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Abstract 

Modelling the impact of extreme weather on power systems is a computationally expensive, 

challenging area of study due to the diversity of threats, complicatedness of modelling, and data and 

simulation requirements to perform the relevant studies. The impacts of extreme weather – specifically 

wind – are considered. Factors such as the distribution of outage probability on lines and the potential 

correlation with wind power generation during storms are investigated; so too is sensitivity of security 

assessments involving extreme wind to the relationships used between failures and the natural hazard 

being studied, specifically wind speed. A large scale simulation ensemble is developed and 

demonstrated to investigate what are deemed the most significant features of power system 

simulation during extreme weather events. 

The challenges associated with modelling high impact low probability (HILP) events are studied and 

demonstrate that the results of security assessments are significantly affected by the granularity of 

incident weather data being used and the corrections or interpolation being applied to the source data.  

A generalizable simulation framework is formulated and deployed to investigate the significance of 

the relationship between incident natural hazards, in this case wind, and its corresponding impact on 

system resilience. Based on this, a large-scale simulation model is developed and demonstrated to take 

consideration of a wide variety of factors which can affect power systems during extreme weather 

events including, but not limited to, under frequency load shedding, line overloads, and high wind 

speed shutdown and its impact on wind generation.  

A methodology for quantifying and visualising distributed overhead line failure risk is also 

demonstrated in tandem with straightforward methods for making wind power projections over 

transmission systems for security studies. The potential correlation between overhead line risk and 

wind power generation risk is illustrated visually on representations of GB power networks based on 

real world data. 
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Chapter 1 Introduction 

1.1 Motivations 

1.1.1 Climate change means a more extreme, more variable planet 
When discussing the impact of weather on power systems, it is important to be clear about how 

weather actually impacts power systems. For the sake of this dissertation, the ‘network’ should be 

taken to refer to the lines, cables, and associated infrastructure which physically facilitates power 

transfer between nodes. The ‘system’ in this thesis pertains to the physical infrastructure involved with 

the generation, transmission, and consumption of electrical power, inclusive of physical assets such as 

generation facilities, loads, protection, control, and ancillary services such as demand response or 

reactive power compensation.  

For context, the definition of the “system” used by the Energy Research Partnership (ERP) in [1] refers 

to “the assets, businesses, services and supply chain that facilitate the transport of electricity from the 

point of generation to the point of consumption; and the political, societal, economic and technological 

environment in which they operate.”  

The definition used here differs due to the slightly different focus on this thesis. The concern here is 

primarily on the electromechanical power system itself and its operability in the context of adverse 

operating conditions, rather than a socioeconomic analysis of the drivers which may operate 

externally from the power system. While people, the economy, and wider society do have material 

impacts on the power system, that is considered outwith the scope of the subject matter. 

Climate change is a multi-faceted problem which will impact society in innumerable ways. The 

robustness or scientific veracity of the theory behind anthropogenic climate change (AGM) is not 

within the scope of this project and the assumption is that AGM is accepted knowledge, in accordance 

with modern scientific consensus on the issue [2].  

What this work is particularly concerned with is the actual effects extreme weather will have on power 

systems; how we model those impacts, and what potential avenues we have to mitigate those 

impacts. Extreme weather is treated as a vector through which climate change may manifest- the 

impacts of climate change are many and complex, and shall be discussed in finer detail in due course. 

Climate change can be considered as impacting both the frequency and intensity of high impact low 

probability events (HILPs) [3], and the associated ability of power system operators to deliver power 

during both everyday operation and during force majeure weather events. Storm events such as Storm 

Desmond [4], and high wind events such as described as in [5], mean an understanding of the 

relationship between storms and power system risk during intense storm periods is needed so they 

can be adequately prepared for.  

Similarly, extreme and prolonged heatwaves or cold snaps also present complementary challenges to 

power system planners and operators. Whilst the planet may warm, meaning an increase in average 

temperatures, changes in the jet stream and associated phenomena may still mean temperate 

countries such as the UK are subject to extreme cold events such as “the Beast from the East”, a 

sustained period of cold weather which affected Europe in 2018 following a summer of extended and 

record-breaking heatwaves [6].  

Planners have to both account for an increase in cooling demand in large demand centres and cities 

during the summer while still ensuring the power system has adequate margin for the winter peak or 

protracted cold spells. This will have a significant impact on how power systems are operated and 

designed in the future and approaches for handling these challenges will be heavily dependent on very 
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uncertain projections of future climatological scenarios and future power system conditions. This 

diversity of problems can, of course, not all be addressed within the scope of a single research project, 

but individual aspects of these challenges can and must be identified and addressed. 

There is significant uncertainty surrounding the interactions between weather, climate, and the power 

system. Further, there is uncertainty as to what to then do in order to mitigate the impacts of these 

interactions, both in terms of exogenous and endogenous aspects in the network.  

Weather conditions introduce aleatory uncertainty to any modelling performed on resilience in the 

context of climate, whereas the abstractions and assumptions made in the simulation of what then 

happens are from where the epistemic uncertainty emerges. 

How often things are going to be broken by storms, or what generation will be available to planners 

and operators, will change. The ability of the energy system to supply adequate and reliable electricity, 

by force of regulation, market demands, and political imperative, cannot be further jeopardized by 

any move to address climate change. Therefore, the capacity of the system to resist, survive, and 

recover from such outages and impacts must reasonably be expected to, at least, not degrade.  

No single solution will be perfect to address all of the challenges faced by the power system, and 

depending on what level of abstraction or mocheap delling methods are used the optimal portfolio of 

investments may vary significantly across studies, as will the optimal operational strategies 

considered. This then suggests a diversity of responses and minimisation of up-front investment is 

desirable, but it is difficult to know without being able to test the benefits these investments may have 

in actual “resilience” scenarios.  

A significant challenge of dealing with the concept of resilience lies in the significant uncertainty and 

low probabilities being considered for more extreme events, or the difficulties involved with 

quantifying the probabilities involved. Given climate change’s impacts, then, may be considered 

relatively indirect in terms of altering the underlying conditions which create HILPs, the focus should 

be on the analysis of HILPs and how these may be altered in time. How to then demarcate what is 

“reliability”, “resilience”, LILP, and HILP, then intersect with the challenge of how to mitigate these 

HILPs when they do occur. Any alteration to the system to deal with resilience could, naturally, also 

provide operational benefits to reliability and improve system operability more generally.  

Climate change fundamentally, then, alters the cost-benefit analysis of what measures we choose in 

mitigating HILPs, and so methods are needed to analyse these HILPs at least to understand the 

potential contribution of such HILPs to future security challenges. 

1.1.2 Understanding the importance of the data used in system security evaluations 
Investigating the interactions between weather and power systems requires significant amounts of 

data and modelling. That is, weather has a wide variety of impacts on power systems that all need to 

be quantified and considered- or, at least, justifications need to be made as to why the scope of a 

simulation problem is defined in a certain manner. Any modelling that is performed will be sensitive 

to both the precision and accuracy of the data, which will in turn impact the results of such studies. 

Simulation boundaries need to be clearly defined and understood but, equally, as many consequential 

elements need to be incorporated in simulations as possible to fully consider the factors at play. While 

some surface-level investigations have been performed with statistical analysis and regression using 

climate projections to evaluate potential failure rates w.r.t different weather conditions, these did not 

consider the impacts of the relevant outage effects [7] – though it does serve as a useful means of 

illustrating the uncertainties involved in such projections.  
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Data quality is also important for ensuring results are applicable in the real world and represent 

plausible scenarios, so any research in this field has to be done with the validity and veracity of the 

assumptions behind the data used in mind. Improvements to techniques involving the use of weather 

data are clearly an area worth investigation, at least in terms of understanding the potential 

uncertainties and errors which may emerge. 

The sensitivity of any findings from studies based on a wide variety of data need to be understood to 

appreciate from where error or uncertainty can emerge. Therefore this offers a compelling reason for 

further research in the area to understand this. 

1.1.3 Understanding potential impact of decarbonisation on the power system security  
In light of reports from organisations such as the Intergovernmental Panel on Climate Change (IPCC) 

[8] and increasingly strict legislation and decarbonisation targets, the power system has been, and will 

continue to be, increasingly aggressively decarbonised. This is likely to mean a loss of synchronous 

machinery on which the power system relies to maintain stability, in tandem with an increasing 

proliferation of power-electronic connected devices, changing system demand profiles, and power 

generation increasingly reliant on weather conditions- particularly wind and solar. This shall be 

explored in more detail in the literature review. 

Coal power in particular in the mainland UK network (henceforth referred to as the Great Britain (GB) 

network/system) has shown a precipitous drop in utilisation [9] in recent years. Aggressive 

decarbonisation on the power system should be considered as much of an impact as climate change 

itself insofar as the effects that manifest on the power system have a direct impact on planning and 

operational conditions, as well as future energy demand scenarios, generation portfolios, and system 

security. Factors such as heat electrification and electric vehicle uptake also have significant potential 

to disrupt traditional approaches to planning and operating the power system.  

Increased penetration of renewables creates increased interdependencies between system 

operational risk, system adequacy, reliability, and resilience that need to be understood to ensure 

continued system performance to expected standards. Methods, then, for quantifying the impact of 

weather on generation and system risk are therefore necessary for robust security assessments 

considerate of these factors. 

1.1.4 Understanding the difference between reliability and resilience 
Reliability and resilience are both concepts which are fundamentally grounded in an understanding of 

risk, they just deal with different aspects of probability and impact. 

Risk can be represented mathematically, simply, as: 

 𝑟𝑡 = ∑ 𝑝𝑒 × 𝑖𝑒

𝑒=1…𝑒

 (1.1) 

 

Where rt is some metric representing the total system risk across all states, pe is the probability of a 

given event e, and ie is the impact of the given event. This may be, for example, a dollar value, or a 

performance metric such as expected energy not served (EENS). A wide range of metrics are used to 

quantify the impact of adverse events on power systems, which shall be discussed in Chapter 2. The 

challenge with modelling risk associated with power system is that, while there are well-established 

models for understanding system impact pertaining to e.g. fault events, generator outages, overloads, 
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etc., understanding of the probabilities associated with weather-driven faults can be incomplete due 

to the sparsity of data and uncertainty associated with climate projections.  

Reliability as understood in this thesis typically, in simplistic terms, can pertain to low impact high 

probability (LIHP) or low impact low probability (LILP) events (but is not limited to them), or events 

the system is expected to handle in day-to-day operation. Resilience, alternatively, but not exclusively, 

pertains to HILP events which are much more difficult to analyse. Classifying exactly when this goes 

from being a question of reliability to one of resilience, then, becomes a particular concern when 

performing security analyses and investment decisions. Therefore to improve any system’s resilience, 

we have to actually understand what its “resilience” actually is. Both involve challenges or adverse 

operating conditions associated with how electricity is delivered from provider to customer, be that 

due to an everyday, mundane, and predictable event, or a more uncommon, difficult to predict, or 

particularly hazardous eventuality or emergent risk. 

With these assumptions in mind, there must therefore be some point between HILP and LILP where a 

line can be drawn distinguishing reliability from resilience – and there is work to be done determining 

exactly where that line is, and why it is there. 

1.1.5 Consequences of failures to prepare for high impact events 
Resilience in a power systems context is of particular interest because of the magnitude of 

interdependencies and systems which rely on the system’s capability to deliver electricity in an 

exactly-as-it-is-needed manner. The implications of power system failure and the need for grid 

resilience is addressed in great detail in [10], and some of the main facets of resilience and reliability 

will be discussed in Chapter 2, but the need for resilience will specifically be discussed here. 

Supply and demand must always be in equilibrium to ensure system stability, and this is where the 

concepts of reliability and resilience emerge. Basic economic function requires electricity to power 

tills, or to keep lights and communication equipment on in offices, and for the banking network to 

continue functioning. Ecommerce and banking transactions would be impossible without 

telecommunications and the ability of devices to access the internet, which itself requires electricity.  

Water and gas pumps require electricity to operate, and Line Commutated Converter (LCC) technology 

power converters require commutating via external grids before they can power the grid – creating 

the situation where, in order to get more power onto the network, there already needs to be power 

on the network in the first place. Similarly, nuclear generation is unsuitable for black start generation 

because it also relies on external supplies to support it.  

Generation such as natural gas (if it should happen to have on-site reserves), coal, and hydroelectric 

(be it via pumped storage or run-of-river) is necessary to support restoration of the grid from a total 

loss, or “black start”, but as the fossil-fuel based generation is gradually phased out from the grid, this 

makes maintaining system operation and avoiding such “black start” situations all the more critical to 

avoid being in the position of requiring black start generation in the first instance- though of course 

planning to avoid black start situations is always of paramount importance 

Whilst GB has not yet had to endure such an event on a scale beyond localised, regional outages, 

nonetheless it has to be prepared for such an eventuality, regardless of how exactly such a system-

wide blackout occurs. In the UK, storms are one such source of potential black-start events, capable 

of major socioeconomic disruption- such as in the wake of Storm Desmond, which at the time was 

estimated to have cost in the order of £500m [11]. In the USA, the 2003 New York blackout was 

reported in 2008 to have cost almost $6bn [12]. This was attributed to a combination of human failures 

and equipment failures following a series of lines faulting due to vegetation-related trips. This 
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cascaded into an event which disconnected 50m people. Though not comparable in scale of 

socioeconomic impacts, large-scale outages have occurred in both the UK [13] and Australia [14] in 

recent years. In both cases there was high wind penetration in the network and a cascading series of 

outages – individually of moderate probability but cumulatively highly unlikely – led to a series of trips 

of generation and eventually to large scale loss of load, and a localised total blackout in the South 

Australian case and frequency-related disconnection of demands – including public electric trains – in 

London. 

In the case of the US outage, much of the Northeast of the USA and even Canada were affected and it 

took some three months of investigations to determine the cause. It should be noted that the 

referenced article makes mention of the need for a “smart grid” to prevent such incidents occurring 

again. With an increased penetration of renewables leaving the grid increasingly vulnerable, and the 

frequency and intensity of HILP weather events changing globally, this need is only further emphasised 

for islanded, relatively weak networks such as GB. “Weak” in this context refers to parameters such 

as system inertia, which has gradually been declining in GB for many years. 

Given the need for grid “smartness” to enhance resilience then was being discussed as far back as 

2008, and given the emergent threat from climate change and the variety of challenges facing the 

power sector it remains an important area of study. 

1.1.6 Tackling issues of sustainability and resilience in the power system for remote 

communities 
Weakly connected systems in networks such as rural Scotland are particularly susceptible to high wind 

events, leading to disconnection of highland and island communities which already may have limited 

access to electricity. Improving the resilience of such networks could materially improve living 

standards of people living in proximity to such networks, particularly in areas such as the West Coast 

of Scotland.  

The companies which operate these networks, SSE as would be the case in Northern Scotland, have 

significant experience in managing disparate, weak networks but the economies of scale may not exist 

for non-load-related reinforcement on networks and so alternative means of improving system 

resilience are interest to such companies, as is quantifying the risk associated with natural hazards 

such as wind.  

Co-operating with industrial partners such as SSE will be essential in understanding the threat extreme 

weather poses to different kinds of systems and defining the broad scope of the issues, as well as to 

ensure maximum impact of any research completed.  Throughout this project, co-operation was 

sought with such partners to try and ground research in realistic presumptions and to try and get 

useful outputs. 

1.2 Scope and research questions 
The primary concern of this thesis is how to model high impact weather events on the power system, 

with clear frameworks and relationships between simulations and data pertaining to relevant natural 

hazards. This is to quantify the potential impacts which will manifest as a result of extreme weather, 

improving on existing methods by using more detailed simulations and more comprehensive 

modelling of both failure-weather relationships and fault-consequence relationships than are typically 

presently used.  

That then suggests various primary areas of concern, particularly related to how to model the 

interactions between weather and the power system, how to quantify the impact, and what can then 

be done to improve these metrics. In order to quantify the effect of extreme weather on the power 
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system, there needs to be robust modelling of the relationship between extreme weather and system 

risk, but this is inherently dependent on the quality of data used and what information one is trying 

to extract from the simulation.  

To mitigate these risks, one needs to have a robust model of what actually happens during and after 

an event to see the impact of such mitigation strategies, and this is dependent on the scale and 

boundaries of the power system simulation. The decisions made as a result of such simulations may 

therefore be inherently dependent on the level of abstraction used in system simulations, and to what 

extent needs to be understood and investigated. 

If it is understood that climate change manifests as a change in frequency and intensity of HILP events, 

this then ties the outcome of our modelling to the frequency and probability of the events analysed 

in such simulations. A solution that is cost-effective for an event that has an occurrence probability of 

once in ten years may not be so for events which are only once in fifty years, for example, and so 

establishing at what level of probability a solution becomes cost-effective or having methods which 

enable such investigations are clearly desirable. These aspects can then be summarised in the 

following research questions which the research within this thesis attempts to address in the manners 

described. 

A. Data challenges associated with modelling weather-related impacts on power systems 

1. How should modelling of resilience and reliability be approached in the context of extreme weather? 

To quantify and understand the impact of weather and climate on the power system, the interactions 

between different facets of modelling and data types needs to be clearly defined and understood in 

order to evaluate the sensitivities and potential limitations of any modelling done, and to clearly 

illustrate, in such cases, where improvements can be made. This should be done by clear definition of 

modelling frameworks and algorithms used in the simulation of such scenarios. It should be 

understood that in “extreme” cases, the compounding probabilities mean that averaged results such 

as EENS will obfuscate the impact of the most extreme events at the tail end, and so care should be 

taken when discussing how these results change both in terms of event severity and frequency. 

2. How sensitive are models of weather impacts on the power system to the quality of data used? 

Different aspects of input data will have different impacts on the results of system simulations, and 

some will clearly be more significant than others. In order to optimise modelling and simulation of 

HILP events, one has to understand what the most important factors involved in the modelling actually 

are. Changing the relationship between e.g. the wind speed experienced by a line and its failure rate 

can have impacts in the scale of orders of magnitude on both the probability of failure of lines in the 

sampling, and in terms of risk metrics such as EENS, so results taken from reliability and resilience 

studies are clearly strongly dependent on the precision and reliability of the data used to drive them. 

Further, the granularity of the data also matters. More coarse datasets will mean more of the network 

exposed to the most extreme values of the parameters associated with a natural hazard, inherently 

biasing the results towards more pessimistic outcomes. 

3. Are the models we use to represent outage risk adequate, and how could they be improved? 

Any power system simulation will require a certain level of abstraction to make the problem tractable. 

There are standard simplifications that are commonly made, such as the linearised DC approximation 

used in optimal power flows, but there are also other simplifications and abstractions made that may 

significantly affect findings, some of which may be suboptimal or unrepresentative of real-world 

impacts. Current homogenous representations of overhead line risk fail to take into account 

geographical and meteorological diversity network branches are subject to, but the methods 

proposed offer a robust platform for improving this by spatially disaggregating overhead lines such 
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that risk can be quantified spatially, which is more appropriate in the context of understanding risk 

associated with spatiotemporally diverse phenomena such as weather.  

Current models, then, can be understood to represent reasonable proxies based on the 

methodologies available presently, but improvements to weather data used in power system 

modelling mean that these methods can be improved to take consideration of the spatial 

disaggregation of overhead line risk and other vulnerable system assets when considering dependent, 

weather-induced faults.  

Fault events which can generally be considered agnostic of wind itself (e.g. non-wind generation) and 

as such any simulation which incorporates these in a wind-related simulation can likely use failure 

rates independent of external weather conditions. In the case studies performed, for example, 

substation faults themselves were not examined but these, in reality, could also be subject to faults 

due to extreme wind associated with e.g. vegetation, debris. 

B. Challenges associated with power system simulation during extreme weather events 

4. What level of detail or abstraction is necessary in simulations to understand the risk associated with a 

high impact weather event? 

This depends on various factors, and is largely constrained by factors such as the granularity of 

available data and the computational expense of the simulations being undertaken. A key factor is to 

understand how these different models interact, the associated data requirements, and the 

significance of the sensitivities of different datasets used. Even if a relationship between a natural 

hazard and failure rate for a particular asset is well understood, translating this to an 

electromechanical impact on a power system is still a nontrivial problem. That is, a fragility curve may 

provide a probability for a given fault on a given line which is representative on a population level, but 

there may be situations where further abstractions and assumptions need to be made. For instance, 

if wind causes a fault on a double-circuit, some assumption needs to be made about the relationship 

between a fault on a single line and how that translates to the risk of a fault on an adjacent line. A 

“line” is just a connecting conductor between two points, but a “branch” can be a cable, single, or dual 

circuit and if a fragility curve just represents the failure probability of a line, assumptions then need 

to be made about how line faults translate to branch faults. This is symptomatic of the many 

challenges associated with resilience analysis more generally. 

5. How do we represent the spatial impact of storms on a network-based power system model? 

Weather events are inherently varied and distributed, in that they affect wide regions of a system 

simultaneously via different mechanisms and with different magnitudes of impacts. Ideally, then, 

representation of adverse weather events and conditions should attempt to be representative of the 

events themselves as possible, or at least as far as available data resolution and granularity will allow.  

In reality, current practise does not always reflect this, particularly representations of overhead line 

failure risks due to extreme weather. The demonstrated methods in this thesis use the available 

weather data as the basis on which to disaggregate the representation of overhead lines such that the 

representation of risk on OHL is as precise as the weather data on which it is based. This acts as a 

reasonable approximation and offers a clear mechanism for improving such granularity – simply 

increasing the resolution of the incident natural hazard data via interpolation. The risk associated with 

overhead lines is represented by converting a point-to-point branch representation into a 2-

dimensional array to better reflect the diversity of weather conditions which may be experienced by 

OHL during storm conditions, but even this is incomplete for reasons which shall be addressed in 

Chapter 4. 
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C. Quantifying and understanding the differences between reliability and resilience 

6. How can resilience be quantified and classified? 

Metrics such as VaR and cVaR are used in Chapter 5 to quantify resilience, which are becoming 

increasingly popular metrics. A new metric is also introduced to demarcate reliability from resilience 

in which a threshold ENS is introduced above which the proportion of states where the fault event is 

N-2 or worse are counted. An arbitrary value is chosen, in this case 10MWhr, and the percentage of 

N-2+ events which exceed this threshold are given as a percentage, effectively to give an idea of the 

proportion of sampled events which exceed an “acceptable” severity and to compare this across 

scenarios. An acceptable proportion could then be asserted to classify if the system is acceptably 

“resilient” for a given sample scenario sampled across a set of broadly consistent events. 

7. Where do we draw the line distinguishing reliability and resilience? 

In this work, a hypothetical threshold is inferred whereby anything greater than an N-1 falls under the 

mantle of “resilience”. Resilience is still a term, in a power systems context, which has yet to be fully 

classified and defined and work is ongoing in this area, but the definition used is useful for the analysis 

and research performed within the scope of this thesis. Resilience can refer to factors such as 

operational or human resilience, or to infrastructural resilience. These, however, can be difficult 

phenomena to include in power system simulations directly. 

8. What are the main drivers of power system resilience? 

In the modelling performed, various factors stand out as being significant influences on the results of 

security studies. The granularity of data used impacts how much of the system is subject to the most 

severe weather conditions, in turn affecting the probability of concentrated faults in the areas subject 

to the most extreme conditions. The operation of the system, particularly what generation is used and 

the dispatch of frequency response, also significantly impact system resilience. Different types of 

events will affect the power system differently and will be affected by different factors: that is, if faults 

are primarily network-related (i.e. line outages), frequency response may not help improve system 

resilience if it is in the wrong place, and cannot help if load centres are isolated by system faults. 

However, if fault events are generally associated with large losses of infeed, frequency response 

becomes far more significant, but less dependent on its location and more dependent on the type of 

frequency response used- unless the loss of infeed is associated with a generator which was scheduled 

to supply frequency response itself.  

Therefore, resilience in the context understood here is linked heavily to the types of events affecting 

the system, the preventative and corrective measures in place, and the fault-weather modelling used 

to generate the fault events being analysed. Other factors such as the constraints and abstractions 

applied to the model also affect the resilience – in terms of performance metrics – of the power 

system. An immediate example studied within the research is the influence of unit commitment 

constraints applied to the system being examined within a larger scale simulation. 

D. Improving resilience and reliability 

9. Can resilience be improved simply by operating the network differently? 

As demonstrated in the various case studies performed, for the states observed and the scenarios 

generated there is a clear linkage between the different dispatch scenario and the frequency and 

intensity of large-loss events. That is, the performance of the system in adverse conditions can be 

related to the dispatch scenarios used during those events as well as the resources (in these cases, 

frequency/demand response) available to the system to mitigate the impacts of the outages and 

perturbations to that system. Therefore it is reasonable to infer that system performance can be 

improved by changing where, how much, and what kind of frequency response is utilised during large-
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scale outage events dependent on the nature of those events which are reasonable expected to occur. 

Equally, however, suboptimal scheduling of frequency response can not only not improve resilience, 

but can actively reduce it. 

10. Can we expect network resilience to improve or degrade with added diversity and penetration of 

renewables? 

Without knowing how wider system operability will change in the face of increasing renewables, it is 

difficult to determine. Decreasing inertia certainly makes systems such as GB more susceptible to large 

frequency deviations and frequency-related cascade events, but the system operator has largely 

managed to avoid major disruption to the system associated with this. Renewable energy 

development and integration in the system is happening in tandem with more widespread changes 

such as digitisation and proliferation of smart devices and forms only a part of the wide array of 

challenges facing the power system. The answer, then, depends on the manner in which renewable 

integration is pursued.  

Using  inverters with suboptimal or overly conservative protection settings, such as the former 

Engineering Recommendation G59 125mHz RoCoF setting. Distributed generation using such 

protection schemes may not respond optimally to system perturbations and may disconnect during 

fault events, when the system is most in need of support, carrying a risk that such generation in turn 

feeds into cascading events and system disruption. This in itself contributed to the large-scale system 

disruption in August 2019 in the UK, but such devices could also help support system security if 

deployed suitably.  

E. Modelling the effects of climate change on the power system 

11. How might climate change impact on our modelling and quantification of risk associated with these 

events? 

 There is always a cost-benefit analysis involved with distinguishing between threats that must be 

prepared for versus those which can be regarded either as out of scope – either due to being suitably 

improbable, or so egregiously harmful little can be done to stop them. If money is invested in 

preventing a problem that never manifests, this is associated with wasted money, stranded assets, 

and loss of reputation. Conversely, failure to adequately prepare for adverse operating conditions can 

lead to situations similar to the South Australian Blackout in 2016, where for a lack of knowledge about 

how groups of wind-turbines would respond and ride-through faults during a high-wind condition led 

to cascading outages and a black-start condition. Methods for more clearly and justifiably categorising 

threats to the system would better prepare operators and give better accountability and trust in 

services. 

Climate change introduces significant uncertainty into projections across multiple time horizons 

regarding the impact of weather and other natural hazards on the power system, often in nonlinear 

manners. As can be observed in the wildfires seen in California and Australia, the potential for climatic 

damage to power system infrastructure can be outwith the control of the power system altogether 

even if the actions of individual actors may be associated with causing individual e.g. wildfire events.  

Floods, national-scale wildfires, droughts, etc. will all have profound impacts on power systems in 

ways which are difficult to quantify and it is difficult to conceive of a way to adequately protect a 

power system against the threats posed by such events in a cost-effective manner, or whether such 

damage should just be seen as inevitable with planners just learning to live with a “new normal”.  That 

is not to say it should be acceptable to disregard reliability and resilience standards simply because 

the operational conditions become more difficult, however. 
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Legislators, businesses, and other stakeholders are going to have to decide among themselves what 

reasonable balance to strike to balance the energy trilemma is, such as it is. This will affect the focus 

of analysis – whether it lies with longer term changes in e.g. water availability or on shocks like the 

Australian wildfires or Beast from the East. Both short and long term resilience need to be addressed, 

and addressing one will, naturally, in some way potentially benefit wider system resilience, but the 

immediacy of events such as wildfires and the political fallout thereafter will almost certainly weight 

heavily - addressing the most immediate, distressing threats will almost certainly take precedent. How 

this could impact resilience studies remains open to study. 

1.3 Primary areas of concern 
The focus of the work performed concerns subjects relevant to the impact of wind specifically on the 

GB network and understanding the ways in which the impact of extreme wind manifests on the power 

system. This is due to GB’s significant penetration of wind power at multiple levels of the network, 

and the significant variability and complexity of weather-related modelling in this area.  

The UK, being a temperate nation, tends not to experience the most extreme manifestations of 

climate change – widespread droughts, hurricanes, monsoons, etc. – but will still be subject to more 

gradual aspects of climate change such as changing weather patterns and water availability. The UK, 

having a significant wind resource, is acutely vulnerable to the effects of changes in wind resource 

across the northern hemisphere, and so quantifying these relationships is of paramount importance. 

The methods described in this thesis are intended to be tractable and generic enough to be universally 

applicable with lessons learned from the specific GB context. The unique nature of GB’s system – an 

island nation with limited interconnection undergoing rapid decarbonisation with significant 

imbalance between producing and consuming regions – makes it a particularly interesting case study 

for different analysis methods and technologies. 

There is a significant amount of work in this area, as will be described in Chapter 2, but this tends to 

be in different areas of analysis (e.g. frequency response requirements given varying wind, modelling 

relationships between wind parameters and failure rates) which make assumptions and abstractions 

about other areas that would benefit from further detail and investigation, and a joining together of 

these different areas of research in a more comprehensive fashion. 

The availability and completeness of wind data, and the solid foundation of work on which to build, 

means there is a good balance of challenging work that still needs to be done as regards understanding 

the impact of extreme wind on the UK grids but with a solid direction laid out by such research as to 

where future work actually needs done. 

It is for these reasons the bulk of research done has been focussed on understanding both how to link 

weather models to power system representations, and how to then model what happens when those 

models interact.  

1.4 Novelty of work and thesis structure 
Various different aspects of power system analysis are considered in this thesis, which independently 

are understood and developed to varying degrees. Among one of the most significant challenges 

involved with addressing climate change is how to combine disparate and diverse styles of analysis 

and expertise in a productive manner.  

Electrical engineers are typically not economists or policymakers, nor are they climate scientists. To 

address climate change and its effects on the power system some level of understanding is needed in 

all of these different areas. However, answers should also not be obfuscated by unnecessary 
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complication and should remain as straightforward as possible whilst not compromising on the value 

of information provided by such research. 

In order to model the impact of weather on the power system a wide variety of factors need to be 

considered; the relationship between a given weather parameter and its corresponding effect on a 

component; the effect on the system if that asset drops out of service; the necessary granularity of 

the simulation; whether or not the weather data being used representative of the conditions actually 

present or incident upon a given asset. 

To investigate this properly, then, it is necessary to investigate the potential factors which may affect 

representations of, for instance, the relationship between a given wind speed in the data being used 

and what a given asset is actually subject to, considering environmental effects. If then modelling this 

outage, an appropriately detailed simulation model is needed to realise the consequences of the 

outage properly. The work put forward in this thesis attempts to begin to define these interactions 

and quantify their significance in the context of power systems. 

The work presented carries contributions to various different domains of power system analysis in the 

context of weather and climate, which are discussed in Chapters 3, 4, and 5 with Case Studies 

demonstrating the applicability of these approaches in Chapter 5.  

Chapter 3 establishes and discusses a method of approaching weather-related fault modelling on a 

power system in the context of uncertainty about the actual relationships between a given weather 

parameter – in this case wind – and the impact on the system – specifically failure rates on OHL. This 

attempts to set up a framework for simply analysing dependent fault scenarios, as laid out in [15]. It 

is from the themes established in this work that future directions of work were determined. 

In this work it became evident that any analysis performed on the system associated with weather 

impacts is dependent on, as previously mentioned, the links between weather and failure probability 

– and that in turn has a major impact on the reliability metrics we use to measure such risk. Therefore, 

Chapter 4 discusses and demonstrates novel techniques for quantifying and visualising failure 

probability on overhead lines as well as projections about wind power output, correcting for the 

varying weather conditions experienced across overhead lines, which has been published and is 

presented in [16]. 

Once we have these more robust and data-driven methods for quantifying failure probability, it is then 

important to model and understand the consequences these outages actually have on the system 

once they have occurred and what interventions can then be made to mitigate the consequences of 

them, and what ability the network inherently has for coping with such outages. This is investigated 

in Chapter 5 which demonstrates the importance of taking consideration of factors such as frequency 

response in simulation due to the potential contribution of distributed energy resources to contribute 

to power system resilience. The methodologies demonstrated are then used for various test cases. 

Chapter 6 summarises and concludes the thesis with the Appendix in 7. 
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Chapter 2  Review of relationships between climate, 

weather, resilience, reliability, and associated issues 
 

Abstract 

Climate and extreme weather are set to have a wide range of impacts on the power system across 

varied timescales with local, regional, and international effects on power systems. Issues like water 

scarcity, thermal shocks, storms and hurricanes are identified as having potentially significant impacts. 

A literature review is performed to understand what threats the power system faces associated with 

natural hazards associated with weather and how these may impact power system reliability and 

resilience as well as investigating the material differences between resilience and reliability as concepts 

and why those differences matter.  

Extreme wind is chosen as the natural hazard of most significance to be taken forward in this thesis 

due to the significant body of work supporting future research paired with the correspondingly 

significant amount of research which is still needed to understand its impact on the power system. 

Reliability and resilience can generally be distinguished in terms of the understanding of risk associated 

with each of the terms, with reliability more driven by perennial, reasonably expected outage scenarios 

and events with resilience driven by the “long tail”. Qualitative and quantitative descriptions of 

reliability and resilience are provided. 
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2.1 Introduction 
Clearly, high impact low probability event simulation is a complicated domain, particularly when it 

comes to defining the scope of the problem. Quantifying risk necessitates a robust appreciation of 

both the probability of events and their impacts, both of which can be difficult to quantify.  

Establishing the necessary scope of the problem, in terms of areas where analysis is weaker and where 

gaps exist for further research means an examination of a wide array of natural hazards is necessary. 

That is not to say natural hazards are the only threats to power system security, as the Ukraine power 

system cyberattacks of 2015 illustrated hostile actors can be significant threats to power system 

operation as well [17]. A look at how the impacts and probabilities associated with modelling these 

natural hazards is therefore to be conducted.  

Individual natural hazards such as wind can manifest as a wide array of threats to a power system, so 

both the kinds of threats which can be present and the actual impacts these threats have on the power 

system need to be considered. To put it simply, one has to understand both how likely a power line is 

to fail during a storm, and the impact such an outage would have on the wider system. 

2.2 Quantifying impact of extreme weather on power systems 
Different aspects of the system and network interact with the natural environment in different ways 

which can prove to be either beneficial or detrimental. Weather can be a source of energy for 

renewable electricity generation- such as wind, solar, or wave - or more indirect benefits such as 

cooling of heavily loaded lines to allow greater load transfer during cold weather in winter or during 

less severe windy conditions. This can be realised via techniques such as dynamic line ratings (DLR), 

the benefits of which are explored in the context of managing uncertainty in networks [18].  

Different kinds of weather also present different threats to the system and networks. The threats and 

opportunities presented by different weather kinds will be described hence. Wider range studies into 

the impacts of weather and extreme events have been carried out by IMechE in [19], as well as in [7] 

and [10]. A comprehensive literature review into the impact of climate change in a renewables-heavy 

system has also been carried out by the Met Office amongst others led by L. Dawkins [6]. National 

Grid Electricity Transmission, even before NG’s reforms and segregation into National Grid TO and 

National Grid ESO, also produced  materials investigating its preparedness for climate-related threats 

such as drought and flooding [20]. This section discusses specific facets of power system interactions 

with the power system and how threats may manifest from these natural hazards. 

2.2.1 Lightning-related effects on the power system 

Thunderstorms and lightning are associated with convective available potential energy (CAPE) in the 

upper atmosphere and manifests as a burst of extremely high voltage flow from Earth to ground, and 

this can cause a variety of problems to the power system. Standards are well established to quantify 

the risk associated with lightning strikes on the power system [21]. As an inherently random act, 

planning for lightning-related investment carries significant uncertainty, as does quantifying the risk 

associated with such storms, which in [22] is done with assistance from a method known as stratified 

sampling.  

Lightning, as well as causing flashovers and overloads on lines – leading to transient outages – can also 

cause permanent damage associated with overloading key assets, or lead to cascading outages if 

multiple key assets are struck in a short period of time.  

Lightning strikes during dry periods of weather can also lead to wildfires, which can cause widespread 

damage to systems for a long duration of time which is difficult to contain or control. Strikes to 

vegetation can also cause permanent or transient faults due to falling branches or trees. For these 
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reasons and more, vegetation management is an area necessitating study and research [23] to prevent 

damage caused by e.g. overgrowth leading to phase-ground faults.  

As climate change is expected to cause an increase of heat – and hence energy – in the atmosphere, 

this is anticipated to lead to an increase in the amount of lightning-related weather events globally, 

which one could anticipate as leading to, in turn, an increase in lightning related faults and outages on 

the power system [24].  

The variability of lightning across the European continent and its frequency is also associated with the 

North Atlantic Oscillation (NAO) [25], a climatological phenomenon which drives high and low 

pressure events across the North Atlantic and shapes weather events across Northern Europe, with 

significant impacts on renewable energy resources. 

In [7] it is projected that most climate change scenarios at the time of writing would see a significant 

increase in the frequency of lightning-related faults on the power system in GB. Again, the projections 

vary significantly by model, and this presents significant challenges to planners with lower end 

estimates suggesting increases in the range of 5% with more extreme projections suggesting an over 

30% increase in lightning-related faults by the 2080s.  

With the rate of change of the operation of power networks and the complete overhaul experienced 

even in the last decade, attempting to model future fault rates on the system with the combined 

uncertainty of both climate projections and the inherent assumptions necessary concerning power 

system operation render such predictions of fault rates essentially meaningless in terms of what it 

means for present day operation of the system, particularly in terms of quantitative assessments of 

the precise estimators of such values. Nonetheless, the relative changes and errors across fault vectors 

and weather types nonetheless are useful for being indicative of relative risk. 

2.2.2 Wind-related impacts on the power system 

Wind’s interaction with the power system, particularly at extreme values, presents a wide range of 

challenges. Wind can cause mechanical failure of components, shearing of lines from connectors and 

insulators, transient faults associated with wind-induced oscillations and clashing of conductors as 

lines collide with each other, or “galloping” which relates to line oscillations exacerbated by line icing 

[26].As with lightning, vegetation can cause permanent or transient faults due to falling branches and 

trees, though most significantly at distribution level [27]. Wind is also typically associated with other 

extreme weather events such as flooding, lightning, rain, and snow, and so explicitly analysing the 

impact of wind on the system can be particularly challenging as it will not always be singularly acting 

on the power system. Classifying the cause of faults is in of itself a non-trivial data challenge, 

investigated in the context of the GB transmission system in [28]. 

At extreme values of wind speed, wind power must be curtailed to prevent mechanical failure or 

damage to turbines and windfarms. This is known as High Wind Speed Shutdown (HWSS). This can 

affect windfarms over a wide area of a region simultaneously, but will affect individual turbines and 

windfarms to differing extents due to localised weather conditions [29]. Therefore, considerations 

must be made for these geographic effects and sensitivities of windfarms to such phenomena. 

Low wind will also result in reduced output from windfarms, which can coincide with heatwave 

conditions and times when there may be acute cooling demand, introducing new interdependencies 

and sensitivities to the network. This will again impact wide areas of the network simultaneously and 

potentially for extended periods of time. High wind can also coincide with sunny conditions, however, 

causing the system to become saturated with renewable energy making system management more 

complicated [6]. 
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Climate change, while being linked to changing intensities and frequencies of HILP events, may also 

be associated in a reduction in the output of wind power generation in the northern hemisphere [30] 

as wind speeds fall due to climate change. Further, climatological phenomena such as El Nino, La Nina, 

and the NAO also impact future wind scenarios and cost projections – by as much as 10% of output 

year on year in GB [31]. This illustrates very clearly how important it is to understand, then, the 

relationship between climate, weather, and the power system. Investment decisions on wind power 

plant will potentially be significantly impacted not just by local conditions but global and trans-national 

climate events, affecting rates of return on a macroeconomic scale, but also the penetration and 

distribution of wind generation on the power system more specifically, with associated 

electromechanical consequences both locally and at a macro-system level. That is, increased wind 

penetration is associated with phenomena such as decreasing system strength and inertia, and loss of 

frequency response capability on networks. This shall be discussed further in Chapter 4. Other studies 

however suggest a probable increase in wind energy resource output [32]. This emphasises the need 

for further research into the significance of such uncertainty. It is reasonable to conclude that the net 

infeed of wind power across the world is going to increase significantly, but that this generation and 

its efficiency may be sensitive to climatic events and climate change more generally and this needs to 

be better understood. 

Wind’s variability introduces challenges to the network primarily due to its intermittency (that is, 

periods of high wind can be interrupted by periods of low or zero wind)). That is, wind power output 

can vary significantly over different time horizons even while still providing power. This intermittency 

can be compounded by forecasting challenges. 

In [33] various concepts are described which are problematic consequences of wind penetration on 

networks, and some have already been discussed, but one particularly problematic aspect of high 

penetrations of wind power on networks is associated with the issue of “ramping”. That is, as weather 

patterns move across areas with significant wind output, there can be large-scale variation in the 

output of wind farms on the grid, as was quantified in [33]. A wide array of the consequences of high 

wind penetrations are discussed in [6].   

“Ramping”, where there are sudden and significant changes in the output of connected wind 

generation, in particular is a major concern with potentially gigawatt variations in wind output across 

a system in very short time scales. The Thames Estuary region in particular can vary in output by as 

much as 80% in a single day, with system-wide variations of up to 40% in a single day also possible. In 

[6] it is reported that there could be hourly ramps of as much as 15GW by 2030, with significant 

regional variation on wind farms. This may not be particularly problematic over diurnal timescales – 

operators already have to be prepared for significant diurnal shifts in e.g. demand, but could become 

problematic over shorter timescales. This variability compounds already pre-existing challenges 

associated with balancing supply and demand, such as ensuring adequate holding of reserve and 

frequency response. 

Ramping can have both short-term and longer-term impacts – the pace of and magnitude of change 

in output can produce challenges for operators. Shorter-term fluctuations increase demand for 

frequency response and load-balancing generation, whereas longer-term fluctuations are a system 

adequacy challenge which manifest as unit-commitment challenges, with generators potentially 

having to switch on and off in short periods of time to respond to these fluctuations, incurring 

significant costs to operators in terms of start-up and shut-down costs, or additional costs to switch 

on or maintain generation which may not have been expecting to be powered on. 
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There can also be long periods of wind droughts and low wind capacity events, with [34] reporting 

that in as much as 10% of the time between 1970 and 2003 saw wind farms with zero output due to 

low wind speeds (defined as <4ms-1), which accounted for 99% of the time in which windfarms had 

zero output – the remaining 1% of such events being due to HWSS. It is also suggested that <0.1% of 

the UK experiences high-speed wind events (defined as >25ms-1) at any one time, meaning the risk 

can be considered distributed on a UK-wide scale and the impacts low-risk at any given time, and was 

only 4% of the data in the sampled time domain of the paper. This emphasises the benefits of having 

wind generation resource distributed around the UK, however. 

It should be noted that such distributions are liable to change non-negligibly in the future regardless 

of the exact nature of climate change and dependent on its magnitude. As suggested in [31] and [30], 

average wind speeds are subject to both climate variability – that is, phenomena such as the North 

Atlantic Oscillation (NAO) which vary year-on-year and drive weather patterns – and AGW, which 

changes the underlying climatological phenomena which shape weather and climatological events 

themselves. Wind patterns across the global north will change, and with them the distribution of wind 

events. If a reduced average wind speed across the global north materialises as more sustained wind 

droughts in wind-dependent nations such as the UK, this places yet more stress on the power system 

in having to adjust to the variability of this resource and to be able to securely supply power during 

extended wind droughts. Work needs to be done in this domain with larger sample sizes to consider 

more recent climate projections and scenarios, which is referred to in [6]. In [35], however, it is 

suggested that, as climate change regimes manifest as shifts in the scale of 50-100 years – much longer 

than a typical renewable energy development – current projections about wind speeds and wind 

output “will probably be valid for the coming decades”. 

There is some complementarity between wind and solar which can mitigate this – the NAO also 

interacts with solar irradiance [36], and, in very general terms, when it is sunny it tends not to be 

windy. Similarly, there is a “dipole” effect described in GB, where the north tends to be windier and 

less sunny than the south, which tends to be sunnier and less windy. These effects can complement 

each other and mitigate the correlated impact of weather impacts across regions. It is found that 

beyond distances of 600km [34], the correlation between windfarms’ output is weak and can be 

considered independent, which infers that supporting grid resilience relies not just on diversity of 

generation source but location of the generation itself. 

Another challenge with wind is in meeting the “residual demand” in the winter – that is, the net 

demand minus renewables contribution. The complementarity between wind and solar cannot be 

relied upon to mitigate the variability of each resource as the UK averages only 6 hours of sunlight in 

winter – and some parts of Scotland see significantly less even than that – and so the UK is more 

susceptible to the variability of the wind resource, even considering the benefits of diversity across 

the regional dipole. 

2.2.3 Flooding, water availability, and associated impacts on the power system 

Flooding can impact the power system via inundation of low lying assets, such as in [4], impacting both 

the power system itself and the ability for response teams to get to and restore system assets. Much 

like wind, flooding affects wide areas for extended periods of time. Like wind, the effects of flooding 

may be impacted by the elevation of system assets (which is to say, low lying, sea-level assets will 

likely be at far greater risk of flooding than those located in the Cairngorms) and more general 

geographic conditions. Flood risk is well understood and quantified throughout the EU via the Water 

Framework Directive and associated legislation, meaning the risk of flooding in various areas is 

quantified in terms of e.g. 1 in 100, 200 year risk, with Ofgem (the energy and markets regulator in 
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the UK) mandating at-risk assets in flood-prone areas have adequate levels of prevention. This has 

been done for some time, as can be evidenced in [37] with data going back at least to 2010.  

The impact of coastal and inland flooding was also investigated as part of the IMechE report into 

natural hazards facing the GB network [19] and in the McColl paper the percentage change in the 

probability of flood-causing rain events was investigated [7]. It can be said with confidence that there 

will be a significant increase in flood threats to the UK as rain patterns change and the North, in 

particular, becomes warmer and wetter. There is however significant uncertainty projected in the 

potential change in flooding in GB – projections ranging from ~25% to over 125% increase in flooding-

related rain events by 2080. This suggests significant incentive for flexible flood response solutions, 

rather than more expensive, fixed solutions which necessitate centralised investment. With such an 

enormous range in potential risk, being able to defer investment or to invest in solutions which can 

be used flexibly (e.g. mobile flood barriers, sandbags) may be preferable to those which incur 

significant CAPEX focussed on a few critical assets – but again this likely depends inherently on the 

climate projections being used.  

Water availability also presents its own issues for generators, planners, and operators. Water 

shortages can lead to enforced generator shutdowns and reduced utilisation of both hydroelectric and 

thermoelectric plant [38]. Water distribution globally is likely to become increasingly problematic with 

many areas becoming more arid, with others seeing more variable, extreme weather and precipitation 

patterns. Surface water availability in regions with sizeable pumped storage and hydro schemes will 

be affected, but will also depend on local geographic conditions. Similarly, run-of-river hydro schemes 

will likely be affected differently compared to surface pumped storage reservations.  

Given the capacity for hydroelectric power to provide renewable electricity while retaining properties 

associated with thermoelectric generation – specifically the provision of inertia and frequency 

response – with none of the associated drawbacks such as pollution or dangerous by-products one 

would generally associate with thermoelectric generation such as nuclear or natural gas, this could be 

problematic in a world trying to move away from such generation to clean energy supported by hydro 

for storage and inertia support. This is unrealistic in the context of the UK which has limited remaining 

hydroelectric capacity relative to its electricity demand, but may be achievable in other parts of the 

world. 

2.2.4 Wildfires 

Wildfires can have a wide range of causes and can have devastating socioeconomic and environmental 

impacts [39]. Wildfires can be caused by human negligence from articles such as glass bottles left on 

the ground, malicious actions, or intentionally started fires for e.g. barbecues which are not properly 

controlled. They can also be caused by lightning, or power equipment failure in at-risk areas. This is a 

contributory factor behind the decision of Californian power company Pacific Gas and Electric to 

intentionally disconnect customers in at-risk regions to reduce wildfire risk [40]. 

Some work has been performed to investigate the risk of wildfires to overhead lines and the spread 

of wildfires on the system in [41] and the effect localised wildfires can have on overhead line 

temperatures [42]. Wildfires not only can destroy overhead line branches by physically burning down 

structures and components, but can also have an indirect impact on the operation on the system. 

Since line ratings are typically determined by thermal limits – for safety reasons, to prevent sagging 

power-carrying conductors from coming dangerously close to the ground – it is important to control 

the flow of power to limit the risks posed by such sagging. Wildfires, even at significant distances, can 

impact local temperatures and affect the actual temperatures of lines, necessitating de-rating of lines 

even if not directly at risk from the fire itself.  
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With changing precipitation distributions globally, localised warming, and changing wind patterns, the 

precise risk posed by wildfires will vary regionally. This makes methods of quantifying and mitigating 

the risk associated with wildfires an important avenue of research not just because of the effects of 

wildfires on the power system, but the risks the power system can incur on the natural environment, 

itself providing a threat vector for the generation of wildfires. The Australian wildfire season of 

2019/2020 is a worrying example of the potential for devastating threat wildfires can pose and in a 

warming climate. With some regions of the world becoming increasingly dry and hot, this threat is 

only liable to increase and further research in this domain is looking increasingly important as it stands 

relatively lacking presently. 

2.2.5 Extreme cold, snow, and blizzard conditions 

Historically, energy systems such as GB can broadly be thought of as being designed around meeting 

the adequacy requirement of the peak winter demand level within a certain level of LOLP (loss of load 

probability)- though GB has moved away from such explicit targets towards more diverse incentive 

schemes such as the Capacity Market in recent times [43] In temperate countries like the UK, which 

can experience both heatwaves and extreme cold events, this presents systemic challenges with 

planners and operators having to adapt to both sustained hot, dry periods and wet, cold winter 

conditions, and even freezing snow and ice conditions in more exposed regions. In [27], snow, sleet, 

and blizzard (SSB) faults are classified as their own phenomenon.  

Snow, sleet, and blizzards can cause outages on transmission and distribution systems via a wide range 

of impacts. Accumulated snow on insulators can cause flashovers due to the accumulated moisture 

[44], whereas accumulation of snow and ice on lines can cause collapse due to mechanical failure, and 

accumulation of snow and ice can be difficult to detect while gradually causing degradation of 

insulators on OHL connections [45]. At higher altitudes, where areas may be prone to snow drifts, 

substations are at risk of being physically submerged in snow drifts and could be unreachable for 

extended periods of time due to snow. 

Cold weather is also associated with higher electricity and energy demand from heating across the 

energy system – which is to say, including the gas network – associated with space and water heating 

in homes and businesses...  

There is a correlation in GB between ambient temperature and demand, particularly in winter where 

electrified heating in particular introduces significant additional demand. According to [46] there is a 

significant linear relationship between electricity demand such that a 1C drop in temperature during 

winter corresponds to an approximately 1% increase in electrical demand. This is not unique to GB 

with demonstrable relationships between demand and temperature in industrialised nations 

worldwide, with an example shown in [47] with reference to the USA.  

With additional decarbonisation efforts this could become far more significant, as according to [48] 

energy demand from gas can be as much as triple that of power demand, suggesting an increasingly 

decarbonised network would be significantly more susceptible to cold temperature shocks at times 

when it is also susceptible to wide variations in renewable resources, particularly wind.  

It is noted in [6] that very little literature exists examining the interactions between demand and 

temperature in extended cold periods and how this may be affected by climate variation, suggesting 

a significant gap in knowledge, particularly given system adequacy in GB is inherently tied to such 

events. Increasing moves to decarbonise heating introduces significant uncertainty to the magnitude 

of change which will be observed in power networks associated with winter heating, given the variety 

of approaches and technologies which can be deployed to reduce power demand in such scenarios – 
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reducing such demand could come from more conventional heating schemes such as CHP (combined 

heat and power), distributed residential heating schemes as is common in Scandinavia, or via 

increased energy efficiency in domestic settings, but are not limited to these. The complexity 

associated with understanding the risk associated with extended cold periods, now and in the future, 

at a system-level is likely to significantly increase, therefore, but there is a lack of work investigating 

the interactions between these aspects.  

As previously mentioned, a 1C change in temperature can see a ~1% change in electricity demand – 

or a 3-4% increase in gas demand as mentioned in [6]. The electricity system is simply not currently 

equipped to handle such demand in winter months if gas demand during such periods is switched to 

electricity demand. Climate change may see warmer winters on average, but they do not eliminate 

the probability of extended cold snaps such as the Beast from the East to which the system still needs 

to be resilient. This likely could mean significant amounts of peaking generation being unutilized for 

extended periods of time and being used solely for the winter peak. Such peaking generation would 

then have to make enough revenue during those short windows that pricing at such times could be 

egregious for those with exposure to these costs. Given the residual demand on the system will reach 

its peak around this time of year, the system will also be subject to significant variability of wind 

resource and relatively diminished solar resource at a time when the system has the greatest need for 

power capacity in the annual cycle. 

2.2.6 Extreme heat 

Extreme heat is problematic across the entire energy system. Ambient temperature impacts the 

efficiency of thermal engines (that is, any generator reliant on the use of cycles of heating/cooling 

water) due to the process by which thermal generation works, reducing their output [49]. Though a 

relatively minor amount (less than a percent per K above ISO conditions), at a system scale this 

becomes a non-negligible problem. Similarly, since lines and transformers are generally thermally 

rated, increases in ambient temperature may force de-rating of assets across the system at a time 

when distribution networks may be acutely constrained in periods of high distributed generation from 

solar photovoltaic (PV) supplies and low demand. Extreme heat is also fundamentally related to other 

aspects such as wildfires and water availability but should be considered in and of itself given the 

aforementioned reasons. 

As with extreme cold, [6] identifies that there is relatively limited knowledge about the effect of 

increased ambient heat and sustained heatwaves on the GB power system compared to other system 

stresses. The relationship between falling temperatures and heating has been quantified, as has been 

discussed previously, but no equivalent level of evidence exists at a GB scale in academic literature to 

understand the relationship between summer cooling demand and ambient temperature- though 

individual industrial stakeholders will likely have significant data to support decision-making in these 

areas  

The GB grid may move from having a winter absolute peak at a time of extremely variable wind and 

limited solar to having both a summer peaking event and a winter peaking event. It is reported in [6] 

that meteorologists are generally better at forecasting temperature than other weather variables – 

that is, forecasts of temperature tend to be more accurate than other parameters. This is naturally of 

significant benefit to planners given sustained low temperature periods are among the most 

challenging operational conditions with which operators have to be able to survive in the GB system.  

At extreme values of temperature, cooling of generationbecomes a challenge should water availability 

become limited at a time when the system may be suffering from acute variability and ramping issues 

associated with solar and wind penetration on grid. This may be particularly problematic in situations 
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where inland nuclear reactors cannot use sea-water for cooling and have to rely on river-water 

cooling. In the worst case scenario, extreme heat can lead to the need to shut down nuclear plants 

and restrict line flows to prevent overheating and reduce the risk of wildfires at a time when the 

system is particularly vulnerable to shocks due to high renewable penetrations, reducing system 

inertia, interconnectivity. This already takes place in California during windy, dry periods [40]. 

Increased cooling demand also increases the underlying essential load on the system at a time when 

refrigeration and water pump facilities are at their most stressed and needed.  

This is again a case where diversity of location and type of generation can be of clear material benefit 

– the climatic dipole between Northern and Southern Europe and between Scotland and the rest of 

GB mean these localised effects can be mitigated by locational diversity. The complementarity of wind 

and solar across locations and due to different climatological drivers mean a climate event which 

reduces wind capacity in northern GB/Europe can also increase solar irradiance and increase wind in 

southern Europe. The exact manifestations and drivers of these are discussed via various papers 

discussed in [6] and serve to highlight the extreme complexity in modelling the relationships between 

weather and power systems on continental scales. 

In [7] the threat of heat-related faults associated with solar heating and maximum temperature was 

also carried out to quantify potential increases in associated faults on the system. This analysis 

projected the percentage increase in which percentile thresholds of solar heating were exceeded on 

“average” or “extreme heat” days, or the 90th and 98th percentile of temperature. There is once more 

significant uncertainty in the results of this analysis, which can be seen in Figure 2.1, taken from [7]. 

 

Figure 2.1 - Percentage change in exceedances of 90th, 98th percentile max temperatures for test license area; each cross 
represents a different climate model projection and the diamonds the mean 

2.2.7 Common themes 

The results for any cost-benefit analysis in attempting to plan for or mitigate climate change rely not 

only on the climate model used, but the level of aggregation of the model used (the data in the above 

figure is only for one single license area as solar heating faults were stated to not occur on the 

transmission network). What may be a suitable investment scheme for one climate projection may be 

a total waste of money in another.  
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However, equally, an investment made to prevent the most credible event or scenario is not 

automatically redundant should the event not come to pass – it may have been an entirely reasonable 

investment made based on entirely reasonable evidence, but when planning for HILP events there is 

a high probability that the investment may never actually necessitate deployment.  The consequences 

of not having the right flood defences can be seen in events such as the inundation following Storm 

Desmond, or in the mishandling of risk management associated with the Fukushima nuclear plant 

disaster [50].  

Resilience planning necessitates risk-averse thinking, but reliability and economic-driven thinking 

necessitates efficiency-driven and cost-cutting driven investment. Therefore there needs to be clear 

division drawn between what constitutes a “reliability”-centric investment versus one which could be 

considered as driven by resilience. 

All of the described weather-driven natural hazards will be impacted by climate change, but to 

differing degrees of severity and with significant regional variation. Furthermore, the quantity and 

quality of literature that exists to study these impacts also varies significantly and emergent threats 

like wildfires and drought have not been adequately quantified given the potential harm such events 

could have in both developed and developing countries and power systems. 

It bears repeating that, generally speaking, climate scientists and electrical and electronic engineers 

are from different academic traditions and so it should not be surprising that studies combining 

meteorological studies with electrical engineering are, relatively speaking, thin on the ground. This 

does, however, leave significant academic scope for addressing these areas.  

2.3 Understanding resilience and reliability 
Reliability and resilience are not concepts unique to power systems, and apply across most economic 

sectors. The exact definitions will vary sector by sector, as will the consequences of failure. The power 

sector is particularly important, however, in the context of resilience due to the interdependencies 

that exist between it, wider society, and the economy. Therefore, it is important to be clear about 

what one is referring to when discussing the terms in this context and the implications involved with 

strong or weak resilience or reliability. 

2.3.1 Qualitative descriptions of reliability and resilience  
There are a wide variety of given definitions for what constitutes “resilience”. In [1], resilience is 

defined by the ERP as: “the ability to withstand and reduce the magnitude and/or duration of 

disruptive events, which includes the capability to anticipate, absorb, adapt to, and/or rapidly recover 

from such events”. This is in contrast to reliability, which is defined by the US National Academy of 

Sciences (USNAS) within [10] as “the ability of the bulk power system to withstand sudden 

disturbances, such as electric short circuits or the unanticipated loss of system elements from credible 

contingencies, while avoiding uncontrolled cascading blackouts or damage to equipment.” Or system 

adequacy, which is defined in [10] as “The ability of the electricity system to supply the aggregate 

electrical demand and energy requirements of the end-use customers at all times, taking into account 

scheduled and reasonably expected unscheduled outages of system elements.” 

Reliability is summarised in [1] as “the daily challenges faced by system and network operators”. That 

is, it is expected that an organisation should have a given level of performance for daily operation that 

can be measured against KPIs (key performance indicators) and classified as either satisfactory or 

unsatisfactory.  

Yearly reports of reliability performance, such as those produced by Ofgem [37], offer policymakers 

and stakeholders useful barometers for whether asset owners or operators in the energy markets are 
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performing to the expected standards. NERC (North American Electric Reliability Corporation) 

performs a similar role in the USA, with data tables available for more technical information such as 

asset availability and outage causes across the USA’s grid, such as TADS, DADS, and GADS 

(Transmission, Demand response, and Generating Availability Data System respectively) [51]. 

Infamously coined by former US Defence Secretary Donald Rumsfeld, a useful principle by which to 

appreciate the principles of resilience planning is that “there are known knowns; there are things we 

know we know. We also know there are known unknowns; that is to say we know there are some 

things we do not know. But there are also unknown unknowns—the ones we don't know we don't 

know”.  

Reliability can, at a high level, be generally understood as primarily concerning “known knowns”. That 

is, reliability predominantly concerns predictable phenomena acting in a predictable way which can 

be readily quantified and understood. Resilience at a very basic level, as well as covering some “known 

knowns”, particularly begins to manifest in the realms of “known unknowns” or “unknown 

unknowns”, where either events are being considered where the probability is unknown, irrelevant, 

or vanishingly small, or where the impact is difficult to quantify or anticipate- or some combination 

thereof. 

Various qualitative concepts have been deployed to describe approaches to resilience in different 

contexts. The nuclear industry operationalizes safety via the concept of “defence in depth” [52] which 

describes the physical layers of safety involved in disaster prevention. Each stage has a stated 

objective of preventing further state degradation on a sliding scale from “normal operation” to “post-

severe accident situation”, with prevention at one end of the scale and disaster remediation at the 

other. This is similar to the “bow-tie” model of planning for resilience shown in , taken from [1].  

 

Figure 2.2 - "Bow-tie" model of risk planning 

This conceptualises resilience planning as forever being a balancing act between preventative 

measures, or mitigation measures set in place ahead of time, versus remedial or corrective actions 

taken after the fact. The importance of posterior remediation varies by sector. The consequences of 

nuclear safety failures are significant enough such that the emphasis is primarily on disaster 

prevention – much like with black-start preparations in the GB power systems – but plans still need to 

be in place to restore the system or mitigate damage should the worst occur. 
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Similarly, there is the “Swiss cheese” representation of risk and disasters. This conceptualises major 

adverse events as being a series of aligned “holes” in prevention schemes, attributable to failures or 

malicious undermining of security, and is comparable to defence in depth in concept and application. 

A visual representation, taken from [53] and simplified, is shown in Figure 2.3. 

 

Figure 2.3 - "Swiss cheese" representation of disaster propagation 

While these concepts combined provide a means of qualitatively describing the over-arching concepts 

of reliability and resilience, and its consequences, it does not offer a direct means of comparing 

outcomes and hence measuring performance improvement or degradation of resilience or reliability. 

For that, generally quantitative methods and metrics are needed, but these too present their own 

challenges. The “Swiss Cheese” model represents HILP events or particularly serious disasters as those 

which various levels of prevention or control fail to adequately protect against. That is, a perturbation 

can be thought of as some sort of vector which passes through the layers of “cheese” and “holes” 

represent weaknesses or vulnerabilities which cannot contain the event in question. This illustrates 

the fact that, typically, disasters happen when a series of failures coincide in a suboptimal manner 

through misfortune, inadequate preparation, or active sabotage. 

One concept that begins to more quantitatively describe resilience is the “resilience trapezoid” as 

developed in [54]. Also known as the “FLEP” (when translated from Greek to English), it refers to how 

Fast a state degrades, how Low a state’s resilience or performance drops, the Extent of the degraded 

state, or how long the performance is compromised, and how Promptly the system recovers. The 

exemplar trapezoid used in [1] is shown in Figure 2.4. 
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Figure 2.4 - Example resilience trapezium used in ERP report 

The challenge, however, remains insofar as the exact metrics being used to quantify the magnitude of 

each stage of this trapezoid. In order to understand why that is significant, an understanding of how 

to quantify power system performance and how this relates to power system reliability and resilience 

will be discussed. 

2.3.2 Quantitative metrics for describing reliability and resilience 
Due to its role as an markets regulator, Ofgem historically has liked to use metrics such as CI (customer 

interruptions) and CML (customer minutes lost) as metrics for reliability performance of power 

companies [37]. There are associated targets which change year-on-year to ensure continuous 

performance improvement in line with the desires of the Government of the day and the expectation 

that continual technological progression should ensure performance improvement. National Grid, in 

its role as electricity system operator (ESO) also has its own reliability incentives mandated by Ofgem 

[55] 

On the technical side, the metrics LOLP (loss of load probability), ENS (energy not served), and EENS 

(expected energy not served) are commonly used to quantify the estimated impact of outage events 

or scenarios on power systems in cost-benefit analyses. In this context, a pound or dollar value can be 

assigned to the EENS to determine an expected cost of unreliability and used to justify investments on 

the power system to improve whichever reliability metric is used. In that sense they can be used as a 

proxy for economic performance and are rather gross estimators of reliability – the impacts of HILP 

events are obfuscated by nature of the “averaging” of impacts across whichever sample size is used, 

meaning they may be inappropriate in the context of resilience. However, in a stable, predictable, 

system absent of unpredictable or severe shocks managed by rational actors these metrics can 

reasonably be assumed to nonetheless be useful.  

Resilience, given its concern typically laying in shock events with high impacts or difficult to quantify 

probabilities, is far more difficult to represent using such economic risk metrics. Metrics such as VaR 

(Value at Risk) or CVaR (Conditional Value at Risk) can be used to more explicitly examine the tail of 

the distribution of outcomes. In [56], VaR and cVaR are defined as follows: “[by] definition with respect 

to a specified probability level β, the β -VaR of a portfolio is the lowest amount  such that, with 

probability β, the loss will not exceed , whereas the β-CVaR is the conditional expectation of losses 
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above that amount .” The “loss” referred to by VaR and cVaR may be, for instance, a dollar amount 

or a value of ENS. 

When considering some HILP events of acutely low probability, or uncertain probability, it remains 

challenging to capture such events and represent those events using conventional Monte Carlo state 

sampling methods. This shall be discussed further in Chapter 5.  

EENS, CVaR, and VaR are all risk metrics in the sense that they are dependent on the probability and 

impact of the events of which they describe, which in resilience studies can be acutely problematic. It 

may be the case, then, that for resilience studies, rather than sampling across a wide variety of 

possible states, specific eventualities are analysed on the basis purely on impact or on the basis of 

avoiding events we judge, be it by expert elicitation or heuristics, to be undesirable enough such that 

planners or operators must prepare for them, regardless of probability. This shall be discussed in 

Section 2.3.3. 

2.3.3 Security standards for resilience and reliability 
Deterministic security standards, such as “N-1”, effectively operate in a manner whereby the risk 

horizon can be interpreted as being set by the lowest probability of any single outage event, adverse 

condition, or loss of asset. That is, the lowest probability which concerns the operator is the one 

representative of the single outage with the lowest probability. The definition of an “event” can vary: 

it can be an adverse operating state introduced by a demand surge, loss of infeed from a generator, 

or loss of a network branch. The “event” could also encapsulate a given weather state which induces 

a perturbation to the optimal running of the system, with the simulation and realisation of that 

perturbation constituting another “event”. It is judged that the loss of any single system asset, no 

matter how improbable that specific outcome may be, is deemed sufficiently adverse as to require 

adequate preventative or corrective actions to be in place to deal with it.  

There may well be N-2, N-3 events that approach probabilities comparable to the loss of e.g. an 

underground cable, but that are not considered in reliability planning scenarios or conventional 

deterministic security criteria. The limitations of this are examined by R. Moreno in [57] and more 

generally in [58], and work is ongoing at the time of writing in reviewing security standards in GB and 

the  Security and Quality of Supply Standard (SQSS) [59]. 

In the context of resilience, planning for specific eventualities becomes far more difficult, making the 

need for robust data, system analysis tools, and heuristics all the more important. Failure to 

appropriately identify credible system threats can lead to widespread blackout conditions such as 

were seen in South Australia, as previously mentioned in [14]. It was also noted that a lack of 

understanding about the actual resilience capabilities of assets on the system – specifically wind 

turbine ride-through capabilities – contributed to the black-start condition, suggesting that network 

awareness and visibility are key resilience factors. 

Approaches taken towards reliability cannot then be directly applied in the context of resilience, as 

one cannot directly translate the understanding expected for “known-knowns” to “known-unknowns” 

or “unknown-unknowns”.  

Similarly, in planning to be secure against N-1 events, the system may then be protected against a 

wider array of events than those which have actually been selected in the credible contingency list 

(that is, setting up the system for N-1 security may also render it secure against a variety of N-2+ 

conditions), and so often there is an added, unseen, security benefit to security decisions made at 

dispatch. Clearly quantifying and understanding the drivers of resilience should clearly then be a focus 

of trying to improve a system’s resilience. 
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2.4 Modelling interactions between weather and the power system 
As has been established, there are a wide variety of ways in which the weather can affect power 

systems. Tractability and defining the scope of a power system simulation them becomes acutely 

challenging due to the intricate ways in which these models may need to interact with each other, and 

the varying sensitivities of results to different aspects of these models. 

A fundamental way to look at the interaction between the weather and the power system is to look 

at it in terms of causal weather events, system perturbations, and resultant system outcomes. That is, 

the primary causal weather which affects the power system, the perturbations on the system this 

causes (e.g. variations in wind power output, line failures, etc.), and the corresponding impact these 

outages then have on a power system. The natural hazard chosen for further examination here is 

extreme wind. As will be described going forward, though there is significant research investigating 

the impacts of wind on the power system – and thus a robust foundation on which to build – there is 

still plenty of work to be undertaken to address gaps. Given the UK is a temperate nation, wind is one 

of the few dangerous natural hazards it is exposed to. Its increasing deployment of onshore and 

offshore wind also mean that it is important to understand how power system risk and wind are 

associated on the system more generally. 

For example, when modelling a wind storm, there needs to be models linking that wind to the network 

and to generation. There then need to be corresponding relationships between the impacts these 

effects have on the system, and how that actually manifests  in the power system. It then becomes 

necessary to clearly define the scope of the power system being analysed to understand what the 

relevant causal relationships actually are and their significance.  

As a more abstract example, greenhouse gas emissions drive climate change which, in turn, will change 

the distribution of wind speeds in a given region- but it is not CO2 that causes mechanical failure in 

lines, but wind. Therefore, the scope of our problem should be limited to the actual interaction 

between wind and lines, if our concern is the simulation of wind faults on lines. Climate change acts 

as a driver for the wind, it is not the cause of the fault itself. 

Similarly, when relating a wind speed to a given failure rate on a line or asset, factors such as 

directionality or location of line also may need to be taken into consideration. A wind gust acting 

perpendicularly to a line may have a more significant impact than one acting in parallel; a sudden, 

intense gust of wind may have more impact than a sustained period of extreme wind such as a 

hurricane. 

Once a line has then faulted, this then actually has to be translated into an effect on the power system. 

For instance, a loss of infeed will see an imbalance between generation and supply, resulting in a 

frequency deviation and the need for frequency response or redispatch of generation [60]. However, 

even various assumptions need to be made about the manner in which the system responds to this 

deviation in frequency and how spinning generators will react, versus power electronic devices. 

System inertia may change with time as e.g. factory machines connect and disconnect, just as 

connected demand across the system will change the way in which demand responds to deviation in 

frequency in tandem with changes in connected generation infeed along the diurnal cycle. 

The restoration of this line, or reconnection of a generator, then too needs to be considered. Some 

assets, such as transformers, take weeks (or even months) to repair compared to overhead lines 

which, for simpler and smaller connections such as wooden poles, can be repaired in a matter of hours 

[61]. This then could factor into how exactly the system is prepared for a resilience-related event – 

enduring a little pain for a short time will always be preferable to a lot of pain for a long time, which 
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is the basis of schemes such as under-frequency load shedding (UFLS) and low frequency demand 

disconnection (LFDD). These are both different names for a strategy undertaken by system operators 

to keep frequency within bounds and prevent low-frequency disconnection of generators, which can 

cascade to system-wide blackouts. Then a metric is still needed to quantify exactly how significant the 

damage has been to the system as a result of the causal event, which is where terms such as Value of 

Lost Load (VoLL) emerge, which attempt to quantify the economic harm caused by supply 

interruptions by assigning a monetary value to a risk metric such as EENS. 

At every stage, new abstractions and assumptions need to be made about how exactly a power system 

will react, all to a single event which can be attributed to a weather condition- from the beginning 

causal event to the end result. These abstractions could significantly affect what mitigation and 

correction strategies are ultimately used, and are all fundamentally dependent on the data used to 

drive the simulations, meaning that it is imperative these relationships are clearly defined and the 

abstractions and simplifications made are appropriate. 

2.4.1 Quantifying failure rates on overhead lines due to wind 
Failure rates on lines due to weather have been represented in several ways, and techniques continue 

to be developed to improve upon them. In reliability analyses this can be in terms of using adjusted 

failure rates for “normal”, “adverse”, or “extreme” weather conditions – but this then introduces the 

complexity of quantifying exactly when a weather condition goes from normal to adverse, or adverse 

to extreme. Such methods are shown in [62] and [63].  

The number of years between these sources’ publication (almost 40) illustrates how standard this 

approach has been. In lieu of more data-driven approaches, it is not an unreasonable method to use 

– the increased failure rates are intended to replicate the “bunching” effect on faults that weather 

causes on power systems – more things break, and they break at the same time, due to the weather 

acting upon them. However, this, effectively, bunches all experience of weather into three “bins”, 

when in reality the probability of failure of a given asset of line will be subject to an enormous variety 

of factors –geographic conditions, varying exposure to weather conditions along the path of a line, 

and so on.  

Such representations and approaches to modelling line failure rates also typically apply the modified 

failure rate homogeneously across a system, which therefore obscures regional impacts of extreme 

weather on a power system. For more acute or extreme events, where we are particularly concerned 

with locational impacts of extreme weather, such analysis is an inadequate representation of failure 

probability on networks and more granular methodologies may be necessary; both to represent 

failure probability and the consequences of failures when they actually happen. 

For example, lines across the coast will experience different fault mechanisms than those in an arid 

desert region. Coastal assets can suffer flashovers due to moisture and sediment thrown onto them 

from the sea during storms, whereas in a desert there is no such moisture but there may be more dust 

and debris which may cause different operational challenges. Lines above the tree-line in mountainous 

regions will be less likely to suffer vegetation-related losses, as there is no vegetation to fall on the 

lines. However, in hilly regions with little to no vegetation, lines, towers, and substations may be more 

susceptible to landslips, which offer a completely different mechanism of damaging equipment. None 

of these are captured by such adjusted failure rates purely defined in terms of “stormy” weather 

conditions. 
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Fundamentally, what is needed is a method of converting an incident natural hazard – in this case a 

wind speed – into a corresponding impact on the network, specifically whether a line is in or out of 

service. This can be conceptualised as shown in Figure 2.5, with an incident hazard with a presumed 

relationship between a natural hazard and the natural hazard itself acting on a system asset to 

generate a new asset state. 

An improvement on this methodology in recent years has been based on more data-driven models in 

an attempt to make more portable, tractable methodologies based on improvements in data 

collection and availability and completeness of weather data. Hindcasted datasets such as MERRA-2 

and ERA-5 from NASA in the USA or ECWMF (European Centre for Medium-Range Weather Forecasts), 

which shall be discussed in Chapter 4, offer spatiotemporally complete datasets which can be used to 

quantify the probability of line failures given a set of weather parameters, such as was done by K. 

Murray in [27]. Similar techniques were utilised by P. Mancarella and M. Panteli in a number of works 

including [54], with K. Murray’s work developed further in [64] by F. Fan to break fragility curves down 

by voltage level.  

These effectively use Bayesian methods to determine a cumulative probability curve of the failure of 

a given asset given a weather parameter to the project the failure probability of an asset in a Monte-

Carlo simulation. A challenge with using these methods, however, is that data can be sparse meaning 

significant uncertainty in the long tail of the results. Also, assumptions need to be made about the 

homogeneity of assets – the resilience of assets may change with age, location, construction, and 

voltage level (the latter being the metric by which F. Fan separated their fragility curves in [64]). 

Therefore, there can always be improvements made to the granularity of the curves which are 

constructed using such methods but only up until the point there is actually sufficient data to have 

confidence in the samples.  

In the context of resilience this is a major challenge because in many cases that data simply does not 

exist in the extreme cases, and so projecting based on historic data has to be a compromise between 

granularity and data availability. This is addressed [64] by using different sized bins of data to increase 

sample sizes in given bins, and extrapolating the data accordingly to develop the fragility curves. 

Alternatively mechanical models of towers can be used in tandem with data-driven models of lines to 

generate fragility curves, as are used by Panteli et al in [54]. 

Understanding the relationship between weather and power system conditions is limited both by the 

granularity and completeness of the data and how the interaction with the power system itself is 

modelled. Different datasets and reanalysis data will give different relationships between faults and 

weather parameters because of the different underlying methods involved with how these reanalysis 

datasets are actually formed. Even the datasets used to generate the fragility curves in [27] and [64] 

 

Figure 2.5 - fault modelling concept with regards to natural hazards 
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have this limitation, in that the sample sizes of faults, years, and data are limited – and the samples 

are geographically limited to Scotland and its network.  

It would be useful to compare fragility curves across different reanalysis datasets, different 

geographical regions, and different biomes, and with different corrections to see the corresponding 

variability in the curves generated by such data. Further, translating those faults onto a power system 

model also introduces challenges regarding how to model the outages themselves or translate the 

presence of a “fault” to a power system consequence.  

A fragility curve can identify, in a Monte Carlo simulation, whether a fault or failure has occurred in a 

given sample. This still presents a challenge as to how to translate that “fault” into some new network 

state. In a DCOPF, for instance, this would mean taking a line out of service – however, in transient 

analysis the consequence of a line failure may instead be a short-circuit (e.g. phase-phase, phase-earth 

transient faults). Further, if n lines are identified as having faulted in a sample hour, the fragility curve 

tells us nothing about in which order these lines faulted, or whether the faults manifested as single or 

double circuit faults, or whether the fault was permanent or transient. Certain assumptions have to 

be made in order to compensate for this, but there was no literature found investigating this directly.  

Similarly, the fault mechanisms in a region like Scotland with relation to wind speeds will be different 

from those in a more arid region such as the southern United States.  It cannot be assumed that a 

fragility curve derived in a temperate, windy nation such as Scotland would be equally applicable to, 

for instance, the ERCOT (Electricity Reliability Council of Texas) power system in Texas.  

Further, some factors are not directly considered in the derivation of the fragility curves used in [27] 

and [64] – specifically the directionality of wind, or impact of factors such as precipitation. As has been 

discussed, different weather and climatological phenomena in GB manifest in different ways – e.g. 

turbulent, chilly easterly winds; stable, high wind speeds from the west. These two may cause different 

fault scenarios and fault conditions which mean a model of fragility curve in Scotland may simply not 

be applicable in e.g. Southwest England, but the comparator data does not exist.  

The best way to address this would be continental-wide datasets of aggregated data which could be 

separated by biome and corrected for e.g. voltage levels, age of assets, construction, etc. - but this 

level of aggregation simply does not yet exist. The frameworks and data analysis techniques to 

generate such models, however, have already been demonstrated at small scale and could be 

upscaled accordingly for wider-scale modelling of continental-scale interconnections and grids. 

2.4.2 Estimating wind power output from wind speeds 
Wind output on wind farms for a given wind speed at a given site can vary significantly. This may be 

due to different manufacturer power curves for different turbines, local microclimates, varying 

geographic conditions if the wind farm is built in a particularly windy or hilly location, or due to varied 

turbine sizes with groups on a  given wind farm. A “power curve” is a model relating the incident 

weather, in this case wind, on a given wind turbine or wind farm with an associated capacity factor for 

the power output of that wind turbine or wind farm. Exemplar wind power curves will be shown in 

Chapter 4. 

Developing a relationship between a forecast – or, indeed, hindcasted- wind velocity and the 

anticipated output of a wind farm is important because it impacts how much wind power can be 

anticipated to be feeding into the network at any given time – and, the more wind there is on the 

network, the more significant any error in this forecasting potentially is. That is, even a 1% error if 

there is 10GW of power on the network could mean a difference in infeed of hundreds of Megawatts 

of power. Underestimating the amount of infeed on the network could lead to additional curtailment 
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costs, or even over-voltage and frequency deviation issues if the system cannot respond appropriately 

to the variability of wind resources should there be insufficient balancing reserve on the system. 

Conversely, overestimating the amount of wind power which may be on the network could also lead 

to problems – power shortfalls, high balancing costs, or even load curtailment if there is insufficient 

available response to respond to unexpected, sudden shortfalls of supply. 

Ofgem have in the past produced characteristic power curves linking the capacity factor of wind farms 

to an incident wind speed, as described in [65], with an example shown in Figure 2.6. Similarly, at an 

EU level, in 2009 TradeWind developed characteristic wind power curves for different types of wind 

farm – e.g offshore versus inland. These are described in [66]. This will be discussed in further detail 

in Chapter 4 and Chapter 5. 

 

Figure 2.6 - Ofgem derived power curve example 

As with modelling the effect of extreme wind on overhead line failures, challenges emerge in the 

extremes of wind speed distributions due to the lack of data available. For this reason, in the curve 

shown, Ofgem fitted the cut-out feature on the curve using a Gaussian filter by inspection in lieu of a 

significant amount of data.  

At an individual turbine level, turbines will have a minimum “cut-in” speed which the wind must be 

blowing at for a certain amount of time before the turbine starts feeding power into the grid. At high 

wind speeds, wind turbines also have mechanisms to reduce their power output or rotational speed 

to prevent mechanical damage or overloads. This may be done by adjusting the angle of the blades, 

via electromagnetic brakes, or, on smaller turbines, altering the angle of the hub away from the wind. 

An example scheme is shown in Figure 2.7, taken from [29]. 
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Figure 2.7 - wind turbine cut-out scheme example 

While this can then be easily understood and quantified for individual turbines, at a population level 

on a wind farm grouping, groups of turbines may cut in and out at different paces, as well as some 

turbines being unavailable due to faults or maintenance work. Therefore, either individual turbines 

can be sampled in a Monte Carlo fashion to estimate the output of a wind farm, or a wind farm can 

be aggregated with some estimate made of the capacity factor of the entire wind farm, reducing the 

computational expense and sampling requirements of a simulation or projection.  

The effect of HWSS is considered in the power curves described in Ofgem’s capability assessment 

referred to in [65] and in [66]. Such curves can then be used to aid in dispatch decisions for operators, 

but are still subject to uncertainty over both short and long terms. Work analysing exactly how 

windfarms can be impacted by extreme weather events is invaluable in understanding the links 

between system risk, security, and operability during force majeure weather events.  

Although the wind farm may be physically fine itself with protection systems operating as expected in 

such extreme wind events, this can nonetheless lead to a significant loss of infeed for however long 

the extreme wind event is affecting a system. 

This affects both operational decisions in control rooms in the short term and, longer term, affects 

planning decisions for investors due to uncertainty in the actual output of windfarms. If the frequency 

and intensity of extreme wind events changes, this then affects investment and planning decisions in 

wind farms by reducing their availability and annualised capacity factors. This emphasises the need 

for robust and data-driven methods for quantifying these relationships precisely both for economic 

reasons, and for network operability reasons. As more wind generation penetrates the network at 

multiple levels, this becomes a problem for both distributors and planners. 

Wind power tends to be distributed across regions, making generation susceptible to regional extreme 

weather events such as storms or anti-cyclones, which can cause either extreme highs or lows in terms 

of wind output that need to be planned for and accommodated for. This, however, also distributes 

the impact of extreme weather events. Due to the diversity of geographic conditions across, in 

particular, Scotland, this means a wide variety of weather conditions – so if extreme wind forces a 

wind farm to shut down in one location that does not necessarily mean all of them will be forced to 

curtail their output, but effects will be correlated regionally [6].  
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Climate change, as previously mentioned, is also likely to affect regional wind capacity factors on wind 

farms, which will affect future planning decisions and could change the types, location, or capacity of 

wind farm capacity installed on the network. In [6] it is discussed that windfarms ~600km apart tend 

to show very weak correlation in outputs, emphasising the value of locational diversity of wind 

generation. 

Due to the lack of easily acquirable data to quantify HWSS at extreme wind speeds, compromises have 

been made in curve fitting to make workable and useful curves. This highlights two things: the value 

of data from generators and producers themselves, as they will have experience operating their 

generation facilities and will likely be able to produce more accurate projections of output than an 

aggregated system-wide model could; also, the difficulties involved with translating given weather 

datasets to physical phenomena on the power system, in this case the projected output of a given 

windfarm or group of windfarms. Population-level models of power curves are just that – at a system-

wide level they may be representative, but for individual windfarms are at best gross estimators of 

real output. 

2.5 Modelling system perturbations 
When a line drops out of service or a generator drops out from the network, there will be a 

corresponding impact on the system, regardless of what the cause of that outage was in the first 

instance.  Substation or transformer faults connecting multiple parts of the network, too, can lead to 

disconnections of large numbers of customers for extended periods of time due to the concentration 

of connection assets at such locations. 

A “perturbation” on a network can refer to a wide range of things which all require different protection 

and mitigation measures. Control and protection of power systems is an major field of study in its own 

right and too broad in scope to be covered in particular depth in this section alone and can be studied 

in a wide variety of texts, for instance [60], but some general themes and the most significant aspects, 

within the scope of this project, shall be discussed in this section. 

2.5.1 Overhead line faults 
In the context of resilience studies pertaining to wind, there are various failures which immediately 

present themselves as threats. Wind can cause “galloping” of OHL or clashing and swinging of 

conductors, leading to transient short-circuit phase-to-phase faults [26]. Alternatively, mechanical 

failure of connectors can lead to shearing of lines and phase-ground faults and permanent outages. 

Vegetation falling on lines or pole collapse can sever connections reducing power flow between areas. 

Transient faults can be resolved by auto-re-closer actions, whereby a breaker opens and closes after 

allowing time for ionized particles to disperse or remains open until manually reclosed if the fault is 

not resolved.  

Loss of lines can also lead to cascading faults should overloads be caused on nearby lines, particularly 

if there are widespread common-mode faults on the network. This is one of the reasons behind 

deterministic security criteria such as N-1 – to prevent the network from degrading beyond a single 

fault condition to a far more serious, uncontrollable state. Arresting such faults through preventative 

measures such as security constrained dispatch has been, in GB, a very effective means of avoiding 

more serious cascading failures and outage scenarios, with no black-start conditions ever having 

affected the entire GB system at the time of writing. 

As well as causing customer interruptions or disconnections due to loss of connections to the MITS 

(main interconnected transmission system), line outages can separate parts of the grid into “islanded” 

sections and cause loss of synchronism between these islands, making system restoration and 
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reconnection after repairs have been carried out more difficult. Also, for these separated grids, there 

may then be an imbalance between supply and demand (assuming those islands have both supply and 

demand and do not immediately fall into blackout conditions), and managing frequency and the 

supply-demand balance will be significantly more challenging in islanded conditions because there will 

be fewer assets available compared to the main system.. This is related to the effect of loss of infeed 

in a power system more generally. OHL faults primarily act as limiting the ability of the network, then, 

to transport power from supply to demand sources.  

There are also other issues associated with overhead lines – e.g. reactive power consumption by 

heavily loaded lines[60]. High reactive power draw can limit power transfer between constrained 

networks and require compensation with capacitor banks, for example. Voltage and reactive power 

are inherently linked and so voltage levels can be controlled to manage reactive power to a limited 

extent for power factor regulation.   

The reason OHL faults are a concern is because the loss of many concurrently can create 

desynchronised islands, so regions are created where there is loss of infeed and others may be created 

where there is a surplus of supply – ergo it is not the loss of the lines themselves which solely cause 

the problems but the restrictions this then places on the power balance in the remaining, surviving 

networks. Focus should therefore then be on the impact of power imbalances on these networks. 

2.5.2 Loss of infeed and generation faults 
In a power system, imbalance between supply and demand manifests as voltage and frequency 

deviations, and effects may be distributed across the network with localised voltage and frequency 

excursions. This, in turn, can lead to further overloads or equipment damage should protection 

equipment fail to deploy, particularly if there are significant imbalances due to large transfer across 

the affected branches [60]. 

When there is an imbalance between supply and demand on a network, governors on suitably 

equipped synchronous machines, or controllers on power-electric connected devices, can adjust their 

outputs to restore the system frequency to the nominal value or within statutory limits (between 

49.5Hz and 50.5Hz in GB) while also ensuring the rate of change of frequency (RoCoF) is within limits 

to prevent cascading outages. An example frequency response curve is shown in Figure 2.8, taken 

from [67] (note that it is using a US system model, so frequency base is 60Hz rather than 50Hz).  
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Figure 2.8 - example primary frequency response curves on hypothetical system 

Frequency response will vary at different points in the network as different machines respond 

differently to the deviation, shown as hashed lines, with an averaged system-wide frequency response 

shown as the bold line. This introduces new error into the modelling, as an aggregated system 

frequency response will potentially miss more extreme deviations in areas with less local system 

inertia and system strength which will in turn have localised impacts. There is again a balance that 

needs to be struck between computational complexity and simulation refinement. 

Frequency response is a manifestation of the impacts of an imbalance between supply and demand, 

but this in turn will also be impacted wider system operability challenges, for example the ability to 

transfer extra output from frequency-responsive generation to other parts of the network. There are 

also other stability-related concerns such as rotor angles of generators and “vector shift” protection 

on connected assets, but these are localised rather than system-wide impacts. Frequency response is 

generally, however, modelled using a single bus representation with various assumptions about how 

generator governors or controllers will respond to a given frequency deviation. The formulation of 

such problems and examples of its implementation shall be quantified in detail in Chapter 5.  

There are a wide range of techniques used in the simulation of frequency response, and these can 

involve the use of specialised coding libraries such as MatLab SimuLink or proprietary software such 

as DigSILENT/PowerFactory. One drawback of using such software packages is the licensing 

requirements and cost thereof, as well as the need for training or significant time investment in order 

to effectively utilise and understand these software packages or incorporate them with larger scale 

simulations or analyses. This can be assumed, for larger companies, to simply be part of the cost of 

doing business, but may act as an impediment for research by reducing the ease of access to support 

and reducing the number of users in the wider population.   

There may be benefits to directly modelling power system simulations from first principles in a more 

specialised manner in linear programming languages such as python. Using representations of 

frequency response from sources such as [60] and [67] incorporated in wider network models, 

considerate of weather conditions and other network phenomena such as have been described in 

previous sections, may allow the analysis of the impacts of, for instance, increased wind penetration 

on power system stability and frequency response requirements. Such research was carried out in 

[68], examining the changing frequency response requirements in GB with increasing penetrations of 

wind and changing system inertia. 
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2.5.3 Frequency response regimes 
Frequency response can broadly be divided into three different regimes – primary, secondary, and 

tertiary. In GB, primary and secondary response differ in that primary frequency response is expected 

to arrest immediate frequency deviations within 10 seconds, and act up to 30 seconds, whereas 

secondary response is designed to restore the frequency to statutory limits – or as close as possible – 

and sustain this response for up to 30 minutes [69]. National Grid uses a broader range still of 

frequency related services which each specifically refer to a specific kind of response e.g. “Fast 

Frequency Response” or “Enhanced Frequency Response”, but for the purposes of the modelling 

herein the general abstractions used are deemed appropriate for the level of analysis undertaken. 

Tertiary response can be considered response which acts more slowly, once the immediate frequency 

deviation has been controlled – to restore balance between supply and demand and ready the system 

for future perturbations or adverse operating conditions. This can be represented graphically in Figure 

2.9, taken from [68]. 

 

Figure 2.9 - frequency response regimes over time deployed in GB 

The study in [68] focussed solely on primary and secondary frequency requirements with varying 

degrees of wind penetration and changing system responsiveness and inertia. In the paper it is 

assumed that primary response deploys linearly within 10 seconds, is replaced at 30 seconds by 

secondary response which deploys to a target level within 1 second. This is done on a single bus 

representation of the system, ignoring network constraints and assuming homogenous frequency 

response across the system. Such an approach will be used in Chapter 5. 

An example primary frequency response curve, for varying system inertia factors found using the 

methods deployed in [68] is shown in Figure 2.10. The significance and mathematical formulations 

relevant to the grid inertia factor shall be discussed in detail in Chapter 5, but for now can be 

understood as representing the “stiffness” of the network and resistance to changes in frequency, 

which can be seen in the figure as being represented by the greater deviations in systems with lower 

frequencies – they are “bouncier”. 
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Figure 2.10 - example primary frequency response curves for varying H factors 

The frequency response curves shown represent the loss of infeed of 1320MW with a primary 

frequency response (PFR) of 800MW for a total system load of 30GW. Primary frequency response 

acts to arrest the fall in frequency and contain it within statutory bounds; the recovery that occurs 

after the frequency nadir occurs because primary response may not be fully delivered until 10s after 

the event. Secondary response replaces primary response as it falls away after 30s is delivered to 

maintain the new system equilibrium while other operational decisions are made (e.g. redispatch, 

load curtailment). It should also be noted that system inertia affects only the stiffness of the network 

– not its ability to restore equilibrium after the transient event. Inertia is of primary concern for 

controlling RoCoF, not adequacy of frequency response itself in the longer term of any system 

perturbation. 

System frequency response requirements in GB are governed primarily by the SQSS [59] to be 

constrained within normal operation, or following an N-1 event, within the bounds of 49.5Hz and 

50.5Hz. Following the largest possible loss of infeed (loss of the 1320MW nuclear station or a double 

circuit from a heavily exporting area), frequency is allowed to fall as low as 49.2Hz so long as it is 

restored to within statutory bounds within 60s. Therefore, there must always be enough reserve to 

respond to the single largest loss of infeed on the system. 

Fundamentally, frequency has to be controlled on the grid to protect spinning machines and 

generators. If there is too much generation on the system and frequency surges, synchronous 

machines’ rpm increases as a consequence until protection activates to shut the machine off from the 

grid – known as an “overspeed trip”. Conversely, if the frequency drops too low machines can be 
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strained by the need to perform extra work, which may result in, again, machines tripping off from 

the grid for self-preservation, known as an “underspeed trip” [70].  

Losing generators due to frequency deviations then can lead to cascading outages and widespread 

blackouts, regardless of any natural hazards acting on the network. Although the initial outage may 

be caused by an exogenous natural hazard, frequency response is an inherent electromechanical 

property of the system affected by generator governors, automated generator control (AGC) (though 

this is not deployed in GB), power electronic device response, and system inertia.  

2.5.4 Sources of frequency response 
Response can be provided by generators themselves, with a certain expectation of response 

mandated by technical regulations such as the Grid Code, or auxiliary/ancillary services can be 

provided by, for instance, demand aggregators or distributed energy resources (DER) to provide 

enhanced frequency response (EFR) or other response requirements for the system. 

Frequency response and inertia capabilities vary by generator type and scale. Nuclear generation, for 

instance, has significant inertia but may only have limited response capabilities to adjust its output to 

meet changes in supply and demand due to the nature of nuclear generation requiring strict control 

of thermal conditions and limited controllability of graphite moderators. Coal, open-cycle gas turbines 

(OCGT), or closed-cycle gas turbines (CCGT) can adjust actuators and burn rates to adjust their outputs 

to respond to system requirements with relative ease. Similarly, hydro plant (both pumped storage 

and run-of-river) can adjust its output from zero to full relatively quickly (in as few as 2 or 3 minutes 

dependent on location, scale, etc) to meet changes in demand.  

Power electronics, due to their use of semiconductor devices, can quickly (even relative to the 

frequency of the power system) adjust power outputs and voltage in response to system events, but 

cannot directly supply inertia to the system in a manner comparable to spinning machinery. Cheaper 

or older power convertors may also trip off during system perturbations if they are not designed or 

capable of handling voltage or frequency deviations, introducing uncertainty into system response. 

This can particularly be an issue during major outage events and loss of infeed may happen randomly 

across the system as local frequency deviations vary and converters from different manufacturers or 

different topologies drop off at different voltage or frequency thresholds for self-preservation, or due 

to loss-of-mains protection. This was a contributory factor in the outages in the UK in August 2019 

[13] 

The changing dynamics of devices connected to the power system also has an impact on the response 

of a given power system to loss of infeed. That is, spinning machinery and synchronous engines 

connected to the power system react differently from DC motors and power electronic devices, 

particularly to changes in frequency. In a frequency response simulation, this can be represented via 

a factor k which represents the percentage change in demand given an associated change in 

frequency. In [68] this is illustrated as shown in Figure 2.11. 
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Figure 2.11 –frequency response for loss of 1320MW with varying k, with H = 5s, total load of 30GW, PFR of 800MW 

It can be observed that this has a significant impact on both the nadir to which the frequency drops, 

and the final frequency at which the system settles after primary response has deployed. This should 

be unsurprising – inertia merely impacts the rate of change of frequency and the ability of the system 

to resist sudden changes – in the figure shown the initial rate of change of frequency is consistent 

across all 3 regimes, but the settling frequency recovers much better – or, rather, degrades less - for 

systems with greater load frequency sensitivity. 

This is because some devices’ power consumption drops with frequency – e.g. machines connected 

with AC  motors such as fridge and freezer compressors. Constant-power devices, such as switch mode 

power supplies (SMPS) connected to phone chargers maintain their power consumption regardless of 

the system frequency, reducing the system load responsiveness to frequency deviations. A system 

with more responsive load, then, will have lower frequency response requirements – but these will 

change with time in the day, and across locations on the network.  

The amount of frequency response available to restore supply-demand will in turn be impacted by the 

properties of the network on which a supply imbalance happens, and the location of the generation 

on the system. However, this is not represented in single bus or low-order representations of 

frequency response models such as those used in [60], [67], [68], or [71]. However, tying frequency 

response simulation to network simulation is a complex computational problem typically suited to 

specialised software, as previously discussed, and performing reliability or resilience studies 

considerate of these factors has simply not been done in significant detail, particularly in consideration 

of the impacts of wind generation or low system inertia. 
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2.5.5 Demand response 
In [1] it is noted that the economy of the UK has significantly moved from manufacturing to a more 

heavily deindustrialised, service-based economy. This has meant ta reduction inlarge loads associated 

with industrial machinery on the grid with the end result being the loss of significant amounts of 

spinning machinery, which can provide some inherent support to system stability through machines’ 

inertia. This is of course also dependent on the industrial context of the machinery – paper mills, for 

instance, require extreme precision and consistency. 

Instead of manufacturing being the driver of electricity demand in GB, then, it is cities. This presents 

its own challenges – cities have diverse demand centres, and different requirements from factories. If 

a factory loses power supply for an extended period of time, this causes economic damage for which 

the regulator may hold the relevant actors accountable. If a city loses supply, there can be widespread 

socioeconomic disruption, social unrest, and potentially fatalities. Business, residences, and industrial 

facilities all may be affected and restoration may be difficult and complicated if there is significant 

distributed DER on the system. 

Distributed generation can be observed as a depression in system demand when observed from the 

operational point of view. This presents distinct problems for planners during loss-of-infeed events as 

disconnecting load will also result in disconnection of generation, and it can be difficult to estimate 

what the gross demand in a given section of network is.  

One method of limiting the damage of major system disturbances is rota disconnections or load 

curtailment, whereby the system operator will disconnect load that cannot be met by available 

generation and will cycle through regions in turn disconnecting demand as necessary. During 

frequency deviations following large loss of infeed, however, automatic LFDD relays may activate to 

disconnect loads at distribution centres when given thresholds are exceeded to contain frequency 

within set bounds and prevent further system degradation. Such regimes are described in [72] and in 

the Grid Code itself [73].  

Changing frequency responsiveness of the network, increased penetration of constant-power devices, 

and loss of inertia make LFDD schemes of critical importance in such times. Their primary aim is to 

curtail load to keep frequency above levels at which generators might start to disconnect due to 

underspeed protection – the principle being that it is better to endure a bit of pain to save the majority 

of the system than to try and save the whole network, fail, and suffer a total blackout. Such large scale 

deviations necessitating these interventions are generally associated with multiple concurrent losses 

of infeed and interconnectors in a short period of time, with LFDD acting as a “last resort” intervention 

on the system. The last time such a measure was deployed in the GB, at the time of writing, was August 

2019, though the last time previous was as far back as 2008. 

When LFDD relays are allocated and deployed on the network, they are done so on the expectation 

that each relay will disconnect a given percentage of total system load and so at each threshold there 

will be an expected level of demand reduction to return the system to a more stable state. If there is 

inadequate load shed at a given stage of tripping, the frequency may continue to degrade to a further 

stage, resulting in further shedding of load. In the worst case, incorrect setting of LFDD levels could 

see a “ping-pong” effect between UFLS and over-speed tripping of generators leading to a system 

blackout. Therefore, it is critical that the expected level of load shed planned for such events 

corresponds with what is actually likely to happen on the network during such an outage. 

However, given the correlation between weather conditions and DG output, the percentage of load 

which could be tripped from a given network feeder will vary over the year. In networks with 
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significant DG penetration, distribution feeder flows can become bi-directional, for example in 

residential areas with significant solar PV during the summer. Tripping such feeders would not only 

not decrease system load, it could have the net effect of decreasing net system infeed by tripping off 

distributed generation in tandem with load, exacerbating the problem. Conversely, if there is simply 

less demand than expected at the connected load, this would lead to larger frequency deviations, and 

further frequency degradations and tripping events. The thresholds used in the GB LFDD scheme are 

shown in Figure 2.12, taken from [72]. 

 

Figure 2.12 - LFDD disconnection thresholds on GB system and indicative percentage of time spent at frequency level in 
2016-17 

It can be observed that GB spends the majority of the time hovering around the 50Hz mark, as would 

be expected. Any failure to constrain frequency deviations at each threshold could lead to 

unnecessary, extraneous load disconnections or a cascading series of outages and events culminating 

in a black start event. Therefore, it is important that relays are set at appropriate locations, and 

expected return of load curtailment matches what is actually happening on the network. 

Unfortunately,  as highlighted in [72], these LFDD arrays are not 100% effective at arresting frequency 

deviations and the problem gets worse with increased penetration of DG and falling levels of system 

inertia. Higher levels of inertia are associated with more successful LFDD actions in the simulations 

undertaken in [72], shown in Figure 2.13. 
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Figure 2.13 - Successful LFDD actions as %age w.r.t. system inertia 

As t lower levels of system inertia, the RoCoF relays are triggered by the loss of infeed. This reiterates 

the importance of having either strong system inertia or frequency response capable of mitigating the 

impacts of large-scale infeed losses. 

Work has been performed examining the potential of “wet devices” – washing machines, tumble 

dryers etc. – or thermostatic loads such as refrigeration for frequency response, with an example 

demonstrated in [74], and principles for estimating response from such response regimes investigated 

in [75]. A challenge with such methods is getting consumer buy-in and estimating the firm response 

capability of such techniques. As much of 4% of total active demand reduction via wet appliances is 

possible according to [74], assuming 29% of households take part. However, retrofitting devices to be 

able to take part in such demand aggregation services could be inherently costly with significant 

uncertainty as to the potential return for investors.  

Similarly, those who can afford the luxury of being able to purchase new “smart” technology may 

simply not respond to changing price signals incentivising them to shift load overnight or to allow their 

devices to be used as flexible demand. Research needs to be done on understanding the necessary 

drivers to incentivise users to take up such devices to allow greater penetration of demand 

aggregation of such devices at a system level, as well as the contractual and economic frameworks to 

allow trading of such resources in a way which does not disproportionately increase system risk. 

Research has been performed on incorporating such demand response into the formulation of 

security constrained optimal power flows, however, as demonstrated in [76].  

Interconnectedness and smartness of network-connected devices, and the proliferation of smart 

metering and control devices on networks, offer ample opportunity for improving resilience without 

the requirement of major investment in system assets, be that of the form of line reinforcement or 

investment in new generation facilities. 
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2.6 Conclusion 
Clearly, modelling weather-related system perturbations is a complicated and challenging task which 

covers a wide range of factors – even without going into significant detail concerning repair times and 

how networks are represented in the modelling. Further, even with the substantial scale of the issues 

discussed here some have still had to be excluded and deemed out of scope, e.g. protection, 

resonance/harmonics, etc.  

The factors chosen and discussed here represent the factors which were deemed to be most relevant 

for subsequent analysis and those which were likely to be the most significant in the context of 

resilience studies. For instance, the outages in Australia and England and Wales which were described 

were associated with random outages paired with frequency-related demand disconnections or trips 

at times of relatively high wind power infeed. This implies that areas of significance in resilience, in 

these cases, were; frequency response, impacts of wind on the power system, cascading outage 

simulation- the protection on the grid side actually generally acted as it should have.   

Therefore, factors which in some way could be most easily related to the phenomena driving these 

outages were chosen and examined. Clearly more work could be done in areas such as thermal shock, 

flooding, and lightning, particularly in the context of climate change, but system boundaries have to 

be drawn somewhere. Hence, given the focus on power system reliability and resilience associated 

with extreme wind understanding what drives these wind outages and the impacts they have on the 

system itself should be prioritised.  

As has been previously discussed, in the context of weather-related outages on the system an “event” 

can relate to any number of different things. The “event” could be the storm which drives the failures 

on the system, but equally the “event” could be everything that happens after a line or generator falls 

out of service. The “event” could simply be a line falling out of service. Therefore any analyst should 

be clear in defining what exactly the scope of the modelling being undertaken actually is. 

In the rest of this thesis, the themes raised and discussed in this section will in turn be explored to 

understand the most significant features involved with modelling dependent, extreme-weather 

related faults and the challenges which arise from this; how we can model the relationships between 

extreme wind and system risk; how to quantify that risk; and potential means of mitigating that risk 

operationally.  
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Chapter 3 A simulation framework to investigate the effect 

of extreme wind on a power system and sensitivity to 

weather-fault relationships 
 

Abstract 

In order to begin to investigate the relationships between extreme weather and corresponding impacts 

on power systems, a clear framework needs to be established to allow investigation of such events and 

the relationships between different data types and the corresponding outputs of simulation models. 

To that end, a framework for simulating weather-induced dependent faults across networks is 

proposed and demonstrated on a truncated GB network representative of the Scottish and Northern 

English network.  

Different weather scenarios are simulated on the test network considering location and wind-speed 

intensity, analysed using Monte-Carlo simulation. The sensitivity of the network to co-occurrence of 

faults is adjusted by changing the sensitivity of network assets to wind speed via an exponential 

function. Greater sensitivity to wind speed induces a significant increase in outages, as reflected by risk 

metrics, specifically Expected Energy Not Served and Expected Maximum Load Shed. This model is 

intended to be tractable and portable to other natural hazards but the context considered herein is 

extreme wind. The abstractions and approximations used are demonstrably broad and simple, but are 

illustrative of the challenges associated with data collection and are intended as placeholders for more 

robust models and implementations. 

Relevant Publication: M. Jamieson, G. Strbac, S. Tindemans, K. R. W. Bell, “A Simulation Framework 

to Analyse Dependent Weather-Induced Faults”, in IET Conference on Resilience of Transmission and 

Distribution Networks, Birmingham, 2017 
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3.1 Introduction 
Combining weather, climatological, and power system simulations then presents a complex challenge 

for planners and those who wish to investigate these phenomena in any great level of detail. The 

interactions between these models will vary significantly, as will the sensitivity of the metrics used to 

quantify system risk to the input data. Historically in computer science the concept of GIGO or 

“garbage in garbage out” has been used to describe the relationship between input data with the 

results which come out of it. In other words, the results extracted from any data-driven simulation 

framework or model are generally only as reliable and robust as the data on which those models are 

based.  

Conclusions drawn from inadequate data or models, if the data is of poor quality, have to be viewed 

and understood with an understanding of the flaws inherent in the source data and conclusions drawn 

with that in mind. As a first step in the research project, an attempt was made to clarify exactly what 

data is necessary, how that data interacts with each other data in a given simulation, and what kinds 

of results are useful to extract.  

Typical outputs from reliability and risk assessments take the form of values such as EENS and 

expected costs associated thereof. This will inherently be sensitive to both the modelling of the 

probability of such events, and of the quantifying of the impacts and costs associated with those 

events which have been simulated. Therefore there is a relationship between the costs associated 

with mitigation of events and the probabilities of the events a planner wishes to defend the system 

against.  

What an “event” constitutes also has to be clearly defined. An “event” could be a “ramping” event 

where the demand suddenly increases across the power system due to a concurrent, system-wide 

event. For example, half time during the world cup final with people all over the country putting on 

their kettles; or between 5 and 7 PM in countries like the UK, when 9-to-5 workers begin to return 

home and put on ovens and heating to prepare food and rest and lighting loads increase across 

domestic, commercial, and industrial properties. These events are largely predictable and can be 

scheduled for well ahead of time with knowledge of the sporting events’ schedules or other television 

schedules themselves, and can be assumed to act relatively homogenously across the network 

dependent on viewing habits of the population (though, naturally, there will be regional variation – 

one may not expect as significant ramping in Scotland in a World Cup final in which England was 

playing compared to in England itself due to historic sporting rivalry). 

Another type of event could be “ramping” of wind or solar power – that is, significant variation in the 

output of renewable energy sources due to variations in the weather systems driving them, as 

described in [6]. This has different degrees of predictability in tandem with modern meteorology’s 

capacity for short to long-term predictions of weather and climate phenomena. Moving cloud and 

high wind speed shutdown can cause significant fluctuations in the power output of renewable 

generation. Similarly, cold or warm fronts could cause regional variations in heating demand, 

particularly given the relationship in temperate countries such as the UK between heat demand and 

cold temperatures. 

The events to be analysed in this section are more distinct, however. Specifically, wind-induced 

overhead line failures and random outages on generators concurrent with this shall be simulated for 

given incident weather events with a variety of synthesised relationships between wind speed and 

OHL failure rates to, first of all, set out a modelling framework to investigate the relationship between 
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incident extreme wind events and OHL failures, and the sensitivity of the simulation of such events to 

variation in the relationship between given weather conditions and the metrics used to quantify the 

impact of such events. 

This section shall outline a generalised framework for the analysis of climate and weather related 

events on a power system, and use that framework to investigate an assortment of weather events 

on a power system with changing relationships between the incident natural hazard and the test 

system. This work was presented at the IET International Conference on Resilience of Transmission and 

Distribution Networks 2017 and an associated conference paper can be found in [15]. 

3.2 Simulation Frameworks 
There are multiple different approaches that can be used when simulating dependent, weather 

induced failures. The simulation of specific features such as OHL failures shall be discussed in more 

detail in Chapter 5, as well as a discussion on the strengths and weaknesses of these approaches, but 

this Chapter shall look at the features at a more high level. 

An example of a simulation structure for examining fault events and cascading is shown in [77], and is 

shown in Figure 3.1. This approach is more commonly known as the “Manchester Model”, from 

2002/03. 

 

 

Figure 3.1 - Approach for modelling cascading large-scale outage events 

A more recent example can be observed in [78], which takes consideration not just of corrective 

actions and load flow but of frequency response also. This is illustrated in Figure 3.2.  
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Figure 3.2 - Approach for simulating cascading outages considering frequency response 

Between them, these approaches outline how one may simulate the degradation and cascading 

outage of a system given a set of line or generator outages, but they do not outline specifically how 

weather or climate may interact with these models, rather the simulation of these events once the 

outages have already taken place. This is discussed in [54] in the context of quantifying resilience 

with their approach illustrated in Figure 3.3. 
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Figure 3.3 - Simulation framework for resilience analysis associated with natural hazard demonstrated by Panteli et al 

It should be noted that the Greek characters refer to specific performance metrics for resilience used 

in the referenced paper (anglicised as “FLEP”). These, at a high level, refer to how long an event lasts, 

how quickly it degrades, how bad the event becomes, and how swiftly the system recovers from the 

initial event.  

Unlike the other iterations, this does take consideration of weather-related factors in the simulation, 

but does not take consideration of frequency response or cascading events in the analysis. So while 

there are overlaps in these analyses, there are also gaps. The following simulation structure is 

proposed to cover these associated features, taken from the paper presented in [15]. 
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Figure 3.4 - Proposed simulation structure to be demonstrated 

Unlike the other structures illustrated, this combines the possibility for climate-based analysis, 

simulation of common-mode perturbations (in however much detail the user desires as detailed in 

the Fault Simulator, and illustrates clearly the flow of data within such a simulation and a generalizable 

software approach for future analysis. The rest of this Chapter will outline specifically the significance 

of each block and how they fit into the structure, and the types of result which can be extracted. 

The representation shown implies a single pass “scenario” simulation, but equally loops could be 

applied between the Reliability Data block and the Fault Simulator block for multiple runs or sensitivity 

tests where climate models are used to modify the incident weather data used for the scenario/fault 

simulation. The titles of the blocks represent high-level descriptors of the functions being undertaken. 

For example, Fault Analysis as a block is used to analyse and process the outputs of the scenario 

simulation such that results can be computed into a format useable and presentable e.g. visually. 

The use of the Climate Model could arguably be applied to the weather data rather than the weather 

model directly. However, this depends on what the intended interpretation of the results are, and 

whether the focus is on sampling from weather data and adjusting it for changes in climate or whether 

modelling changes in climate and using that to determine what the weather state might be in the 

analysed scenario. That is, whether the sample is drawn from the weather data and modelled for 

climate or drawn from a climate projection and a weather state is implied. In this case, a weather 

scenario was generated but unmodified by any climate model, and so the Climate Model block is 

indicative. 

The system boundaries can also be clearly identified via the hashed outlines. These separate what is 

acting as an exogenous force on the power system – the natural hazard, driven by external factors – 

and the power system itself. In this sense, the natural hazard can be understood as a threat acting 

upon vulnerabilities inherent in the system, such as is described in [79]. This is comparable to a Swiss-

Cheese model of resilience, insofar as the natural hazard is acting on the power system via whatever 

aspects of that power system are vulnerable to it. In the analysis undertaken herein, this can be 

understood as extreme wind acting as a threat upon a vulnerability, specifically exposed overhead 
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lines. The blocks of the model shall be discussed in greater detail later in this section but a brief 

summary is provided here. 

The framework is broadly separated into data sources or outputs and scripts/software processing. In 

order to begin to simulate the impacts of extreme weather and natural hazards on a power system, 

fundamentally, one requires an understanding of both the network on which the weather is acting 

and the weather model itself. Thereafter, assumptions can be made about the fundamental 

relationships between these two. 

In this case, with some sourced Network Data, a module is necessary to convert this source data into 

a format which can be utilised by any subsequent analysis – the Network Builder. The Weather Data 

also needs to be in a format such that can be applied to the power system in any subsequent 

simulation and linked with the Network Model in such a way as there are clear fault-parameter 

relationships. For longer term simulations or modelling, a Climate Model could also be used to modify 

the Weather Model in some fashion to make future projections, as is done in e.g. [7]. 

The Fault Simulator in many ways reflects an aggregate of the models previously described but 

contained within one “package” and placed in the context of the wider analysis, and the nature of this 

simulator will vary based on the type of analysis being undertaken and the types of result one wishes 

to extract from the modelling being performed. 

Finally, the Fault Analysis module collates results from different samples or scenarios generated or 

computed within the Fault Simulator and outputs them in a productive or informative manner 

dependent on the context. For reliability analyses this could be, for instance, a distribution of ENS 

values or specific EMLS/EENS values. The ENS represents the aggregated load curtailment in a given 

situation or single sample. Conversely, the expected maximum load shed represents the average 

largest value encountered of load curtailment recorded in each simulation, averaged across all 

simulations. The EENS is the average energy not served, averaged across all simulations. For resilience 

these metrics will require more refinement than typical, gross estimators of performance such as LOLP 

(loss of load probability) or EENS, but that will be discussed further in Chapter 5. 

3.3 Implementation of simulation framework and description of components 
The implementation of the model utilised here, and for all subsequent modelling performed in this 

research, was done so in the python programming language. This is due to the fact python is an open 

source, accessible language with a wealth of supporting online literature, a broad range of 

functionality and libraries, and many power-system specific libraries available for researchers. The 

specific tools used in the power system analysis shall be described in the Fault Simulator section. The 

framework and flowcharts described here should be interpreted as illustrative, rather than exhaustive, 

descriptions of the underlying processes. 

As only a very basic implementation was developed at this stage, representing a simplified 

representation of many phenomena, the power flow calculations were performed by an open-source 

power-flow library developed for python called pandapower [80]. Further, as only a very basic 

representation of the spatial distribution of weather was used, historic data for a specific location 

(Glasgow) was chosen to synthesise hypothetical events, taken from NOAA [81]. This was initially half-

hourly resolved but was reduced to hour-resolution to match with the failure rates and restoration 

rates used within the software. 

3.3.1 Network Builder module 
This component of the framework pertains to taking network data from raw data files, such as .dat or 

.csv files, and processing it into a format which is usable in a python package. Within pandapower the 
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linearised DC approximation was used for the load flows, which requires information on the following 

features of a power system: 

 Generators 

o Maximum, minimum real power (kW) 

o Bus connection 

o Fuel cost 

 Loads 

o Real power demand (kW) 

o Bus connection 

 Branches 

o Connectivity (to, from busses) 

o Reactance X (p.u.) 

o Capacity/rating (kW) 

 External grid connections 

o Bus connection 

 Buses 

o Reference bus 

o Location or weather “region” 

This data was extracted from .csv files into the python software into a format useable by pandapower- 

the module effectively acting as a consolidator for disparate data sources into a more compact 

representation that can be utilised more specifically. This module could also be called for changes to 

network topology. The module is also used to reconnect disconnected islands following line 

restoration. The generalised construction of this module of the framework is as illustrated in Figure 

3.5. 
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Figure 3.5- high level flow diagram of Network Builder 

These features allow the calculation of the power flow via means of a linearized DCOPF, but the next 

step then – to perform reliability or resilience analyses – requires information on the failure mechanics 

of different assets on the system.  

3.3.2 Data Processing module 
This is a broader purposemodule which, for instance, is used to modify or extract features from the 

source data – for example to sample the 30-minute resolved data into hourly blocks.  

This can broadly be described in the general form as shown in Figure 3.6. 
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Figure 3.6- High-level representation of Data Processing algorithm 

An example is shown for the processing of weather data into hourly format to demonstrate the 

general principle in Figure 3.7. 

 

Figure 3.7 - example of deployment of Data Processing module 

Different types of data will require different levels of processing and will interact with each other in a 

different way so this diagram is intended to be indicative of the general process at work. 

3.3.3 Weather and Climate Models 
Weather and climate, though related, are different concepts which should, in large scale simulations, 

be treated as separate concepts. That is, weather is an expression of underlying climatic drivers which 

change the distribution, frequency, and magnitude of weather events. In this case, only weather is 

being considered but it was deemed important to include reference to the higher-level climate models 
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which can affect the weather-systems which may impact a power system. These have already been 

discussed – the NAO, for example. 

In order to perform subsequent analysis, these weather models then require a relationship with failure 

rates on the system so that dependent, weather-related faults can be simulated across the system. In 

a larger scale analysis, weather conditions at a given location can be sampled from a distribution of 

weather generated from historic data, which can then be shifted by a climate model. For this 

implementation, representative 24-hour weather “events” were synthesised as examples of typical, 

or indicative, events. 

3.3.4 Fault Simulator 
The Fault Simulator block combines weather and network models, with a given relationship between 

the two, to generate credible fault scenarios for subsequent simulations and to simulate the 

consequences of these outcomes. In this implementation the actual simulation of these perturbations 

is relatively basic- using a DCOPF and heuristics to calculate the load curtailment, and hence ENS, 

associated with a given fault state. 

This requires a relationship between the weather and network models to generate credible failure 

scenarios with known probabilities. In this case, an exponential distribution of faults is assumed which 

can be represented by the standard formula; 

 𝑝(𝑓𝑎𝑢𝑙𝑡) = 1 − 𝑒−𝜆𝑔𝑡  (3.1) 

where t is the size of time-interval in which the fault probability is being computed  (assumed to be 

1 hour), λg is the failure (or, indeed, restoration rate) of a given asset, and p(fault) is the probability of 

fault (or restoration). That is, in this case, the probability that a given asset fails or is restored within a 

sampled hour. 

The following approach and heuristics are used to simulate fault scenarios in this model. Some factors 

involved working around the limitations of the software as it was implemented at the time, which, in 

future implementations, may not be necessary (and, indeed, in Chapter 5, are addressed wholesale). 

 Import network state data and weather data 

 Sample across assets to generate perturbation state 

 Determine if discrete fault state has already occurred 

o If so, load results from memory 

o If not, continue 

 Perform simulation (load flow) on network state 

o If converges, supply can meet demand 

o If not 

 “Generators” representative of load shedding are created on buses without 

generation with cost function representative of value of lost load (VoLL) to 

attempt load shedding until convergence 

 If this does not work, load is uniformly shed in 5% increments until system 

convergence or until no further load available to shed 

 The results of the state are then recorded 

This implementation was built around pandapower’s DCOPF functionality at the time of writing of the 

paper to demonstrate the principles of the approach, which treated loads as fixed and minimised 

generation dispatch cost. The total load curtailment used in each sample was then aggregated to get 

performance metrics for the simulation as a whole. The generalised approach is shown in Figure 3.8. 
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Figure 3.8- high level flow diagram of Fault Simulator module 

3.3.5 Fault Analyser module 
This module simply takes results from the samples simulated within the Fault Simulator and computes 

reliability and performance metrics accordingly. These results can then be used to compare the 

performance of different system topologies, or to compare the severity of different weather events 

assuming different incident natural hazards or relationships between failure rates and incident 

weather conditions. For instance, the relationship between a natural hazard and failure rates can be 

modified to determine the sensitivity of an output metric to that relationship. 

3.4 Models and data used within model and implementation 
The data sources and approaches used within the model and its implementation are detailed here. It 

is worth emphasising that the aim of this framework was to investigate the assumptions and 

challenges necessary in weather-related power system modelling, and the volume of data required 
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meant that assumptions and abstractions on all levels were necessary. The emphasis was on getting a 

functional framework in place which demonstrated the principles of the approach where each aspect 

could then subsequently be improved upon as the interactions between models and data could be 

more clearly understood in the context of a wider simulation framework. Nonetheless, the specific 

data sources, abstractions, and assumptions are outlined here with a discussion of the strengths and 

weaknesses which shall be further discussed in the Discussion and Key Findings section of this chapter. 

3.4.1 Cost function modelling of generators 
Cost functions for generators were derived from the Reduced GB network model developed at the 

University of Strathclyde according to principles set out in [82] to the requirements set out by the 

software [80]. The analysis in this implementation is not intended to be a fully-fledged economic 

analysis, rather a comparative study for different sensitivities to network-hazard models, and so the 

priority was not on ideal representations of cost-functions on generators, rather having estimates 

which were at least broadly representative. 

The OPFs in this stage of the implementation were only intended to determine whether a feasible 

solution for a given perturbation state could be determined to make an estimate of the total load 

curtailment. While non-optimal load flows could be used, using OPFs was deemed to be appropriate 

for future developments which may require more stringent, robust economic modelling. The emphasis 

was on developing a framework and structure which worked and could then be improved once the 

interactions and modelling were clearly identified and defined. 

The pandapower casefile in the implementation of the simulation aggregates generators at nodes to 

single generators utilising the maximum cost function at the given node. Again, this was for simplicity 

and simulation efficiency and further detail on such simulations is developed and described in Chapter 

5. 

3.4.2 Non-weather failure and repair modelling 
Line and generator service status are modelled as two-state Markov models, parameterised by time-

dependent fault and repair rates. Failure rates for OHL were derived from reliability system taken from 

the Transmission Availability Data System [51]. A failure rate λf of 4.57x10-6
 /hr/km (~1 per 25 years) 

was used with a restoration rate λr of 0.03 (or a mean time to repair (MTTR) of 33hr) for OHL. The 

failure rate and restoration rates associated with generators were derived from the IEEE 1996 

Reliability Test System (hence referred to as the 1996-RTS) [61]. These values equate to 5x10-4/hr (or 

~1 per 12 weeks) with an associated repair rate of 5.95x10-3/hr (or a MTTR of ~1 week). 

The “external grid” representations used represent the boundary connections to England and the rest 

of NGET and are assumed 100% reliable (though their connecting branches to the rest of the network 

are not). Loss of these is assumed to induce a blackout condition on the subset network modelled (the 

nature of this network will be explained in the relevant section). This also helps to represent how 

significant the North-South boundary is in such investigations, but also may represent an inherently 

conservative assumption given it may be possible, with adequate planning, to run Scotland as an 

independent island from the rest of the GB MITS.  

3.4.3 Weather-related fault, repair modelling 
In order to simulate the effects of extreme wind on OHL, relationships between observed wind speed 

and failure risk are postulated. As demonstrated in [27] and [64] this can be achieved by using Bayesian 

methods and data clustering to form data-driven models of the relationship between a natural hazard 

and failure rates but is heavily dependent on data availability for the specific natural hazard being 

investigated.  
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Though extreme wind is not uncommon on GB, failures of double circuits or transmission assets, 

relatively speaking, are, particularly in terms of the timescales in which climatic reanalysis weather 

data is available (typically around 30 years). This means significant uncertainty in the long tail of the 

data which can make projections made based on this data problematic dependent on the context in 

which the analysis is being performed. 

Collecting the data for analysis and Bayesian analysis presents its own challenges, and the quality and 

quantity of data collection varies significantly between network operators and owners [27]. Further, 

demarcating weather faults from non-weather faults can also be difficult, as well as classifying fault 

states where multiple fault-driving phenomena may be acting (e.g. wind and snow, snow and ice, etc.). 

This is a strength of fragility curves in that they can be formulated to clearly separate different fault 

drivers and impacts, e.g. to more clearly separate weather and non-weather faults. 

Incorporating geographical data for buses and lines, weather conditions can be distinguished across 

sections of networks to be considerate of different weather systems (as opposed to homogenous 

“adverse” storm failure ratings applied across a system). These different methods shall be examined 

in detail in Chapter 4, but in general two standard approaches can be defined: 

 Assigning buses to weather zones or regions with homogenous conditions, for example as is 

done in [83], and taking the more extreme weather parameter for lines which traverse 

different regions 

 Assigning weather to individual nodes and taking weather conditions from the more extreme 

end on branch connections 

Reliability parameters – failure, restorations, etc. – can be corrected for individual asset types or 

aggregated to be representative of entire asset classes. In this implementation, all lines were assumed 

to have the same per-km failure rates. Failure-weather relationships were postulated to give 

reasonable relationships with comparable values to similar research – for example in [84]. 

The fault rate is an exponential function of the incident wind speed with the relationship between 

wind speed and line failure rate postulated as  

 𝜆𝑤𝑓(𝑡) =  𝑙 ∗ 𝑒𝛼𝑓(𝑤(𝑡)− 𝑤)̅̅ ̅̅
∗ 𝜆𝑓    (3.2) 

 

where λwf is the weather-related failure rate, λf is the non-weather rate (or, equivalently, the failure 

rate at mean wind speed), l is line length, w(t) is the wind speed observed and w is the mean wind 

speed over the entire yearly “Glasgow” dataset from [81];  is a sensitivity parameter.. This allows the 

sensitivity of lines to wind-related faults to be adjusted and compared across different scenarios. The 

formulation used for asset restoration rates is  

 

𝜆𝑤𝑟(𝑡) =  {
𝜆𝑟, 𝑤(𝑡) < 𝑤̅

𝑒𝛼𝑟(𝑤(𝑡)− 𝑤)̅̅ ̅̅
∗ 𝜆𝑟, 𝑤(𝑡) ≥  𝑤̅

 
(3.3) 

 

 

whereby an assumption is made of a baseline level of performance upon which cannot be improved, 

but steadily degrading restoration rates for increasingly adverse weather conditions. The sensitivity 

parameters to be used in the simulation are as shown in Table 3.1. 
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Table 3.1 - Sensitivity parameters used in simulation 

Sensitivity αr(sm-1) αf (sm-1) 

Max (SMax) -0.01 0.159 

Medium (Smed) -0.01 0.123 

Negligible (Sneg) 0 0 

 

This allows different levels of sensitivity to wind to be tested in the simulation to get an indication of 

the significance of the hazard-failure-rate relationship. A positive an value infers an increasing rate w.r.t 

the weather parameter, with a negative rate implying a falling rate. In practical terms, this means 

increasing failure rates w.r.t increasing sensitivity of weather, but falling restoration rates as repair 

efforts are hindered by inclement weather conditions. 

The values were selected and validated such that the longest line under the highest observed wind 

speed w (56ms-1 in the selected data set) was associated with a failure probability of 0.99 in the 

sample hour for the Max case, 0.50 for the Medium case, and equivalent to the probability of 

random failures based on the TADS data for the Neg case. TADS data discriminates by cause but a 

generalised failure rate was presumed for portability and such that the comparisons were based on 

consistent assumptions. Gross values are given for e.g. mean time to repair (MTTRs) for different 

asset classes. An extract of the data used to derive these values is shown in Figure 3.9.  

 

Figure 3.9 - TADS data extract showing representative data values 

TADs also provides data regarding what is driving these events by cause. An illustrative example, 

extracted from the data, is shown below in Figure 3.10.  

 

Figure 3.10 - representative data illustrating causes of faults in TADS data 

Wind itself is not identified as a key driver of the data in TADs which suggests it is not the prevailing 

driver behind the failure rate and so the value used for Neg can be assumed to be largely independent 

of the effects of wind relative to other factors identified in the modelling. Discussions with the, at the 

time, project’s industrial partners and comparison with typical values found within the spreadsheet 

for transmission OHL were used to ensure the presumed values were appropriate for the application. 
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Restoration rate sensitivity was arbitrarily assigned to infer a lowering of restoration rates, with the 

assumption that in real world case-studies this could be more definitively adjusted based on data on 

restoration times.  

As an illustration of the failure rates, the SMax failure and restoration rate correction factors are 

shown in Figure 3.11, taken from the published paper associated with this Chapter [15]. 

 

Figure 3.11 - Failure, restoration rates w.r.t wind speed for SMax test case 

The intersection of the lines occurs at the mean wind speed of the sample set, ~9ms-1. With the given 

weather and failure/restoration models, and infrastructure in place to perform a study of a given test 

network, all that remains is to determine a test network on which the implementation can be tested 

and specific weather events which can be used to examine hypothesised weather events. 

3.5 Case Study – truncated GB Network representation 
Filling in each of the “blocks” alluded to in Section 3.2 leads to the final parts required to perform the 

study – a network model and weather data which can be assigned to this weather model. Owing to 

the rudimentary implementations of the simulator used thus far, only a basic abstraction of the GB 

network was used for a case study to demonstrate the fundamental principles of the simulation 

approach that would be tractable enough to be useful in a security assessment. To that end, an 

implementation of the Reduced GB network model developed at Strathclyde University was used [82], 

and adapted to be suitable for pandapower implementation. This represents a very basic proxy of the 

Scottish and Northern English networks with the B6 boundary approximated by two “external grid”, 

distributed slack buses at the southernmost points represented at buses 9 and 10 in Figure 3.12 again 

taken from [15], with a representation of the Reduced GB model developed using techniques from 

Chapter 4 show adjacent to show the approximate geographic locations of the buses. The line 

illustrates the cut-off point from GB. 
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Figure 3.12 - Illustrative network topology with relative positions of nodes 

 

Line lengths were estimated using the 2011 National Grid Seven Year Statement (SYS) by determining 

line routes and summing up the associated line lengths manually. These values were then used to 

determine the associated failure rates for different points in time on different lines. The loads were 

assumed to be constant in time based on the Reduced GB model with a total nominal system load of 

8,075.5MW. 

Using this network model, different scenarios could be proposed and simulated in the framework, 

created from historic data and adapted to a format that could be utilised in the simulation model. The 

wind speed profiles were selected from historic wind speed data and are intended as feasible timelines 

of weather conditions as opposed to being representative of reanalysis data such as MERRA-2, which 

is used in Chapter 4. The wind profiles used in the study are shown in, from [15].  

 

Figure 3.13 - Wind speed profiles used in study 

The source data is resolved in 30-min windows and resolved into 1-hour blocks. These were chosen to 

be representative of different hypothetical scenarios – a “low” wind profile with mean wind speed of 

6ms-1, an “average” representative wind day with mean wind speed of 9ms-1, a “high” wind speed day 

with mean of 15ms-1, and a wind storm created from this by doubling the wind speed values to make 
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a hypothetical “extreme” wind speed event with mean of 30ms-1 and maximum of 56ms-1. The 

portability of this approach means any historic wind data could be used, but these were chosen to slot 

in to demonstrate the approach’s functionality. 

Various different weather storm scenarios were then applied to the test network using these 

hypothetical wind profiles. These were as follows: 

 “Extreme” applied at buses 1, 2, and 3 with “Average” applied everywhere else – North 

 “Extreme” weather at buses 5 through 10 with “Average” applied everywhere else – South 

 “Low”, “Average”, “High”, and “Extreme” days applied homogenously across the system 

In this sense again it makes sense to clarify the distinction between incident events and subsequent 

“events”. That is, a storm in itself can be considered a causal “event” which causes a system state with 

various outages. A perturbed system state can in itself be considered a separate “event” which can 

have any number of causes. I.e. If n lines are lost on a system, the causal event can largely be 

considered separate from the simulation of the outages themselves – the line losses could have been 

caused by wind, snow, or wildfires – but in this framework effectively the Fault Simulator just 

considers this as an independent perturbed state, agnostic of whatever may have caused it. This is 

why it is important to clearly define the relationships used within the simulation model in order to 

make it portable and tractable to consider different simulation types, and different natural hazards. 

The simulation scenarios were played out as follows:  

 System state initialized assuming all assets in service 

 The selected initial 24-hour weather event was applied to the system with lines sampled with 

calculated failure, restoration rates 

 Low wind profile then applied to system and system continually sampled until all PNS in final 

sample = 0. That is, the load curtailment is zero because lines and/or generators on the system 

have been repaired. 

Two metrics are calculated and reported by the simulator – the expected energy not supplied (i.e. the 

EENS), and a metric called Expected Maximum Load Shed (EMLS). This simulation was performed for 

100,000 samples or until the standard error of the EENS observed was ≤ 5% of the expectation after < 

100 samples taken. If error >5% in an output value, it can be assumed that this result’s simulation was 

terminated at 100,000 samples. 

The final results of the tested scenarios are tabulated in Table 3.2  
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Table 3.2 - Output results of case studies 

Case EENS (MWh, SMax) EENS (MWh, Smed) 

North  275±16 91±12 

South  3088±154 85±10 

Low  No events  3±3 

Ave  3±3 No events 

High  6±5 No events 

Ext  7316±366 217±13 

Case EMLS(MW, SMax) EMLS(MW, Smed) 

North 62±2 12±1 

South  72±7 17±1 

Low No events 0.1±0.1 

Ave 0.1±0.1 No events 

High  0.2±0.1 No events 

Ext 62±10 51±2 

 

The resultant metrics can then be observed to be significantly responsive to adjustments in the 

sensitivity of OHL to wind faults. The increasing sensitivity to faults in this model increases both the 

probability of adverse states occurring and individual faults, and the probability of multiple faults 

happening simultaneously.  This increases both the EENS and EMLS – that is, the expected “badness” 

of a fault event, and the expected total energy not served across an event. Further graphical 

illustration is provided of the EENS and EMLS results in Figure 3.14 and Figure 3.15. 
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Figure 3.14 - Comparison between Smed, Smax results for EENS 

 

Figure 3.15 - Comparison between Smed, Smax results for EMLS 

The locational impact of the weather in this case is particularly significant due to the heuristics used 

to represent the B6 boundary. That is, the most significant loss events are associated with the loss of 

branches connecting nodes 9 and 10. When the network is less sensitive to the impacts of weather, 

or the storm event is away from the South of the network, the resultant risk metrics are accordingly 

much lower. Lower sensitivity or extremity of weather conditions on buses 9 and 10 are associated 

with loss of the boundary connections and total loss of infeed from these connections. Though there 

is increased redundancy in the South, there is also more heavy reliance on the infeed from buses 9 

and 10 and greater consequences for the loss of these connections than those in the North, which has 

longer lines but less severe consequences for system damage. The EMLS for South Max and Ext Max 

cases are within standard error of each other emphasising the significance of the southern sector of 

the network on the overall reliability metrics used in this implementation. 

Ext cases are significantly greater than the North and South cases because there is a compounding of 

both the loss of connectivity to the external grids and the loss of load across all sections of the system 
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homogenously, severely impacting the ability to restore load across the system meaning the severity 

of events is that much worse. 

For the events at lower sensitivities and lower extremity of weather events the results are very 

sensitive to the lower probabilities of events occurring. That is, no events are recorded for the Ave 

Med cases or High Med cases, even though the EMLS and EENS for the Low Med cases is nonzero. This 

will be due to a very small number of loss events occurring at the long tail of the distribution, which is 

not unsurprising for analysis of HILP events. 

There were no loss-creating events recorded for the Neg sensitivity cases, and hence those results are 

omitted from the results for clarity. 

To illustrate the type of results which can be extracted from this methodology, a complementary 

cumulative probability distribution function of ENS for the Ext case (i.e. the extreme weather event 

applied homogenously across the system) is shown in Figure 3.16. 

 

Figure 3.16 - Empirical probabiliy that ENS exceeds given thresholds for Ext cases 

As can be determined by inspection, increasing the sensitivity to faults within the model increases 

both the probabilities of faults, and the extremeness of the potential outage events associated with 

the increase in coincident, common-mode outages. This specific chart was chosen to illustrate the 

most significant case differences and the importance of the region particularly above 105 MWh, where, 

for the Smax Ext case the outcome is heavily affected by a small number of extreme events (as can be 

determined from the “jagged” nature of the graph at extreme values where very few data points exist. 

3.6 Discussion and key findings 
By recording the EENS associated with different assets it could also be possible for planners and 

investors to rank the significance of different assets in security assessments to aid in resilience 

planning to lines associated with high risk. High risk in this context, of course, could mean either a high 

probability of failure, or significant consequences of outages associated with that outage. In this case 

the significance of the branches connecting buses 9 and 10 is clear, which suggests either the need for 

reinforcement of the network surrounding these nodes or that the modelling assumptions used are 

too conservative. 
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 Alternatively, different heuristics and less conservative modelling could be used to investigate the 

significance of the data and heuristics used – it may well be possible for the truncated network as 

represented to operate in islanded conditions, and the heuristics used may be too conservative and 

weigh the effects of these outages too heavily. But what can be clearly demonstrated is that the 

relationships used between a natural hazard and the outcomes of simulations associated with those 

relationships have the potential to have major impacts on the results of simulations and analyses of 

the impacts of extreme weather events.  

Of course the underlying models rely on significant abstractions and broad approximations. These, 

however, can all be replaced with more granular or appropriate models – the focus was on establishing 

a clear simulation framework in which the data models could be inserted or replaced, and factors 

which were not considered or missed in this analysis could subsequently be added to improve the 

realism of the model.  

What can be understood however is that the heuristics and assumptions made about the relationship 

between natural hazards and failure rates on a system and how those outage events are simulated 

clearly have a significant impact on the output metrics which can be extracted from the results. In this 

case faults in the Southern regions of the network drive the reliability metrics in the analysis because 

their high risk – in the Ext cases they have both high probability and high impact. The faults associated 

with buses 9 and 10 are particularly significant and highlight the importance of the heuristics used 

within the simulation itself, because it is assumed that loss of buses 9 and 10 automatically leads to a 

blackout conditions. However, the impact may be exaggerated by the simplistic representation of the 

consequences of outages on the system.  

Wind power’s impact on the system was also not directly considered, and the synthetic weather 

events generated may not be representative of realistic events in the world. Wind direction, too, was 

not considered in the analysis, nor was frequency or voltage collapse. The use of DCOPFs in such 

analysis is computationally convenient but, in reality, cannot fully capture the impacts of such events. 

The representation of OHL risk, too, was relatively simplistic, considering only point-to-point 

representations of OHL which cannot capture the spatial variation in risk across OHL on transmission 

networks. 

3.7 Conclusion 
This chapter demonstrated the development and implementation of a framework that could be used 

to conceptualise and operationalise analysis of extreme weather’s impacts on the power system and 

could be used in a tractable and portable manner to investigate climate and weather’s impact on 

power systems more broadly, with examples of metrics for analysing the performance of a given 

power system. 

Increasing the sensitivity of OHL to wind-driven faults clearly increases both the probability and impact 

of wind-related faults on the power system drives an increase in the probability of N-k events. This, 

accordingly, represents an increase in overall risk. For the same incident weather events, changing the 

sensitivity of the model to faults from wind can have an impact in the scale of orders of magnitude on 

the output metrics, meaning having accurate models of both the simulation of the outage events and 

restoration, and robust understanding of the probability of the events which drive outages, are of 

major importance.  

The strength of the proposed framework is that it clearly identifies the interactions between different 

models and illustrates, when assembling the simulation model, where improvements can be made. In 



Page | 85 
 

this case, at each stage there are clear improvements which can be made and which shall accordingly 

be addressed in the rest of the presented research in Chapters 4 and 5. 

Having a clearly defined framework allows the input data and models to be varied – as illustrated here 

– to demonstrate sensitivities, but also to allow investigation of what improvements can be made in 

processes to improve the performance metrics being analysed. Having a clear framework also allows 

the types of events to be changed to investigate different natural hazards or different events to 

compare the severity of different threats to power systems.  

Climate change presents as changing both the frequency and intensity of threats such as extreme 

storms and temperatures, and so having frameworks which can be used in a versatile manner to 

quantify the risk of these events is vital to ensure prevention, corrective, or mitigation investments 

are appropriately directed. Of course, in the context of reliability and resilience these investments will 

vary and the weighting of probability and impact may vary across them when directing resources.  

So long as there is a robust evidence base to justify why decisions are made, stakeholders can be 

confident in the decisions they make – especially if things go wrong or prevention plans fail. 

Investment decisions can then be justified based on the evidence and models that were available at 

the time, and the clearer the modelling is to stakeholders, the easier it is to make such justifications 

and defence of investment decisions made.  

Developing models which can clearly demonstrate the significance of such relationships and allow 

portability is clearly important, then, to tackle challenges associated with both quantifying and 

mitigating the challenges associated with resilience and reliability, which this Chapter has set out to 

do and demonstrated an example of an approach which could be taken to do so. 

The next step, then, is to improve on the areas of the implementation which were lacking. As has been 

mentioned, risk concerns both the impact and probability of an event. Therefore, in this case, in 

understanding the threats posed by extreme wind to the power system we need to assess whether 

current methods of modelling OHL risk are adequate, and whether the simulation of the consequences 

of those outages, when they occur, is adequate. The next focus then is on improving the 

representation of OHL risk on the power system in a way which can be meaningful and productive for 

planners, and also useful for more wide-scale simulations to quantify and analyse risk. 

Chapter 4, therefore, seeks to focus on the quantification of OHL risk and improve the representation 

of weather-related failure rates on power systems using more data-driven methodologies, and 

demonstrate those methods on more realistic representations of the GB network or sections thereof. 

This directly addresses one of the weaknesses in this implementation – the rudimentary 

representation of GB itself. Once a more appropriate representation of OHL risk can be demonstrated, 

this can then be combined with an improved simulation model for more robust resilience analysis and 

the lines between reliability and resilience can begin to be more clearly understood. Chapter 5 will 

concern itself with the power-system simulation associated with this improved representation of OHL 

risk. Another weakness in the implementation thus far was in the representation of wind power – 

insofar as it was not represented at all. This is directly addressed in Chapter 4 also, such that the effects 

of extreme wind on wind power can also be incorporated into resilience analysis at least at a 

rudimentary level. 
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Chapter 4 Quantification and visualisation of impact of wind 

data accuracy on failure rates on overhead lines and wind 

power output 
 

Abstract 

In this chapter, an approach is demonstrated to visualise overhead line failure rates and estimated 

wind power output during extreme wind events on transmission networks.  This is to improve the 

representation of overhead line fault risk and weather data use on transmission systems based on the 

weaknesses identified in the methodology deployed in Chapter 3. Reanalysis data is combined with 

network data and line failure models to illustrate spatially resolved line failure probability with data 

corrected for asset altitude and exposure. Wind output is estimated using a corrected power curve to 

account for high speed shutdown with wind speed corrected for altitude. Case studies demonstrate 

these methods’ application on representations of real networks of different scales. The proposed 

methods allow users to determine at-risk regions of overhead line networks and to estimate the impact 

on wind power output. Such techniques could equally be applied to forecasted weather conditions to 

aid in resilience planning. The demonstrated approaches are shown to be particularly sensitive to the 

weather data used, especially when modelling risk on overhead lines, but are still shown to be useful 

as an indicative representation of system risk. The techniques also provide a more robust method of 

representing weather-related failure rates on lines considerate of the altitude, voltage level, and their 

varying exposure to weather conditions than current techniques typically provide, which can be used 

to usefully represent failure probability of lines during storms. 

Relevant Publication: M. Jamieson, G. Strbac, K. R. W. Bell, Quantification and Visualisation of 

Extreme Wind Effects on Transmission Network Outage Probability and Wind Generation Output, 

IET Smart Grid Special Issue on Definition, Quantification, Analysis and Enhancement of Grid 

Resilience (Publication due December 2019) 
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4.1 Introduction 
As discussed in Section 2.3, and in Chapter 3, understanding both how likely a fault is, and where it is 

likely to happen, may have significant impacts on the results of power system security assessments 

involving the investigation of extreme weather events. That is, resilience and reliability both, as 

concepts, are reliant upon the robustness of the quantification of both impact and probability. Further, 

our ability to plan for and mitigate high impact events is reliant on knowing both where and how likely 

faults are to occur.  

Presently, methods used to quantify failure probability on lines does not directly consider both facets 

– rather, fragility curves convert an input parameter representative of a natural hazard into a 

corresponding failure rate or probability. The focus of this thesis is on extreme wind in particular, and 

so the drive herein is to understand the potential impact of wind in a power system. The two primary 

ways in which wind interacts with a power system in this work can then be understood in terms of 

OHL faults, and the corresponding impact on wind power resources.  

No direct correlation was found between wind and demand, for instance, on the power system in [6], 

rather temperature was found to be the primary driver. The volume of work examining the effect of 

extreme wind on the power system, both on generation and security, also emphasised that these 

separate aspects necessitate linking for more refined analysis and simulation of wind-related threats 

to the system.  

Wind failure rates will vary not just between network branches on a system but also across individual 

lines themselves, particularly if they traverse geographically diverse regions with varied natural 

hazards. Coastal regions, for instance, will be more vulnerable to coastal flooding and flashovers 

associated with sediment thrown from seawater onto OHL insulators. Low-lying distribution assets 

will be more vulnerable to inland flooding and flash-floods, whereas in exposed, mountainous regions 

with little vegetation OHL may be more vulnerable to lightning and higher wind speeds as e.g. there is 

less material on the ground to affect wind speeds. 

This section details an improved approach to quantifying and visualising OHL risk which is spatio-

temporally disaggregated in such a manner as to consider variability across networks and branches. 

This in turn could allow planners to target specific regions with restoration assets during force majeure 

weather events to mitigate the worst impacts of extreme weather on the system. 

4.2 Modelling relationships between weather and line outages 
The concept of fragility curves has been discussed in section 2.4.1, along with discussion of more 

homogenous representations of line failure rates on power systems. The fragility curves used in this 

Chapter are derived from those calculated in [64]. The utility of these fragility curves derives from the 

fact they are disaggregated to be in terms of /100km/hr, meaning an appropriately disaggregated line 

could have its failure rate locally corrected for the local exposure to any given overhead line section, 

and its failure rate corrected for the size of time-step used. In [64], ERA-Interim weather data was 

used, with the maximum wind speed experienced by an OHL in a three-hour window through the area 

which the line traverses used to determine the wind gust which is associated with the recorded wind 

fault. Therefore, any wind data used to make projections based on the deployed fragility curves must 

be used with this in mind: different wind speed data reflects different aspects of what wind actually 

is.  

Using maximum gust speed over such an extended period of time may overestimate the wind speed 

which actually caused the fault – the assumption being the fault would be caused by the highest single 



Page | 88 
 

observed wind gust in that window. However, it is noted in [10] that both sustained high wind speeds 

– that is, high wind speeds averaged over a period of time – can cause significant damage to networks 

just as readily as short, intense wind gusts can, particularly if those storm systems happen to sit on a 

given part of the network for an extended period of time such as in hurricane storm systems. 

Therefore, using time-averaged wind speed data with a fragility curve derived from maximum wind 

gust data may be a conservative estimation of the actual wind speeds experienced on the system or 

associated failure rates, whereas using more extreme maximum gust speeds in a given simulation may 

overestimate the intensity of a given wind storm to which a power system is subject. Given the pre-

existing uncertainty associated with using fragility curves, this infers a need to compare the results for 

different datasets or a prescription of how results from such fragility curves should be interpreted – 

as a relative, rather than absolute, indicator of system security, which could be used to aid 

prioritisation of system assets during storms for system restoration. 

The fragility curves in both [27] and [64] are derived from data-driven analysis of faults recorded on 

the SHETL network in Northern Scotland. In the former, a cumulative probability distribution was 

determined linking failure probability on a given OHL with an incident wind speed. In the latter, this 

analysis is extended to break the fragility curves down by voltage level (132kV and 275kV) for 

improved granularity of results. At improved levels of data granularity, especially for moderate-sized 

grids, data availability becomes an acute challenge. The fragility curves themselves are also agnostic 

of wind speed direction. The fragility curves to be used herein are derived from the data tables in [64], 

and are shown in Figure 4.1, with graph taken from [16]. 

 

Figure 4.1 – Fragility curves to be used in study, graph taken from [16] and [64] 

These are derived from 3-hourly wind speed windows with the maximum wind gust over that 3 hour 

window being used as the dependent variable. The source data is from the Scottish Hydro Electric 

Transmission Ltd network – that is, the network in Northern Scotland, herein referred to as SHETL. 

Both [27] and [64] utilise SHETL to derive cumulative probability distributions relating an incident wind 

speed to a corresponding failure probability, with the primary difference between the works being 

that F. Fan in [64] took this a step further and disaggregated the failure probability of lines by voltage 

level. At the time of writing for the report, SHETL was primarily 132kV and 275kV lines, however since 

then the network now has a single 400kV connection. For the rest of this section it is assumed the 

275kV OHL fragility curve can be applied to 400kV lines in lieu of more accurate data. Further, it is 

assumed that the fragility curves derived from SHETL can be applied across the whole GB system, at 

least with an acceptable level of accuracy to be indicative of system risk. The “stepped” nature of 
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these curves is due to the interpretation of the curves via the data bins used in the source material. 

As the curves themselves are in terms of failure rate/hour/100km, the actual length of lines exposed 

to a given weather parameter then needs to be determined. 

4.3 Definition and quantification of line exposure to weather conditions 
In order to convert any branch data to a corresponding failure rate using the fragility curves being 

used, an estimation of the branch’s exposure to the natural hazard being examined (in this case, wind) 

has to be determined. Conventionally this has involved using an assumed length of line, and the 

weather speed associated with, for example, the most extreme of the wind speeds at either end of a 

given network branch such as described in Chapter 3. Buses can also be assigned to weather “zones” 

with the greatest wind speed of the zones which that branch crosses being assigned to the line being 

investigated, for instance in [85]. 

For geographically uniform areas, or particularly short branches, this may be an acceptable 

approximation should meteorological variation be minor. However, for long lines over diverse 

geographical regions exposed to a wide variety of natural hazards this plainly may be too broad an 

approximation to be acceptable, and thus a spatiotemporal disaggregation of lines as demonstrated 

herein may be necessary in such circumstances. 

To correct for the exposure of each line to different weather conditions, each line was spatially 

disaggregated and converted from two co-ordinate pairs (in latitude, longitude) to a 2-dimensional 

array. This was achieved using the python programming language. For the case studies and examples 

investigated herein, MERRA-2 (Modern-Era Retrospective analysis for Research and Applications) data 

[86] is utilised due to its availability and spatiotemporal completeness, and the co-ordinates system it 

utilises is used for the data resolution.  

MERRA-2 is a relatively coarse dataset, resolving to 0.5 by 0.625 latitude and longitude, or 

approximately 50km by 50km. To estimate the amount of line in each of these given “blocks” of data, 

two co-ordinate points are set as a “start” and “end, which can be then interpreted as a vector. This 

vector can be iterated through in a given number of steps – which could be varied based on data 

granularity – to project a path through the 2d array. Each “step” can be counted as a sample within 

each data block. Using the resolution of the data and Pythagoras’ theorem, the “length” of line within 

each block can then be determined. 

Presuming concern lies with the effect of wind on OHL, then only lines which are above ground and 

subject to the wind itself are assumed to be vulnerable to wind conditions themselves. That is, 

underground or undersea cables can be assumed to have no exposure to extreme wind conditions 

whatsoever (though connecting substations may well be subject to these weather conditions should 

they too be connected to the grid by OHL. 

If it is assumed that there is a 50kmx50km resolution grid, a line going directly East from West across 

two whole blocks from the far West of the westernmost block to the far East of an adjacent block (i.e. 

100km), this could then be disaggregated to be equivalent to two blocks with 50km of line within each 

in a 2-dimensional representation. A demonstration of the method described here is shown in Figure 

4.2. “Exposure” here is defined as “the magnitude of the length of an OHL subject to any incident 

natural hazard”. 
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Figure 4.2 - Arbitrary representation of line exposure to natural hazard 

This demonstrates in itself that, assuming weather data is overlain over such a line, the OHL will be 

subject to both varying intensities of weather, and different parts of the line will have different 

magnitudes of exposure. This, of course, represents the exposure of an OHL to wind – a cable’s 

exposure to wind would be assumed to be zero across the entirety of the network branch under 

consideration. A homogenous representation of this line would only consider two values: the total 

length of the line, and the incident wind speed at either end of the connecting nodes. This tells the 

user nothing about where the line is most likely to fault, and may be a significant over or 

underestimation of what the true failure risk on the line actually is. 

4.4 Computing failure rate on overhead lines for given exposure and wind speed 
The implementation of fragility curves considered here consider the failure probability in terms of “per 

hour, per 100km”. That is – the fragility curves are agnostic of wind direction. Further, in the source 

data used to generate the fragility curves a conservative estimation is made such that the maximum 

estimated wind gust in a three hour window was what caused the associated, recorded fault (based 

on the fact the source data was 3-hourly resolved maximum wind gust data). OHL faults can be due to 

sustained, high wind speeds as well as with extreme, sudden wind gusts. This is discussed in [10] in 

the context of hurricanes, where the initial storm peak, as well as the sustained storm system that 

may sit on a region for days at a time, both cause damage to the power system.  

The reason this is an issue is because when deploying a fragility curve to make projections about future 

failure rates, the data which is used to make projections may not be a perfect replacement for that 

which was used to create the natural-hazard-failure-rate distribution. That is, using time-averaged 

wind speed data with a curve based on maximum wind gust speed may represent an underestimation 

of the projections of failure rate which are then made. Alternatively, using maximum wind gust speed 

on fragility curves based on time-averaged wind speed data may overestimate actual failure rate 

projections. The results garnered from the fragility curves as they are applied herein, then, can be 

assumed to be useful relative indicators of system risk but may not represent the precise or absolute 

values of failure probability. The fragility curves are also to be applied consistently across data sets 

such that analysis is based on the same fundamental data such that clearer comparisons can be made.  

To determine the actual failure probability for a section of line, the exposure determined via the 

methods described above must be combined with weather data and the fragility curve. That is, the 

failure rate for a given incident weather parameter for a given location must be used to determine the  
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failure rate per 100km in a given section of line, which must then be corrected for the actual exposure 

of the line in a given block. This can then be converted back to a failure probability for the subsequent 

analysis. 

An exponential failure probability distribution is assumed, represented by Equation 4.1. 

 𝑝(𝑓𝑎𝑢𝑙𝑡) = 1 − 𝑒−𝜆𝑡  (4.1) 

   

In this equation, p(fault) represents the failure probability within a given time period 𝑡 (assumed to 

be 1hr) and based on a failure rate λ. Rearranging to solve for λ from the source data means the failure 

rate can be corrected to the actual line exposure, then converted back into a failure probability. 

Using the combination of these proposed methods, then, a given line can be represented in 2 

dimensions with spatially disaggregated exposure to weather patterns and associated failure rates. 

4.5 Correcting spatial wind speed data for differing applications 
“MERRA-2” data represents a broad spectrum of meteorological hindcasted weather data covering 

parameters such as solar irradiance, ambient temperature, and, most relevantly, wind speeds. 

Hindcasted data represents an estimation of the weather conditions at a given region for a point in 

space and time, which is typically estimated from a mix of satellite data and local historical 

meteorological measurements, combined to give a complete map of estimated weather conditions. 

Though other sources are available and are described in sources such as [6], MERRA-2 was chosen 

because it was deemed the most appropriate for the analysis being undertaken and was judged able 

to provide, at worst, an indicative representation of historic risk during different events and a variety 

of data types for analysis. 

Two specific subsets of data were chosen; u and v resolved wind speed data at heights of 2m, 10m, 

and 50m, and single level maximum wind speed data [87, 88], henceforth referred to as “three-level” 

and “single-level” data respectively. The latter dataset is presumed to be the wind speed active at 

10m. 

The MERRA-2 data effectively treats the globe as a “bumpy-sphere” – that is, a grid of blocks at fixed 

horizontal displacement with homogenous weather conditions within those 50kmx50km blocks. For 

geographically uniform, flat regions, as stated, this may be an acceptable approximation for shorter 

line branches. However, the UK is a geographically diverse country with rugged mountain ranges in 

Scotland, with lower-lying floodplains in England, creating distinct climatological biomes. These are 

defined within [6] as falling into three broad categories – the windy North, the windy and sunny 

Southeast, and the sunny Southwest Peninsula. Geographic diversity within the scale of 50kmx50km 

ranges may therefore be profound. Homogenous representations of OHL in system studies cannot 

directly the diversity of weather conditions that may affect network branches; further, the exact 

mechanisms which drive OHL failures will vary across different geographical and weather conditions. 

That is, a storm hitting the entire UK at the same time may manifest as extreme winds in Scotland and 

Northern England, while simultaneously causing flooding and inundation of substations in Southern 

England and Wales. In Scotland, therefore, in such a context, there would be significantly increased 

risk of OHL faults at a time where there would be increased risk of flooding on substations in England. 

This represents one of the major challenges in resilience analysis: during HILP events, a single causal 

weather pattern could manifest as a variety of natural hazards affecting different areas to different 

magnitudes simultaneously. 

As a first approximation to begin to understand this, estimations about the elevation of the grid were 

also taken while generating the exposure arrays. This was done using NASA Shuttle Radar Topographic 
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Mission (SRTM) data [89]. Elevation data is recorded in images in .tif format which were called via an 

API (application programming interface) [90] which in turn converted a co-ordinate pair to a value 

representing an estimation of the elevation at that point. While progressing through the vector, as 

described in Section 4.3, samples of elevation were taken at each point. The highest elevation sampled 

in each block of data was then recorded. The usage of this data will be discussed in further detail in 

Section 4.9. 

4.6 Correcting wind speed for altitude of asset 
Different assets on a system will experience different weather conditions not only because of their 

location but because of the variety of heights of assets, and the fact wind speed increases as one 

moves further from the surface of the Earth and away from obstructions which can slow winds. For 

example, typical 275kV towers in SHETL can be estimated to have heights circa 50m, whereas 132kV 

towers on GB will have heights of around 30m. Wind tower hub heights, too, vary by manufacturer 

and capacity with offshore turbines exceeding 100m compared to rooftop turbines which may be less 

than 10m. Wind turbine hub heights are based on 100m, based on typical commercial-scale wind 

turbines and on typical values found in the Renewable Energy Planning Database [91]. Though wind 

turbine hub heights can vary significantly, for the purposes desired in this Chapter it was deemed 

adequate to assume a typical value applied across the system to be indicative of general trends rather 

than more precise absolute measurement of wind power infeed on the system. 

In [92], wind speeds are corrected using three wind speeds at various heights to extrapolate the wind 

speed at a given height. A fuller illustration and description of this method can be found in the 

reference’s supplementary materials but a similar approach is utilised here. First, the u and v 

orthogonal components of wind speed at the (2+d)m, (10+d)m, and 50m are taken, as is done in the 

original methodology, with the d a value representing vertical displacement d stored in the raw data. 

That is, a presumed height at which the data is measured. For the vast majority of observed data in 

the case studies performed this was at or near zero. Regressing these against the log of their altitude 

then means the wind speed at height h can then be estimated using Equation 4.2. 

𝑤(ℎ) = 𝐴 log(ℎ − 𝑑) − 𝐴 log (𝑧) (4.2) 

  

How the d parameter relates to the vertical heights of the measurements is shown in Figure 4.3, along 

with an example regression with arbitrary data selected for illustrative purposes. 
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Figure 4.3 - vertical displacement parameter "d", vertical axes arbitrary scale and regression (with d = 0m) 

This presumes a standard linear equation of form y = mx + c, with known x values log (h-d) taken from 

the 2m,10m, and 50m heights with the d values, and known y values, the resolved wind speeds at 

these altitudes. Given y and x are known, the other parameters can be simply calculated. 

w(h) represents the incident wind speed w(ms-1) at height h(m), or the anemometer height from which 

the wind speed can be measured. The gradient A can then be computed via regression, as can log(z) 

which is the y intercept. This can then be rearranged to extrapolate the wind speed at unknown height, 

with z determined using Equation 4.3 

 𝑧 = 𝑒−𝑐/𝐴 (4.3) 

   

where c is simply the y-intercept of the equation determined from the known data and the regression. 

This further emphasises the potential significance of disaggregating fragility curves by voltage levels – 

132kV OHL, by virtue of being typically smaller and shorter than their larger 275kV/400kV cousins, 

may be subject to less extreme weather and better protected by wind shadow, but they are also more 

vulnerable to inclement weather when it does occur. The taller 275kV/400kV lines, being used for 

transmission scale and hence being less typically found directly next to heavily populated areas, can 

reasonably be expected to be subject to more extreme weather conditions will less sheltering from 

the wind associated with wind shadows and adjacent vegetation. Distribution level OHL will likely be 

more susceptible still to severe wind conditions, but research was not yet found creating relevant 

fragility curves and this research more directly pertains to transmission and national scale networks 

than distribution networks. 

4.7 Interpolation of weather data for use in simulations 
As previously discussed, MERRA-2 is a particularly coarse dataset. On a global or regional scale, or for 

climatological analyses, this is not inherently problematic. However in the context of power system 

analyses a resolution of 50kmx50km is plainly inadequate for systems as diverse and concentrated as 

GB.  
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For perspective, it is approximately 100km between Glasgow and Perth, where Scottish and Southern 

Electricity have their main offices. Using such a resolution would mean the assumption that an OHL 

connecting these two cities would experience 2 or 3 different weather conditions across the entire 

line – while this is an improvement on using a homogenous representation of that line (which would 

represent, of course, the entire line experiencing only a single weather condition), it undermines the 

value of disaggregating the representation of the line in such a manner to use such a coarse dataset.  

In [92], the authors used a form of LOESS regression which they refer to as a “non-parametric locally 

weighted scatterplot smoother”.  2-dimensional interpolation and regression itself presents a 

significant computational and academic field in its own right. In this context, an accessible and easily 

deployable solution was deemed desirable. The python function griddata, part of the SciPy library, 

was used to perform the interpolation of the incident weather data to improve model granularity [93]. 

This, naturally, cannot begin to account for local topological factors which may affect wind speed and 

directions such as valleys or mountaintops, where phenomena such as the Venturi effect and wind 

shadow may have profound localised impacts on wind if the terrain is particularly variable or there are 

large man-made structures affecting local wind flows (for example, wind farms). Nonetheless it allows 

a first-order improvement on the raw data available and more granular results to demonstrate the 

over-arching principles of the proposed methodology. 

4.8 Projecting wind power for given incident wind conditions 
In extreme weather conditions, wind turbines will engage in self-preservation actions to prevent 

electromechanical failure, such as deployment of brakes or adjusting angle of turbine blades to reduce 

the rotational speed of the turbine. This in turn reduces wind turbine output and, when aggregated 

across wind farm groups or entire windfarms, can cause significant drops in wind power infeed over 

the scale of minutes or hours, dependent on the duration and intensity of the storm. This is HWSS, as 

described in Chapter 2, and is investigated in [29].  

HWSS can be significant in the context of resilience because such reductions in wind power infeed will 

occur at times when high wind speeds are also increasing power system risk associated with OHL 

outages and, in winter, increased life-critical demand from sources like heating. Although an individual 

turbine will act in a broadly predictable manner with pre-defined manufacturer settings for cut-out 

and cut-in, the aggregated effects across a wind farm, taking into account local variations in wind 

conditions and turbine heights, manufacturers, mean aggregating such variation presents a significant 

challenge; aggregating this to a regional, national, or international scale even more so.  

Various different approaches have been taken to project wind power outputs given a set of incident 

weather conditions. Forming detailed analyses for quantifying HWSS is stymied by factors such as the 

diversity of kinds of wind farms, constantly evolving technologies in wind farms, and sparsity of data 

for HWSS conditions, and so forming a generalizable curve which can be applied across a system is in 

itself a rather gross estimation of the wide variety of factors which can affect wind generation (wind 

direction can generally be considered less of a factor in this instance than in the context of OHL faults, 

as wind turbines can be designed to “track” the wind direction to optimise output, however given the 

impacts of local geography on local wind speeds wind direction may still be a factor). 

The approach taken here, and demonstrated in [16], was to use a simple proxy and amalgamation of 

methods as described in [31], [92], and [33]. A curve representative of a pre-corrected power curve 

(that is, not considerate of HWSS) was provided by D. Brayshaw of a form used in [33]. A sigmoidal 

curve was then fitted to this using the form  
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 𝑦 =  
𝑎

1 + 𝑒(−𝑓(𝑤)(𝑥−𝑤+ ))
 

(4.4) 

 

in which a is a normalising factor set to 0.9128,   is an x-shift with value -15. w, f(w) represent the 

power curve as represented as an x, y co-ordinate set. The SciPy function curve_fit was used for the 

regression. 

In equivalent studies, a Gaussian filter was applied after some maximum value to force the output to 

be – or approach – zero. In [16] this was not performed, rather a complementary curve was used to 

curtail the input at higher windspeeds simply by subtracting this complementary curve from the 

original, as shown in Figure 4.4, taken again used in [IET ref] [16]. 

 

Figure 4.4 - Wind power curve used in study as derived 

The scale of challenge presented in producing more representative power curves was, in the context 

of this research, deemed out of scope insofar as the exact impact of HWSS itself was not sought to be 

quantified, rather an indication of general trends was sought. That is, ideally a more complete curve 

based fully on empirical data would be preferred, but the aim was to generate a curve that could be 

productively used to illustrate general trends across a system, and the simple proxy generated was 

deemed appropriate and proportionate for that purpose, however future work would hopefully use 

more data-driven methodologies for more precise measurements. Nonetheless, as is the case with 

the fragility curves, the curve itself can still be useful for being indicative of relative, rather than 

absolute, information across the system and is, by inspection, similar enough to the comparator curves 

to be useful for this research. 

4.9 Case study on Reduced GB and SHETL grid representations 
The next step, then, was to apply the proposed methodologies described on representations of real 

networks to demonstrate their value as approaches. The information provided by applying these 

methods could be utilised to, for example, target placement of restoration assets, backup generation, 

or, if analysis is performed over inter-annual periods, to simulate investment-side strategies and target 

investments at either particularly vulnerable or valuable (i.e. operationally significant) connections.  

Two networks were chosen for study using the developed approaches: a representation of the 

Northern Scotland SHETL grid, and a reduced representation of the GB MITS developed at the 

University of Strathclyde based on work and principles defined in [82].  
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4.9.1 Development of the SHETL grid representation 
As the study in this case is an examination of only OHL risk, and does not contain power system 

simulations themselves, only a node-branch representation of the network was required for the 

analysis. Data for transmission lines and interconnectivity was taken from the National Grid ESO 

Electricity Ten Year Statement (NG ESO ETYS) for the years 2017 and 2018 [94, 95], with data also 

provided by J. Kelly of Scottish and Southern Electricity Networks (SSE-N). Some minor data cleansing 

was necessary, performed with consultation with SSE-N, to ensure appropriately representative 

branches. A node-branch visualisation of the SHETL grid is shown in Figure 4.5. The visualisation of 

networks and wind speed data herein is produced by a combination of different python software 

libraries, specifically basemap [96], matplotlib [97], and NetworkX [98]. 

 

Figure 4.5 - Network representation of SHETL grid 

An incident weather event is chosen – specifically Cyclone Friedhelm from December 2011 [5].  
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Figure 4.6 - Raw single level w-resolved wind speed data 

Interpolating this data to increase granularity by a factor of 5 then provides the wind speed data shown 

in Figure 4.7.  

 

Figure 4.7 - Interpolated three-level wind speed data at 10m 

This increased resolution then provides the means to determine the localised exposure of the network 

to wind, illustrated in Figure 4.8. 
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Figure 4.8 - Estimated total line exposure of OHL on SHETL grid 

This can then be compared with the distribution of windfarms across Scotland. This data is extracted 

from the Renewable Energy Planning Database (REPD) December 2018 [91], which provides 

information such as hub height, farm capacity, and co-ordinates. These were bulk-converted to lat-

lon pairs using an online Ordnance Survey bulk co-ordinate conversion tool to get the co-ordinates 

into an appropriate format [99]. The results are shown in Figure 4.9, with disc colour and radius scaled 

to windfarm capacity. 

 

Figure 4.9 - Wind farm capacities and locations in Scotland 

It can be observed that there is significant overlap in regions of SHETL where there is grid capacity and 

where there is installed wind power capacity. This should be unsurprising – power can only be 
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connected to the grid where a grid exists to which can be connected. In Scotland, the majority of 

demand is in the South-Central region of the country, also known as the Central Belt, just south of 

SHETL. This is also where the largest windfarms are connected, again in part because there is 

significant grid capacity to allow connection of wind resource, however there are also other factors as 

to why wind development is largely confined to the coasts and south of the country. This is discussed 

in the Appendix 7.1.  

A consequence of the overlap between grid capacity installation and wind power installation is that it 

creates interdependencies between wind power output and system risk in these locations which is 

compounded in extreme wind scenarios. This will further be investigated in Section 4.9.3. 

4.9.2 Implementation of Reduced GB 
The representative GB network was produced with input and contributions from C. MacIver of the 

University of Strathclyde and J.Kelly. Again, only a node-branch representation was necessary in this 

instance to be representative of approximate locations and representative of network connections for 

use in the analysis. This network model represents a consolidation of key interconnection routes and 

attempts to retain key information about approximate locations of key substations and important 

network branches, while collapsing smaller branches into larger, representative network branches. 

Data was provided by C. MacIver in the form of consolidated data tables which were in turn converted 

into formats usable by the software model. Location data not directly provided was approximated by 

approximating the locations on the grid using the ETYSs and Google Maps.  

The result was a representation of the GB network which could provide a useful comparator for the 

SHETL model. The node-branch representation of the representative GB model, herein referred to as 

the Ryan Model after one of the original architects of the model R. Tumilty, is shown in Figure 4.10. 

 

Figure 4.10 - Visualisation of reduced GB network model known as the "Ryan Model" 

Similarly to the SHETL model, in Scotland it can be observed the grid is concentrated in the South of 

Scotland but there is still a significant amount of network in the Northeast. There is little to no grid 

represented in this representation, however, of the network in the far West coast surrounding Oban, 

the North coast surrounding Caithness and Sutherland, nor in much of Wales. Northern Ireland is not 
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represented as it is not part of the GB MITS and is part of the main Irish grid with HVDC interconnection 

with GB. 

A visualisation of wind farms across GB more generally is shown in Figure 4.11. 

 

Figure 4.11 - Wind farms connected to main GB system, as of December 2018 

It can be observed that wind generation in GB is dominated by large offshore windfarms in the 

Southeast of England, onshore windfarms in the Southwest of Scotland, and offshore wind farms north 

of Wales. 

The developed methods can then be applied to these renderings to illustrate the linkages between 

wind power and system-wide OHL risk. 

4.9.3 Simulation methodology 
A Monte-Carlo simulation method is used to aggregate locational failure probability across the system 

and produce maps representative of OHL risk across the system. That is, the risk of a failure happening 

at a given location in a given hour using the models and methodologies formulated thus far. This is 

done as described in the following pseudocode: 

 

For sample in sample size: 

 For line in all lines: 

  For section of line: 

   Generate random number between 0 and 1 

   Get failure probability for line section 

   If random number < failure probability: 

    Fault recorded in block 

    Latitude, longitude of fault recorded 
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This then generates a 2 dimensional array with fault numbers which occur in each ~10kmx10km pixel 

of data recorded. Dividing these counts by the sample size provides an estimate of the overall fault 

probability by block. This means that a line can “fault” across multiple locations, or multiple faults can 

be recorded within a given block within a given time step if multiple lines intersect. This provides an 

estimate, then, of how likely any part of the network is to fault in a given time step. Individual lines 

can of course be analysed in this method, as, in a power system simulation, whether a line faults in 10 

locations or 1 it is still simply no longer in service. However, the purpose of this exercise is to 

demonstrate and visualise the overall probability of something breaking in any given location on the 

network, agnostic of the impacts of that incurred fault. 

The average of the latitude and longitude of fault locations within the simulation can then also be 

used to generate a value representative of the expected location of a fault on the system – the 

expected fault location (EFL).  

Using the power curve demonstrated in Section 4.8, estimates about locational wind power output 

can also be made to illustrate the effect of extreme wind on system-wide wind output. 

4.9.4 Results – SHETL grid 
A sample size of 10,000 is used (but any sample size could be used dependent on desired precision 

versus computational and time expense). The case study of Cyclone Friedhelm with the illustrated 

weather conditions was used. The three-level data (that is, the data with 2m, 10m, and 50m sets 

extrapolated to relevant asset altitudes) is used first. The results for the estimated OHL fault 

probability on the 132kV and 275kV/400kV networks are shown in Figure 4.12. 

Using these aggregated grids, the total OHL failure probability across the entire system can then be 

evaluated, with the results in Figure 4.13. 

Figure 4.12 - 132kV and 275kV/400kV network fault probabilities on SHETL grid 
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Figure 4.13 - Total OHL failure probability on SHETL 

The output of windfarms across the system can be similarly aggregated to visualise windfarm outputs, 

as illustrated in Figure 4.14. 
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Figure 4.14 - Aggregated wind farm output across Scotland, together with line failure probability for 275kV and 400kV 
networks. 

By inspection it can be seen that, despite there being significant wind farm capacity installed across 

the East Coast and Southern regions of SHETL, the effects of HWSS have reduced significant amounts 

of infeed to zero due to the extreme wind speeds. That is, the areas with highest OHL risk will 

coincidentally have significant loss of wind power due to HWSS. Overlaying the total OHL failure 

probability with the installed wind farm capacity illustrates this, as can be seen in Figure 4.15. The disc 

radii have been normalised to the highest capacity single windfarm on the system (350MW, Clyde 

Wind Farm, though Whitelee is the largest farm facility at >460MW it is separated into multiple 

separate groups within the data itself). 
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Figure 4.15 – Failure probability on OHL overlaid with installed windfarm capacities in SHETL, Scotland 

The EFL from these results is (56.70, -3.78). Visually, this seems reasonable – the most extreme values 

are in the South, Southwest, and East of the network- the mean value of these locations should 

reasonably be expected to be somewhere in the middle of these areas. This tells us where a failure is 

most likely to happen, which can be useful information if attempting to optimise placement of spares 

or other emergency response equipment or staff.  

Of course, these values are unweighted by the actual impact of any outages – in reality an outage on 

the East coast would be far more consequential than a loss to the relatively small Southwest peninsula 

in Scotland, and that would weigh significantly on the planning decisions as regards location of repair 

teams and resilience assets. Conversely, there is significantly more redundancy on the East coast than 

on the weakly connected fringes of SHETL, meaning any single outage is less likely to lead to 

disconnections than the weaker segments of the network. This does, however, provide a useful first-

order approximation and indication of what the most at-risk areas of the network would reasonably 

be.    
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4.9.5 Results – Ryan Model 
The simulation is repeated on the Ryan model to get results across the wider GB system, and across 

both weather datasets for comparison. The total line failure probability for the three-level wind power 

dataset and aggregated wind power resource is illustrated in Figure 4.16. 

 The estimated total wind power on the system is 10.8GW, with an EFL of (56.02, -3.30). It should be 

noted in the wind generation projection that there is data present but it is dominated by the large 

outputs of wind generators off of the Southeast coast of England from offshore wind farms and 

offshore windfarms north of Wales. Due to HWSS the wind output across the system more generally 

is significantly depressed and is negligible compared to these groups.  

Overlaying these results with GB-wide wind capacities produces the following in Figure 4.17.  

Figure 4.16 - Simulation results for Ryan model with three-level dataset 
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Figure 4.17 - Wind farm capacities and OHL failure probabilities, three-level data on Ryan Model 

 This can be compared with the results from the single-level dataset (that is the data where only the 

“maxspeed” wind speed data with all assets treated as being at equivalent height with no vertical 

extrapolation was performed). The wind speeds incident across the system are shown in Figure 4.18. 
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Figure 4.18 - Single-level incident wind speed data [left] compared to data at 10m from three-level data set 

The values here can be observed to be more extreme than those of the 10m data extracted from the 

three-level wind speed data ensemble, though the trend is broadly the same across the two datasets 

(extreme winds in the South, East, and West Coast of Scotland with moderate winds across the rest 

of GB). 

The results, when using the single-level data for fault location estimation, are in Figure 4.19. 

 

Figure 4.19 - Estimated line failure probability due to wind, single-level data [left] compared with that using the three-level 
data [right] 

It can be observed with examination of the scales that there are more extreme values of failure 

probability across the system, and particularly concentrated in the Central Belt of Scotland and East 

Coast which experiences the most extreme values of wind speed, but that the general distribution of 

failure risk across the systems are comparable.  

To understand the reasons for this would require further analysis as to the types of networks in the 

areas with most extreme weather conditions. That is, presuming the areas have significant 

penetrations of 132kV OHL and the single-level wind speed is presumed to act at 10m, the more 
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extreme values of wind speed would naturally correspond with more extreme values of failure 

probability associated with those lines. 

The EFL for this case was (55.97, -3.41). As with the three-level data, the general trend is consistent 

with there being significant risk of failure in the South of Scotland and with areas of significant grid 

density and high wind speeds, but in the wider context of GB this is a relatively localised storm, as 

can be observed in Figure 4.20. 

 

Figure 4.20 - Total line failure probability overlaid with installed capacity of windfarms in GB 

Though there is significant failure probability in the Northeast and Central-North of Scotland, in both 

cases there is shown to be relatively significant risk across the Central Belt, where there is both 

significant penetration of wind resources and where the most significant population density – and 

hence domestic and commercial demand – is based. Comparing the estimated wind output across 

these cases suggests 10.8GW in the three-level dataset but 11.2GW for the single level dataset, a 

discrepancy of almost 4%. For comparison, if the uncorrected power curve which does not account 

for HWSS is used, in both cases the estimated wind output across the system is 17.7GW. This suggests 

HWSS could be responsible for a loss of as much as 6.9GW of wind power output capacity during this 

event. 

4.9.6 Grid elevation 
Throughout this section, OHL have been treated as 2-dimensional representations of point-to-point 

connections. This effectively assumes that the grid is itself flat and the distance between two points 

can be approximated “as the crow flies”, which is to say the line travels directly from point A to point 

B. This in itself acts as a new source of error and abstraction – clearly lines do not travel perfectly 

horizontally between two points on a network, especially over mountainous regions where there may 

be significant  variability in elevation. Further, line pathway planning is affected by local planning 

concerns as well as topological factors such as hills, local manmade structures, or planning limitations 

such as Sites of Special Scientific Interest (SSSI) where developments may be restricted for aesthetic 

or conservational reasons. Further, a purely 2-dimensional representation of lines assumes that the 

lines are perfectly taut from point-to-point in this representation, whereas in reality lines may sag, 
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particularly with increasing temperature. In fact, thermal limits on lines are primarily driven by thermal 

restrictions to prevent overheating lines from becoming health and safety hazards for humans or to 

prevent phase-earth faults.  

To begin to understand the potential variability of grid elevation, as noted in Section 4.3, the elevation 

data for each block of each line was estimated. Aggregating these estimates across the system to 

estimate the highest single grid elevation can then give an illustration of the potential variability of 

environments experienced by network branches, which in turn could have consequences for security 

analyses. The maximum sampled elevation across the Ryan model and SHETL model are shown  

At a high level, it can be concluded that England is a lower lying, flatter country than Scotland. This 

places it at increased risk of coastal and fluvial flooding, particularly in the case of low-lying substations 

such as that which was inundated during Storm Desmond [4]. Extreme highs of elevation also present 

operational challenges, however, for operators. The lines at the most extreme high elevations in 

Scotland tend to be in underdeveloped, rural areas which will accordingly have relatively poor 

transport accessibility. This means that, should faults occur, even accessing the transmission or 

distribution assets which have faulted may be challenging. Further, the exact mechanisms by which 

OHLs fault will vary across lines and regions with changing topologies and biomes. OHL in more heavily 

forested areas may have reduced wind speed exposure associated with wind shadow from vegetation, 

but that same vegetation could present a security hazard associated with falling branches, debris, or 

collapsing vegetation leading to transient or permanent faults. 

The highest values of elevation on the grid in both SHETL and GB are in the Northwest of the grid, 

where the grid passes through the Highlands past Fort William. With reference to the node-branch 

representations of these networks, this line is particularly significant in the case study being examined 

as it has a relatively low estimated risk compared to the East coast lines. In particularly extreme cases 

it may be necessary to curtail load flow on the East coast and increase power flows on this branch to 

reduce system risk, but should a fault actually occur then the restoration time could be significantly 

more than a line which faults in a more populous, developed area. This emphasises the balance which 

must be found between the potential risk of a contingency state, the plans in place to address it, and 

the corresponding changes in costs associated with mitigation or prevention. 

Figure 4.21 - Estimated maximum grid elevation across Ryan and SHETL grid representations 
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A consequence of diversity of elevations and biomes across the grid, as discussed before, is that there 

will be a wide variety of fault-inducing mechanisms across the system. For example, vegetation-

related faults can cause common-mode faults on OHL in a wide variety of ways but those faults can 

only actually happen if there is vegetation present which can cause them. The tree-line in any 

environment varies with latitude, historic land use, topology, and climate, but in GB is generally 

between 530m and 600m [100]. Therefore, network sections which travel above this line will be less 

prone to vegetation-related outages but will be more exposed to natural hazards such as lightning. 

The lack of vegetation also means that, for shorter towers or distribution networks, lines will not have 

wind shadow from forestry and could experience more extreme weather conditions. If vegetation-

related faults are a major driver of failure events on the SHETL network, in areas where there is less 

vegetation corrections may therefore be necessary to reflect the different underlying conditions 

driving the failure mechanics- even though at a population level, i.e. “on average”, system-wide 

behaviour will still reflect the distributions used to create the fragility curves. Given the source data 

was not available to consider this factor, it is not possible to make an assertion either way and further 

investigation may be warranted. 

A more direct consequence of the disparity between 2-dimensional and 3-dimensional representation 

of OHL is a consequence of trigonometry – that is, if elevation is considered, a 2d grid may represent 

total distance travelled “as the crow flies”, but it does not reflect that actual length of line present in 

each block. For example, a 2d representation of a line with an increase of elevation between two 

points  of 1km in a 5kmx5km grid going North-South would underestimate the total length of line by 

as much as ~4%, assuming the line itself is taut and travels perfectly point-to-point. 

Tracing the pathways of individual lines to better reflect local topological variety therefore presents 

itself as the obvious next step for refinement of line exposure calculation, and would manifest as a 

correction in each block to the length of exposure based on the actual path the line takes vertically as 

well as horizontally. In the test case examined, a block of elevation 1,099m was found to be the 

maximum and was adjacent to a block 971m lower than it. This, in a 10kmx10km corresponds to an 

approximate error of ~0.5% between a 2d representation and a length-corrected 3d representation. 

It is also worth noting that a storm system acting across a diverse system such as GB will manifest 

different weather patterns across different regions of that network simultaneously. For instance, 

Cyclone Friedhelm in the case study discussed resulted in not just extreme winds in Scotland but 

flooding in England and Wales. Flooding is not a direct threat to OHL (except in the rare circumstances 

where storm surges or landslips destroy distribution equipment or towers) but does threaten low-

lying distribution substations or low-lying power generation facilities. A particularly major example of 

this was the inundation of the Fukushima nuclear power plant following a tsunami in Japan [50]. Whilst 

the UK is not at pre-eminent threat of tsunamis, OHL outages associated with high winds concurrent 

with substation outages due to flooding could cause widespread and significant damage to system 

operability. Therefore, analysis only of extreme wind may not by itself comprehensively represent true 

system risk during such storm events. This ties into how power systems themselves are represented 

in simulations – in a node-branch model all generators and loads are assumed to connect to given 

buses with line flows limited by the branch connections. Therefore, representing substation-level 

faults can be a challenge at such a level of abstraction because, within a substation, there are many 

potential routes which power may take.  

Translating a fault within a substation to an effect on the wider power system carries further levels of 

abstraction. Representing OHL faults concurrently with substation flooding faults, therefore, requires 

not simply an understanding of fault levels but a level of refinement in the representation of 
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substations themselves that goes beyond standard, simplified node-branch representations and into 

node-breaker representations. 

4.10 Discussion and key findings 
The main driver of disaggregating OHL and linking visualisation with wind power output in the manner 

demonstrated is to begin to understand the co-dependencies inherent in resilience to extreme wind 

events, and weather more generally. It is economically rational to install wind turbines in areas in 

which there is as much wind as possible to get maximum return and wind power output – but the 

nature of regions with high winds is, of course, is that there is the increased probability of extreme 

winds. This in turn creates linkages between the risk of outages on OHL and the risk associated with 

loss of infeed due to HWSS. High wind can cause line trips, which in situations with high southerly 

flow can reduce Scottish export capacity. However, if this happens concurrently with HWSS in 

Scotland then this can ameliorate the situation for the Scottish network’s operability.  

Conversely, a more serious situation can arise whereby OHL trips can reduce export capacity 

at a time of high wind, requiring curtailment of wind farms on the exporting side (Scotland) 

whilst HWSS reduces wind farm output on the importing side (England). The impact of these 

events is additive in nature 

A full analysis of the consequences of these outages would require a complete simulation of the actual 

outage events themselves, but various conclusions can be drawn by inspection of the charts and from 

examination of some of the quantitative results from the simulations.  

There is approximately 19.5GW of capacity installed in GB in the model used, of which 8.1GW is in 

Scotland. The actual output estimated according to the model is 2.1GW for the three-level dataset, or 

2.3GW should the single-level data be used. This corresponds to an approximately 10% error between 

the sets.  

Overlaying the probability of failure with the wind farm installed capacities illustrates the linkage 

between wind power and line risk, inasmuch as in this case study fault risk is concentrated in the 

South, Southwest, and East Coast. Wind power output is concentrated in farms less affected by 

extreme winds which correspondingly have lower risk networks connecting them. Operators already 

plan for loss of infeed and variability of power resources, but in occasions such as wind storms, the 

boundary between what is classified as a “credible” and “non-credible” contingency event becomes 

important. In cases such as the South Australian blackout [14], the inability of the system to cope with 

windfarm trips resulted in the tripping of an interconnector, frequency and voltage degradation, and 

the eventual total collapse of a large section of the power system. 

The challenge in such conditions is not only identifying credible contingencies but also identifying 

potential concurrent faults or faults which may cause cascading, uncontrollable faults with far-

reaching consequences. One of the primary aims of the SQSS is to ensure the system is resistant to 

credible security threats and can be restored to a state where it can survive another adverse state. 

That is, in an N-1 situation the security standards mandate that the system can not only limit the 

negative consequences of a natural hazard but potentially prepare the system for another incident, 

preventing one outage from leading to a series of further outages. In a high-wind scenario such as the 

test cases here, that becomes particularly important because of the linkages between OHL risk and 

variability of wind power infeed. HWSS can happen in the scale of minutes or hours dependent on the 

scale of storm and its progression, but OHL faults and cascades can happen as quickly as protection 

equipment can operate, so even to the scale of sub-second. In the model used, Scotland accounts for 
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some 41% of total installed wind capacity- but, not only that, it also has significant hydroelectric 

resources and two nuclear power plants.  

The loss of interconnection between Scotland and England due to a significant storm event would 

impact not only cross border supplies from Scotland to England associated with high wind power 

infeed but also the loss of significant operability-related assets – hydroelectricity is a vitally important 

strategic resource for black start situations. Furthermore, while nuclear power plants cannot be used 

for black start generation themselves, they are among the largest capacity generators on the system 

in tandem with international interconnectors and large scale offshore windfarms which are distributed 

around the UK’s coast, as can be seen in Figure 4.17. Being able to quantify precisely the risk associated 

with flows across the B6 boundary then is of significant importance to operators and planners during 

storm events not just for Scotland but GB-wide system stability. 

The significant penetration of wind in Scotland means Gigawatts of cross-border flows in such 

situations and, while loss of load in Scotland would be relatively small in the context of the entire GB 

network, the impact on system operability from the loss of southerly power flows, two nuclear 

generators at Hunterston and Torness, and the loss of black start facilities such as Foyers could be 

significant. Further, the SHETL network representation used has significantly more 132kV OHL in it 

than the Ryan Model, suggesting it is significantly weaker than may be suggested in reduction models. 

This is why it is important to have a robust quantification of both probability and impact, and why 

improvements in the complexity and precision of fault probability quantification for OHL could be 

significant for such studies. 

Comparing the failure probabilities and wind power outputs also shows the sensitivity of the modelling 

to the incident weather data. The single-level data shows more extreme probabilities across the 

system with almost double the peak failure probability on the system, but with only a 4% shift in wind 

power output estimation. When modelling only SHETL, the potential change in projected wind power 

shows an almost 10% discrepancy across datasets. This illustrates the benefits of distributing wind 

power resources across the power system during extreme wind effects, as, in this case, the most 

extreme effects are concentrated in a relatively local area allowing affected regions to be supported 

by pooled resources across the system. 

It is also worth noting that the incident weather event being examined in this case study is exactly 

around the region at which the fragility curves and power curve for windfarms are at their most 

variable, and thus any minor adjustment to the incident weather has significant consequences for the 

final output results manifest across the system. Particularly, the fragility curves shown between 30ms-

1 and 40ms-1 – i.e. precisely where the peak wind speeds observed across the test case vary between 

across the data sets – vary by as much as an order of magnitude. Similarly, beyond 20ms-1 the power 

curve rapidly tends to zero. The combination of these factors means that in the region identified and 

in the test case used the failure probability across the system is far more susceptible to the variation 

in weather data than the wind power output, as for wind farms approaching or beyond 30ms-1 their 

estimated power output will already be approaching zero, meaning any further increase in wind speed 

will not have major impacts relative to changes in the failure rate. 

Simulating the same event with slightly different interpretations of the weather data has been shown 

to have a significant impact on the calculated failure probabilities across the system with only a minor 

discrepancy across wind power projections, which in this case is minor in comparison to the, relatively 

localised, OHL failure risk. 
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Such results also have to be understood in the context of the abstractions necessary to make the data 

useable in this context. That is, the fragility curves have been applied in a manner comparable to that 

in which they were derived, but the derivation was itself agnostic of, for instance, wind direction. 

Although different failure mechanisms are caused by different aspects of wind – be that a gust or a 

sustained blast – while the curves have been derived agnostic of wind direction, in reality it is not 

unreasonable to assume that wind direction will have a significant effect on potential failure 

mechanics on OHL. That is, gusts or turbulent wind flows perpendicular to an OHL could cause line 

“galloping” [26], leading to cascading faults or shocks to the structure of a tower, potentially leading 

to collapse or clashing of conductors, leading to transient faults. Wind in parallel with OHL could still 

cause tower collapses or debris and vegetation to collide with conductors, damaging network 

conductivity in that manner. 

Similarly, wind has other, indirect effects. Moisture and debris can be thrown onto lines in coastal 

regions, leading to flashovers on conductors days after the storm itself may have occurred. Similarly, 

wind paired with line icing and snow could lead to branch collapse or flashovers as the ice melts over 

insulators. This is accommodated for in some sense with other fragility curves in [64] but not those 

used in the current analyses demonstrated. 

The methods have been used on a transmission scale network but it is likely that distribution assets 

are even more vulnerable to outages associated with extreme winds, not just due to the construction 

differences in network assets but because the sheer volume of assets mean there are more assets 

which could be broken in adverse weather conditions and the economy of scale may not exist for non-

load related reinforcement of network branches, particularly in rural areas of grids such as SHETL 

where grown is in generation rather than demand. 

What has also not been captured in the demonstrated methodology is the potential variability of wind 

output during wind storms at shorter scales. In [6] potential hourly ramping events of up to 15GW are 

anticipated by 2030, which infers major minute-by-minute variation in wind power generation that is 

not captured in hourly simulations such as that performed here. These variations will coincide, 

potentially, with unstable networks as gusts induce transient faults across power networks – 

potentially aligned with particular gusts with lines which have a common bearing – making the system 

significantly more difficult to control during wind storms. 

Users must be careful in both selecting and interpreting the data used in such studies. This is both to 

ensure it is appropriate to the context and style of analysis being used and to ensure the application 

is relevant to the source data and usable for those attempting to make decisions based on study 

findings. Further, there is a balance that has to be struck between model precision and flexibility – 

there is potential for obfuscation of results via over-complication should too many inappropriate 

corrections be applied where conservative approximations may be entirely suitable. 

4.11 Conclusions 
The methods demonstrated in this section illustrate a method for presenting OHL risk and visualising 

wind power output across a system while demonstrating the potential sensitivities of such modelling 

to changes in the source data and postulated relationships used. This is an example of analysis of 

extreme weather events on an OHL network using hindcasted data, but the method could equally be 

applied to forecast data to plan the location of, for example, restoration assets and repair teams 

during force majeure events to reduce asset downtimes and improve system resilience.  

The proposed approaches are designed to be tractable and portable to other kinds of natural hazards 

and renewable energy generation. For example, rather than wind speed and wind gusts, extremes of 
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temperature could be used with load flow information, ambient temperature, and solar irradiance to 

examine the potential of thermal shutdowns of assets such as transformers and the interaction 

between solar infeed, ambient temperature, and solar irradiance during heatwaves. Similarly, data on 

precipitation could be used with elevation data and network models to examine the risks associated 

with flooding and hydroelectricity. Given the links between wind storms and flooding, this analysis 

could be carried out concurrently to get a more comprehensive analysis of storm-related threats on 

the power system. 

The analysis thus has only considered a single natural hazard and its potential effects on failure rates, 

but for some natural hazards there is a link between how the system is operated and the failure rates 

of assets on the system. For example, line loading, ambient temperature, and line icing are all 

inherently linked. Line ratings are typically associated with thermal/sag limitations of an OHL, and so 

in hot weather operators will be constrained by the upper bounds of temperature limits on lines. 

However, in snow or ice conditions it may be the case that operators, where possible, actively try and 

load lines more heavily to increase their temperature above freezing to prevent additional mechanical 

loading associated with ice on the lines. To take full consideration of this, therefore, a full simulation 

model/load flow could be incorporated into the methodology, particularly given the links between 

elevation, line loading, and temperature. The demonstrated methodologies taken as a comprehensive 

piece of work allow this sort of analysis and, crucially, the visualisation of such results to begin to 

productively address such features. 

The UK, and Scotland especially, is geographically diverse with a wide range of biomes – from 

mountainous, barren landscapes in Highland Scotland to more low-lying planes in England and windy, 

wild coastlines in Western Scotland. Therefore, the application of statistical methods which assume 

homogenous properties and line structures may not be appropriate in extremes of these regions. That 

is, if in the data on which such fragility curves are derived it is the case that vegetation-related outages 

and faults are a primary driver of outages in SHETL, in regions where there is significantly less forest 

cover these fragility curves may be less appropriate or accurate in practise, and further there may be 

significant variation and sensitivity of failure rates across longer lines which traverse geographically 

diverse regions. 

Disaggregation of lines allows the analysis of such effects and the consideration of more localised 

weather and geographic conditions of lines and is a step forward in risk analysis from homogenous 

representations of OHL, particularly in terms of the phenomena which can be investigated and the 

results which can be ascertained from analysis. That is, not only can high risk OHL be identified but so 

can specific high risk regions across the network. Estimations can then be made about the most high-

risk regions either across individual lines or system-wide using metrics such as EFL. 

Although interpolation of the source data in this case was useful for improving simulation granularity, 

it does not address the issues identified with local topological variation directly in that extremes 

associated with local high elevation regions or geographic phenomena such as “wind tunnels”. It is 

difficult to make such estimations without having a means of directly incorporating such calculations 

and more detailed modelling of the local topological conditions of the networks beyond the simple 

visualisation deployed here, but the potential importance of taking consideration of such factors was 

made evident.  

The demonstrated methods have proven a clear advancement in the quantification of failure 

probability on OHL during storms but have not in any way yet considered the impact of such outages. 

Lines which have a high probability of failure is this case study may actually have a low impact and, 

therefore, a relatively low risk. There may be other lines on the system which have a lower probability 
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of risk but are much more important for system security; although understanding the probability of 

outages is important, without a quantification of the impact of such outages the analysis is incomplete.  

The main limitation on further improvement on the granularity of the simulations used is 

computational expense and scalability. The analysis in this Chapter has concentrated on examining a 

specific hour, to demonstrate the fundamental principles of the approach, but inter-annual or more 

detailed simulations (to examine, for instance, seasonal variation) exponentially increase the sample 

size. The benefit of the method is that it allows further detail to be examined, but of course this then 

increases the number of samples which have to be taken in each iteration of the simulation to increase 

by, potentially, orders of magnitude compared to homogenous representations of OHL where, 

effectively, the number of line samples simply = n, where n is the number of lines in the system. In the 

methods shown the detail of the lines scales indirectly with the resolution of the weather data used. 

However, given the potential for parallelisation of the implementation of the code, it is entirely 

possible to make the process much more efficient than that which has been demonstrated.  

Further, as illustrated in the case study, the primary area of concern is in weather and storm conditions 

where wind speeds approach or exceed 20-25ms-1. This makes sampling techniques such as stratified 

sampling attractive to more efficiently direct the simulations to representative weather days, periods, 

or months where we are particularly concerned about wind storms. Something that should be noted 

is that the most computationally expensive parts of the process are the calculation of the pathways of 

individual lines, and the simulations themselves. The former need only be performed once, and the 

latter can be targeted at specific at-risk lines and areas which could be selected via offline analysis to 

optimise simulation. The methods as demonstrated here are only intended to be indicative of a very 

simple application of the methods which can be built upon and refined. 

Various next steps then present themselves. Refinement of the method to incorporate the 

methodology for correcting line exposure per block to be three-dimensional; a comparison between 

homogenous representations of OHL in security studies and the disaggregated methods 

demonstrated; annual or seasonally targeted analysis for more detailed analysis of risk; or 

incorporation with a simulation model to more fully quantify the actual risk associated with lines. The 

latter, in this instance, was chosen, as the other approaches were deemed to be improvements in 

methodology which would improve the precision of the model and were useful in themselves, but do 

not fundamentally extend the work. The simulation model to be incorporated with this methodology 

is described in Chapter 5.  
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Chapter 5 Comprehensive power system simulation during 

extreme weather events considerate of mitigation measures 

and weather impacts on generation 
 

Abstract 

A simulation methodology is demonstrated on a representation of the GB network adapted from 

previous work and incorporating significant wind generation infeed to investigate the impact of 

changing frequency response dispatch regimes on system security. Changing the amount, location, 

and type of frequency response scheduled is shown to significantly impact performance metrics used 

in the quantification of system risk. An “unresilience” metric is proposed and compared across case 

studies to demonstrate the relative performance of the system following different kinds of outage 

events – specifically, a loss of a significant cross-boundary interconnection, a large loss of infeed, or 

more randomised, stochastically generated network faults. Results are also compared across 

interpolated weather data sets with increased spatial granularity versus using reanalysis data with a 

coarser resolution. At increased granularity, faults are less concentrated around individual nodes as 

less of the network is exposed to the most extreme conditions, meaning fewer common mode faults 

and, accordingly, better system performance. Using Flexible Demand Response is shown to 

significantly improve system performance as it is not reliant on the transmission network and can act 

in a more targeted, faster manner. 
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5.1 Introduction 
Taking into consideration the findings from Chapters 4 and 5, evidently the results from power system 

simulations are likely to vary significantly based both on the abstractions of the power system itself 

and based on how faults such as loss of infeed are represented in power systems, or how to translate 

overhead line faults into power system simulations. 

That is, as has been demonstrated in Chapter 4, there are significant variations in the risk profiles of 

overhead lines if they are no longer treated as homogenous entities but as an asset with a variety of 

states connected to each other – much like the power system itself is not a single bus but a network 

of nodes, lines, loads, and generators. Reducing a line to a homogenous entity is an abstraction of a 

real, tangible asset in much the same way a single bus representation of a system used in a frequency 

response simulation is.  

It has been demonstrated that correcting the failure rate of lines spatially to recognize varying weather 

and geographic conditions has a material impact on the failure rates of those lines, as does taking 

account of different fragility curve models for different voltage levels. How this translates to actual 

impacts on the power system will be examined in this chapter in the context of a security assessment 

of an event during a high impact wind speed event, using the same data as is used in Chapter 4. 

As was discussed at the end of Chapter 4, there were multiple potential means on which to build on 

the methodologies developed, but the development of a simulation model was deemed to be the 

most important. That is, refinements had been made in terms of how to go from a natural hazard and 

a network node-branch model to a representation of system failure probability on OHL, but this had 

not been considerate of the actual impacts of those events and thus was an incomplete representation 

of system risk.  

Expanding to inter-annual analyses was deemed to be an expansion, rather than an advancement, of 

the methodology. The next step then was decided to be to incorporate a comprehensive simulation 

methodology to more completely represent the risk associated with wind faults on OHL during storm 

events, considerate of high wind penetration on the systems while also providing a means of 

simulating different mitigation or prevention measures, at least to a basic level. 

This also serves as a means of bringing the analysis back to the original framework defined in Chapter 

3 and improving it to be more representative of weather and power system phenomena across the 

system, showing the progressions that have been made in the methods and approaches used. That is, 

while Chapter 3 introduced the general framework to be used, Chapter 4 presented a series of 

refinements to the representation and use of weather data, while this Chapter serves to utilise the 

improved representation of OHL risk and improve simulation of system perturbations themselves.   

This section then presents a simulation model, comprised of a combination of discrete models brought 

together to represent a whole-system analysis, which take consideration of many of the aspects 

discussed throughout this thesis. The model herein will be referred to, as a whole, as the Extreme 

Wind Perturbation Simulator (EWPS), or “the model”, or “the simulation” etc. 

5.2 Data requirements and problem boundaries 
Work on large-scale climatological reliability or resilience studies on power systems tends to use 

DCOPF approximations for the load flow and power system simulations themselves. This is the case in 

work already referred to, such as [15, 101, 102]. This is because the linear approximation DCOPF allows 

greater tractability than ACOPFs due to the reduced complexity of the optimal power flow problem 



Page | 118 
 

itself, allowing the problem to be wrapped in a larger-scale optimisation problem or simulation, 

limiting the computational expense of the problem itself. The assumption is that effects such as 

voltage deviation and line resistance are effectively negligible relative to other power system 

phenomena.  

In Chapter 3, the simulation considered lines as homogenous entities with failure rates driven only by 

the length of line and an exponential relationship between that failure rate and an incident wind 

speed. The weather incident upon these lines was determined based solely on the extreme of the 

values on either end of the line with very basic groupings of buses upon which that weather was 

incident. The actual relationship between the failure rate and wind speed were largely synthetic and 

used to illustrate the sensitivity of risk metrics to changes in relationships between weather and failure 

rates.  Similarly, lines were assumed to have homogenous failure mechanics, which is to say there was 

no differentiation in voltage levels in the connections themselves. As illustrated in Chapter 4, this is 

clearly inadequate. 

Using the improved methodology determined in Chapter 4, there are greater data requirements for 

lines – spatial weather data and elevation data in particular. The same sources are used herein as were 

used in Chapter 4. 

Regarding network data, in Chapter 3 network data was based on a highly simplified version of the GB 

network that did not consider wind generation or the interaction between wind power and the 

incident weather either. The power curve models used in Chapter 4 and elevation data could again be 

used in this context to make estimations about the output of individual wind farms.  

Similarly, the generators in Chapter 3 were aggregated representations of connected generators at 

each node which were not representative of individual generators or reactors and were considered 

freely redispatchable. In reality, generators are constrained over various timescales – by thermal 

limitations and mechanical constraints in the domains of both frequency response and system 

balancing. Generators used in an OPF therefore should aim to be as representative of individual units 

as possible to represent the fact that individual generators can fault without affecting the wider 

generation site. For instance, during the Three Mile Island incident an entire reactor melted down but 

the remaining site remained functional after the event [103]. 

Using only a DCOPF to represent power imbalances may miss phenomenon such as suboptimal UFLS 

or generator tripping, particularly given the sequence of such events may be of major importance. For 

example, losing generation can reduce the overall system inertia and make the system more 

susceptible to frequency deviations which can lead to more damaging frequency deviations in a 

negative direction. Only simulating ideal load curtailment or generation actions does not capture this 

potential sequence of events. Studies such as [78] have considered frequency response in the context 

of power flow analysis but this study did not consider secondary frequency response requirements, 

nor does it consider the impacts of weather.  

The work here attempts to include these factors as using a similar approach, while also improving the 

representation of overhead line risk. This necessitates data on the frequency response capability and 

ramp rates of generators, as well as their inertia capabilities. Since such data is frequently considered 

commercially sensitive, assumptions also have to be made about these as well as about the expected 

failure rates and mechanisms of generators using appropriate proxies. 

The location and distribution of frequency response also is consequential for the ability of a system to 

respond to system deviations. In a single bus representation of the power system such detail is lost as 

all load and generation is lumped into representative groups, but if frequency response physically 
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cannot be pushed onto the network due to network constraints – or leads to overloading of connecting 

branches and subsequent faults and cascading conditions – it is useless (or, at best, less useful than it 

should be) during loss of infeed events or acute network degradation events such as during wind 

storms. 

Therefore, data pertaining to both generator failure rates and a relationship between OHL failure rates 

and weather are necessary to generate feasible fault scenarios on the network. Thankfully, the latter 

have been investigated in Chapter 4 and can be deployed here as well. For generator faults, the same 

approach can be taken as was used in Chapter 3, assuming independence between generator failures 

and wind as a natural hazard. 

Getting access to representative GB power system models – as opposed to network models, which 

can be deduced with sources such as Google Maps and access to the NG ETYS [95] – is also a challenge 

due to the commercially sensitive nature of such data, particularly individual generator stations. 

Therefore any model used will again involve various assumptions about the nature of various assets 

and will necessitate compromises and proxies for different assets. 

As regarding representation of weather phenomena on the power system, in this case only the 

interaction between wind and the power system will be considered, and thermal and solar effects will 

be considered negligible. This is purely to limit the scope of a problem which is already intricate and 

broad in scale, and so the system boundary must be drawn somewhere. It is also noted that the test 

case being investigated is in the middle of winter in the UK, so solar power contributions to the grid 

are expected to be negligible and temperatures in a range that will not negatively impede the load 

flow capabilities of lines or rating of transformers. 

The load shedding scheme of the system also needs to be considered – in Chapter 3 it is assumed load 

is shed uniformly across the system in blocks of 5% but this does not reflect what is done on every 

network and acted solely as a heuristic to make the problem tractable. In reality such schemes are set 

by regulations and grid codes, and different TSOs and DSOs will have differing approaches. Generator 

tripping behaviour will also vary by generator or may be stochastic in nature. Frequency response 

deployment of individuals may also be stochastic – that is, generators may not respond optimally to 

signals demanding changes in output or may respond sub-optimally. That is not considered in this 

analysis directly – again, as scope had to be limited somewhere. 

When modelling system behaviour, various assumptions need to be made about exactly what loads 

are connected across a system, dependent on the scale at which the system is being modelled. The 

kind of loads which will be connected over the course of a day will naturally vary. On a normal (i.e. 

non-public holiday), for example, behaviour is largely predictable and follows a generalised diurnal 

curve, such as that shown in Figure 5.1 [104]. 
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Figure 5.1 - Diurnal demand curve taken from realtime data from National Grid ESO data 

That is, in the morning, people will tend to be cooking and preparing breakfast before work. During 

the day, people will tend to be at work or in offices. In the evening, people will be cooking or relaxing 

after work, or out socialising. Similarly, industrial demand will tend to be concentrated during office 

hours when staff are working or using machinery. Demand at weekends will follow different patterns 

as office workers or workers on a conventional 9-to-5 rotation spend their weekends socialising or 

away from home.  

As was mentioned in [1], the changing nature of the British economy also has implications for load 

profiles and power usage in the system. Rotating and heavy machinery has become less prevalent as 

a significant source of demand as the UK moves towards a more service-driven, rather than 

manufacturing-driven, economy. 

Data centres, particularly for ecommerce or banking, require 24 hour uninterruptable power supplies 

for reliable economic operation, and demand such as refrigeration in summer or heating in winter 

equally have limited load shifting capabilities without careful planning and monitoring. In the peak of 

winter, having adequate heating can be a matter of life or death for vulnerable or older citizens, and 

in warmer seasons food could rapidly become spoiled should refrigeration or freezing devices fail. In 

more extreme heatwave conditions, cooling may also begin to become a life-critical load in hospitals 

or care homes for elderly people. 

As demonstrated in [46] there is a relationship between temperature and aggregate system demand 

a strongly linear relationship at lower temperatures - approximately a 1% increase in electrical load 

and 3-4% increase in gas demand for a 1C fall in temperature. It is reasonable to expect a similar, 

weaker relationship for increasing temperatures but there was little literature found to investigate the 

matter, as reported in [6]. Temperature is a driver of demand in GB, but weather drives supply 

variability – and the relationships are only weakly quantified in relation to demand at higher 

temperatures.  

Therefore, not only does the amount of load that will be lost at different times of day vary, but the 

nature of that load and economic cost of the loss of load will vary as well. Using a homogenous VoLL 
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cost will, therefore, obfuscate these different phenomena – or, at least, their potential costs. It is 

reasonable to expect a threshold to emerge where increasing temperatures in England and Wales, 

then, begin to create summer peaks associated with cooling demand and changing customer 

behaviour, but no such studies in the context of climate change were forthcoming. Therefore, for the 

purposes of this work, it is generally assumed the system has an aggregated, homogenous load profile 

across the test system with test cases taking place in scenarios with low or negligible solar infeed. In 

future studies this may need to be corrected – with demand being sensitive to temperature, it may 

well be the case that power demand in Scotland, for example, is much more variable to changes in 

temperature than in England if there is a significant temperature gradient. 

5.3 Proposed simulation approach 
In Chapter 4 a simulation framework was proposed at a high level to deal with modelling weather-

related failures. This simulation methodology can be considered to broach various different blocks of 

the model and act to be a more robust and comprehensive simulation of what transpires when a fault 

scenario acts on a given network dispatch.  

The dispatch itself is independent of the fault simulation and could equally be defined from historic 

balancing data, but in this case shall be determined via the use of a security constrained optimal power 

flow (SCOPF) based on the linearized DC approximation with frequency response and unit 

commitment constraints. The exact formulation will be described in Section 5.5.1 Mathematical 

Formulations. 

In order to reconcile the problems with associating network-related problems with the single-bus 

representation of a frequency response simulation, these steps should be linked to each other in the 

simulation somehow so the simulations can be performed independently but the results map onto 

each other. This requires both a formulation for a suitable load flow, and for an efficient and 

appropriately robust System Frequency Response (SFR) simulation. 

Network faults, as discussed in previous sections of this thesis, are not necessarily of concern in and 

of themselves – rather, they reduce the capacity of the network to get power from generation to 

demand which means, both locally and at a system-wide level, supply-demand imbalances. If the 

network remains contiguous this can be readily considered in conventional analysis such as OPFs, and 

if the system does not then incur any overloads on lines, there is no issue with the single-bus 

approximation of the power system used in SFR analysis.  

The loss of infeed from generators or disconnection of loads will also cause supply imbalances in 

themselves should weakly connected assets be disconnected from the MITS, but of more significant 

concern is the potential for islanded conditions on smaller, less robustly connected networks. 

Therefore, the necessity to simulate the frequency response of associated islands following islanded 

events emerges – this is a particular challenge as it requires the linking together of the network models 

associated with power flows and the single bus representations associated with SFR modelling. 

Similarly, in order to approximate the more complete restoration of the system, the frequency 

response problem should be linked to some simulation of power system restoration as well at least to 

a basic level of abstraction. That is, system restoration does not just require frequency response to 

contain deviations from the base frequency but for balance to be restored to the system between 

generation and demand. This happens over multiple timescales – both as secondary response winds 

down and the generators return to pre-fault operation via AGC or manual action, and over the hours 

following the event as faulted lines and generators are returned to operation as demand changes as 

part of the diurnal cycle. This should be considered because the timing of an event impacts the 
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expected load on the system, and hence any reliability metric which measures cost in terms of total 

load disconnected. That is, the absolute and relative amount of load connected will vary based on e.g. 

the time of day at which the fault occurs, the ambient weather conditions, and the type of generation 

connected.  

Further, some assets can hypothetically be relatively quickly repaired (e.g. LV wooden poles and 

conductors) whereas others can take weeks, or even months (transformers and substations). 

Therefore, even if in a simulation window as narrow as one day the restoration of lines may have 

begun to occur. Algorithms or approaches should be incorporated to include this at least to a basic 

level of abstraction to account for the fact that there will be situations where there is a significant 

outage or fault condition which can be rapidly repaired, versus an outage which may affect only a 

small area or result in a small ENS but which results in a long outage and hence the cumulative impact 

is comparable to the more significant event. This matters because the consequences for longer term 

outages are likely to be far more significant than those of shorter term outages which can be swiftly 

restored, particularly in, for example, acute cold scenarios. At least some basic consideration must 

therefore be made for this in the simulation, therefore.  

Considering all of these factors, then, the simulation framework can be generally summarised in the 

format shown in Figure 5.2. 
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Figure 5.2- Simulation framework for weather-induced cascade modelling with OPFs shown 

 

This draws on concepts from both [77] and [78]. In this case it can be seen that there are four main 

areas where analysis or simulations are performed. It can also be understood as an expansion of the 

Fault Simulator and Fault Analysis blocks demonstrated in Chapter 3. The blocks can be grouped 

together for a more clear understanding as to the overall structure of the simulation methodology. 
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The red, solid box is where the dispatch scenario is created. This is generated using forecast or 

hindcasted weather data paired with system models using relevant data to create a dispatch scenario 

which will be subsequently perturbed in the simulation model. 

The yellow box with the smallest dashes generates a perturbation state based on the incident weather 

conditions and the asset fault models inherent in the network model. 

The green box with the mid-sized dashes is where the actual simulation and processing of the fault 

event occurs. The perturbation generated by the fault scenario generator is actually implemented in 

the power system model, and simulated from start to finish of the perturbation itself until the system 

settles into a state where no further degradation occurs. This is essentially simulating the perturbation 

from initial fault scenario through to it settling in a degraded, but stable, state. 

Finally, in the blue box, restoration actions are scheduled and performed, such as unit recommitment 

and redispatch. The output from the blue box will be values such as the ENS of the tested state and 

the perturbation itself (including the revised generation pattern). These are pure economic metrics in 

absence of any probability-based weighting. The nature of the risk metrics calculated at the end of the 

simulation depends on the type of simulation being conducted and the information being sought. 

There are multiple loops in this framework which should be observed, in particular:  

 The loop within the green box for simulating cascade tripping while the system degrades, 

before the redispatch and unit-commitment OPFs are performed 

 The loop from the blue box into the green box, where perturbation states are generated for 

each hour and the model carries on simulating, accumulating perturbations as the incident 

event progresses. 

This framework is broadly comparable to the work in [78] and serves as an expansion of the Fault 

Simulator block, except it includes consideration of secondary response simulation, system redispatch, 

system restoration, and weather-related impacts on the system both in terms of the risk of assets and 

in the contribution of wind power to overall system risk.  

The aim of this approach is to integrate a wide array of analysis techniques together to get useful 

information about the potential variability of risk metrics in a given scenario when changing the input 

data, or corrections associated with that data.  

In [105], it is demonstrated that basing projections of the reaction of the power system on sample 

sizes which are too small can result in significant inaccuracies in projections based on those samples. 

For instance, in using a one year sample rather than a larger 25 year sample, Staffell and Pfenninger 

found that errors in projections of peak demand were around 3% off of the “true” mean, minimum 

demand net renewables were 13% off, and the error in the number of hours with net negative demand 

was as much as 23%.  

Applying that thinking to simulation of the power system itself, there may be significant errors in the 

outcomes of power system security evaluations which apply too many simplifications and abstractions 

to the models which they are simulating, with significant impacts on cost projections and EENS 

projections. Similarly, as demonstrated in Chapter 4, improving the granularity and resolution of the 

fragility curves used and representation of line risk on the system may also have a material impact on 

the simulation of perturbation events as it will change the distribution of simulated events which 

occur. Similarly, the translation of events generated by the perturbation simulator to the power 

system model may also have significant impacts on the risk metrics determined from such simulations. 
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Much as Staffell and Pfenninger examined the potential error associated with under-sampling using a 

single year and compared it to using a larger sample, in this work case studies will be performed 

varying the constraints and states of the dispatch scenarios to fully understand the potential variation 

in output results. 

That is, if there is significant variability in the risk metrics associated with a single dispatch state or 

incident weather scenario when the input parameters are changed, this has consequences for more 

large-scale resilience and reliability studies which do not go into as much depth in the system 

simulation as this model attempts to. Alternatively, if changing the level of abstraction does not 

materially change the results, it implies that these approximations are reasonable and the aspects 

which have been reduced or ignored are appropriate.  

The simulation ensemble as proposed here should be understood as much as concerning the nature 

of interactions between the different aspects of the simulation model developed as the minutiae of 

the individual simulation components. That is, given the scale and complexity of the simulation, there 

are compromises made at each stage that can be iteratively improved on, but at some point the work 

had to be stopped in order to demonstrate the fundamental principles of the work. Where necessary 

the reasoning for the compromises made at the time of implementation have been explained, but it 

is understood that refinements and improvements can always be made to simulations such as this.  

A major aspect of the contributions made and novelty of this section of work is the ensemble effort 

and understanding of how the ensemble of simulations work together and why. 

5.4 Data sources and assumptions for simulation 
The data required for the comprehensive simulation can be broadly broken down into two separate 

areas: weather data, and system data. Exact values will be given in the formulation, but the sources 

and assumptions behind the derivation of these values will be discussed here.  

A reasonably detailed analysis and comparison of weather data sources is performed by Dawkins in 

[6]. System data pertaining to generating facilities, loads, and network parameters for lines and 

transformers are difficult obtain as, particularly for the GB network, they are distributed across a 

variety of sources. Network and wind farm data used in Chapter 4 could be used for power system 

analysis insofar as it provides node, branch, and wind farm location data. However, the wind farm 

data (location and capacity) must be converted into a format usable in a power systems context- that 

is, wind farms need to be mapped to nodes and buses on the power system model.  

Without knowing the exact network connectivity and data pertaining to individual wind farms (and, 

given the pace of change in the GB network, this is difficult even for network operators to keep track 

of), a heuristic method would be needed to at least form a basic approximation of the locations and 

connectivity of windfarms. Similarly, the wind farm data used in Chapter 4 includes hundreds of 

individual, commercially connected wind farms e.g. ones connected to an industrial site at the 

Michelin plant in Dundee which have a total capacity of <5MW. Such data would have to be 

aggregated in some way to remain useful in the simulation without compromising model tractability. 

With the power system model, failure rates for synchronous machine generators were derived from 

[61]. Conversely, failure rates for wind turbines were taken from the same paper but the data w.r.t. 

the DC link rather than generators. This is based on the assumption that the power curve in itself 

carries some representation of the availability of individual turbines aggregated to the level of a wind 

farm, and the only way total loss of infeed from a windfarm to the grid would be a total failure of the 

grid connecting power converter or sufficient HWSS to render the net output zero. 
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For the simulations considered here, only random generator faults or wind-induced OHL faults will be 

considered. That is, it is assumed failure rates at lower wind speeds are analogous to the rates of 

random outages, whereas at higher wind speeds the wind-failure mechanisms become dominant and 

the driver of failures. Therefore, no additional consideration is considered necessary for random 

outages.  

Such data was mapped using a method which involved the use of the Haversine equation to determine 

the km distance between every single windfarm and each node from the network model. The node to 

which each windfarm had the lowest distance was the one to which each wind farm was therefore 

assigned.  This can be visually represented as shown in Figure 5.3. 

 

Figure 5.3 - Graphical representation of windfarm mapping 

In this case, the Haversine equation is used to estimate the distance x, y, and z between the origin 

point a, and the respective points at which the buses are located. The windfarm is then assigned to 

the bus which has the minimum distance. The elevation of each point is ignored, only “as the crow 

flies” distance is considered. The windfarm in this case would, by inspection, be assigned to point x. 

Location data for individual buses was simply taken from the model used in Chapter 4. The windfarm 

is treated as a single point for the derivation of total power capacity given a set weather condition, 

using the corrected power curve also derived in Chapter 4. 

In the simulation model, the fragility curves derived in [64] are used, with the same data bins, adapted 

for use in the software. This marks a progression in power system simulation as lines have not been 

represented in such a fashion in the literature examined herein, especially not in the context of 

security assessments.  

The data sources used for the power simulation are again those used in Chapter 4 – namely [87, 88] 

from the NASA MERRA-2 dataset [86]. These are used due to the spatiotemporal completeness of the 

data, and as it can be readily corrected to account for geographical features as discussed in Chapter 

4. 
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The locational data, network and system data pertaining to the test networks was taken from multiple 

sources: the NG ETYS [95], the RPD 2018 [91], and from data provided by C. MacIver of the University 

of Strathclyde, and with modifications made to update the network and make it appropriate for use 

in a DCOPF. This covers the basic data necessary for the formulation of a DCOPF, but did not include 

appropriate example cost functions for generators, nor did it include costs for things such as generator 

tripping or wind power curtailment. Data on costs was taken from [57], and was intended to be 

indicative rather than absolute representations of cost.  

For the purposes of the SFR simulation, typical constants were used that would reasonably expected 

of the GB system based on values taken from [68] and [67]. The system, during d frequency excursion, 

is assumed to act as a single thermal generator acting with droop control and frequency responsive 

load – load damping is not considered directly. 

Hydroelectric generation and interconnectors are included in this, in that it is assumed their 

contribution can be bundled into the system-wide “representative” single bus and the specific 

phenomena associated with these inputs into the system can be ignored at a system scale. Wind 

generation is assumed to be nonresponsive to frequency deviations (i.e. its output stays fixed during 

system perturbations), and with interconnectors has zero contribution to system inertia. This is a 

conservative assumption, as research does show that wind can hypothetically have a contribution to 

system inertia via so-called “synthetic inertia”, which is discussed in [68], but in the framework being 

proposed this was deemed, at the time of writing, to be outwith the bounds of investigation and the 

assumption was deemed appropriate.  

In this context it was deemed that in some instances it was better and more useful to be conservative, 

and given the SFR is only needed to be approximate to the system frequency, and certain proxies and 

abstractions are already being made, this was deemed to be appropriate if sub-optimal, particularly 

given the difficulty associated with quantifying what the actual inertial contribution of power-

converter technologies actually is. As has been previously discussed, individual loads and generators 

may “see” a different frequency from the system-wide average, but as a first approximation a single, 

homogenous frequency profile was used for the single bus representations and all generators were 

assumed to respond, proportionally, identically and ideally based on the control algorithm used. In 

reality, a hydro plant will react differently from an inverter, which is different from a nuclear plant. 

Certain assumptions are made to separate these factors but for frequency-responsive generators 

these were not directly differentiated. This will be further elaborated in this section and in 5.5.1.6. 

 Representing UFLS also presents a challenge for system operators as, in GB, the thresholds at which 

load is shed depend both on the frequency deviation itself and the location of the bus at which LFDD 

is taking place. Busses therefore need to be classified based on the transmission owner region in which 

they are located. Thresholds were therefore taken from the Grid Code [73] and buses assigned to 

regions based on data provided by C. MacIver. The specific values used will be discussed in Section 

5.5.4 when relevant to the model formulation. Series compensators are treated as OHL with line 

ratings corresponding to those of adjacent lines, as a basic approximation. Transformers, too, are 

treated as connecting branches. The winter ratings associated with the lines are used as their nominal 

values due to the timing of the test case in question, with an emergency rating corresponding to a 

130% of the nominal value. The long-term emergency post-contingency rating was set to the normal 

winter rating on the assumption that, because the example being used is during a high wind example 

in the winter, sufficient ambient cooling would be present to allow the line temperatures to drop 

within acceptable bounds. 
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Hydroelectric plant – both pumped storage and run-of-river- is assumed to be able to provide primary, 

secondary, and tertiary response, and is assumed to be able to sustain primary response through to 

tertiary response. 

So too are interconnectors, as it is assumed the power electronics can adjust their output accordingly 

and maintain the new output. 

Nuclear plant is assumed to be unable to act as primary frequency response, but can provide 

secondary response, but this cannot be sustained into tertiary response. Alternatively it can provide 

tertiary response without secondary frequency response. In GB, nuclear typically does not directly 

deploy response- but globally it can be deployed as such.  

In order to limit the complexity of the simulation, coal plant is assumed to be able to provide primary, 

secondary, or tertiary response, but only one for each scenario (that is, it can exclusively provide one 

form of response to which it is scheduled. In reality it may be able to provide all three. 

Gas plant, both open-cycle and closed-cycle, has the same restrictions. 

The Ryan Model lists some connected generation as “Other” or “CHP”. This is assumed to act in a 

similar manner to both Gas and Coal plant, in lieu of more complete information. 

Of course these assumptions are imperfect, and there is scope for refinement and adjustment for each 

of them, but limiting the problem boundaries and avoiding obfuscation via over-complication was a 

key concern. The assumptions, therefore, were based on discussions with colleagues and what would 

be deemed reasonable and appropriate for the fundamental work being undertaken to demonstrate 

the methods. 

5.5 Model implementation 
Taking all of the relevant data sources together, then, the model needs to be implemented. The 

formulation and implementation shall approximately be considered, then, in terms of the boxes 

described in Section 5.2.  

Prerequisite knowledge about the formulation and deployment of SCOPFs is presumed and important 

for understanding how various aspects of the model link together, but the mathematical formulations 

provided, as well as the flow charts, should provide enough information to provide at least a base level 

understanding of the fundamental processes at play. References to comparable methodologies and 

studies are also provided for further information. 

5.5.1 Mathematical Formulations 
This part of the simulation model is particularly concerned with generating the state which the user 

wishes to test. Therefore, a reasonable dispatch state is necessary if a security assessment is to be 

performed such that the results reflect a reasonable, realistic dispatch scenario one might reasonably 

expect to experience on the system. One could also take historic balancing data and map it to the 

system with approximations made as regards the dispatch and location of frequency reserve response, 

and availability of generators – such data is nontrivial to access and apply to such network models, 

however. 

The power system model generated broadly approximates the GB transmission system such as it was 

assembled in approximately 2015/16, but updated with 2018 wind data. This corresponds to a peak 

demand of ~58GW, wind capacity of ~20GW, and total connected synchronous generation of ~68GW.  
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Sites such as Hinkley Point, whose nominal total output is stated at around 1320MW, were broken 

down into equal generators of 660MW or less, and this rule of thumb was applied to every large 

generator on the network. There are a significant number of small wind generators in the data, and 

so in the model, wind farms were aggregated to equal units of 1GW or smaller based on the 

assumption the largest single infeed from a farm would be associated with a 1GW feeder or 

interconnector. 

In order to determine an appropriate generation dispatch profile, a DC security constrained OPF (DC-

SCOPF) was implemented and deployed. This was based on work in [57], and implementing linearized 

frequency-related constraints derived from [60], [67], and [68]. Some parameters which are used 

within the software implementation for data processing purposes – but which are not actually used in 

the optimization itself – are omitted for clarity. Data types used in pyomo [59] are also given. The 

complexity of the model necessitates it be described in sections for clarity to ensure each step is 

described for the purposes intended. The constraints and objective functions shall also be given and 

a description given thereof. The mathematical formulation described hence refers to the Dispatch 

SCOPF highlighted in Figure 5.4. 

 

Figure 5.4 - relevant section of simulation algorithm 

5.5.1.1 Dispatch-SCOPF formulation – parameters 

The parameters used in the formulation of the Dispatch-SCOPF dispatch problem are described in 

Table 5.1. These represent broadly typical parameters used in comparable DC Security-Constrained 

Optimal Power Flow studies and simulations with some new additions related to the SFR and 

frequency reserve scheduling, which shall be described in further detail in the implementation of the 

SFR in Section 5.5.4. 

Table 5.1 - parameters used in DC-SCOPF formulation 

Parameter Type Description 

g Positive integer Index of generator in generator set G 
t Positive integer Time-step in time set T 
k Positive integer Index of contingency state in contingency set C 
b Positive integer Index of bus in bus set B 
i Positive integer Area index parameter 
gmin,g Real Minimum real power output of generator g (MW) 
gmax,g Real Maximum real power output of generator g (MW) 
εfuel,g Positive real Fuel cost of generator g (£/MWhr) 
εstart,g Positive real Startup cost of generator g (£/MWhr) 
εshed,g Positive real Curtailment cost of load lo (£/MWhr) 
gramp,g Positive real Ramp rate of generator g  (MW/min) 
εtrip,g Positive real Trip cost on generator g (£) 
Hs,g Positive real Inertia constant of generator g 
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Sg Positive real S rating of generator g (MWs) 
w Positive integer Index of wind generator in set W 
wCF,t,w Real Capacity factor of wind generator w at time t 
wcap,w Real Total capacity of wind generator w (MW) 
εcurt,w Positive real Curtailment cost of wind generator w (£/MWhr) 
lo Positive integer Index of load in set LO 
dlo Positive real Real gross power demand of load lo (MW) 
d†

lo Positive integer Load “area” of load lo 
li Positive integer Index of line in set LI 
Xli Real Reactance of line li (p.u.) 
Fnom,li Real Nominal (continuous) line real power rating of li (MW) 
Fc,li Real Short term emergency (STE) real power rating of li (MW) 
F24,li Real Long term emergency (LTE) real power rating of li (MW) 

k,t,li Binary Service status of line li at time t in state k 
εx,lo Real positive Value of lost load (VoLL) of load lo (£/MWhr) 
εdr,lo Real positive Cost of Flexible Demand Response on load lo (£/MW) 
τ Positive integer Time constant to change granularity of simulation w.r.t time 
M Real positive Base (100MVA) 
𝒂̃ Real positive Estimated flexible demand attrition (p.u.) 
a Real positive Actual flexible demand attrition (p.u.) 

k,t,g/w Binary Service status of asset g, w, or li, at time t in state k 
gmin,g Real Minimum power output of generator g (MW) 
gmax,g Real Maximum power output of generator g (MW) 
Dk,t,lo Real positive Net real power demand on lo at t in case k 

 

5.5.1.2 Dispatch-SCOPF formulation – variables 

As with the parameters, Table 5.2 shows a mix of standard DC-SCOPF variables and atypical values 

which represent the association with a frequency-response model and the need to schedule 

appropriate primary, secondary, and tertiary frequency response. These will be described in further 

detail both in context of the constraints to which they apply and how they interact with the SFR model. 

Table 5.2 - variables used in DC-SCOPF formulation 

Variable Type Description 

w0 t,,w Real Nominal dispatch of wind generator w at time t (MW)  
Fk,t,li Real Flow across li at time t in state k (MW) 
sk,t,lo Real negative Load curtailment at load lo at time t in state k (MW) 
φk,t,b Real Voltage angle at bus b at time t in state k  
wcurt,k,t,w Real Wind curtailment on generator w at time t in state k  (MW) 
ρ t,g Real negative Primary frequency response scheduled on generator g at time t (MW) 
β t,g Real negative Secondary response scheduled on generator g at time t (MW) 
β* t,g Real negative Net secondary response scheduled on generator g at time t (MW) 

 t,g Real negative Tertiary frequency response scheduled on generator g at time t (MW) 
pk,t,g Real Real power from generator g in at time t in state k (MW) 
g0, t,g Real Real power dispatch from generator g at time t (MW) 
dk,t,lo Real positive Net real power on load lo at time t in case k (MW) 
upk,t,g Real negative Upwards redispatch on generator g at time t in case k  (MW) 
downk,t,g Real positive Downwards redispatch on generator g at time t in case k (MW) 

k,t,g/w Binary Trip variable at for generator g or w at time t in case k (1=tripped) 

 t,lo Real positive Flexible demand which returns in secondary phase at time t (MW) 
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Ω t,lo Real positive Flexible demand linearly restored in tertiary phase at time t (MW) 
A t,g Binary Decision variable representing generator g being used as primary 

frequency response at time t 
B t,g Binary Decision variable representing generator g being used as secondary 

frequency response at time t 
Ct,g Binary Decision variable representing generator g being used as tertiary 

frequency response at time t 

t,g Binary Decision variable  representing if g is committed (=1) at time t 
offt,g Binary Decision variable indicating generator g has been switched from in 

service to out of service in dispatch at time t 
ont,g Binary Decision variable indicating generator g has been switched from out 

of service to in service in dispatch at time t 

𝑻̅g Binary Minimum up time of generator g 
Tg Binary Minimum down time of generator g 
Ѱt,g Real negative Frequency response inadequacy (MW) 
rp Real positive Primary frequency requirement (MW) 
rs Real positive Secondary frequency requirement (MW) 
ot,i Real Inter-area transfer at time t from area i 

5.5.1.3 DC-SCOPF formulation – network-related constraints 
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These constraints describe a reasonably typical Unit Commitment DC-SCOPF with redispatch and 

varying line flow limits, but also with wind-varying and curtailable wind generation. For clarity, unless 

otherwise stated or described herein it is assumed the constraints act for all variables associated with 

the given indices in the constraint (e.g. (5.5) applies  k states, t times, and g generators). These 

constraints for the backbone of the “network” side of the dispatch problem. That is, the granularity is 

set to 10 minutes and effectively the model dispatches the generator dispatch in the k=0 state to 

minimise the cost of running the network for a given hour while ensuring all of the security criteria 

are met. The objective function shall be discussed later as some aspects of it remain to be described. 

(5.1 and 5.2) constrain the flow of lines in nominal or contingency states. These constraints ensure 

that in normal, continuous operation the continuous line flows are within the limits set, whereas these 

limits are relaxed in contingency states (k != 0) to the branch STE ratings.  

(5.3) determines the voltage angle and flow between bus a and b in set B based on the flow between 

the respective nodes across branch li assuming said branch is functional in the contingency state k at 

time t. 
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(5.4) is the node balance constraint, which ensures the power balance at every node is equal to zero. 

That is, the sum of the net demand, the power from generators connected at a given node, the flow 

into and out of the node, and the net power from wind generators connected to that node must 

always equal zero. The indices a,b,c,d, and e refer to all of the relevant asset classes connected at the 

given node. 

(5.5) to (5.12) enforce the constraints on generation in the dispatch problem. That is, the generator 

dispatch can only be nonzero if it is committed, functional, and not tripped. The net final output of 

the generator must also always be between its minimum and maximum, if it is operational.  

The adjustment of the output of the generator to restore the supply-demand balance is constrained 

by the ramp rate of the generator and the time constant. In this case, in going from the nominal state 

k=0 to a contingency state k the output of a generator can only be increased or decreased by up to 

ak,t,ggτgramp,gCg , either positively or negatively, but if the generator faults its output can be forced to 

zero if and only if it is faulted and the trip variable is set to 1. This effectively prevents generators in 

the dispatch from being allowed to trip off in “normal”, planned for, conditions to maintain system 

security.  

(5.13) tells the model that, in all cases, the net demand must equal that of the expected demand on 

the system on that node at a given time. That is, no load curtailment is allowed and all load must be 

supplied for the security conditions described. 

(5.14) to (5.17) regulate the wind power infeed on the system. Wind power cannot exceed the 

maximum capacity of the wind farm multiplied by the capacity factor determined by the incident 

weather conditions on that wind farm. Further, there cannot be more wind power curtailed than is 

actually available at a given node. Finally, there is no equivalent limitation on the tripping of wind 

generators as it is assumed the power electronics used to connect a wind farm have the ability to 

reconnect or disconnect the generation from the MITS at time scales far smaller than an equivalent 

synchronous or conventional machine - they can however still be “tripped”.  (5.18 to 5.22) control the 

unit commitment of generators and the ramp rates.  

These are conservative assumptions in many cases, but the aim here was not to represent ideally a 

market with generators freely coming in and out of service, but reasonable hypothetical situations 

where generators can come into service and disconnect but would not reasonably expect to 

consistently be dropping in and out of service. Rather, they would operate at minimum stable 

generation rather than disconnect, if they could, and still gain revenue and the operator would wish 

to avoid repeatedly paying startup/connection costs to generators. 

5.5.1.4 Dispatch-SCOPF formulation – frequency related generator constraints  

Crucially, these constraints have not yet alone fully incorporated the frequency-response side of the 

problem, which shall now be described as regards the frequency response provision from generators. 
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(5.34) 

These constraints then begin to link the frequency response adequacy problem, while not specifying 

the actual frequency response requirements themselves. This formulation assumes the model is 

dispatching generation for loss of infeed events, and that the system can handle loss of demand events 

straightforwardly via down-ramping and footroom in generators across the system, and thus does not 

need to schedule response to meet them as such.  

(5.23 and 5.24) connect the dispatch of primary and secondary frequency response to the output 

limitations of the generators themselves, in much the same manner as (5.11) which connects the 

maximum power output of a given generator to its upwards or downwards redispatch. The difference 

being between these equations that the presumption is any generator which can sustain its primary 

response into secondary and/or tertiary response will do so (e.g. hydroelectric). 

(5.25 and 5.26) limit the maximum possible frequency response deployable by a primary-frequency 

responding generator of any kind to 10% of its maximum output, and link this to the binary decision 

variable assigning the given generator to primary frequency response and to that generator’s 

commitment status. That is, a generator can only contribute primary frequency response if it is 

committed and operational in the first instance and it has been assigned to do so. 

In constraints (5.27 and 5.30) the available primary and secondary frequency response deployable is, 

as one would expect, limited to zero if the generators are presumed to be incapable of primary 

response or AGC/secondary frequency response. 

The constraints (5.28 and 5.29) calculate the net contribution of secondary response from a given 

generator. This is to avoid double-counting of primary and secondary response in the formulation 

should a response provider sustain its primary response as secondary response (e.g. interconnectors, 

hydro in this implementation). (5.33) determines the maximum deployed tertiary response from any 

single generator across all contingency states, and hence how much tertiary reserve needs to be 

scheduled for that generator (assuming enough is scheduled ahead of time to meet the maximum 

necessary adjustment upwards of that generator).  

Finally, for this group of constraints, (5.34) ensures that generators cannot be assigned to multiple 

different stages of response – that is, that primary response generators require time to recover from 

providing frequency response and cannot provide secondary or tertiary response and return to their 

original output as they are replaced by secondary response, and so on for secondary generators. That 

is, unless the generator is specifically able to provide frequency response across frequency domains 

(at least for the timescales involved in frequency response), such as run of river or adequately 

prepared pumped storage hydro. 
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These constraints describe the limitations on generators’ abilities to contribute frequency response to 

the system, but they do not describe or constrain how much is actually required within the system 

itself. 

Constraints (5.25, 5.26, 5.28, and 5.29) which state that only 10% of the maximum output of a 

generator can be used as frequency response, will in themselves naturally cause some distribution of 

frequency response across the system, but that in itself may not be adequate for some of the 

situations described. This is particularly an issue given the potential for localised effects of wind-

storms which could see significant variability in wind power across boundaries or due to ramping 

effects.  

Two different sets of constraints for determining frequency response requirements are therefore 

proposed for comparison and use in the simulations, which reflect potential different mindsets or 

approaches which an operator may take, and are defined with their respective constraints also given. 

 

 

(5.35) 

 

 

(5.36) 

This first pair of constraints mandates that all the deployed primary and secondary response on the 

system be met by a combination of generation response (primary and secondary, reflected by the ρ 

and β variables) and FDR   and Ω deployed at loads 1…b. FDR is, in this model, assumed to take two 

forms: that which must be restored by secondary response (i.e. short term response from sources 

which may be sensitive to anything more than interruption for a few tens of seconds or for which 

anything more than such an interruption may cause customer inconvenience, e.g. EV chargers) or 

demand response which can be restored over longer timescales, such as non-critical thermostatic 

loads.  

A correction factor can also be added to  and Ω. This would serve the purpose of representing a 

reduction in the effective amount of FDR of that nature deployed. For example, a factor of 0.5 would 

mean half as much demand response was contributing to the net frequency response requirement as 

was scheduled – effectively the model would be dispatching twice as much as that which was expected 

to turn up as a way of hedging. 

Subscript a and b represent subsets of generators and loads. These could be sets which include all 

generators across the system, or subsets of generators or loads within specific predefined areas. The 

use of FDR which must be restored in secondary response timescales increases the secondary 

frequency response required, which is reflected in (5.36), whereas this same FDR increases the 

amount of primary response deployable, as observed in (5.35).  

The Ψ variable represents a value to allow some slack in the calculations given the conservative nature 

of the frequency response dispatch requirements. Its effect is that it decreases the net frequency 

response requirement but this is associated with a significant cost. This relaxation is only used in some 

scenarios and the variable can otherwise be considered fixed to zero. 

The reason such an allowance could be deemed acceptable is that the dispatch formulation does not 

consider the fact that loads can be affected by frequency deviations themselves and system load will 

drop during times when frequency drops, which can be thought of as an inherent response of the 

system from demand which can be a useful property.  
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Where there is inadequate frequency response available to meet primary and secondary frequency 

response requirements and the SCOPF solution is infeasible for a given scenario, this variable can be 

nonzero to allow convergence even if there is insufficient frequency response in the system to meet 

a stated requirement, but an associated penalty will be levied in the objective function.  

A nonzero Ψ means that the frequency following a loss of infeed ≥ r will rest at a value < fnom. However, 

so long as this value is kept appropriately small, this means that the frequency should still be able to 

be restored to fnom so long as there is adequate tertiary response scheduled.  

For typical frequency response dispatches, this should be an insignificant figure on a system-scale 

compared to the scheduled frequency response from generators. The intention of this methodology 

is to understand the significance of varying the scheduling of frequency response itself. This is also 

based on the assumption that, for N-1 scenarios on realistic, well-developed networks in reasonably 

expected situations, there should reasonably be enough frequency response to handle a typical 

system perturbation in reasonable operating conditions.   

Unless otherwise stated, this value is constrained to 0 and can be ignored.  However, if convergence 

issues in the dispatch emerge this was allowed to be limited to <50MW- small enough to be effectively 

negligible on system scale, but allowing a slight flexibility in the problem formulation itself to test 

extreme cases, as this formulation is designed to do. 

This is a suboptimal representation of such a problem, but as with many issues in the formulations 

presented it represents a solution that is in place and can be replaced in future. It should be 

remembered that the point of the initial SCOPF here is to generate a dispatch state which could, under 

the criteria determined and presented, represent, at least, a reasonable approximation for the state 

in which the system might find itself before a perturbation. For reasons which shall become obvious, 

ultimately the initial dispatch itself is not nearly as significant as the restrictions on aspects such as 

minimum up, down time, and which assets fail at what times. 

Returning to the dispatch problem under discussion, the requirement r can be determined in various 

ways. It can be set as an absolute parameter (e.g. 1320MW, representing single largest infeed at 

maximum output – to represent a large nuclear plant for example) or set based on the actual single 

largest output from a generator g or wind farm w. 

This pair of constraints can be considered as an absolute value (AV) frequency response requirement. 

That is, the frequency response requirement is set simply based on a single parameter value. This may 

over (or under) estimate the actual frequency response requirement across the system, but is in line 

with deterministic security standards such as the grid code which mandate that the system has to be 

able to deal with the largest single loss of infeed on the system. 

Alternatively, to deal with situations where one wishes there to be a given distribution of frequency 

response across an interconnection, the following constraints can be used to determine the inter-area 

transfer across a given boundary. 

 

 

(5.37) 

 

 

(5.38) 
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These determine the inter-area transfer between two pre-defined areas. A net negative O value infers 

the area is exporting, while a net positive infers import (as the positive demand exceeds negative 

supply). The indices a, b, refer to loads and generators respectively. The r value for primary or 

secondary response within an area can then be set such that it is greater than, for example, 1) the 

import into that area from the other network 2) the single largest wind infeed 3) the single largest 

generator or interconnector infeed. A truly N-1 secure system should have enough frequency 

response to deal with all of these issues.  

A supply excess on the supplying network could be met by tripping excess wind generation during 

windy periods, whereas extra frequency response could be commissioned in the receiving network to 

ensure any loss of infeed could be adequately met. Case studies examining this and the impact of 

changing these frequency response requirements will be examined in further detail in due course. 

5.5.1.5 Dispatch-SCOPF formulation – objective function 

Finally, the objective function for the DC-UCSCOPF is given. 

 

 

(5.39) 

This effectively works to minimise the cost of generation dispatch, the cost of frequency response, 

and cost of wind curtailment (as wind is assumed to have zero marginal fuel cost), and the cost of 

demand response, while all the above security constraints are met. An objective function generally 

can be understood as reflecting the priorities of an operator on a system.  

If Ψ is zero, the associated term can be ignored and the OF works to minimise the costs associated 

with a dispatch state (the cost of frequency response, the cost of fuel, the startup costs of generators). 

If there are convergence issues and the Ψ is allowed to be nonzero, the first priority of the OF is likely 

to be to minimise the cost associated with this as it is weighed by the cost of load curtailment, valued 

at £17,000MWh-1. Now that the formulation of the dispatch problem is complete, the formulation of 

the SFR problem can be undertaken. 

5.5.1.6 System Frequency Response simulation 

The SFR simulation (represented within the flow diagram as “Frequency Response Model”) is a time-

resolved quasi-steady-state based representation of a standard system frequency response 

simulation. It was developed in a format which can be relatively straightforwardly implemented in a 

language such as python which does not have the support of GUI-based simulation software other 

languages may provide. In the development phase this presents difficulties, particularly in linking the 

problem to the wider simulation platform, but the benefit of creating the model in a bespoke manner 

such as has been done here is that custom algorithms can be implemented and modified in a way 

other software solutions may not support, and the interactions between the SFR model and other 

aspects of the simulation can be controlled more directly. The granularity of the simulation can also 

be easily changed by varying a time constant.  
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This simulation is deployed in the SFR-load flow loop, as indicated in Figure 5.5, with the SFR model 

operating in the block indicated. 

 

Figure 5.5 - location of frequency response simulation in wider model framework 

This offers an improvement on the inclusion of frequency in conventional SFR-OPF models as it allows 

time-sensitive generator tripping and load shedding which can consider load shedding schemes such 

as those set out in the Grid Code, rather than the need to use heuristics such as those which were 

deployed in Chapter 3. This is a clear advancement in realism in the simulation being implemented 

and allows a far greater variety of events and a greater complexity in simulation than previously was 

implemented. The parameters and variables used in the SFR simulation are provided below. 

Quantity Type Description 

ft Real positive System frequency at time t (Hz) 
Lt Real positive Net total system demand at time t (MW) 
Pt Real positive Net total system power infeed at time t (MW) 
Pmax Real positive Net maximum real power on system (MW) 
Pmin Real positive Net minimum real power on system (MW) 

dt Real positive Net total system frequency demand adjustment at time t (MW) 

Pt Real  Net total system power imbalance at time t (MW) 

Pt Real Power adjustment signal (MW) 

Rdroop Real positive System droop 

p Real positive Deadband of primary frequency response (Hz) 

s Real positive Deadband of secondary frequency response (Hz) 

fnom Real positive Nominal system frequency (Hz) 

𝒇̃ Real positive System frequency used in load flow to minimise error (Hz) 

𝒇 Real positive Output system frequency from frequency response simulation (Hz) 

 Real positive System error value 
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Lt Real Frequency-related load adjustment (MW) 

Hs,t Real positive Inertia constant at time t (s) 
St,g Real positive S rating of generator g at time t (MW) 
Trh Real positive Reheat time constant 
Fhp Real positive High pressure fraction 
T Real positive Time step size to change granularity of simulation 

ft Real Quasi-steady-state rate of change of frequency 

 

The relevant formulae used are shown. 

 

 

(5.40) 

 
 

(5.41) 

 

 

(5.42) 

 

 

(5.43) 

 

 

(5.43) 

These are derived from standard low order SFR models such as [67], literature on frequency response 

such as [60], and an implementation of a straightforward SFR model as shown in [68]. (5.40) describes 

the calculation of quasi-steady-state changes in frequency on the system. (5.41) calculates the power 

imbalance on the system at any given time. (5.42) calculates the adjustment in system load associated 

with deviations from nominal system frequency. (5.43) is the adjustment in output power on the 

system associated with frequency deviations based on standard SFR models and treating the entire 

aggregated system model as a single bus representation of a thermal generator. That is, all generators 

on the system are aggregated in the SFR and, if they are frequency responsive in the relevant section 

of the simulation (i.e. primary or secondary frequency response), their net contribution to changes in 

the system power output is calculated using (5.43), which caps any net power output based on 

maximum or minimum limits in headroom or footroom.  

The values of L, P, and H are calculated based on the generation connected at a given island. Effectively 

the model calculates the frequency deviation, determines the response from load, determines the 

response from flexible demand, and then calculates the net power imbalance, and iterates this as the 

model moves forward through quasi-steady-states and calculates the change in frequency at each 

timestep, re-calculating the variables in situ.  

The exact algorithm will be described in the System Frequency Response Features section. Pmax is 

determined by taking the absolute value of the sum of generators on the system and adding the total 

scheduled primary or secondary frequency response of the contributing generators. Ht  also varies with 

time as, when generators trip, inertia on the system will be lost. Pmin is determined by taking either 1) 

10% of the net generator output contributing to frequency response’s output or 2) the difference 

between the generator’s individual power contribution at time t and its minimum total output (or, 

given the dispatch formulation treats generation infeed as a negative value, its “maximum”).  
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Frequency response is generally dispatched on the basis of assuming it is handling loss of generation 

rather than excess demand on the assumption that generation can adjust downwards to handle 

overloads, so that approach is taken here. L is the net demand derived from the sum of all connected 

loads and can be reduced by either load shedding or demand response, the capacity of which is 

derived from the dispatch SCOPF. 

Once the frequency response of the system has been calculated, a load flow is performed to determine 

if any line overloading and tripping occurs. The formulation of this power flow is now given. 

5.5.1.7 Load Flow OPF formulation 

In the load flow optimisation, all the generator output values, demand curtailment, and wind 

generation are fixed in the solver as a feature of pyomo. This OPF is solved following the SFR 

simulation, as indicated in Figure 5.6. 

 

Figure 5.6 - location of load flow OPF in context of wider framework 

Therefore, the majority of the constraints limiting generator output etc. used in the UC-DC-SCOPF are 

redundant. To that end, only the constraints pertaining to line flow limits, voltage angle, and node 

balance are required (5.3 and 5.4) to be carried forward. However, in this case, the only constraints 

on line flows are that lines out of service are constrained to line flows of zero and the voltage angle 

constraints which act across those lines do not apply. The net demand on a node can be represented 

by the constraint: 

 

 

(5.45) 

which reflects the fact that the load curtailment and deployed frequency response is fixed, based on 

the values extracted from the dispatch and frequency response. Indices K,t = 0 in this instance. The 



Page | 141 
 

net demand can only be changed by varying the 𝑓 value to change the net load. This value is linked to 

the constraint (5.46). 

 

 

(5.46) 

This allows some discrepancy between the frequency extracted from the SFR simulation and that 

which corrects the demand on the system, to account for rounding or floating point errors which could 

cause feasibility issues in the solver. The objective function is then simply the following 

 

 

(5.47) 

which minimises the discrepancy between the load flow and the results of the SFR to map the results 

of one onto the other. 

After this is completed, the model checks for lines which are overloaded and trips any which are or 

attempts to re-close any which have already been re-closed. That will be discussed in the Line Overload 

Simulation section. The assumption being that if the loads, reference buses, and power infeed from 

generators are consistent – and frequency-related demand adjustment is consistent – the load flows 

should reflect a realistic scenario for each island. The reference bus for each load flow is fitted based 

on being assigned to the node with the greatest power infeed. All loads and generators with zero 

routes to the reference bus are ignored. Each island’s frequency response is modelled in turn in this 

manner. 

Assuming the system has settled into a state where there is no subsequent load shedding or overloads, 

the model progresses to modelling the deployment of tertiary response/removal of secondary 

response. That is, the islands’ frequency response and cascade simulations are performed in turn, and 

each island’s SFR-load flow loops are iterated until there are no remaining overloads or unacceptable 

frequency excursions. 

5.5.1.8 Redispatch OPF formulation 

The results from the earlier simulations are collated and combined such that the initial conditions of 

the redispatch simulation match the ending states of the islands created by the SFR and perturbation 

simulations. In this case, only one case is simulated for 10 minutes (i.e. τ =1, set T is size 11 including 

0). This is to replicate tertiary support replacing generation which has adjusted inputs to restore 

frequency during secondary response and to replace demand curtailed by operators. This is labelled 

as “Restoration Operations”, as indicated by the following section of the framework: 

 

Figure 5.7 - location of redispatch, UC-OPFs in simulation framework 

It is assumed that no new generators can come online in this time period, and so the results of the 

Unit Commitment and SFR are used to determine what generators are online, and at what output. 

Primary frequency generation has its outputs fixed across the redispatch simulation (on the 
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assumption the generator is recovering and no further adjustment of output is possible. Secondary 

frequency-responding generation linearly decreases (or increases) back to its nominal dispatch value. 

Tertiary response is free to adjust its output as required. The frequency used in this stage of simulation 

is a fixed parameter that gradually changes from the value determined on each island in the SFR to 

the nominal value at Tmax. The standard DCOPF formulae from the original formulation are used with 

the exception of the unit commitment constraints. That is, constraints (5.3, 5.4, 5.6, 5.8, 5.9, 5.14, 

15.15, and 5.17) are used from the original dispatch. The following additional or modified constraints 

are also deployed. 

 

 

(5.48) 
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(5.53) 

 

 

 

This then represents a reasonably conventional DC-OPF with the exception that the net demand of a 

load is corrected for load, FDR, and frequency-related effects. The model dispatches such that at Tmax 

the frequency is equal to the nominal frequency so the K-adjacent terms in (5.49) disappear. The line 

flow limits are assumed to be the STE (30 minute) limits of the lines as the system is operating in a 

contingency state. The generators and wind infeed are free to change in t = 1 onwards but are fixed 

at t = 0. The index a refers to the subset of loads in set lo which lie within the island i at frequency f. 

Index b classifies assets on the island i experiencing the given frequency f at time t.  

Generators which are unassigned from any frequency response, are classed as sustaining, or are 

assigned as tertiary response, are the only ones which are assumed to be able to redispatch in a 

controlled manner in this stage. Primary and secondary frequency responding generators’ outputs are 

fixed in this stage using the value g0,t,g so their outputs are either those determined by their change in 

output associated with their frequency response tailing off, that is, the value fed into the model from 

the SFR simulation.  

If necessary, generators can “trip off” to zero output at this stage but remain tripped for the rest of 

the simulation until, in the Unit Commitment, the minimum down time for that type of generator has 
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been exceeded after the trip event. This is a somewhat conservative assumption but ensures a feasible 

solution can always be found in the redispatch. 

The objective function is as follows: 

 

 

(5.55) 

This minimizes the “cost” of generator tripping, readjustment to generators not otherwise scheduled 

as tertiary response but otherwise available, and load curtailment costs. Adjustment costs on tertiary 

generators are assumed to already be considered from the original dispatch and are not “double 

charged” in that sense in the redispatch. The index a represents the subset of generators which were 

unassigned as frequency response. Generators which are unassigned have a redispatch cost assumed, 

as a conservative estimate, as equivalent to the fuel cost/hr rate. As the cost of load curtailment and 

generator tripping (assumed as £17,000MWhr-1 for VoLL and £10,000/action for tripping) vastly 

outweigh the fuel and redispatch cost, getting exact figures for the redispatch costs was deemed less 

important so such conservative assumptions could be deemed appropriate.  

Now that the tertiary response has replaced secondary response, the final stage of the simulation can 

take place – the unit re-commitment and restoration. 

5.5.1.9 Restoration UC OPF formulation 

This represents the final stage of the simulation loop, whereby the model starts trying to plot a 

restoration vector on the system to restore the supply-demand balance. In effect it uses the same 

constraints as those used in the original formulation, with the exception that they all apply only from 

t>0 as all values at t = 0 are fixed based on the results of the redispatch simulation. The values of 

frequency response assigned to each generator are fixed based on the original dispatch (or, if the 

simulation is from a secondary fault, carried forward again). Generators which have tripped or are 

faulted are assumed to stay offline until their minimum restoration time in hours has elapsed.  

Generators which were originally off – or have exceeded their minimum “down time” had they been 

on and then subsequently been deactivated – have their outputs fixed to zero until their minimum 

down time has elapsed as well. 

Lines which were tripped and locked out after reclose operations are assumed to be reconnected after 

an hour. Frequency response is assumed to recover the hour after the fault event simulated. 

Generators which have tripped are assumed to contribute no further primary or secondary response. 

The frequency response requirements are not enforced, rather the amount of frequency response 

deployed on the system is carried forward with the outputs of generators constrained appropriately. 

Once this has been solved, the loop can begin again with each asset sampled again. 

If there is insufficient supply to meet demand, it is assumed load can be freely curtailed with an 

associated cost based on VoLL and is scheduled ahead of time. The net demand at each node is then 
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reduced should automated LFDD be deployed in subsequent SFR simulations. That is, the demand 

constraint represented by (5.13) is replaced with the following constraint, which allows demand 

curtailment. 

 
 

(5.56) 

 To reflect the fact some generators have tripped off and may be required to reconnect, a new variable 

is introduced to represent a binary switching on of a generator from tripped status following the 

redispatch simulation. In effect it has the same effects as the on variable but has zero cost associated 

with it. This is based on the assumption that a generator which faulted off would try and reconnect as 

quickly as possible and is not considered an “additional” commitment and so does not have the 

associated cost in the objective function. Further, the down time unit commitment constraints are 

enforced, but modified, but it is assumed that, in an emergency, a generator may be tripped off before 

its minimum up time had passed. The modified Unit Commitment constraints are shown below. 

 

 

(5.58) 

 

 

(5.59) 
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(5.61) 

One challenge with this UC problem is the fact that, generally, unit commitments have to make 

assumptions about the availability and up and down times of generators before the dispatch window 

in which they are solving. That is, assumptions are made about how long generators have been on or 

off before t = 0 of the window in which they are solved. This is no problem for the original dispatch – 

it can be assumed that generators have been on long enough before the UC problem such that they 

can turn off at any point after t >0, and conversely that generators have been off long enough before 

the UC problem such that they can turn on at any point after t = 0. This is difficult to capture in the 

formulation for subsequent problems. This was circumnavigated by counting for how many hours 

generators had been offline or tripped when the restoration UC problem is solved and fixing the on 

and re variables to zero for all values where the total time a generator had been offline was less than 

the minimum down time of the given generator, preventing the generator from switching on. 

After every iteration of the simulation loop, generators which are online are counted as having 0 hours 

offline. Generators which are off have 1 added to a cumulative total and the first n hours on each 

offline generators have their on and re variables fixed to zero so the generator cannot switch off, 

notwithstanding the other unit commitment variables. That is, if a fault occurs at t = 2 hours and a 
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generator has been off for those 2 hours and has a minimum down time of 4 hours, the generator 

cannot be activated until t = 2 or later in the restoration UC which equates to 4 total hours after the 

initialization of the simulation. This is another example of the strength of separating the separate 

aspects of simulation – it allows recording of aspects such as this and creative solutions to address 

them – but also a consequence of more detailed modelling; if the problem was not so comprehensive, 

these issues would not have to be considered in the first place. 

The objective function is given below. 

 

 

(5.62) 

This is based on the presumption that, following a large outage event such is being simulated here – 

and, given frequency response and reserve generators already have their outputs fixed based on the 

original or previous dispatches problem solutions, the model uses the assets available to it to minimise 

generator tripping costs, the number of generator “on” actions, and load curtailment across the 

system. Given the costs of these features dwarf any associated cost with fuel costs of generators they 

were deemed negligible given much of the generation outputs across the system were in some way 

fixed anyway. 

This ends the mathematical formulation of the simulation model. 

5.5.1.10 Summary of OPF formulation 

The DC-UC-SCOPF can be understood as a mixed integer linear problem (MILP) with binary and real 

values as solutions to the linearized equations described, linked to a nonlinear quasi-steady-state 

frequency response simulation, load flow calculation, redispatch simulation, and UC-OPF. 

The formulation of the DC-SCOPF itself is based on conventional optimisation problems used in power 

system analysis as referenced, but the additional requirements of the model deployed here and the 

number of variables incorporated in the simulation mean there are several unconventional 

nomenclatures within the formulation (e.g. frequency response problems are not typically wrapped 

within linearised DC network representations, and so f and F represent very different aspects of the 

simulation).  

The simulation complexity grows with both model scale and the security rules deployed or desired by 

the user to represent different security requirements. That is, the set k depends on the list of 

contingencies which the user (representative of a system operator) may wish for the system to secure 

against. At a high level, the SCOPF in effect attempts to schedule generation and frequency response 

across the system such that:  

1 No load curtailment happens within the predefined dispatch states in the nominal state 

2 The cost of generation dispatch and commitment is minimised 

3 The cost of wind curtailment in the nominal case is minimised  

4 No line overloads occur following redispatch of generation 

5 Adequate frequency response (primary, secondary, and tertiary) is available to meet 

requirements subject to requirements and the contingency list 

6 Generators do not trip out of service during normal operation 
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7 Wind generation cannot be used for primary or secondary frequency response but can be 

curtailed and then un-curtailed to be used as tertiary response following the deployment of 

conventional frequency response 

The frequency response requirements and contingency lists can then be defined by the user based on 

whichever security conditions or rules are desired. The efficacy of these can then be compared in the 

results. 

What is also new in this formulation is the capacity of the network operator (the agent represented 

by the SCOPF minimising the objective function) to be able to schedule and utilise flexible demand 

response as primary frequency response which could be adapted in future to be more realistic and 

subject to different constraints dependent on a classification between e.g. “essential”, “non-essential” 

loads.  

 Frequency response problems are difficult to reconcile with SCOPFs due to the fact they typically rely 

on a single-bus representation of a system with aggregated reservoirs of load and generation which 

interact in some manner with a system frequency response model. Further, including frequency-

adjusting loads in a power system simulation could introduce nonlinear constraints which are 

computationally expensive to handle and may require more specialised optimisation algorithms.  

In this case, the frequency response constraints and more standard OPF constraints were associated 

with each other, indirectly linking the network-side problem to the frequency-response side problem 

which has not previously been done in SCOPFs, particularly when weather-sensitive generation is also 

included in the formulation.  

Various features should be noted at this stage. Firstly, the sheer volume of variables is indicative of 

the complexity of the simulation subject. There are over 60 variable types mentioned between the 

frequency response and dispatch problems alone, with more being added at subsequent stages. This 

is the primary reason for some of the variables being used utilising unconventional nomenclature – 

there are only so many Greco-Roman characters available that would make sense to be used in the 

formulation. The model is dispatching frequency response across three different time-domains 0-30s 

after fault, 30s-~15m after the fault, and ~15m – 1hr after. The model attempts to reconcile very 

different areas of analysis in an ensemble in a way which has not been done before, and of course this 

first such implementation is non-ideal. 

The optimisation is performed and solved using the pyomo [106] library in the python programming 

language. The gurobi [107] optimisation suite is used to solve the problem. This solver returns both 

an objective function value (that is, the cost of the dispatch) and the variable values as output from 

the initial solving of the dispatch problem. Computation time scales with increased contingency list 

size as well as changing frequency reserve rules. The different frequency response rules and different 

contingency list sizes will be compared and the consequences of these will be discussed as well as 

what these represent.  

The aim of the dispatch DC-SCOPF is to capture as many different phenomena and features of a 

dispatch problem as possible. This then means that the subsequent frequency response simulations 

represent as reasonably as possible a sensible dispatch policy that could be expected on a power 

system. Generators are assigned to different types of frequency response and load flows are enforced 

with reasonable security standards. 
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With the generation of a reasonable starting state, analysis can then be performed on that state to 

examine the different potential fault states which could emerge. The remainder of this section shall 

discuss the separate aspects of the simulation as they pertain to the overall simulation structure. 

The fuel cost associated with each generator type was derived from [57]. Though generally speaking 

generator bid/offer actions will have different costs associated with them, in this case in the simplified 

representation of generation dispatch only an approximation of fuel cost was directly considered in 

the formulation. The fuel cost of generation was not the main priority of the dispatch scenario in this 

research. 

Different sections of the modelling framework – which herein may also be referred to collectively as 

the Extreme Weather Perturbation Simulator (EWPS) – operate over different timescales, 

representative of the fact different hazards and phenomena on the power system also operate over 

different time horizons. These are summarised in the following table and associated figure. 

Table 5.3 - summary of simulation timescales and features 

Simulation Resolution Time horizon 

Dispatch SCOPF Hourly 12 hours 
System Frequency Response Milliseconds 60 seconds 
Load flow OPF Instantaneous Zero 
Redispatch OPF Minutes ~15m 
Unit Commitment OPF Hourly Up to 12 hours 

 

     Dispatch SCOPF Dispatch SCOPF 
     UC OPF UC OPF 
    Redispatch OPF   
  SFR SFR SFR   
 Load flow OPF      

Timescale Instantaneous ms s m hr days 
Figure 5.8 - timescales of different simulations within framework 

5.5.2 Perturbation State Generation 
Before any simulation can be run on a given situation to evaluate the consequences of a given outage, 

credible outage scenarios have to be generated. The subject matter under consideration in this study 

is that of extreme wind’s impact on resilience and reliability, and so that was the focus of the 

simulation. The methodology developed in Chapter 4 was used to determine failure rates across 

individual lines and estimate wind power across the system, but for failure rates of wind farms and 

power stations different approaches had to be made.  

It was assumed that generator and wind generator failure rates were independent of wind, and the 

failure rates used were derived from data from the 1996-RTS [61]. Failure rates for wind farms 

required different assumptions. As wind farms are distributed resources – that is, a single “generator” 

in the power system model does not in fact represent a single turbine but an aggregated grouping of 

turbines, it is assumed that losses of individual turbines within that group would be captured by the 

assumptions inherent in the derivation of the power curves themselves. Therefore, the only way an 

entire wind “generator” could be lost would be associated with loss of infeed to the system from the 

single critical point in the system – the interconnector from infeed to grid. This is assumed to act like 

a power-electronic based converter to the main grid but in reality wind turbines may also have their 

own power inverters such that their connection to the grid is in AC. Substation faults were not 

considered, and so in lieu of that the failure rate for windfarms was assumed to be comparable to that 
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of a DC line interconnector converter. Therefore, the failure rate associated with each wind farm was 

assumed to be comparable to that of a DC line converter, also taken from the 1996-RTS. 

The failure rates used are given in Table 5.4. Failure rates for lines are derived by the methods shown 

in Chapter 4 and thus are not shown. 

Table 5.4 - failure rates used in model 

Generator Type Failure rate (/hr) MTTF (hr) 

Wind 2.00x10-5 50000 

Hydro 5.05 x10-4 1980 

CCGT/OCGT 9.09 x10-4 1100 

Nuclear 8.70 x10-4 1150 

Coal 8.70 x10-4 1150 

CHP/other 2.22 x10-3 450 

Interconnector 2.51 x10-5 39825 

 

These act as broad approximations – different types of gas and nuclear generators will naturally have 

different failure rates. However, like many other aspects of the simulations used herein, they are 

assumed to act as an appropriate first approximation.  

Now that failure rates are assumed for generators and wind turbines, and a methodology for 

quantifying OHL risk has been assumed, the generation of a fault state for analysis can be undertaken. 

This can be described using the following pseudocode.  

The primary concern in these simulations concerns the consequences of a failure on the power system. 

Therefore, for purposes of determining an EFL value as discussed in Chapter 4 the location of a given 

fault could also be recorded- but that was not done for these simulations. 

This section of the model operates entirely independent of the dispatch problem itself and is intended 

to perturb an already “known” system state. Once the dispatch information is known and the exact 

In each hour of each sample: 

 

For line in list of lines: 

  For section in subsections of line: 

   Generate random number 

   If random number < probability of failure of subsection 

    Take line out of service 

For generator in generators: 

  Generate random number 

  If random number < probability of failure of generator class: 

   Take generator out of service 

For wind farm in wind farms: 

   Generate random number 

  If random number < probability of failure of generator class: 

   Take wind farm out of service 
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faults caused on the system are known, the consequences of that fault scenario can then be 

investigated via simulation. 

5.5.3 Check Islands and Trip Disconnected Assets 
The primary reason for linking together a network-based optimal power flow type problem with a 

frequency response simulation problem was to investigate the relationships between the spatial 

distribution of frequency response and the ability of that frequency response to be delivered during 

system perturbations.  

Generally, frequency response is dispatched based on the assumption that the response across the 

system will be distributed in such a way that it can be fully delivered to the system as and when it 

needs to be without incurring further system problems such as line overloads and cascading outages. 

This is difficult to capture in a standard OPF formulation but the proposed approach directly addresses 

that by wrapping both problems into the same model.  

The reason network failures may inhibit the ability to deliver frequency response to the system is 

twofold – lines connecting generation to the system which is scheduled to provide frequency response 

may fail, or islands may be created separating generation-heavy areas from demand-heavy areas – 

such as the loss of the B6 boundary (which shall be described in greater detail in section 5.6.2) 

between Scotland and England on a particularly windy day. Therefore, two approaches present 

themselves.  

In Chapter 3, it is assumed that the loss of two specific nodes from the main system represents the 

loss of the B6 boundary and hence the loss of everything North of that. In reality this may not 

necessarily be the case and Scotland may be able to sustain itself entirely unharmed. Therefore, within 

the simulation model there needs to be the ability for the model to consider different islands in turn 

and then recombine those islands when suitable. In reality, resynchronising grids following an outage 

will be challenging, requiring the use of syncro-check relays. This shall be discussed in the 

Restoration Simulation section.  

If an outage event creates multiple islands these are each analysed in turn, but if subsequent line 

overloads create more islands after the initial event, these are assumed to blackout. This is based on 

the assumption that reference buses are generally assigned to nodes with the greatest amount of 

power generation connected to them, and that the loss of the two largest power output nodes for a 

given island would almost certainly result in a total loss of that island due to instability or power loss. 

Once a perturbation state has been created and is fed into this module, first, the model has to 

determine if multiple islands have been created. As a first order approximation, it is assumed if the 

perturbation state only consists of generator or windfarm faults, there is no initial islanding on the 

network and it remains contiguous. 

The algorithm for identifying and generating the islands used for subsequent analysis is described in 

the following pseudocode.  
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This script effectively builds a list of islanded nodes, assigns new reference nodes, and tries to 

determine the connectivity of the subsequent subnets until all nodes are accounted for. This then 

provides a set of subnets which can be subsequently analysed with frequency response to determine 

if any further system degradation occurs in these subnets and how severe the system degradation is. 

5.5.4 System Frequency Response features 
Now that the simulator has a series of islands to analyse, each of these islands will have their own 

supply-demand balance, inertia properties, and available frequency response. Therefore, the 

frequency response of each will have to be simulated in turn.  

The formulation of the frequency response simulator and relevant parameters, variables, and 

equations are described in 5.5.1 The derivation of the frequency response model was a consolidation 

of work developed in [68] and from first principles referred to in work such as [60]. Each island in the 

system is considered in turn. Different facets of the frequency response simulation and the 

implementation shall be described herein. It acts as a series of quasi-steady-state simulations with the 

assumption of 10ms timesteps between quasi-steady-states. 

A. Generator Tripping Behaviour 

As well as the general formulation of the system frequency response simulation, various rules and 

assumptions had to be made about how different generators actually respond during system 

frequency changes. The representations for different actions automated systems and network 

operators might take during a major frequency deviation event also have to be considered, particularly 

how generators and demand may respond to a major fall or spike in frequency. 

An approach similar to that used in [78] is used to determine generator tripping probabilities during 

the system frequency response simulation. That is, above a given threshold there is assumed a 

probability of 1 that a generator will trip, and below a certain threshold it is assumed there is a zero 

probability a connected generator will trip. Between these thresholds the trip probability is linearly 

interpolated, as illustrated by Figure 5.9, taken from [78]. 

Run system search using NetworkX to find nodes with zero connectivity to ref. bus 

Generate list of islanded nodes 

Determine power infeed at each node 

While list of islanded nodes not empty: 

 Determine node at which maximum power infeed connected 

 Assign as new reference bus 

 For node in list of islanded nodes: 

  If node connected to new reference bus: 

   Remove from list of islanded nodes 
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Figure 5.9 - Typical generator tripping scheme 

In the implementation of the model deployed, only over-frequency tripping of generators is 

considered. Instead, an absolute minimum frequency is defined in the model and if the frequency 

drops below that level the system is assumed to black out.  

The maximum frequency threshold, referred to as fu in the chart, on the system is assumed to be 52Hz. 

This is a conservative assumption, as generators in GB are permitted to trip independently once 

frequency rises above 52Hz. The frequency f2 indicated on the figure, beyond which generators start 

tripping, is assumed to be 50.5Hz (i.e. the statutory limit for frequency on GB). The blackout frequency 

on GB is assumed to be 47.8Hz. Frequency response actions are intended, fundamentally, to keep 

generators on the system – if all generators are lost, the system has to be entirely restarted (i.e. a 

black start condition). To prevent that, generators can reduce their output downwards in high 

frequency situations, before they trip. In low-frequency situations, there are a wide variety of assets 

available to operators to restore supply-demand balance – and hence frequency. The last resort is 

performed LFDD; pre-determined disconnection of loads at locations distributed across the country. 

This is to prevent frequency falling below thresholds at which generators begin to trip and disconnect, 

leading to further cascading outages.  

One challenge with representing load curtailment is that, in simulations, various heuristics tend to be 

used to represent this load curtailment – such as were used in Chapter 3. Other actions before LFDD-

related curtailment are also possible (e.g. use of voltage control to reduce net demand), but such 

features are not included. The heuristics used in Chapter 3 do not reflect what actually would occur 

during a supply-demand imbalance – load will be curtailed as a last resort as LFDD relays at Grid Supply 

Points (GSP) detect a deviation significant enough to trip, and these will trip. Rota disconnections can 

be planned and implemented in a more co-ordinated manner by operators, but that is well outwith 

the timescale in which the initial frequency deviation will occur.  

B. Low Frequency Demand Disconnection 

Given frequency response is being modelled there also has to be consideration for LFDD in-situ. The 

shed scheme used in the model for LFDD is shown in  Figure 5.10, taken from the Grid Code [73]. 
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Figure 5.10 - LFDD scheme used in model 

Buses were assigned to each area accordingly in the system model. 

It is expected that LFDD schemes operate with 96% reliability in accordance with Grid Code 

requirements, and so within the simulation, when a tripping action is performed in a stochastic 

context, each load is sampled with a probability of 96% of a given load being curtailed in a given time 

step when it is called upon. Of course, another problem with this is that the actual percentage of load 

being tripped in such a simulation may not reflect the actual load being disconnected.  

As discussed and investigated by NG ESO in [72], changes in demand and consumer behaviour and the 

fact LFDD relays are set annually could mean a disparity between what response is expected when 

opening an LFDD array and the actual load disconnected. That is, a distribution network with 

significant infeed from solar PV in the summer may actually be a net exporter during the summer but 

a net importer during the winter, meaning that disconnecting such load would have very different 

consequences not just seasonally but also across diurnal cycles.  

Disconnecting distribution networks with significant DER may not only disconnect load but may also 

trip DG, exacerbating energy imbalance on the system in hard-to-predict ways. This is difficult to 

capture in simulations – one approach could be to designate a certain amount of wind capacity at each 

node as being connected at a distribution level and reducing net infeed from wind at that node 

accordingly. This was not directly addressed in the proposed methodology, however. In future, 

though, the approach does mean it could be in similar studies. 

LFDD is designed as a last-resort scheme to keep frequency above levels at which generation starts to 

disconnect for self-preservation; short term pain for a relatively small number of customers in order 

to preserve service to the remainder on the system such that the remaining MITS can be used to 

restore the degraded network more easily than had the entire network been lost. An alternative to 

this approach, however, could be to utilise demand more creatively in the system. Rather than gross 

shedding of load, using assets on the system as demand response to reduce load without 

disconnecting customers unnecessarily while maintaining system stability. 

C. Flexible Demand Response 

The exact amount of FDR available for the system to deploy is scheduled and determined in the initial 

dispatch SCOPF as illustrated in Figure 5.2. In this case, it is assumed that each load has a reservoir of 
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aggregated FDR which can be called upon during a major frequency deviation as a non-inconvenience 

to end-users when a frequency threshold is exceeded or when the frequency sits below a certain 

threshold for a given amount of time. This operates as a “second line of defence” deployed in the SFR 

simulation after conventional frequency response from generators but before LFDD is fully deployed 

on the system. This is intended to replicate the potential utility of services such as demand aggregation 

to utilities.  

Generally speaking, the availability of such resources will change with the diurnal demand cycle, 

ambient temperature, and other weather conditions, as well as consumer behaviour and demand. 

Further, whilst, for poorer consumers the versatility of allowing devices to be used for such “smart” 

response capabilities may be appealing, for better-off consumers the potential (or perceived) 

inconvenience of allowing a device to be used as flexible demand response may simply not outweigh 

what may be a relatively trivial cost associated with increased energy or device usage prices during 

high-stress situations on the power system. 

The model requires three different values in deploying devices as flexible demand response in this 

manner.  

1. The total capacity, as a percentage, of load on the system which is assumed to be able to be 

used as flexible demand response 

2. The expected return rate of devices, used when scheduling 

3. The return rate of devices which is actually deployed in the SFR simulation 

The reasons for this approach are linked to a study into actual potential for the deployment of wet 

appliances as demand response in Belgium [74]. In this study it was found that, in the test area, around 

4% of total demand could be curtailed using demand reduction of wet appliances assuming 29% 

population participation in such a scheme. The actual demand that is available to respond to a signal 

from the system will be inherently stochastic, and the amount needed may simply not be available for 

any number of reasons and so this should be taken into consideration when scheduling any demand 

response solution, and so should consideration be made in the simulation itself for the potential of 

demand response failing to respond during system events as expected.  

Over-reliance on such schemes could actively exacerbate adverse network conditions during 

situations where the system is most in need of its assets to be functioning reliably if expected demand 

response does not perform appropriately. Conversely, flexible demand response at a device level has 

significant potential for fast frequency response if devices can respond quickly enough to signals from 

the system (even if that “signal” is simply the observed system frequency at the point of connection). 

Hence, such rapid response devices could contribute to a reduced requirement for inertia.  

Therefore it was deemed necessary to include at least a very basic representation of such phenomena 

in the simulation. This is represented by a percentage reduction in net load in nodes affected by 

frequency deviations where either a frequency boundary has been breached or frequency has been 

outwith minimum frequency limits for a given amount of time. 

5.5.5 System Frequency Response simulation 
The frequency response simulation itself is contained within a loop, as described in the general 

framework of the software model. That is, the SFR model takes in system information from the 

dispatch state and system perturbation data, and returns data on the adjusted outputs of the 

generators on the system, the change in load observed at network nodes, and any generation or load 

which has been tripped. This in turn can be fed forward to a load flow to determine if any lines have 

subsequently been overloaded as a result, and whether any further network degradation occurs.  
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The volume of data mentioned in this section is indicative of the challenges of linking an SFR to 

multiple OPFs, and the creation of the SFR model in the wider context of the simulation model was 

particularly time consuming and challenging. Typically programs such as MatLab SimuLink are used 

for such simulations due to their user-friendly GUI. In this case, due to the bespoke requirements of 

the simulation model, an extensible model which could be modified to include all of the discussed 

features and facilitate integration with a wider OPF framework had to be devised. The SFR simulation 

was written in the python language and can be described, at a high level, with the following 

pseudocode (shown overleaf). For the purposes of clarity in reading and simplicity reference to the 

specific mathematical symbols used are omitted but are referred to in general terms. 
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Import generator dispatch state 

Import frequency state of system 

Calculate available primary frequency response 

Calculate available secondary frequency response 

Calculate system inertia of island 

Initialise simulation 

Set power adjustment signal to zero 

Set all timers to zero 

For timestep in time series if not blackout conditions:  

 Calculate net power infeed using power adjustment signal 

If t < 29s and in “primary response” mode and no blackout: 

  Calculate power imbalance 

  Calculate new power adjustment signal 

 Otherwise if t = 29s: 

  Change mode to “transition”  

  Set power adjustment signal to zero 

  Calculate power imbalance 

  Calculate secondary response requirement 

  Calculate rate of change of power as primary transitions to secondary 

 Otherwise if in “transition” mode: 

  Calculate power imbalance 

 Otherwise if t = 30s and mode = “transition”: 

  Change mode to “secondary” 

  Calculate power imbalance 

  Calculate new power adjustment signal   

 Otherwise if in “secondary” mode: 

  Calculate power imbalance 

  Calculate new power adjustment signal   

 Calculate frequency adjusted load 

 Calculate rate of change of frequency 

 Calculate new system frequency 

 If frequency below given lower threshold and mode is not “transition”: 

  If threshold for demand response deployment breached: 

   Run demand response algorithm 

   Change threshold 

 Else: 

 Run load tripping algorithm 

   Change threshold 

 Otherwise if frequency above tripping threshold fu and mode not “transition”: 

  Run generator tripping algorithm 

 Next timestep 
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For perspective, the pseudocode represents approximately 1,000 lines of python code and is an 

attempt to keep the representation as simple as possible and highlight the key aspects.  

Algorithms which are referred to are described in more specific detail elsewhere, where relevant. 

From this model, all information is then fed forward into a load flow calculation.  

If one of the following conditions is met, the system is assumed to go into blackout, and all values in 

the simulation are set to zero except load curtailment, which is gross total load of the analysed island, 

and the “blackout” status of the SFR is recorded: 

 Frequency exceeds absolute maximum or minimum values 

 All connected generators trip 

 Zero inertia remaining on system (e.g. if all synchronous machines trip and only windfarms 

are left) 

 All connected load disconnected or tripped off 

In such cases the load flow for the given island is not performed and the model immediately moves 

onto simulation of the next intact island. It should also be noted that in this implementation, the 

frequency response of every independent island is analysed in turn. This creates challenges for the 

implementation of DC links between islands – international DC interconnectors are modelled as 

generators with zero inertia but which utilise droop control, whereas windfarms are assumed in this 

implementation are assumed to be nonresponsive to frequency control.  

A DC link between two islands would have different frequency responses on either side of that 

connection, and the connection itself would be susceptible to frequency-related tripping in a way 

cable or OHL would not. In the implementation of the model used, there are no DC interconnections 

on the MITS so this was not a direct concern (the Western Link and “Bootstrap” in the GB model were 

not considered).  

The outputs of the SFR were compared with papers such as [68] and discussions with peers and those 

working in the area to ensure results were acceptable for reasonable test cases. It is very difficult to 

validate frequency response models on systems such as GB, however, due to the lack of data 

pertaining to large losses of infeed and case studies. An example frequency response on the system 

with a loss of ~1.3GW and gross demand of ~34GW is shown in Figure 5.11. 
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Figure 5.11- representative frequency response curve from model 

In this case 500MW of frequency is dispatched in the area north of the B6 boundary (further detail on 

this is detailed in section 5.6.2), with 820MW dispatched south of this boundary, and no demand 

response.  

The initial frequency deviation can be seen, as well as the deployment of secondary response at t = 

30s, and subsequent frequency stabilisation. This case has no demand response.  

This can be compared with a situation where 1320MW net frequency response is scheduled across 

the system in the same manner, but inclusive of demand response capability, for the same scenario. 

 

Figure 5.12 - representative frequency response curve inclusive of flexible demand response 

The near-instantaneous, more directly targeted deployment of DR can be observed when the 

frequency drops below 49.4Hz, with secondary frequency response taking over to restore the nominal 

system frequency thereafter. In this case only enough demand response is scheduled to arrest the 

frequency below 49.4Hz, and the demand response used is assumed to be able to be restored during 

tertiary response via the redispatch OPF, described elsewhere.  

The demand response deployment algorithm can be deployed with the following pseudocode.  
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The load shedding algorithm itself can be described in the following terms. 

 

Finally, the (stochastic) generation tripping algorithm. 

 

There are multiple different generator tripping algorithms which could be employed. For instance, an 

optimistic model could assume that generators are intelligently tripped and the generator whose 

output most closely matches the power surplus on the system could be employed. More conservative 

models could assume generators of a given class trip concurrently at different tripping thresholds 

rather than randomly. The approach chosen was chosen because it resembled those already deployed 

in the literature. This offers an advancement in methodology compared to e.g. [78] because the 

generators are tripped in-situ with the frequency response model, and secondary frequency response 

is considered in the simulation, whereas in the referred-to paper actions are taken in 100s steps. In 

EWPS the model performs these actions while the frequency response simulation is ongoing, 

Calculate imbalance between demand and supply 

Calculate available demand response 

Adjust secondary response requirement 

Adjust tertiary response requirement 

Reduce system total load by min(amount to restore balance, total available) 

For load in loads: 

 Determine load area 

 If demand response deployed at load: 

  Set demand response deployment at load to zero 

  Correct secondary response requirement 

  Correct tertiary response requirement 

 Get load curtailment ratio from lookup table or use predetermined amount 

 Reduce load at node by appropriate amount 

Calculate trip probability from model and trip rate 

For generator in generators: 

 Generate random number 

 If random number < probability: 

  Add generator to tripped generator list 

For generator in tripped generator list: 

 Set generator output to zero 

 Reduce available primary headroom and footroom 

 Reduce available secondary headroom and footroom 

 Set trip variable on generator to 1 

 Reduce system inertia 
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capturing the dynamics of the event in a more representative fashion at the cost of computational 

expense. 

Windfarms and interconnectors are assumed to contribute nothing towards system inertia but the 

power electronics of interconnectors are assumed to be able to change outputs within the frequency 

response simulation in line with the deployed droop control and headroom/footroom limitations. 

Wind farms’ outputs do not change w.r.t. frequency in the simulation itself but in the tertiary response 

simulation their curtailment can be adjusted as required with assumed cost.  

5.5.6 Load flow calculation and optimisation 
Once a given iteration of the system frequency response simulation is carried out, the results are 

translated onto a load flow. That is, the dispatch condition for the given island is taken and the trip 

status and adjusted output of generators across the system are applied. So too is the frequency-

related load adjustment (positive or negative). The generator outputs are then fixed and cannot be 

changed when the optimisation is solved. Load curtailment, too, is fixed across the system for this 

simulation, as is generator trip status.  

All that can be changed when this optimisation is solved then, are the following values: 

 Voltage angle 

 Net load 

 Line flows 

 “Observed” frequency 

A small discrepancy between the frequency determined in the SFR simulation and that used in the 

load flow calculation is allowed. This is to account for potential floating point errors or rounding point 

errors in translating the results from the linear programmed model into an optimisation model. So 

although the load flow is being calculated and load curtailment itself is fixed, minor discrepancy is 

allowed in the net load at each point to represent demand response associated with island frequency, 

which is subject to the associated constraints and objective function.  

It is assumed that frequency response is distributed proportionately across loads and generators. That 

is, if 10% of the total scheduled frequency response is deployed at a given point of time, a generator 

with 100MW of frequency response and one with 10MW would contribute 10MW and 1MW 

respectively. Similarly, frequency is assumed to be homogenous across islands during the simulation.  

These are themselves relatively broad simulations – like voltage, frequency can vary locally with 

different supply-demand states across a system. Areas with significantly lower than average inertia 

will have more severe frequency deviations than those with high inertia e.g. Northern Scotland vs the 

English Midlands, where there are significant gas and coal generation plants. The purpose of this is to 

estimate the load flow conditions of lines across the system and determine whether any line 

overloads, and hence further system deterioration, has occurred and whether further preventative or 

mitigation actions need to be taken.  

5.5.7 Trip Assets simulation block 
Combining the SFR and load flow simulations provides an estimation of the post-frequency-response 

state of the system. In such cases, it may arise that areas with significant frequency response resources 

have deployed their response at times where there is reduced network capacity (say during a localised 

wind storm which has taken down connections to load centres). Situations may therefore arise where 

this increased power output on reduced network capacity leads to line overloads and the necessary 

deployment of protection schemes on overloaded lines. Line protection schemes, like generator 
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intertrips, can be simulated in either a deterministic or stochastic manner, but in the context of this 

simulation a stochastic line protection deployment algorithm is deployed comparable in nature to 

those demonstrated in [78] or [77]. Effectively it is assumed that, within the context of the SFR 

simulation loop, all actions are automated and unless mitigation actions (e.g. intertrip protection 

schemes on wind farms) are deployed, lines will have a given probability to trip by operator action as 

soon as they exceed their contingency line flow limit, estimated as 130% of their continuous seasonal 

value (based on typical values on the SHETL system). 

Any lines which have been tripped due to overload can be attempted to be reconnected to see if flows 

have returned to within operational limits, but this is generally only done a limited number of times 

before the lines are “locked out”. This is assumed to be limited to three operations in the 

implementation. Overload protections vary in style between voltage levels and network but are 

assumed to be installed on all transmission lines in this implementation. 

What also concerns operators is the possibility of incorrect actions or sympathetic tripping. That is, 

lines tripping when they are not supposed to. This is assumed to be a suitably low value as a first order 

approximation- 0.001. 

A probability for correct protection operation must be assumed. In this implementation that value is 

taken as 0.999. The line tripping algorithm can be described as follows: 

 

This then incorporates both line overload tripping by operator action, and sympathetic tripping within 

the model structure.  

After the load flow calculation and line tripping algorithms have run, the model then performs a check. 

If no lines have been tripped, and frequency is within statutory limits, the model ends the SFR-loop. If 

not, some action is taken. In this case, either an “override” is triggered and a signal is fed forward to 

tell the model to trip more load or run the SFR again and see if a generator trips, or if a line is tripped 

due to overload a connectivity check is performed again to see if any new islands are formed and the 

SFR-loadflow simulation is performed again. This loop continues until all lines are within limits and 

frequency is within bounds, at which stage the state is assumed to be “stable” (i.e. fully degraded but 

not expected to degrade any further) and further restoration and corrective actions can be taken. 

Determine lines connected to reference bus of island being investigated 

For line in list of already tripped lines: 

 If reclose counter < 3: 

  Try and reconnect line 

  Increase reclose counter 

For line in list of lines: 

 If line overloaded: 

  Generate random number 

  If random number < protection action probability: 

   Trip line 

   For line in list of lines in same island: 

    Generate random number 

    If random number < probability of incorrect action: 

     Trip line 



Page | 161 
 

5.5.8 Restoration action simulation – Redispatch OPF 
After primary and secondary frequency response has been deployed across all of the islands and they 

have settled down into a perturbed, but stable, state, it is assumed that the model moves from 

automatic-actions, and periods of time in which events are generally progressing too rapidly for 

humans to control (seconds to single-minutes), to a time domain in the scale where humans can begin 

to make operational decisions such as controlled generator adjustments. As previously mentioned, 

this inherits the results of the SFR-load-flow loops of each island and consolidates it into one system 

model. This occurs in the “Check Islands…Degrading” loop. 

In this case, secondary frequency response trails off via AGC and is replaced over time by generator 

redispatch/tertiary response. Secondary response is generally assumed to trail off 15-30m after the 

initial fault event, being replaced with tertiary response in an, ideally, stable and controlled manner. 

This means another optimal power flow needs to be performed to replicate this action in the 

simulation while considering factors such as load curtailment and power curtailment of windfarms, 

which can be controlled in the scale of minutes just as output from generators unable to be used for 

frequency response can be.  

Primary and secondary frequency response generators, unless they are specifically assigned as being 

capable of doing so (such as the case with interconnectors, hydro), are assumed to be unable to 

contribute to generator redispatch as generators require time to recover having delivered such 

frequency response. 

In this optimisation, the information from perturbed sections of the system are imported from the 

SFR-loadflow loops. Time constant τ is set to 1, such that the OPF is in the scale of minutes. The initial 

state where t = 0 has generator and net demand states set based on the output of the SFR-loadflow 

loop but for the next 10 minutes can freely redispatch and curtail load as required subject to other 

system constraints.  

The aim of this part is for the operator to minimise the cost of load curtailment, generator trips, and 

generator adjustments, while restoring supply-demand balance. The significant cost of load 

curtailment, assigned at a cost of £17,000MWhr-1, incentivises the solver to prioritise minimisation of 

load curtailment.  

All of the individual islands’ frequency response pathways are simulated and used to generate the t=0 

state. In t = 0, all generator outputs and load states are fixed from based on the results of the SFR 

loops associated with each island. It is assumed that system frequency linearly recovers from the post-

SFR frequency to the nominal system frequency with generator redispatch and load curtailment 

operating accordingly. Frequency can therefore be fixed in the formulation after t = 0 avoiding a 

nonlinear problem formulation and reducing computation times. 

It is assumed lines which are “locked out” due to the SFR-load flow loop simulation are not in service 

for this stage of the simulation, and generators that are tripped are also locked out of service – with 

the exception of windfarms which are assumed to be able to infeed power whenever desired (that is, 

whenever economically optimal given the formulation of the problem). 

This then, in total forms a more complete representation of the simulation of an outage even from 

the causal perturbation to the first stages of the restoration. That is, from lines or generators dropping 

out of service, the simulation of the disruption and the initial system degradation, and then the initial 

attempts to stabilise the system.  
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Taking into consideration how the events themselves are generated w.r.t the spatial disaggregation 

of line risk, this forms a further advancement in the modelling of power system risk and a 

comprehensive tool for simulating wind-related outages. The final step for this would be to then begin 

to consider system restoration – that is, scheduling of repairs, bringing lines back into service, and 

restoring supply-demand balance as generators come back onto the system and as demand changes 

with the diurnal cycle, before the next system perturbation.  

5.5.9 Restoration action simulation – Unit Commitment 
The next – and final – stage of the simulation is to begin to incorporate more significant restoration 

actions into the system, such as bringing tripped generators back online or bringing new generators 

into operation. Generators which have tripped or are sitting offline will require a given amount of time 

to either resynchronise with the network or be ready to connect and contribute power to the system 

as required. 

Further, as generators adjust their outputs up and down and reconnect, it is assumed that load 

curtailment can be freely controlled, as can wind power curtailment. Extending the simulation model 

in this manner was done to be able to investigate the cumulative impact of many outages associated 

with a single storm or largescale outage event.  

Similarly, for example, if a fault happens at peak demand there will be less surplus generation available 

to come online following the fault event in order to support system restoration and stability more 

generally- but greater system inertia due to the amount of connected generation. Such simulations 

have not been performed with the type of detail and refinements offered in this model, especially not 

when considering the associated impact of changes in wind generation. 

This is illustrative of the fact that resilience will mean different things in different timescales. The 

ability to react and respond quickly to reduce the impact of results is more significant if one is also 

considering the restoration timeline of the system – which is to say, a long outage with a low impact 

will, in absolute terms of ENS, have a comparable consequence relative to an event which has a very 

significant impact but for a shorter time period. Socioeconomically, the impacts could be very different 

if, for example, a small community is left without electricity for a long time in an inaccessible or 

geographically isolated location, such as can be found in the Highlands and Islands of Scotland. 

Quantifying the cost associated with outages, therefore, becomes increasingly difficult the longer 

events extend, because the uncertainties about factors such as human behaviour, electricity demand, 

and even social cohesion may impact the ability of operators and, potentially, restoration teams to 

restore the system to a state of nominal functionality. 

Tripped conventional generators stay out of action for a predetermined minimum “downtime” 

assumed based on the 1996-RTS. Wind generators that trip are assumed to be able to reconnect 

whenever possible and can freely curtail otherwise.  

This simulation is represented by a unit-commitment OPF defined above, with the model granularity 

set in hours, and only one case being considered (so t is a set from 0 to Tmax, and k = 0). Lines are 

reintroduced as soon as they are functional, and generators can connect as soon as their minimum 

down time has elapsed.  

For clarity, further elaboration is provided in Appendix 7.2 – Example EWPS Case. 

5.6 Case Studies – Cyclone Friedhelm 
As referred to in Chapter 4, Cyclone Friedhelm was a large storm system which affected Scotland 

around the 8th December 2011. The significantly increased complexity of the simulation model 
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described and the features that this enable to be simulated mean that new sensitivities are added into 

the resilience study which have not conventionally been an issue – particularly frequency response. 

The question then is whether this increased level of granularity is necessary and whether it provides 

sufficiently useful information to be a worthwhile addition to resilience studies or whether the added 

complexity and computational expense is not a worthwhile investment of time and effort. Various 

case studies will be used to investigate this based on using the same specific weather events as 

described in Chapter 4, with different power system setups and scenarios. 

As demonstrated in Chapter 4, and implemented here, high wind speeds mostly affect the ability of 

the electricity system to transmit power and the availability of wind power itself. There is also a clear 

methodology for simulating HILP events and associated cascade effects on the system. This shall now 

be used to investigate the potential effects of changing how these aspects are used in resilience 

studies to see if there is a material difference in the results across studies for the same event when 

these models are changed. If there is significant variation in results, this suggests that omission of e.g. 

frequency response may not be appropriate as it suggests significant divergence in results from what 

can reasonably be expected during such events. 

For example, typically resilience studies assume that the system can redispatch, curtail load, or trip 

off generation in an ideal manner to maintain system stability such as in [57], not considering the 

potential for frequency deviations to lead to generator trips or UFLS before any such actions can be 

taken. If the network was dispatched via an OPF without the consideration of frequency response 

requirements, in reality this may mean that there would simply not be adequate frequency response 

available to contain system perturbations before the events can cascade to something worse.  

However, if the ENS associated with a major network-side fault on a system is largely caused by 

disconnection of loads or islanding of sections, the effect of simulating the frequency response on 

either side of that disconnection may not significantly differ from OPF-based models with appropriate 

assumptions – such as those deployed in Chapter 3. The case studies herein, therefore, will be used 

to investigate whether changing the frequency response dispatch scenario or security rules used 

fundamentally changes the results one can reasonably expect from such studies. 

Various different studies are implemented to understand this. In each study, a “base case” was 

performed with 1,000 samples each comprising of a 12-hour window, with different dispatch 

scenarios. The load profile used is derived from the 1996-RTS paper describing a winter peak day. 

Different case studies will use different time windows.  

One drawback of using a wide variety of different simulations and OPFs is that translating one format 

to another can introduce formatting and floating point errors, which can in turn cause infeasibilities 

in the results of these OPFs (primarily, it was found, due to generator values being fixed marginally 

outside of their maximum/minimum ranges by vanishingly small values e.g. 5x10-14). This was only 

found to affect approximately 1 in 1,000 hours. In such cases the perturbation was simply repeated. 

From each “base case”, a dictionary describing the “timeline” of each sample was recorded – that is, 

what faults were recorded and when. When the simulation was repeated with a different dispatch 

scenario, this predefined set of cases was used for analysis. This was to reduce the variance in results 

attributable to randomness and sampling and ensure any change in results was predominantly due to 

changes in the dispatch scenario rather than the inherent randomness in what events are sampled – 

this is a very basic example of a variance reduction technique known as correlated sampling.  
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Various case studies and their results shall now be demonstrated using the simulation model. The 

following load profile in Figure 5.13 is used in all cases, with different start/stop times over the given 

12-hour windows. 

 

Figure 5.13 - load profile used in case studies, representing a winter peak day 

The wind speed was corrected in each case to bring it closer to the values used in the derivation of 

the fragility curves, and to make the model more conservative and induce more faults, by multiplying 

the wind speeds on every point by 1.28, in accordance with guidelines from [108] to convert a wind 

speed from hourly average to 60s gust duration. 

A summary of the tabulated results of all simulation parameters used and additional figures can be 

found in Appendix 7.3 - EWPS Outputs, along with additional analysis. The discussion offered in this 

section is offered as a high level summary and interpretation of results. 

For clarity, there are two separate “case/contingency lists” which may be alluded to which should be 

considered separately. The “contingency list” refers to the set of events fed into the Dispatch SCOPF 

to determine the dispatch and lever of security. A “case list” of weather-related and other faults is 

also generated on the first pass of each case study before the subsequent changes in dispatch 

scenarios which reflect the different timelines of fault events being inflicted on the test system, which 

are performed using these generated timelines to compare how the system reacts differently to a 

consistent set of events with different dispatch scenarios. 

5.6.1 Baseline: economic dispatch, very vulnerable double circuits 
In order to form a baseline, worst-case set of results with a variety of lossy states a particularly 

conservative scenario is used. This will be used to determine the potential significance of frequency 

response dispatch in resilience studies in the most extreme cases.  

These case studies focus on major network-side losses, rather than direct loss of infeeds. In this 

instance, if there is a loss of a single circuit on a dual circuit, it is assumed that the adjacent circuit also 

always faults as well concurrently (i.e. all single circuit faults lead to dual circuit faults on that branch). 

The system will be dispatched in various different modes. First, the system is dispatched in economic 

dispatch mode, meaning: 
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 The Dispatch-SCOPFT contingency list is empty, so no faults are being secured in the initial 

system dispatch 

 No frequency response is scheduled 

These studies take place between 1200 and 0000 (hours 12 and 24). The results for the “base case” 

scenario are shown in Figure 5.14. In all histograms the red and blue (left, right) lines represent the 

calculated VaR, cVaR values. As a reminder, the definition of VaR, cVaR used here is taken from [56]: 

“with respect to a specified probability level β, the β -VaR of a portfolio is the lowest amount  such 

that, with probability β, the loss will not exceed , whereas the β-CVaR is the conditional expectation 

of losses above that amount .” The “loss” value alluded to in VaR and cVaR may be, for instance, a 

dollar amount or a value of ENS. The charts on the left show the histograms for all recorded events, 

with the histograms on the right showing only N-2+ events. Two charts being similar or identical, as in 

this case, implies that a significant proportion, or even all, the events causing loss of supply are already 

N-2+. It should be noted that the y axis in all histograms is logarithmic, and attention should be paid 

to the x axis scales also. Further, it should be recalled that the leftmost bars in the histogram represent 

all occurrences of ENS values less than the limit of the first bin, and are not automatically all values 

which represent zero ENS. 

 

Figure 5.14 - ENS histograms for "base case" economic dispatch scenario 

Next, as second “base case” is created with the system dispatched N-1 security.  The initial approach 

to this attempted to use independent N-1 events at each time-step, such that if there were 100 events 

in the contingency list, there would 1002 cases to solve for two time-steps and 1003 cases for three 

timesteps. Applying this approach to an N-1 dispatch for loss of lines, generators, and wind farms 

brought with it significant computational cost and memory requirements – feeding in an N-1 

contingency list for 24 hours’ dispatch resulted in the model immediately filling the RAM of the 

computer during setup (with 64Gb of data) and the computer crashing.  

Therefore, to create a proxy of an N-1 dispatch that considered frequency response, and N-1 security 

on system assets, the model was solved for independent time-steps (i.e. N-1 dispatch at each timestep 

with frequency response requirements set but only t=0, 1 – that is only using two hours, one for the 

hour being considered, and one for the hour immediately after). These dispatches were then linked 

together using the dispatch SCOPF problem with the frequency response requirement set as per the 

specific requirements of the case study in question but only k=0 as the contingency set and the 

associated unit commitment-related generator constraints. The timesteps used represent key points 

in the load-profile – t = 4, 6, 15, and 19. These are  extremes of load (highs, lows) or points of inflexion- 

also known as Cardinal Points.  
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This approach is not what would typically be referred to as an “N-1” secured dispatch but acts as a 

proxy that is tractable and usable here and all references made in the context of this simulation herein 

are assumed to be stated with that caveat in mind. 

The results of this second “base case” results using an N-1 dispatch shown in Figure 5.15. 1320MW of 

frequency response was included, scheduled across the system, with  (that is, the ‘slack parameter’ 

allowing the model to dispatch less frequency response to allow convergence if needed as described 

in Section 5.5) was zero. 

 

Figure 5.15 - ENS histograms for "base case" N-1 dispatch scenario, 1320MW of reserve spread across system, no FDR,  = 
0 

Next, in Figure 5.16, a case study is performed with frequency response increased from 1320MW to 

2000MW (scheduled across the system) and with Flexible Demand Response (FDR) available. In 

accordance with the expected response rate of LFDD relays, FDR is scheduled such that it is assumed 

only 96% of commissioned FDR will respond to any signal sent. That is, as previously discussed, a 

correction factor of 0.96 is applied to the FDR deployment constraints in the SCOPF to reduce the 

effective contribution of gross FDR during scheduling. 100% of this FDR was then expected to turn up. 

In future, sensitivity tests could also be carried out to investigate the randomness associated with this, 

but such features were not considered here.  

Up to 5% of total load at each load point was deemed available for FDR, but zero cost was attached to 

incentivise the model to use as much as possible. Note the difference in x axes. Ψ was relaxed to allow 

up to 50MW of frequency requirement reduction. 
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Figure 5.16 - ENS histograms for case with 2000MW frequency response and FDR, no locational constraints,  = 50MW, 
empty contingency list 

Next, a study is performed but, in this case, the location of frequency response is considered. Due to 

the storm primarily affecting Scotland, in this case study frequency response was dispatched such that 

2000MW of response was dispatched across all nodes south of the B6 boundary (i.e. England and 

Wales), with zero assigned in buses which happened to be north of the B6 boundary (i.e. Scotland). Ψ 

was relaxed to allow up to 50MW of frequency response requirement reduction but was found to be 

zero anyway. The results are shown in Figure 5.17. 

Finally, a simple comparison can be drawn between the interpolated data being used as a base for the 

simulation and the coarse MERRA-2 dataset. In this case, the interpolated dataset is used for 

simulation instead of the raw data, and a new case list is generated accordingly. N-1, 1320MW 

frequency reserve dispatch is used to maximise the number of lossy cases such that any change in 

output is most pronounced, shown in Figure 5.18. There is no FDR and  is locked to zero. There is no 

locational restriction on frequency response dispatch. Note again the difference in x axes. Also, a new 

case list was generated as the perturbation generation mechanics had changed. That is – the 

probabilities of line failures were different, and so the lines had to be re-sampled.  

Figure 5.17 - ENS histograms for case with  2000MW of frequency response south of B6, empty contingency list,  = 
50MW, no FDR 
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5.6.2 Loss of B6 
B6 refers to the interconnection boundary between Scotland and England, as illustrated by Figure 

5.19, extracted from [95]. 

 

Figure 5.19- boundaries around the Central Belt of Scotland, South of Scotland,  and North of England 

This case study differs from the last, in that it specifically models the loss of a large interconnection at 

a given time on top of the stochastically generated events already simulated. Various different 

frequency response dispatch and flow constraint scenarios will be considered. B6 is important because 

the (stability limit constrained) flow limit across this boundary is approximately 2.6GW which, on a 

windy day, the flows can regularly approach. Any loss of this interconnection during such times 

without suitable remedial actions in place North and South of the boundary could lead to rapid system 

deterioration for and cascading outage events in both the supplying and receiving systems. All 

subsequent simulations in this case utilise the interpolated data set. 

In this case, a less conservative representation of dual circuit faults is adopted. Anecdotally, 

approximately 1 in 50 single circuit faults on the GB system can be associated with a dual circuit fault 

happening. Therefore, if a single line in a double circuit faults, it is assumed there is a 2% chance the 

Figure 5.18 - ENS histograms for "base case" dispatch scenario, N-1 dispatch, interpolated weather data, 1320MW 

frequency response, no FDR,  = 0, no locational constraint, interpolated data set 
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adjacent line also faults for this and successive simulations. The loss of B6 is modelled at hour 5 (1700) 

with the simulation occurring in the same window as the previous case studies (1200-0000).  

In this case, the weather data and grid resolution is correspondingly interpolated by a factor of five, 

as it was for the research in Chapter 4, and will be for all subsequent simulations as well. Flexible 

demand response is not considered in these cases. A new set of fault states is therefore again 

generated for this study. 

The first set of results shown correspond to a dispatch where there is 1320MW of frequency response 

dispatch with an N-1 contingency list. Ψ was restricted to <50MW for all subsequent simulations in 

this set. It should be noted that this value only ever typically approaches the upper limit during peak 

demand for one hour but is otherwise universally zero. As stated in the model definition, it acts as 

slack to improve the model’s robustness and ability to find convergence in extreme scenarios such as 

this. Herein only one figure is shown as the faults are deterministically induced at the given times 

compounded with stochastically generated faults, so the scenario is always N-2+ and thus demarcating 

the figures on that basis was redundant. 

 

Figure 5.20 - ENS histogram of B6 scenario with N-1 dispatch and 1320MW frequency response, phi = 50MW, no locational 
constraints, interpolated data, no FDR 

This can then be compared with the scenario performed but in economic dispatch. Note the change 

in x axis. 
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Figure 5.21 - ENS histogram of scenario with economic dispatch, empty contingency list, 0MW frequency response 
dispatched, phi = 0, no FDR 

In order to compare this with changing the distribution of frequency response, 500MW of frequency 

response was scheduled in the North, and 820MW in the South (to broadly agree with the net total 

frequency requirement but ensure that it is not concentrated geographically). An empty contingency 

list was used, this time around. The results are shown below. 

 

 

Figure 5.22 - ENS histogram for case with 500MW frequency response scheduled in North and 820MW scheduled in South, 
phi = 0, no FDR, empty contingency list 

To investigate how to mitigate this in the simulated cases, a constraint is put on inter-area flow across 

the B6 boundary such that it is limited to 500MW, or, the primary frequency response scheduled in 

area a, North of the B6 boundary. The results are shown below in Figure 5.23. 



Page | 171 
 

 

Figure 5.23 - ENS histogram with constrained flow, 500MW north of boundary, 820MW located south, phi = 0, no FDR, 
empty contingency list 

Finally, the simulation is performed but with 500MW of frequency response dispatched in the North, 

2000MW dispatched in the South (to better reflect the scale of outage due to the loss of transfer), 

and, crucially, at hour 5 when both connections across B6 are deterministically tripped and 

interconnection is lost, ~1.5GW of wind power capacity in Scotland is set to trip off such that the 

overload scale is reduced, giving the system more time to react as the positive RoCoF should be 

reduced. The results are shown in Figure 5.24 

 

Figure 5.24 - ENS histogram with case with unconstrained flow, trips, 500MW in north, 2000MW in south, pre-programmed 
wind generation trips, no FDR, empty contingency list 

5.6.3 Large loss of generation 
In this case, to specifically create cases where there is a significant loss of infeed (and thus force the 

model to use the frequency response module for extreme cases), a large loss of generation is induced 

at a period of low demand (when there will be less generation on the system, less demand to respond 

to changes in frequency, and lower system inertia).  

The specific “generators” lost are the interconnectors from Ireland, the Netherlands, and France, 

which equate to a total loss of capacity of ~3.5GW in this representation of the system. The actual 
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output of the interconnectors at these times will be scheduled based on the initial dispatch but, of 

course, may differ at the time of fault due to redispatch and unit commitment re-solves following 

earlier fault events. All cases are in this section dispatched with an empty contingency list. 

As with the other case studies, this is chosen to represent a low probability event at a particularly 

inconvenient time to model extreme system response to the event. In this case, exacerbated by low 

demand periods where the total gross demand is approximately only 38GW, with the loss of infeed 

therefore representing approximately 10% of supply. It is during these times when the system is at its 

“bounciest” – that is, most susceptible to frequency deviations during loss of infeed and highest 

magnitudes of RoCoF. Therefore, in these cases the system is most susceptible to the negative 

consequences associated with frequency deviations such as LFDD and generator tripping. In this case, 

the model is run from hours 0 to 12 with the faults deterministically occurring at hour 4 compounded 

with stochastically generated perturbations. The first set of samples is performed in an economic 

dispatch mode, shown in Figure 5.25. 

 

Figure 5.25 - ENS histogram for case with large generation loss and system in economic dispatch, phi = 0, no frequency 
response, empty contingency list, no FDR 

Similar to the B6 case study, another simulation is performed but, this time, with frequency response 

concentrated south of B6. That is, with 2000MW of frequency response dispatched South of B6 and 

0MW North of it. There is no FDR in this case. Ψ was limited to 50MW, and will be for all subsequent 

cases. The results are illustrated in Figure 5.26.  
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Figure 5.26 - ENS histogram for scenario with 2000MW of net response in South, phi = 50MW, no FDR 

A simulation is then performed, with results illustrated in with 500MW of net frequency response 

dispatched in the North of the system, 2000MW in the South, and FDR is available to see the benefits 

of having additional frequency response closer to the scale of outage observed. The results are shown 

in Figure 5.27. 

 

Figure 5.27 - ENS histogram of results from case with 500MW net frequency response in North, 2000MW in South, with FDR 

This can be compared with Figure 5.28, and the same dispatch scenario, but with zero demand 

response allowed. 
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Figure 5.28 - ENS histogram of results from case with 500MW net frequency response in North, 2000MW in South, no FDR 

As the next, and final, comparison, the significance of the unit commitment constraints will be briefly 

investigated. The work in Chapter 3 made various assumptions about the ability of generators to 

redispatch following perturbations to the system. In reality, generators have restrictions on their 

ability to ramp up and down based on factors such as reheating, available water for hydroelectricity, 

and electromechanical restrictions. Enforcement of unit commitment restrictions could have 

significant consequences for the ENS in simulations over longer events as more generators drop offline 

if other generators cannot be brought online to ameliorate this.  

A stochastic simulation is run again but without enforcing the unit commitment constraints (in essence 

allowing generators to freely switch in and out with no time restrictions) to demonstrate the potential 

significance on the risk metrics used with the histogram shown below in Figure 5.29. 

 

Figure 5.29 - ENS histogram [right] for case where there is a large loss of infeed but no constraint on generator up/down 
times, compared with baseline case in economic dispatch 
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5.7 Discussion and key findings 
Collating the results from the various case studies in to a single table for quick reference produces the 

following (cases are given in the table in the same order in which they were performed) in Table 5.5 

(an expanded version of which can be found in the Appendix 7.3). 

Table 5.5 - tabulated results of case studies 

Case EENS (MWh) VaR (99%. MWh) cVaR (99%, MWh) LOLP (%ge) 

Baseline/Econ. Dispatch 2552±767 79128 215142 33.9±1.5 

Baseline/N-1 8249±1362 292223 355303 60.8±1.5 

Baseline/2000/FDR* 1204±359 10417 93827 67.9±1.5 

Baseline/2000/South* 745±314 6645 56810 64.7±1.5 

Baseline/Interpolated* 418±118 6459 22660 67.9±1.5 

B6/N-1 213±32 5488 7628 54.0±1.6 

B6/Econ. Dispatch 456±154 6016 30198 31.6±1.5 

B6/1320MW 840±218 9402 47601 46.1±1.6 

B6/Constrained* 530±197 6899 37234 32.2±1.5 

B6/Trips* 661±42 6476 8791 85.6±1.1 

Gen Loss/Econ. Dispatch 37738±2762 245244 246337 38.1±1.5 

Gen Loss/South* 2703±642 9062 173601 52.9±1.6 

Gen Loss/FDR* 1293±493 4439 77117 55.3±1.6 

Gen Loss/No DR* 1771±485 5556 100891 86.7±1.1 

Gen Loss/No UC* 1569±182 44428 44581 51.9±1.6 

*= situation where Ψ was limited to <50MW rather than 0 

Interpreting the results of a simulation framework as complicated as EWPS is challenging in and of 

itself because of the volume of assumptions and the challenges associated with model 

implementation that come with it. The novelty, and major challenge, with EWPS was in the attempt 

to bring together disparate simulation methodologies and techniques with different data 

requirements so as to first understand the challenges associated with such a task.   

Compromises at each stage were necessary to make the simulations work, and each stage on its own 

will have associated weaknesses which more specialised analysis could address, but the novelty of the 

work lies in the ensemble effort. No such simulations attempted previously have combined the scale 

of simulations and data handling, paired with the disaggregation of line risk that was undertaken in 

this modelling. Discussions were consistently held with peers and contacts in industry such as J. Kelly 

of SSE, who contributed to the work in Chapter 4 to ensure the work was a reasonable approximation 

of more detailed modelling. 

Validation then is difficult, because models with the complexity of EWPS simply do not exist with the 

same functionality and complexity, particularly as regards the combination of weather conditions, 

spatial risk across OHL, and frequency response simulation. The model was developed from first 

principles using conventional representations of features of power system simulation, adapted to the 

differing contexts as well as possible. It is therefore reasonable to expect that, at each stage, the 

results should be taken as at least representative or reasonable approximations. The mantra “all 

models are wrong, but some are useful” from George Box should be remembered here.  

What is important in any study where different cases are performed is that the simulation framework 

and assumptions that are used are done so consistently across case studies such that it is clear and 

obvious what is different in the inputs so the effects on outputs can be reasonably understood. 
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It should be remembered that, despite having over 70 nodes, and a combined total of over 340 lines 

and generators, the system model being used still represents a significant reduction on the actual GB 

system. The distribution networks are likely to be significantly weaker than the main transmission 

system, and also feature less redundancy and resilience due to the reduced economy of scale 

associated with distribution networks and the radial nature of typical distribution systems. Therefore, 

the results of the simulations provided should be understood in that context. 

Further, to more fully quantify the impacts of this, more thorough analysis needs performed on the 

pathways which actually lead to the events associated with energy loss. The use of exaggerated OHL 

risk to intentionally create extreme network fault scenarios was intended in part to create lots of 

network outage states to more fully investigate the impacts of frequency response scheduling in 

situations where there are major network outages, but the exact fault scenarios and cascade events 

which lead to the largest values of ENS in the simulations are worth more comprehensive investigation 

than was able to be performed in this analysis.  

Further, the use of correlated sampling also helps to reduce the randomness to facilitate better 

comparisons between the results of similar system scenarios. At a high level, the variation in results is 

more directly associated with the changes in input data rather than any difference in the events 

captured by random sampling. This effectively serves as a means of reducing the state-space and 

randomness of the investigations and studies carried out.  

It should be noted that the size of the state-space for the analyses carried out here is significant, given 

the randomness assorted with the MCMC simulation of faults themselves (>340 assets over 12 hours), 

combined with the stochastic tripping behaviour of generators and lines, as well as with the stochastic 

behaviour of UFLS. Correlated sampling works to reduce the randomness and associate any change in 

ENS more directly with changes in dispatch scenarios as opposed to changes in fault scenarios, but 

there is still underlying uncertainty and randomness in the models.  

Given, in some cases, the long tail of models may be also affected by as few as one extreme event 

associated with e.g. total system blackout at peak load, which will affect both the cVaR and VaR values 

significantly, this emphasises the difficulty of finding HILP events to model. When the contributory 

factors are combined in quantifying the probability of such events, net probability of such events is 

small (in a weather event itself already in the single digit percentiles annually). However, such events 

only need to happen once and cause a black start to cause major socioeconomic damage. 

Identifying more obvious preventative measures which reduce the EENS (a reminder that EENS is an 

averaged value of ENS across simulations, while ENS itself represents the aggregated PNS across an 

individual scenario) well outwith the margins of error and minimise the long tail are useful aims, but 

the existence of such extreme HILP events emphasises that there is always residual low probability 

extreme events that cannot be picked up by random sampling. 

All results then should be understood in that context – that the changes in ENS distributions are useful 

indicative measures of changes in performance, but that accuracy and precision can always be 

improved. Specifically, random sampling is likely a suboptimal approach for identifying such events 

beyond reasonable doubt unless the sample sizes are significantly larger than those used here, in 

which case filtering or variance reduction techniques would be imperative to improve model 

efficiency. Identifying which events are associated with these 1 in 12,000 sampled hours events and 

the pathways leading to the extreme high impact events and profiling the lower impact events would 

nevertheless be a useful and obvious next stage for investigation and simulation. 
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5.6.1 Baseline cases 
Changing the frequency response-related parameters and constraints within the dispatch has a 

profound effect on the measured performance metrics. The use of suboptimal frequency response 

scheduling leads to worse, more extreme, and more probable adverse operational states dependent 

on how that frequency response is actually deployed. One potential reason for this is that, in the GB 

model, Scotland has very little thermoelectric generation and very little frequency responsive 

generation. In the “economic dispatch” case investigated, therefore, little generation is generally 

scheduled (and relatively little even exists any more) in Scotland – which has significant wind output 

even in the storm scenarios simulated with HWSS depressing power output on the relevant wind 

farms, and so loss of nodes tends not to result in loss of infeed on the remaining network.  

One interpretation here is that placing frequency response in areas which are affected by significant 

storm events or is reliant on weak connections to the MITS means that line outages associated with 

network losses can have significant net impacts on the wider system. That is, on weaker networks, 

loss of network connectivity can lead to loss of connections to demand (and hence associated ENS), 

but with the increasing prevalence of distributed generation the system is also losing generation in 

such events. In situations where these networks are net exporters, while islanding of the subsections 

of network may cause automated disconnection of DG and therefore total blackouts on these 

disconnected network, the remaining MITS will “see” this as a net loss of generation at a time where 

other generators may simultaneously be losing network connections to the grid compounding the 

negative operational conditions. 

Moving the frequency response away from the worst of the storm – at a very basic level, moving it 

from England to Scotland – ameliorates this, as can be seen when comparing the various performance 

metrics - but, given some of the North of England is still affected by the worst of the storm, does not 

entirely mitigate the consequences of network losses.  

Flexible demand response, as implemented in this simulation, has a significant contribution to overall 

system security, and results in an almost halving of the cVaR and EENS values. This is likely because it 

does not rely in any way on needing network connections to demand centres and can act 

independently, and also because it acts almost instantaneously as implemented. More work needs to 

be conducted to determine a hypothetical fiscal value for this, and to more realistically represent such 

technologies, but it is clear demand response at a transmission scale can provide significant system 

operability benefits. Another potential future avenue of research would be to randomise the amount 

of FDR which actually turns up when demanded to investigate potential risk associated with this. 

Finally, the effect of interpolating the weather data used in the simulation is considered. This has an 

effect on two aspects of the simulation – the wind power on the system (as the weather conditions at 

a given node to which wind generation is connected will change), and the distribution of risk across 

OHL on the system. This results in lower EENS, lower VaR, and lower cVaR values. This should not be 

surprising – by interpolating the data, less of the system is exposed to the most extreme values of 

wind speed proportionally, and so the probability of OHL faults happening concurrently at points in 

the system with the most extreme wind speeds is correspondingly lower. This also can be understood 

as vindication for the approach taken in Chapter 4 to disaggregate OHL risk on the system.  

If only the most extreme wind speeds were used across all lines on the system and all nodes, this 

would serve as a distinctly conservative assumption and would likely overestimate the outage risk on 

lines across the system. The significant difference in performance metrics between the interpolated 

and uninterpolated data serves as a basic approximation for a comparison between conventional 

methods of quantifying OHL failure rates associated with weather and the novel techniques 
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demonstrated here, and given the difference in performance metrics between the two suggests a 

more thorough investigation is warranted. 

A notable result is the depreciation in performance between the economic dispatch baseline case and 

the case with N-1-type dispatch. Without further analysis of the extreme results and the causal 

perturbations, it is difficult to understand why, precisely, the system performs worse in a situation 

where theoretically it should be better prepared. However, it is likely an effect associated with the 

islanding effects created by the concentration of faults associated with the coarse granularity of the 

incident dataset and the extreme nature of the perturbations caused. That is, if there is significant 

frequency-responsive generation, and generation of any kind, assigned to areas with extreme weather 

conditions prone to islanding, moving generation to these areas may simply exacerbate the 

consequences of outages, especially if economic dispatch is more likely to utilise generation in 

southerly regions away from the most extreme weather conditions but the N-1 dispatch tries to move 

more generation to Scotland, putting more frequency response in areas subject to more extreme 

weather. Further study is warranted to investigate this. 

5.6.2 B6 cases 
It can be observed that there is a serious degradation in performance across the analysed states when 

the contingency list is reduced from the N-1 proxy to zero, which has the impact of removing the 

consideration of network faults entirely from the dispatch of frequency reserve, with performance 

drop worse even than that of economic dispatch versus N-1.  

As was found in the Baseline cases, the relationship between the dispatch of frequency response and 

system performance during adverse events is not as straightforward as “more equals better”, at least 

for the 1,000 sampled states considered in this scenario. The location and nature of this frequency 

response also matters. It can still be observed that it does have a material impact on the dispatch 

scenarios generated which in turn affects system performance in adverse states.  

The inter-area flow in the various scenarios was found to be as high as 2.1GW in scenarios where there 

was no constraint on inter-area flows, and thus a loss of this connection would have serious 

consequences on system operability following a fault of those lines without adequate preparation.  

The probability of just such a fault is low – but the severity of the impacts render it worth study 

nonetheless and the long tail of the potential outcomes following such an event can clearly be seen in 

the various histograms of results shown and reflected in the risk metrics observed. 

Constraining the flow across these lines in the dispatch did not markedly improve performance 

outwith error bounds – although this could also be associated with the fact that, if any faults happened 

before the B6 fault event, the original dispatch information would be obfuscated by subsequent 

simulations and line flows at the time of fault may have been significantly larger than originally set in 

the first SCOPF.  

This is a feature of the redispatch and re-commitment OPFs and reflects the challenges associated 

with this analysis – maintaining inter-area transfer restrictions after other faults may in itself cause 

load curtailment before the loss of B6, and so preparation for such eventualities is in itself not as 

straightforward as setting initial restrictions and ignoring them in subsequent simulations as may 

happen in the simulations performed here. 

However, dispatching the system and programming in that a large amount of wind generation trips 

following the loss of B6, and correspondingly increasing frequency response south of the boundary, 
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does show a significant improvement in performance in the analysed states- most notably in the VaR, 

cVaR values. The EENS is otherwise not significantly improved beyond the margin of error.   

What can be implied here is that the tripping action prevents the worst events from cascading to more 

severe and damaging outage events in the Northern section, as does the commissioning of extra 

frequency response in the area where there may be a corresponding the loss of infeed. Further, the 

increase in LOLP but consistent EENS implies that there are more nonzero ENS events, but that they 

are less severe on a case-by-case basis. This has a net neutral impact on EENS, but in material terms 

trying to mitigate the impact of more severe events may be deemed preferable to eliminating 

altogether less harmful ones. 

5.6.3 Large generation loss cases 
The results in all of the large generation loss cases show significant variation across all measured 

variables. It is noteworthy that results are heavily influenced by the long tail of the results with a small 

number of outliers being present in all cases but the magnitude of these outliers varying significantly. 

Using extra frequency response dispatched across the boundary (500MW in North/2000MW in South, 

set arbitrarily to reflect the upper end of frequency response capacity on each system while still 

allowing for solution convergence) has a significant impact on both the “average” events and those 

that could be considered the “extreme” events (or top 1%, in this case). This is insofar as the averaged 

results across the test states are reduced well below the error of the first sets of results and the VaR 

and CVaR results reflect a significant shift in the distribution of faults and their extremeness.  

Comparison can also be drawn between the use of the approximation of flexible demand response 

and the use of “conventional” scheduled frequency response. FDR does not rely on the transmission 

system to get power to where it needs to be, and acts instantaneously to deliver a targeted response. 

In contrast, the frequency response from generators as modelled here responds to a signal (power 

imbalance) on the system as a proportional controller with the associated time delay, which may not 

act rapidly enough to prevent frequency deviations associated with UFLS.  

With the same gross amount of frequency response scheduling across the system, when comparing 

cases with or without DR, the EENS is not only significantly greater in cases where there is no DR, but 

the top 1% of events are non-negligibly worse as well. This illustrates that flexible demand response 

of this nature is useful for both moderate-severity events and more extreme ones. 

Finally, removing the minimum up/down time constraints for generators (thus meaning the unit-

commitment of generators is ignored and generators can switch in and out with zero limit other than 

ramping limitations across hours) has a mixed impact on the measured metrics. New generators can 

be brought online after the system has been perturbed by the loss of infeed and high-power 

generators such as nuclear can come online and offline rapidly. In reality, they are far more 

constrained in their ability to respond to system events. Increasing flexibility of generation, 

represented very approximately in this sense, can improve system resilience and reliability by allowing 

more generation to come online after outage events to balance supply and demand. However there 

is also a shift in where and what generation is dispatched, and though the cVaR is significantly reduced 

– representing a reduction in severity of the rarest events - the EENS and VaR are actually broadly 

consistent with the other results (that is, within the margins of error) and the VaR is actually above 

average.  

There is a mid-point between the (rather conservative) assumptions about generation commitment 

and minimum up/down times used in most of the simulations versus having no unit commitment 

constraints whatsoever, and it can be observed that changing this significantly affects system 
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performance as measured here. Comparing these results to those attained in Chapter 3 emphasises 

the fact that the simulations in Chapter 3 were overly optimistic in this regard so cannot be judged as 

an accurate representation of a real system’s response, but still offers a useful comparison in relative 

terms across the different scenarios modelled.  

5.6.4 Summary of cases and resilience quantification 
Another metric that was recorded across all the simulations was a measurement of the proportion of 

states in a given simulation which exceed some absolute value of ENS for N-2 states. This was used as 

a proxy for a potential metric for the “resilience” of a system given a set sample size or scenario, 

reflective of the ability of the system to contain the negative consequences of an event which falls 

outwith the boundaries of a conventional “reliability” (i.e. N-1) paradigm. These results are collated 

into a table, in the same order as shown in Table 5.6.  

A high number implies lots of “unresilient” simulations in an ensemble, but does not say anything 

about how bad the outcome of those simulations were. For example, changing the dispatch setting 

could see a significant reduction in the VaR, cVaR, and EENS values but could see an increase in the 

unresilience metric used here. This would imply that rather than a small number of extreme events, 

there could be a large number of less-severe events. Analysis could then be performed on the balance 

between these two metrics.  

Table 5.6 - tabulated results for "unresilence metric" from simulations 

 

 

 

 

 

 

 

 

 

 

The resilience “threshold” in these cases is arbitrarily set to 10MW – i.e. nonzero but small. A zero 

value here would simply represent the LOLP. This performance metric is the proportion of states N-2 

or worse where the ENS is higher than the threshold. Via this metric it is clear to see that the system 

is most susceptible and performs worst in scenarios where there are significant cases of islanding as 

was the case in the baseline cases. The variation in outcomes is much more severe in the Gen Loss 

cases - e.g. there is a difference of ~34 percentage points between the best and worst performing 

scenarios compared to the Baseline cases where there is at most 9 percentage points. 

Two noteworthy results can be taken from these results. Interpolating the data has a significant effect 

on the results of the simulation in terms of the “resilience” of the system, due to the reduced level of 

system exposure to the most extreme weather parameters and hence less islanding associated with 

wind faults (compare the first and fifth cases in the table above, without and with interpolated data 

Case N-2+ ”unresilience” (%ge) 

Baseline/Econ. Dispatch 87.0±1.1 

Baseline/N-1 82.2±1.2 

Baseline/2000/DR* 82.5±1.2 

Baseline/2000/South* 78.4±1.3 

Baseline/Interpolated* 78.4±1.3 

B6/N-1 78.6±1.3 

B6/Econ. Dispatch 78.9±1.3 

B6/Constrained* 85.8±1.1 

B6/Trips* 59.9±1.6 

Gen Loss/Econ. Dispatch 64.3±1.5 

Gen Loss/South* 63.5±1.5 

Gen Loss/DR* 56.9±1.6 

Gen Loss/No DR* 30.5±1.5 

Gen Loss/No UC* 56.5±1.6 
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respectively). Also, the significant variation in results associated with a large loss of infeed. This is 

because of the link between the loss of infeed, dispatch of frequency response, and the magnitude of 

the outages which are incurred. The loss of infeed from the interconnectors not only affects the load-

supply balance at the time of fault, but also the ability of the system to respond to other faults by 

diminishing the reserve of frequency response on the system.  

It should also be noted how important the ability to separate analysis of reliability-typical metrics (e.g. 

EENS) from resilience-driven metrics (e.g. VaR) could be. EENS inherently depends on averaging results 

across the entire population of a simulation ensemble, whereas VaR, cVaR, and the new metric 

proposed allow examination of the more severe, rare events’ effects on results.  

The resilience metric proposed allows one to determine the proportion of events which may fall into 

an “acceptable” or “unacceptable” boundary of risk whereas cVaR and VaR allow an exploration of 

how the most extreme events drive wider performance metrics which would otherwise be lost in more 

gross estimators. 

5.8 Conclusion 
The demonstrated approach in this chapter is, by necessity of the nature of the simulations being 

undertaken, complicated, computationally expensive, and, in terms of the software implementation, 

decidedly extensive. The sum total of the python model is circa 8,000 lines of code over several scripts 

and took almost 2 years of development. However, the results that can be gleamed from this are 

useful and demonstrate various important concepts. 

The probability of events as significant as the loss of B6 and the loss of interconnectors as modelled in 

the case studies is difficult to quantify because there is little historical precedent or data to quantify 

the probability of such events. Faults on the French interconnector, for instance, are not uncommon, 

and interconnectors themselves are vulnerable to tripping and disconnections as seen in the South 

Australian Blackout [14] which has been discussed previously. Similarly, the August Blackouts in the 

UK [13] originated from a fairly innocuous lightning strike on a line which was restored appropriately, 

but which led to concurrent outages of wind generation and distributed generation, and coincided 

with a trip on gas fired generation. Therefore, the net impact of the event was still extreme but the 

inducing event was actually reasonably predictable and should have been low impact.  

The events chosen for simulation in these cases all reflect HILP scenarios and are difficult to 

contextualise in the normal running of a power system. The storm used was specifically chosen for its 

extremity and rarity, and the extreme events in the case studies represent a compounding of both an 

uncommon inducing event and an uncommon set of outages corresponding to that inducing event.  

The compounding low probabilities of these events make the simulations performed here 

representative of a small proportion of the kinds of events which will happen to a power system in 

typical operational conditions and so, again, the results should be understood in the context of the 

relative differences between the simulations and case studies and how both the frequency and 

intensity of outage events change. 

What has been demonstrated is that frequency response scheduling has an impact on both the 

distribution of ENS during fault events, and the potential extremeness of these events- for correlated 

simulations. This can be due to the location of where frequency response is scheduled, or if generation 

is dispatched in such a way that frequency response is scheduled in areas subsequently affected by 

storm conditions. The speed of response also matters – in cases where demand response was used, 

where frequency response was less reliant on the network and acted instantaneously, the system 

performance metrics were notably improved. 
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Intuitively it makes sense that events which jeopardize the integrity of the transmission system are 

better secured against using resources which are not then reliant on the transmission system being 

affected by the incident natural hazard, be that an extreme wind event, seismic event, or any other 

inclement operational conditions. The results here demonstrate quite clearly that is indeed the case.  

What should be noted, also, is the significance in the models of very small numbers of extreme events 

and their impacts on the observed results. In many of the histograms, the results indicated the vast 

majority of results being in the first bin, with <10 observed states in larger bins. This meant that the 

VaR, cVaR results were particularly sensitive to changes in the distribution of these results, and also 

that, by inspection, the histograms are difficult to extract results from directly, in their own right, with 

the scale of bins used. In future, there may be better, alternative, ways of showing the results of these 

simulations less sensitive to single-digit numbers of extreme events obscuring the visualisation of the 

distribution of less-severe events. 

However, despite the large scale of the simulation and the significant number of features the 

simulation includes, there are still significant abstractions and approximations which take the model 

away from an ideal representation of the system.  

Voltage is not directly considered, neither is reactive power. Wind direction, too, is ignored. Rotor 

angle stability is also not addressed, nor is localised frequency changes. Similarly, the effects of wind 

speed on a line are likely very different between a gust perpendicular to, and one parallel to, an OHL 

– but there is a lack of work understanding this.  

Further, solar power is not considered and considered negligible. Given the case studies used are in 

the UK during the peak of winter, this then is not unreasonable as an approximation – but for summer 

storms, or storms in warmer climates, this may be a less appropriate assumption. 

In the frequency response simulation, RoCoF tripping is not considered, nor is under-frequency 

tripping by generators. Again, in reality this means that some features are missed which, in reality, can 

have a significant impact on system stability following system perturbations. Other factors which can 

cause disconnection such as vector shift protection are also not considered, which is still present on 

the GB network. This means generation vulnerable to deviations in frequency caused by other loss of 

infeed events, potentially leading to cascading outage events such as those seen in August 2019. The 

formulation of the simulation in the manner as performed here, however, means that it is possible in 

future to incorporate these features into future simulation methodologies. 

Another factor not considered in significant detail is the resilience of substations, generators, or other 

point assets themselves. Substations usually have more than one route through which power can be 

transmitted and the node-branch representation of the network cannot capture this. Further, in this 

model fault states are characterised as binary “in service” representations of an asset. Functionally, 

assets may be able to be utilised in reduced capacity if damaged by a natural hazard. Wind faults on 

substations were not considered at all in this implementation but falling vegetation and extreme gusts 

can also impact substations, however the impact may not be as severe as that on OHL. 

The type of frequency-related protection on connected generation may be significant and is not fully 

considered in this analysis – GB at the time of writing typically uses 0.125Hz/s as a RoCoF protection 

setting but with decreasing system inertia this may be overly conservative and may exacerbate 

negative operational conditions following outage events, and so this setting is under review. 

Comparison between the effects of using these settings or less strict ones may be a further useful 

analysis to undertake. 
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Further, the impact of the direction of wind and comparison between homogenous representations 

of OHL and disaggregated representations as used in these studies would also be useful to determine 

the significance of the difference across methodologies. A comparison between interpolated and 

uninterpolated cases prima facie indicate significant differences in system performance in this 

simulation, but only over one case. Future case studies could be used to perform a more 

comprehensive comparison between the datasets as was done in Chapter 4. 

There are various aspects which can and should be improved in future iterations of this work, 

particularly incorporating RoCoF tripping for assets in the frequency response, and using more 

efficient and realistic representations of the redispatch algorithm, for example. However that does 

not take away from the significant part of the work, which is demonstrating how these different 

aspects of system restoration interact with each other to understand their significance.  

Future iterations of this research could operate over long time periods, for instance, perhaps 

incorporating system repairs and restoration of generators more generally, but this would necessitate 

efficiency savings across the model. There are two main processing bottlenecks in this implementation 

– the island finding algorithm following network faults, and the repair UC-OPF. These were necessary 

in this implementation to allow the cumulative effect of storms on the system to be simulated as well 

as to replicate the fact that system operators would be concerned not simply with meeting supply and 

demand but ensuring line flows across the system were secured to prevent further cascading. Future 

work would have to find a way of improving the efficiency of these aspects of the work.  

The results should also be understood in the context that the sample sizes are very small for an MCMC 

type study, with typical Markov Chain Monte Carlo (MCMC) style simulations typically having a lower 

limit of ~10,000 samples- especially given the complexity of the simulation means a much larger state 

space size than typical security assessments.  

More detailed studies would therefore need to improve on the efficiencies within the model to allow 

larger, potentially more accurate and precise result sets to be generated. Nonetheless, the relative 

changes between the result sets are useful as indicative comparators even if the specific contingency 

states generated represent only a small subsample. 

Another potential output for this methodology is to identify sections of the network or individual 

assets associated with particularly high risk metrics to either identify weaknesses in the system or 

particularly critical assets. This could be paired with the methodology used in Chapter 4 to visualise 

risk properly across the system over a given time horizon to aid in planning decisions e.g. where to 

dispatch generation, where to place backup generation, etc. 
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Chapter 6 Conclusions and future work 
 

6.1 Summary of contributions and achievements 
This thesis has demonstrated over its course various novel approaches and methods for use in 

quantifying and understanding the impact of extreme weather on power systems. Quantification has 

been done using metrics such as EENS and VaR with another metric EMLS also demonstrated to 

quantify the expected severity of a particular scenario. 

Various different simulation approaches have been deployed on different scales of network, e.g. a 

truncated version of the Reduced GB representation, a representation of the Northern Scottish 

transmission network, and a more detailed version of the Reduced GB model updated with more 

recent wind generator data. 

Further, various different simulation methods have been incorporated in a way which has not been 

done before, allowing investigation of different kinds of fault events and different operational modes 

for the mitigation of high impact events on the power system. It is acknowledged that even these do 

not represent an ideal representation of a power system, but nonetheless it is useful for 

demonstrating the concepts which this thesis concerns and in many cases are an advancement of 

existing approaches.  

This thesis has demonstrated advancements in approaching modelling of HILP events, quantification 

of OHL risk during extreme weather events, and integration of disparate simulation methods to 

investigate the impact of dependent faults on the power system associated with extreme weather 

conditions. 

The main contributions and findings of the completed research can be described in the following. 

6.1.1 Defining approaches and frameworks in which to simulate dependent, weather induced 

faults in a power system and investigate model sensitivities 
As demonstrated in Chapter 3, modelling power system faults during extreme weather events is a 

complicated task requiring significant quantities of data from several sources. The interactions 

between different data types and models is clearly illustrated and the sensitivity of the output metrics 

to changes in these data sources and relationships is demonstrated.  

Though the model representations are simplified in this case – such as it is with frequency response 

being neglected, load shedding being performed using heuristics, and other simplifications – a 

comparison between different fault-wind relationships clearly illustrates that approximations or 

errors in data or modelling can have a profound effect on the outputs of such models. 

Using frameworks such as this allows individual aspects of the model to be modified individually to 

evaluate the sensitivity of model outputs to the data and simulation models used within so that either 

aspects of the modelling can be improved to increase the simulation accuracy or precision, or such 

that network performance can be quantified in different operational scenarios. 

When modelling the impact of natural hazards on a power system, at multiple stages in the thesis 

what constitutes an “event” has been a matter of discussion. This is because how an “event” is 

interpreted can have significant implications: typically in extreme weather simulation scenarios, 

weather is seen as an external factor affecting the power system. A weather system is an external 

“event” in its own right, acting independently on the power system based on some postulated 

relationships.  
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The failure of a line is, in its own way, also an “event”- a line taken out of service is agnostic to whatever 

causes its failure when it is out of service in a security assessment, except to the extent of what type 

of fault or outage has occurred. I.e. in a generic DCOPF it does not matter whether a lightning bolt of 

gust of wind has taken a line out of service, the line is out of service when the calculations are 

performed. In a transient or dynamic simulation, however, a lightning strike acts over timescales which 

are significantly impacted by automated protection actions which are not generally captured in OPFs 

(e.g. auto-recloser actions). The quantification of the impacts of that outage are tied to the failures of 

lines, but only indirectly associated with the wind. Similarly, the amount of wind infeed on the system 

is determined by the wind capacity factor given to the model. This is calculated externally, and again 

the DCOPF does not take consideration of what is generating the levels of wind “generation” – it only 

interprets it as a maximum and minimum power output, irrespective of what is actually determining 

these values.  

In Chapter 5, the effects of perturbations after this can then be examined – UFLS, frequency response, 

and generator trips, for example. In the system frequency response simulation, again, the network 

and its failures are not considerate of the network at all beyond the aggregated pool of generation, 

demand response, and load. So when talking about “HILP” events one needs to be clear about from 

where the probability and impact is actually being derived – is the causal weather event itself low 

probability, or the effects on the power system associated with failures associated with that event? 

This emphasises the need to have clear frameworks for modelling natural hazards and extreme 

weather such that these factors can be understood. 

In conventional security studies examined in the literature (e.g. [54], [102], frequently the simulation 

of such events extends as far as taking lines out of service and e.g. running a DCOPF to quantify its 

impact on the system via metrics such as EENS – such as was demonstrated in Chapter 3. Chapter 3 

investigates the relationship between an external weather event, a relationship between a natural 

hazard and a failure rate on OHL, and the impact a change in this relationship can have on subsequent 

results. Chapter 4 investigates the significance of the changes in data granularity and disaggregation 

when modelling OHL and wind power distributions across the power system. Chapter 5 looks at the 

relationship between different aspects of simulation after any set of perturbations has actually been 

generated and their relationship with changing security criteria. In these cases the weather event itself 

is consistent, but the interpretation of the weather event’s impacts on the power system varies. 

Visually this can be represented at a high level as what is shown in Figure 6.1. 

 

Figure 6.1 - chain of causality for effects of weather on power system 

This is alluded to in the framework developed in Chapter 3 and more fully developed in Chapter 5. The 

natural hazard perturbs the system in some way – be that by determining the wind power infeed, the 

collection of line faults, etc. The SFR/OPF loop evaluates the consequences of this more fully. An SFR 

model does not take into consideration what has caused the supply-demand imbalance only that one 

exists; much like if a wind-induced line fault happens it is unlikely the loading of the line will have any 

impact on the actual probability of that line failing. A key contribution, and overriding theme, of this 
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work is demonstrating the relationships between these different aspects of resilience modelling and 

how they interact with each other. 

6.1.2 Demonstrating sensitivity of power system analysis to changes in failure rate-weather 

relationships 
In Chapter 4, a change in fault probability for the most extreme case on the system (normalised down) 

by a factor of 2 has an impact in orders of magnitude on resultant EENS in the case studies performed, 

and both the probability and severity of outage events which occur.  

That is, more things break, more things break at the same time, and the consequences are more 

severe. This demonstrates the need for caution when using stochastic simulation methods reliant on 

techniques such as fragility curves because even minor changes in these relationships can have 

significant impacts on the outputs of such models. If the results of these simulations are then to be 

used for investment or operational decisions, any errors could lead to significant negative 

consequences (be that stranded assets, inefficient investments, or widespread blackouts depending 

on the type of decision-making).  

Using synthetic relationships such as those demonstrated in Chapter 3 clearly is not appropriate for 

real world investment decisions, but are shown as useful for indicating the sensitivity of stochastic 

modelling of its nature to the veracity of any data-driven models used.  

The key for any comparison study is to ensure consistency in approach across different case studies 

such that any difference in outcomes can be clearly attributed to changes in the input data, hence the 

importance of clearly defining the relationships and models used within and applying them 

consistently. This work has at various stages demonstrated the significant impact changes on incident 

data can have whether that be changing the resolution of the data used, changing the parametric 

relations, or changing more technical aspects such as the contingency lists and parameters in an 

SCOPF.  

The individual components of work such as performed in Chapter 5 can be improved, but the 

fundamental aspects are a contribution to modelling HILP events attributable to natural hazards 

insofar as they clearly demonstrate the kinds of interactions and simulations which may be necessary 

to comprehensively quantify the potential impacts of extreme wind events on transmission systems 

like GB. 

6.1.3 Illustrating potential correlations between overhead line fault risk and wind power  
Chapter 5 focuses on elaborating on some of the themes investigated in Chapter 3 and better 

understanding overhead line risk during storm events. Given overhead lines are not point assets – 

unlike generators or substations, which can be assumed such – current approaches which tend to 

assume they are or treat them as such are clearly inadequate when modelling the impact of extreme 

weather. This is because weather acts over large regions spatially and over different temporal ranges 

depending on geographic conditions and weather types. Treating OHL as point assets with a single 

failure rates over their range – as was done in Chapter 3 – fails to capture the diversity of weather 

conditions to which an OHL may be exposed as well as the different geographical conditions. 

The variation across networks of overhead line failure risk is demonstrated clearly with failure rates 

being shown to vary across power systems and individual lines, with observations also made about 

potential linkages between wind power infeed and OHL risk. This merits further investigation to 

quantify more fully such risk to ameliorate it due to increasing penetration of wind across distribution 

networks and power systems globally.  
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There are socioeconomic reasons why the system has been designed in this manner in Scotland which 

has the unintended consequence of creating the potential for serious common-mode faults and 

correlated outages of lines and windfarms associated with HWSS and line faults, be they transient or 

permanent. This should have implications for future systems development – if resilience is to become 

a component of system planning, diversity of asset type as well as location has to be considered, on 

the basis of work such as Chapter 4 which clearly illustrates that concentrations of transmission 

infrastructure increase the probability of faults happening in any given location. The comparison 

between interpolated and uninterpolated data emphasises this – if significant amounts of system 

assets are concentrated where the weather is most extreme, significant portions of the system are 

subject to the risk associated with that natural hazard. 

6.1.4 Linking spatially resolved weather data to power system modelling and simulation 
Integrating disparate simulation and modelling techniques associated with power systems proved to 

be a difficult, complex task. Converting netCDF4 data from NASA sources to formats usable in a python 

simulation required extensive conversion and scripting across multiple platforms. In Chapter 3, the 

effect of wind on generation was not considered which is simply not representative of the modern GB 

network given the high levels of wind penetration on the system. This was the reason for the simplified 

consideration of wind data. As is consistent across the work in this thesis, a basic first principle was 

established, and then subsequently developed and improved. In the case of the weather data used in 

Chapter 3, a conventional representation of how wind speeds are used to quantify OHL risk was used. 

This was deemed inadequate, and subsequently improved in Chapter 4. The simulation of the actual 

system response, demonstrated in Chapter 3, was also then improved in Chapter 5 to represent a 

comprehensive advancement on the simpler methods shown in Chapter 3. 

Linking reanalysis data to wind generation, frequency response dispatch in an SCOFP, and OHL risk 

projection has not been done before as it was demonstrated in this work. This still represents only a 

first approximation of fully considering wind’s effect on power system risk, however – directionality 

was not considered, and various corrections were necessary on the weather data to make it suitable 

for use in the different components of simulation. Each iteration of improvement in the methodology 

demonstrated in the research conducted is nonetheless a progression of the state of the art, in 

discrete terms and in aggregate. 

What is also worth mention is the linking of wind generation, OHL failure risk, and spatially distributed 

natural hazards over an extended timeframe. In Chapter 3 the simulation was over a 24 hour window 

but using simplified representations of weather and the power system. Chapter 4 extended the 

modelling of OHL but only examining representations of the system within a single hour. This was 

because the fragility curves and wind power curve used were equally in per-hour terms. A major part 

of why weather-dependent faults are problematic, though, is the cumulative effect of such outages 

over an extended period of time, hence the need to, in Chapter 5, combine these analyses to model 

cumulative outages on the power system over a known storm system on a known network. Ideally in 

future historic fault events could be modelled in this manner with known load balance data to validate 

the model, but such data was not forthcoming at the time of research. Nonetheless, a future avenue 

of study is clear. 

6.1.5 Integrating simulation of frequency response with weather fault simulation and demand 

response 
Standard resilience modelling described in the literature generally makes assumptions about how the 

system responds to perturbations and faults – idealised redispatch of generators, tripping of 

generators and actions of intertrips, etc. In reality, the system can respond to perturbations in a 
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chaotic, unpredictable manner. The implementation in Chapter 5 builds upon the weaknesses 

identified in Chapter 3 and combines that with the novel methodologies demonstrated in Chapter 4 

to perform various case studies to identify how important improved detail in simulations could be. 

This includes the combination of a frequency response model and line overload simulation model 

attached to the wider framework, which, in the context of resilience studies, has not been done before 

in the manner demonstrated.  

The model implementation considers all stages of system restoration to different levels of granularity. 

Again, though individual aspects of this simulation may be more broad approximations and 

abstractions than others, the net impact is a comprehensive simulation that identifies how these 

different aspects of power system simulation may interact with weather conditions and the associated 

impacts and risks for the power system.  

This is a clear advancement on existing conventional techniques and acts as a first step towards better 

understanding how to mitigate HILP events associated with extreme weather. Further, the 

consideration, even at a basic level, of flexible demand response was used to illustrate the significant 

potential benefits such schemes – which are not reliant on wider system security – could provide to 

system reliability and resilience. The advancement is in pulling together these factors in an orderly 

way and establishing a working model of considering all of them in a simulation framework. 

6.1.6 Establishing methods for assessing the effect of changing frequency response regimes on 

system reliability and resilience performance 
Given the complicated nature of the simulation model used, complete validation of results was not 

possible because the data does not exist which can be compared with the findings from the simulation 

model. However, using techniques such as correlated sampling to compare similar scenarios was used 

to compare the effect of changing dispatch scenarios on the system to at least give a relative, or 

indicative, representation of the effect of changing how the network is set up ahead of unpredictable 

or extreme events. The significant variation in results when different frequency response or demand 

response scheduling is used is indicative that such factors can have a significant impact on results even 

if only because it changes the location and scheduling of generators on the system. 

Further, it demonstrates that for some types of fault scenarios frequency response scheduling may 

have more significant impacts than in others. Generation infeed events are most sensitive to changes 

in frequency response scheduling, particularly comparing between using demand response and not. 

One potential reason for this is that, in the Baseline cases demonstrated, ENS was associated with 

islanding events which could not be contained with frequency response alone, and so changing the 

scheduling of frequency response had fewer direct impacts. That is, the effects of changing frequency 

response were associated with the location of generation and whether it was placed in at-risk regions 

of the system. Placing generation in these areas meant islanding of nodes in such areas would result 

in net loss of infeed on the MITS and according stability effects. If generation was accordingly 

concentrated in areas impacted by the storm, this could lead to particularly negative consequences.  

Such phenomena could only be investigated using a simulation platform as demonstrated due to the 

number of factors which must be considered to perform such analysis. Though different aspects of 

the simulation can be improved in future to make the simulation methods more realistic or 

representative, the framework and approach demonstrated here marks a clear and productive first 

step to more complete and holistic simulation of such events. 
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6.1.7 Demonstrating significance of spatial disaggregation and interpolation of weather data 

for use in power system simulations 
In both Chapters 4 and 5, interpolated and un-interpolated weather data sets were used, meaning the 

results of analysis using these different datasets could be compared to interrogate their significance. 

As would reasonably be expected, in Chapter 5 it was shown that interpolating the data means that 

the performance of the system during the case studies was better when the interpolated data was 

used. This was due to the lower concentration of system assets experiencing the most extreme values 

of wind speed. Given the significant sensitivity of wind failure rates, wind power output to changes in 

wind speed above 25ms-1 as demonstrated in Chapter 4, these results corroborate each other’s 

findings that the weather data set used should be of appropriate granularity for the network under 

investigation.  

The coarser, 50x50km MERRA-2 dataset is in itself likely too broad to appropriately model networks 

as condensed and concentrated as GB with significant regional meteorological variation. Despite the 

added computational expense associated with having to sample more sections of line and the added 

pre-processing it was shown that the results differ enough such that such improvements in granularity 

are necessary on a GB level to ensure accuracy of results. It should also be noted that distribution-

network level studies may require even more precise weather data for suitable analysis. Given 

distribution OHL and associated assets can reasonably be expected to be even more fragile than 

transmission assets, this suggests a potential area meriting further investigation.  

This also clearly emphasises the inadequacy of treating OHL as homogenous assets during analysis 

involving natural hazard resilience studies pertaining to wind, because the variation in wind across 

these assets is lost. 

6.1.8 Demonstrating the potential value of Flexible Demand Response solutions for containing 

HILP events or large loss of infeed events in frequency response simulations 
As implemented in Chapter 5 – though an idealised and simplistic representation – flexible demand 

response could provide crucial services during force majeure events where network integrity is 

compromised to help stave off the initial hit of a major loss of infeed or interconnection. Primary and 

Secondary frequency response can be understood as mechanisms by which the system buys time to 

respond using larger scale, controllable system features such as redispatch or bringing other 

generators online. The flexible demand response could also be understood as an idealised 

representation of non-generation frequency response that acts in a precisely targeted manner.  

In conventional resilience studies which do not directly consider frequency behaviour, such 

simulations could be interpreted as simulations in which frequency response acts in a perfect, targeted 

manner to control frequency almost instantaneously (by disconnecting the exact amount of demand 

required to balance demand with generation) – which is not completely different from FDR was 

represented in the case studies in Chapter 5. Ergo, the clear difference in results in cases where FDR 

was used versus where it was not used is indicative of the fact that speed of response, and the 

precision of its response, does indeed matter, and cannot simply be ignored and approximated out of 

studies. This mattered particularly in cases where there was concentrated loss of infeed, or in the 

cases where there was major loss of infeed across the system but was shown to be a significant benefit 

regardless of context.  

Finding a market value for such solutions, of course, and demonstrating their efficacy is another field 

of study altogether. Flexible demand response was encouraged in the system to be deployed as fully 

as possible by assigning zero cost to it in the objective function, and so the dispatch SCOPF model was 
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incentivised to use it heavily as primary response. It was not limitless in its use, however, given 

secondary and tertiary response were still required and so flexible demand response alone could not 

be used to sustain the system following perturbations. 

6.1.9 Understanding the potential importance of features such as Unit Commitment restrictions 

in resilience simulations 
As discussed in Chapters 3 and 5, factors such as how quickly generators can switch in and out of 

operation can have a significant impact on a system’s operability during adverse conditions.  Having a 

flexible fleet of generators means less need for load curtailment if generators can be brought quickly 

online where they are needed to meet demand. This does not directly affect the frequency response 

on its own – though the frequency response will be indirectly affected by the inertia of the generators 

which can be brought back online and the net demand remaining on the system.  

Nonetheless, the variation in results when the Unit Commitment constraints are not enforced (or, to 

view it another way, when the minimum up and down time of the generators is reduced to zero) is in 

itself noteworthy and emphasises the need to take consideration of such factors in resilience studies. 

Being able to modify and take consideration of such factors was a key benefit of the approaches taken 

in Chapter 5 – doing so in more proprietary software would simply not be possible with the same 

degree of flexibility. Having control over every aspect of the simulation allows many degrees of 

freedom in how simulations are controlled to account for different features and despite the extensive 

case studies undertaken there are more still potential avenues to explore different case studies and 

features. 

6.1.10 The significance of initial dispatch when subsequent fault events happen 
Due to the way the model works, when the system redispatches and the restoration unit commitment 

OPF is performed, effectively the initial dispatch that is generated in the SCOPF is discarded. Beyond 

that, the only retained information or bearing on subsequent hours in the simulation is the allocation 

and location of frequency response. Otherwise, the model uses whatever generation is available to 

minimise the load curtailment, for example. Therefore, the benefits of using any sort of specialised 

SCOPF are immediately lost other than the use of the frequency response allocation and the generator 

commitment at the start of the simulation and the information about the minimum down time of 

generators. Adding further complexity at this stage would add further computational burden in an 

already complicated and computationally expensive simulator. However, for each case study the 

SCOPF was only performed once to generate a feasible dispatch scenario, there may still be room to 

expand it dependent on other factors (e.g. memory, the scale of contingency list and implementation, 

etc.) 

However, what can be appreciated at the very least from this is the fact that, in reality, during an 

extreme event it is not unreasonable that the first priority of any operator during a force majeure 

event would be to keep the system online and then try and secure the system against a subsequent 

event. Given that the simulated events can go further than N-10 in terms of the number of faulted 

assets during the storm, it is reasonable to assume a focus on just keeping the network operational as 

a first priority, and so the assumption made that an operator would try and maintain frequency 

response from key generators and just try and otherwise minimise system disruption and load 

curtailment otherwise seems a reasonable approximation to use in modelling.    

6.1.11 Industrial co-operation and academic impact 
Much of the work was conducted either with guidance or support from industrial partners. The earlier 

stages of the work had support from S&C Electric who were, at the time, industrial partners of the 
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project and supported the project work at the University of Strathclyde which formed the basis of this 

research.  

When they moved on, support was provided by J. Kelly and F. Irwin of SSE who provided technical 

guidance and data necessary for the assembly of the network models used in Chapters 4 and 5. In 

return, the work was presented at various stages to SSE at their Perth headquarters to workers 

involved with the use of weather data and asset management.  

The CDT itself was assembled on the basis of encouraging interdisciplinary co-operation among 

researchers and involvement of industrial partners to ensure work was relevant to the modern power 

sector and grounded in applicability to real world needs of the power system. This was a driving 

feature of the undertaken research and is what guides many of the future directions of the research: 

guiding planning for reliability and resilience work involving the electricity system grounded in realistic 

representations of the power system generated from extensive consultation with industrial partners. 

The tools developed, especially in Chapter 4, are designed to be extensible and reproducible for 

planners or operators to understand the risk extreme weather poses to their systems during inclement 

weather conditions. For example, using the work in Chapter 4 planners could run daily calculations 

overnight using weather forecasts to generate risk profiles for their sections of the network to aid in 

deployment of restoration teams and operational risk management measures., especially before e.g. 

storms. This would be particularly useful at a transmission level where the scale of impacts can be far 

more significant.  

Presentation of the research at events like the EPSRC HubNet Risk Days, or the ETP Conference 2019 

in Dundee (at which the prize for best presentation in session was awarded for material used in this 

thesis) was done to disseminate knowledge to peers. Material was also presented to the UK’s energy 

market regulator Ofgem and to consulting company Risk Management Solutions (RMS), London in 

2019, a company heavily involved with what is known as cat (catastrophe) modelling. This emphasises 

the broad utility of the work conducted in this thesis. 

The work presented in this thesis has been presented at academic and industrial conferences for 

knowledge dissemination, as previously mentioned. Two academic, peer-reviewed publications have 

also been produced based directly on the research conducted, which have already been discussed and 

are referred to in the relevant sections. The work which formed the content of Chapter 3 was 

presented at the IET’s International Conference on Resilience of Transmission and Distribution 

Networks, with the work in Chapter 4 being published in the IET Smart Grid journal at the end of 2019, 

in a high-quality open-access Special Issue on system resilience. 

In total, then, this emphasises the industrial and academic value of the undertaken research and its 

potential value for future endeavours as a basis for more detailed analyses. 

6.2 Future work 
Though a thorough approach to modelling the impact of weather on power systems has been 

undertaken, significant amounts of further areas of research remain that can be pursued to build upon 

and expand the research completed. Here follows a non-exhaustive discussion of some potential areas 

of improvement and further development can be pursued. 

6.2.1 Incorporation of alternative kinds of distributed renewables generation 
Presently, the modelling does not take consideration of the impacts of renewable generation such as 

solar. It was assumed this could be ignored as the modelling was carried out in winter when, in the 

UK, days are particularly short and dark, so there is unlikely to be significant infeeds of solar PV on the 
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system. However, it is entirely possible for high wind conditions to occur during otherwise sunny 

conditions and, when combined with wind infeed, there may be significant renewables penetration 

and little inertia to support system security, making the system substantially more vulnerable to 

shocks and disturbances.  

Given solar PV is also grid-connected via power electronics, there is also risk of RoCoF-related 

disconnections following less serious system perturbations which could cascade into more serious 

events. Therefore, one desirable future area of study would be to include modelling of solar PV and 

weather impacts such as cloud cover in the analysis, particularly given the spatially distributed impacts 

of e.g. cloud cover on solar PV. 

6.2.2 Improved frequency response modelling 
The frequency response modelling used represented a very basic approximation of what a real system 

would do following a frequency disturbance. As happened in the August 9th blackouts, as well as LFDD 

there can be loss of infeed from distributed generation associated with vector shift protection or 

RoCoF protection on devices, which can feed into cascading events and cause widespread outages. 

This was not directly considered in the modelling.  

Further, load shedding – though representative of approaches taken in real life on the GB grid – made 

no distinction between “essential” and “non-essential” loads. Though the flexible demand response 

algorithm at a very superficial level acted as a proxy for this, it represented a very idealised and 

optimistic approach of load shedding that also did not represent a particularly controlled deployment 

after the initial response. It may be desirable to feed in a methodology for the model to assign loads 

to “essential” (heating, cooling in life-critical contexts) and “non-essential” (wet devices, non-critical 

thermostatic) classifications.  

Given there is also a link between demand and ambient temperature, it is reasonable to expect that 

at colder temperatures there will be more heating deployed on the system – but not all of that heating 

may be necessary at the same time and there may be a way of harnessing such heating demand in a 

controlled manner non-intrusively to support system security. 

The model also assumed a homogenous, single bus representation of frequency response. All available 

evidence suggests, though there can be assumed an “averaged”, representative system-wide 

frequency response, there are pronounced localised effects, particularly when comparing areas such 

as Scotland and the midlands of England where in the latter there is significantly greater inertia than 

in Highland Scotland where years of decommissioning of thermoelectric generation has significantly 

weakened system strength. As a first step and improvement of existing techniques, using a 

homogenous frequency profile marks a solid first step, but many improvements could be made to 

make this more realistic dependent on the context being examined.  

In the system frequency response simulation, various assumptions about the behaviour of individual 

generators also had to be assumed – all generators were bundled into a single generator with 

“representative” controller behaviour. In reality, the behaviour of a hydroelectric scheme and e.g. an 

interconnector will vary significantly and the assumption that the net effect of averaging the individual 

contributions of all these multiple infeeds on the system may not be appropriate. Further study is 

warranted. 

6.2.3 Incorporating the investment-side problem 
Modelling the system response to perturbations is only a minor aspect of the challenge in performing 

security studies. Planners and operators must also then tackle the problem of “so what?” 

Incorporating simulations with investment-side optimisations is a complicated problem and has been 
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tackled in the literature, but not with simulations as complicated as those undertaken here. Resilience-

based investments and reliability-based investments may differ – for example the latter may 

incorporate features such as backup generation, spare transformers, etc, with reliability perhaps 

leaning more towards redundancy or reinforcement. Reliability investment, however, can also 

improve resilience – but quantifying the benefits of such investment is a challenge in itself because of 

the various issues highlighted here: how does one decide which events the system needs to “secure” 

against, and how does one quantify the cost-benefit behind the decision-making? A balance also needs 

to be struck between the complexity of the simulation algorithm versus the computational expense 

of the optimisation, and any further expansion of the optimisation SCOPF in the first instance would 

require significant efficiency savings in the simulation. 

6.2.4 Examining effects of other weather impacts on the power system 
For the reasons stated in the introduction and literature review sections of this thesis, wind has been 

the primary concern for its impacts on the power system, but many other natural hazards threaten 

the power system and require similar quantification – and many of those natural hazards themselves 

coincide with wind and compound its risk.  

In the analysis carried out, wind direction was omitted as a factor as it was not considered in the 

original fragility curves. Similarly, line faults were assumed to be permanent rather than transient. In 

reality, wind can cause a wide range of faults and problems for operators beyond simply taking a line 

out of service. Transient faults such as short circuits from falling vegetation or clashing conductors can 

also cause issues for system security. This could particularly be a risk for lines which have a similar 

bearing experiencing similar weather patterns. As a very simple example, a strong Southwesterly gust 

in Scotland could cause transient faults across lines perpendicular to that bearing associated with 

clashing lines, and if these coincide across a network and multiple line outages happen simultaneously 

before lines can be brought back in service by DAR actions this could lead to outages and islanding. 

Such events were not captured in the analyses performed thus, but could be a worthwhile future area 

of analysis. 

Another potential direction would be to combine wind data with temperature data. On exposed, high 

elevation grids such as SHETL there is significant risk of line icing in colder months in winter. This can 

be affected by line loading, which is in itself determined by generation dispatch and system demand. 

Combining a simple OPF with the visualisation and weather modelling demonstrated in Chapters 3 

and 4 could be used to visualise OHL risk associated with extreme cold or heat. Line heating via heavy 

loading can be used to reduce the risk of line collapse associated with line icing, but increasing ambient 

temperatures can also affect the loading of lines and necessitate de-rating in summer months or 

during heatwaves.  

With increased penetration of renewables on distribution networks during summer months 

associated with PV or with wind during windier days this could become acutely problematic for more 

congested networks, and so application of these methods to identify particularly at-risk regions of the 

system could be a useful avenue of future research. 

6.2.5 Effects of climate change and other externalities on system resilience 
Externalities such as socioeconomic drivers of system design have been discussed, but climate change 

mitigation itself is set to become a major driver of system design as well as the need to prepare for a 

more renewables-heavy grid. Hypothetically, the methods demonstrated in Chapter 4 could be used 

with annualised data to determine at-risk areas of network such that hypothetical future network 

extensions or new connections could be optimised to minimise weather-risk and avoid particularly 

windy regions. Of course, as highlighted in Appendix 7.1, there are many reasons why such 
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optimisations may not be as simple as finding the lowest-risk areas for network connections, but this 

information could feed into network design at least as a consideration and to help make evidence-

based cases for connection pathways. 

Given climate change is also liable to change the frequency and intensity of extreme weather events, 

such tools adapted to other weather phenomena such as flooding (for substation, generator risk) or 

lightning events (for any overground exposed infrastructure) could also prove vital for network 

planners and operators going forward, particularly if resilience becomes a major factor in price control 

mechanisms such as RIIO.  

Climate change compounds pre-existing risks in a complex manner and so extension of the methods 

deployed in this thesis to other weather patterns may be particularly useful for other spatially 

distributed weather events affecting the power system.  

With metrics to quantify system resilience such as the very basic ones demonstrated here there are 

ways and means of comparing hypothetical resilience improvement strategies going forward – after 

all, improvement cannot be measured if there is no metric by which to quantify it. 

6.2.6 Comparator studies 
In Chapter 4 the methodology to represent lines as 2-dimensional arrays rather than point-to-point 

homogenous assets is demonstrated but it is not compared to existing methodologies directly, rather 

the varying failure rates are shown as proof unto itself that present approaches are inadequate. Clearly 

in future a more direct comparison study could be carried out, in tandem with a developed simulation 

model, to elaborate on this.  

Using a smaller network model such as Iceland would also ease validation of results and avoid the risk 

of results being obfuscated by the scale and magnitude of the test network. The Ryan model as used 

was chosen as it was available and complete and broadly representative of the modern GB network, 

but for demonstration purposes sometimes it is better to use smaller, simpler networks to illustrate 

important concepts. A study comparing homogenous representations of OHL to spatially 

disaggregated models as deployed here would therefore be a useful output. 

6.2.7 Improvement of model efficiency 
The model as deployed in Chapter 5 represents many compromises brought together to prove that 

the integration of the wide array of areas of study is possible. There are various weaknesses in the 

formulation and deployment of the model as demonstrated, which have all been discussed, and in 

future these should be addressed to allow model validation and verification. Nonetheless, the 

generalised framework still has value.  

Most immediately the linkage between the SFR loop and the subsequent Unit Commitment problem 

needs to be improved and made more efficient, with the representation of tertiary response 

improved. The representation used is significantly idealised, though, crucially, was applied 

consistently across all test cases used and so any error introduced would be consistent across all 

cases.. This part of the model in particular should be investigated to improve model realism and 

efficiency. 

6.2.8 Optimal OHL routing planning 
For systems such as GB, where infrastructure development is significantly constrained by 

socioeconomic constraints such as public opposition and environmental concern, the routing of OHL 

is an intricate and complex challenge with many stakeholders. Nonetheless, the methods developed 

in Chapter 4 introduce another potential factor for planners to consider. The routing of lines is also 
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related to the risk presented to those lines from natural hazards, particularly when considering the 

bearing of prevailing winds and geographic conditions or vegetation.  

Geographic conditions can provide wind shadows for OHL which, while in the context of wind 

generation would prove problematic, could be useful for reducing the risk associated with extreme 

wind conditions based on the prevailing wind directions of an incoming storm. Studies examining the 

potential improvements in reliability which could be achieved by planning future developments in 

larger scale grids – or rebuilding existing routes – could be informative for future planning decisions if 

resilience becomes a pressing concern. The complementarity of OHL risk and wind power infeed 

implies that future planners should seek to situate windfarms in areas which are exposed to as much 

wind as possible while ensuring long distance exposed OHL are exposed to as low risk from natural 

hazards as possible, but there will be a cost-benefit balance to be found. 

6.2.9 Improved mitigation planning 
With the techniques demonstrated in Chapters 4 and 5, there is the possibility not only to make 

projections about high risk areas of the network but to then put in place suitable preventative or 

corrective measures for when there are particularly acute adverse operating conditions. Once high 

risk areas of the system are identified using the visualisation techniques demonstrated, interventions 

such as back-up generation, additional frequency response reserve, or rapid response teams could be 

put in place to optimise system restoration following any major outage which happens in the vicinity 

of the at-risk areas.  

This emphasises the strength of the methodology in that it can be used across different timescales 

with the simulation framework proposed to examine different kinds of interventions and responses 

to different natural hazards in inclement operational conditions. 

6.2.10 Three-dimensional OHL modelling and wind direction consideration 
As mentioned at length in Chapter 4, when geographic features are considered the representation 

and visualisation of OHL failure risk can naturally be extended from 2 dimensions to 3 dimensions to 

incorporate the elevation and altitude of OHL. Further, if such features are being considered, factors 

such as wind shadow from hills and wind tunnels can then begin to be incorporated into simulations 

to more fully understand the implications of the inclusion of such features.  It is also worth noting that 

wind direction could also matter in this context given the bearing of prevailing winds versus that of 

the OHL being considered and the associated geographic features of mountain ranges within the study 

areas.  

6.3 Concluding remarks 
The completed research forms a comprehensive examination of the potential impacts of extreme wind 

on the power system and how to model these impacts, with various case studies performed to 

examine the significance in any given analysis of the different abstractions and data used in such 

modelling.  

The distributed impacts of extreme wind have been demonstrated on representations of real 

networks, as has the sensitivities of the performance of these systems to changes in the models used 

to represent failure-weather relationships. 

The modelling illustrates that increased system flexibility – either via flexible demand response or the 

ability to switch generators in and out of service more rapidly – has a significant impact on system 

resilience and reliability for the types of test cases shown, particularly in cases where there is 

significant loss of infeed. 
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Changing the relationships between weather and failure rates is shown to have an impact in terms of 

orders of magnitude on the performance metrics used in security studies, as does the representations 

used more generally to aggregate risk on OHL. Further, it has been shown that more granular data 

results in significantly better system performance in security studies performed as less of the network 

is deemed to be exposed to the most extreme weather conditions. This was demonstrated both via 

visualisation of the data in question and via simulation using the underlying models. This is important 

to note because it is the same fundamental underlying data, interpreted differently, producing very 

different results, for the very same incident weather events.  

Incorporating the spatial impacts of weather on wind power availability as well as on OHL security 

demonstrated the potential correlations between these phenomena and marks a first step towards 

more fully quantifying and mitigating these impacts with a reasonable understanding of potential 

areas of improvement, but also demonstrated the significant uncertainty in these types of studies, 

even when corrections are added to account for e.g. wind gust velocity, asset altitude, etc.  

A quote attributed to George Box, and already mentioned previously in this thesis, is that “all models 

are wrong, but some are useful”. The problem with modelling the impact of weather on power 

systems is that it is not known exactly how wrong our models are, and until something goes wrong it 

is difficult to know exactly how useful they were in the first place. The work done here is at least a 

step towards trying to understand how wrong they actually may be and, crucially, in what ways. 
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Chapter 7  - Appendices 

7.1 Socioeconomic constraints on energy developments in Scotland 
As is illustrated in Chapter 4 throughout, the energy infrastructure in Scotland particularly tends to be 

concentrated around the coasts and urban centres in the Northeast (Aberdeen), and South (where 

the vast majority of the population and economic development in Scotland is concentrated). There 

are multiple socioeconomic reasons for this which are explored in depth in [109]. The general themes 

addressed therein shall be discussed at a high level in this section due to the indirect consequences 

this has for power system resilience and reliability, and are drawn from the source referenced. 

7.1.1 Historical underdevelopment 
As can be implied from the various maps illustrating the SHETL system in Scotland, industrial 

development and development of renewable energy resources tends to focus on the coasts and 

developed areas. This is a consequence of generations of historical underdevelopment and 

depopulation of rural areas in Scotland known historically as the Highland Clearances which began in 

the 19th century but the consequences of which are still felt in rural communities throughout Scotland. 

People were forcibly removed from rural areas either to the British colonies or to urban centres away 

from Highland Scotland. The consequence for this in a power systems context is that there are very 

few people in these rural areas, and hence little to no demand. However, it is in these regions where 

the greatest renewable energy potential for onshore wind is, creating conflicts of interest as to how 

to best utilise historically underdeveloped but aesthetically attractive “wilderness”.  

There is a perception that much of the Highlands should remain “wild” – or, rather, in the state it has 

been left in since the mid-19th century – as that is more “natural” than the sight of wind turbines or 

pylons. This is problematic because, as mentioned in [6], the key to improving resilience of renewable 

energy resources is diversity of both type and location. If assets are concentrated in developed areas, 

this makes them vulnerable to common mode failures or fluctuations assorted with extreme weather 

events. Diversity cannot be improved if significant portions of the landmass are excluded from 

development.  

Rural areas – across the UK, not simply in the Highlands and Islands of Scotland – are underdeveloped 

in part because of the legacy of the industrial revolution and generations of depopulation, and are 

caught between being underdeveloped because of this depopulation, and new developments being 

opposed because of that depopulation and the resultant “wildness” of the land. Therefore, attaining 

any planning permission for power system developments faces significant opposition by lobbyists who 

wish to maintain rural areas as a “wild” place.  

Development of renewable energy developments and infrastructure developments are then easiest 

in areas which are already developed and do not face the same hurdles. Alternatively, developments 

can also rely on modifying or retrofitting existing infrastructure, which can itself lead to problems. One 

of the issues that led to widespread outages following Storm Desmond was the inundation of a low-

lying substation [110] which was converted from an old power station. The cost of land in the UK and 

planning challenges in rural areas mean this is often an economically necessary solution as land is 

frequently sub-optimally utilised given the needs for security and resilience in the context of climate 

change [111] and rural areas in the UK are not exempt from this. 

7.1.2 Perceptions of the rural environment 
The perception of Scotland as a wilderness is emphasised by government and tourist organisations, as 

well as wealthy landowners who benefit from the use of their land for the purposes of leisure (e.g. 

grouse hunting) as the land is perceived as having greater economic value being left underdeveloped 
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– so as to bring in tourists and associated revenue – rather than the potential income associated with 

energy developments. 

This is related to the earlier themes already discussed. The Highlands and Islands are underdeveloped 

because they have been historically depopulated and the concentration of land ownership 

(approximately 600 people own almost 50% of Scotland’s landmass) means further development is 

difficult or outright opposed by those who own the land. The state of “wilderness” is not only seen as 

natural, but desirable. There are also contrasting opinions of what “wildness” even means – in [109] 

it is reported and discussed that many people saw ruins and rubble from ancient dwellings as more 

“natural” than tree farms. Further, opposition to energy developments emerges not just from 

landowners or local inhabitants but from lobbying organisations in favour of maintaining natural 

spaces.  

An example of the confused approach to development of the Highlands and Islands can be seen in the 

Limekiln wind farm development in Thurso. It faced opposition from lobbyists despite being less than 

five miles from the Dounreay nuclear material decommissioning plant [112]. 

7.1.3 Consequences of underdevelopment and opposition to development 
Faced with conflicting interests between landlords, local citizens, and stakeholders such as hillwalkers 

and tourists, developing in rural areas is a complex and controversial issue but one which materially 

impacts power system stability and decarbonisation efforts for the Scottish – and hence wider GB – 

system, given the sheer quantity of wind resource concentrated in rural areas in Scotland.  

Development of power infrastructure is focussed on coastal regions and those regions which are 

already developed, creating increased common-mode failure risk for assets in those regions due to 

the resistance to developments in areas which are not already developed.   

Even should planning permission for wind generation be approved in contentious areas, the grid 

infrastructure to transport the power from the areas in which it is generated to regions in which it 

may be used – particularly during windier periods – may be particularly vulnerable and susceptible to 

faults as identified in Chapter 4. Wind generation tends to be built in windier regions to optimise 

profitability from investments and power output, but this necessarily increases the associated risk 

with the transport of power from these regions as the impact of outages associated with these lines 

increases as the network is being tasked with delivering services it may not have been originally 

designed to do.  

Areas of the network which were historically low demand regions, and hence required little generation 

and could import from more developed parts of the system in radial networks, are now being utilised 

as generation networks due to the rapid increase in wind generation on the system, grids like SHETL 

being a prime example of this phenomenon. This then has implications for the wider network – fault 

events which damage areas of network which previously would only have had demand connected – 

and so the MITS system as a whole would be largely unaffected – now also have connected distributed 

generation meaning that, if these areas are exporting during fault events, the system may see a net 

loss of infeed and the corresponding degradation in system stability associated with that. 

Ideally, to improve the resilience of the Scottish, hence GB, system, wind power should be distributed 

across the whole of Scotland and whichever areas are suitable in the wider UK. However, the 

perception of land, its ownership patterns, and how it is presently used act as inhibitors to reform of 

land usage and optimal strategic usage of land. The techniques demonstrated in Chapter 4 could be 

used to investigate areas across Scotland and GB which are less hazardous for overhead lines to plan 

out network expansions. Given the potential links between elevation, wind speeds, and OHL risk, there 
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may be significant reliability and resilience gains to be made. However, line expansions are not driven 

primarily by strategic utility but by aspects such as cost and public amenability to infrastructure 

developments which, in the context of the areas in which Scotland has particularly rich wind resource, 

is a complex socioeconomic and political problem. 

As it stands, it is easiest to develop areas which have already been developed, and so wind farms and 

generation are pushed towards demand centres and already existing areas of infrastructure. There is 

some distribution of resources across the system, mitigating risk associated with local fault events, 

but, as demonstrated in Chapter 4, there is still significant overlap between wind generation, OHL 

infrastructure, and demand centres which can be problematic during HILP events.  

Resilience lies in diversity and independence of resource vectors and wind affects both the ability to 

generate and transport power, undermining the independence of system security and increasing 

interdependencies on the system. This will become increasingly problematic as synchronous machines 

and inertia continues to be lost on the system. 

Such issues cannot be simply ameliorated by undergrounding lines or moving wind offshore, however 

– undergrounding lines is  expensive and cables have different electrical properties from overhead 

lines and so are not a like-for-like replacement. Stakeholders, investors, and citizens, if we are serious 

about decarbonisation, sustainability, and system resilience, have to find common ground to most 

effectively utilise land in an economically advantageous way while still allowing efficient exploitation 

of renewable energy vectors in under-developed regions like the Highlands and Islands of Scotland- 

and this will undoubtedly necessitate uncomfortable decisions regarding planning decisions, costs, 

and aesthetic effects on ostensibly “natural” land. In many ways this reflects the fact that the power 

system can never fully isolate itself from the socioeconomic context of the customers which it serves 

and the environment in which it is built. 

7.2 Model deployment on simple test case 
For this case, to demonstrate the fundamental workings of the model, two different perturbations 

shall be incurred at two separate times. These represent deterministic perturbations fed into EWPS to 

demonstrate the relationship between different aspects of the model so as to clarify its operation. 

7.2.1 Scenario summary 
First, the “dispatch” state is created. In this case, the dispatch is set such that 1320MW of frequency 

response is dispatched across the system. This test case involves use of the B6 boundary in the 

simulation. The boundary’s approximate location is indicated in Figure 7.1 with a solid line. 
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Figure 7.1- approximate location of B6 boundary shown on "Ryan Model" 

The first of the faults simulated will be the loss of both double circuits which cross this line. The second, 

will be a loss of two large nuclear generation units in the southwest peninsula. These are indicated in 

Figure 7.2. 
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Figure 7.2 - outage locations indicated on Ryan Model 

The system is dispatched with an empty contingency list. As a reminder, in this case the “contingency” 

list in the dispatch refers to the events against which the SCOPF is tasked with securing. That is, for an 

N-1 dispatch, for every single asset on the system which can fault (i.e. branches, wind generators, 

generator units), a state would be generated for asset n faulting at time 0,1,2,3…T on the presumption 

there are no repairs in the time horizon being assessed.  

An empty contingency list, used in many of the case studies sampled, implies no such contingency list 

is generated or used in solving the problem and set k only has k = 0 rather than a k for every hour of 

simulation, in this implementation 12, and for every asset on the system (>340).  

The simulation performed in this case is over 12 hours from 1200 to 0000 on December 8th 2011. 

7.2.2 Stage 1 - Dispatch 
First, then, the Dispatch SCOPF is solved with these parameters as the first “stage” of simulation as 

described here. 
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Figure 7.3 - stage 1 of simulation; dispatch and storage of dispatch state 

The dispatch state of the SCOPF is stored in memory such that, were this a stochastic simulation, the 

state could be re-loaded for subsequent simulations. A loop would also be started over how many 

samples/simulations the model wished to perform. Since this is a deterministic test case, the loop is 

only a single pass, but nonetheless the flow direction and termination check is shown. 

7.2.3 Stage 2 – Perturbation generation 
The model moves onto stage 2, hour zero, and a loop begins over the time limit of a single simulation 

(12 hours) as illustrated in Figure 7.4. 

 

Figure 7.4 - stage 2; generation of perturbation state 

In this case the model inherits the state of the system from the original dispatch. In a stochastic 

simulation, each asset would be sampled to determine if it has faulted or not. Deterministic faults may 

also be introduced dependent on the case study in question. 

The asset outages are generated and imposed on the system state. Since the first fault in this test case 

does not occur until hour 4 (1600), the first 3 hours of the loop will be skipped.  

7.2.4 Stage 3 – SFR-load-flow loop 
At hour 4, the fault on the lines across B6 is introduced deterministically and imposed on the state 

model inherited from t=3. The model then enters the cascade simulation. This is the large green 

hatched box from the original framework, and is illustrated  in Figure 7.5 
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Figure 7.5 - cascade simulation loop 

The first action the model takes is to determine the contiguous islands on the system and how those 

islands are connected. The model does this, then runs the SFR simulation on all of those islands 

identified. The results from the case in question are shown in Figure 7.6. 

 

Figure 7.6 - SFR simulation for loss of B6 event 

In this case, on island i=15 (north of B6), there is a surplus of power so frequency rapidly rises. This 

leads to a generation trip, before frequency recovers to within statutory limits. On island I = 72, there 

is a corresponding loss of infeed and slight frequency excursion, which is easily controlled.  
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After the SFR simulation is run, the load flow is performed. This determines a line overload somewhere 

on the southern surviving network. As the frequency is controlled within bounds in the northern 

system, the cascade simulation stops for this island. It continues for the southern island as an overload 

is detected on the system. 

As a consequence a line overloads and is disconnected then reconnected over two subsequent 

iterations. It is not possible from the output data to determine exactly which line, once the simulation 

has concluded.  

No further overloads or excursions are detected, so the model proceeds to the next stage. 

7.2.5 Stage 4 – Redispatch and Unit Commitment OPFs 
This section aggregates all of the results from the individual islands simulated in the previous stage 

and consolidates them for the redispatch and unit commitment OPFs. These are performed 

sequentially but bundled into one “module” in the framework. 

 

Figure 7.7 - redispatch/UC OPF locations in framework 

Once these simulations have been performed, simulation for the individual hour is completed and the 

model cycles back to stage 1. The results of the UCOPF are then inherited by the next hour of the 

simulation. 

For situations where no perturbations are detected, all intermediate sections can be skipped in the 

cascade simulation module and no actions are taken. The model simply moves onto the next hour and 

uses the dispatch scenario from the previous solution of the UCOPF to determine the state of the 

system. 

The next fault in this scenario occurs at 1900, with the loss of a large generator on the southern island. 

The previous stages as described occur. The differences are described. 
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Figure 7.8- frequency response for second perturbation event 

In this case, the model is able to detect that a loss of infeed only occurs on one island and so it does 

not need to simulate any frequency excursion on the other one. In contrast, the large loss of infeed is 

detected on the southern island, but there is adequate frequency response to keep frequency within 

statutory limits, though not restore it fully to the nominal value of 50Hz. 

7.2.6 Stage 5 –Results and termination 
No further perturbations are recorded over the subsequent hours, and so the model reaches the end 

of the time limit and can terminate. 

 

Figure 7.9 - termination of model 

The ENS from this run of the model is 360MWh. This is the aggregated load curtailment across the 

whole 12-hour simulation. This is not associated with LFDD but rather load curtailment associated 

with losing a large infeed at peak time in the system and not having adequate scheduled tertiary 

response. In a full stochastic simulation this run would be reinitialized with the original dispatch and 

sampling performed again, but for this case the simulation ends. 

7.3 EWPS Outputs 
This sections provides additional figures and results for extra analysis of the case studies. 

7.3.1 Tabulated results 
Consolidating all of the cases into a single table the following table is generated and shown overleaf. 

Scenarios which utilise FDR are given with “FDR” in their name in the table and “DR” in the forthcoming 

figures. 



Table 7.1 - tabulated summary of case studies 

Case N-1? Reserve (MW) North (MW) South (MW) Phi (MW) EENS (MWh) Error (MWh) Var (MWh) CVaR (MWh) LOLP (%) Error Performance (%) Error 
Baseline_econ 0 0 0 0 0 2552 767 79128 215142 33.9 1.5 87 1.1 
Baseline_1 1 1320 0 0 0 8249 1362 292223 355303 60.8 1.5 87 1.1 
Baseline_2000_FDR 0 2000 0 0 50 1204 359 10417 93827 67.9 1.5 82.2 1.2 
Baseline_2000_South 0 2000 0 2000 50 745 314 6645 56810 64.7 1.5 82.5 1.2 
Baseline_interp 1 1320 0 0 0 418 118 6459 22660 67.9 1.5 78.4 1.3 
B6_1 1 1320 0 0 50 213 32 5488 7628 54 1.6 78.4 1.3 
B6_econ 0 0 0 0 0 456 154 6016 30198 31.6 1.5 78.6 1.3 
B6_split 0 1320 500 820 50 840 218 9402 47601 46.1 1.6 78.9 1.3 
B6_flows_limit 0 1320 500 820 50 530 197 6899 37234 32.2 1.5 85.8 1.1 
B6_trips 0 2500 500 2000 50 661 42 6476 8791 85.6 1.1 59.9 1.6 
Gen_econ 0 0 0 0 0 37738 2762 245244 246337 38.1 1.5 64.3 1.5 
Gen_South 0 2000 0 2000 50 2703 642 9062 173601 52.9 1.6 63.5 1.5 
Gen_South_FDR 0 2500 500 2000 50 1293 493 4439 7117 55.3 1.6 56.9 1.6 
Gen_south_noFDR 0 2500 500 2000 50 1771 485 5556 100891 86.7 1.1 30.5 1.5 
Gen_noUC 0 0 0 0 0 1569 182 44428 44581 51.9 1.6 56.5 1.6 
 

These can also be graphically represented as shown in Figure 7.10. 
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Figure 7.10 - performance of different scenarios with given metrics 
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Given the significant difference between the tested scenarios care should be taken in interpreting the 

results. However, one clear interpretation that can be made is that the interpolated data in the 

baseline cases shows significantly better performance across all metrics. This is associated with the 

lessened islanding effects and less “clustering” of line faults around nodes with the most extreme 

weather values. 

The economic dispatch cases also generally perform much worse than the other dispatch scenarios, 

with the exception of the B6 cases. 

In future, further analysis of the events which drive the most extreme results and the tail of the 

distributions could be useful to understand the phenomena which are most significant in driving these 

results. 

7.3.2 Comparison of flexible demand versus non-flexible demand 
Four scenarios and their performance metrics are given below. 

 

Figure 7.11 - performance metrics for given scenarios 

What can be ascertained from these results is twofold. The first two cases compare scenarios where 

the top case has no FDR, but the second does, as well as additional frequency response available in 

the North (made possible because of the additional response available because of the FDR). The 

second compares a case where locational considerations are taken into account when dispatching 

frequency response, and one without. 

Firstly, there are clear performance benefits to utilisation of FDR and additional frequency response 

in the cases with high generation infeed loss in the scenarios studied. Second, there are also 

performance benefits to locational restrictions/requirements in the optimisation in those cases. 

However, this should be understood in the context of the small sample sizes involved and the 

significantly different scenarios examined, and cannot definitively be understood as a generalizable 

policy without further study. 

7.3.3 Frequency response versus EENS 
In absence of all information about the case studies behind the data and the utilisation of FDR, a plot 

of EENS versus net frequency response dispatched is provided. 
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Figure 7.12 - frequency response dispatched versus EENS 

Given the data and modelling limitations it would be unwise to draw too significant a generalised 

conclusion from such a set of results, however, what can broadly be concluded is that the presence of 

some frequency response limits the severity of outliers considerably for the examined cases, which 

should be unsurprising given the nonlinear impacts associated with cascading events such as those 

studied. That is, “something is better than nothing”, but as is demonstrated in other sets of results, 

suboptimal location of those interventions (particularly the distribution of frequency response or 

deployed generators) can also be unhelpful.  

 


