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Abstract— Interfacing with human neural cells during natural 

tasks provides the means for investigating the working principles of 

the central nervous system and for developing human-machine 

interaction technologies. Here we present a computationally 

efficient non-invasive, real-time interface based on the decoding of 

the activity of spinal motoneurons from wearable high-density 

electromyogram (EMG) sensors. We validate this interface by 

comparing its decoding results with those obtained with invasive 

EMG sensors and offline decoding, as reference. Moreover, we test 

the interface in a series of studies involving real-time feedback on 

the behavior of a relatively large number of decoded motoneurons. 

The results on accuracy, intuitiveness, and stability of control 

demonstrate the possibility of establishing a direct non-invasive 

interface with the human spinal cord without the need for extensive 

training. Moreover, in a control task, we show that the accuracy in 

control of the proposed neural interface may approach that of the 

natural control of force. These results are the first that demonstrate 

the feasibility and validity of a non-invasive direct neural interface 

with the spinal cord, with wearable systems and matching the 

neural information flow of natural movements. 

 
Index Terms— Deconvolution, high-density EMG, human-

machine interfaces, motoneurons, motoneuron control, neural 

interfacing. 

 

I. INTRODUCTION 

nterfacing with neural cells in the brain, spinal cord or 

peripheral nerves usually requires implanted devices [1]–

[3], which poses limitations for its widespread applicability. 

Non-invasive neural interfacing, such as achieved with 

electroencephalography (EEG), conventionally does not target 

single neural cell activities and provides limited reliability and 

poor information transfer rates. Among the target cells for 

neural interfacing, spinal motoneurons are unique in that their 

spiking activity can be identified ‘remotely’ by recording the 

electrical activity of the innervated muscle tissue [4]. 

Recordings of the behavior of motor units – the functional 
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quanta of the neuromuscular system, comprising the spinal 

motoneurons and innervated muscle fibres – have been 

performed for decades with intramuscular needle or wire 

electrodes, derived from the original concentric needle 

electrode [5]. These techniques would potentially enable 

neural interfacing. However, the identification of the activity 

of individual motoneurons with intramuscular systems is 

achieved by highly selective electrodes, so that only a few 

motoneurons can be investigated concurrently [6], [7]. 

Because of this limitation, intramuscular electromyogram 

(EMG) is mainly applied in clinical diagnosis [8] and basic 

physiological investigations [9], but not as a neural interface.  

Recently, it has been shown that multi-channel EMG 

signals, either recorded invasively [10] or non-invasively [11], 

can be decoded into the constituent motor unit spike trains, 

thus providing the means of interfacing with motoneurons 

using minimally invasive or fully non-invasive (wearable) 

devices [12]–[14]. These approaches are based on high-

density recordings using tens to hundreds of electrodes 

inserted in the muscle or mounted on the skin, usually referred 

to as high-density EMG (HDEMG) [12]. Because of the 

spatial sampling over multiple locations, HDEMG has allowed 

the identification of tens of motor units concurrently [10], 

[11], [13]. Thus, it is currently possible to identify and decode 

the behavior of relatively large samples of the pool of active 

motoneurons during natural tasks [4], [15]. Moreover, it has 

been shown that motoneurons can be tracked over long 

periods of time when the relative location of the recording 

sites in HDEMG recording systems remains approximately 

unchanged over time [16]. 

Beside extending our tools for physiologic and kinesiologic 

investigations [17], HDEMG has the potential of providing a 

new means for neural interfacing [18]. For example, we have 

recently shown that upper limb prostheses can in principle be 

controlled by the decoded activity of motoneurons [4]. 

Moreover, since the number of motoneurons controlling 

human movements is relatively small (i.e. in the order of 

several thousands) [19] and the input they receive is mostly 

common to entire pools [20], it has been speculated that it 

would be feasible to decode the activity of a sufficiently large 

proportion of motoneurons to extract robust commands for 

external devices [21]. This hypothesis has been indirectly 

confirmed in studies associating the statistical characteristics 

of motoneuron spiking timings to force in natural movements 

[17]. Nonetheless, the concept of a real-time interface with 

motoneurons has not been directly validated.  
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Here, we focus on non-invasive HDEMG with the aim of 

proposing a neural interface with ease of deployment. For this 

purpose, we first present a novel computationally efficient 

algorithm that allows real-time accurate and reliable decoding 

of motoneuron activity from HDEMG signals recorded from 

the skin surface. The technique is based on a blind-source 

separation approach which separates signal mixtures into the 

constituent components. We then validate this interfacing 

approach by comparing its accuracy with both offline 

decoding as well as with concurrently recorded intramuscular 

EMG signals as reference. This provides the first direct 

validation of real-time non-invasive identification of 

motoneuron activities. We then apply the validated interface in 

a series of studies involving real-time feedback on the decoded 

motoneuron activities. Finally, we show that this interface 

allows an accuracy in control which is close to that achieved 

when naturally modulating muscle force. Overall, these results 

– together with the computational efficiency of the proposed 

algorithm - demonstrate the feasibility, validity and efficacy of 

a wearable system that interfaces the output circuitries of the 

spinal cord. Such wearable interfaces with the spinal cord 

have a wide range of potential future applications, including 

for rehabilitation systems, prosthetics, sports and ergonomics, 

as well as fast diagnostic tools for the clinical sector [18].   

 

II. METHODS 

A. Online decomposition 

We developed a fully automated real-time surface EMG 

decomposition algorithm. Its high-level block diagram is 

shown in Fig. 1. It comprises an analogue front-end (AFE), a 

training module (TM), and a real-time decomposition module 

(RTDM). The analogue front-end in this study was a 

commercial system (Quattrocento, OT Bioelettronica, Turin, 

Italy), while the remaining modules were customized and 

implemented in Matlab R2017b. 

The developed system utilizes convolutive blind source 

separation techniques [11], [22] for identifying motor units 

and computing a separation matrix to extract motor unit 

activity from the recoded surface EMG. The separation matrix 

is computed, by the TM, from EMG recordings in an offline 

algorithm training phase. This computation involves 

convolutive sphering of the recorded EMG during which 

signals are temporarily extended by an extension factor 𝑓𝑒 (in 

order to increase the ratio of number of observations to 

number of sources) and whitened [11], [22]. It was shown in 

previous offline studies that the decomposition performance 

was similar for a range of 𝑓𝑒 values tested (i.e., between 8 and 

31) and the overall performance did not improve beyond 𝑓𝑒 =
16 [11]. The factor 𝑓𝑒 was therefore defined as 

𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟(1000 𝑁)⁄ , where N was the number of 

channels. This allowed for optimal performance for 𝑁 = 64 

(𝑓𝑒 = 16), which was the number of channels used in this 

study. 

Extension and whitening procedures are then followed by a 

fixed-point iteration algorithm, with a contrast function 

optimizing the sparsity of the extracted independent sources, 

to extract separation vectors si for each estimated motor unit 

spike train sti. A second iterative procedure (i.e. source 

improvement), which estimates the motor unit spike trains 

with spike detection and K-means classification (signal and 

noise classes), is utilized to further refine the estimations of si 

and sti. This procedure optimizes a separation vector from the 

estimated discharge timings until reaching a minimum 

discharge variability, computes a silhouette measure (SIL), 

and accepts the separation vector si as valid if SIL>0.9 [11]. 

Similar to pulse to noise ratio (PNR) [23], the silhouette 

measure was proposed as an indicator of reliability [11]. It is 

computed as the difference between the sum of point-to-

centroid distances within cluster and between clusters, divided 

by the maximum of the two values [11]. In addition to 

computing a separation matrix S consisting of separation 

vectors si, TM also computes spike (tci) and noise cluster 

centroids (nci) for each source.  

RTDM uses the parameters computed by TM to decompose 

HDEMG signals in real-time, converting them into a series of 

motoneuron action potential discharge timings (i.e. spike 

trains). During the real-time operation, the recorded HDEMG 

signals are extended. In contrast to TM, the extended sources 

are not spatially whitened during real-time operation in order 

to reduce the computational load associated with the 

computation of the whitening matrix arising from the singular 

value decomposition needed for whitening. Instead, the real-

time separation matrix is designed to operate on extended 

unwhitened observations. This is achieved during the training 

phase where a whitening matrix W is computed, and the 

extracted separation vectors are transformed using W.  

Following extension, the source trains (sti) are extracted by 

multiplying the extended observations with the real-time 

separation matrix. The local peaks of squared source trains 

(sti
2) are detected. A local peak is defined as a data sample that 

is larger than its neighboring samples. The Euclidean distances 

of each detected local peak from tci and nci are computed. 

Each peak is then classified by the spike classification unit, 

 
Fig. 1. High-level block diagram of the real-time surface EMG 

decomposition system. The system comprises an analogue front-end (AFE), 
a training module (TM), and real-time decomposition module (RTDM). TM 

performs the computationally demanding tasks of blind source separation 

and is performed as a one-time procedure (unless a re-training command is 
issued by the system). Having established real-time parameters through the 

training module, the RTDM performs real-time extraction of the discharge 

times of the detected spinal motoneurons. “Extension” block: signals are 

extended by a factor 𝑓𝑒; “Source extraction” block: extended signals are 

multiplied by the separation matrix to extract the source signals 
corresponding to each motoneuron; “Spike extraction” block: the local peaks 

of the extracted source signals are detected; the detected peaks are classified 
into signal and noise clusters; the time position of the local peaks assigned to 

a signal cluster is registered as a valid motoneuron discharge time; 

“Convolutive sphering” block: it comprises Extension  sub-module and 
whitening of the extended signals; “Fixed point iteration” block: it 

determines the separation vectors used to extract motoneuron sources; 

“Source improvement” block: optimisation of the separation vectors. For 
detailed discussion of each block, please see Section  II-A. 
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based on the computed distances, either as corresponding to 

discharge of a motor unit or as noise. Finally, the time 

occurrence (i.e. timestamp) of each detected motor unit spike 

is output along with information about which motor unit it 

belongs to (i.e. spike label). 

The computational requirements of the proposed system 

were quantified both as number of computations per sample 

(in terms of system parameters) and measurements in time 

under various conditions in order to ensure real-time 

performance. In the proposed system, the training module 

(TM) performs the computationally demanding tasks of blind 

source separation which is performed once. Having 

established many of the system parameters through the 

training module, the RTDM requires minimal computations to 

extract motor unit activities in real-time. The computational 

complexity of the RTDM, as presented in Table I, mainly 

depends on the number of channels (𝑁) and the number of 

identified motor units (𝑀).  

The source extraction sub-module is the most 

computationally demanding part of RTDM as it requires 

vector multiplications to extract the spikes of each detected 

motor unit. Assuming typical high-density electrode channel 

counts (i.e. 64, 128, and 192 channels), and 20 extracted motor 

units, the real-time decomposition module requires for each 

acquired sample, 27 additions, 347 multiplications, 16 shifts, 

and 32 comparisons for the worst case scenario. The worst 

case scenario assumes that one out of every three samples of 

each sti, received by Spike extraction processing block, 

corresponds to a local peak. Since the extracted local peaks 

consist of actual spike discharges of motor units, which is a 

function of individual firing rate of each motoneuron, and the 

noise which is of random nature, we only report the worst case 

in Table I.   

Using synthetically generated HDEMG [24], the 

computational time of the RTDM module was measured for 

varying number of recording channels (from 64 to 192 

channels) across various analogue front-end (AFE) buffer 

sizes (from 1 to 256 samples/channel). For the measurements, 

a system with Intel Core i7 2.6GHz, 16GB RAM was used. 

From these analyses, the maximum average computational 

time (i.e., maximum latency) was 3.4 ± 0.43 (0.06 - 4.3) ms 

for a 192-channel system that utilizes an AFE buffer size of 

256 samples/channel. For the case of the AFE used in this 

study, the minimum available buffer size of 128 samples and a 

sampling rate of 2048 Hz were chosen (i.e. fixed acquisition 

latency of 62.5ms). Together with the corresponding measured 

real-time decomposition latency for 64-channels (i.e. 0.65 ms), 

the overall latency for acquisition and processing the signals 

was less than 64 ms (excluding ethernet communication). This 

allows up to 140 ms for extra computation and visualization 

time while still ensuring overall latency is below 200 ms [25], 

[26].  

 

B. Experiments 

For all the experiments, HDEMG signals were recorded 

using 64-electrode adhesive grids (5 columns and 13 rows; 

gold coated; OT Bioelettronica, Torino, Italy) mounted over 

the belly of the target muscle. For tests on the tibialis anterior 

and extensor digitorum muscles, a high-density electrode array 

with an 8-mm inter-electrode distance was used; for tests on 

the first dorsal interosseus and abductor digiti minimi muscles 

a smaller sized high-density electrode array with an inter-

electrode distance of 4-mm was applied. A conductive paste 

was used to improve the electrode-skin contact. Before the 

placement of the electrode array, the skin above the target 

muscle was shaved and cleansed with abrasive paste and 

ethanol. The signals were recorded in monopolar derivation 

with a Quattrocento Amplifier (OT Bioelettronica, Torino, 

Italy), analogue band-pass filtered (10 – 500 Hz) for signal 

conditioning and anti-aliasing, sampled at 2048 Hz and A/D 

converted to 16 bits. The force was measured through CCT 

TF-022 force transducer and recorded, amplified (OT 

Bioelettronica, Torino, Italy), and band-pass filtered (0 – 30 

Hz). 

A Matlab-based implementation of the real-time 

decomposition system, as described above, together with a 

custom designed graphical user interface (GUI) was used 

during the experiments. The GUI provided real-time feedback 

on either force, spiking activity of individual motor units, or 

cumulative spike trains (CST) of sets of motor units (Fig. 2). 

The spiking activity feedback presented a real-time raster plot 

(i.e. spike train) of all detected motor units (Fig. 2A). The 

 
Fig. 2. Closed-loop biofeedback on motoneuron activity. Schematic 
overview of the feedback and pre-processing chain used in all experiments. 

TOP: Data acquisition from the target muscle via HDEMG and real-time 

decoding of the underlying motoneuron activity. BOTTOM: Participants 
received visual feedback either on single motor unit spiking (A) or on two 

filtered cumulative spike trains (FCSTs) (orange and blue line; see main text 

for details) (B), depending on the experimental tests. The user can adjust the 
range of time axis display, as well as the update rate of the GUI. The GUI 

update rate is dependent on the acquisition parameters chosen by the user. 

Please refer to section II-A for discussion of the latency. 

  

TABLE I 
COMPUTATIONAL REQUIREMENTS OF THE REAL-TIME DECOMPOSITION 

MODULE QUANTIFIED BY THE NUMBER OF OPERATIONS (IN SYSTEM 

PARAMETERS) REQUIRED PER SAMPLE RECORDED.  

Processing block Add Multiply 
Shift Compare 

Extension - - fe - 
Source Extraction fe M.fe - - 

Spike extraction - fe - 2.fe–2/N 

Spike classification 2.N.fe/3 2.fe/3 - 
 

- 

N is the number of HDEMG channels and M is the number of detected motor 

units. Let ⌊𝑥⌉ denote the nearest integer function. 𝑓𝑒  =  ⌊1000 𝑁⁄ ⌉ is the 

extension factor.  
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CSTs are constructed by summing the spike trains of two or 

more motor units. The GUI allows experimenter to produce a 

single CST based on all decoded motor units or define 

multiple CSTs based on various subsets of decoded motor 

units, as well as allowing several filtering options (i.e. filter 

order, cut-off frequencies, filter type) to generate a filtered 

cumulative spike train (FCST), as shown in Fig. 2B.  

For all the experiments, participants started with performing 

a maximum voluntary contraction (MVC) force in 

dorsiflexion, abduction or extension, depending on the 

recorded muscle. The maximal contraction was followed by 

ramp contractions that comprised a 4 s ramp trajectory at 2.5 

% MVC/s, and a 10% MVC sustained contraction over 41 s. 

During this initial phase, participants were always presented 

with the overall force feedback. HDEMG signals recorded 

during the ramp contraction were used as the calibration data 

for the decomposition system to identify motor units and real-

time decomposition system parameters. The participants were 

then asked to slowly recruit one motor unit after another by 

increasing the contraction level from 0 % to 10 % MVC while 

single motor unit spiking activity of the entire pool was 

visually presented. This test, which lasted 10-15 s, verified 

that the participants could effectively use the visual feedback 

on motoneurons. All participants were able to directly use the 

interface in an intuitive way.  

In this study, we selected relatively low force contraction 

levels for multiple reasons. For the presented validation with 

intramuscular EMG recordings, the force needs to be low for 

limitations of the invasive methods that require the activation 

of a small number of units. For the tests on force control, low 

contraction levels are associated to large physiological force 

variability and therefore they are the most challenging from a 

control perspective (this is reflected by the relatively high 

force variability reported in our results in Section III-D). 

Finally, higher force levels are associated to muscle fatigue 

that we wanted to avoid in all tests.  

All experimental procedures were approved by Joint 

Research Compliance Office under the Imperial College 

Research Ethics Committee process (reference 18IC4685). All 

participants gave informed consent according to procedures 

approved by the ethics committee at Imperial College London. 

The participants were naive volunteers and did not undergo 

any training prior to or during the experiments. 

 

C. Study I: Accuracy of online vs offline decomposition 

HDEMG of the tibialis anterior muscle of eight healthy 

participants (3 females, 5 males; age: 27.8 ± 5.5 yrs) were 

recorded. Additional experiments were performed on the 

tibialis anterior, first dorsal interosseus, abductor digiti 

minimi, and extensor digitorum muscles of one healthy 

participant (male, 28). For the tibialis anterior muscle, the foot 

was fixed into position using an ankle dynamometer (NEG1, 

OT Bioelettronica), with the ankle flexed at 0º, to allow 

isometric dorsiflexion of the ankle. For the measurements on 

the upper limb, i.e. abduction of the index finger (first dorsal 

interosseus), abduction of the little finger (abductor digiti 

minimi), and extension of the medial four digits of the hand 

(extensor digitorum), a custom designed experimental setup 

was used to fix the forearm, the wrist and the hand. It 

consisted of an adjustable-height platform to ensure the 

forearm was bent at the elbow at 90º and the hand was 

pronated at 90º. The force sensor platform was adjusted 

accordingly and fixed ensuring the digits of the hand relevant 

to the measurement stayed in contact with the force platform 

at rest.  

During the experiments, visual feedback on the discharge 

behaviour of each identified motor unit (i.e. spiking activity 

feedback) was provided.  Participants were asked to recruit all 

identified motor units and to sustain a constant firing rate for 

45 s at a contraction force of approximately 10 % MVC. The 

MVC % force level, in this case, was also displayed through 

the GUI. 

For the offline analysis, the HDEMG signals were processed 

with an offline decomposition algorithm [11] to assess the 

overall quality of the online decomposition. The offline 

decomposition was performed with a threshold of SIL > 0.9, 

while the fixed-point algorithm was iterated over 50 times 

[11]. The results of the offline decomposition were manually 

edited for maximizing the accuracy. To quantify the 

performance of the real-time decomposition to the offline 

benchmark, the rate-of-agreement (RoA) was used as a metric: 

 

𝑅𝑜𝐴 % =
𝑐𝑗

𝑐𝑗 + 𝑅𝑇𝑗 + 𝑂𝐿𝑗

× 100 %                       (1) 

 

where 𝑐𝑗 is the number of discharges of the 𝑗𝑡ℎmotor unit 

identified by both real-time and offline decomposition 

algorithms, 𝑅𝑇𝑗 is the number of discharges identified by the 

real-time system only, and 𝑂𝐿𝑗 is the number of discharges 

identified by offline decomposition only.  

 

D. Study II: Accuracy of online decomposition: two-source 

validation 

For further validation of the online decomposition, with the 

two source method, concurrent intramuscular EMG (iEMG, 

measured with a pair of wire electrodes inserted into the 

muscle with a 25G needle) and surface HDEMG signals 

(measured with a 5×12 electrode array, 5 mm interelectrode 

distance) recorded from the tibialis anterior muscle of 12 men 

(age: 27 ± 3.5 yrs) during previous studies were used [14]. The 

recordings used consisted of 20 s isometric contractions of 

5%, 10% and 15% of the MVC.  The surface HDEMG signals 

were bandpass filtered (10-500 Hz) and sampled at 2048 Hz. 

The intramuscular signals were bandpass filtered (0.5-5 kHz) 

and sampled at 10 kHz. The iEMG signals were decomposed 

into sources using EMGLab [27], which is an established 

offline decomposition algorithm for intramuscular EMG 

signals. For these tests, the online surface EMG 

decomposition algorithm was simulated in an offline way to 

decompose the HDEMG. The HDEMG signals were 

partitioned into two equal datasets. One dataset was used to 

train the system parameters, while the remaining dataset was 

fed into the simulated RTDM. This was then repeated by 

interchanging the training and testing datasets. The recordings 

were only considered for analysis if the offline decomposition 

provided at least one source which had a RoA with the 

corresponding intramuscular recording above or equal to 75%. 
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The recordings that did not meet this criterion were discarded. 

This criterion was based on the need to match the motor units 

detected from the intramuscular and surface recordings since 

there is no way of deciding on the association without a 

criterion based on the correspondence of discharges. The RoA 

provided for the matched units (see Section III-B) were well 

above 80-90% and thus very distant from the threshold used 

for matching, indicating a bias has not been introduced as a 

result of this matching criterion. 

 

E. Study III: Common input to motoneurons 

Experiments were performed on 11 healthy participants (1 

female, 10 male; age: 25.1 ± 2.2 yrs). HDEMG from the 

tibialis anterior muscle was recorded while the foot was 

locked into position to measure isometric dorsiflexion of the 

ankle only.  

The HDEMG signals acquired during a 40 s window of an 

isometric contraction at 10% MVC were decomposed into 

active motor unit spiking and labelled as force control 

condition, i.e. a control condition in which visual feedback 

was provided on the generated force. From the set of detected 

motor units, 12 were selected (in the order of recruitment and 

ensuring all were active at  10% MVC), and were randomly 

divided into three sets of four motor units each, labelled as 

Ctrl-Set, A-Set, and B-Set, respectively. The choice of 12 

motor units was based on the minimum number of motor units 

that we expected to identify during contractions of the TA 

muscle (from previous empirical evidence obtained with the 

proposed system) and desire to maintain the same number of 

motor units across test conditions (i.e. Ctrl-Set, A-Set, and B-

Set) and participants. Two FCSTs were then computed as the 

low-pass filtered (10 Hz, second-order Butterworth filter) 

versions of the sum of the individual motor unit spike trains in 

the Ctrl-Set and A-Set (Condition I) and in the Ctrl-Set and B-

Set (Condition II). The participants then received visual 

feedback on the FCST for each condition twice (four trials), 

with 5 min of rest in between.  

The strength of common input received by the motoneurons 

in the Ctrl-Set and A-Set, as well as in the Ctrl-Set and B-Set 

was estimated by using the maximum-squared coherence 

analysis on the de-meaned unfiltered CSTs of the 

corresponding motor units [28]–[31]. Therefore, the power 

spectral densities of both CSTs 𝑃𝐶𝑡𝑟𝑙(𝑓) and 𝑃𝐴/𝐵(𝑓), as well 

as the cross power spectral density 𝑃𝐶𝑡𝑟𝑙𝐴/𝐵(𝑓) (Hanning 

window of 1 s, 50 % overlap) determined the estimated 

coherence value 𝐶𝐶𝑡𝑟𝑙𝐴/𝐵(𝑓), as follows: 

 

𝐶𝐶𝑡𝑟𝑙𝐴/𝐵(𝑓) =  
|𝑃𝐶𝑡𝑟𝑙𝐴/𝐵(𝑓)|

2

𝑃𝐶𝑡𝑟𝑙(𝑓)𝑃𝐴/𝐵(𝑓) 
                    (2) 

 

The confidence threshold for the estimated coherence values 

was: 

 
𝐶𝐿 = 1 − (1 − 𝛼)

1
𝑁−1                           (3) 

 

with the number of segments 𝑁 used in the estimation and 𝛼 = 

0.05 as level of confidence [29]. Motor units in the Ctrl-Set 

were always present in both conditions. The coherence 

between both pairs of sets was computed for the four trials. 

The estimated coherence values were averaged in four 

frequency bands: δ = 1-4 Hz, θ = 4-8 Hz, α = 8-13 Hz, β = 13-

30 Hz [32]. The root mean square error (RMSE) between the 

target FCST and the recorded FCST was calculated and 

maximum-normed to the presented FCST to evaluate to which 

degree the participants were able to follow the trajectory. 

 

F. Study IV: Accuracy in voluntary control of motoneuron 

output 

Experiments were performed on eight healthy participants (4 

females, 4 males; age: 27.6 ± 5.2 yrs) who also took part in the 

validation study (Study I; see above). Recordings were 

performed with HDEMG systems from the tibialis anterior 

muscle. The foot was locked into position to measure 

isometric dorsiflexion of the ankle only. During the initial part 

of the experiment, following initial system calibration, the 

participants were shown the discharge times of each identified 

motor unit, decoded in real-time from the tibialis anterior 

muscle. They were then asked to perform ankle dorsiflexions 

in order to progressively recruit motor units and then 

progressively derecruit the activated units for a few minutes to 

familiarize with the interface (Fig. 2). 

The participants were then provided a target trajectory to 

follow with three types of visual feedback: FCST of all 

detected motor units, amplitude of the EMG, and force. The 

target trajectory consisted of a 4 s ramp (increasing), followed 

by a constant level for 32 s at 10 % MVC, and ending with a 4 

s ramp (decreasing). All tasks were randomized and repeated 

twice for each visual feedback type. All visual feedback 

signals were filtered with a 4th order Butterworth lowpass filter 

with a cut-off frequency of 5 Hz.  

The targets for the neural feedback condition were computed 

as the average FCSTs corresponding to the force levels in the 

force feedback condition. 

III. RESULTS 

We present the results of the four main studies of online 

control of motoneurons in healthy individuals, as described 

above. The first study validated the online decoding in several 

TABLE II 
DECOMPOSITION ACCURACY OF THE REAL-TIME (I.E. ONLINE) SYSTEM 

MEASURED WITH 64-CHANNEL HDSEMG RECORDINGS ACROSS TIBIALIS 

ANTERIOR (TA),  FIRST DORSAL INTEROSSEUS (FDI), ABDUCTOR DIGITI 

MINIMI (ADM), AND EXTENSOR DIGITORUM (ED).  

Muscle 
No. of 

MUs 

Rate of 
Agreement 

% 

Average 
Discharge Rate 

(pps†) 

Average 
Discharge 

variability % 

TA 12 100 / 0.2 

(99.4–100) 

11.5 / 2.5 

(10.2 – 14.0) 

9.5 / 1.3  

(8.1 – 13.3) 

FDI 5 99.4 / 0.8 

(98.3–100) 

9.4 / 2.1  

(7.9 – 11.2) 

11.9 / 2.3 

(10.3 – 15.9) 
ADM 6 94.2 / 4.4 

(93.2–99.1) 

16.2 / 10.5 

(9.1 – 22.4) 

18.0 / 7.9 

(13.1 – 5.4) 

ED 7 92.6 / 5.5 
(87.4–94.8) 

17.4 / 4.9 
(12.8 – 30.8) 

25.2 / 9.0 
(14.4 – 28.1) 

Rate of Agreement, discharge rate, and discharge variability are given as 

median / interquartile range (minimum RoA – maximum RoA), across all 
identified motor units. † pps: pulses per second. Average Discharge 

variability is computed as coefficient of variation of motoneuron discharge 

rates.  
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muscles by comparing the decoded spike trains during real-

time control with the signal decomposition manually 

performed offline with state-of-the-art methods. Since offline, 

manually verified, decomposition methods have been 

extensively validated previously [11], [13], this comparison 

provided an initial proof of the accuracy of the online 

decoding. Because this validation is still indirect, we further 

validated the online decoding with the two-source approach 

[33], which is based on comparing the decomposition of 

concurrently recorded intramuscular and surface EMG signals 

of various contraction intensities (second study). The third 

study investigated spectral coherence between the activities of 

groups of motoneurons when providing feedback on only a 

subset of motoneurons and established the stability of the 

control. The fourth study showed the accuracy in controlling 

motoneuron recruitment/derecruitment and compared the 

accuracy in 1D control of motoneuron output with that of 

conventional EMG and force control.  

 

A. Study I: Accuracy of online vs offline decomposition 

The accuracy was first tested in eight participants on the 

tibialis anterior muscle. The tests were performed by 

providing spiking activity of identified motoneurons (i.e. a 

real-time raster plot) as visual feedback to the participants and 

requesting them to progressively recruit motoneurons, to 

maintain their activity for approximately 10 s, and then to 

progressively derecruit motoneurons. The result of the online 

decomposition was also stored and compared with the 

subsequent offline, partly manual decomposition. The 

accuracy was quantified RoA between online and offline 

decomposition (see Methods). For the tibialis anterior muscle, 

the median rate of agreement across the eight participants 

between offline and online decomposition was 95.5% 

(interquartile range: 7.9 %, min. 37.3 %, max. 100%).  

Further tests of accuracy were then conducted in several 

muscles for one participant. These additional tests were 

performed on the tibialis anterior, first dorsal interosseus, 

abductor digiti minimi, and extensor digitorum muscles, as 

representative muscles of the lower and upper limb. Across 

these muscles, the online decomposition identified 5 to 12 

motor units. Table II reports the rate of agreement between 

online and offline (partly manual) decomposition as well as 

the discharge rate and discharge variability of the identified 

motor units for all muscles. The values of agreement are >90% 

for all muscles and are similar across muscles. The values for 

discharge rate and discharge variability are in agreement with 

known physiological values [34]. 

These results indirectly indicate high accuracy of the online 

identification of motoneuron spiking and generality of the 

approach to muscles with different architectures and control 

properties. Nonetheless, this validation is indirect as it relies 

on the assumption that offline decomposition is accurate. 

While the latter has been verified in previous studies [11], 

[14], [22], here we further tested the validity of the online 

decomposition in a direct way. 

B.  Study II: Accuracy of online decomposition: two-source 

validation 

Among all methods proposed for assessing the accuracy of 

decomposing non-invasive EMG signals, the most direct one 

is the comparison of the decomposition results with those 

obtained decomposing concurrently recorded intramuscular 

EMG signals [33]. According to this approach, the rate of 

agreement is computed between spike trains decomposed from 

different signals (intramuscular and surface) and with different 

decomposition methods. The rationale for the approach is that 

the likelihood that the two decompositions provide exactly the 

same errors is extremely small and therefore the rate of 

agreement is a conservative estimate (i.e., it underestimates) of 

the decomposition accuracy. 

To test the validity of online decomposition with the two-

source method, we used intramuscular EMG and surface 

HDEMG signals recorded from the tibialis anterior muscle in 

our previous studies [14]. These previously recorded surface 

HDEMG signals were decomposed by simulating the online 

processing. For this purpose, the surface HDEMG signals 

were partitioned into two equal datasets (i.e. train/test split 

method), where one dataset was used as the training dataset 

while the other was the test dataset. This was then repeated by 

switching the test and training datasets.  

The RoA between the intramuscular and surface 

decompositions was on average 91.5 ± 6.6% (1.2 ± 0.7 

matching motor units per recording; this number of matched 

motor units is in agreement with previous studies, i.e. 1 ± 1 

units were matched in previous studies, using the two-source 

method for validating offline decomposition [14]), with 

individual subject results presented in Table III.  Moreover, 

the offline algorithm was also applied to the full recordings 

(i.e. trained on the whole dataset) for comparison. The RoA 

between offline surface HDEMG decomposition and the 

decomposed intramuscular data was 96.0 ± 4.3 (1.1 ± 0.3 

matching motor units per recording).  

TABLE III 

DECOMPOSITION ACCURACY OF THE REAL-TIME (I.E. ONLINE) SYSTEM 

VALIDATED WITH THE TWO-SOURCE METHOD USING CONCURRENT 

INTRAMUSCULAR AND SURFACE HDEMG RECORDINGS FROM THE TIBIALIS 

ANTERIOR MUSCLE.  

Participant 
No 

 

%MVC 
No.  of motor units 

matched 

Rate of agreement % 

 Offline Online Offline Online 
     

1 10 1±0 1±0 99.1±0 96.3±1.3 

10 1±0 1±0 88.7±0 83.2±7.6 

5 1±0 0.5±0.7 99.0±0 95.1±0 

5 1±0 1±0 99.1±0 94.5±1.9 

2 15 1±0 1±0 86.5±0 79.9±1.9 

3 15 1±0 1±0 92.7±0 87.5±6 

5 1±0 0.5±0.7 99.3±0 90.5±0 

5 1±0 1±0 96.8±0 90.6±1.1 

4 10 1±0 2±0 98.0±0 96.8±1.2 

10 1±0 1.5±0.7 97.7±0 95.9±3.6 

15 2±0 2.5±0.7 97.6±0.7 91.0±8.4 

The rate of agreement between decomposed HD-sEMG recordings with the 
proposed real-time system and decomposed intramuscular EMG recordings is 

presented. For comparison, the rate of agreement between decomposed HD-

sEMG recordings with an offline algorithm and decomposed intramuscular 

EMG recordings is also presented. 
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The validation with the two-source method, together with 

the comparison with the offline decomposition, provides a 

solid proof of the accuracy of the proposed approach in a 

variety of muscles. 

C. Study III: Common input to motoneurons 

Motoneuron pools receive a large proportion of common 

synaptic input [35], [36]. This control strategy is needed for 

accurate control of muscle force [37], [38]. The presence of 

common input signal to relatively large groups of 

motoneurons allows estimating the input by decoding only a 

fraction of the active motoneurons, so that a relatively small 

proportion of decoded neurons is representative of a large 

pool. The presence of common input to motoneurons has been 

extensively proven experimentally [39]. Nonetheless, it has 

not been demonstrated when controlling motoneurons via 

feedback, as in neural interfacing. Therefore, here we analysed 

spectral coherence between groups of motoneurons when 

providing feedback on only a subset of decoded motoneurons. 

Eleven healthy participants completed the experiment. For 

each participant, a set of 12 motor units online identified from 

the tibialis anterior muscle was randomly divided into three 

sets of four motor units each - labelled as Ctrl-Set, A-Set, and 

B-Set – and computed  the corresponding CST for each set of 

motor units. The CSTs were filtered in the effective bandwidth 

of control (see Methods) to obtain FCSTs. Participants 

received visual feedback on the FCSTs derived from the 

motoneurons in the A- and Ctrl-Set (Condition I) and in the B- 

and Ctrl-Set (Condition II). Participants were instructed to 

follow a target level to be matched with the FCST in each 

condition. A control condition in which visual feedback was 

provided on the generated force, instead of on the FCSTs, was 

also included. The maximum-squared coherence between 

unfiltered CSTs was used to assess the strength of common 

input between the three sets of motoneurons in the three 

feedback conditions (Condition I, II, and force control). 

In total, 150 motor units were identified online (on average, 

13.63 ± 2.11 per participant; minimum of 12 motor units per 

participant). The RMSE between the target and the FCST was 

used as a measure of control accuracy. The global error across 

the entire sample was 11.32 ± 1.62 % of the maximum 

amplitude of the corresponding FCST. Furthermore, a paired-

samples t-test was conducted to compare the RMSE 

depending on the subset of motoneurons provided as feedback 

(Condition I: 11.45 ± 1.70 %; Condition II: 11.18 ± 1.57 %) 

and no significant difference was detected (t(42) = 0.55, p > 

0.5), which suggested that the accuracy in control of the FCST 

did not depend on the motoneuron set used for the visual 

feedback. Notably, the subjects did not need any training when 

suddenly switching from one set of motoneurons for feedback 

to the other. They naturally switched and performed the 

required task with similar accuracy in all conditions. 

Fig. 3 shows the spectral coherence functions between the 

sets of motoneurons when varying the feedback condition. A 

Kruskal-Wallis test revealed no significant effect of the 

feedback condition on the estimated level of received common 

input (δ band: H(5) = 5.66, p > 0.3; θ band: H(5) = 1.58, p > 

0.9; α band: H(5) = 2.7, p > 0.7; β band: H(5) = 1.04, p > 0.9). 

Therefore, the set of motor units excluded from the feedback 

in each condition acted coherently with those used for 

feedback, indicating that the feedback on one sub-set of 

motoneurons acted on the entire pool of motoneurons.  

These results show that online feedback on a relatively small 

set of motoneurons is representative of the control of the entire 

motoneuron pool (as the motoneurons not provided as 

feedback behaved coherently with those provided as 

feedback). The results may also suggest that a neural interface 

based on feedback on motoneurons might remain stable even 

if some of the motoneurons identified over time would 

change, as it was experienced by the subjects in this 

experiment. Nevertheless, further experimentation is required 

to investigate the latter point.  

D. Study IV: 1-D control 

We then investigated the ability to proportionally control a 

1-D signal by motoneuron activity and compared the 

variability in control with respect to EMG-based and natural 

force control. A total of eight participants were recruited for 

this experiment and surface HDEMG was recorded from the 

tibialis anterior muscle during ankle dorsiflexion. 

The participants were provided with three modes of visual 

feedback. The neural feedback was the FCST of the motor 

units decomposed in real-time. With this feedback, the 

participants were asked to follow, as closely as possible, a 

trajectory at 10% of the maximal voluntary contraction. The 

force and EMG feedbacks were based on force and estimated 

EMG amplitude, respectively, at the same relative levels used 

for the neural feedback. The control task was repeated twice 

by each participant. 

 
Fig. 3. Spectral coherence analysis for various visual feedback modalities. 

The coherence functions are computed with their mean and standard 
deviation (shaded areas around line plot) between cumulative spike trains 

extracted from the Ctrl-set and A-subset (blue line), and from the Ctrl-set and 

B-subset (red line) for the conditions of force feedback (A), and filtered 
cumulative spike trains feedback (B and C). The averaged coherence values 

in the δ, θ, α, and β frequency bands are shown by their medians and 

quartiles. The dashed black line indicates the 95 % confidence interval of the 
coherence estimate in each condition.  
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On average, 11.8 ± 2.3 motor units were decomposed per 

participant (minimum 8 motor units and maximum 15 motor 

units). Force feedback had lower overall CoV (mean 

variability of 4.4 ± 1.5 %) and RMSE (mean error of 0.5 ± 0.2 

% MVC) across participants compared to the variability 

resulting from both the EMG and the neural feedback, but 

neural feedback led to higher precision (mean variability of 

13.8 ± 2.1% and RMSE of 1.5 ± 0.3 % MVC) than EMG-

based feedback (mean variability of 17.0 ± 4.7 % and RMSE 

of 1.7 ± 0.5 % MVC). Moreover, the error in control with 

neural feedback decreased with the number of decoded motor 

units, as expected theoretically [21], so that there was a 

negative correlation between RMSE and number of decoded 

units (R=-0.64 and P=0.008; Fig. 4). EMG (R = 0.15 and P= 

0.56) and force (R = -0.09 and P=0.79) control did not depend 

on the number of decoded units, as expected. 

 

IV. DISCUSSION 

We have developed a fully automated non-invasive neural 

interface with the output circuitries of the spinal cord that 

provides real-time feedback on motoneuron spiking activities. 

The interface has been extensively validated and demonstrated 

in experiments on human participants that showed accurate, 

intuitive, and robust control of motoneuron output in untrained 

individuals. 

The proposed interface is based on developments in 

HDEMG analysis of the last two decades [11], [13], [14], [40]. 

The key contributions of the present work are 1) the novel 

online decomposition algorithm; 2) the first direct validation 

of online decomposition by comparison with intramuscular 

decomposition; 3) the demonstration that motoneurons behave 

coherently during a feedback task; and 4) the demonstration, 

during a 1D control task, that the accuracy in control of the 

proposed interface is superior to that of conventional 

myocontrol. 

Accuracy of the developed interface has been first shown by 

comparison of the online motoneuron decoding with the 

offline approach. The offline approach to surface EMG 

decomposition has been previously extensively validated [11], 

[12], [14], and therefore could be used as reference for 

accuracy assessment. The rate of agreement between offline 

and online decomposition was in all cases >90%, indicating 

high performance of the online implementation. In a second 

step, we provided a more direct validation of online 

decomposition by comparison with concurrently recorded and 

independently decomposed intramuscular EMG signals. This 

further test revealed similar RoA as for the comparison with 

offline decomposition (~90%) and provided ultimate evidence 

of the high accuracy of the online interface. 

The validation tests were followed by two studies that 

provided evidence that the interface can be used intuitively 

without subject training. We first tested the ability of 

participants to control different sets of motor units 

interchangeably. This test served to prove both the robustness 

of the interface and its stability. Indeed, it proved that 

participants could control any sets of motoneurons without 

(re)training. The switch in control from one set to the other 

was immediate and natural, and the participants did not 

experience any difficulties when changing the set of 

motoneurons. The error in control was indeed similar across 

conditions. Moreover, motoneurons whose activity was not 

provided as feedback showed a behavior highly coherent with 

those used for feedback. Indeed, the coherence of a set of 

motoneurons with the control set of motoneurons was the 

same irrespective of whether the set was used as feedback or 

not. This is consistent with the well-known notion that pools 

of motoneurons receive a strong proportion of common input 

[39]. This notion has been tested here for the first time with 

biofeedback on groups of motoneurons. The behavior of the 

motoneurons provided as feedback was representative of the 

behavior of the entire motoneuron pool, including neurons not 

provided as feedback. For interfacing, this result indicates that 

the interface would work in a stable way over multiple uses, 

even if the identified motoneurons would change at each use.  

Finally, we tested the proposed system in a 1D control 

experiment. We compared the proportional command signal 

extracted from the activity of motoneurons with both force and 

EMG amplitude. For these comparisons, we chose a relatively 

low force level, which is known to correspond to relatively 

large force variability [34] and which therefore challenged the 

interface. The command extracted from motoneuron activity 

led to greater variability than force control but lower than 

EMG amplitude control. Moreover, the accuracy in control 

improved when the number of decoded motor units increased 

(Fig. 4), as expected from the physiological principles of force 

generation [37]. It has been shown that force generation is 

linearly dependent on the neural drive (i.e. cumulative spike 

trains) to the muscles [20], [37]. The pool of motor neurons 

act as a linear selective filter that eliminates non-common 

components of the synaptic input. The greater the number of 

detected motor units by the proposed interface, the more 

accurate is the estimate of the neural drive (i.e. hence intended 

force output).  In the 1D control experiment, we demonstrated 

that the proposed interface has the potential of surpassing the 

accuracy in force estimation based on EMG amplitude and 

 
Fig. 4. Error in control against the number of decoded motor units under 

neural (blue circle markers), emg control (black square markers), and force 

control (red diamond markers). The root mean squared error in control was 
analysed as a function of the number of decoded (i.e. identified by the 

decomposition) motor units across all trials and participants. Linear 

regression curves for neural control (blue dashed line), EMG control (black 
dashed line) and force control (red dashed lines) are also presented. The error 

in control with neural feedback decreased with the number of decoded motor 

units as expected theoretically. As also expected, EMG and force control 
does not depend on the number of decoded units.   
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matching the stability of force control when a sufficient 

number of motoneurons is decoded [35], [37]. This provides a 

large margin of improvement based on advances in 

decomposition accuracy and number of extracted spike trains.  

While it is in principle possible to extract features associated 

with the cumulative spike train to build control signals, 

currently there are no robust methods that can extract 

accurately the number of discharges per unit time of a subset 

of active units without first decomposing the signal fully. 

Moreover, in applications where it is needed to distinguish the 

activity of muscles closely spaced, single motor units must be 

resolved and assigned to specific degrees of freedom, which is 

not possible from the total number of discharges per unit time. 

Finally, some physiological investigations would still require 

feedback on single motor units (as opposed to the full neural 

drive), such as when assessing the possibility for the central 

nervous system to disentangle the control of motor units in the 

same pool. 

V. CONCLUSION 

In conclusion, we provided a neural interface that can be 

mounted non-invasively on the skin surface and that provides 

highly accurate identification of spiking times of spinal 

motoneurons in real-time. We provided a first direct validation 

of real-time non-invasive identification of motoneuron 

activities by comparing its accuracy with both offline 

decoding and concurrent intramuscular EMG signals. We 

further tested the proposed interface in a series of studies 

involving real-time feedback on the decoded motoneuron 

activities. With this interface, naïve participants could control 

in real time motoneuron activity in tasks involving 

proportional commands without training. Moreover, the 

participants could produce voluntary control commands 

switching from one set of neurons to another intuitively and 

without the need for any learning period. This interface has 

potential applications in technologies that requires accurate 

transfer of information with the human nervous system, such 

as rehabilitation devices. 
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