈ E× is another element such that e′ s

s̄
E = E , then e′

and e differ by a unit, e′ = eu with u ∈ ×E , and e′e′ = uuee. We have constructed
a well-defined map

f ∶ S̃E →
×F ∩N(E

×)
N(×E)

(3.4.0.2)

s↦ ee.

Note that ×F∩N(E
×)

N(×E )
is a finite 2−torsion Abelian group. Hence it isomorphic to

(ℤ∕2ℤ)n for some n ∈ ℕ.
The map f is surjective: let x ∈ ×F ∩ N(E

×) and write x = yy with y ∈ E×.
By Hilbert’s theorem 90 for ideals (see [9], p. 284) we can find a fractional ideal I
such that I∕I = (y). Pick s ∈ A×E,f with sE = I , then f (s) = x.
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Claim: the kernel of the map (3.4.0.2) is SE .
Indeed, s ∈ S̃E is in the kernel if and only if there exists e ∈ E× such that e s

s̄
E =

E and ee = uu for some u ∈ ×E . But consider now e′ ∶= e
u
, then clearly also

e′ s
s̄
E = E , and moreover e′e′ = 1, i.e. s ∈ SE .

The next step, and final one, is to understand the to which Abelian extension of E
the group S̃E is associated. Consider the natural projection maps

A×E,f ↠ Cl(E)↠ Cl′(E).

Claim: the kernel of the above composition is S̃E .
Indeed, s ∈ A×E lies in the kernel if and only if the frational ideals associated to s
and s are the same in the class group of E, i.e. if and only if exist e ∈ E× such that
e s
s̄
E = E . This completes the proof.
In particular, we obtain the following equality

|GK3(E)| = [×F ∩N(E
×)∶ N(×E)] ⋅ |Cl

′(E)|. (3.4.0.3)

Remark 3.4.5. If E is imaginary quadratic, then
×F ∩N(E

×)
N(×E)

= 1

There are other class fields and class groups associated toE which are analogous
to the usual ray class fields and ray class groups modulo some ideal I ⊆ E . Fix
an ideal I ⊆ E and denote by ŨI the subgroup generated by all the u ∈ UE(Af )
such that for every finite place v, uv is a unit and if v(I) = n > 0, then v(uv−1) ≥ n.
Definition 3.4.6. We define the K3 class group modulo I to be the double quotient

GK3,I (E) ∶= UE(ℚ)∖UE(Af )∕ŨI ,

and the K3 class field to be the Abelian extension FK3,I (E) of E associated to the
surjection

A×E,f ↠ GK3,I (E)

s↦ s
s̄

We study now these Abelian extensions. We start by noticing that if we put
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J ∶= lcm(I, I), then we have, straight from the definition, that

GK3,I (E) = GK3,J (E) = GK3,I (E).

So that, without loss of generality, we can assume that I is invariant.
Proposition 3.4.7. Denote by KI (E) the ray Class field of E modulo I and by
K ′
I (E) the sub-extension ofKI (E)withGalois group≅ Cl

′
I (E). We have a diagram

of Abelian extension

KI (E)

FK3,I (E)

K ′
I (E)

E

with

Gal(FK3,I (E)∕K ′
I (E) ≅

×F ∩N(E
I,1)

N(I
E)

.

Proof. The first thing to understand is the kernel of the map A×E,f ↠ GK3,I (E). If
we denote it by SI , we have

SI =
{

s ∈ A×E ∶ ∃e ∈ UE(ℚ)∶
s
s̄
eE = E , e

s
s̄
≡ 1 mod I

}

.

Using the same ideas as before, we denote by S̃I the group

S̃I =
{

s ∈ A×E ∶ ∃e ∈ E
× ∶ s

s̄
eE = E , e

s
s̄
≡ 1 mod I

}

.

We again have an injection

S̃I∕SI ↪
×F ∩N(E

I,1)

N(I
E)

,

and we need to prove surjectivity. As in the proof of Proposition (3.4.4), let x ∈
×F ∩N(E

I,1) and let y ∈ EI,1 be such that yy = x and find a fractional ideal J of
E such that J∕J = (y). We need J to be in IE in order to conclude, so suppose it
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is not.
Claim: there exists an invariant fractional ideal a such that a|J and J∕a is coprime
to I .
Indeed, let p be a prime ideal of E, suppose that vp(gcd(I, J )) ≠ 0 and let n be the
power of p appearing in the factorisation of J . If p = p, then the ideal J ′ = J∕pn
has still the property that we need, i.e. J ′∕J ′ = (y), and J ′ has no p−factor in
common with I . If p ≠ p, write again J ′ = J∕pn and consider

(y) = J∕J = (J ′∕J ′)(pn∕pn).

Since by construction (y) is coprime to I and I is invariant, we must have that p
divides J ′ exactly with the same exponent n, hence J ′′ = J∕(pp)n is still such
that (y) = J ′′∕J ′′ and has neither p nor p factors in common with I . Doing this
for every prime such that vp(gcd(I, J )) ≠ 0, we find an ideal J coprime to I with
J∕J = (y), and the claim follows.
Sowhat is left to understand is the Abelian extension ofE associated to S̃I . Exactly
as before, we recover S̃I as the kernel of the natural projection

A×E,f ↠ Cl′I (E),

and this concludes the proof.
Again, as a corollary, we obtain

|GK3,I (E)| = [×F ∩N(E
I,1) ∶ N(I

E)] ⋅ |Cl
′
I (E)|. (3.4.0.4)

Remark 3.4.8. When E is imaginary quadratic, we have the equalities FK3,I (E) =
K ′
I (E) and GK3,I (E) = Cl′I (E).

3.5 Invariant ideals and K3 class group

In this section we continue to study the groups GK3,I (E), in particular we want to
compute their cardinality. By Theorem (3.4.7), we know that

|GK3,I (E)| =
|ClI (E)|
|ClI (E)G|

⋅ [×F ∩N(E
I,1)∶ N(I

E)].

When I = 0, we have (see Lemma 4.1 of [22])
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Theorem 3.5.1. Let E∕F be a cyclic extension with Galois group G. Then

|Cl(E)G| =
ℎF ⋅ e(E∕F )

[E ∶ F ] ⋅ [×F ∶ N(E×) ∩ ×F ]
,

where ℎF is the class number of F and

e(E∕F ) ∶=
∏

v
e(v),

the product of all the ramification indices over all the places of F , both finite and
infinite.

Putting this together with Theorem (3.4.7) leads to

|GK3(E)| = [E ∶ F ] ⋅
ℎE ⋅ [×F ∶ N(

×
E)]

ℎF ⋅ e(E∕F )
.

Using basically the same proof of [22], we compute now the cardinalities |ClI (E)G|,
where I is any invariant ideal.
We are going to use the notation introduced at the beginning of the last section.
Moreover, for a G− moduleM we will denote by

H i(M) ∶= Ĥ i(G,M),

the i−th Tate cohomology group and by Q(M) its Herbrand quotient (when de-
fined). Let us start with a lemma.
Lemma 3.5.2. Let I be an invariant ideal, we have

Q(I
E) = Q(

×
E) =

1
[E ∶ F ]

e∞(E∕F ),

with
e∞(E∕F ) =

∏

v|∞
e(v),

where the product ranges over all the archimedean valuations of F .

Proof. The equalityQ(I
E) = Q(

×
E) descends from the fact that×E∕I

E is a finite
group. The second equality of the statement follows from Corollary 2, Theorem 1,
Chapter IX of [23].
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Theorem 3.5.3. Let I ⊂ E be an invariant ideal and denote by J ∶= I ∩ F .
We have:

|ClI (E)G| =
ℎJ (F ) ⋅ e(E∕F , J ) ⋅ |H1(EI,1)|
[E ∶ F ][J

F ∶ N(E
I,1) ∩ ×F ]

where
e(E∕F , J ) =

∏

v∤J
e(v).

Proof. Consider the short exact sequence defining the ray class group

0→ I
E → IE → ClI (E)→ 0,

taking invariants we obtain

0→ I,G
E → I,GE → ClI (E)G → H1(I

E)→ 0,

since we haveH1(IE) = 0. So that

|ClI (E)G| = [
I,G
E ∶ I,G

E ] ⋅ |H1(I
E)|, (3.5.0.1)

and we are going to compute the two indices on the right-hand side. We have

[I,GE ∶ I,G
E ] =

[I,GE ∶ J
F ]

[I,G
E ∶ J

F ]
=
[I,GE ∶ JF ] ⋅ [

J
F ∶ J

F ]

[I,G
E ∶ J

F ]
=
e(E∕F ,∞ ⋅ J ) ⋅ ℎJ (F )

[I,G
E ∶ J

F ]
.

(3.5.0.2)
Taking invariants of the next exact sequence

0→ I
E → EI,1 → I

E → 0,

we obtain
0→ J

F → F J ,1 → I,
E → H1(I

E)→ H1(EI,1).

Denote byH ⊂ H1(EI,1) the image of the last map, we have

[I,G
E ∶ J

F ] =
|H1(I

E)|
|H|

=
|H0(I

E)|

|H| ⋅Q(I
E)
.

By Lemma (3.5.2) we know what Q(I
E) is, and by definition

|H0(I
E)| = [

J
F ∶ N(

I
E)],
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so that we have

[I,G
E ∶ J

F ] =
|H1(I

E)|
|K|

=
[J

F ∶ N(
I
E)]

|H| ⋅Q(I
E)

. (3.5.0.3)

Using the exact sequence

0→ H1(EI,1)∕H → H1(I
E)→ H0(I

E)→ H0(EI,1),

we see that

|H1(I
E)| =

|H1(EI,1)|
|H|

⋅ | ker(H0(I
E)→ H0(EI,1))|. (3.5.0.4)

Now,
ker(H0(I

E)→ H0(EI,1)) ≅ (N(EI,1) ∩ ×F )∕N(
I
E).

Using the inclusions N(I
E) ⊂ N(EI,1) ∩ ×F ⊂ J

F and putting together the
equations (3.5.0.1), (3.5.0.2), (3.5.0.3) and (3.5.0.4), we conclude.

This, together with Theorem (3.4.7), readily implies
Theorem 3.5.4. Let E be a CM number field and F its maximal, totally real sub-
extension, and I ⊂ E an invariant ideal. Then we have

|GK3,I (E)| =
ℎI (E) ⋅ [J

F ∶ N(
J
E)] ⋅ [E ∶ F ]

ℎJ (F ) ⋅ e(E∕F , J ) ⋅ |H1(EI,1)|
=

ℎE ⋅ �E(I) ⋅ [×F ∶ N(
I
E)] ⋅ [E ∶ F ]

ℎF ⋅ �F (J ) ⋅ [×E ∶ I
E] ⋅ e(E∕F , J ) ⋅ |H

1(EI,1)|
.

Proof. This follows from Theorem (3.5.3) and Theorem (3.4.7), using the well-
known fact

ℎI (E) = ℎE
�E(I)

[×E ∶ I
E]
.

The only mysterious term appearing in Theorem (3.5.4) is |H1(EI,1)|.Note that
this group is always 2−torsion and finitely generated. We have the following partial
result:
Proposition 3.5.5. In the assumptions of Theorem (3.5.4)

1. If gcd(2, I) = (1). ThenH1(EI,1) = 0;
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2. Write I = I2 ⋅ I ′ with (I ′, 2) = (1), and likewise put J = J2 ⋅ J ′. We have a
natural left exact sequence

1→
(E∕I2)×,G

(F∕J2)×
→ H1(EI,1)→

⨁

q∈S(J2)
ℤ∕e(q)ℤ.

3. If every prime ideal dividing J2 does not ramify in E, thenH1(EI,1) = 0.

Proof.

1. Let x ∈ EI,1 be such that xx = 1. Then, if we put y = 1∕2 + x∕2, we also
have y ∈ EI,1 (since by assumptions 2 and I are coprime) and y∕y = x.

2. The first thing is to understand the quotient QI of

1→ EI,1 → EI ′,1 → QI → 1. (3.5.0.5)

In order to do this, consider the following morphism of short exact sequences
1 EI,1 EI (E∕I)× 1

1 EI ′,1 EI ′ (E∕I ′)× 1,

The following sequence

1→ EI → EI ′
⊕vp
←←←←←←←←←←←←←←←←→

⨁

p∈S(I2)
ℤ → 0

is exact, due to the theorem on the independence of valuations. Via the snake
lemma, we obtain the exact sequence

1→ (E∕I2)× → QI →
⨁

p∈S(I2)
ℤ → 0. (3.5.0.6)

We can do the same over F , obtaining analogous results. In particular, we
have the two exact sequences

1→ F J ,1 → F J
′,1 → QJ → 1

and
1→ (F∕J2)× → QJ →

⨁

q∈S(J2)
ℤ → 0. (3.5.0.7)
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Taking Galois invariants of (3.5.0.5) and using the first point of this propo-
sition, we obtain

1→ F J ,1 → F J
′,1 → QG

I → H1(EI,1)→ 1,

thus, we can identify

H1(EI,1) ≅ coker(QJ → QG
I ). (3.5.0.8)

Applying the snake lemma to the following diagram
1 (F∕J2)× QJ

⨁

q∈S(J2)
ℤ 0

1 (E∕I2)×,G QG
I

(
⨁

p∈S(I2)
ℤ
)G,

we obtain

1→
(E∕I2)×,G

(F∕J2)×
→ H1(EI,1)→

⨁

q∈S(J2)
ℤ∕e(q)ℤ. (3.5.0.9)

This concludes the proof of point 2.
3. Under these assumptions, we have

(E∕I2)×,G

(F∕J2)×
≅ H1(EI,1).

However, since the primes in S(J2) do not ramify, (E∕I2)×,G = (F∕J2)×.
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4 Fields of moduli and applications

4.1 Fields of moduli

In this section we compute the field of moduli of the tuple (T (X), B, �). This should
be interpreted as the field of moduli of the transcendental motive of X, together
with the cycles in E(X) and some additional Brauer classes.
Definition 4.1.1. The field of moduli of (T (X), B, �) is the fixed field of

{� ∈ Aut(ℂ∕ℚ)∶ (T (X), B, �) ≅ (T (X�), �∗(B), �ad◦�)},

where the isomorphism (T (X), B, �) ≅ (T (X�), �∗(B), �ad◦�) is as in Definition
(3.2.3).
Remark 4.1.2. Note that if we denote byM the field of moduli of (T (X), B, �), then
we must have E ⊂ M because of Lemma (3.2.4), so that we can ‘work over E’.
Theorem 4.1.3 (Field of moduli). Let (X,B, �) be a principal CMK3 surface over
ℂ with level structure B ⊂ Br(X) and let E ⊂ ℂ be its reflex field. Suppose that
(T (X), B, �) is of type (I, �, J , �) and put IB ∶= I∨J−1 ⊂ E . Then the field of
moduli of (T (X), B, �) corresponds to the K3 class field FK3,IB (E)modulo the ideal
IB.

Proof. Thanks to the remark we need to compute the fixed field of

{� ∈ Aut(ℂ∕E)∶ ∃ Hodge isometry f ∶ T (X)→ T (X�)∶ f∗◦�∗|B = Id}.

Thanks to Proposition (3.2.6) and Theorem (3.3.1), an element � ∈ Aut(ℂ∕E) is
in the above group if and only if we can find s ∈ A×E,f and e ∈ E× such that

1. art(s) = �|Eab ;
2. s

s̄
(I, �, �) ≅ (I, �, �), i.e. e s

s̄
I = I and ee = 1;
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3. The composition E∕I∨ s∕s
←←←←←←←←←←←←←→ E∕ s

s̄
I∨

e
←←←←←→ E∕I∨ restricts to the identity on

J∕I∨.
Via class field theory, this corresponds to

{s ∈ A×E,f ∶ ∃e ∈ E
× ∶ ee = 1 , es

s̄
E = E , e

s
s̄
≡ 1 mod IB },

and we recognise this group to be exactly the kernel ofA×E,f ↠ GK3,IB (E) (see the
proof of Proposition (3.4.7)).
Remark 4.1.4. If we put B = 0 in the above theorem, we find that the field of
moduli of (T (X), �) is FK3(E), the K3 class field of E. In particular, it does not
depend on T (X) but only on E. By the results in [37], there are only finitely many
K3 surfaces with CM that can be defined over a fixed number fieldK . On the other
hand, by Proposition (3.1.11), there are infinitely many (isomorphism classes of)
principal K3 surfaces with CM by a fixed CM fieldE defined overK (at least when
[E ∶ ℚ] ≤ 10. Hence, it is interesting to notice that, even if the fields of definition
of these surfaces (X, �) are not bounded in degree, the fields of moduli of their
transcendental lattices are all the same.

This theorem allows us to study the groupsBr(X)GK whereX∕K is a K3 surface
with CM overK and GK is the absolute Galois group ofK . Indeed, the immediate
corollary we get is
Theorem 4.1.5. LetX∕K be a principal K3 surface with CM overK . There exists
an ideal IB ⊂ E such that

E∕IB ≅ Br(X)GK

as E-modules and
|GK3,IB (E)|

|

|

|

[K ∶ E].

Proof. Fix an isomorphism �∶ E → E(X), and let (I, �, J , �) be the type of
(T (X),Br(X)GK , �). As usual, let IB = I∨J−1. Via the type map, we have an
isomorphism of E−mod

Br(X)GK ≅ E∕IB.
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Since (T (X),Br(X)GK , �) is defined over K , we must have

FK3,IB (E) ⊂ K.

4.2 Applications to Brauer groups

One of the consequences of the results in [37] is that for a fixed number field K ,
there are only finitely many groups that can appear as Br(X)GK , whereX∕K is any
K3 surface with CM. We shall show in this last section how the theorems in the
previous ones can be applied to produce a computable bound for the Galois fixed
part of Brauer groups of principal CM K3 surfaces. Indeed, what we have is an
algorithm that, given as input a number fieldK and a CM fieldE, returns as output
a finite set of groups Br(E,K) such that for every principal CM K3 surfaces X∕K
with reflex field E we have

Br(X)GK ∈ Br(E,K).

It works as follows:
1. Replace K by KE;
2. Find all the invariant ideals I ⊂ E such that

|GK3,I (E)|
|

|

|

[K ∶ E].

This is possible thanks to Theorem (3.5.4) and Proposition (3.5.5), which
also says that there are finitely many such ideals. Denote them I1,⋯ In.

3. Now use Theorem (4.1.5), which says that

Br(XK )GK ≅ E∕IB,

with IB ⊂ E an ideal dividing one of the Ii’s, hence, we have an inclusion
(of isomorphism classes of E-modules)

{Br(X)GK ∶ X∕K has CM by E} ⊂ {E∕IB ∶ Ii ⊂ IB for some i = 1,⋯ , n},

and we define the latter set to be Br(K,E).
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Remark 4.2.1. In particular, if we put I ∶=∏

i Ii and C ∶= |E∕I|, we must have

|Br(X)GK | ≤ C

for every principal K3 surface X∕K with CM by E over K.
Let us see how this works in practice with some examples, all concerning K3 sur-
faces with maximal Picard rank.

1. (Gaussian integers) Let E = ℚ(i). In this case, the K3 class field of E is
E itself. Put K = E. Every invariant ideal of E can be written as I =
(1 + i)k ⋅ (n) with n ∈ ℤ and (n, 2) = 1, and we have to find all such I with
GK3,I (E) = 1. Decompose

n = p�11 ⋯ p�ll ⋅ q
�1
1 ⋯ q�jj ,

where the q’s are inert (i.e. ≡ 3 mod 4) and the p’s are split (i.e. ≡ 1
mod 4). Let us start with the cases where k = 0 and n > 2. Theorem (3.5.4)
tells us that

|GK3,I (E)| =
ℎE ⋅ �E(I) ⋅ [×F ∶ N(

I
E)] ⋅ [E ∶ F ]

ℎF ⋅ �F (J ) ⋅ [×E ∶ I
E] ⋅ e(E∕F , J ) ⋅ |H

1(EI,1)|
.

If n > 2, then
• [×F ∶ N(

I
E)] = 2;

• [×E ∶ I
E] = 4;

• e(E∕F , J ) = 4, since only 2 and the place at infinity ramify;
• |H1(EI,1)| = 1, by Proposition (3.5.5).

So we obtain

|GK3,I (E)| =
�K (n)
4 ⋅ �(n)

= 1
4
∏

p�i−1i (pi − 1) ⋅
∏

q�i−1i (qi + 1),

hence, in this case, |GK3,I (E)| = 1 if and only if n = 3 or n = 5.
Let us assume now that k > 0 and that n = 1. We have

• [×F ∶ N(
I
E)] = 2;

• e(E∕F , J ) = 2;
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• [×K ∶ (1+i)
k

K ] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if k = 1
2 if k = 2
4 if k > 2;

• �K (1+i)k

�((1+i)k∩ℤ) = 2
⌊

k
2 ⌋.

Since 2 ramifies inE, we have that in general the cohomology groupsH1(E(1+i)n,1)
are not zero. However, Proposition (3.5.5) tells us that their cardinality |H1(E(1+i)n,1)|
always divide

2 ⋅ [(K∕(1 + i)k)×,G ∶ (ℤ∕(1 + i)k ∩ ℤ)×],

and we compute

• [(K∕(1 + i)k)×,G ∶ (ℤ∕(1 + i)k ∩ ℤ)×] =
⎧

⎪

⎨

⎪

⎩

2 if k is even,
1 if k is odd.

Thus, putting all together, we have that if |GK3,(1+i)k(E)| = 1, then

2 ⋅ 2⌊
k
2 ⌋

[×E ∶ (1+i)
k

E ] ⋅ [(K∕(1 + i)k)×,G ∶ (ℤ∕(1 + i)k ∩ ℤ)×]
|

|

|

2.

This happens only for k ≤ 6. Assume now k ≥ 1 and n > 2. Thanks to the
results above, if |GK3,I | = 1, then I = (1 + i)k ⋅ 5� or I = (1 + i)k ⋅ 3� . Let
us begin with the former case: we have

|GK3,I (E)| =
2⌊

k
2 ⌋ ⋅ 3�−1 ⋅ 4 ⋅ 4
4 ⋅ 2 ⋅ |H1

|

= 21+⌊
k
2 ⌋ ⋅ 3�−1

|H1
|

.

Hence, � = 1, since |H1
| is 2−torsion. As above, we see that if |GK3,I (E)| =

1, then
21+⌊

k
2 ⌋

|

|

|

2 ⋅ [(K∕(1 + i)k)×,G ∶ (ℤ∕(1 + i)k ∩ ℤ)×],

which happens only for k ≤ 2. The same is true for the case I = (1+ i)k ⋅5� .
Hence, we have the following possibilities for Br(X)GK (as isomorphism
classes of Abelian groups)

0, ℤ∕3×ℤ∕3, ℤ∕5, ℤ∕5×ℤ∕5, ℤ∕2, ℤ∕2×ℤ∕2, ℤ∕4×ℤ∕2, ℤ∕4×ℤ∕4, ℤ∕8×ℤ∕4,
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ℤ∕8×ℤ∕8, ℤ∕3×ℤ∕3×ℤ∕2, ℤ∕3×ℤ∕3×ℤ∕2×ℤ∕2, ℤ∕5×ℤ∕2, ℤ∕5×ℤ∕5×ℤ∕2,

ℤ∕5 × ℤ∕2 × ℤ∕2, ℤ∕5 × ℤ∕5 × ℤ∕2 × ℤ∕2.

This confirms the results in [17] and [18] about diagonal quartic surfaces.
2. (Eisenstein integers). Put E = ℚ(

√

−3). In this case the K3 class field of
E is E itself, again. Put K = E. The only prime of ℤ that ramifies in E
is 3, with (3) = (

√

−3)2. In particular, since 2 does not ramify, thanks to
Proposition (3.5.5) we have

|GK3,I (E)| =
ℎE ⋅ �E(I) ⋅ [×F ∶ N(

I
E)] ⋅ [E ∶ F ]

ℎF ⋅ �F (J ) ⋅ [×E ∶ I
E] ⋅ e(E∕F , J )

=
4 ⋅ �E(I)

�F (J ) ⋅ [×E ∶ I
E] ⋅ e(E∕F , J )

for every invariant ideal I ⊂ E . As before, let us proceed in computing
these numbers. One can check that

[×E ∶ I
E] =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if I = E ;

2 if I = (√−3);
3 if I = (2);
6 otherwise.

(4.2.0.1)

Write
I = (

√

−3)k ⋅ p�11 ⋯ p�ll ⋅ q
�1
1 ⋯ q�jj ,

where the q’s are inert primes (i.e. ≡ 2 mod 3) and the p’s are split (i.e. ≡ 1
mod 3). Hence,

|GK3,I (E)| = 4⋅3⌊k∕2⌋⋅
∏

p�i−1i (pi−1)⋅
∏

q�i−1i (qi+1)⋅
1

[×E ∶ I
E] ⋅ e(E∕F , J )

.

Using this, we see that
• If k = 0, then |GK3,I (E)| = 1 if and only if I = (2), (4), (5), (7);
• If k = 1, then |GK3,I (E)| = 1 if and only if I = (

√

−3), (2
√

−3);

• if k = 2, then |GK3,I (E)| = 1 if and only if I = (3);
• if k = 3, then |GK3,I (E)| = 1 if and only if I = (3

√

−3);

• if k > 3, then |GK3,I (E)| > 1.

69



Hence, we have the following possibilities for Br(X)GK (as isomorphism
classes of Abelian groups)

0, ℤ∕3, ℤ∕2×ℤ∕2, ℤ∕2×ℤ∕2×ℤ∕3, ℤ∕3×ℤ∕3, ℤ∕4×ℤ∕4, ℤ∕9×ℤ∕3, ℤ∕5×ℤ∕5, ℤ∕7×ℤ∕7.

3. (Odd discriminant) Let E be a quadratic imaginary field with �(E) = {±1}.
Assume moreover that 2 does not ramify inE, so that we can use Proposition
(3.5.5) and forget about the term H1(EI,1). Put K = FK3(E) (the smallest
possible). If an invariant ideal I ⊂ E satisfiesGK3,I (E) = 1, a computation
analogous to the ones above shows that

�E(I)
�(J )

= [×E ∶ I
E] ⋅

e(E∕ℚ, J )
e(E∕ℚ)

. (4.2.0.2)

The index [×E ∶ I
E] is always 2, unless I = (2), in which case [×E ∶ I

E] =
1. Write

I = rG11 ⋯ r
kk ⋅ p
�1
1 ⋯ p�ll ⋅ q

�1
1 ⋯ q�jj ,

where the p’s are split primes of ℤ, the q’s are inert and r2i = riE for a
ramified prime ri of ℤ. We notice that the right-hand side of (4.2.0.2) is an
integer if and only if at most one ramified prime divides I , i.e.

I = r
 ⋅ p�11 ⋯ p�ll ⋅ q
�1
1 ⋯ q�jj .

We have, in this case,

[×E ∶ I
E] ⋅

e(E∕ℚ, J )
e(E∕ℚ)

=

⎧

⎪

⎨

⎪

⎩

1 if 
 > 0 or 
 = 0 and I = (2);
2 otherwise.

and
�E(I)
�(J )

= r
−1(r − 1) ⋅
∏

p�i−1(pi − 1) ⋅
∏

q�i−1(qi + 1).

Let us now list all the possibilities for both invariant ideals and possible
Brauer groups (seen, again, as isomorphism classes of Abelian groups, i.e.
forgetting the natural structure of E-modules), depending on the behaviour
of the primes 2 and 3 in E. There are six cases since, by assumption, 2 does
not ramify.
a) Both 2 and 3 split. In this case, the only invariant ideals satisfying
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(4.2.0.2) are (2), (3), (4), (6). Hence, the possible Brauer groups are

ℤ∕4, ℤ∕4 × ℤ∕2, ℤ∕4 × ℤ∕4, (ℤ∕2)� × (ℤ∕3)� , �, � ∈ {0, 1, 2}.

b) 2 splits and 3 is inert. In this case, the only invariant ideals satisfying
((4.2.0.2)) are (2), (4). Hence, the possible Brauer groups are

0, ℤ∕2, ℤ∕2 × ℤ∕2, ℤ∕4, ℤ∕4 × ℤ∕2, ℤ∕4 × ℤ∕4.

c) 2 splits and 3 ramifies. Write (3) = r2. In this case, the only invari-
ant ideals satisfying ((4.2.0.2)) are (2), (4), r, 2r. Hence, the possible
Brauer groups are

0, ℤ∕2, ℤ∕2×ℤ∕2, ℤ∕4, ℤ∕4×ℤ∕2, ℤ∕4×ℤ∕4, ℤ∕3, ℤ∕3×ℤ∕2, ℤ∕3×ℤ∕2×ℤ∕2.

d) 2 is inert and 3 splits. In this case, the only invariant ideal satisfying
((4.2.0.2)) is (3). Hence, the possible Brauer groups are

0, ℤ∕3, ℤ∕3 × ℤ∕3.

e) Both 2 and 3 are inert. In this case, there are no invariant ideals sat-
isfying ((4.2.0.2)). Hence the only possible Brauer group is the trivial
one.

f) 2 is inert and 3 ramifies. Write again (3) = r2. In this case, the only
invariant ideal satisfying ((4.2.0.2)) is r. Hence, the possible Brauer
groups are

0, ℤ∕3.

Remarks 4.2.2.
• It is interesting to notice how the arithmetic properties of the field E (e.g.

which primes of F ramify in E) influences the Brauer group of the principal
K3 surfaces with CM by E, as the above examples show.

• We do not know whether all the groups listed above are actually achieved by
some principal K3 surface X with CM.

In this last part, we shall compare Newton’s work [34] on the Brauer groups of
some special Kummer surfaces with our results. We briefly recall the construction
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of Kummer surfaces: let A∕K be an Abelian surface over a number field K , and
consider G ∶= {±1} acting on A via multiplication by −1. Put Ã ∶= BlA[2]A,
where BlA[2]A denoted the blow-up of A along the closed sub-scheme A[2]. We
can extend the action of G to Ã uniquely by requiring it to be the identity on the
exceptional divisors. The Kummer surface associated to A is by the definition
the quotient Km(A) ∶= Ã∕G. As proved in Proposition 1.3. of [47], one has an
isomorphism of GK -modules

Br(A) ≅ Br(Km(A)), (4.2.0.3)

Now, consider C∕K an elliptic curve with CM by E, and suppose moreover that
C is principal and that K contains the reflex field of C . For an Abelian group A
and a prime l we write Al∞ ∶= {a ∈ A∶ lna = 0 for some n ∈ ℤ}. Newton’s
paper allows us to explicitly compute the groups Br(C × C)GKl∞ , for every prime
number l and hence, thanks to equation ((4.2.0.3)), the groups Br(X)GKl∞ where
X = Km(C ×C). Assume that K = E(j(C)) = K(E), the Hilbert class field of E,
and that �(E) = {±1}. Thanks to Theorem 3.1 and Theorem 2.9 of [34], we must
have that if l ≠ 2 is a prime that does not ramify inE, then Br(X)GKl∞ = 0.We shall
show now how to prove the same result using the techniques of this thesis. Since
our results are completely general, we do not need to make any assumption on the
geometry ofX (e.g. to be the Kummer surface of a product of two elliptic curves),
on the prime l or on �(E) either. We have
Theorem 4.2.3. Let E be a quadratic imaginary field, and let K = K(E) be its
Hilbert class field. Then

Br(E,K(E)) =
{

E∕I ∶ if J = lcm(I, I) then Gal(E∕ℚ) acts trivially on (E∕J )×∕�(E)
}

.

Remark 4.2.4. Note that, unlike the examples studied before, here the fieldK is not
the K3 class field of E (in general) but an Abelian extension of it. We could still
use our algorithm to get similar results to the one stated above, but in this case it
turns out that the best strategy is to employ the (more qualitative) facts proved in
Section (3.4), as the next proof shows.
Proof. We have to find all the invariant ideals I ⊂ E such that

FK3,I (E) ⊂ K(E). (4.2.0.4)
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By Proposition (3.4.7) we have a diagram of field extensions
KI (E)

FK3,I (E)

K ′
I (E)

E

however, since X is singular, we must have that K ′
I (E) = FK3,I (E). Introducing

the Hilbert class field in this diagram, we obtain
KI (E)

K(E)

K ′
I (E)

E

Now, we have that
Gal(KI (E)∕K(E)) ≅ ker �,

where � is the canonical projection

� ∶ ClI (E)→ Cl(E)

and that
Gal(KI (E)∕K ′

I (E)) ≅ ClI (E)
G,

hence the inclusion ((4.2.0.4)) becomes

ker � ⊂ ClI (E)G. (4.2.0.5)

Using the fundamental exact sequence

1→ I
E → ×E → (E∕I)× → ClI (E)→ Cl(E)→ 1, (4.2.0.6)
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we see that
ker � ≅

(

E∕I
)×∕�(E).

Hence, the inclusion ((4.2.0.5)) implies thatG acts trivially on the group (E∕I
)×∕�(E).

Remarks 4.2.5.
• In particular, for every prime ideal r of E that divides a ramified prime of

ℤ, we see that E∕r is a possible Brauer group for a principal K3 surface
X∕K(E) with CM by E.

• To obtain Newton’s result, we notice that if �(E) = {±1} and l > 3 is a
prime of ℤ that does not ramify in E, then Gal(E∕ℚ) does not act trivially
on (E∕ln)×∕{±1} if n > 0. If l = 3, then two things can happen (still
assuming that it does not ramify): if 3 splits in E, then E∕3 is a possi-
ble Brauer group for a K3 surface X∕K(E) with CM by E (this does not
contradict Newton’s result, but it is taking into account all the other K3 sur-
faces X which are not the Kummer surface of a product of elliptic curves),
whereas if 3 is inert, we still have that Gal(E∕ℚ) does not act trivially on
(E∕ln)×∕{±1} for every n > 0.

• The proof above can be generalised to study Brauer groups over number
fields K of the form KI (E) or FK3,I (E), where E is a quadratic imaginary
extension of ℚ and I ⊂ E an ideal.
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5 Fields of definition

5.1 Preliminaries

In this chapter we switch focus to fields of definition. Let us recall some coho-
mological properties of K3 surfaces. The lattice H2

B(X,ℤ)(1) together with the
intersection form is an even unimodular lattice whose isomorphism class does not
depend on the chosen X. It is usually denoted by Λ and called the K3 lattice. To
the Néron-Severi lattice one associates a finite quadratic form, i.e. a finite Abelian
group AN together with a quadratic form qN ∶ AN → ℚ∕2ℤ, as follows. Consider
first the dual lattice of NS(X):

NS(X)∨ ∶= {x ∈ NS(X)ℚ ∶ (x, v)X ∈ ℤ for all v ∈ NS(X)}

and putAN ∶= NS(X)∨∕NS(X), under the canonical inclusionNS(X) ⊂ NS(X)∨.
Then one defines a quadratic form qN on AN by the rule

qN (x + NS(X)) = (x, x)X + 2ℤ.

It takes values in ℚ∕2ℤ. The primitive embedding NS(X) ↪ H2
B(X,ℤ)(1) deter-

mines the lattices of transcendental cycles T (X) ∶= NS(X)⟂. As above, one can
associate a finite quadratic form (AT , qT ) to T (X). Nikulin proved in [35] that one
has a canonical identification

(AT ,−qT ) ≅ (AN , qN ). (5.1.0.1)

Definition 5.1.1. The finite quadratic form (AN , qN ) ≅ (AT ,−qT ) is called the dis-
criminant form of X, and we denote it by (DX , qX). The group of isomorphism of
DX preserving qX is denoted by O(qX). We have natural maps dN ∶ O(NS(X))→
O(qX) and dT ∶ O(T (X))→ O(qX), where the latter is constructed using the iden-
tification ((5.1.0.1)).
The classical lemma we are going to need is the following (see Corollary 1.5.2.
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of [35]).
Lemma 5.1.2. Two isometries fN ∈ O(NS(X)) and fT ∈ O(T (X)) can be lifted
to a (necessarily unique) isometry f ∈ O(H2

B(X,ℤ)(1)) if and only if dN (fN ) =
dT (fT ).

Remarks 5.1.3. 1. If fT is a Hodge isometry and the lifting f exists, then f is
a Hodge isometry as well;

2. It follows that one has a pull-back diagram
OHdg(H2

B(X,ℤ)(1)) O(NS(X))

OHdg(T (X)) O(qX).

dN
dT

3. One can reformulate Lemma (5.1.2) in the étale context as well. In this case,
one considers the ℤ̂-lattices N̂S(X), T̂ (X) ⊂ H2

ét(X, ℤ̂)(1) and carry out
the very same definitions and computations, which agree to the ones above
thanks to the comparison isomorphismH2

B(X,ℤ)(1)⊗ ℤ̂ ≅ H2
ét(X, ℤ̂)(1).

Before concluding this section, let us rephrase themain theorem of complexmul-
tiplication in a more convenient form. LetL ⊂ ℂ be a number field and letX∕L be
a K3 surface with complex multiplication over L. We have a Galois representation
�∶ GL → Aut(T (X)ℚ)(Af ), with image in UE(Af ). Class field theory provides
us with a commutative diagram

A×L GabL

A×E GabE .

NmL∕E

artL

res

artE

Note that, since E is a CM field, both the Artin maps factorise through the finite
ideles. We have
Theorem 5.1.4. Let � ∈ GL, t ∈ A×L,f such that artL(t) = �

|Lab and put s ∶=
NmL∕E(t) ∈ A×E,f . There exists a unique u ∈ UE(ℚ) such that

�(�) = us
s̄
∈ UE(Af ).

Remarks 5.1.5. 1. Since �(�) respects the ℤ̂-structure, i.e. �(�)T̂ (X) ⊂ T̂ (X),
also the map ‘u s

s̄
’ must do so. Therefore, thanks to the remarks after Lemma
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(5.1.2), it makes sense to consider the induced map dT
(

u s
s̄

)

∈ O(qX). A
direct consequence of the theorem above is that

dT

(

us
s̄

)

= dN (�∗|NS), (5.1.0.2)

where �∗|NS ∶ NS(X) → NS(X) denotes the Galois action on the Néron-
Severi group.

2. From this formulation, it is clear that the image of � is an ádelic open subroup
of U (ℤ̂). An analogous statement is true for any K3 surface, see Theorem
6.6. of [6].

Definition 5.1.6 (Discriminant ideal). Let (X, �) be of type (I, �, �). We define the
discriminant ideal of X to be the fractional ideal

X ∶= (�)IIE ,

where E denoted the different ideal of the number field E.
Proposition 5.1.7. In the situation above, we have

1. X ⊂ E;

2. The type map Φ∶ T (X) → I induces an isomorphism between the E-
modules DX and E∕X ;

3. The definition is independent of the chosen type, provided that � (and hence
�) is fixed.

Proof. 1. This follows from the fact that, since the quadratic form (I, �) given
by

I × I → ℚ

(x, y)↦ trE∕ℚ(�xy)

assumes values in ℤ, the inclusion (�)II ⊂ −1
E holds.

2. This is a direct consequence of the fact that the dual lattice of (I, �) is ((�IIE
)−1, �

).
3. If (J , �, �) is another type of (X, �), then by Theorem (3.2.6) there exists
e ∈ E× such that � = ee� and J = e−1I .
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Thus, the idealX is a well-defined invariant of (X, �). Note thatX = X . In
the following Lemma, we denote by �(X) the group of Hodge isometries of T (X).
Definition 5.1.8 (Big discriminant). The kernel of the canonical map dT ∶ �(X)→
O(qX) is denoted by KX and we say that X has big discriminant if KX = 1.
Remarks 5.1.9. • Thanks to the second point in Proposition (5.1.7), having

big discriminant is equivalent to the injectivity of the natural map �(E) →
(E∕X)×.

• There is always a natural injection KX ↪ Aut(X). Indeed, for any � ∈ KX ,
the map (�, Id)∶ T (X) ⊕ NS(X) → T (X) ⊕ NS(X) can be extended to
an integral Hodge isometry H2

B(X,ℤ)(1) → H2
B(X,ℤ)(1), which in turn is

induced by a unique automorphism of X, thanks to Torelli Theorem.
Proposition 5.1.10. A) Let E be a CM number field and let X∕ℂ be a K3 surface
with CM by E . Then

X ⊂ (2)−1E∕F .

B) If E is quadratic imaginary, then

X ⊂ E∕ℚ.

Remark 5.1.11. In particular, if E is quadratic imaginary and the map �(E) →

(E∕E∕ℚ)× is injective, then every X with CM by E has automatically big
discriminant.
Proof. For any fractional ideal I of E, let NmE∕F (I) ⊂ F be its norm, i.e. the
fractional ideal of F generated by the elements xx for x ∈ I, so that we have
NmE∕F (I)E = II. Let (I, �) be the type of X. Every element of NmE∕F (I)
can be written as a finite sum of elements of the form fxx, with f ∈ F , and we
compute

trF∕ℚ(�fxx) = 2−1trE∕ℚ(�fxx) ∈ 2−1ℤ,
since the quadratic form (I, �) is integral. Therefore, by the property of the dis-
criminant ideal, we must have that

(�)NmE∕F (I) ⊂ (2)−1−1
F∕ℚ.
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If we ’base-change’ the inclusion above to E we obtain that

(�)II ⊂ (2)−1−1
F∕ℚE ,

and point A) follows by multiplying both sides by E .
To prove point B), we note that the quadratic form (I, �) is also even, so that
trE∕ℚ(�xx) ∈ 2ℤ. But since E is quadratic imaginary by assumptions, we de-
duce that �xx ∈ ℤ for every x ∈ I . Consider again the fractional ideal NmE∕ℚ(I);
every y ∈ NmE∕ℚ(I) can be written as y = n1x1x1 +⋯+ nkxkxk with ni ∈ ℤ and
xi ∈ I , so thanks to the computation above we conclude that (�)NmE∕F (I) ⊂ ℤ.
Base-changing the above equation to E , we obtain

(�)II ⊂ E ,

and the claim follows as before.

5.2 Descending K3 surfaces

In this section we discuss a method to descend principal K3 surfaces with complex
multiplication. Let us fix an ideal I ⊂ X such that

• I = I ;
• The map �(E)→ (E∕I)× is injective.

The main theorem of this section is the following.
Theorem 5.2.1. X admits a model XI over K ∶= FI (E), such that �(XI∕K) =
�(X∕ℂ) and GK acts trivially on T (XI )[I]. Moreover, XI∕K satisfies the follow-
ing universal property: if Y is a K3 surface over a number field L, with CM over
L, such that Yℂ ≅ X, �(Y ∕L) = �(X∕ℂ) and GL acts trivially on T (Y )[I], then
FI (E) ⊂ L and XI,L ≅ Y .

Remark 5.2.2. SinceGK acts trivially on T (Y )[I], it acts trivially also on T (XI )[X] ≅
DXI

, since I ⊂ X .
In case X has big discriminant, we can choose I = X in the theorem above.

This, together with the above remark, leads to the following corollary.
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Corollary 5.2.3 (Canonical models). LetX∕ℂ be a K3 surface with complex mul-
tiplication by the ring on integers of a CM field and denote byE ⊂ ℂ its reflex field.
Assume that X has big discriminant. Then X admits a model Xcan over FX

(E),
the K3 class field of E modulo the discriminant idealX . Moreover, Xcan∕K sat-
isfies the following universal property: if Y is a K3 surface over a number field L,
with CM over L, such that Yℂ ≅ X and �(Y ∕L) = �(X∕ℂ), then FX

(E) ⊂ L and
Xcan
L ≅ Y .

In order to prove the theorem, we construct a descent data using Torelli Theorem
and the main theorem of complex multiplication. Before doing this, though, we
need to study the field of definition of isomorphisms.
Proposition 5.2.4 (Descending isomorphisms). LetX, Y ∕L ⊂ ℂ be two principal
K3 surfaces with complex multiplication over a number field L, and suppose that
X and Y are isomorphic. Then an isomorphism f ∶ X → Y is defined over L if
and only if the induced maps

f ∗ ∶ NS(Y )→ NS(X)

and
f ∗ ∶ T (Y )[I]→ T (X)[I]

are GL-invariant.

Proof. The ‘only if’ part of the statement is trivial, so what we have to prove that if
tha natural maps NS(Y ) → NS(X) and T (Y )[I] → T (X)[I] are Galois invariant,
then f is defined over L. Recall that f is defined over L if and only if the induced
map f ∗ ∶ H2

ét(Y , ℤ̂)(1) → H2
ét(X, ℤ̂)(1) is GL-invariant. To see this, one simply

notes that the natural map of GL−moules

Aut(X)→ Aut(H2
ét(X, ℤ̂))

is injective (see Chapter 15, Remark 2.2. of [16]). To prove that f ∗ isGL−equivariant,
we break it into two components, f ∗T ∶ T̂ (Y )→ T̂ (X) and f ∗N ∶ NS(Y )→ NS(X).
Let � ∈ GL, we want prove the commutativity of the following diagram

H2
ét(Y , ℤ̂)(1) H2

ét(X, ℤ̂)(1)

H2
ét(Y , ℤ̂)(1) H2

ét(X, ℤ̂)(1).

�∗Y

f ∗

�∗X

f ∗
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It suffices to prove the commutativity for the following two squares:

T̂ (Y ) T̂ (X)

T̂ (Y ) T̂ (X).

�∗Y |T

f ∗T

�∗X |T
f ∗T

and
NS(Y ) NS(X)

NS(Y ) NS(X).

�∗Y |NS

f ∗N

�∗X |NS
f ∗N

The latter commutes by assumption, so it suffices to prove the commutativity of
the former. Note that the fields E, E(X) and E(Y ) are naturally identified. Let
s ∈ A×E be as in Theorem (5.1.4), and let e, c ∈ U (ℚ) be the unique elements such
that �∗X = e s

s̄
and �∗Y = c s

s̄
. Note that f ∗T is AE-linear, so that the commutativity

condition (f ∗T )−1◦e ss̄◦(f ∗T ) = c ss̄ amounts to e = c. Both e s
s̄
and c s

s̄
respect the ℤ̂-

lattice T̂ (Y ), so e∕c must do the same. This, together with the fact that ee = cc = 1,
implies that e∕c is a root of unity, i.e. an integral Hodge isometry of T (Y ). By
assumptions, the induced map T (Y )[I]→ T (X)[I] is Galois equivariant, therefore
e∕c ≡ 1 mod I . Since we chose I such that �(E) → (E∕I)× is injective, we
conclude that e = c.
Remark 5.2.5. In caseX has big discriminant, the proposition says that an isomor-
phism f ∶ X → Y is defined over L if and only if the induced map f ∗ ∶ NS(Y )→
NS(X) is GL- equivariant.

The immediate corollary we get is:
Corollary 5.2.6. Let X, Y ∕L be two principal K3 surfaces with CM over a num-
ber field L, and suppose that XL and YL are isomorphic. Suppose, moreover, the
GL-modulesNS(X), NS(Y ), T (Y )[I] and T (X)[I] are trivial. Then every isomor-
phism f ∶ X → Y is already defined over L.

We are now ready to prove Theorem (5.2.1).
Proof. Let � ∈ Aut(ℂ∕E) and s ∈ A×E,f be such that artE(s) = �

|Eab . By the
main thorem of complex multiplication, we have a unique rational Hodge isometry
�(s)∶ T (X)ℚ → T (X�)ℚ such that the following commutes:

T̂ (X)ℚ T̂ (X�)ℚ

T̂ (X)ℚ.

�(s)⊗Af

s
s

�∗|T
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Let now e ∈ E×; if we operate the substitution s↦ es, we obtain

�(s) = e
ē
�(es),

since artE(s) = artE(es). Suppose that we can find e ∈ E× with
1. es

es
E = E

2. es
es

≡ 1 mod I,

and denote by E(s) ⊂ E× the set of elements satisfying the above two conditions.
If s is such that E(s) is not empty, then the map

E(s)→ U (ℚ) (5.2.0.1)
e↦ e

ē

is constant. Indeed, let e, e′ ∈ E(s) and put x ∶= ee′
ee′
. By the first point above, we

have that xE = E , i.e. x ∈ ×E . Since x = x−1, we also have that x is a root of
unity. By the second point above, we see that x ≡ 1 mod I . Hence x = 1, since
we have chosen I such that �(E) → (E∕I)× is injective. Therefore, for every
element s ∈ A×E,f such that E(s) is not empty, we can associate a unique Hodge
isometry

�′(s)∶ T (X)ℚ → T (X�)ℚ

and a unique element �(s) ∈ U (Af ), by putting �′(s) ∶= �(es) and �(s) ∶= es
es
, for

any e ∈ E(s). By construction, they make the following diagram commute

T̂ (X)ℚ T̂ (X�)ℚ

T̂ (X)ℚ,

�′(s)⊗Af

�(s)
�∗|T (5.2.0.2)

and �(s)E = E and �(s) ≡ 1 mod I . Note that, since �∗|T ∶ T̂ (X)
∼
←←←←←←←→ T̂ (X�)

and �(s)∶ T̂ (X) ∼
←←←←←←←→ T̂ (X), we have that the rational Hodge isometry �′(s) is actu-

ally integral, i.e.
�′(s)∶ T (X)

∼
←←←←←←←→ T (X�).
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The elements s ∈ A×E,f such that E(s) ≠ 0 correspond to

{s ∈ A×E,f ∶ E(s) ≠ ∅} = {s ∈ A×E,f ∶ ∃e ∈ E
× ∶ es

es
E = E ,

es
es

≡ 1 mod I}.

Thanks to Hilbert’s Theorem 90 we can write this group as

{s ∈ A×E,f ∶ ∃u ∈ U (ℚ)∶ u
s
s̄
E = E , u

s
s
≡ 1 mod I}

and this is exactly the norm group SI associated to the Abelian field extension
FI (E)∕E. Let us denote this extension by K . Since E ⊂ K ⊂ Eab and K has only
complex embeddings (because E is a CM number field) we have a commutative
diagram

A×K,f GabK

SI GabE .

NmK∕E

artK

resK∕E

artE |SI

The map �∶ SI → U (Af ) constructed before is continuous and has the property
that �(E×) = 1. Therefore, it factorises through the profinite completion of SI∕E×
which is canonically isomorphic to artE(SI ) = res(GabK ). In this way, we obtain a
map (that we still denote by �)

�∶ GabK → U (Af ),

which is going to be the Galois representation associated to the model XI . Con-
sider again the diagram ((5.2.0.2)). We have just seen that the association s↦ �(s)
depends only on � ∈ GabK , therefore also �′(s) = �∗|T ◦�(s−1) depends only on �.
This means that for every � ∈ GabK we have associated an element �(�) ∈ U (Af )
and an integral Hodge isometry �′(�)∶ T (X) → T (X�) such that ((5.2.0.2)) com-
mutes. Since �(�) ≡ 1 mod I , we have that �′(�) ≡ �∗|T mod I . Therefore,
since I ⊂ X by assumption, �′(�) ≡ �∗|T mod X as well. This means that the
Hodge isometry

�′(�)⊕ �∗|NS ∶ T (X)⊕ NS(X)
∼
←←←←←←←→ T (X�)⊕ NS(X�)

can be extended to an integral Hodge isometryℎ(�)∶ H2
B(X,ℤ)(1)→ H2

B(X
� ,ℤ)(1).

By Torelli, we have a unique isomorphism f (�)∶ X� → X that induces ℎ(�) in co-
homology. Hence, for every � ∈ Aut(ℂ∕K) we have constructed an isomorphism
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f� ∶ X� → X (Note that this makes sense, since by the main theorem of com-
plex multiplication X� depends only on �|Eab). The assignment � ↦ f� defines
a Galois-descent data in the sense of Proposition 4.4.4. in [40]. Using Corollary
4.4.6. and Remark 4.4.8. in loc. cit., we employ this descent data to build the
model XI of X over K . Since by construction f ∗�  = �∗ for every  ∈ NS(X),
we conclude that GK acts trivially on NS(XI ), i.e. �(XI ) = �(X). In the same
fashion, since �∗|T and �′(�) agree modulo I , we have that GK acts trivially on
T (XI )[I] as well. The universal property is a direct consequence of Proposition
(5.2.4) and Corollary (5.2.6).
Examples. 1. Let us compute the canonical model of the Fermat quartic X∕ℂ

given by the equation x4 + y4 + w4 + z4 = 0. This surface has complex
multiplication byE ∶= ℚ(i). With an appropriate choice of a basis, the tran-
scendental lattice T (X) can be represented by the quadratic form

[

8 0
0 8

]

.
One can show that the type of X is (ℤ[i], 4). Hence, the discriminant ideal
ofX is 8ℤ[i], since the different ideal of E is 2ℤ[i]. The following facts can
be checked by hand or using MAGMA:

• The ray class group ofEmodulo the ideal 8ℤ[i] is isomorphic toCl8ℤ[i](E) ≅
ℤ∕2ℤ⊕ ℤ∕4ℤ. We can choose a ∶= (5) as an order 2 generator and
b ∶= (2i + 7) as an order 4 generator.

• The corresponding ray class field is E(�, �), with �2 + 1 + i = 0 and
�4 + 2 = 0.

• The Artin map is as follows: art(a)[�, �] = [−�, �] and art(b)[�, �] =
[�, i�].

As shown in Proposition (3.4.7), since X has maximal Picard rank, the K3
class field of E modulo 8ℤ[i] corresponds to subfield of E(�, �) that is fixed
by the action of {x ∈ Cl8ℤ[i](E)∶ x = x}. In Cl8ℤ[i](E) we have a = a and
b = ab. Therefore, {x ∈ Cl8ℤ[i](E)∶ x = x} is generated by a and b2 and
it is isomorphic to (ℤ∕2ℤ)2 and FK3,8ℤ[i](E) is a quadratic extension of E
which corresponds to E(√2) = ℚ(�), where � is a primitive eight-root of
unity.
Hence, FK3,8ℤ[i](E) = E(

√

2) = ℚ(�), where � is a primitive 8-th root of
unity. Let us consider for a moment the model X̃∕ℚ(�) of X defined by
the same equations. It is a classical fact that the Picard group of the Fermat
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quartic is defined over ℚ(�). Therefore, we conclude that X̃∕ℚ(�) is the
canonical model of X. Note that X̃(ℚ(�)) ≠ ∅.

2. Let us consider a fundamental discriminant of class number one:

d ∈ {−7,−8,−11,−19,−43,−67,−163}.

For sake of simplicity, we do not consider d = −3 or d = −4. For any such
a d, denote by d the ring of integers of Ed ∶= ℚ(

√

d). Let Xd∕ℂ be the
unique (up to isomorphism) K3 surfaces of type ((√d), 1). Its discriminant
ideal is X = Ed , and if d is odd then Ed = (

√

d) whereas if d = −8
we have Ed = (2

√

−2). Since �(Ed) = {±1}, we easily see that �(Ed) →
d∕d is injective for every such a d. Therefore, Xd admits a canonical
model Xcan

d over FK3,d
(Ed). Theorem (3.5.4) implies that for every d we

haveFK3,d
(Ed) = Ed . Therefore,Xcan

d can be defined over the CMfieldEd .
Elkies in his website listed all the K3 surfaces overℚwith discriminant d and
Néron-Severi defined over ℚ. By the universal property in Theorem (5.2.3),
these are our canonical models (once base-changed to Ed). Therefore, we
have a list of explicit equations:

• Xcan
−7 ∶ y

2 = x3 − 75x − (64t + 378 + 64∕t);
• Xcan

−8 ∶ y
2 = x3 − 675x + 27(27t − 196 + 27∕t);

• Xcan
−11 ∶ y

2 = x3 − 1728x − 27(27t + 1078 + 27∕t);
• Xcan

−19 ∶ y
2 = x3 − 192x − (t + 1026 + 1∕t);

• Xcan
−43 ∶ y

2 = x3 − 19200x − (t + 1024002 + 1∕t);
• Xcan

−67 ∶ y
2 = x3 − 580800x − (t + 170368002 + 1∕t);

• Xcan
−163 ∶ y

2 = x3 − 8541868800x − (t + 303862746112002 + 1∕t).
Since K3 surfaces with big discriminant can be descended canonically, we would

like to understand how strong this condition on the discriminant is. We start by
considering principal K3 surfaces, i.e. with complex multiplication by the ring of
integers of an imaginary quadratic field.
Theorem 5.2.7. LetX∕ℂ be a principal K3 surface with complex multiplication by
an imaginary quadratic field E, so that �(X) = 20. Then X has big discriminant
unless
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• E = ℚ(i) and the type of X is (E , 1) (i.e., T (X) ≅

[

2 0
0 2

]

).

• E = ℚ(
√

−3) and the type of X is (E , 1) (i.e., T (X) ≅

[

1 2
2 1

]

).

Proof. Let X having complex multiplication by the ring of integers of ℚ(√−d),
with d a square-free integer, and let (I, �) be the type ofX. Suppose that−d ≡ 2, 3
mod 4. In this case, E = ℤ[

√

−d] and E = (2
√

−d). Hence, having big
discriminant means that the map

�(E)→
(

ℤ[
√

−d]

(�)II(2
√

−d)

)×

(5.2.0.3)

is injective. If d ≠ −1, then �(E) = {±1} and the map

�(E)→
(

ℤ[
√

−d]

(2
√

−d)

)×

is already injective, so that we conclude thanks to Proposition (5.1.10). If d = −1,
then �(E) = �4 and the map ((5.2.0.3)) has a kernel if and only if (�)NmE∕ℚ(I) =
ℤ. Since ℤ[i] is a UFD, every type (I, �) is equivalent to one of the form (ℤ[i], �).
Hence, the unique type in this case that has not big discriminant is (ℤ[i], 1).
Suppose now that−d ≡ 1 mod 4, so thatE = (

√

−d). If d ≠ 3, then �(E) = �2.
Since (2) ⊈ (√−d), we conclude that

�2 →
(

E

(
√

−d)

)×

has trivial kernel, hence X has big discriminant. The last case left to consider is
when E = ℚ(

√

−3). Let ! ∶= 1+
√

−d
2 be a primitive sixth-root of unity, so that

ℤ[!] is the ring of integers of E. Since ℤ[!] is a UFD, we can suppose our type
to be of the form (ℤ[!], �) for some � ∈ ℚ>0. The kernel of the map

�6 →
(

ℤ[!]

(
√

−3)

)×

is �3, since !2−1 =
√

−3!. Hence, (ℤ[!], �) has not big discriminant if and only
if√−3! ∈ (�√−3), i.e. if and only if � = 1.
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Therefore, there are exactly two (isomorphism classes of) complex K3 surfaces
with CM by the ring of integers of a imaginary quadratic extension whose dis-
criminant is not "big". These surfaces were studied in [53]. If the CM field is not
quadratic, imaginary we have the following finiteness theorem.
Theorem 5.2.8. Let E ⊂ ℂ be a CM number field, and denote by (E) the set of
isomorphism classes of principal K3 surfaces over ℂ whose reflex field equals E.
Then, up to finitely many elements, every X ∈ (E) has big discriminant.

Proof. It is sufficient to prove that there are finitely many isomorphism classes
of types without big discriminant. Indeed, the type determines the transcendental
lattice of a K3, which in turn determines finitely many K3 surfaces (this is the
finiteness of the Fourier-Mukai partners, see [16] p. 373, Proposition 3.10). Let
{I1,⋯ , In} be the finite set of ideals for which the map �(E) → (E∕In)× is
not injective. Denote by {J1,⋯ , Jm} be representatives of the elements of Cl(E).
Every type (J , �′) is equivalent to one of the form (Ji, �) for some i ∈ {1,⋯ , m}.
Therefore, if (Ji, �) has not got big discriminant, we have that

(�)JiJiE = Ij ,

for some j ∈ {1,⋯ , n}. Fix now i and j. We want to prove that there are only
finitely many isomorphism classes of types of the form (Ji, �) such that the equality

(�)JiJiE = Ij

holds. To do this, suppose that both (Ji, �1) and (Ji, �2) have discriminant equals to
Ij . In particular, we have that (�1) = (�2), i.e., there exists a unit u ∈ ×E such that
�1 = u�2. Moreover, this unit is totally positive, since the signature of T (X) does
not depend on X (thanks to Hodge index Theorem). If we denote by U the group
of totally positive units, we see that the isomorphism type of (Ji, u�) for u ∈ U
depends only on the image of u in the quotient U∕NmE∕F (×E), where F denotes
the maximal totally real subfield of E. Since the group U∕NmE∕F (×E) is finite,
we conclude the proof.
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5.3 Almost-canonical models and the general case

In the previous section, we have shown that when the map

�(E)→ (E∕X)×

is injective,X admits amodelXcan overK ∶= FX
(E)with �(Xcan∕K) = �(X∕ℂ),

and that the pair (K,Xcan) satisfies a universal property. In case when X has not
big discriminant, we solved our problem by fixing a level structure (determined by
an ideal I ⊂ X) in such a way that the map

�(E)→ (E∕I)×

is injective. To the pair (X, I) we associated a modelXI overK ∶= FI (E), which
satisfies a universal property analogous to the one ofXcan. It could happen, though,
that even ifX has not got big discriminant, it still admits a model over FX

(E)with
full Picard rank. Our aim in this section is to explain why and when this happens.
Definition 5.3.1. Let X∕ℂ be as usual, and fix an ideal I ⊂ X . We say that the
pair (X, I) admits an almost-canonical model if there exists a model Y of X over
K ∶= FI (E) satisfying the following properties:

1. �(Y ) = �(X);
2. T (Y )GK = T (Y )[I];
3. Let GabK

resK∕E
←←←←←←←←←←←←←←←←←←←←←←←←→ GabE be the canonical map. Then the Galois representation

�∶ GabK → U (Af ) associated to Y is trivial on ker(resK∕E).
Remarks 5.3.2. • The condition I ⊂ X is necessary, and a consequence of

the fact that �(Y ∕K) = �(X∕ℂ). Indeed, by the main theorem of complex
multiplication, we have that NmK∕E(A×K,f ) ⊂ SX

;

• Condition 3) is a technical condition that is going to be essential in the proof
of Theorem (5.3.7). Suppose that we had an Y ∕K satisfying only conditions
1) and 2) above and let � ∈ ker(resK∕E). By the main theorem of complex
multiplication and point 2) above, we have that �(�) ∈ KI , since we can
choose s = 1 in Theorem (5.1.4). Therefore, we see that condition 3) is au-
tomatically satisfied by the canonical models constructed during the previous
section.
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We provide necessary and sufficient conditions on (X, I) to ensure the existence
of an almost-canonical model. Moreover, in case these conditions are met, we
prove that these models are only finitely many and characterise them in terms of
their Hecke characters. Consider the set-up of Theorem (5.1.4): t ∈ A×L, s ∶=
NmL∕Et and � ∈ GL such that �

|Lab = artL(t). By Theorem (5.1.4), we have
unique u ∈ U (ℚ) such that the following commutes

T̂ (X)ℚ T̂ (X)ℚ

T̂ (X)ℚ.

u

sf
s̄f

�(�) (5.3.0.1)

The inclusion E ⊂ ℂ induces an archimedean absolute value on E. For every
s ∈ A×E let us denote by s∞ the component of s corresponding to this archimedean
absolute value.
Definition 5.3.3. We define the Hecke character of X∕L to be the map

uX ∶ A×L ⟶ ℂ×

t↦ u ⋅
(NmL∕Et

NmL∕Et

)

∞

Proposition 5.3.4. In the situation above, we have:

1. uX(L×) = 1;

2. The map uX is continuous;

3. Let P be a prime of L and let t ∈ L×P ↪ A×L. Suppose that l is a prime
of ℚ such that P does not divide l. Then on Tl(X) = T (X)⊗ ℤl we have
artL(t)∗ = uX(t).

4. Let P be a prime of L. The Galois representation �∶ GL → UE(Af ) is
unramified at P if and only if uX(×P) = 1;

5. If t is a finite idele and s
s̄
E = E , then uX(t) ∈ �(E);

6. Ift is a finite idele, s
s̄
E = E and s

s̄
≡ 1 mod X , then dT (uX(t)) =

dN (�∗);
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Proof. The proof of most of these facts is identical to the one found in Silverman
(Chapter II, Section 9 of [45]);

1. Clear from the definition.
2. Consider the Galois representation �∶ GL → UE(Af ) associated to X. We

know that � has open image. Let m ≥ 3 be an integer and denote by Um ∶=
ker(A×L

artL
←←←←←←←←←←←←←←←←→ GabL

�
←←←←←←→ Aut(T (X)⊗ℤ∕mℤ)). This is an open subgroup ofA×L.

Consider now the open subgroup of A×E given by

Wm ∶= {s ∈ A×E ∶
sf
s̄f

E = E and sf
s̄f

≡ 1 mod m}

and put
Vm ∶= Um ∩ Nm−1

L∕E(Wm).

Let t ∈ Vm and s ∶= NmL∕Et. The commutative diagram ((5.2.0.2)) together
with the condition sf

s̄f
E = E imply that e is a root of unity. Moreover, since

sf
s̄f

≡ 1 mod m and t ∈ Um, we also have that e ≡ 1 mod m, i.e. e = 1.
Therefore, for every t ∈ Wm, we have the identity

uX(t) =
s∞
s̄∞

which proves the continuity of uX on Vm and, since Vm is open in A×L, on all
of A×L.

3. By assumptions, the idéle s ∶= NmL∕Et has component 1 at every finite
place not divided by P and every archimedean place. Thus, again from the
diagram ((5.2.0.2)) we deduce that

�∗|Tl(X) = uX(t)|Tl(X).

4. This follows directly from the point above and class field theory.
5. This fact is implicit in the proof of point 2. Indeed, since t is finite, uX(t) = e

with ee = 1. Moreover, �∗, s
s̄
∈ ̂E

×, hence e ∈ ̂E
×
∩ E× = ×E . The

condition ee = 1 now forces e to be a root of unity.
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Definition 5.3.5. Let I ⊂ E be an ideal. We put S̃I ∶= SI∕E×,WI ∶= {(s, u) ∈
A×E,f × U (ℚ)∶ u

s
s̄
E = E and u s

s̄
≡ 1 mod I} and W̃I ∶= WI∕E×, where we

considerE× ⊂ WI via the map e↦ (e, e∕e). Finally, let us putKI ∶= ker(�(E)→
(E∕I)×). These groups are related to each-other by the following short exact se-
quence

1→ KI → W̃I → S̃I → 1 (5.3.0.2)
where the second map is induced by the projection A×E,f × U (ℚ) → A×E,f and the
first map by the inclusion �(E) ⊂ U (ℚ).
Let us prove the following lemma

Lemma 5.3.6. Assume (X, I) admits an almost-canonical model. Then the short
exact sequence

1→ KI → W̃I → S̃I → 1

splits.

Proof. Assume we have an almost-canonical model Y ∕K , with K = FI (E) and
consider the associated Galois representation �∶ GabK → U (Af ). By point 3) in
Definition (5.3.1), we have a factorisation �∶ GabK → resK∕E(GabK ) → U (Af ) and,
by class field theory, resK∕E(GabK ) = artE(SI ), so that we obtain a map �′ ∶ SI →

U (Af ) that makes the following diagram commute:
A×K,f GabK

SI U (Af ).

NmK∕E

artK

�

�′

By the main theorem of CM, for every s ∈ SI there exists a unique u(s) ∈ U (ℚ)
such that

�′(s) = s
s̄
u(s).

Moreover, by point 2) in Definition (5.3.1) we must have that �′(s) ≡ 1 mod I.
Clearly �′(E×) = 1, so we see that the map SI → WI given by s ↦ (s, u(s)
descends to a splitting of 1→ KI → W̃I → S̃I → 1.

The next theorem says that this condition is also sufficient:
Theorem 5.3.7. LetX∕ℂ be a K3 surface with CM by the ring of integers ofE ⊂ ℂ
and let I ⊂ X be an ideal. Then (X, I) admits an almost-canonical model Y if
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and only if the sequence

1→ KI → W̃I → S̃I → 1 (5.3.0.3)

splits. If s∶ S̃I → W̃I is a splitting, there exists an almost-canonical model Xs
whose Hecke character induces the splitting s, in the sense of Lemma (5.3.6). The
association s ↦ Xs is one-to-one between the splittings of S̃I → W̃I and the
almost-canonical models of X, up to FI (E)-isomorphism.

Proof. The crucial point in the proof of Theorem ((5.2.1)) was that themap ((5.2.0.1))
took constant values. This relies on the big discriminant condition, and it fails to
be true if KI ≠ 0. The splitting s comes into play allowing us to choose one value
of ((5.2.0.1)), in the following way. Let us consider once again the commutative
diagram

A×K,f GabK

SI GabE .

NmK∕E

artK

res

artE |SI

Let s ∈ SI and write s([s]) = [(s, u)] ∈ W̃I . The product ss̄ ⋅ u is a well-defined
element of U (Af ), and we denote it by �′(s). The map �′ ∶ SI → U (Af ) has E× is
its kernel, so just like in Theorem (5.2.1) it gives us another map �∶ GabK → U (Af ),
which is going to be the Galois representation associated to Xs. The construction
of Xs proceeds now exactly like in Theorem (5.2.1). To prove the second part of
the theorem, let Y ∕K be another almost canonical model. By Lemma (5.3.6), Y ∕K
induces a splitting of the short exact sequence ((5.3.0.3)).
Remark 5.3.8. The condition on the splitting of 1→ KI → W̃I → S̃I → 1 is more
theoretical than practical. Nevertheless, it clarifies what happens when X has big
discriminant: in this case, if we choose I = X , the short exact sequence boils
down to an isomorphism W̃X

∼
←←←←←←←→ S̃X

and therefore admits only one splitting
which determines a unique (hence canonical) model over FX

(E).

5.4 On the Picard group of canonical models

Let X∕K be the canonical model of a K3 surface with big discriminant. Since
�(X∕K) = �(X∕K), it seems natural to ask whether also the equality Pic(X) =
Pic(X) holds. The explicit examples provided by Elkies show that this is indeed
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the case, when E is quadratic imaginary with class number one. In general, one
has a spectral sequence

Ep,q
2 ∶= Hp(K,Hq

ét(X,Gm)⇒ Hp+q
ét (X,Gm)

which induces an exact sequence

0→ Pic(X)
�
←←←←←←→ Pic(X)GK → Br(K)→ Br(X). (5.4.0.1)

The group �(Pic(X)GK ) = ker(Br(K) → Br(X)) is called the Amitsur group of X
and it is denoted by Am(X). It is a finite Abelian group. In order to study some
basic properties of Am(X) let us recall the definition of index of a variety.
Definition 5.4.1. Let X an algebraic variety over a field K . The index of X∕K is

�(X∕K) ∶= gcd{[L ∶ K]∶ [L ∶ K] <∞ and X(L) ≠ ∅}.

Proposition 5.4.2. LetX∕K be a smooth projective and geometrically irreducible
variety. Then

�(X∕K) ⋅ Am(X) = {0}.

Proof. This follows from the functoriality of ((5.4.0.1)) and by a restriction-corestriction
argument.

If K is a number field, more can be said. For every place v of K consider the
local index �(Xv∕Kv) of the base change of X to the completion Kv of K at v.
Corollary 5.4.3. If every local index of X is one, the map Pic(X) → Pic(X)GK is
an isomorphism.

Proof. This follows from Proposition (5.4.2) and the short exact sequence

0→ Br(K)→
⨁

v
Br(Kv)

∑

v invv
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ℚ∕ℤ → 0.

In particular, if X has a point everywhere locally, then the map Pic(X) →

Pic(X)GK is an isomorphism. Before studying the index of the canonical mod-
els, let us say something about the existence of local points. SinceK is a CM field,
we only need to consider finite places. For every finite place v of K let us denote
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by � ∈ Kv a local parameter. If uX ∶ A×K → ℂ× is the Hecke character of X and
l a prime number invertible in v, we have that uX(�) belongs to the reflex field
E ⊂ ℂ and acts as Frob∗v on Tl(X).
Proposition 5.4.4. Assume that X has good reduction at P and let p the prime
ideal P ∩ E , Moreover, let q ∶= |K∕P| and write Xred for the reduction of X
modulo P.

1. If p is inert or ramified over F (the maximal totally real subfield of E) then
X(KP) ≠ ∅. Moreover, Xred is supersingular and Pic(Xred) = Pic(Xred).

2. If p is split over F and [E ∶ ℚ] ≤ 12 or q ≥ 18, then X(KP) ≠ ∅.

Proof. 1. Let t ∈ Ep be a local parameter, so that NmK∕E(�) = tn, where
n = e(P∕p) ⋅f (P∕p). Since p is inert or ramified over F by assumption, we
have that (t) = (t), i.e. t∕t is a unit. Since the Galois action on the Picard
group is trivial andK = FX

, by point 6) in Proposition (5.3.4) we conclude
that uX(�) = 1. Hence, the Frobenius acts trivially on Tl(X) and therefore
on the whole cohomology groupH2

ét(X,ℤl)(1). By the Lefschetz fixed point
formula, we obtain that

|X(K∕P)| = q2 + 22q + 1,

so that by Hensel lemma we conclude that X(KP) ≠ ∅. As the Tate con-
jecture is true for Xred (see [26], [19] and [7]), we see that H2

ét(X,ℤl)(1)
is spanned by algebraic classes, and that X is super-singular. But then the
equality �(Xred) = �(Xred) and the short exact sequence ((5.4.0.1)) implies
that Pic(Xred) = Pic(Xred), since the Brauer group of a finite field is always
zero.

2. Let us write u ∶= uX(t) and � ∶= �(X). Since p is split over F , we see that
u is never in E . By the Lefschetz fixed point formula we have

|X(K∕P)| = q2 + q� + q trE∕ℚ(u) + 1.

Let us fix a CM type Φ ⊂ Hom(E,ℂ). We have

trE∕Q(u) =
∑

� ∶ E↪ℂ
�(u) =

∑

�∈Φ
�(u) + �(u) = 2

∑

�∈Φ
Re�(u).
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Clearly, for any x ∈ ℂ we have −|x| ≤ Re(x) ≤ |x|. Since

|�(u)| = �(u)�(u) = �(u)�(u) = 1,

we conclude that

−[E ∶ ℚ] ≤ trE∕Q(u) ≤ [E ∶ ℚ]

and the claim follows by q ≥ 2 and � + [E ∶ ℚ] = 22.

The estimates above are really rough, nevertheless they apply to many cases
of interests, like Kummer surfaces with CM (where [E ∶ ℚ] is either 2 or 4) and
singular K3 surfaces. The following proposition shows us that, at least at the level
of cohomology, the canonical models have good reduction properties:
Proposition 5.4.5. The Galois representationH2

ét(X,ℚl)(1) is unramified at P.

Proof. Let t ∈ ×P, so that artK (t) ∈ IP. Since t is a unit and �(X) = �(X), we
conclude again by point 6) of Proposition (5.3.4).

Unfortunately, a criterion analogous to the Néron-Ogg-Shafarevich one is false
for K3 surfaces. Nevertheless, much work has been done to that direction, see for
example [8], [24] and [28]. Let us explain briefly their results before applying them
to our questions. Let K be a local Henselian DVR, K its field of fractions and k
is residue field of characteristic p ≥ 0. We make the following assumption
Assumption 5.4.6 (⋆). Let X∕K be a K3 surface over a local field. We say that
X satisfies assumption (⋆) if there exists a finite field extension L∕K such thatXL

admits a model  → L that is a regular algebraic space with trivial canonical
sheaf !X∕L , and whose geometric special fiber is a normal crossing divisor.
This assumption holds in the equal characteristic case (p = 0) and it is expected

to be true in mixed characteristic.
Definition 5.4.7. Let k be a field. A K3 surface X∕k with at worst RDP singu-
larities is a proper and geometrically-irreducible surface such thatXK has at worst
rational double point singularities, and whose resolution is a K3 surface.
The main result we are interested in is Theorem 1.3 of [24].
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Theorem 5.4.8. Let X be a K3 surface over a local field K and assume that X
satisfies (⋆). If the Galois representation H2

ét(X,ℚl) is unramified, then there
exists a model  → K which is a regular projective scheme, and whose special
fibre Xk is a K3 surface with at worst RDP singularities.

In order to apply this result (and similars) to our question about the surjectivity
of the map Pic(X)→ Pic(X)GK , we need a way to compare the index ofXK to the
index of Xk. This is accomplished by the following Theorem:
Theorem 5.4.9 ( [13]). Let  → Spec(K ) be a proper flat morphism, with 
regular and irreducible. Let us write the special fibre

∑

i riΓi as a divisor on  ,
where Gi is irreducible and of multiplicity ri. Then

�(XK∕K) = gcd
i
{ri�(Γ

reg
i ∕k)},

where Γregi denotes the regular locus of Γi.

In our situation, k is a finite field, so that �(X∕k) = 1 for any geometrically irre-
ducible algebraic variety X∕k. Combining Theorems (5.4.9) and (5.4.8) together
with Proposition (5.4.5), we obtain
Corollary 5.4.10. Assume that for every place v of K , Xv∕Kv satisfies (⋆). Then
Pic(X) = Pic(X).

Let us now finish this section with some unconditional results.
Theorem 5.4.11. 1. Let X∕K be the canonical model of a Kummer surface

associated to an Abelian variety with complex multiplication. There exists
an Abelian variety A∕K such that X = Km(A). In particular, X(K) ≠ ∅,
hence the equality Pic(X) = Pic(X) holds. Moreover, A[2] is K−rational
and X has good reduction at every finite place of K that does not divide 2.

2. LetX∕K be the canonical model of a singular K3 surface. ThenX(K) ≠ ∅,
hence Pic(X) = Pic(X). Moreover, X has potentially good reduction at
every place of K which does not divide 2 or 3.

Proof. 1. SinceX has full Picard rank, all the sixteen exceptional linesE1,⋯ , E16
are defined over K . This is because they are rigid in their linear system.
There exists a reduced divisor D ⊂ X such that, in Pic(X), we have 2[D] =
E1 +⋯ + E16. Consider now the short exact sequence

0→ Pic(X)→ Pic(X)→ Br(K)→ Br(X).
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Since X has a K−point, we have that the last map has a section, hence
Pic(X) = Pic(X), and we can assume thatD is defined overK . Let �∶ Y →

X be a 2-covering associated to D. It follows that the ramification locus of
� can be written as R� ∶= ∑

i Ci, where each Ci is a (−1) curve. From the
arithmetic version of Castelnuovo’s contractibility criterion (see [25], The-
orem 3.7 p. 416) we can contract these curves to obtain a smooth surface
A, and let us denote � ∶ Y → A the contraction morphism. We see that
A(K) ≠ ∅, since �(Ci) is aK−point. Let us denote by O ∶= �(C1) ∈ A(K).
This very same procedure carried out overK tells us that (AK , O)must be an
Abelian surface such that XK ≅ Km(AK ). Therefore, (A,O) is an Abelian
surface too and X ≅ Km(A). The fact that the full 2−torsion is defined over
K follows by the same statement about the lines Ci. The statement about
the good reduction properties follow the results proved in the unpublished
master thesis of Tetsushi Ito, that can be found in the appendix of [29].

2. Since XK is a singular K3 surface, it admits an elliptic fibration XK → ℙ1
Kwith two singular fibres of type II∗ in Kodadira’s classification (see Shioda-

Inose). It follows immediately that there exist two (−2)-curves C1 and C2
on XK such that (C1, ⋅C2) = 1. Therefore, since once again C1 and C2 are
defined over K , we conclude that their intersection is a K−rational point.
The good reduction properties follows from Theorem Theorem 0.1 of [29].

97



6 Some applications

In this last section, let us illustrate a couple of applications of the results above.
The first is related to Schütt and Elkies’ work on the field of definition of singular
K3 surfaces, as explained in the introduction. Let X∕ℂ be a singular K3 surface
with CM by the ring of integers of a quadratic imaginary extensionE. Assume that
T (X) is neither isomorphic to

[

2 0
0 2

]

nor to
[

2 1
1 2

]

.

Theorem 6.0.1. X admits a model with full Picard group over E if and only if the
complex conjugation acts trivially on ClX

(E), the ray class group modulo X .

Proof. By Theorem (5.2.7), we know that X has big discriminant. Moreover, by
Theorem (5.4.11) and the universal property of Theorem (5.2.1), we see that such
a model exists if and only if FX

(E) = E. By remark (3.4.8), this happens if and
only if the complex conjugation acts trivially on ClX

(E).
We are now in the position to generalise this to any K3 surface with CM. Let

us recall some notation introduced at the end of section 1. If E is a CM number
field, let F ⊂ E be the maximal totally real subfield. Remember that for any ideal
I ⊂ E , we denote by EI,1 = {e ∈ E× ∶ ordp(e − 1) ≥ ordpI ∀ p|I} and let us
put I

E ∶= ×E ∩ E
I,1. The proof of the following is identical to the one above.

Theorem 6.0.2. LetX∕ℂ by a K3 surface with CM by the ring of integers of a CM
number field E, and assume that X has big discriminant. Then X admits a model
with full Picard rank over E if and only if

1. The complex conjugation acts trivially on ClX
(E) and

2. The natural inclusion NmE∕F (
X
E ) ⊂ ×F ∩ NmE∕F (EX ,1) is an isomor-

phism (see (3.4.7)).
In both cases, a necessary condition is that the complex conjugation acts trivially

on ClX
(E), therefore also on Cl(E).

The second application we have in mind concerns the asymptotic growth of the
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fields of definition. Let us fix a CM number field E ⊂ ℂ and let us consider the set
(E) introduced in Theorem (5.2.8). We know that the set(E) is infinite, at least
when [E ∶ ℚ] ≤ 10 ([ref]). Denote byb(E) ∶= {X ∈ (E)∶ X has big discriminant}.
Thanks to Theorem (5.2.8) we know that (E) − b(E) is a finite set. For any
X ∈ b(E) let us denote by FX ∶= min{[K ∶ E}∶ X has a model over K}.We
have

1
C
[FX

(E)∶ E] ≤ FX ≤ [FX
(E)∶ E],

where C > 0 was defined in the remark after Theorem A in the introduction. The
numbers [FX

(E)∶ E] are explicitly computed in Theorem (3.5.4). Let us writeG
for the subgroup of Aut(E) generated by the complex conjugation, dX ∶= G

X =
X∩F andH i(M) ∶= H i(G,M) for anyG−moduleM . Finally, let n ∶= [F ∶ ℚ]
and let e(dX) be the product of the ramification indices of all the places of F in E
that are coprime to the ideal dX ⊂ F .We have

[FX
(E)∶ E] =

2 ⋅ ℎE ⋅ �E(X) ⋅ [×F ∶ NmE∕F (
X
E )]

ℎF ⋅ �F (dX) ⋅ [×E ∶ X
E ] ⋅ e(E∕F , dX) ⋅ |H1(EX ,1)|

,

where ℎF , ℎE are the Hilbert class numbers of F and E respectively, �E(X) =
|(E∕X)×| and �F (dX) = |(F∕dX)×|. Let us first consider the term

[×F ∶ NmE∕F (
X
E )]

[×E ∶ X
E ]

.

In the following short exact sequence, we note that the first vertical arrow is sur-
jective

1 X
E ×E ×E∕

X
E 1

1 NmE∕F (
X
E ) ×F ×F∕NmE∕F (

X
E ) 1,

NmE∕F

so that we obtain the following exact sequence

1→ �(E)∕KX → ×E∕
X
E → ×F∕NmE∕F (

X
E )→ ×F∕NmE∕F (×E)→ 1,

that implies
[×F ∶ NmE∕F (

X
E )]

[×E ∶ X
E ]

=
[×F ∶ NmE∕F (×E)]

[�(E)∶ KX]
. (6.0.0.1)
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Moreover,
1 ≤ [×F ∶ NmE∕F (×E)] ≤ [

×
F ∶ ×2F ] = 2

[F ∶ ℚ]

and
1 ≤ [�(E)∶ KX] ≤ |�(E)| ≤ N,

whereN is the biggest integer such that �(N) ≤ [E ∶ ℚ]. Let us now consider the
term e(dX). By Proposition (5.1.10) we have that X ⊂ (2)−1E∕F , and since the
primes the divide E∕F ∩ F are exactly the ones that ramify in E, we see that in
the product e(dX), only the places at infinity appear, and at most the places over 2,
so that e(dX) ≤ 22[F ∶ ℚ]. Finally, the term H1(EX ,1) is described in Proposition
(3.5.5), and it also can universally bounded for any CM field E with [E ∶ ℚ] ≤ 20.
Therefore, there are constants A,B > 0 such that for any principal K3 surface X
with CM

A ≤
2 ⋅ [×F ∶ NmE∕F (

X
E )]

[×E ∶ X
E ] ⋅ e(E∕F , dX) ⋅ |H1(EX ,1)|

≤ B. (6.0.0.2)

As a consequence of this analysis, we have the following Theorem:
Theorem 6.0.3 (Asymptotic growth). Assume that E is a CM number field with
[E ∶ ℚ] ≤ 20. For X varying in (E) we have

FX ∼
�E(X)
�F (dX)

,

where ∼ means "up to multiplicative constants", i.e. there exist A,B > 0 such that

A
�E(X)
�F (dX)

≤ FX ≤ B
�E(X)
�F (dX)

.

In [55], Shafarevich proved that, for a given natural numberN > 0, there are only
finitely many ℂ−isomorphism classes of singular K3 surfaces that can be defined
over a number field of degreeN . Later, Orr and Skorobogatov in [37] proved that
the same is true for any K3 surface with CM. We are now in the position to prove
it for principal K3 surfaces:
Theorem6.0.4. LetN > 0 be an integer. There are only finitely manyℂ−isomoprhism
classes of K3 surfaces with CM by the ring of integers of a CM number field E that
can be defined over an algebraic extension K∕ℚ of degree at mostN .

Before proving the theorem, we need a lemma.
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Lemma 6.0.5. Let N > 0 be an integer. Then there are only finitely many CM
fields {E1,⋯ , En} such that if X∕K is a K3 surface over a number field K with
[K ∶ ℚ] ≤ N and X has CM by the ring of integers of a CM field E, then E = Ei
for some 1 ≤ i ≤ n.

Proof. We consider all the fields embedded into ℂ. Let X∕K be any K3 surface
such that X has CM by the ring of integers of a CM field E, with [K ∶ ℚ] ≤ N .
LetK ′ be the extension given by the kernel of the Galois representation associated
to NS(X). Again, there is a universal constant C such that [K ′ ∶ K] ≤ C . In
particular, we also have that [K ′ ⋅E ∶ ℚ] ≤ 20CN . The degree of FX

(E) over E
satisfies

[FX
(E)∶ E] =

2 ⋅ ℎE ⋅ �E(X) ⋅ [×F ∶ NmE∕F (
X
E )]

ℎF ⋅ �F (dX) ⋅ [×E ∶ X
E ] ⋅ e(E∕F , dX) ⋅ |H1(EX ,1)|

,

and the term
2 ⋅ [×F ∶ NmE∕F (

X
E )]

[×E ∶ X
E ] ⋅ e(E∕F , dX) ⋅ |H1(EX ,1)|

,

obeys to the same bound of (6.0.0.2). In particular, since �E(X) ≥ �F (dX), there
exists a constant A such that

A
ℎE
ℎF

≤ [FX
(E)∶ E] ≤ 20NC.

The same result of Stark employed before tells us that only finitely many CM num-
ber fields satisfy the above inequality for a fixedN .

Let us now prove Theorem (6.0.4).
Proof. By the lemma above and Theorem (5.2.8), it is enough to prove the theorem
only for X with big discriminant. Again,there are constants A,B > 0 such that for
any K3 surface X with big discriminant and CM by the ring of integers of E, we
have

A ⋅
ℎE
ℎF

⋅
�E(X)
�F (dX)

≤ FX ≤ B ⋅
ℎE
ℎF

⋅
�E(X)
�F (dX)

.

Therefore, we need only to prove that for a given N > 0 there are only finitely
many ℂ−isomoprhism classes of K3 surfaces with CM by the ring of integers of a
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CM number field E such that
ℎE
ℎF

⋅
�E(X)
�F (dX)

≤ N. (6.0.0.3)

Again by the results obtained in Stark’s paper [48], there are only finitely many CM
number fields E ⊂ ℂ such that

ℎE
ℎF

≤ N.

Let them be E1, E2,⋯ , En. Therefore, ifX is such that (6.0.0.3) holds, we see that
X have CM by one of theE′is. For any 1 ≤ i ≤ n there are only finitely many ideals
I ⊂ Ei such that

�E(I)
�F (I ∩ F )

≤ N,

let them be Ii,k for 1 ≤ k ≤ ki. Finally, using the same argument as in the
proof of Theorem (5.2.8), we see that for any Ii,k there are only finitely many
ℂ−isomorphism classes of K3 surfaces with CM by Ei and X = Ii,k.
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7 Conclusion

We would like to conclude this thesis with some open questions and observations.
1. For a CM number field with 10 < [E ∶ ℚ] ≤ 20 one would like to know

which ideal lattices (I, �) satisfying the properties at the beginning of (3.2)
admit a primitive embedding (I, �) ↪ Λ, where Λ is the K3 lattice. By the
work of Taelman [49] we know that if [E ∶ ℚ] < 20, for every � ∈ F × of
the right signature we can embed (I, �) ⊗ ℚ into Λ ⊗ ℚ, thus producing
infinitely many K3 surfaces with CM by E, but it is not clear how proceed
to construct principal K3 surfaces with CM by E starting from this.

2. It would be interesting to generalise Section (4.2) and Theorem (1.0.6) to
non-principal K3 surfaces, i.e. dropping the condition on the maximality of
EndHdg(T (X)). This would lead to an elementary proof of Theorem (1.0.7)
(and hence to a completely elementary proof of Conjecture 10.1 of [52]). As
in the theory of Abelian varieties with CM, such a generalisation should be
more a matter of number theory than arithmetic geometry.

3. The next class of varieties that could be studied is given by CM hyperkähler
manifolds. Indeed, they sharemany properties ofK3’s, especially when their
H2-motive has been proven to be Abelian (either in the absolute Hodge or in
the André sense). A class of such hyperkähler manifolds includes those that
are of K3[m]-type, i.e. deformation equivalent to the Hilbert scheme of m-
points of aK3 surface. It would be interesting to generalise Theorem (1.0.4)
and (1.0.6) to these varieties. In order to use the same idea in Theorem (1.0.6)
one would need a strong version of the Torelli theorem, i.e. on the lines of
every Hodge isometry respecting two polarisations is induced by a unique
isomorphism, because the descent data used to produce the canonical models
is constructed cohomologically. This is known for example when m = pn +
1 with p a prime number, see Theorem 1.3 of [27]. Such a generalisation
would in particular imply a finiteness result analogue to Theorem (1.0.7) for
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hyperkähler varieties, and therefore an analogue of Conjecture 10.1 of [52]
in this setting.

4. Even if it is known that the analogue of the Néron-Ogg-Shafarevich criterion
is false for K3 surfaces, one may ask whether or not the canonical models
enjoy good reduction everywhere over their field of definition (i.e., over the
K3 class field modulo the discriminant ideal). Some (insufficient) evidence
is given by the results obtained at the end of (5.4), and it would be interesting
to consider the case of Kummer surfaces first. By Proposition (5.4.11) we
already know that the canonical models of a Kummer surface enjoys good
reduction over every prime that does not lie over 2. Due to the nature of
the Kummer construction, studying their good reductions at primes over 2
is a subtle question. Indeed, consider the example of the Fermat quartic
x4+y4+z4+w4 = 0 overℚ(�8), the K3 class field modulo its discriminant
ideal (see example (5.2)). It is somehow baffling that nothing is known about
its reduction at the only prime lying over 2!

5. Finally, we observe that some of our results could help spot principal K3
surfaces with CM in some particular families. Consider X → S a (non-
isotrivial) smooth family of K3 surfaces over a number field L, and suppose
that S is a rational (quasi-projective) curve. By our results, there are only
finitely many L−points of S that gives principal CM specialisations. If the
generic Picard rank � is odd, then the subset of CM points SCM (L) ⊂ S(L)
must be contained in theL−points of the Noether-Lefschetz locus ofX → S,
i.e. the locus where the Picard rank jumps, because K3 surfaces with CM
have even Picard number. There are some other ‘numerical’ constrains on
L−points of S that give principal CM specialisation that could be exploited.
Suppose that a specialisationXt, with t ∈ S(L), has CMbyE , withE a CM
number field of degree [E ∶ ℚ] = � + 1. A Galois-cohomology arguments
shows that there exists a quadratic extension L′∕L such that NS(Xt × L′) =
NS(Xt). Therefore, if  ⊂ E is the discriminant ideal of X, we must
have FK3,(E) ⊂ EL′, and therefore that [FK3,(E)∶ E] divides 2[L∶ ℚ].
There are finitely many pairs (E,) that satisfy the divisibility condition.
Therefore, there are only finitely many values |Et∕t| for the cardinality
of the discriminant form of a CM specialisation. Usually, one has some con-
trol on the discriminant of Xt, so that one can look at those finitely many
t′s where the Picard jumps and the discriminant of the intersection form on
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NS(Xt) is one of those |Et∕t|.
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