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Abstract 

Schistosomiasis is a debilitating chronic parasitic disease that occurs in the poorest regions of the 

world, predominantly in sub-Saharan Africa (SSA), infecting around 240 million individuals.  With the 

vision of “a world free of schistosomiasis”, the WHO and its partners have pledged to meet the 

ambitious goals of controlling morbidity (i.e. as currently defined, to decrease the prevalence of heavy 

infection intensity to less than 5% across all sentinel sites) of schistosomiasis by 2020 (in all endemic 

countries), achieving elimination as a public health problem (EPHP) (i.e. as currently defined, to reduce 

the prevalence of heavy infection intensity to less than 1% in all sentinel sites; in all endemic countries) 

and the interruption of transmission in selected regions by 2025.  However, the guidelines that 

programmes follow are based predominantly on expert opinion, with limited empirical evidence. It is 

thus critical that we have the right tools and empirical evidence to help inform, validate or revise the 

WHO guidelines and help programmes achieve these ambitious goals. This work aims to do this 

through the following ways: 

1. Generation of data: data collected from 7,500 individuals annually, from across ten different 

geographical sites in Uganda, varying by endemicity level and treatment history of site; 

2. Understanding historical global trends towards the WHO goals: collation and analysis of 

national-level programmatic data from nine countries to determine if the goals have already 

been reached by some countries and whether the one-size-fits-all approach is useful.  

3. Investigating the impact of treatment programmes: since school-aged-children (SAC) are 

targeted under the WHO guidelines, it is important to understand what impact this has on the 

wider community if we are to reach the targets.  

4. Development of a quantitative tool to aid programmes:  this model is aimed to be used as an 

addition to the monitoring and evaluation tool kits which monitor and project the reduction 

in prevalence (by intensity group) and can also be used as an advocacy tool.  

The study begins with a coarser grain focus at country level and moves to a more detailed, finer grain 

study at individual host level.  Results showed that the control targets were feasible and much earlier 

than proposed by the guidelines and that EPHP was only feasible in low endemic areas and the finer 

scale data highlighted the importance of spatial scales on outputs as well as heavily infected 

individuals present in non-treated pre-SAC and adults.  Since at each level, factors have been identified 

that impact the epidemiology, control and feasibility of elimination, this work highlights and 

synthesizes possible emergent properties that cannot be understood by the study of the micro- or 

macro-epidemiology in isolation.  This thesis presents all the different elements together to help 

elucidate the best approach for national control programmes to reach their goals.   
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INTRODUCTION 

 

Overview of thesis aims 

 

The aims of the PhD primarily focused on helping the schistosomiasis control community to work 

towards the 2020 and 2025 goals proposed in the Neglected Tropical Disease (NTD) Road Map 

launched by the World Health Organization (WHO) in 2012.  In particular, there is a need for robust 

quantitative tools that will help to inform and validate or revise the WHO guidelines, for countries to 

progress in the path from schistosomiasis control and elimination as a public health problem to the 

ultimate interruption of transmission.  These tools are essential to understand how a country can best 

achieve either control and/or elimination of schistosomiasis and determine the point at which a 

country should be re-mapped to assess whether they can transition from the goal of the control of 

morbidity to elimination of infection.   

This thesis aims to achieve three main Research Objectives in order to aid schistosomiasis programmes 

and inform policy: 

Research Objective 1. To determine where we are now in sub-Saharan Africa (SSA) and Yemen in 

terms of schistosomiasis transmission, and understand how historical data can inform WHO 

guidelines 

This Research Objective aimed to provide a solid foundation to this thesis through Chapter 1: 

Literature Review, which addresses the most relevant information for the chapters that follow.  

Programmatic data were then used from multiple countries collected as part of the Monitoring and 

Evaluation (M&E) activities at the Schistosomiasis Control Initiative (SCI), to compare progress made 

against the WHO guidelines, for Chapter 2: When do countries reach the aims of controlling and 

eliminating morbidity by schistosomiasis?  This helped determine whether the WHO guidelines are 

appropriate (manuscript under review). 

Research Objective 2. Design, develop and evaluate a tool to aid schistosomiasis programmes for 

programme managers and policy makers 

For this Research Objective, a Markov model was developed to predict reductions in infection 

prevalence over time in a programme infection using historical data from Uganda and Mali to validate 

and test the model (paper published in Parasites and Vectors).  The model was parameterized and 

validated for a range of countries and baseline endemicities, and for intestinal schistosomiasis.  Results 
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are shown in Chapter 3: Development and evaluation of a Markov model to aid control programmes 

for schistosomiasis.  This analysis focussed on country-level to country-region (or -administrative) level 

compared to the global/country level analyses in Research Objective 1. 

Research Objective 3. To understand age-related epidemiology at multiple scales of heterogeneity, 

treatment history and WHO endemicity level of sites, using data collected as part of PhD 

Chapter 4 outlines the planning, budgeting, parasitological methods and data management of the field 

data conducted by the candidate in Uganda and which were analysed in later in the chapter, and 

Chapter 2 described the data collated and used in Chapter 2  for the multi-county cross-sectional 

historical data across multiple years, from which a subset of the latter was used to determine progress 

of programmes through the development and parameterisation of a model (Chapter 3).  The main 

body of this Research Objective is addressed via Chapter 4: What impact has over a decade of 

treatment had on age-infection profiles for schistosomiasis in Uganda? A descriptive study.  For this 

chapter, after collecting data for three treatment rounds, the data were analysed to investigate full 

age-infection profiles across ten sites in Uganda, which vary by treatment history and endemicity 

(manuscript in preparation).  This enabled comparison at the individual and age-group level. 

Finally, the General Discussion chapter (Chapter 5) brings together and summarises all the chapters in 

this thesis.  Key findings are used to draw conclusions and propose informed modifications to, as well 

as support for, parts of the WHO guidelines for the control and elimination of schistosomiasis 

(manuscript currently being prepared for publication). 

Chapter titles: 

• Chapter 1: Literature Review. 
 

• Chapter 2: When do countries reach the aims of controlling and eliminating 
schistosomiasis-related morbidity?  
 

• Chapter 3: Development and evaluation of a Markov model to aid schistosomiasis control 
programmes.   
 

• Chapter 4: What impact has over a decade of treatment had on age-infection profiles for 
schistosomiasis in Uganda? A descriptive study. 
  

• Chapter 5: General discussion. 
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CHAPTER 1. LITERATURE REVIEW 

 

 1.1 Schistosomiasis 

 

The “big three” diseases – the term coined for three of the world’s major diseases: HIV/AIDS, malaria 

and tuberculosis (TB) - have long dominated media headlines, raising public awareness of their 

widespread and devastating impact.  In 2015, there were approximately 1.1 million AIDS-related 

deaths (1 in 3 of those deaths due to TB co-infection), 438 000 deaths due to malaria (90% of these in 

the African region) and in 2014, 1.5 million deaths due to TB infection [1–4].  Consequently, these 

diseases have remained high on the list of priorities when addressing global health needs for 

governments [5–11] and donors worldwide [12–14].  Since the beginning of the new millennium, 

however, a relatively lesser known group of 20 communicable diseases collectively referred to as the 

Neglected Tropical Diseases (NTDs) have gained considerable attention [15,16], in particular the 10 

diseases from this group targeted for control of morbidity and/or elimination by the year 2020 by the 

World Health Organization (WHO) and its global partners [17,18].  These poverty-related diseases 

affect billions of people in the tropical and sub-tropical regions of the world, causing substantial public 

health and economic burdens on these countries [19].  

Schistosomiasis is one such (parasitic) NTD, predominantly occurring in sub-Saharan Africa (SSA)[20–

22].  Also known as Bilharzia, the disease is caused by Schistosoma spp. blood flukes (flatworms) and 

almost exclusively occurs in the poorest regions of the world [22].  Worldwide estimates show that 

around 240 million individuals are currently infected by schistosomiasis [22,23], many of whom also 

suffer from multiple co-infections with other diseases [24].  Individuals are exposed to schistosomiasis 

infection in these areas due to their need to frequent infected freshwater where various daily activities 

are carried out such as clothes washing, bathing, playing, fishing and very commonly, drinking 

(drinking does not cause schistosomiasis infection, but the physical contact with water – see Section 

1.1.2) [25]. 

1.1.1  Species characteristics 

There are many species of Schistosoma [26], but the three major species of schistosomes responsible 

for human infection are Schistosoma mansoni, S. haematobium and S. japonicum (Table 1.1).  

Schistosoma mansoni and S. haematobium 

The two species that are responsible for the vast majority of cases in SSA and also account for the 

overall largest number of human cases worldwide are S. mansoni and S. haematobium [22].  S. 



16 | P a g e  
 

mansoni causes intestinal schistosomiasis due to the location of adult worms in the superior 

mesenteric veins that drain the large intestine, whereas S. haematobium causes urogenital 

schistosomiasis due to the location of the adult worms in the venous plexus of the bladder [27].  These 

two species are the focus of this thesis. 

Schistosoma mekongi, S. intercalatum, S. guineensis and others 

Schistosoma mekongi, S. intercalatum, and S. guineensis less commonly cause human infection due to 

being highly localised to specific regions, in particular, S. mekongi which is found only in the Mekong 

river region (on the Laos-Cambodia border) [28,29].  S. intercalatum is found in selected central 

regions in SSA and S. guineensis in West SSA.  

Schistosoma japonicum 

S. japonicum is the predominant schistosomes species infecting humans in Southeast Asia.  Zoonotic 

transmission (between human and animal reservoirs) is especially important for this species, since its 

definitive host is not only humans but multiple mammal species (both domestic and wild) [28].  This 

poses an additional challenge to treatment programmes as animals also need to be targeted for 

treatment.  

 

Table 1.1. Schistosome species of humans and their endemic countries [30].  This is not an exhaustive list of 

schistosome species. Hybrids are also prevalent in these regions [31]. 

Form of human 

schistosomiasis 
Schistosome species Endemic regions 

Intestinal schistosomiasis 

Schistosoma mansoni 

Africa, the Middle East, the 

Caribbean, Brazil, Venezuela and 

Suriname 

Schistosoma japonicum China, Indonesia, the Philippines 

Schistosoma mekongi 

Several districts of Cambodia and 

the Lao People’s Democratic 

Republic 

Schistosoma intercalatum and 

related S. guineensis 
Rain forest areas of central Africa 

Urogenital schistosomiasis Schistosoma haematobium Africa, the Middle East 
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1.1.2  Life cycle  

 

Figure 1.1 shows the life cycle of human schistosomes [27].  The infectious stages to the human consist 

of free swimming cercariae (shed by infected snail intermediate hosts, see below) which live in 

freshwater (usually along shorelines); therefore, individuals living in rural areas close to infected water 

bodies are at highest risk of infection, where contact with freshwater (containing the freshwater snails 

and hence cercariae population) is common.  These cercariae penetrate the human host’s skin when 

in contact in the water (becoming “schistosomula” after entering the host), and then migrate to the 

portal blood in the liver over a period of 1-2 months, developing into adult schistosomes [29].  For this 

reason, these trematodes are also known as blood flukes since they reside in the blood stream [32].  

The dioecious (separate sexes) adult worms then pair and mate, with the female worm, enveloped by 

the male worm, capable of producing hundreds of eggs on a daily basis [25,32] that are expelled by 

the host either through faeces (S. mansoni) or urine (S. haematobium).  These eggs release miracidia 

when they hatch in fresh water, which go on to infect the intermediate snail hosts.  The snail host 

responsible for developing the cercariae of S. haematobium are species of the genus Bulinus, and 

those for S. mansoni are species of Biomphalaria [25,33].  After undergoing the development stage 

and multiplying asexually over 4-6 weeks [25,29], the cercariae are released from the snails in their 

thousands, continuing the life cycle of the parasite [27,34].  The parasites have an adult life span of an 

estimated 3-10 years or more [29], with the larval cercarial stage having an infective life span of just 

8-20 hours and the miracidia stage between 4-16 hours [34,35].   

 

Figure 1.1. The schistosoma life cycle in humans and snails [27]. 
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1.1.3 Pathology   

 

Schistosomiasis results in a vast range of, often irreversible, pathological sequelae.  The morbidity 

associated with schistosomiasis is due primarily to eggs trapped in the host’s system that failed to exit 

the body, causing long-term tissue and organ damage where they become lodged and die within the 

tissue, leading to inflammatory immune reactions around them and development of granulomata 

(death of eggs occurs 7-14 days from the time they are laid by the female worm) [25,29].  Preventive 

chemotherapy (PC) aims to reduce and prevent morbidity by reducing the worm burden in individuals 

through regular, long-term treatment, since the most heavily infected individuals tend to experience 

the highest morbidity [36].   

Schistosomiasis causes a plethora of morbidities, including, but not exclusive to impaired cognitive 

development in children as well as malnutrition and anaemia.  More specifically, the morbidity related 

to the intestinal forms of schistosomiasis includes blood in stool, diarrhoea, abdominal pain, fatigue, 

impaired growth and enlargement of the liver.  The latter gives rise to hepatosplenomegaly and death.  

Urogenital schistosomiasis is known to cause haematuria, damage to the bladder, hydronephrosis, 

dyspareunia, potential kidney failure and bladder cancer [32,33].  For female genital schistosomiasis 

(caused by S. haematobium), further morbidities include genital lesions, increased risk of infertility 

and abortion, as well as 3-4 times higher risk of infection with HIV, though unfortunately these stages 

are irreversible.  For male genital schistosomiasis, complications are usually more easily reversed with 

treatment, but conditions include blood in semen (haemospermia [37]), inflammation of the testicles 

and prostate gland [22,29,38–40].  

 

1.1.4  Treatment 

 

National-scale control programmes are now in place in many SSA countries, with the majority using 

PC (without diagnosing individuals) by mass drug administration (MDA) with the only recommended 

drug at present, praziquantel (PZQ), which can be used to treat all species of schistosomes [29,41].  

Experience has shown that large-scale regular PC can be successful at reducing the prevalence and 

intensity of infection, provided that therapeutic coverage is high [42].  Though the exact mechanism 

by which PZQ works is poorly known, its associated high cure rates (proportion of individuals who 

become parasitologically negative following treatment, of 60-90%), high egg reduction rates 

(proportional reduction of egg output compared to baseline of over 90%), and increased availability, 
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have helped dramatically to improve the global control of schistosomiasis since its first mass use over 

30 years ago.[25,42,43]  The recommended dose is 40mg kg-1 but in the field, is typically approximated 

using height measured with a dose pole [36].   

 

1.2  Diagnosis 

 

Infection with Schistosoma is most commonly diagnosed by the presence of schistosome eggs in stool 

for intestinal schistosomiasis (mainly using the Kato-Katz method [44,45]) or urine for urogenital 

schistosomiasis (using the urine filtration method [44]) [22].  S. haematobium was the only known 

cause of human urogenital schistosomiasis (until the acknowledgment of the existence hybrid 

populations [31]), whereas S. mansoni, S. japonicum, S. mekongi, S. intercalatum and S. guineensis are 

all causes of human intestinal schistosomiasis [22,29].  

 

1.2.1  Prevalence and intensity metrics and age-infection profiles 

 

The prevalence of infection, expressed as a percentage, is a measure of the proportion of individuals 

infected in a given population sample, irrespective of infection intensity levels.  Infection intensity 

measurements not only provide information about the presence or absence of infection, but also 

provide a measure of the worm load harboured by the individual with parasites (which can be assumed 

to be directly related to the level of morbidity experienced by the individual).  Given the difficulties 

inherent in measuring worm burden directly, indirect measures based on transmission stages (in this 

case eggs) are used. For intestinal schistosomiasis and using Kato-Katz, the units of intensity are the 

number of eggs per gram of faeces (epg); for urinary schistosomiasis and using urine filtration, 

intensity is measured as the number of eggs per 10ml of urine (eggs 10ml-1).  Infection intensity 

categories are defined by the following WHO egg-count bins: not infected = 0 epg; infected at light 

intensity = 1-99 epg; infected at moderate intensity = 100-399 epg and infected at high intensity = 

≥400 epg for S. mansoni, and not infected = 0 eggs 10ml-1; infected at light intensity = <50 eggs 10ml-

1 and infected at high intensity = ≥50 eggs 10ml-1 for S. haematobium (note the absence of a moderate 

intensity category for the latter species) [36]. 

Age profiles of infection prevalence and intensity are used in parasitology to understand patterns of 

acquisition and loss of infection across age groups [46].  Figure 1.2 and 1.3 shows the age-intensity 
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profile for S. mansoni from 6 communities in Kenya where intensity information was collected from 

13,000 individuals between the 1980s-1990s [47].   

 

Figure 1.2. Age-intensity profiles from six communities in Kenya for S. mansoni, taken from Fulford et al. 

(1992) [47]. The y-axis is the geometric mean epg, where epg is the eggs per gram of stool sample.  

 

 

Figure 1.3. Age-intensity profile from the Misungwi Community in Tanzania for S. haematobium, adapted from 

Bradley and McCullough (1973) using the same age categorisation [48].  
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Young adolescents tend to harbour the heaviest levels of infection and parasite acquisition has been 

shown to start within the first two years of life [29].  These patterns may be due to age-related changes 

in exposure due to changes in behaviour (e.g. children playing with friends in the lake), age-specific 

changes in susceptibility (skin thickness, puberty) and/or development of acquired immunity amongst 

adult age groups over time [34,49,50].  

 

1.2.2  Current diagnostic tools 

 

Some of the currently used diagnostic tools are described below, though not all meet the ASSURED 

criteria list (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and 

Deliverable to end-users) [51]. 

UCP-LF CAA 

The up-converting phosphor lateral flow circulating anodic antigen (UCP-LF CAA) test is an 

immunodiagnostic test that detects the presence of CAA in the urine.  Though the test can be used for 

both S. mansoni and S. haematobium, it is more effective in detecting the latter [52].  Currently this 

method is not suitable for mass scale use.  

POC-CCA 

The point-of-care (POC) urine circulating cathodic antigen (CCA) test is another immunodiagnostic test 

which is used to detect S. mansoni infection (and is unsuitable for S. haematobium infection) [52,53].  

It is a promising alternative to the Kato-Katz method for large-scale use and has also shown to be a 

more sensitive test to detect infection.  However, its main limitations are that it is a semi-quantitative 

method of infection measurement, correlating results from traditional Kato-Katz method is a 

challenge and is not suitable for diagnosing soil-transmitted helminth (STH) infection. 

Urine dipsticks 

Urine reagent strips are used to detect haematuria (presence of blood in urine) as a presumptive 

diagnosis of S. haematobium.  Hemastix® strips are dipped into a urine sample, where a colour change 

is observed to signify haematuria (therefore no indication of infection intensity).  This test is 

particularly useful in areas of heavy S. haematobium infection, where one of the common symptoms 

is haematuria.  Some of the drawbacks of this method are that it cannot be used for the detection of 

any other parasite species, it would be of limited use in areas of low infection intensities (where 
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infected individuals are less likely to have detectable blood in urine) and it is non-specific, since 

haematuria can be the symptoms of other medical conditions [54].  

Urine filtration 

Like the Kato-Katz method for S. mansoni, this is the current WHO-recommended diagnostic tool for 

S. haematobium, where both require microscopic identification of the expelled parasite eggs from 

host individuals. The technique involves filtering urine through a porous membrane (such as nylon, 

paper or a polycarbonate material), where the eggs are retained on the membrane, placed on a slide 

and then read by a microscopist [22].  This method is less sensitive than the CAA test but does provide 

a cheap, field-ready quantitative measure of infection intensity for current morbidity goals [55]. 

Kato-Katz 

The Kato-Katz method is currently the diagnostic tool recommended by the WHO for STH and 

S. mansoni infection.  Under this technique, a stool sample is pushed through a sieve to remove debris, 

and then placed on a slide for enumeration by a parasitologist of the number of eggs per gram of stool 

(this will be explained in further detail in Chapter 2, Methods) [36].  This method of diagnosis is highly 

specific (depending on the skill of the technician in identifying parasite eggs) since parasite eggs are 

very distinct by species but is not sufficiently sensitive for light infections, particularly in single slide 

readings.  Egg output in stools varies day-to-day, so multiple slides and samples are recommended in 

areas of low intensity infections (when assessing morbidity, this is less of a concern since moderate 

and heavy infections are relatively easily detected with the Kato-Katz method) [56]. 

PCR 

The Polymerase Chain Reaction (PCR) method involves the amplification of DNA (through PCR), with 

the advantage of only requiring a small sample from either stools or serum (though using stool has 

been shown to be more sensitive[57]), making it ideal for detecting low-intensity infections.  Due to 

the costs, equipment and level of technical expertise required and the associated logistical challenges, 

this method is not ideal for large-scale use. 

Other tests are also available such as formol-ether concentration (FEC), McMaster, FLOTAC, and Mini-

FLOTAC [58] and the sensitive SEA (soluble egg antigen)-ELISA test for S. haematobium [59] or the less 

sensitive CCA-B [60] and CCA-L [61].  
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1.2.3  Challenges in diagnostics 

 

The closest diagnostic tool, available in the current tool kit, to what can be defined as a ‘gold standard’ 

is the PCR method for its sensitivity [62].  But this still poses the question of what diagnostic to employ 

for large-scale, field use, particularly in areas of low-intensity infections.  The tools currently 

recommended by the WHO for S. mansoni (Kato-Katz) and S. haematobium (urine filtration) lack the 

sensitivity required when the intensity of infection is low (either because of low endemicity or because 

of the impact of treatment), and can only detect those eggs expelled by the host (which as said, varies 

from day to day, within sample, and is an indirect measure of worm burden).  The relationship 

between egg output and the number of eggs trapped and dying in host tissues (which cause the 

immunopathological response that leads to morbidity) is still unclear.  Moreover, a clear relationship 

between egg output and the actual number of worms harboured by the host in humans has not been 

clearly established; possibly with the exception of a small historical study conducted by Cheever et al. 

[29,63,64] on post-mortem examinations.  Recent studies have demonstrated that the density-

dependent effect of fecundity may be important, because as the population of adult worms declines, 

remaining mature females seem to be able to produce more eggs due to decreased competition for 

resources, at least according to population genetic/relatedness studies in S. mansoni.  Thus, 

transmission may not decline linearly with intervention (treatment) effort [65]. 

Some of the major challenges concerning diagnostics, infection intensity and subsequently, morbidity 

markers are finding a single affordable, tool with high sensitivity and specificity, which can also provide 

details of the level of morbidity an individual may be experiencing and that require little technical 

expertise to use.  For S. mansoni, the tool that best fits these criteria is the CCA test but it has its 

limitations as mentioned in the previous section as well as unknown potential cross-reactions with 

other species, which may cause false positives, and issue with the “trace” measurement – whether 

this should be considered a positive or negative diagnosis (though the general consensus is that trace 

measurements be considered as positive). 

 

1.3  Global and population disease burden  

 

Schistosomiasis is a major public health problem with approximately 85% of people infected with 

schistosomes residing in SSA [35,41].  Figure 1.4 illustrates the global distribution of schistosomiasis 

[22].  Causing the second greatest human health and socio-economic burden (first being malaria), 
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schistosomiasis is estimated to infect over 238 million people [29,66] at a cost of 3.3-4.5 million 

disability-adjusted life years (DALYs) worldwide and, in SSA, causing between 15,000-280,000 deaths 

per year [22,23,32,35,36,41].   

 

 

Figure 1.4. Global distribution of countries endemic for schistosomiasis [22]. The distribution of the infection is 

in fact highly focal. 

 

Schistosomiasis is a highly focal disease due to the requirement of a fresh waterbody such as a lake to 

enable the transmission process.  This, among mechanisms influencing host susceptibility, increases 

the heterogeneity of worm burden in the host population since all individuals are not equally exposed 

and/or predisposed to infection (i.e. infection is not randomly distributed).  Understanding the 

distribution of worms amongst the host population is an important factor to consider when measuring 

parasite burden [67], and can be achieved by measuring the frequency distribution of worm burden 

(via egg counts) in the host population [68].   
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Studies have shown that the distribution of worm burden is highly overdispersed (i.e. that the 

variance is much greater than the mean), in which the majority of hosts harbour light infection or are 

uninfected and a small proportion harbour a heavy burden and are likely to play a major role in 

transmission [50,69,70].  This is further demonstrated by an individual’s tendency to re-acquire 

heavy infection post-treatment (and likewise those with lighter infections pre-treatment are 

predisposed to lighter infections post-treatment).  The pattern of parasite distribution amongst 

hosts is often approximated by the negative binomial distribution, which is defined by m, the mean 

worm burden, and k, the aggregation parameter (which inversely measures the degree of 

overdispersion) [34,50,67,71].  Since individuals with the heaviest burden likely experience the highest 

morbidity and contribute most to transmission, these groups should (even in the presence of density-

dependent fecundity their ‘net’ contribution would be greater) be monitored closely when measuring 

the impact of a programme [36].  This characteristic could also be harnessed if programmes were 

to opt for targeted treatment of the most heavily infected individuals [50,70–73]. 

 

1.4  Modelling 

 

Disease models are useful in programme monitoring and evaluation (M&E), outbreak analysis and 

predictions and informing intervention policy, where they have often been employed [74–76].  

Statistical models (such as logistic regression models, generalised linear models, etc.) are routinely 

used in M&E for schistosomiasis programmes  to measure the impact of the treatment intervention 

(Chapter 2).  Mechanistic mathematical models, which explicitly model the life cycle and transmission 

of schistosomiasis often through a series of differential equations are used to determine the feasibility 

of schistosomiasis elimination, disease predictions as well as informing future international guidelines 

and national policy [77–79].  However, due to the technical expertise required to develop, understand 

or run these models and the important underlying assumptions these models make (which are 

sometimes based on simulated data), policy makers and  Ministry of Health programme managers 

have rarely utilised these powerful tools.  Therefore, historically, intervention strategy and policy have 

been based mainly on expertise and experience rather than data or models (Section 1.6) [80–82].   

This reluctance to readily employ mathematical modelling outputs to programme policy stems partly 

out of the knowledge that schistosomiasis is highly focal and that relatively few specifics are known 

about the schistosomiasis life cycle (with a high level of uncertainty surrounding certain parameters).  

For example, the egg output is an indirect measure of worm burden and little is known about the 
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relationship between the two.  Another example is that the snail stage of the life-cycle is difficult to 

parameterise as there is so few data available to provide reliable estimates. However, many models 

have been developed despite these hurdles [79,83–86]. 

A Markov model is a type of stochastic model that models the sequence of states with a random 

probability, and is a ‘memoryless’ process, i.e. where each subsequent state only depends on the 

current state and not any past states.  The main appeal of the Markov approach compared to 

mechanistic mathematical modelling approaches resides in its simplicity, whereby the underlying 

transmission dynamics are not modelled explicitly but are captured empirically using a purely 

statistical approach based on estimated transition probabilities (TP) [34,87].  The model can be used 

to track progress and to identify deviations from expected programme performance where observed 

values fall outside predicted uncertainty intervals (e.g. 95% prediction intervals [PIs]).  Markov models 

have been more commonly employed in health economics cost-effectiveness analyses and in chronic 

diseases [88–90] 

 

1.5  Activities of a control programme  

 

1.5.1  Overview of activities 

 

More than 80 million individuals out of 258.8 million at risk who required preventive treatment 

actually received treatment in 2016, reaching a global coverage of 54% in school-aged children (SAC) 

(Figure 1.5) [22,91–93].  One of the major partners responsible for facilitating the distribution of PZQ 

is Merck KGaA, for their donation of over 290 million tablets of PZQ to the WHO since 2008 and have 

committed up to a further 250 million tablets per year from 2016 [94,95].  The tablets are distributed 

by the Ministries of Health of endemic countries, where in some, non-governmental organizations 

such as the Schistosomiasis Control Initiative (SCI) provide technical support and assistance (and in 

some cases purchasing and supplying additional PZQ) [32,96–98]. 
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Figure 1.5 Global treatment coverage between 2006 – 2016 for schistosomiasis. Taken from reference [93]. 

 

Since its establishment, the SCI, based at Imperial College London, has helped to provide over 200 

million treatments with praziquantel to those in need [98].  SCI provides technical support and 

financial assistance to the Ministries of Health of endemic countries; thus the programmes are run 

and owned by the countries themselves [35].  Amongst other activities, the programmes involve 

collecting sentinel site data from randomly selected schools and students as part of the monitoring 

and evaluation (M&E) process, to help understand programme impact and inform programme design.  

The primary aim of most schistosomiasis control programmes at inception is to reduce the morbidity 

in the population.  As previously mentioned, this is done by reducing the intensity of infection (number 

of parasites in an individual) through regular PC of the population with PZQ [22].  Managing and 

preventing heavy infections are particularly important in these control programmes, since the higher 

the intensity, the greater the degree of morbidity experienced by the individual. 

School-aged children (SAC, 5-15 years) are often the primary target for PC programs to avert the long-

term damage caused by these parasites.  The highest values of infection prevalence and intensity are 

found in this age bracket and resources are often too limited for treatment on a wider scale to “less 

prioritised” age groups [34].  In addition, the school system provides a convenient platform for 

effective programme delivery since the majority of the children in a community can be treated at one 

time and high coverage and compliance can potentially be achieved.  Adult populations at high risk 
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such as fishermen are also targeted for PC in those communities where overall community prevalence 

is high (i.e. >50%) [22,99].   

 

 

 

Figure 1.6 Processes involved in a deworming programme, adapted from [36]. 

 

Figure 1.6 illustrates the activities involved in the planning of control programme.  These activities can 

be summarised into three general groups, focussing on activities relevant to the thesis [36]: 

1. Planning: which includes (among other activities, Figure 1.6) the collection of data to map the 

region and determine prevalence by ecological zone in order to select the best WHO 

intervention strategy [99] in each area; 

2. Implementation: this includes training and drug distribution; 

3. Monitoring and Evaluation: this includes monitoring MDA coverage at each round in selected 

sites after each drug administration and assessing the impact of the control programme (at 

baseline and every 2-3 years).  Impact assessment is through indicators such as the prevalence 

and intensity of infection and morbidity, etc.  

 

The aim of a control programme is to: a) reduce the overall burden of infection; and b) to keep the 

burden low in the population [36,99].  The distribution of infection in a country is initially mapped 

prior to MDA campaigns to gain information on the geographical distribution of infection prevalence 

and to determine the appropriate treatment regimen applicable to these implementation units, using 
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the WHO endemicity categories and guidelines [100].  National baseline mapping is an intensive and 

costly process in terms of finance and logistics, but plays a vital role in determining the intervention 

requirements for the next several years.  After several rounds of treatment have been implemented, 

the WHO recommends re-evaluation of schistosomiasis infection and to determine plans for the next 

stages of the programme [36].   

 

1.5.2  Monitoring and Evaluation 

 

Following baseline mapping, routine parasitological data are collected by programmes from school 

sentinel-site as part of the M&E , which are less costly and provide a more general idea of the impact 

of the programme (through estimates at a sentinel site level, powered to infer at the national level, 

for example), since nationwide mapping on an annual basis may not be an efficient use of already 

limited resources.  M&E activities also include treatment impact surveys, treatment coverage surveys 

(performance monitoring), process monitoring and the prevalence mapping previously mentioned.  

Thus M&E is an essential component of control programmes to assess and improve performance, 

which is of high interest to all stakeholders (affected communities, national ministries of health, 

donors, etc.).  

 

1.6  WHO guidelines and recommendations for control programmes 

 

1.6.1  Brief history of the WHO guidelines   
 

The schistosome parasite was first officially discovered in 1852 by Theodor Maximilian Bilharz and Carl 

Theodor Ernst, with records of historical infections dating as far back as 6000 years ago, and has since 

been the subject of tens of thousands of studies [101,102].  However, the first World Health 

Organization’s World Health Assembly (WHA) for schistosomiasis took place in 1950 (WHA3.26 

resolution[103]) and remained in place for 25 years until the WHA28.53 resolution in 1975 when it 

was recognised that the disease still remained largely uncontrolled and that new guidelines 

concerning food and water sources needed to be implemented [81].  This was soon followed by 

WHA29.58 in 1976, urging further research and for “priority to be given to the control of 

schistosomiasis in accordance with the importance this disease presents as a public health 

problem”[104].  It was not until 2001 for the next WHA resolution, WHA54.19, that treatment was 
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urged for the high-risk individuals and ensuring access to PZQ in all endemic areas, setting the goal to 

reach 75% (100% of all at-risk SAC) by 2010 [81].  This subsequently led to the development of the 

WHO’s “Helminth control in school-age children: a guide for managers of control programmes (First 

edition)” in 2002 and “Preventive Chemotherapy in Human Helminthiasis” guidelines for control 

programme managers in 2006 [105,106].  However, these targets were not reached by 2010 and 

second editions of the guidelines were published in 2011 (see Section 1.5.2), which did not differ 

significantly from the 2006 treatment guidelines. These were closely followed up by the 2012 

Elimination of Schistosomiasis WHA65.21 [107].  The WHA65.21 resolution led to new targets in 2013 

and were published in the WHO’s Progress report 2001–2011 and strategic plan 2012–2020 (Section 

1.5.3).  Although resolutions on elimination were established, no changes were made to 

recommendations for treatment on achieving these goals, nor the M&E to demonstrate that the goals 

had been reached [99,108].   

 

1.6.2  Current WHO guidelines   
 

The current WHO treatment guidelines for control programmes use the prevalence determined 

through situational analyses or mapping of the country, which are: prevalence of infection less than 

10% requires PC once every three years, between 10% and 49% requires biennial treatment and 50% 

or greater requires annual treatment.  These thresholds were based predominantly on expert opinion 

and limited empirical evidence.  The WHO recommended diagnostic tools are Kato-Katz for S. mansoni 

and urine filtration for S. haematobium. The impact of the control programme in reducing morbidity 

is recorded as part of M&E activities through impact surveys conducted at baseline (i.e. before the 

first MDA) and at set follow-up times, usually before each MDA.  Impact surveys collect 

epidemiological data from a selected number of schools (i.e. sentinel schools) and, in some cases, from 

selected communities.  Following several rounds of treatment, the impact of the control programme 

is likely to have positively changed the infection status of the area.  The WHO therefore recommends 

re-evaluation of the country after 5-6 years in order to appropriately modify the treatment strategy 

for the subsequent years [36,109], though again, this time-range is based largely on expert opinion.  

Figure 1.7 illustrates a decision tree for control programmes with the recommended guidelines.  
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Figure 1.7. Treatment guidelines for schistosomiasis preventive chemotherapy (PC) control programmes [36]. 
*if positive, PC once every two years; if negative then no PC required.  

 

Many countries have progressed from control to elimination.  For a control programme to progress 

to the elimination targets, they must first reach the targets or “threshold points” set by the WHO (see 

Figure 1.8).  These will be discussed in further detail in Section 1.5.3.  

 

1.6.3 WHO Roadmap and the London Declaration on NTDs 

 

With the vision of “a world free of schistosomiasis”, the WHO and its partners have pledged to meet 

the ambitious goals of controlling morbidity (i.e. as currently defined, to decrease the prevalence of 

heavy infection intensity to less than 5% across all sentinel sites) of schistosomiasis by 2020 (in all 

endemic countries), achieving elimination as a public health problem (EPHP) (i.e. as currently defined, 

to reduce the prevalence of heavy infection intensity to less than 1% in all sentinel sites; in all endemic 

countries) and the interruption of transmission in selected regions by 2025 [99,108]. 

A roadmap for control and elimination of 10 prioritised NTDs for the period 2012-2020 was developed 

by the WHO’s Strategic and Technical Advisory Group (STAG) for NTDs in April 2011.  The Strategic 

Plan’s goals were to: a) control schistosomiasis-induced morbidity by 2020; b) eliminate 

schistosomiasis as a public health burden by 2025; and c) interrupt transmission in selected countries 

by 2025[99].  The five strategies for the NTDs recommended by the WHO are: 1) preventive 

chemotherapy (PC, for helminthiases and trachoma); 2) intensified disease management (for other 
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NTDs); 3) vector and intermediate-host control; 4) veterinary public health at the human–animal 

interface; and 5) provision of safe water, sanitation and hygiene.  This roadmap was launched by the 

then Director-General, Dr Margaret Chan at the same time of the London Declaration on NTDs in 

January 2012, which aim to support and coordinate efforts towards the targets [17,18,99].  In addition, 

the 8 Millennium Development Goals (MDGs) stemming from the UN Millennium Declaration, where 

the NTDs fall under the “other diseases” category of MDG 6 (“combating HIV and AIDS, malaria and 

other diseases”) and subsequently, the more recent 17 Sustainable Millennium Goals (SDGs), where 

NTDs fall under SDG 3 (SDG 3.3: “by 2030, end the epidemics of AIDS, tuberculosis, malaria and 

neglected tropical diseases and combat hepatitis, water-borne diseases and other communicable 

diseases”) [5,16,17,99,110], complement and further add to the momentum towards the 2020 targets 

and beyond.  

The London Declaration on NTDs in January 2012 endorsed the ambitious targets set by the WHO for 

the control and elimination of many NTDs, including schistosomiasis, with the elimination ‘as a public 

health problem’ from most WHO regions and by selected African countries by 2020 (i.e. reducing 

prevalence of heavy infection to < 1% in all sentinel sites) [17,18,99].  In some local settings, 

interruption of transmission is also anticipated, thereby accelerating elimination of the disease [17].  

Figure 1.8 summarises the WHO guidelines for the progression of countries from the control to 

eventual elimination of schistosomiasis (a list of countries and their stages can be found in [99]).  These 

guidelines are based largely on expert opinion and use the number of treatment implementation years 

as progression thresholds for transition to the next stage of control or elimination.  

 

Figure 1.8 Proposed timelines towards schistosomiasis control and elimination (as a public health problem as 
well as transmission) targets [99]. Recommended interventions for Elimination as a public Health Problem: 
adjusted PC and complementary interventions; essential interventions for interruption of transmission: 
intensified PC and complementary interventions.  
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It is worth noting here that the term elimination is somewhat ambiguously used in the literature 

because it may be interpreted as elimination of the public health burden or as elimination of the 

infection reservoir [111].  Most programmes aim initially at the former, and as they progress become 

more ambitious towards the latter.  It is also important to note that interruption of transmission is not 

strictly equivalent to elimination of infection, because even if the force of infection (the rate of 

acquisition of new worms per unit time [34]) were reduced to zero, the long lifespan of the adult 

stages of some of these helminthiases [112] would mean that the presence of the adults and of 

transmission stages would remain for some time until the parasite populations dwindle due to natural 

attrition.   
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CHAPTER 2. MULTI-COUNTRY ANALYSIS OF CONTROL AND ELIMINATION 
THRESHOLDS  
 

This chapter is based on a publication that has recently been submitted and reviewed (pending final 

decisions) by Arminder K. Deol, Fiona M. Fleming, Beatriz Calvo-Urbano, Martin Walker, Victor Bucumi, 

Issah Gnandou, Edridah M. Tukahebwa, Samuel Jemu, Upendo J. Mwingira, Abdulhakeem Alkohlani, 

Mahamadou Traoré, Wendy Harrison, Schistosomiasis Control Initiative, Maria-Gloria Basáñez, 

Michael D. French and Joanne P. Webster. “Schistosomiasis - Assessing Progress towards 2020 & 2025 

Global Goals”.   

This Chapter represents the first multi-country and multi-year empirical study, comparing 

epidemiological data with WHO threshold criteria on morbidity control, elimination as a public health 

problem (EPHP) and elimination of transmission, to assess whether a one-size-fits-all approach is 

appropriate for guiding schistosomiasis treatment strategies. 

 

2.1 Introduction  
 

Schistosomiasis prevalence levels at specific administrative levels are usually determined at the 

mapping stage of the country programme, which then determine the treatment strategy.  The current 

WHO treatment guidelines state: prevalence of infection less than 10% requires triennial preventive 

chemotherapy (PC, once every three years), between 10% and 49% requires biennial treatment and 

50% or greater requires annual treatment (see Chapter 1 and Figure 2.1).  The impact of the control 

programme in reducing morbidity (using prevalence and/or intensity as a proxy) is recorded as part of 

monitoring and evaluation (M&E) activities through impact surveys conducted at baseline (i.e. before 

the first round of PC) and at set follow-up times, usually before each subsequent PC round.  Impact 

surveys collect epidemiological data from a selected number of schools (i.e. sentinel schools) and, in 

some cases, from selected communities.  The prevalence and intensity of infection are re-evaluated 

after 5-6 years of treatment from baseline, through re-assessment mapping (also referred to as 

‘remapping’ and ‘re-evaluation’) of the country, in order to assess the progress of the programme and 

determine the treatment strategy for subsequent years (Figure 2.1 taken from Chapter 1) [36,109].    
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Figure 2.1. Treatment guidelines for schistosomiasis preventive chemotherapy (PC) control programmes [36]. 
*if positive, PC once every two years; if negative then no PC required.  

 

Morbidity control at a national scale has been generally successful in many endemic countries [113] 

and this has led, in part, to a revision of the WHO’s strategic plan and towards an elimination strategy 

(Chapter 1, section 1.5.3)[99].  In particular, the WHO has set the ambitious goals of controlling 

morbidity (i.e. prevalence of heavy-infection intensity <5% aggregated across sentinel sites) of 

schistosomiasis by 2020 and achieving elimination as a public health problem (EPHP, i.e. elimination 

of morbidity where prevalence of heavy-infection intensity <1% in all sentinel sites) in all endemic 

countries by 2025.  Complete interruption of transmission is also a target in selected regions by 2025 

(i.e. the regions of the Americas, Eastern Mediterranean, Europe, South-East Asia, Western Pacific and 

selected countries in the African Region,  Figure 2.2 taken from Chapter 1) [17,99,108]. 
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Figure 2.2. Proposed timelines towards schistosomiasis control and elimination (as a public health problem as 
well as transmission) targets [99]. 

 

The WHO has published guidance on how programmes can progress from control of schistosomiasis 

to EPHP and to a more limited extent, interruption of transmission [99].  However, the time required 

for transitions between goals is unlikely to be uniform for all countries due to the variability between 

them (Figure 2.3).  When the original guidelines were first developed (Figure 2.1), there were limited 

epidemiological data available.  Consequently, the guidelines were likely based on the little empirical 

evidence available and largely on expert opinion.  Hence, there exists a pressing need to analyse 

quantitative evidence, captured through programme monitoring, to validate or update these 

guidelines to aid countries to reach these goals. 

 

Figure 2.3. Schematic representation of programme progression towards elimination of schistosomiasis. 
*Recommended World Health Organization strategies: control (of morbidity) by preventive chemotherapy (PC) 
and complementary interventions where possible; elimination of morbidity (i.e. elimination as a public health 
problem) by adjusted PC and complementary interventions strongly recommended; elimination of transmission 
by intensified PC in residual areas of transmission and complementary interventions essential [99].  Note that 
guidelines on the definition of “intensified PC” is currently lacking as are specifics on “complementary 
interventions”.  

* 

* 

* 
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Many countries, through the Ministries of Health and/or non-government organisations (NGOs) such 

as the SCI have been implementing control programmes for a sufficient number of years to enable 

assessing adherence to WHO targets and timeframes [96].  Therefore, the questions we now face 

include: i) when do countries reach the WHO and 2020/2025 targets (if at all); and ii) how best to use 

routinely collected sentinel site M&E data to determine this?  To address these questions, the 

extensive historical datasets from SCI-derived M&E activities in endemic countries were analysed and 

compared to assess progress made thus far on reaching the WHO control and/or elimination 

operational threshold(s).  Recent theoretical mathematical modelling work projects that the 2020 goal 

of control of morbidity is likely obtainable for low-prevalence and moderate settings, but will be 

missed in high-intensity settings under current treatment guidelines [114].  The aims of this Chapter 

were to: (1) provide the first empirical multi-country comparison of programmatic data with WHO 

threshold criteria on morbidity control and EPHP; (2) assess whether a one-size-fits-all approach is 

appropriate for guiding schistosomiasis treatment strategies; (3) investigate other possible metrics to 

define thresholds for control and EPHP; and (4) determine the relationship between prevalence of 

heavy-infection intensity and overall prevalence across treatment rounds and countries.   

  

2.2 Materials and methods  
 

2.2.1 Data Collation and analyses 
 

Impact surveys (also referred to as sentinel-site surveys) are an essential component of monitoring 

and evaluation (M&E) activities, which determine how a programme is performing in terms of 

reducing prevalence and intensity of infection, usually in the target population (school-aged children, 

SAC).  Typically schools, number of sentinel sites and total sample size depend on the country 

administrative level at which the survey is aiming to represent, determined in the survey protocol 

development.  

For these historical data from SCI-supported programmes used in this thesis, data sharing agreements 

were shared and signed between SCI and the Ministries of Health of endemic countries.  Raw egg 

count data were collated and formatted (which were stored in various formats and software) from 

the historical impact surveys conducted in nine countries one month (or less) prior to the following 

treatment round as per standard protocol. 
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Table 2.1 shows the final list of countries from which data were analysed and the information available 

of the programmes, obtained either from the datasets directly or from the programme reports and 

protocols.  Inclusion criteria for data analyses were:  

i) programmes that were supported by the SCI;  

ii) having more than two years of impact survey data; and  

iii) cross-sectional data comprising SAC. 

These data represent a unique collection from multiple country programmes, which enable the 

comparison of outcomes between country programmes as well as with the global WHO targets. 

The term “country programme” is used throughout this chapter rather than “country”, since some 

countries had programmes that could not be combined for the analysis, as was the case in Mali and 

Burundi (see also footnote to Table 2.1).  The Burundi programme had begun with a large ‘pilot’ study 

in 2007 combining data from 12 sentinel sites, which then continued alongside the Burundi ‘national’ 

study that began a year later, with data from 19 additional sentinel sites.  The two Mali programmes 

represented a different scenario where surveys, treatment dates and treatment frequency were not 

consistent between three regions (Koulikoro, Bamako, and Segou).  In Segou region, three annual 

treatment rounds had been conducted from 2004; in in Bamako and Koulikoro, two annual treatment 

rounds had taken place from 2005.  Thus, for Burundi and Mali, these data were not combined for the 

analysis. 

The methods used to calculate sample sizes per impact survey were as currently employed at the SCI, 

as mentioned above.  This provided the number of sentinel sites (schools) and children to be sampled 

within each site, powered to detect a difference in prevalence over time at a given administrative 

level, accounting for clustering at the sentinel site level (i.e. the phenomenon that individuals from 

the same sentinel site/cluster are more alike than individuals from a different sentinel site/cluster).  

Participants in the survey were sampled through randomisation and survey methods were 

standardised across countries.  Standard Kato-Katz and Urine Filtration methods were used to detect 

S. mansoni and S. haematobium infection, respectively (see references contained in Table 2.1 for 

specific country information).   

The prevalence by infection intensity category, i.e. the proportion of individuals with a given number 

of schistosome eggs per gram of faeces (epg) for S. mansoni or per 10 ml of urine for S. haematobium 

(Table 2.2), and 95% confidence intervals (95% CIs), were calculated by treatment round, schistosome 

species, and country by the candidate.  Mean prevalence and 95% CIs were calculated to account for 

the clustering of the data at sentinel site level, using the R survey package [115].  The point prevalence 
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estimates were used for the comparison against the WHO guidelines, since the guidelines do not 

suggest calculations of 95% CIs.  However, the 95% CIs were calculated for reference as using the 

upper limits to determine treatment category may be a more conservative approach in further studies. 

For programmes where the point prevalence of heavy-infection intensity fell below <1%, an analysis 

was conducted to verify whether this was the case in all sentinel sites (indicative of EPHP) or only an 

aggregate result across sentinel sites (indicative of morbidity control).  The candidate evaluated trends 

in the prevalence of heavy infection through time from cross-sectional data for both S. mansoni and 

S. haematobium, in line with WHO guidelines [99].  The guidelines do not specify whether treatment 

round or calendar year should be used as timelines for their targets.  Since PC may not be annual, 

treatment round was considered the most appropriate time scale.  Additional data on overall 

prevalence and prevalence of moderate combined with heavy-intensity infection (S. mansoni only) 

were also evaluated and compared with trends of heavy-intensity infection prevalence.   

 

Table 2.1. Data used in this chapter from SCI assisted programmes within sentinel sites 

Country 
programme 

Start 
year 

Endemic 
parasite 
species 

Baseline endemicity 
(spp.) 

Treatment 
frequency 

Number of 
sentinel 

sites 

Average 
number of 

individuals per 
sentinel site 

(SD) 

Ref. 

Burkina Faso 2004 S. m. 
S. h. 

Low (S. m.) 
High (S. h.) Biennial 16 94 (48) [116] 

Burundi 
National* 2008 S. m. Low (S. m.) Annual 19 307 (78) [117] 

Burundi Pilot* 2007 S. m. Low (S. m.) Annual 12 319 (65) [117] 

Malawi 2012 
S. m. 
S. h. 

Low (S. m.) 
Low (S. h.) Annual 22 110 (15) 

(Pers. 
Comm.) 

Mali-Segou* 2004  S. m. 
S. h. 

Moderate (S. m.) 
High (S. h.) 

Annual 10 103 (26) [118,119] 

Mali-Bamako/ 
Koulikoro* 2004  

S. m. 
S. h. 

Moderate (S. m.) 
High (S. h.) Mixed 11 76 (24) [118,119] 

Niger 2004 S. h. High (S. h.) Annual 8 285 (83) [35] 

Rwanda 2008 S. m. Low (S. m.) Annual 6 254 (103) (Pers. 
Comm.) 

Tanzania 2005 S. m. 
S. h. 

Moderate (S. m.) 
   Moderate (S. h.) 

Annual 21 124 (62) [35] 

Uganda 2003 S. m. Moderate (S. m.) Annual 39 80 (45) [120] 

Yemen 2010 S. m. 
S. h. 

Low (S. m.) 
Moderate (S. h.) 

Biennial 136 34 (49) (Pers. 
Comm.) 

S. m. = Schistosoma mansoni; S. h. = Schistosoma haematobium; Pers. Comm. = personal communication. *Burundi and Mali were split into 
two segments in this study: ‘Burundi Pilot’ (containing data from twelve sentinel sites) and ‘Burundi National’ (data from nineteen sentinel 
sites), where the surveys began in different years, and ‘Mali-Segou’ (one sentinel region, ten sentinel site schools) and ‘Mali-
Bamako/Koulikoro’ (two regions, eleven sentinel site schools) where different treatment strategies were implemented. SD = standard 
deviation. 
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While the WHO guidelines use prevalence of heavy-intensity infection as an indirect measure of 

morbidity (assuming morbidity is proportional to infection intensity), the combined measure of 

prevalence of moderate- plus heavy-intensity infection was included, due to uncertainty in the 

appropriateness of the current egg count thresholds for intensity (Table 2.2) and because some degree 

of morbidity is likely to be caused by the presence of any number of eggs in the host (whether or not 

an individual is symptomatic) [121].  Information on the relationship between infection intensity and 

severity of morbidity for S. haematobium is scarce and there is no empirical reason for the choice of 

the prevalence thresholds proposed or for the lack of a moderate intensity category (Table 2.2). 

Table 2.2. Infection intensity categories for schistosomiasis and corresponding egg count cut-offs [36]. 

Parasite Light intensity Moderate 
intensity Heavy intensity 

Schistosoma 
mansoni 1-99 epg 100-399 epg ³ 400 epg 

Schistosoma 
haematobium 1-50 eggs/10 ml Not defined > 50 eggs/10 ml 

Epg = eggs per gram of faeces 

 

  

 

Figure 2.4. Countries from which data were analysed. The left-hand map shows country locations within Africa, 
and Yemen. Dots on the right-hand maps indicate the location of the sentinel sites. From left to right, starting in 
the top left square (number of sentinel sites in total in brackets): Mali (21), Niger (8), Yemen (136), Burkina Faso 
(16), Rwanda (6), Uganda (39), Burundi (31), Tanzania (21) and Malawi (22). 
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2.3 Results  
 

The baseline endemicities of infection for both species of Schistosoma greatly varied.  Baseline 

prevalence of S. haematobium ranged from 9.8% [95% CI: 8.7-11.0] in Malawi (a low endemicity 

country) to 82.1% [95% CI: 79.8-84.3] in Mali-Segou (a high endemicity country) [36].  Prevalence for 

S. mansoni varied from 1.9% [95% CI: 1.2-2.9] in Malawi (low endemicity) to 45.4% [95% CI: 44.0-46.9] 

in Uganda (moderate endemicity).  Despite this heterogeneity, infection intensities in all countries fell 

in response to the programmes’ first round of treatment to below, or within 0.8% of the <5% 

prevalence of heavy intensity threshold for control for S. mansoni infection and within 3.3% for 

S. haematobium (Figures 2.5 to 2.7).  

For both schistosome species, treatment successfully reduced the prevalence of heavy-intensity 

infection to below 5% in all countries except Niger for S. haematobium (5.4% [95% CI: 4.6-6.3]), which 

only marginally missed the control of morbidity metric in the first treatment round (Figures 2.5 to 2.7 

and Tables 2.3 and 2.4).  The more ambitious target of EPHP (Figures 2.6 and 2.8) was only achieved 

for S. mansoni infection, and only in half of the country programmes.  Moreover, Malawi had already 

reached EPHP for S. mansoni at baseline. 

 

2.3.1 Schistosoma mansoni  
All ten country programmes reached the control of morbidity threshold after two rounds of treatment 

(Figures 2.5 and 2.6 and Table 2.3).  This included Uganda which had a high baseline prevalence.  

However, a subsequent gradual increase in the prevalence of heavy-intensity infection to just over the 

5% threshold was observed in Uganda after the third and fourth treatment rounds.  Burkina Faso, 

Burundi (pilot and national programme) and Rwanda reached the EPHP threshold after three 

treatment rounds or fewer (but note that these sites had a baseline prevalence of heavy-infection 

intensity already below the 5% morbidity control threshold). 

When using the more conservative criterion of <1% and <5% prevalence of moderate- plus heavy-

intensity infection to represent morbidity control (S. mansoni only), six country programmes were 

shown to be already below this threshold at baseline and one further country programme (Mali-

Segou) met this target after one round of treatment.  Three country programmes achieved EPHP after 

the third treatment round (Burkina Faso) or after just one treatment round (Malawi and Rwanda).  

The remaining country programmes failed to reach any target in the relatively short time-span of the 

data currently available.  
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Figure 2.5. Temporal changes in prevalence of Schistosoma mansoni infection in school-aged children (SAC) 
aggregated across sentinel sites from each country. The dashed lines show the 5% and 1% cut-offs for prevalence 
of heavy-intensity infection control of morbidity and EPHP, respectively. Panels from top to bottom show: the 
prevalence of high-intensity infection; the prevalence of moderate- plus high-intensity infection and the overall 
prevalence of infection respectively.  The error bars show the 95% confidence intervals, accounting for clustering 
of the data at the level of the sentinel sites.   
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Figure 2.6. Temporal changes in prevalence of Schistosoma mansoni infection in school-aged children (SAC) by 
sentinel site for each country (light blue lines) and aggregated across sentinel sites from each country (coloured 
lines), where n= number of sentinel sites. The black dashed lines show the 5% cut-offs for prevalence of heavy-
intensity infection indicating control of morbidity (for mean prevalence, coloured lines) and the black dotted 
lines show the 1% cut-offs for prevalence of heavy-intensity infection indicating elimination as a public health 
problem (EPHP, referring to the light blue lines for sentinel sites in each country). Columns represent overall 
prevalence, moderate- plus heavy-intensity infection and heavy intensity infection prevalence. 95% confidence 
intervals were calculated accounting for clustering of the data by sentinel site. Note the different y-axes scales.  
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Table 2.3. Rounds of treatment required to reduce Schistosoma mansoni infection to reach the World Health 
Organization’s (WHO’s) goal of morbidity control (<5% prevalence of heavy-intensity infection, aggregated 
across all sentinel sites) and elimination as a public health problem (EPHP, <1% prevalence of heavy-intensity 
infection in all sentinel sites). Baseline endemicity levels refer to the WHO prevalence category at country level, 
accounting for clustering of the data at the level of the sentinel sites. 

Baseline 
endemicity 

levels 

Mean baseline 
prevalence % 

(95% CI) 

Baseline 
prevalence of 

heavy-intensity 
infection %  

(95% CI) 

Country 
Frequency  

of  
treatment 

Goal/s 
reached§ 

No. of treatment 
rounds (post-

baseline) 

No. of treatment 
rounds for 

moderate- plus 
heavy-intensity 

prevalence 

Low 6.5 (5.0-8.3) 0.7 (0.3-1.5) Burkina Faso Biennial 
Control 0 0 

EPHP 2 3 

Low 6.0 (5.4-6.7) 0.5 (0.3-0.7) Burundi National Annual 
Control 0 0 
EPHP 2 Not yet reached 

Low 12.7 (11.7-13.9) 1.5 (1.1-2.0) Burundi Pilot Annual 
Control 0 0 
EPHP 3 Not yet reached 

Low 1.9 (1.2-2.9) 0.1 (0.0-0.7) Malawi Annual 
Control 0 0 
EPHP 0 1 

Low 12.9 (11.3-14.7) 1.1 (0.7-1.7) Rwanda Annual 
Control 0 0 
EPHP 1 1 

Low 9.2 (8.4-10.0) 0.6 (0.4-0.8) Yemen Biennial 
Control 0 0 
EPHP Not yet reached Not yet reached 

Moderate 28.8 (26.0-31.8) 9.6 (7.9-11.7) Mali-Segou Annual  
Control 1 1 
EPHP Not yet reached Not yet reached 

Moderate 38.8 (35.7-42.1) 10.6 (8.7-12.8) Mali-Bamako/ 
Koulikoro Annual/ 

Biennial  
Control 1 Not yet reached 
EPHP Not yet reached Not yet reached 

Moderate 26.6 (24.4-28.9) 7.7 (6.4-9.2) Tanzania Annual 
Control 1 Not yet reached 
EPHP Not yet reached Not yet reached 

Moderate 45.4 (44.0-46.9) 17.7 (16.6-18.9) Uganda Annual 
Control 2 Not yet reached 
EPHP Not yet reached Not yet reached 

§ For programmes that reached 1% heavy/moderate- plus heavy intensity infection prevalence across all sentinel sites, further analyses 
were conducted to verify whether this was reached in all sentinel sites for EPHP (results shown in this table).  

 

 

 

 

 

 

 

 

 



45 | P a g e  
 

Table 2.4. Rounds of treatment required to reduce Schistosoma haematobium infection to reach the World 
Health Organization’s (WHO’s) goal of control (<5% prevalence of heavy-intensity infection aggregated across 
all sentinel sites) and elimination as a public health problem (EPHP, <1% prevalence of heavy-intensity infection 
in all sentinel sites). Baseline endemicity levels refer to the WHO prevalence category at country level, 
accounting for clustering of the data at the level of the sentinel sites. 

Baseline 
endemicity levels 

Mean baseline 
prevalence %  

(95% CI) 

Baseline  
prevalence of 

heavy intensity % 
(95% CI) 

Country 
Frequency of 

treatment 
Goal/s 

reached§ 

No. treatment 
rounds 

(post-baseline) 

Low 9.8 (8.7-11.0) 2.2 (1.7-2.8) Malawi Annual 
Control 0 
EPHP Not yet reached 

Moderate 24.1 (22.4-25.8) 6.9 (6.0-8.0) Tanzania Annual 
Control 1 
EPHP Not yet reached 

Moderate 10.6 (9.8-11.5) 3.6 (3.2-4.2) Yemen Biennial 
Control 0 
EPHP Not yet reached 

 High 56.2 (53.8-58.5) 25.2 (23.2-27.3) Burkina Faso Biennial 
Control 1 
EPHP Not yet reached 

High 75.9 (73.8-77.9) 21.3 (19.4-23.3) Niger Annual 
Control Not yet reached 
EPHP Not yet reached  

High 82.1 (79.8-84.3) 44.0 (41.1-47.0) Mali-Segou Annual 
Control 2 
EPHP Not yet reached 

High 47.6 (44.8-50.5) 11.5 (9.7-13.4) Mali-Bamako/ 
Koulikoro 

Annual/ 
Biennial 

Control 1 
EPHP Not yet reached 

 

 

2.3.2 Schistosoma haematobium  
All programmes had a baseline S. haematobium prevalence of heavy-intensity infection above 5%, 

except for Malawi and Yemen and, by the second treatment round, all except for Niger were below 

this threshold, meeting the control of morbidity criteria (Figures 2.7 and 2.8 and Table 2.4).  The 

prevalence of heavy-intensity infection in Niger fell following a single treatment round, from 21.3% 

[95% CI: 19.4-23.3] to 5.4% [95% CI: 4.6-6.3], only just missing the control of morbidity target. 

Although three country programmes reached <1% heavy-intensity infection prevalence aggregated 

across sentinel sites (Figure 2.7), none of the programmes in the study reached this threshold in every 

sentinel site for S. haematobium, and thus did not meet the EPHP requirement (Figure 2.8).  
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Figure 2.7. Temporal changes in prevalence of Schistosoma haematobium infection in school-aged children (SAC) 
aggregated across sentinel sites of each country. The dashed lines show the 5% and 1% cut-offs for prevalence 
of heavy-intensity infection (control of morbidity and EPHP targets, respectively). Top panel shows the 
prevalence of heavy-intensity infection. Bottom panel shows the overall prevalence of infection respectively. 
The error bars show the 95% confidence intervals, accounting for clustering of the data at the level of the 
sentinel sites.   
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Figure 2.8. Temporal changes in prevalence of Schistosoma haematobium infection in school-aged children (SAC) 
by sentinel site for each country (light blue lines) and aggregated across sentinel sites from each country 
(coloured lines), where n= number of sentinel sites. The black dashed lines show the 5% cut-offs for prevalence 
of heavy-intensity infection indicating control of morbidity (for mean prevalence, coloured lines) and the black 
dotted lines show the 1% cut-offs for prevalence of heavy-intensity infection indicating elimination as a public 
health problem (EPHP, referring to the light blue lines for sentinel sites in each country). Columns represent 
overall prevalence and heavy intensity infection prevalence. 95% confidence intervals were calculated 
accounting for clustering of the data by sentinel site. Note the different y-axes scales.  
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2.3.3 Relationship between prevalence of infection and prevalence of heavy infection 
 

The relationship between overall prevalence of infection (used in mapping) and prevalence of heavy-

intensity infection (which requires collection of intensity data) was shown to vary over time, by 

Schistosoma species, and by treatment round (Figure 2.9).  For S. mansoni, the relationship between 

prevalence of heavy-intensity (and moderate- plus heavy-intensity) infection vs overall infection 

prevalence was non-linear.  A wide range of prevalence values within and between treatment rounds 

corresponded to <5% heavy-intensity infection (and moderate- plus heavy-intensity) infection.  Similar 

patterns were observed for S. haematobium.  

 

 

 

 

Figure 2.9. Relationship between prevalence of heavy intensity infection (and moderate and heavy intensity 
infection for Schistosoma mansoni) and overall prevalence in school-aged children (SAC) across all sentinel sites 
by species. Best fit (black line) and standard error (grey band) were obtained by fitting a loess smoothed line. 
Colours represent treatment round and shapes represent country programme. 
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2.4 Discussion  
 

The WHO guidelines outline the expected number of years of treatment necessary for reaching 

morbidity control of schistosomiasis and EPHP (i.e. 5-10 years and 3-6 years, respectively).  This study 

shows that where the operational goals were reached (though not necessarily sustained), they were 

reached much sooner than estimated by the guidelines (whether annual or biennial treatment 

frequency was implemented).  We demonstrate here that all country programmes in this study 

reached the WHO thresholds for control (with the exception of the Niger programme for S. 

haematobium) in two treatments rounds or fewer.  Six programmes started with a prevalence of 

heavy-intensity infection below 5% for S. mansoni, indicating that they were already at ‘control’ at 

endemic level.  The subsequent goal of EPHP for S. mansoni was reached by five of these programmes, 

requiring three or fewer treatment rounds.  This highlights the need for clarity in the guidelines for 

what approach to adopt in such cases.   

The S. haematobium country programmes used in this study had a higher overall baseline infection 

prevalence than the S. mansoni areas and none of those programmes reached the EPHP goals within 

the lifetime of the study.  The findings demonstrate that endemically low prevalence foci are likely to 

have low baseline prevalence of heavy-infection intensity (in this study 1.5% or less for S. mansoni and 

is further demonstrated in Section 2.3.3 of this Chapter through the prevalence of heavy-intensity 

infection and prevalence of infection relationship), which resulted in the achievement of EPHP sooner 

than proposed by the guidelines.   

The case of Uganda illustrates that goals may be reached but are reversible,  though exact reasons for 

this particular case are unknown at present, these could have been due to migration patterns for that 

year or poor treatment coverage or compliance for the control programme or changes in drug efficacy.   

This is particularly relevant where programme stability is impeded (due to, for example, civil unrest, 

such as in Burundi, war, such as in Yemen, and/or population displacement, such as an influx of south 

Sudanese refugees into Uganda).  Figures 2.6 and 2.8 highlight the variability between sentinel sites 

in each country (light blue lines), which needs to be taken into consideration when looking at country-

level control of morbidity target proposed by the WHO.  Additionally, the effectiveness of programme 

implementation may vary through time (treatment fatigue, climatic changes, changes in programme 

staff, migration patterns, etc.), as may potentially drug efficacy (due to resistance)[122].   It is, thus, 

important to define time periods over which control and elimination targets should be sustained to 

declare success and to be particularly vigilant to recrudescence of disease if elimination of 

transmission has not yet been achieved. 
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It is likely that any level of infection is relevant to morbidity [121], therefore moderate- plus heavy-

intensity infections were combined to form a more realistic yet conservative morbidity metric for 

S. mansoni.  The infection-intensity thresholds for each species were proposed by the WHO Expert 

Committee in 1987, but it is not clear why no moderate intensity group exists for S. haematobium nor 

why the egg-count intensity thresholds were defined as such (though flexibility in these thresholds 

had been proposed) [123].  Figures 2.5 and 2.6 show that, as expected, programmes will take much 

longer to reach the same goals if using prevalence of moderate- plus heavy-intensity infection metric.  

When considering the aims of controlling and eliminating morbidity, since control thresholds were 

reached relatively quickly and the relationship between infection intensity and morbidity remains 

highly uncertain, it would be worth considering the more ambitious metric of prevalence of moderate- 

plus heavy-intensity infection. 

The <5% and <1% prevalence of heavy-intensity targets are the current metrics for control and 

elimination of schistosomiasis-related morbidity, respectively, which use the egg-count cut offs 

presented in Table 2.2.  However, these metrics, definitions and egg-count cut offs need to be carefully 

and urgently addressed, particularly since potentially a single miracidium infecting a snail could result 

in the snail releasing thousands of cercariae, each with the potential of infecting a human host [124].  

Additional analysis of available data (and the ability to collect such information routinely as part of 

large-scale control programmes) and further research, such as understanding the link between current 

infection and morbidity, are required to establish a robust evidence base for these (or updated) 

targets, which will be critical especially as countries aim to transition to interruption of transmission.  

None of the programmes in this study reached the interruption of transmission targets, which further 

question the feasibility of transmission by 2025 even with the current guidelines.   

As expected, there was a strong positive association between the overall infection prevalence and 

either the prevalence of heavy-intensity infection, or the prevalence of moderate- plus heavy-intensity 

infection (Figure 2.9).  However, two characteristics stand out from these graphs.  First, there was 

substantial spread of the data points, such that for any given value of one variable there was a range 

of corresponding values of the second variable.  This variation arose due to the heterogeneity of 

parasite loads (likely due to exposure variation) which follow a negative binomial distribution (most 

individuals having zero or low parasite load and a few having very high parasite load, using egg counts 

as a proxy for worm load), so disease/morbidity prevalence can vary substantially among settings with 

similar overall prevalence.  Second, the size of the change in infection metric following treatment 

varied substantially between programmes.  Further research is required to reach consensus on the 
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most appropriate morbidity indicator.  Once it has been identified, it needs to be applied consistently 

across programmes and in guidelines. 

Some of the limitations of the study are due to the lack of detailed information available, in particular, 

treatment coverage which can vary significantly in NTD treatment programmes.  Other information 

such as migration patterns, school-enrolment, and school-attendance rates may play a role in 

determining reductions in infection and may, partly, explain variation between study areas.  Detailed 

information on these metrics was not collected routinely.   

Another important aspect that was not covered thus far was the fact that more than half of the 

programmes had sentinel sites of mixed infections (as opposed to S. mansoni or S. haematobium only).  

For this study, both species were analysed independently, but this does not address the issue of having 

a potentially higher infection prevalence and/or intensity when both are combined, or understanding 

any underlying interactions between the two species [125].  When the species are analysed separately, 

a country may reach control and EPHP for one species but not for the other, as is the case of Burkina 

Faso in this study.  If individuals were infected with both species, could a ‘low intensity’ of infection 

with each species combine into a moderate intensity of mixed infection, and what would be the 

morbidity repercussions?  What if individual sentinel sites or entire countries contained mixed 

infections and what impact will this have on determining whether a country achieves the 2020 and 

2025 goals?  These issues require further development and clarification in the guidelines. 

The WHO guidelines also do not differentiate between S. mansoni and S. haematobium in terms of 

progression towards interruption of transmission (which is in fact, currently undefined).  Though 

similar, they have differences which may impact the feasibility and required duration for a control 

programme to reach the 2020/2025 targets.  From a biological perspective, earlier studies have shown 

that the number of eggs laid by a female worm, and subsequently expelled by the host, depends on 

the species of infecting schistosome, with female S. mansoni worms laying on average more eggs than 

S. haematobium, (which would imply higher levels of transmission into the environment as well as 

individual morbidity from S. mansoni infection) [126].  Another difference is that it may be considered 

an ‘easier route’ to contribute to the transmission cycle with urogenital schistosomiasis (infection with 

S. haematobium), which requires only urination in fresh water to transmit Schistosoma eggs into the 

environment as opposed to defecation (which is less frequent and with greater social barriers to doing 

so).  These are some of the differences that would cause the two schistosome species to behave 

differently in terms of infection.  Alongside these are potential issues of hybridisation and animal 

reservoirs [31] which would impact disease dynamics and which may mean the species are not equally 

amenable to reaching the WHO 2020 targets.  However, China (endemic species S. japonicum) and 
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Brazil (S. mansoni) have shown great progress towards achieving interruption of transmission, 

particularly in China which has the added challenge of having the animal reservoir due to the ability 

of S. japonicum to have multiple primary host species including humans.  This highlights the impact of 

development and strong health systems along with a ‘one health’ approach, all of which are still 

lagging in the majority of the SSA setting. 

The current WHO guidelines are based on Kato-Katz for S. mansoni diagnosis, and urine filtration and 

haematuria for S. haematobium diagnosis.  As infection intensity levels decrease, it will become 

increasingly difficult to diagnose infection accurately.  One clear priority is the identification of 

alternative affordable diagnostic techniques that can be implemented on a large scale to provide the 

data required for M&E  – this will need to take into account the cost-effectiveness of moving from 

current tools, the relationship of intensity of infection between the former and new tools (and their 

relevance to the WHO guidelines) and practicality for use in the field [127–130]. The low sensitivity of 

Kato-Katz is likely to miss light infections and thus yield underestimates of prevalence and intensity 

(not to mention issues concerning the variation in egg output within a stool and between days, and 

the reluctance of people to provide stool samples).  The point-of-care (POC) urine circulating cathodic 

antigen (CCA) test is a promising tool already in use in some areas, although it introduces challenges 

for determining heavy-intensity infections (as it provides only a semi-quantitative measure of intensity 

for S. mansoni)[131,132].  Urine filtration for S. haematobium, though a more sensitive tool than Kato-

Katz for S. mansoni, is also limited particularly since egg output varies in the urine throughout the day 

(and urine volumes provided can often be low due to dehydration).  The WHO guidelines for CCA are 

currently under development and will be available in the near future, though these will be for S. 

mansoni only (as CCA does not detect S. haematobium).  

For the criterion for EPHP, the requirement is that every sentinel site needs to have <1% prevalence 

of heavy-intensity infection.  Yet for the control of morbidity target, there is an exception which allows 

the country to progress to the next stage if a single site is at ≥5% heavy-intensity infection prevalence 

- which would be regarded as its own implementation unit allowing the rest of the country to progress 

to EPHP (referenced in the guidelines as a small footnote)[99].  However, there is no such exception 

for the EPHP in the guidelines.  This could mean that a single sentinel site not reaching these aims 

could hold the rest of the country back from declaring EPHP and receiving an enhanced treatment 

strategy (as was the case for Mali-Segou, in which all sentinel sites but one reached EPHP by the 

second treatment round).  A possible intermediate marker could be the percentage of sentinel sites 

reaching below <1% heavy-intensity infection, prior to <1% in all sentinel sites.  This brings us to the 

topic of ‘hot-spots’, which currently does not have a widely-agreed definition but is essentially a catch-
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all term to describe epidemiological heterogeneity in focal infectious diseases [133].  More specifically, 

‘hot-spots’ are usually isolated areas of persistent infection despite regular treatment at high 

coverage, often with unknown causal mechanism [134,135].  To help achieve the 2020/2025 targets   

we emphasise that these hot-spot areas should be addressed separately as areas of persistent 

infection (not necessarily high infection) that are strictly isolated and require a more tailored local 

intervention approach.   

The WHO guidelines focus on infection levels and treatment in SAC.  It remains incompletely 

understood how infection patterns in SAC relate to infection in the wider community, particularly 

following multiple rounds of SAC treatment, where there is a high potential of a reservoir of heavily 

infected pre-school aged children (PSAC) and adults.  In other words, is reaching the control and EPHP 

targets in SAC enough to be confident that the same has been achieved in adults and PSAC and has 

control or elimination of morbidity really been achieved?  This has been the focus of recent modelling 

and cost-effectiveness studies [114,136–138], which state that elimination is unlikely without the 

treatment of non-treated populations, particularly the adult community, with further empirical 

studies required to address these questions. 

Conclusion 

The key messages of this chapter are that programmes reach the first goal of morbidity control with 

very few treatment rounds, and the ‘one-size-fits-all’ approach currently adopted is not appropriate 

for all programmes (though attractive in terms of international guidelines), as results differ between 

starting endemicity levels and species of schistosome.  Further work is required to investigate the 

impact of mixed infections and strategies to manage these and hotspot areas, as well as the use and 

applicability of the ‘prevalence of moderate- plus heavy-intensity infection’ metric and the proportion 

of sentinel sites reaching EPHP.  In addition, if programmes are to follow the timelines proposed to 

transition to the next goal towards interruption of transmission, then this may take many countries 

beyond the fast-approaching target of 2020 and 2025.  Moreover, some programmes were already at 

<5% heavy-intensity infection prevalence at baseline.  Should programmes in these situations aim 

immediately for EPHP or continue with the WHO guidelines and treat as per control aims for 5-10 

years?  What do reaching these thresholds earlier mean for programmes, in terms of the potential to 

adjust PC (to twice a year for example) or include complementary interventions (such as WASH, snail 

control etc.) to reach the goals sooner?  We hope that the results of this chapter will open a dialogue 

for further discussion.  
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This chapter presents the most extensive and relevant data available to test the guidelines.  In 

conclusion, most of the schistosomiasis programmes evaluated here reached operational thresholds 

for morbidity control in two treatment rounds or fewer, considerably sooner than proposed in the 

WHO guidelines (which state 5-10 years to reach control and 3-6 years to reach EPHP) before 

progression to the subsequent stage of transmission interruption.  Very few countries have 

programmes that have been running for the suggested periods – indeed for many programmes, the 

indicated number of years would take them well beyond the 2020 milestone for control alone.  This 

chapter highlighted the need for more specific guidelines for countries starting with different 

endemicity levels and schistosome species, as a universal approach is not appropriate.  The 

programmes in this study showed mixed results.  For the control of morbidity, the target was reached 

in all programmes for both schistosome species with the exception of one programme.  This supports 

the feasibility of the relevant WHO 2020 goal as it is currently defined.  For EPHP, while it is true that 

five datasets did reach the EPHP target, it is also true that these all had very low infection prevalence 

at baseline (1.5% prevalence of heavy-intensity infection or lower), and no datasets with either 

moderate or high baseline endemicity reached the EPHP target within the relatively short period of 

follow-up.   Additional work is required to validate the feasibility and utility of the EPHP target. 
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CHAPTER 3. DEVELOPMENT AND EVALUATION OF A MARKOV MODEL TO PREDICT 
CHANGES IN SCHISTOSOMIASIS PREVALENCE IN RESPONSE TO PRAZIQUANTEL 
TREATMENT  

 
This chapter is adapted from the following published paper: Arminder Deol, Joanne P Webster, Martin 

Walker, Maria-Gloria Basáñez, T Déirdre Hollingsworth, Fiona M Fleming, Antonio Montresor, and 

Michael D French. Development and evaluation of a Markov model to predict changes in 

schistosomiasis prevalence in response to praziquantel treatment: a case study of Schistosoma 

mansoni in Uganda and Mali. Parasit. Vectors 9, 543 (2016). Appendix 3. 

This chapter presents the development and refinement of a Markov model to capture changes in the 

prevalence of infection intensity categories for Schistosoma mansoni over multiple rounds of MDA 

with PZQ.  The model was parameterized using two-year (two consecutive time points) longitudinal 

data from Uganda and Mali.  The model was then used to make longer-term projections (5 years+) 

and to compare the outputs with different variations of the datasets.  The results show that this is a 

promising M&E tool for programmes by allowing short-term projections of prevalence under 

interventions. 

 

3.1 Introduction 
 

As the multi-country study described in Chapter 2 showed, many large-scale schistosomiasis control 

programmes have been running for several years, and have achieved their primary target of 

controlling schistosomiasis-related morbidity (i.e. reducing prevalence of heavy-intensity infection to 

<5% across sentinel sites), whether from intestinal schistosomiasis (caused predominantly by 

Schistosoma mansoni) or from urogenital schistosomiasis (caused predominantly by 

S. haematobium)[99,139]. 

As part of the Monitoring and Evaluation (M&E) component that runs alongside the treatment 

campaigns, the Schistosomiasis Control Initiative (SCI) has collected rich longitudinal datasets from 

numerous countries to demonstrate the impact of treatment on prevalence, intensity and morbidity 

associated with schistosomiasis.  Preventive chemotherapy (PC) by mass drug administration (MDA) 

with praziquantel (PZQ) has been demonstrated to be, in general, highly effective in reducing both the 

prevalence and intensity of schistosome infection.  This is shown in the datasets introduced and 

analysed in Chapter 2 [140–142].  The development of a user-friendly, quantitative, tool that uses 

these impact measurements to inform programme managers as to whether their programme is on 
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target to meet their goals would be valuable in assisting programme design and evaluation, and in 

providing an early warning of potential transmission ‘hotspots’ or poor programme performance. 

A Markov statistical model had been developed to capture soil-transmitted helminth (STH) infection 

dynamics under PC (with benzimidazoles), by Montresor and colleagues in 2013.  This was extended 

in 2016 to other datasets which focussed on the robustness of the model (work in which the candidate 

was directly involved, and which was published in PLoS Negl Trop Dis in 2016)[143,144].  The authors 

demonstrated that the model successfully predicted changes in the prevalence of Ascaris 

lumbricoides, Trichuris trichiura and hookworm (Ancylostoma duodenale and Necator americanus) 

through five rounds of PC.  The model used data collected in Vietnam at baseline and after one round 

of treatment to parameterize the Markov Transition Probability (MTP) matrix; the essential ingredient 

of such Markov models.  The predictive capability of the model was successfully validated against STH 

data from 26 control programmes in 16 countries [144].  

Here, for the first time, the discrete-time Markov model approach was extended, in which both time 

and infection states (intensity groups) were defined and used to describe a S. mansoni control 

programme.  The model was tested under contrasting control programme scenarios, using the 

extensive datasets from SCI-supported programmes in Uganda and Mali as described in Chapter 2.  

This methodology would aid programmes from donor relations and advocacy (through model 

projections using its estimates) to as an additional planning and monitoring tool of programme 

performance (by measuring the effectiveness of a program against its goals of reducing infection 

through comparison between observed vs predicted prevalence).    

The specific aims in this chapter were to: i) develop a discrete-time Markov model for schistosomiasis 

using data on the intensity and prevalence of S. mansoni infection during mass treatment with PZQ; 

ii) introduce measurements of precision around predictions in the form of 95% PIs; iii) evaluate the 

performance of the model by estimating changes in the overall infection prevalence and the 

prevalence in infection intensity categories over time; iv) qualitatively compare the predictive 

capabilities of the model parameterized using data from different settings within the same country 

(Uganda) and from a different country (Mali), to test the transferability of the predictions to different 

regions; v) test the robustness of the model’s predictive capabilities when parameterized using data 

from non-baseline years; and vi) investigate the usefulness  of different data types (longitudinal and 

cross-sectional data) to test the model predictions.  
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3.2 Material and methods 
 

Data 

Raw data were initially formatted by the candidate and used from the Uganda historical programme 

[140,145–147] to parameterize (using longitudinal data) and evaluate (using both longitudinal and 

cross-sectional data) the model in different scenarios, simulated through various data subsets (Table 

3.1).  To further evaluate the model, using independent data (i.e. not used for model 

parameterization), historical data from the Mali programme were formatted and used.  The data were 

collected as part of a treatment campaign in Uganda for SAC from 2003 to 2006 (the baseline overall 

Kato-Katz prevalence was 43.0% for Schistosoma mansoni) and in Mali from 2004 to 2007 (the baseline 

overall Kato-Katz prevalence was 26.5% for S. mansoni)[145,146]. 

To develop and parameterize the Markov model, longitudinal data were required from the data 

subsets due to the methodology discussed below.  Participant unique identifiers, sentinel site and sex 

between different years of the programme were all matched, excluding individuals who were not 

followed between baseline and year 1.  This was used for model parameterization.  The model was 

also tested against both longitudinal data as well as cross-sectional data.  For the cross-sectional data 

testing, all individuals were used.  The model was evaluated through two methods: 1. using different 

datasets to parameterize the model, and 2. testing the capacity of each model to predict different 

datasets. 

The data used to validate and test the model and its variations were primarily from SAC.  This is 

because the aim of the model was to show overall projections of the programme, since most 

schistosomiasis interventions focus on this age group, who tend to harbour the highest burden of 

infection as measured by egg counts (Chapter 1)[34,47,112,148–151].   
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Table 3.1. Data used to parameterise and evaluate the Markov Model and its variations.  

Dataset Data type Description Sample size (n) Baseline prevalence (%)   

1 Uganda longitudinal 
baseline to year 3 Full longitudinal data set 747 43.0 

2 Uganda longitudinal 
baseline to year 3 4 Ugandan districts out of 7 400 46.5 

3 Uganda cross-sectional 
baseline to year 3 

Varying sample size per 
year, full programme data 

Baseline: 4222 
Year 1: 3973 
Year 2: 4192 
Year 3: 3373 

45.2 

4 Mali longitudinal 
baseline to year 2 Full longitudinal data set 897 26.5 

 

Model outline 

The model was developed for S. mansoni, with the proportion of individuals in each of the four WHO-

recommended infection classes defined by estimates of eggs per gram (epg) of faeces (not infected, 0 

epg; infected at light intensity, 1-99 epg; infected at moderate intensity, 100-399 epg; infected at high 

intensity, ≥400 epg [36]) and referred to as “condition states” (CS), calculated from pre-treatment 

baseline data [100].  Subsequently, an individual’s probability of transition (if any) to other CS prior to 

the next round of treatment (year 1) was calculated using the observed change in the proportion of 

followed-up individuals in each category (from baseline to year 1).  These observed changes were used 

to parameterize a matrix of Markov Transition Probabilities (MTP), formed from a set of 16 transition 

probabilities (TPs), as illustrated in Figure 3.1.  The model was initialised using observed baseline 

starting values.  Then, through a series of Markov processes defined by the MTP matrix (see Equations 

3.1-3.4 in the following section), projections were made on the proportion of infected individuals by 

intensity class following subsequent rounds of MDA.   
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Figure 3.1. Transition diagram illustrating a Markov transition probability (MTP) matrix parameterized using data 
on the prevalence and intensity of Schistosoma mansoni infections collected during mass drug administration in 
Uganda [143]. 

 

Markov model formulae, model parameters 

The following expression describes the transition probabilities between two time points (t and tt+1): 

 

 

           (3.1) 

where Pij is defined as the probability of moving from state i to state j after one follow-up round (which 

is one year for this study) and assumed to be time-homogeneous and dependent only on CSt (Eqn. 

3.1), where CSt is the conditional state at time point t. 

The probability distribution of the initial state is represented by an n x m matrix (i.e. the TP matrix P), 

where n represents the discrete conditional states, i.e. not infected, light-, moderate-, and heavy-

intensity infection (Eqn. 3.2).  
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           (3.2) 

Where for all i:  

 

 

and   

 

 

(3.3) 

 

The probability of moving from one conditional state to another can then be calculated using Eqn. 

3.4., i.e. the number of individuals observed moving from state i to state j (e.g. heavy- to moderate-

intensity). 

 

𝑃"# = 	
#	{𝐶𝑆(𝜏,-) = 𝑖, 𝐶𝑆(𝜏,12- ) = 𝑗, 𝜏,- −	𝜏,12- = 𝐼, 𝑛	 ∈ [1, 𝑁]}

#	{𝐶𝑆(𝜏,-) = 𝑖, 𝑛	 ∈ [1, 𝑁]
 

            (3.4) 
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Table 3.2. Table of parameters used in the model.  

Symbol Definition Description 
Pij Transition probability Probability of moving from state i to state j after one 

follow-up round 
CS Conditional state CS is used to describe the state space (i.e. intensity class) 
𝝉𝒕𝒏 Time Observed time of sample n 
N Total sample Total sample size 
n Number of samples n Number of samples from total sample population N 
# Number of common samples Number of samples that satisfy the subsequent formula 

 

Model development 

In the first instance, focus was on S. mansoni data collected from Uganda between the inception of 

the programme in 2003 and for the first three annual follow-up rounds after baseline.  As part of the 

national control programme, data were collected as egg counts (expressed as the arithmetic mean 

epg) from a cohort of 125 children (aged 6-13 years) per school, from 37 schools across the country, 

over a time span of four years.   

For the calculation of the TPs from the Uganda dataset, longitudinal data between baseline and year 

1 were used (i.e. only data from those individuals who could be identified at each time point, 1,258 

individuals).  To quantify uncertainty around the model projections (expanding on the previously 

published version of the model applied to STH [143,144]), 95% prediction intervals (95% PIs) 

associated with each TP were calculated through bootstrap resampling (with replacement) for 10,000 

iterations, using the R package ‘boot’ version 1.3-9 [152–155].  Bootstrapping is a powerful technique 

which, amongst other things, enables a data set to estimate uncertainty using no more information 

than that available in the dataset (i.e. without making any assumptions of the underlying distribution), 

by randomly resampling from the original dataset (and replacing the sample so each data point can 

be sampled again) until the full same sample size is reached as the original.  This represents one 

bootstrap iteration.  The 95% PIs were calculated in the following steps: 1) a new ‘dataset’ was 

generated through bootstrapping allowing for the calculation of a new MTP matrix  (set of 16 TPs); 2) 

the model was run (using these TPs) to calculate the reduction in prevalence over time; 3) steps 1) and 

2) were repeated 10,000 times; 4) for each time point, the predicted mean prevalence was calculated; 

and 5) from the range of predicted prevalence levels generated, the 95% PIs were constructed using 

the 2.5% and 97.5% percentiles.  Initially, for the observed data, the full cohort of individuals who 

were followed up from baseline to year 3 of the intervention (in Uganda) was included (757 

individuals).  Since some of the individuals in this dataset were also used for the calculation of the TPs 

(as would be the case in practice when using these models), it was expected that the predicted 

prevalence at year 1 would follow the observed values from the full dataset 1 (Table 4.2) very closely.  
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To test the transferability of the model using independent data, the TPs, calculated using baseline and 

year 1 data from the full Uganda dataset, were also used to test model predictions against longitudinal 

data from Mali.  Conversely, to further test the robustness of the model, longitudinal baseline and 

year 1 data from Mali were also used to parameterize a separate model and tested against observed 

longitudinal data from Uganda (i.e. a cross-validation approach).  This tested the flexibility of the 

model to different starting baseline prevalence levels (for Mali the baseline overall prevalence of 

S. mansoni infection was 26.5%, whereas for Uganda the overall prevalence was 43.0%). 

 

Datasets used and models developed 

The data were collected as part of a treatment campaign in Uganda for school-aged children (SAC) 

from 2003 to 2006 and in Mali from 2004 to 2007 (Figure 3.2).  SCI data from Uganda  were selected 

as the primary dataset to parameterize and validate the model because: (a) Uganda was the first SCI-

supported country to commence large-scale control of schistosomiasis in 2003 and thus has the most 

extensive longitudinal datasets (including pre-intervention baseline); (b) S. haematobium infections 

are highly localised to specific regions within Uganda, with prevalence mostly below 1%, and hence 

the potentially confounding impact of S. haematobium infection on the transition probabilities can be 

assumed to be minimal[156], and (c) despite the upsurge in prevalence (treatment round 4) and 

intensity (treatment round 3) as seen in Chapter 2 (Figure 2.5), Uganda has been very successful in 

implementing control[140], making this country a good candidate to move towards elimination of 

schistosomiasis as a public health problem.  The extensive Ugandan dataset also enabled the model 

to be tested against data obtained from districts with contrasting disease endemicities.  Three districts 

were selected based on their geographic spread and the distribution of infection intensities: Moyo 

(only low intensity infections); Busia (only low and moderate intensity infections); Masindi (only 

moderate and high intensity infections).  There were no districts with only moderate or only high 

infection intensities.  The remaining districts on which the model was tested contained a mixed 

composition of intensities.  See Figure 3.2 and Table 3.5 for further details on the districts.  The dataset 

and its different subsets that were used to test the predictive capabilities of the models are listed in 

Table 3.3.  Table 3.4 shows other MTP matrices that were developed by the same method described 

in the previous sub-section, Model development.   
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Figure 3.2. Map of Africa showing Mali (red) and Uganda (green). Inset: Uganda by district in study sample.  

 

Table 3.3. Data and subset description (data type) used for testing model/matrices, and baseline infection 
prevalence and infection-intensity category prevalence (for Schistosoma mansoni), in Uganda and Mali. 
 

 Observed Baseline Prevalence by Intensity Group 
(%) 

Dataset Data type Description Sample 
size (n) 

Overall 
prevalence  

Low 
intensity  

Moderate 
intensity  

High 
intensity 

1 
Uganda 
longitudinal 
baseline to year 3 

Full longitudinal 
data set 747 43.0 16.6 11.4 15.0 

2 
Uganda 
longitudinal 
baseline to year 3 

4 Ugandan 
districts out of 7* 400 46.5 15.5 12.3 18.8 

3 
Uganda cross-
sectional baseline 
to year 3 

Varying sample 
size per year, full 
programme data 

Baseline: 
4,222 
Year 1: 3,973 
Year 2: 4,192 
Year 3: 3,373 

45.2 16.0 11.7 17.6 

4 Mali longitudinal 
baseline to year 2 

Full longitudinal 
data set 897 26.5 12.5 7.1 6.9 

* These districts were selected for their wide range of infection intensities and NOT used for the development of matrix C 
(see Table 3.4).  
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Table 3.4. Markov transition probability (MTP) matrices developed from Uganda data (and its various subsets) 
and Mali.  

MTP 
matrix 

Country Number of 
districts 

Time points used to 
develop matrix 

Sample size (n) 

A Uganda 7 Baseline and year 1 1,245 

B Uganda 7 Year 1 and year 2 1,260 

C Uganda 3 Baseline and year 1 540 

D Mali - Baseline and year 1 1,092 

 

 

Table 3.5. Uganda data subset information for Uganda dataset 2 and matrix C. *Mayuge, Bugiri, Hoima and 
Nebbi were used to test the predictive capacity of the model.  

District Sample size (all 
years followed) 

Sample size followed from 
baseline- year 1 (matrix C)* 

Intensity groups present 
in each district 

Moyo 142 217 Low 
Mayuge 85 - Low/High 
Masindi 69 128 Med/High 
Bugiri 110 - Low/High 
Busia 142 204 Low/Med 

Hoima 99 - Low/Med/High 
Nebbi 110 - Low/Med/High 
Total 757 549 - 

 

In summary, four matrices (A-D) were developed: A–C from Uganda and D from Mali.  These were 
tested on four datasets (1-4, Table 3.3): 

• Dataset 1 comprises the full longitudinal cohort data from Uganda;  

• Dataset 2 comprises a subset of dataset 1 using districts not used to parameterize matrix C (as an 

independent matrix from a subset of the country data;  

• Dataset 3 comprises cross-sectional data across all years from Uganda, and;  

• Dataset 4 comprises data from Mali, which acted as a completely independent dataset.   

Matrix A was an ‘ideal’ scenario where longitudinal baseline and year 1 data from a large programme 

were available to parameterize the model and develop the TPs.  The TPs were assumed to be fixed 

throughout the years.  In practice, since changes between intensity groups are likely to be more 

dramatic after the first treatment in a treatment-naïve area, matrix B was developed using TPs from 

post-baseline treatment, between year 1 and year 2.  The use of matrix C predictions on dataset 2 is 

an illustration of a scenario where an ‘independent’ matrix might be used, calculated from a smaller 

dataset, to estimate changes on a ‘separate’ smaller dataset (dataset 2) that is not used to develop 
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the TPs.  Matrix D illustrates a case where longitudinal data from another country are used to develop 

the TPs (Mali) to predict changes in prevalence in a separate country (Uganda).   

In the following sections a distinction is made between ‘estimation’ (the estimated TP values), 

‘prediction’ (the model outputs), 95% prediction intervals (95% PIs, constructed as described above), 

and 95% confidence intervals (95% CIs) around the data (calculated as binomial proportion confidence 

intervals).  As a conservative approach to the qualitative model assessment, the focus is on the ability 

of the models to capture the observed point prevalence values within the 95% PIs whilst also 

highlighting whether the 95% PIs of the model encompass the 95% CIs of the observed data.  

 

Matrix and dataset combinations 

Matrix A, datasets 1, 2, 3, 4 

Matrix A was calculated using all 1,245 individuals that were followed from baseline to year 1 in the 

Uganda dataset.  Dataset 1 contains 747 of these individuals who were followed for a further three 

years (lower numbers due to follow-up loss).  Therefore, it is expected that Matrix A provides the most 

accurate predictions on dataset 1.  In addition, to test how the model performed with smaller sample 

sizes, less complete data, and other data types, selected districts (dataset 2) and cross-sectional data 

(dataset 3) were used.  To test how the model performed using matrix A on a completely independent 

dataset, longitudinal data from Mali (baseline to year 2; dataset 4) were used.  

Matrix B, datasets 1, 2, 3 

It is important to understand how the model and its outputs differ between two different time points 

within the same settings, since the model explicitly assumes that the TPs remain constant.  In addition, 

this would be a way of ‘updating’ the TPs as they become available to the model users.  To explore 

this, instead of using the baseline and year 1 data to calculate the TPs for the matrix, data derived 

from follow-up years 1 and 2 were used from the full Uganda dataset (matrix B).  The outputs from 

these TPs were compared to the observed values from datasets 1–3. 

Matrix C, datasets 1, 2, 3 

A comparison was made between model outputs using smaller sample sizes for situations in which 

fewer data are available to parameterize the TPs.  This was achieved by selecting district-level subsets 

of the data for calculating TPs.  The predictions were also tested against dataset 1 (longitudinal Uganda 

dataset) to represent a case where limited data would be used for the development of the TPs to 

project the expected impact of a much larger programme.  In addition, to test the least favourable 
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data scenario, in which there are very high levels of follow-up loss, the model was also used to 

estimate changes in the proportions infected according to cross-sectional data, i.e. small sample size 

for TP development and poor follow-up to test the model (dataset 3). 

Matrix D, dataset 1 

Transition probabilities developed from the Mali baseline and year 1 data (Matrix D) were used to 

predict the longitudinal Ugandan dataset (dataset 1).  This was performed by way of testing model 

performance when a dataset other than the Ugandan data are used for calculation of the TPs.  This 

addresses issues on the generalizability of the MTP approach among endemic settings.  

 

3.3 Results 
 

We focused on the ability of the models to capture the observed point prevalence values (and 

accompanying uncertainty) within the 95% PIs.  Where the upper or lower bounds of the 95% CIs 

overlapped with the model predictions (or their 95% PIs) only, the model was deemed to capture the 

estimates within the bounds of their associated uncertainty, but not the point prevalence.  

1. Predictions made on dataset 1 (Uganda full dataset) 

Table 3.6 shows all the predictions that were made for dataset 1.  The symbol ɤ next to the values 

highlights predictions that were closest to the observed point prevalence values and the values in bold 

highlight predictions where the observed point prevalence estimates fell outside the 95% PIs; in most 

cases however, the model predictions were consistent with the uncertainty around the estimated 

values (10 cases out of 13 shown in bold). 

All of the predictions from each matrix captured the observed point prevalence values within their PIs 

for the prevalence of low-intensity infection in each year with the exception of matrix D (the Mali 

dataset) - year 1 and marginally for year 2 -  and for the prevalence of high-intensity infection with the 

exception of matrix C (Uganda data subset) in year 3, although in both cases the 95% PIs and the 95% 

CIs overlapped.  When using the TPs derived from matrix A (the full Ugandan dataset) to predict 

forward the reduction in overall infection prevalence as well as in the prevalence of all infection 

intensity groups, the outputs matched the observed data within the 95% PIs for all time points with 

the exception of the moderate intensity group and the overall prevalence for year 2 (Figure 3.3 and 

Table 3.6), which indicated that the observed prevalence of each infection intensity group was below 
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the lower bound of the prediction intervals of the estimated prevalence.  However, in both instances, 

the model captured the 95% CIs of the observed values. 

As with matrix A, matrices B (Appendix 2, Figure A1a) and D (Figure 3.4) also ‘highlighted’ year 2 for 

both prevalence of moderate infection intensity and overall prevalence as a year in which observed 

values fell below 95% PIs (with matrix B capturing the upper 95% CI around the data, as with matrix 

A).  Matrix C, however, did not highlight any of the same time points identified by the other matrices 

but instead highlighted different years in the moderate intensity, high intensity and overall prevalence 

groups as time points in which observed point prevalence levels were higher than predicted by the 

model (Appendix 2, Figure A1b). 

 

 

Figure 3.3. Matrix A predictions alongside dataset 1 observations.  Matrix A was composed of transition 
probabilities calculated from Uganda baseline and dataset 1, representing the full longitudinal Ugandan 
observations.  These four plots show the predicted reduction in prevalence by Matrix A (coloured outline with 
bands representing 95% PIs) vs observed (black points with vertical lines representing 95% CIs) in Uganda by 
overall prevalence group and by prevalence of intensity group.  The dashed horizontal lines represent the pre-
intervention prevalence values. 
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Figure 3.4 Matrix D predictions and dataset 1 observations.  Matrix D was composed of transition probabilities 
calculated from Mali baseline and year 1 data and dataset 1 represents the full longitudinal Ugandan 
observations. These four plots show the predicted reduction in prevalence by Matrix D (coloured outline with 
bands representing 95% PIs) vs observed (black points with vertical lines representing 95% CIs) in Uganda by 
overall prevalence group and by intensity group.  The dashed horizontal lines represent the pre-intervention 
prevalence values. 
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Table 3.6. Predicted mean prevalence by matrices A-D for dataset 1 (full longitudinal Ugandan observations).   

Bold = observed values fell outside of the predicted boundaries; ˠ = closest predictions to observed values 

 

2. Predictions made on dataset 2 (data from selected districts) 

Table 3.7 shows the predictions that were made for dataset 2 (see also Appendix 2, Figure A2).  All 

three matrices in this group indicated the same time point for the prevalence of low-intensity infection 

category (year 3) and the overall prevalence group (year 1 and year 3) as performing below the 

expected values, i.e. higher observed point prevalence values than predicted (although matrix A also 

identified year 2 for better programme performance than expected, for overall infection prevalence).  

The same pattern in predicted vs. observed prevalence from dataset 1 by all matrices was observed 

for the prevalence of moderate-intensity infection group for all time points, except for year 3 for 

matrix B, which mirrored matrix C estimates.  Matrices A and B performed similarly as in dataset 1 for 

the high intensity group (i.e. all observations at each time point were within the prediction intervals 

of the model predictions) but matrix C indicated that the observed prevalence values from years 1 and 

2 were marginally higher than expected.  Matrix A predictions were consistent with the uncertainty 

associated with the point estimates in all 12 observed values of dataset 2; matrix B was consistent 

with 10 out of 12 and matrix C was consistent with 9 out 12. 

 

 

 
Low intensity (predicted 

mean prevalence and 95% 
CI) 

Moderate intensity 
(predicted mean prevalence 

and 95% CI) 

High intensity (predicted 
mean prevalence and 95% 

CI) 

Overall prevalence 
(predicted mean prevalence 

and 95% CI) 

Matrix Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 
Observed 

prevalence 
dataset 1 

0.134 
(0.111-
0.160) 

0.099 
(0.080-
0.123) 

0.102 
(0.082-
0.126) 

0.075 
(0.058-
0.096) 

0.021 
(0.013-
0.035) 

0.033 
(0.023-
0.049) 

0.035 
(0.024-
0.051) 

0.016 
(0.009-
0.028) 

0.020 
(0.011-
0.031) 

0.244 
(0.214-
0.276) 

0.137 
(0.114-
0.163) 

0.154 
(0.130-
0.182) 

Matrix A 
Full dataset 

0.142 
(0.123-
0.161) 

0.108 
(0.091-
0.126) 

0.095ˠ 
(0.077-
0.113) 

0.075ˠ 
(0.062-
0.090) 

0.044 
(0.033-
0.056) 

0.033ˠ 
(0.023-
0.045) 

0.044 
(0.033-
0.055) 

0.023 
(0.015-
0.032) 

0.017ˠ 
(0.010-
0.026) 

0.261 
(0.240-
0.282) 

0.175 
(0.151- 
0.200) 

0.144ˠ 
(0.119-
0.171) 

Matrix B 
Uganda 

year 1 to 
year 2 

0.135ˠ 
(0.112-
0.158) 

0.105 
(0.086-
0.126) 

0.090 
(0.072-
0.109) 

0.069 
(0.051-
0.090) 

0.039 
(0.028-
0.051) 

0.028 
(0.019-
0.038) 

0.048 
(0.031-
0.066) 

0.024 
(0.015-
0.036) 

0.016 
(0.009-
0.024) 

0.252ˠ 
(0.225-
0.278) 

0.168 
(0.141-
0.197) 

0.133 
(0.108-
0.160) 

Matrix C 
3 selected 

districts 

0.152 
(0.122-
0.183) 

0.096ˠ 
(0.071-
0.122) 

0.082 
(0.057-
0.108) 

0.045 
(0.027-
0.065) 

0.016ˠ 
(0.008-
0.027) 

0.009 
(0.003-
0.017) 

0.027 
(0.013-
0.043) 

0.011ˠ 
(0.003-
0.021) 

0.008 
(0.001-
0.018) 

0.223 
(0.193-
0.255) 

0.123ˠ 
(0.093-
0.156) 

0.099 
(0.069-
0.132) 

Matrix D 
Mali full 
dataset 

0.165 
(0.141- 
0.190) 

0.122 
(0.100-
0.146) 

0.095ˠ 
(0.073- 
0.117) 

0.081 
(0.062-
0.101) 

0.051 
(0.037-
0.068) 

0.035 
(0.023- 
0.049) 

0.042ˠ 
(0.028- 
0.057) 

0.021ˠ 
(0.012-
0.032) 

0.031 
(0.007- 
0.021) 

0.288 
(0.264- 
0.312) 

0.195 
(0.164-
0.226) 

0.143 
(0.113-
0.175) 
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Table 3.7. Predicted mean prevalence by matrices A-C for dataset 2 (selected Ugandan districts).   

 
Low intensity (predicted 

mean prevalence and 
95% CI) 

Moderate intensity 
(predicted mean 

prevalence and 95% CI) 

High intensity (predicted 
mean prevalence and 

95% CI) 

Overall prevalence 
(predicted mean 

prevalence and 95% CI) 
Matrix Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 

Observed 
prevalence 
dataset 2 

0.158 
(0.125-
0.196) 

0.105 
(0.079-
0.139) 

0.143 
(0.112-
0.180) 

0.100 
(0.074-
0.133) 

0.020 
(0.010-
0.030) 

0.045 
(0.029-
0.070) 

0.055 
(0.037-
0.082) 

0.030 
(0.017-
0.052) 

0.018 
(0.009-
0.036) 

0.313 
(0.269-
0.360) 

0.155 
(0.123-
0.194) 

0.205 
(0.168-
0.247) 

Matrix A  
Full dataset 

0.152ˠ 
(0.133-
0.172) 

0.112 
(0.095-
0.130) 

0.096 
(0.078-
0.115) 

0.085ˠ 
(0.070-
0.101) 

0.048 
(0.036-
0.060) 

0.034ˠ 
(0.024-
0.046) 

0.051 
(0.039-
0.063) 

0.025 
(0.017-
0.035) 

0.018ˠ 
(0.010-
0.026) 

0.289 
(0.268-
0.311) 

0.185 
(0.161-
0.211) 

0.148 
(0.123-
0.175) 

Matrix B 
Uganda year 
1 to year 2 

0.140 
(0.115-
0.166) 

0.109ˠ 
(0.089-
0.129) 

0.092 
(0.074-
0.111) 

0.078 
(0.055-
0.102) 

0.042 
(0.030-
0.055) 

0.029 
(0.020-
0.039) 

0.055ˠ 
(0.035-
0.077) 

0.027ˠ 
(0.016-
0.040) 

0.017 
(0.009-
0.026) 

0.272 
(0.242-
0.302) 

0.178ˠ 
(0.149-
0.208) 

0.137 
(0.111-
0.165) 

Matrix C 
3 selected 

districts 

0.166 
(0.132-
0.199) 

0.099 
(0.075-
0.124) 

0.082 
(0.057-
0.108) 

0.052 
(0.031-
0.075) 

0.018ˠ 
(0.009-
0.029) 

0.010 
(0.003-
0.018) 

0.031 
(0.014-
0.051) 

0.012 
(0.003-
0.023) 

0.008 
(0.001-
0.018) 

0.249 
(0.216-
0.282) 

0.129 
(0.098-
0.162) 

0.100 
(0.070-
0.132) 

Bold = observed values fell outside of the predicted boundaries; ˠ = closest predictions to observed values 

 

 

3. Predictions made on dataset 3 (cross-sectional data) 

Table 3.8 shows the predictions that were made for dataset 3 (cross-sectional observed data).  Figure 

3.5 shows the output obtained from using the matrix A model on dataset 3 and Appendix, Figure A3 

shows the plots corresponding to applying matrices B and C on dataset 3.   

All data points in the low-intensity prevalence group were estimated accurately by each matrix, where 

both the observed point prevalence values as well as their 95% CIs were consistent with the model.  

As with dataset 1, matrices A and B produced similar outputs, with the observed data points and their 

95% CIs predicted by the models, except for year 3, in moderate intensity, high intensity and overall 

prevalence groups.  For matrix C, other than the low infection intensity group, the observed 

prevalence levels in all the other infection intensity groups in all years were greater than the predicted 

range.  
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Figure 3.5. Matrix A (full Ugandan baseline and year 1 transition probabilities) predictions and dataset 3.  Dataset 
3 represents cross-sectional Uganda observations.  These four plots show the predicted reduction in prevalence 
by Matrix A (coloured outline with bands representing 95% PIs) vs cross-sectional observed (black points with 
vertical lines representing 95% CIs) in Uganda by overall prevalence group and by intensity group.  The dashed 
horizontal line represents the pre-MDA prevalence. 

 

Table 3.8 Predicted mean prevalence by matrices A-C for dataset 3 (cross-sectional Ugandan data).   

 Low intensity (predicted 
mean prevalence and 

95% CI) 

Moderate intensity 
(predicted mean 

prevalence and 95% CI) 

High intensity (predicted 
mean prevalence and 

95% CI) 

Overall prevalence 
(predicted mean 

prevalence and 95% CI) 
Matrix Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 

Observed 
prevalence 
dataset 3 

0.150 
(0.139-
0.161) 

0.122 
(0.112-
0.132) 

0.104 
(0.094-
0.115) 

0.085 
(0.077-
0.094) 

0.051 
(0.044-
0.053) 

0.061 
(0.053-
0.070) 

0.059 
(0.052-
0.070) 

0.032 
(0.028-
0.038) 

0.054 
(0.048-
0.062) 

0.294 
(0.280-
0.308) 

0.205 
(0.193-
0.218) 

0.219 
(0.205-
0.233) 

Matrix A 
Full dataset 

0.149ˠ 
(0.130-
0.168) 

0.111ˠ 
(0.093-
0.128) 

0.095ˠ 
(0.078-
0.114) 

0.082ˠ 
(0.068-
0.097) 

0.047ˠ 
(0.035-
0.059) 

0.034 
(0.024-
0.045) 

0.049 
(0.037-
0.061) 

0.024 
(0.016-
0.034) 

0.017 
(0.010-
0.026) 

0.280ˠ 
(0.259-
0.301) 

0.182ˠ 
(0.157-
0.207) 

0.147 
(0.121-
0.173) 

Matrix B 
Uganda year 
1 to year 2 

0138 
(0.114-
0.163) 

0.108 
(0.088-
0.128) 

0.091 
(0.073-
0.110) 

0.075 
(0.053-
0.098) 

0.041 
(0.029-
0.054) 

0.028 
(0.019-
0.039) 

0.052ˠ 
(0.033-
0.073) 

0.026ˠ 
(0.016-
0.039) 

0.017 
(0.009-
0.025) 

0.265 
(0.235-
0.295) 

0.174 
(0.146-
0.205) 

0.136 
(0.110-
0.163) 

Matrix C 
3 selected 

districts 

0.160 
(0.128-
0.193) 

0.098 
(0.074-
0.123) 

0.082 
(0.057-
0.108) 

0.050 
(0.029-
0.072) 

0.017 
(0.008-
0.029) 

0.009 
(0.003-
0.018) 

0.030 
(0.014-
0.049) 

0.011 
(0.003-
0.022) 

0.008 
(0.001-
0.018) 

0.240 
(0.208-
0.273) 

0.127 
(0.096-
0.159) 

0.100 
(0.070-
0.131) 

Bold = observed values fell outside of the predicted boundaries; ˠ = closest predictions to observed values 
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4. Predictions made on dataset 4 (Mali full dataset) 

Figure 3.6 and Table 3.9 show the model outputs when Ugandan TPs were used to estimate changes 

in the longitudinal data from Mali.  The results show that the model predictions match the changes in 

prevalence closely, with only year 2 observations from the low and high infection intensity groups 

falling outside of the prediction intervals, yet consistent with the uncertainty associated with the point 

estimates.  The low intensity year 2 prediction shows an increase in prevalence, but inspection of the 

high intensity group shows that this may be due to individuals moving from the higher infection 

intensity groups to the low intensity and the non-infected group.  Appendix 2, Figure A4 also shows 

the output obtained when applying Matrix D to dataset 4, where all data points were consistent with 

the model except for year 2 in the low intensity group.  In all years however, the results of matrix D 

were consistent with the 95% CIs of all observed data points.  

 

 

Figure 3.6. Matrix A (Uganda baseline and year 1 transition probabilities) predictions and dataset 4. Dataset 4 
represents full longitudinal Mali observations.  These four plots show the predicted reduction in prevalence by 
Matrix A (coloured outline with bands representing 95% PIs) vs observed (black points with vertical lines 
representing 95% CIs) in Mali by overall prevalence group and by intensity group.  The dashed horizontal line 
represents the pre-MDA prevalence. 
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Table 3.9 Predicted mean prevalence by matrix A for dataset 4 (longitudinal Mali data). 

 
Low intensity 

(predicted mean 
prevalence and 95% CI) 

Moderate intensity 
(predicted mean 

prevalence and 95% CI) 

High intensity 
(predicted mean 

prevalence and 95% CI) 

Overall prevalence 
(predicted mean 

prevalence and 95% CI) 
Matrix Year 1 Year 2 Year 1 Year 2 Year 1 Year 2 Year 1 Year 2 

Observed 
prevalence 
dataset 4 

0.113 
(0.094-
0.135) 

0.122 
(0.102-
0.145) 

0.052 
(0.040-
0.069) 

0.036 
(0.025-
0.050) 

0.023 
(0.015-
0.036) 

0.008 
(0.004-
0.016) 

0.188 
(0.164-
0.215) 

0.165 
(0.142-
0.191) 

Matrix A 
Full dataset 

0.112 
(0.095 -
0.129) 

0.096 
(0.079 -
0.115) 

0.049 
(0.039 - 
0.059) 

0.035 
(0.025 -  
0.046) 

0.027 
(0.020 - 
0.035) 

0.018 
(0.011 -  
0.027) 

0.188 
(0.169 - 
0.207) 

0.149 
(0.126 -
0.174) 

Bold = observed values fell outside of the predicted boundaries; ˠ = closest predictions to observed values 

 

3.4 Discussion 
 

The primary aim of this work was to develop a quantitative tool to help programme managers to 

monitor and evaluate the progress of their schistosomiasis interventions and determine whether they 

are meeting their targets.  For this, a Markov model was developed, parameterized and validated by 

the candidate using an extensive longitudinal dataset of S. mansoni infection in Ugandan children 

treated yearly with PZQ.  Additionally, to test the robustness of the model predictions in a completely 

different setting, model predictions were compared against data from comparable school-aged 

children from the national control programme in Mali.  The focus was on the ability of the models to 

capture the observed point prevalence estimates.  It is anticipated that programme managers will be 

able to use their own baseline and year 1 data to predict changes in infection prevalence in subsequent 

years of the same programme, as this is the scenario where the model performed best. 

This work demonstrates that the Markov modelling approach is useful when making (relatively short-

term) predictions on infection trends with large datasets from which a subset has been used to 

parameterize the model (as seen by matrix A vs dataset 1 and matrix D vs dataset 4).  Smaller datasets 

from programmatic settings will likely produce less accurate results in practice due to sampling effect 

and transient factors (for example influx of groups of fishermen or a longer rainy season than usual), 

having a larger impact on the prevalence outcomes.  Further studies would be required to determine 

if smaller datasets from a research setting (rather than programmatic setting) can be used to make 

predictions.  

Additionally, the model performs adequately when using independent data from another country for 

parameterization and when predicting cross-sectional data.  These results are particularly noteworthy 

since the majority of sentinel site survey data tend to be cross-sectional in design given the logistical 
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and financial advantages of this approach to sampling.  Matrices A (baseline and year 1 Uganda full 

dataset used to parameterise the model) and B (year 1 and year 2 used to parameterise the model) 

performed similarly.  It is important to test the performance of the model using data from a different 

country as this is one scenario for which a programme manager may use this model. For this reason, 

data from Mali (dataset 4) were used to both separately test the model with Ugandan TPs (matrix A) 

and parameterize the model (baseline and year 1 data for matrix D).  Both models were able to predict 

a large majority of data points within the estimated 95% PIs, in both cases.  Conversely, matrix C (using 

data from selected districts in Uganda) performed least well.  However, it is not possible to determine 

how the trends would continue without further data; therefore, this study is limited to the data that 

were available at the time of analysis.  

In its current form, the model is a useful tool for programme managers, provided they have the data 

available for parameterisation of the model (ideally with respect to the local setting for optimal 

predictions), and is particularly useful for the interpretation of data from low and high infection 

intensity areas where all of the models performed best.  This is ideal for programmes preparing to 

move from control of morbidity to interruption of transmission and elimination of infection (more 

feasible in low infection intensity areas) or to elimination of schistosomiasis as a public health problem 

(more severe in high infection intensity areas).  The use of data from Mali for parameterization to 

predict changes in Uganda and vice versa (Figures 3.4 and 3.5) illustrated that the model could be 

considered useful for predicting prevalence changes in countries where the same data were not used 

for parameterizing the model.  Additional analyses using data from other countries would be useful 

to test this further.  

These models are aimed to be a tool to aid programmatic decisions and stimulate further investigation 

when needed rather than be used as a precise prediction of likely impact.  Therefore, it is hoped that 

this heuristic technique may be useful for programme managers as a quick and simple means of 

assessing the progress of programmes.  However, as seen by the results concerning dataset 4 (Mali 

longitudinal cohort), it is important to interpret the data for all four infection intensity groups 

together, since an observed increase in the low infection intensity group compared to model outputs, 

may likely be linked to a corresponding decrease in the proportion of the heavier infection intensity 

groups.  The precise change in infection patterns following treatment will depend on a multitude of 

factors related to programmatic design and performance.  These will include therapeutic coverage 

and treatment adherence, which in turn will be related to other programmatic variables, such as the 

performance of the drug distribution teams, the accuracy of census data (for calculating coverage), 
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and the effectiveness of social mobilization techniques, among others.  Identifying the respective 

impact of each of these factors is beyond the scope of the work presented in this chapter.   

Limitations 

Despite its advantages, the limitations of the Markov approach must be understood if it is to constitute 

a useful programmatic tool.  The model employed in this study is referred to as a time-homogenous 

Markov process[157], which assumes that the TPs remain constant through time.  It is also assumed 

that they are invariant with respect to setting (endemicity, geographic location etc.) and host age 

group.  This may not hold for long-term projections as interventions (in this case MDA) are likely to 

have an impact on the transmission environment.  For these reasons, such models may indicate 

‘abnormalities’ in the observed datasets because of inevitable or expected changes over time; 

therefore, the usefulness of the approach resides in its value as an additional tool for monitoring and 

evaluation and short-term projection rather than a definitive tool for longer-term projections and 

strategic design of interventions.  The data used to validate and test the models are primarily from 

SAC, since most schistosomiasis interventions focus on this age group [34,47,112,148–151].  

Therefore, the models do not consider the broader impact of MDA on the entire community via the 

indirect (herd) effects on transmission that result from reducing the force of infection, which is where 

mechanistic transmission models can play an important role as they are able to incorporate these finer 

important parameters [77,138,140,158].  Moreover, the method also implies that the same 

intervention is used each year using the same treatment schedule, not accounting for complementary 

interventions that may be implemented, such as those relating to sanitation or education, increase in 

public awareness that may accompany the progression of a control programme, or changes in the 

frequency and/or coverage of MDA.  The model is based on a closed system and, therefore, assumes 

no population migration or extraneous introduction of new infections.  This is an important limitation 

for mobile communities that may comprise so-called super-spreading individuals (such as fishermen 

or bicycle washers for example) who contribute disproportionately to community-wide transmission 

and who may be more likely to miss treatment.  However, this is also a general limitation of most 

helminth mechanistic transmission models, which rarely consider the spatial aspects of transmission. 

 

Further work and conclusion 

With these limitations in mind, this work demonstrates that using constant TPs from the same dataset 

or from different datasets provides a satisfactory prediction of data on the overall prevalence of 

infection and the prevalence of high-, moderate- and light-intensity infections for up to three follow-

up years.  This method could also be extended to S. haematobium, adapting the model to the different 
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WHO intensity classes for this species (defined as 1-50 eggs/10ml of urine as light intensity and >50 

eggs/10ml of urine as heavy intensity, with no moderate intensity group)[36,99] as well as to 

S. japonicum and S. mekongi.  In the case of S. japonicum, the transmission dynamics among multiple 

definitive hosts would potentially pose less of a problem to this modelling approach when compared 

to other models that do not take into account the zoonotic reservoir, as the TPs calculated from the 

initial data would implicitly include all of the transmission-related processes occurring between the 

two time points [159–161].  This work could also be expanded further by comparing different TPs 

estimated from other datasets.  In addition, the models could be adapted to make longer-term 

predictions (since the present work is focussed on short-term changes of 1-3 years post-baseline due 

to the stationary TP limitation), using datasets spanning longer periods and incorporating MDA 

coverage information.  These extensions could, in principle, be captured using multiple TPs based on 

existing data of varying treatment coverage, or the possibility of having dynamic TPs that change with 

time or are simply updated as new data become available (developing new TPs from the more recent 

followed cohort).  The use of year 1 to year 2 TPs in this work illustrated the potential for updating TPs 

as the programme progresses to estimate changes in subsequent years.  This would overcome the 

constraints imposed by using baseline and year 1 data only, for projecting over long-running 

programmes.   

 

The results from this study show that this is not only a promising instrument for programmes in their 

early years of implementation as a complementary M&E and advocacy tool, but also a useful 

quantitative approach for making short-term projections of prevalence trends under interventions. 

 
 

 

 

 

 

 

 

 

 

 



77 | P a g e  
 

CHAPTER 4. WHAT IMPACT HAS OVER A DECADE OF TREATMENT HAD ON AGE-
INFECTION PROFILES FOR SCHISTOSOMIASIS IN UGANDA? A DESCRIPTIVE STUDY 
 

An adapted version of this chapter has been submitted for publication, entitled, “What impact has over 

a decade of preventive chemotherapy had on age-infection profiles for schistosomiasis? A case study 

in Uganda.” 

Additionally, a subset of the data generated for this chapter was used in a book publication: Advances 

in Parasitology Volume 94, Pages 1-430 (2016) “Mathematical Models for Neglected Tropical Diseases 

Essential Tools for Control and Elimination, Part B”, Edited by Maria Gloria Basáñez and Roy M. 

Anderson [162].  The book chapter (Chapter 4) is entitled: “Studies of the Transmission Dynamics, 

Mathematical Model Development and the Control of Schistosome Parasites by Mass Drug 

Administration in Human Communities.” 

4.1 Introduction 

Morbidity is traditionally hypothesized to be directly related to the intensity of schistosomiasis 

infection [163].  Parasite eggs, as counted in an individual’s stool or urine, are used as an indirect 

measurement of infection intensity (worm burden) during routine monitoring and evaluation (M&E) 

programmes.  However, the relationships between excreted eggs and worm burden and between 

excreted eggs and morbidity are poorly understood [164,165].  Nonetheless, the primary aim of a 

control programme is to reduce and prevent morbidity from schistosomiasis, through repeated 

preventive chemotherapy (PC) in school-aged children (SAC) and other high-risk groups to reduce 

worm burden, using praziquantel (PZQ)[22,23], since the most heavily infected individuals tend to 

experience the highest morbidity (see Chapter 1, Section 1.2.1 for a comparison of WHO’s egg count-

intensity thresholds for each schistosome species)[36,98]. 

The current WHO targets for schistosomiasis (Chapter 1, Figure 1.7) are to achieve: 

• Control of morbidity (defined as <5% prevalence of ‘heavy’ infection averaged across all sentinel 

sites) in all endemic areas by 2020; and  

• Elimination as a public health problem (<1% prevalence of heavy infection in all sentinel sites) by 

2025; and 

• Elimination of transmission (incidence of infection reduced to zero) expected in many regions by 

2025 [99].   
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School-aged children, whether or not attending school, often harbour the highest prevalence and 

intensity of schistosome infections.  This typically decreases with age, possibly due to a combination 

of factors such as decrease in exposure, the onset of puberty (i.e. impact of host hormonal changes 

on parasite metabolism, skin thickness on cercariae penetration) and the slow emergence of acquired 

immunity [22,29,34,46,49,50,99,150,166].  The aim of this chapter is to describe the change in shape 

of the full age-infection pattern at different population stratifications in response to multiple rounds 

of treatment.  

With 2020 and 2025 on the horizon, there is an increasing need for researchers, governments, and 

the global health community to help drive schistosomiasis programmes towards success.  With this in 

mind, there is a need for high-quality M&E of control programmes and research-based evidence of 

progress made using current WHO treatment strategies (Chapter 1, Figure 1.7).  One method for 

gathering empirical evidence is through the collection of age-infection (prevalence and intensity) 

profiles.  Age-infection profiles in parasitology can provide a picture of temporal patterns of infection 

across all age groups during an intervention.  Additionally, they can be used to calibrate and validate 

mathematical models of transmission [46,167].  However, very few studies to date have collected 

infection information from a large sample across all host age groups to understand the impact of 

control programmes (Chapter 1, section 1.2.1)[140,165,168], due predominantly to the costly, time 

consuming and logistically challenging nature of the task.  Moreover, it has been assumed that 

parasitological data from SAC provide a proxy for infection in the wider community (e.g. low 

prevalence and intensity levels in SAC indicates low prevalence and intensity levels in the rest of the 

community).  Though this assumption targets the most at-risk individuals in a community with often 

limited resources available to the programmes, it provides only a restricted perspective of the true 

picture as patterns in high risk adults and pre-school-aged children (PSAC) may differ due to the high 

heterogeneity of infection. 

This chapter aimed to collect detailed parasitological data in Uganda across all age groups, to produce 

accurate age-infection across three years of MDA (2014-2016), after more than a decade of treatment 

with PZQ through the control programme [35].  Ten sites were selected, stratified by their endemic 

prevalence (following WHO prevalence categorisation [Chapter 1, Figure 1.7], determined from 

baseline mapping results, Chapter 1, Section 1.5) and history of PZQ treatment.  The outcomes of this 

analysis will help to understand how the patterns of infection have changed over the course of PC 

years and provide policy makers with a snapshot of the journey towards the 2020 goals.  
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4.2 Methods 
 

For Research Objective 3, SCI and WHO sample collection protocols (Figure 4.1) were used to carry 

out the fieldwork in Uganda, where the candidate trained and supervised 10 teams annually for 3 

years.  The parasitological survey was carried out in ten sites each year, over a period of 3 years.  It 

was important to move between teams, contributing to the sample collection as well as to ensuring 

quality and consistency between teams, addressing any concerns or obstacles that the teams 

experienced.  In addition, a quality control staff member travelled between teams, re-examining 10% 

of the slides for quality control (where slides would be re-read from the day if there was a large 

discrepancy between quality-controller readings and technical readings).  In the second year, the 

candidate supervised a volunteer (Elizabeth Hollenberg) who recruited a local team of volunteers and 

conducted a social survey in one of the sites (publication in progress but not part of this PhD).  The 

aim was to understand behavioural patterns, duration of residence at site and general schistosomiasis 

understanding in the same individuals from the parasitological survey.  Additional data (not included 

in this PhD) on soil-transmitted helminthiases (STH) were also collected using the same samples and 

diagnostic tool (Kato Katz) for the parasitological survey.   

 

4.2.1 Fieldwork preparation  
 

Fieldwork preparation was a lengthy process requiring the input of various departments and teams at 

SCI, Imperial College London, and the Uganda MoH.  Ethical approval was received during protocol 

development from Imperial College London and the Uganda MoH.  A detailed budget was drawn up 

for the activities (Appendix 1) and a contract between SCI and the MoH was developed and signed.  

Uganda was chosen as the survey country because it has the longest running programme at SCI, with 

detailed treatment history and baseline mapping results [140,145–147].  Additionally, the MoH Vector 

Control Division staff are highly skilled at fieldwork and have access to additional technical staff from 

Makerere University. 

Parasitological forms were developed for the field technicians and consent forms were developed for 

the participants, which contained information about the study and why their samples were needed 

(Appendix 1).  For SAC, the consent forms were signed by the school head-teacher if sampled at school, 

or by the parent/guardian if the child was sampled outside of the school, and each child also provided 

verbal consent.  All adults signed their own forms, and for pre-school aged children (PSAC) 

parents/guardians signed the forms, allowing the collection and use of their stool sample and 
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information in the study.  The survey was designed to take place approximately one month prior to 

the mass drug administration (MDA) round and infected individuals were informed of their infection 

status and advised to seek treatment during the MDA campaign.   

The equipment was procured as per budget (developed by the candidate, using standard costs from 

SCI’s routine surveys); funds were transferred from SCI to the MoH and the district health officers 

(DHOs) were all contacted to help prepare the teams for the specific sites.  For the parasitological 

survey, the SCI forms used in routine impact surveys were modified (to incorporate additional 

questions on occupation or school class, whether the participants had taken part in the survey the 

previous year, whether they were attending school, and whether they had taken treatment the 

previous year) and used for this survey.   

Sample selection plan and characteristics 

A sample size of 750 individuals per site was chosen to provide representation across all age groups, 

with a total of 7,500 individuals sampled each year of the survey (Table 2.1).  The 6-9-year age group 

was also the age group targeted by the national control programme’s impact survey, so it was initially 

planned that the same children in this age group be used as part of the survey (hence the sample size 

of 125 individuals).  In practice, this was not logistically feasible as the teams for this survey would also 

be required for the impact survey, so it was not possible for the two activities to take place at the 

same time.  The standard SCI method of sampling individuals from the same age group (calculating 

sampling intervals and selecting the individual in line corresponding to the sampling interval, and then 

selecting the next individual from there at the sampling interval and so on, until the required sample 

size is reached) was not used.  An attempt was made to recruit the entire population of these age 

groups at the sites, as the sites were relatively small, thus this was a form of convenience sampling 

(which can introduce sampling bias as well as risk the sample not bring representative of the target 

population).  Where there were insufficient individuals in an age group from one site, further 

participants were sought in neighbouring areas close to the same water-sites, provided they fulfilled 

the same endemic group requirements and fell within the same treatment schedule.  

Table 4.1 Age categories and number of individuals targeted (per survey site) 

Age 
category 
(years) 

0-3 4-5 6-9 10-12 13-15 16-19 20-29 30-39 40-49 ≥50 TOTAL 

Sample 
(per site) 50 50 125 75 75 75 75 75 75 75 750 

Total in 
survey 

(per year) 
500 500 1250 750 750 750 750 750 750 750 7500 
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4.2.2 Fieldwork methods 
 

Ten field teams were assembled, each consisting of the following: 

• 3 senior microscopists from the MoH (one acting as team leader) 

• 1 junior microscopist/field assistant/sample collector and processor (to contribute to in-

country capacity building, from Makerere University)  

• 1 sample collector and processor 

• 1 district health officer (DHO, local to each survey site) 

• 1 experienced field driver 

The equipment was procured and distributed to the ten teams.  Training was conducted by the 

candidate, over two days in the first year, and over one day in the second and third years (as only a 

refresher was required).  In the first year, the candidate accompanied one team over the whole 

duration of the survey (~6 weeks), whilst staying in phone communication with the other teams, to 

deal with any unforeseen and systematic challenges and assist the teams.  Challenges encountered 

included not being able to obtain sufficient numbers of young adolescent males as they were working 

in the lakes and farms.  This was mitigated by sending members of the team further away from the 

centre of the site to recruit them.  In years two and three, it was essential to move between teams to 

ensure consistency between them.  Table 4.2 shows the sites of the survey by village level, sub-country 

level and district level, by WHO prevalence category of schistosomiasis (determined at baseline 

mapping, see Chapter 1, section 1.4.2 and Figure 1.7) and Figure 4.2 shows the geographic location of 

the sites.  

The ten sites consisted of three “high endemic” sites (which had received more than five rounds of 

treatment of SAC and high-risk adults) and seven “low endemic” sites as defined by the WHO at the 

time of the mapping stage [36].  The low endemic sites were further grouped into “low, treated” 

(having received more than five treatment rounds in SAC, becoming low endemic through these 

rounds of treatment) and “low, untreated” (sites untreated prior to the 2014 survey, after which they 

received annual treatment of SAC).   
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Figure 4.1 The Kato-Katz procedure as per World Health Organization guidelines [169]. 

 

 

 

 

 

 

 

 

 
Preparation night before: 

• Cut black bin bag into pieces (for stool samples) 
• Cut cellophane into pieces (to be used as cover slip for slides) and place into jar. 
• Prepare and pour methylene blue glycerol solution into jar containing cellophane strips, leave overnight. 

 

 
1. Label slide with IDs (write on pieces of masking tape). 
 
2. Using a spatula take small amount of faeces from the 

fresh sample and place on the sieve. 

 
 

3. Scrape the flat-sided spatula across the lower surface of 
the sieve to collect the sieved faeces. 
 

4. Add faeces from spatula so that hole of template on slide 
is completely filled. 

 

 

 
5. Remove template carefully so that sample of faeces is 

left on slide. 
 

6. Cover faeces with pre-soaked cellophane strip. 

      

 
7. Invert the microscope slide and firmly press the faecal 

sample against the cellophane strip on a smooth hard 
surface (such as on a newspaper on the table). 
 

8. Carefully remove the slide by gently sliding it sideways to 
avoid separating the cellophane strip. 
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Figure 4.2. Geographical locations for the ten Ugandan survey sites categorised by schistosomiasis baseline 
mapping endemicity level and treatment group. 

 

 

Table 4.2. WHO endemic group by district, survey site (sub-county) and school where the survey was based.  

WHO endemic group District Survey site (sub-county) Survey base (school) 

Low endemicity 
Treated >5 times 
(4 sub-counties) 

 

Mubende Kasambyaf Muyinayina p/s 
Dokolo 

 
Kangaif Adeknino 
Agwataf Abwola 

Kamuli Balawolif Nabitalo 

Low endemicity 
Untreated 

(3 sub-counties) 

Kumi Onginof Akide P/S 
Pallisa Agulef Bukaade P/S 
Luuka Bukangaf Odusai P/S 

High endemicity 
Treated >5 times (3 sub-

counties) 

Bugiri BulidhaÑ Wakawaka P/S 

Mayuge 
KigandaloÑ Musubi Church of God P/S 
WairasaÑ St. Jude Musoli 

f These sites received biennial treatment for school-aged children (SAC). Ñ These sites received treatment annually in SAC 
and high-risk adults.  

 

Community Sensitisation 

Two days prior to the survey, teams visited the site and spoke to the village heads and head teachers 

with the assistance of the DHO.  Either the same day, or the next day, a meeting was held for the 

community, where the survey process and consent forms were explained by the team together with 
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the village heads.  The village heads, head teacher and DHO were vital to help encourage recruitment 

of participants for the study.  

Kato-Katz 

For the Kato-Katz method of detection of schistosome and STH eggs, the standard WHO operating 

procedure was used [169].  All of the equipment was washed and reused including the spatulas and 

41.7mg templates, except for the cellophane (placed on top of the slide samples) and the polythene 

stool bag (a black bin bag cut up into squares, which was used for the stool sample, tied with a piece 

of grass).  A washable metal sieve was used for the stool sample.  Slides were prepared and examined 

within 30-45 mins at peak delivery collection, under 5 mins at quieter times.  Figure 2.2 shows the 

step-by-step process the teams carried out for the survey.  All biological materials were then disposed 

of by being burned at the end of the day.  

Parasitological indicators, data collection and entry 

Stool samples from between 7,485 to 7,493 individuals were collected across ten sentinel sites, 

varying in treatment history and underlying endemicity level and collected from approximately the 

same number of females and males.  Egg counts for S. mansoni and STH infection were obtained from 

double Kato-Katz thick smears - with each individual providing two stool samples over two consecutive 

days and each stool providing two slides which was read by two independent field microscopists 

[44,45].  The evenings were used to consolidate the double slide readings from each microscopist onto 

one data sheet and prepare for the next day’s sample collection.  Individuals were requested to return 

to the temporary lab set up at the school to be informed of their infection status.  If they were infected, 

the teams informed them of the date of the oncoming MDA and advised them to seek treatment, and 

the list of infected individuals was also provided to the local health clinic and District Health Officer 

(DHO).  For the untreated sites (where MDA was not to take place), the teams took along a supply of 

praziquantel (PZQ) to treat infected individuals – though infection was very low in these areas.  The 

data were then double-entered into purpose-built MS Excel databases by two independent data-entry 

clerks at the Vector Control Division of the MoH in Kampala, overseen by the senior data manager.  

For the analysis by the candidate, only those individuals that provided all stool samples were included 

in the study (as otherwise, individuals with only one sample would provide less accurate results due 

to the diagnostic insensitivity).  
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4.2.3 Data analysis 
 

For each parasite species, the raw faecal egg counts recorded per slide were converted to eggs per 

gram of faeces (epg) by multiplying by 24 as per standard protocol [44,170]. 

Intensity of parasite infection 

The mean egg count per person, and per age-group, was calculated using the mean egg count across 

the four slides obtained for each parasite species.  The 95% confidence intervals (95% CIs) were 

calculated through bootstrap resampling for 10,000 iterations.  

Prevalence of parasite infection 

The prevalence of each parasite infection for each age category was calculated as a percentage by 

dividing the total number of infected by the total examined and multiplying by 100.  The 95% CIs for 

the prevalence values were also calculated via 10,000 bootstrap iterations.  

The statistical software R version 3.5.0 was used for all analyses [171].  The bootstraps were conducted 

using the R package ‘boot’ version 1.3–20 [152–155]. 

 

4.3 Results 
 

In each year of the study, there were approximately equal numbers of males to females (with slightly 

more females than males), in the study (Figure 4.3).  The following age groups were sampled (years): 

0-3, 4-5, 6-9, 10-12, 13-15, 16-19, 20-29, 30-39, 40-49 and ≥50.  Table 4.3. shows the age distribution 

and the number of samples collected over the study period.   

 

Figure 4.3. Percentage (%) of females and males in each survey year by age group (years).  
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Table 4.3. Age categories and distribution of individuals examined in each year of the survey (2014-2016, all sites 

combined). Children aged 6-9 were purposively oversampled as this is the age group targeted for impact surveys.  

Age category (years) 

Number of individuals in each age 

group 

2014 2015 2016 

0-3 498 495 494 

4-5 506 504 498 

6-9 1254 1247 1257 

10-12 747 750 750 

13-15 746 749 751 

16-19 747 749 748 

20-29 748 749 750 

30-39 745 750 750 

40-49 748 750 737 

>=50 751 750 750 

Total 7490 7493 7485 

 

Between 2014 and 2015, the overall survey level (all study sites combined) prevalence and intensity 

remained relatively stable, although in 2016 both metrics showed a reduction (significantly for 

prevalence at 16.9% [95% CI: 16.08-17.78] and non-significantly for intensity at 86.71epg [95% CI: 

77.93-95.46], Figure 4.4.). 

 

Figure 4.4. Prevalence (blue bars) and mean intensity (measured as eggs per gram of faeces, red solid line) by 
survey year of all sites combined (error bars represent 95% confidence intervals).  
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4.3.1 Prevalence of infection 

The age-prevalence profiles for S. mansoni showed the classic convex patterns as shown by historical 

studies in literature [47,168] (Chapter 1, section 1.2.1), that is, an increase in prevalence from PSAC to 

peak in the SAC population, and declining in adulthood.  

4.3.1.1 Prevalence vs age by survey year (all sites combined)  

The age-prevalence profiles from the 2014 and 2015 surveys were statistically similar, with the 

exception of the 10-12 year olds where the prevalence was 27.44% [95% CI: 25.60-29.20] in 2014 and 

31.47% [95% CI: 29.57-33.38] in 2015 and in the 16-19-year age group where the prevalence was 

25.97% [95% CI: 23.69-28.28] in 2014 and in 2015 was 20.96% [95% CI: 18.77-23.14] (Figure 4.5, Table 

4.4).  In 2016, the prevalence in all age groups showed a reduction (signficantly from 2014 and 2015 

in age groups 6-9 and 10-12) except for the ≥50 age group.  Prevalence peaked in the 13-15 year age 

group at 29.09% [95% CI: 26.99-31.17] in 2014, 10-12 year age group in 2015 at 31.47% [95% CI: 29.57-

33.38] and, as in 2014, peaked in the 13-15 age group at a prevalence of 25.57% [95% CI: 23.62-27.52] 

in 2016.  Prevalence in the PSAC group peaked at 18.85% [95% CI: 16.02-21.64] in the 4-5-year age 

group, in 2015.  

 

Figure 4.5. Age-prevalence profile by survey year (all ten survey sites and treatment histories combined). Error 

bars represent 95% confidence intervals. 
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Table 4.4. Table of prevalence by age category and survey year (all sites and treatment histories combined). 

Grey highlight represents peak prevalence value and values in the square brackets represent 95% confidence 

intervals.  

Age Category 

(years) 

Prevalence (%) 

2014 2015 2016 

0-3 7.63 [5.53-9.74] 8.28 [6.08-10.50] 6.68 [4.65-8.70]  
4-5 15.42 [12.95-17.87] 18.85 [16.02-21.64] 12.45 [10.07-14.84] 

6-9 25.13 [23.72-26.51] 24.70 [23.17-26.24] 20.29 [18.76-21.82] 

10-12 27.44 [25.60-29.20] 31.47 [29.57-33.38] 23.07 [20.97-25.11] 

13-15 29.09 [26.99-31.17] 27.10 [25.05-29.18] 25.57 [23.62-27.52] 

16-19 25.97 [23.69-28.28] 20.96 [18.77-23.14] 20.59 [18.60-22.60] 

20-29 18.18 [15.84-20.57] 18.83 [16.70-20.94] 14.67 [12.50-16.82] 

30-39 18.12 [15.67-20.60] 16.53 [14.29-18.80] 14.67 [12.41-16.91] 

40-49 13.90 [11.78-16.04] 13.87 [11.80-15.93] 12.62 [10.52-14.68] 

>=50 10.39 [8.36-12.41] 12.93 [10.89-15.01] 11.33 [9.31-13.36]  
 

4.3.1.2 Prevalence by WHO endemic group/treatment history 

Here we assess age-prevalence curves with sites categorized by WHO endemic site and treatment 

history (Table 4.5 and Figure 4.6).  In 10-12 year olds, the peak prevalence reached over 80% in 2014 

and 2015 in the “high” prevalence group (82.74% [95% CI: 77.91-87.63] and 83.56% [95% CI: 78.76-

88.37], respectively, Figure 4.6 top panel).  Treatment in previously untreated areas (Figure 4.6, 

bottom panel) appeared to have a greater impact than continued treatment in low endemic areas 

(Figure 5.4 middle panel) as shown by the reduction in prevalence by almost 10 percentage points in 

2015 and 2016 from 2014 (from a peak of 13.90% [95% CI: 9.99-17.82] in 16-19-year olds in 2014 down 

to a peak of 3.29% [95% CI: 0.53-6.08] in 4-5-year olds in 2015 and 4.00% [95% CI: 1.49-6.49] in both 

30-39- and 40-49-year age groups in 2016).  In the low endemic, treated sites, there was a significant 

increase in prevalence from 2.68% [95% CI: 0.83-4.53] in 2014 to 15.33% [95% CI: 12.27-18.42] in 2015 

in the 10-12-year age group, subsequently decreasing significantly to 4.65% [95% CI: 2.36-6.93] in 

2016.  Prevalence in PSAC peaked in 2015 in the high endemic group, at 25.17% [95% CI: 18.17-32.14] 

in 0-3-year olds and at 50.33% [95% CI: 42.37-58.24] in 4-5-year olds.  In both low endemic categories, 

the prevalence in both PSAC age-groups was below 10%.  
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Figure 4.6. Age-prevalence profiles by WHO endemicity level and treatment history of site and by survey year.  

Note the y-axis scale for the high endemic group where the youngest pre-school aged children in the survey had 

20% or higher prevalence of infection (error bars represent 95% confidence intervals). Note different y-axes 

scales.  
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Table 4.5. Prevalence in each age category by WHO endemicity level of site and survey year. Grey highlights 

represent peak prevalence values and values in the square brackets represent 95% confidence intervals.  

 Prevalence (%) 

Age 
Category 
(years) 

High endemic group Low endemic, treated Low endemic, untreated 

2014 2015 2016 2014 2015 2016 2014 2015 2016 

0-3 
24.83 

[17.96-
31.65] 

25.17 
[18.17-
32.14] 

20.13 
[13.83-
26.44] 

0.48 
[0.00-
1.40] 

2.00 
[0.11-
3.88] 

1.01 
[0.00-
2.40] 

0.70 
[0.00-
2.04] 

0.00 
[0.00-
0.00] 

0.68 
[0.00-
2.00] 

4-5 
49.01 

[41.20-
56.94] 

50.33 
[42.37-
58.24] 

40.00 
[32.25-
47.69] 

1.50 
[0.00-
3.17] 

6.53 
[3.33-
9.76] 

1.00 
[0.00-
2.36] 

0.65 
[0.00-
1.90] 

3.29 
[0.53-
6.08] 

0.00 
[0.00-
0.00] 

6-9 
78.93 

[74.86-
83.03] 

73.33 
[68.93-
77.71] 

64.19 
[59.40-
68.96] 

1.20 
[0.25-
2.14] 

6.61 
[4.64-
8.58] 

2.20 
[0.94-
3.44] 

3.44 
[1.66-
5.21] 

0.00 
[0.00-
0.00] 

0.53 
[0.00-
1.25] 

10-12 
82.74 

[77.91-
87.63] 

83.56 
[78.76-
88.37] 

69.33 
[63.34-
75.33] 

2.68 
[0.83-
4.53] 

15.33 
[12.27-
18.42] 

4.65 
[2.36-
6.93] 

4.48 
[1.74-
7.16] 

0.89 
[0.00-
2.12] 

1.34 
[0.00-
2.84] 

13-15 
80.63 

[75.46-
85.79] 

75.56 
[70.08-
81.09] 

76.00 
[70.59-
81.47] 

4.00 
[1.92-
6.12] 

10.03 
[7.13-
13.02] 

4.35 
[2.18-
6.52] 

11.61 
[7.74-
15.42] 

1.33 
[0.00-
2.82] 

3.52 
[1.20-
5.84] 

16-19 
66.96 

[61.17-
72.81] 

60.8 
[54.47-
67.20] 

62.50 
[56.68-
68.27] 

4.33 
[2.19-
6.50] 

6.33 
[3.70-
8.94] 

3.67 
[1.64-
5.69] 

13.90 
[9.99-
17.82] 

0.45 
[0.00-
1.32] 

1.34 
[0.00-
2.82] 

20-29 
43.18 

[36.78-
49.53] 

57.33 
[50.83-
63.75] 

39.11 
[32.84-
45.27] 

5.90 
[3.37-
8.41] 

3.67 
[1.58-
5.76] 

6.67 
[4.16-
9.23] 

10.31 
[6.70-
13.99] 

0.45 
[0.00-
1.32] 

0.89 
[0.00-
2.11] 

30-39 
40.53 

[34.47-
46.66] 

45.78 
[39.27-
52.32] 

36.00 
[29.76-
42.17] 

8.81 
[5.76-
11.88] 

5.00 
[2.60-
7.40] 

6.67 
[4.12-
9.20] 

7.62 
[4.31-
10.94] 

2.67 
[0.60-
4.75] 

4.00 
[1.49-
6.49] 

40-49 
32.00 

[26.37-
37.65] 

41.78 
[35.45-
48.08] 

35.38 
[29.27-
41.39] 

6.00 
[3.48-
8.47] 

2.67 
[0.88-
4.47] 

3.00 
[1.13-
4.86] 

6.28 
[3.21-
9.33] 

0.89 
[0.00-
2.09] 

4.00 
[1.49-
6.50] 

>=50 
23.77 

[18.33-
29.20] 

39.11 
[32.73-
45.46] 

31.56 
[25.46-
37.60] 

4.33 
[2.12-
6.55] 

2.67 
[0.90-
4.44] 

4.00 
[1.89-
6.13] 

5.26 
[2.45-
8.01] 

0.44 
[0.00-
1.32] 

0.89 
[0.00-
2.09] 

 

4.3.1.3 Prevalence at site level 

Disaggregation into survey site level (i.e. sub-county) highlighted the variation between sites (Figure 

5.5) which explains the patterns observed in Figure 5.4.  For the low endemic, untreated group, one 

of the sites, Bukanga, had a peak prevalence of 38.7% in 2014 in 16-19-year olds whereas the 

remaining two sites peaked at only around 4% (4.1% Agule and 3.9% Ongino), which meant the peak 

in the last panel of Figure 4.6 was heavily driven by Bukanga.  This peak was reduced to <5% in 2015 

and 2016, likely through the first round of PC 2014 (post-survey).  For the low endemic, treated group, 

Balawoli drove the peak observed in the middle panel of Figure 4.6, at 56.0% in 10-12-year olds in 

2015 (reducing to 13.2% in 2016).  The remaining sites remained at low prevalence levels (peaking at 

8.0% prevalence for Kasambya in 2014).   
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For the high endemic group, prevalence was still high (over 80% prevalence in Wairasa in all years) 

despite multiple rounds of historical and on-going treatment.  There was also considerable fluctuation 

of prevalence in the adult groups (>20 years), particularly at Bulidha, highlighting that year-to-year 

variation can be substantial in these age groups. 
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4.3.2 Intensity of infection 

 

The age-intensity profile (Figure 4.8 ) across all sites illustrates the classic convex pattern [47], peaking 

in similar ages to the age-prevalence profiles, but showing a more chronologically consistent reduction 

following treatment. 

4.3.2.1  Overall intensity vs age by survey year (all ten sites) 

Mean infection intensity peaked in the 10-12-year age group in 2014 and in the 13-15-year age group 

in 2015 and 2016 (218.51 epg [95% CI: 168.73-268.77] and 170.50 epg [95% CI: 135.15-205.87], 

respectively).  The mean egg count was 250.80 epg [95% CI: 203.10-298.15] in 2014 which reduced to 

208.25 epg [95% CI: 167.55-249.40] in 2015 and further down to 134.42 epg [95% CI: 102.99-165.96] 

in 2016 (Figure 4.8 and Table 4.6).  Infection intensity fell within the target treatment SAC group (6-15 

years) each year.  In the 20-29 age group and older, infection intensity remained below 100 epg (i.e. 

light-intensity infection).  The mean epg in both PSAC age-groups was below 100 epg.   

 

 

Figure 4.8. Mean age-intensity profile of S. mansoni across all ten survey sites in Uganda between years 2015-

2016 (error bars represent 95% confidence intervals). 
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Table 4.6. Table of mean intensity of infection by age category and survey year. Grey highlight represents peak 

mean intensity value and values in the square brackets represent 95% confidence intervals. 

 Mean intensity (epg) 
Age Category (years) 2014 2015 2016 

0-3 16.86 [3.52-30.08] 20.90 [9.34-32.37] 15.30 [6.76-23.89] 
4-5 27.71 [17.20-38.10] 55.97 [36.89-74.90] 27.92 [16.77-39.19] 
6-9 163.64 [131.89-195.81 125.23 [102.15-147.96] 87.11 [71.57-102.67] 

10-12 250.80 [203.10-298.15] 208.25 [167.55-249.40] 134.42 [102.99-165.96] 
13-15 201.03 [160.48-241.97] 218.51 [168.73-268.77] 170.50 [135.15-205.87] 
16-19 135.38 [100.14-171.51] 97.22 [67.47-127.24] 159.48 [124.23-194.90] 
20-29 30.99 [21.15-40.80] 88.84 [50.01-128.67] 50.88 [31.81-69.79] 
30-39 41.20 [13.98-67.81] 60.72 [44.12-77.41] 50.09 [34.64-65.52] 
40-49 42.20 [20.73-63.42] 61.50 [40.27-82.90] 62.60 [39.60-85.81] 
>=50 20.60 [9.81-31.56] 61.64 [39.99-83.17] 64.08 [38.01-90.37] 

 

 

4.3.2.2 Intensity by WHO endemic group/treatment history 

When disaggregating by WHO endemicity level and treatment history site, it can be observed that the 

infection intensity patterns in the high-endemic sites follow the convex shape more closely than those 

in the low-endemic-treated site (Figure 4.9).  This is likely due to stochastic effects and the 

overdispersed distribution, whereby infection is skewed by a few individuals.  The mean number of 

epg in high-endemic sites peaked at 823.14 epg [95% CI: 667.84-979.79] in 2014 in the 10-12-year age 

group and was ≥ 400 epg between the age groups of 6-9 to 16-19 years inclusive, indicative of heavy 

intensity infection.  The peak intensity in 2015 in the low-endemic treated group closely resembles 

the prevalence trends in the same year in all age-groups (Figure 4.6), peaking in the 10-12 year age 

group at 67.16 epg [95% CI: 26.27-108.14], whereas in the low endemic untreated group, a less 

consistent profile of intensity is evident in 2014 (and peaked in 16-19-year olds in this year at 22.01 

epg [95% CI: 2.13-42.05]).  However, for both low-endemic groups (treated and untreated), the mean 

intensity of infection was maintained below 100 epg, indicating an average low-intensity infection.  

For the PSAC, in the high endemic group the mean intensity of infection peaked in 4-5-year olds, at 

153 epg [95% CI: 100.77-205.66] and remained below 100 epg in all other years and endemic groups, 

in both PSAC age categories.  
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Figure 4.9. Mean Age-intensity profiles of S. mansoni by WHO endemicity level and treatment history of site and 

by survey year (error bars represent 95% confidence intervals).   
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Table 4.7. Mean intensity of infection in each age category by WHO endemicity level and treatment history of 
site and survey year. Grey highlights represent peak mean intensity values and values in the square brackets 
represent 95% confidence intervals.  

 
Mean intensity (epg) 

Age 
Category 
(years) 

High prevalence group Low prevalence treated Low prevalence untreated 

2014 2015 2016 2014 2015 2016 2014 2015 2016 

0-3 
57.52 

[13.41-
102.77] 

68.04 
[29.38-
106.58] 

47.56 
[19.31-
75.69] 

0.23 
[0.00-
0.67] 

1.71 
[0.00-
3.86] 

1.55 
[0.00-
4.04] 

0.04 
[0.00-
0.12] 

0.00 
[0.00-
0.00] 

1.14 
[0.00-
3.36] 

4-5 
92.23 

[57.37-
126.92] 

153.39 
[100.77-
205.66] 

92.08 
[54.76-
129.14] 

0.45 
0.00-
0.98] 

22.97 
[0.00-
47.83] 

0.45 
[0.00-
1.14] 

0.04 
[0.00-
0.11] 

1.11 
[0.00-
2.59] 

0.00 
[0.00-
0.00] 

6-9 
529.34 

[424.71-
634.04] 

390.82 
[314.91-
467.30] 

284.75 
[233.70-
336.64] 

1.19 
[0.00-
2.75] 

19.25 
[9.07-
29.25] 

4.13 
[0.00-
8.71] 

16.16 
[0.00-
38.23] 

0.00 
[0.00-
0.00] 

0.21 
[0.00-
0.53] 

10-12 
823.14 

[667.84-
979.79] 

604.44 
[479.99-
727.83] 

439.23 
[333.96-
544.59] 

0.72 
[0.00-
1.51] 

67.16 
[26.27-
108.14] 

6.28 
[0.97-
11.65] 

4.95 
[0.47-
9.47] 

0.19 
[0.00-
0.50] 

0.46 
[0.00-
1.03] 

13-15 
657.81 

[522.36-
795.27] 

676.37 
[514.27-
839.68] 

558.40 
[438.44-
678.94] 

6.14 
[0.44-
11.91] 

37.51 
[6.91-
67.68] 

6.66 
[0.76-
12.53] 

9.35 
[1.69-
16.86] 

1.17 
[0.00-
2.68] 

1.82 
[0.37-
3.28] 

16-19 
412.51 

[296.79-
528.98] 

318.91 
[218.92-
417.83] 

520.71 
[403.76-
638.94] 

12.72 
[0.00-
30.31] 

3.50 
[0.99-
6.01] 

5.16 
[1.54-
8.81] 

22.01 
[2.13-
42.05] 

0.05 
[0.00-
0.16] 

4.93 
[0.00-
13.59] 

20-29 
78.19 

[48.40-
107.88] 

289.81 
[160.76-
420.37] 

152.35 
[89.88-
214.83] 

12.55 
[2.01-
23.02] 

4.40 
[0.68-
8.09] 

12.24 
[3.52-
20.97] 

9.63 
[4.03-
15.20] 

0.05 
[0.00-
0.16] 

0.93 
[0.00-
2.35] 

30-39 
117.94 
[31.22-
205.08] 

184.48 
[130.38-
239.16] 

150.40 
[100.83-
200.64] 

3.58 
[1.71-
5.40] 

10.80 
[1.31-
20.28] 

8.90 
[2.09-
15.56] 

12.86 
[1.78-
23.79] 

3.53 
[0.16-
6.98] 

4.69 
[0.25-
9.14] 

40-49 
124.80 
[54.44-
195.11] 

203.38 
[133.35-
273.24] 

203.46 
[122.28-
284.14] 

9.20 
[3.15-
15.32] 

1.02 
[0.16-
1.87] 

5.94 
[0.57-
11.32] 

3.26 
[0.91-
5.65] 

0.27 
[0.00-
0.66] 

5.41 
[0.00-
11.81] 

>=50 
51.09 

[17.80-
84.84] 

200.01 
[128.13-
271.27] 

205.68 
[120.41-
292.28] 

10.92 
[0.00-
21.99] 

4.06 
[0.00-
8.75] 

5.58 
[0.00-
11.85] 

3.50 
[0.00-
7.59] 

0.05 
[0.00-
0.16] 

0.48 
[0.00-
1.15] 

 

 

 

 

 



97 | P a g e  
 

4.3.2.3 Intensity of infection at site level 
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At the sub-county level, Bukanga (a low endemic, untreated site) showed a peak prevalence of almost 

40% (Figure 4.10) in the 16-19-year age group in 2014, but which corresponded to a peak mean 

intensity of 65.2 epg, indicating that while prevalence was high, infections were mainly of light 

intensity.  Conversely, Balawoli, a low endemic treated site, showed a peak prevalence of 56.0% in 10-

12-year olds in 2015 and peak intensity in the same year and age group of 260.3 epg.  The infection 

intensity levels in this age group in 2014 and 2016 showed low infection intensities (<10 epg) at this 

site.  For the high endemic treated sites, all demonstrated heavy-intensity infection peaks (>=400 epg) 

in age groups 10-14, 13-15 and 16-19 years.  Infection intensity in adult age groups all remained lower 

than 400 epg (i.e. not heavy-intensity infections).  

4.3.3 Prevalence of heavy-intensity infection and the WHO goals of morbidity control 

The WHO considers that “control of morbidity” has been attained if heavy-intensity infections fall 

below 5%, averaged across all sentinel sites in the country.  According to this criterion, the study sites 

putatively attained control of morbidity in 2014 (mean prevalence of heavy-intensity infection 4.1%) 

and 2016 (4.5%), with 2015 marginally missing the target (5.0%) when all sites were combined (data 

not shown).  However, when disaggregating by WHO endemic category, the hypothetical control 

target was not achieved in the high endemic group sites (Figure 4.11, black dotted line marking the 

5% threshold), which had above 13% (13.22% [95% CI: 11.83-14.61]) prevalence of heavy-intensity 

infection in all years.  When analysing by age group (all sites combined), the prevalence of heavy-

intensity infection peaked in 2014 in age groups 10-12 years at 11.78% [95% CI: 9.87-13.68] (Figure 

4.12), in 2015, in the same age group at 10.13% [95% CI: 8.22-12.04], and in 2016 in the 13-15-year 

age group at 8.92% [95%CI: 7.20-10.67].  The prevalence of heavy-intensity infection in both PSAC age 

groups remained below 5% in all survey years.  Moderate-intensity and heavy-intensity infections 

were combined here to provide a more conservative metric of morbidity (rather than heavy intensity 

infections alone).  Not surprisingly, the same age groups demonstrated the peak prevalence of 

moderate- plus heavy-intensity infection as with heavy-infection intensity only, and this metric was 

above 15% peak prevalence in all survey years in these age groups (Figure 4.12, purple line). 
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Figure 4.11. Prevalence of heavy-intensity infection by WHO endemic group and survey year (error bars 

represent 95% confidence intervals).  

 

 

Figure 4.12. Prevalence by infection intensity group (overall prevalence, prevalence of heavy-intensity 
infection and prevalence of moderate-plus heavy-intensity infection) by age category and survey year (error 
bars represent 95% confidence intervals).   

 

The control of morbidity target is based on country-level estimates.  However, the results in this survey 

showed a high level of variability between sites.  Therefore, further analyses were conducted to 

investigate the prevalence of heavy-intensity infection at different scales by age-group.  At the 

endemic group level, it was shown, as expected, that the high endemic group had the highest level of 
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heavy-intensity infection and drove the observed shape in Figure 4.12 (Figure 4.13), peaking in the 

SAC group.  The low endemic groups both had heavy-infection intensities below 5%, consistent with 

Figure 4.11.  At the individual site level, interesting trends were observed.  Firstly, one low endemic 

treated site, Balawoli, had two age groups (4-5 and 10-12-year olds) that exceeded 5% in heavy-

intensity infections, both in 2015 (Figure 4.14).  Secondly, the high endemic sites showed different 

trends: Bulidha demonstrated the expected reduction in prevalence of heavy-intensity infection 

between study years in the SAC population but showed an increase in 2015 in ages above 20 years.  

Lastly, both Kigandalo and Wairasa showed a peak prevalence that shifted upwards in age category 

by year, with Kigandalo also increasing in peak prevalence value each year by 2016.   

 

 

Figure 4.13. Prevalence of heavy-intensity infection vs age category by survey year, WHO endemicity level and 
treatment history of site. Note the different scales of the y-axis (error bars represent 95% confidence 
intervals).  



101 | P a g e  
 

 

Figure 4.14.  Prevalence of heavy-intensity infection vs age category, by sub-county (site, with the exception of 
Agule, Ongino and Kasambya as they did not have heavy intensity infections), survey year and WHO 
endemicity level and treatment history of site (error bars represent 95% confidence intervals).  
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4.3.4 Distribution of infection in each age group 

 

Mean intensities are often used to provide an overall metric of infection within a community or group.  

However, infection typically follows an overdispersed distribution approximated by the negative 

binomial distribution (NBD) or a zero-inflated negative binomial distribution (ZINBD).  Due to this 

overdispersion, mean egg counts alone can be misleading.  The high variance in this dataset has been 

captured in Figures 4.15-4.16.  The high endemic group was used to illustrate this, in which distribution 

of infection is heavily skewed with most individuals having zero or low egg counts and a few 

harbouring high infections (Figure 4.15).  

Outliers can have a disproportionate impact on the mean epg, which is particularly a problem in light-

intensity infection areas where a few heavily infected individuals could impact the mean intensity 

levels.  This has been illustrated in Figure 4.16 which shows infected individuals only.  The prevalence 

of heavy-intensity infections may therefore be a more accurate metric for measuring infection and 

possible related morbidity, though this is heavily reliant on the egg-count thresholds being a good 

representation of morbidity.  

 

Figure 4.15. Distribution of infection amongst individuals in the survey population (histogram of mean egg 
counts per person), by survey year in the high endemic treated group.  
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Figure 4.16. Boxplot (with interquartile ranges) of mean infection intensity (EPG) in infected individuals (dots) 

vs age group, by WHO endemicity level and treatment history of site and survey year.  
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4.4 Discussion  
 

As 2020 and 2025 fast approach for the WHO control and elimination as a public health problem 

(EPHP) targets, it is important to understand the finer scale infection patterns that are likely to be 

missed when analysing aggregated datasets at higher administrative levels (such as national level), 

especially since programmatic data generally do not contain PSAC and adult data.  Generally, SAC have 

been the focus of studies and control programmes, due to the typical age-related infection patterns 

highlighting that this population group experiences the highest burden of schistosomiasis (and that it 

is logistically easier to deliver treatment to schools).  However, if EPHP is to be reached and 

demonstrated, then it is vital that the patterns of infection in PSAC and adult age groups are also 

understood.  This study aimed to increase our understanding of the prevalence and intensity patterns 

amongst different age groups from areas of varying endemicities and schistosomiasis treatment 

histories, in response to the long-running programme in Uganda.  To our knowledge, this is the largest 

data collection study to date involving all age groups, using thorough field methods with experienced 

teams, assessing programmatic impact.  

The age-related infection and prevalence patterns revealed key information when analysed at 

different levels of aggregation.  For instance, the overall prevalence and intensity (across all sites) were 

very similar between 2014 and 2015 (Figures 4.4 and 4.5).  But sub-analysis at age-group, WHO 

endemicity level and treatment history, site and individual level revealed underlying heterogeneities 

that would not otherwise have been evident.  Treatment in previously untreated areas was shown to 

be highly effective during the survey years in reducing prevalence compared to the other two treated 

groups (Figure 4.6), highlighting the importance of understanding treatment history when predicting 

impact of treatment.  In the high endemic sites, there was high year-to-year variation in prevalence in 

adults (Figure 4.7).  This could be due to lower treatment coverage in adults and/or a different 

population of adults in the samples each year, which may explain why these adult age groups also 

experience an increase in heavy-intensity infections from 2014 (Figures 4.13 and 4.14).  Pre-school 

aged children are not currently included in routine PC; results showed that in the high endemic group, 

prevalence ranged from 20.13% [95% CI: 13.83-26.44] (in 2016) to 25.17% [95% CI: 18.17-32.14] (in 

2015) in the 0-3-year olds and 40.00% [95% CI: 32.25-47.69] (in 2016) to 50.33% [95% CI: 42.37-58.24] 

(2015) in 4-5-year olds (Figure 4.6 and Table 4.5).  Corresponding infection intensities were in the low 

prevalence category (i.e. <100 epg), with the exception of the 4-5-year olds in 2015 in the high 

endemic group which was ‘moderate intensity’ at 153.39 epg [95% CI: 100.77-205.66].  However, 

when assessing the proportion of individuals infected with heavy-intensity infections in these age-

groups (Figure 4.13), particularly by individual survey site (Figure 4.14), Kigandalo in the high endemic 
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group showed an increasing prevalence of heavy-intensity infections, and, in the low endemic treated 

site of Balawoli, the 4-5-year PSAC age group showed  prevalence of heavy-intensity infection of over 

5% in 2016 (with no heavy-intensity infection in 2014 or 2015 in PSACs).  These results highlight the 

urgent need to treat PSAC as part of the routine programmes to avert morbidity from these infections 

in these age-groups and to reduce overall transmission in the community, particularly since there are 

likely to be heavily infected PSAC in high endemic areas (see top panel of Figure 4.16).  Though safe, 

programmes have been reluctant to provide the standard PZQ tablets to PSACs, which have a bitter 

taste and pose a choking hazard [172,173].  With the more appealing paediatric formulation of PZQ 

on the horizon [174], it is hoped that routine PC in this vulnerable population will be soon 

implemented along with the SAC group, particularly since previous studies have already highlighted 

the importance of treating this age-group [175,176]. 

In summary, the age-prevalence and age-intensity plots demonstrated the classic convex patterns, 

peaking in 10-12 and 13-15-year olds (i.e. SAC, who are routinely targeted in control programmes for 

treatment)[47,177].  This pattern was less pronounced in low endemic areas except for the low 

endemic untreated group in 2014, which peaked in the 16-19 age group for both prevalence and mean 

infection intensity.  These sites had not previously received treatment, so pre-treatment equilibrium 

exhibited the expected age-infection curves.  However, the intensity of infections was low in all age-

groups, so the age-intensity curves were less pronounced for the same year and endemic group.  In 

2015, the low endemic treated group showed a sharp increase in the 6-15-year olds (i.e. SAC), peaking 

in the 10-12-year age group for both prevalence and mean intensities of infection.  At the level of the 

individual survey site, the low endemic site Balawoli was where the sharp increase between years was 

taking place.  This is a significant finding as it shows that this site, which is defined as a ‘low endemic 

site’ (and receives treatment accordingly, see Chapter 1, Figure 1.7 and Table 4.2 for treatment 

strategy) experienced a peak mean intensity of 260.5 epg (in the 10-12 year age group), i.e. a mean 

moderate intensity in this age group, and a peak mean prevalence of 56%, i.e. high prevalence in this 

age group.  This highlights the need for precision mapping that would reveal these details and for 

subcounty/community specific treatment strategies.  The trend in Balawoli is further highlighted in 

Figure 4.14 which shows that in 2015 two age groups, 4-5 and 10-12-year olds, had a prevalence of 

above 5% heavy-intensity infections (over 7% and 10%, respectively).  Further investigation would be 

required to determine the cause, where possible reasons include (but are not exclusive to):  

- An influx of new students joining the school from infected regions (as this was a repeated 

cross-sectional study);  
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- children who were from the site but who had not taken part in the survey during 2014 and 

2016; 

- seasonal fluctuations in transmission patterns (e.g. via higher rainfall) and/or snail populations 

- community factors such as market days (sellers and their children coming into the area and 

taking part in the survey);  

- infrastructure factors, such as water pumps which were found to be broken during some years 

and not others (causing people to use the lake water more than usual).   

The findings in section 4.3.3 illustrate why using an aggregated country-level metric is not appropriate 

to determine whether control of morbidity has been reached.  Using these survey sites as an example, 

the prevalence of heavy-intensity infection was 5% or less each year.  Yet at the WHO endemicity 

group level, the high endemic group had heavy-intensity infections of over 13% in all survey years 

(Figure 4.11).  At the age-group level, it was shown that the SAC group were the most heavily infected 

with a prevalence of heavy-intensity infection >5% (Figure 4.12).  By age and WHO endemic group, it 

was shown that those age groups with heavy-intensity infection >5% were all in the high endemic 

group, yet at the survey site level, it was shown that Balawoli (a low endemic, treated site) also had 

age groups with heavy-intensity infection >5% as already mentioned.  New WHO guidelines are 

currently under development, so these findings come at a key time and need to be taken into 

consideration if we are to accurately understand our progress in controlling morbidity, especially 

when there is such a large variation in infection intensity between individuals (Figures 4.15 and 4.16). 

The results show that the low endemic sites need to be reassessed since previously untreated areas 

may now require (more) treatment and that treatment in high endemic sites is not sufficient to 

eliminate transmission.  Overall, treatment was effective in reducing intensity of infection (as shown 

by the overall reduction in intensity in SAC in Figure 4.8).  In the low endemic untreated sites, 

treatment had a positive impact, which may be due to the low underlying transmission or lack of 

treatment fatigue in the community.  The results also highlight that MDA alone will unlikely be enough 

to control or eliminate morbidity in some of these foci areas and will require complementary 

interventions such as Water, Sanitation and Hygiene (WASH) control, snail control and behaviour 

change through health education in addition to treatment of adults and PSAC.  Programmes also need 

to consider migratory habits of populations in order to tailor control strategies.  Persistently high year-

to-year infection prevalence and intensity in the high endemic group, despite over a decade of 

treatment could be due to a number of factors, including high levels of transmission, poor coverage 

levels, community resistance to treatment, transitory populations (where the same population may 

not be receiving treatment each year), or reduced susceptibility of the parasite.  Results were 

presented to Ministry of Health (MoH) staff at the time of findings to address these concerns and the 



107 | P a g e  
 

MoH is now in the process of carrying out an alternative ‘zonal reassessment’.  The method involves 

creating 5km treatment zones from the water bodies rather than by district to try and capture pockets 

of higher infection within low prevalence districts.  

Coverage in control programmes can range vastly and have likely never reached 100% of the target 

population due to the inherent challenges faced by programmes (such as non-attending school 

children, systematic non-compliance to treatment, hard-to-reach areas, ineffective sensitisation, or 

low community awareness of the programme, etc.).  In Uganda for instance, the validated treatment 

coverage (from a coverage survey conducted by the SCI) in 2014 ranged from 7.7% - 86.4% at the 

district level (reported coverage in the country MDA report ranged from 31%-98% at the district level), 

which may explain some of the high prevalence estimates observed in this study.  With high coverage, 

MDA may be sufficient to control morbidity in SAC, or even eliminate schistosomiasis as a public health 

problem provided that adults are also treated.  But attaining high treatment coverage (WHO 

recommends a target of at least 75% coverage in SAC) is challenging.  In addition, the WHO 

recommends implementing complementary interventions in addition to the MDA, in order to 

interrupt transmission and eventually eliminate transmission of schistosomiasis.   

Section 4.3.4 (distribution of infection amongst hosts) could be expanded further by fitting different 

distributions using regression models (i.e. the negative binomial distribution and compare with zero-

inflated negative binomial model), and also comparing the aggregation parameter k (the ‘shape’ 

parameter of the negative binomial distribution) with age group and year as suggested by Basáñez et 

al. [165].  Parasite aggregation can be the result of multiple factors, such as individual-specific infection 

rates and susceptibility – individual-level characteristics that are not homogenous in the population. 

The type and extent of aggregation is important to understand as it also highlights the possible level 

of morbidity in a host population (or ‘host fitness’), the extent of heterogeneity in the population and 

highlights individuals who are likely to be ‘super-spreaders’.  Investigating the change in distribution 

following treatment (particularly if using longitudinal data and comparing in low-prevalence untreated 

2014 as a baseline with 2015 and 2016 from the same sites) would further show the impact of PZQ on 

infection amongst individuals. 

Limitations 

The limitations of this study include some of the following factors.  The generalisability of the results 

of this study is limited to these study regions of Uganda due to the high spatial heterogeneity in 

infection, and the different infection profiles present around Lake Albert compared to Lake Victoria 

which were not taken into account.  Additionally, the survey was not powered to make inferences at 
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any administrative level (such as district or sub-county).  The WHO endemic groups may also differ 

widely in finer characteristics between countries due to the profile of their transmission environment 

(e.g. underlying transmission dynamics, population structure, geographical characteristics, 

behavioural characteristics), so results may not be applicable to other countries.  In addition, as this 

study was carried out in collaboration with the control programme and MoH staff, PSAC and adults 

who were found to be infected in the study were informed of their status, as well as the District Health 

Officer (DHO) and asked to seek treatment at the next MDA (the study was scheduled approximately 

one month prior to the MDA for this reason), and under medical supervision for PSAC at the local 

health centre, where a supply of PZQ was available.  The survey did not record or follow up with the 

DHO whether any individuals had sought treatment and, as it was a cross-sectional survey, the impact 

of treatment on these individuals could not be assessed.  The advantages of using a cross-sectional 

format, however, are that it is not impacted by an ageing cohort, which would give misleading results 

in understanding impact of treatment [165].  The diagnostic tool used in this study was Kato-Katz, 

which is insensitive to detecting eggs in low-prevalence settings (especially due to the high day-to-day 

egg output variation), and is likely to have missed positive infections in individuals in the two low 

prevalence groups.  This could be mitigated by preparing more than two slides per sample, and more 

samples per person for the Kato-Katz, or alternatively, using CCA to detect positive infections in these 

areas (which will not provide age-intensity profiles due to its semi-quantitative output).  

Further studies and conclusions 

The rich data collected in this study provides opportunities for further studies.  Soil-transmitted 

helminth (STH) data were also collected at the time (not included in this thesis), so further work could 

be conducted in age-infection profiles for STH infections and levels of polyparasitism in the same 

individuals, comparing against those with single-species parasite infection.  Another further analysis 

could be to convert the cross-sectional data to longitudinal data and to compare with the cross-

sectional analysis already conducted in this chapter.  Longitudinal data analysis would look at the 

impact of treatment on the treated population rather than the standard impact of treatment on the 

wider community.  Results from cross-sectional data are reliant on the characteristics of the non-

treated population (e.g. economic migrants that might be heavily infected, such as fishermen).   

The fieldwork in this thesis was based on Uganda, a predominantly S. mansoni-endemic country with 

a relatively long and well-established control programme.  To investigate age-related infection 

patterns in other endemic regions, it is important to collect data in a range of settings as the results 

from the data in this thesis alone may not be applicable to these areas.  For future studies, the 

fieldwork could be extended to countries with S. haematobium infection and both S. mansoni and S. 
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haematobium, which have relatively recently instigated control programmes, areas with no previous 

history of treatment and/or in different regions of SSA.  One of the countries that meets these criteria 

is Liberia, which has experienced a recent history of civil unrest and even more recently, the deadly 

Ebola outbreak, setting many disease programmes back by several years.  Unlike Uganda, Liberia 

represents a scenario on the other end of the spectrum with only sporadic and partial geographical 

coverage for treatment for schistosomiasis.  This would enable a comparison to be drawn between 

the two countries from testing the robustness of the outputs to differences in the environment, to 

testing the feasibility of the fieldwork protocol described in this chapter being used across settings.  

The 2012 World Health Assembly resolution 65.21 on elimination of schistosomiasis indicates that 

MDA with PZQ is not a standalone solution and highlights the requirement for an integrated approach 

for elimination [82].  This study provides further evidence that for such a focal disease as 

schistosomiasis, not only are tailored treatment and intervention strategies required but so is 

treatment to the wider community that includes PSAC and adults and detailed M&E at the site level 

to identify high endemic areas.   
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CHAPTER 5. GENERAL DISCUSSION  

 

This PhD aimed to provide empirical evidence (through data collected by the candidate as part of this 

PhD and elsewhere) to aid policy development that will help control and eliminate schistosomiasis as 

a public health problem in sub-Saharan Africa (SSA).  The study began with a global level overview 

with Research Objective 1: To determine where we are now in sub-Saharan Africa (SSA) and Yemen in 

terms of schistosomiasis transmission, and understand how historical data can inform WHO guidelines 

(Chapters 1 and 2).  This was followed by a country-level study with Research Objective 2: Design, 

develop and evaluate a tool to aid schistosomiasis programmes for programme managers and policy 

makers (Chapter 3) through the development of a Markov model to project the likely impact of a 

national-level control programme.  The PhD concluded with a finer-grain analysis of Research 

Objective 3: To understand age-related epidemiology at multiple scales of heterogeneity, treatment 

history and WHO endemicity level of sites, using data collected as part of PhD (Chapter 4), using 

Uganda as a case-study and analysing patterns of infection at varying levels of aggregation.  

Throughout the PhD, factors have been identified that impact the epidemiology of schistosomiasis 

and subsequently the aims of its control and elimination as a public health problem (EPHP).  This PhD 

has highlighted and synthesized possible emergent factors that cannot be understood by the study of 

the micro- or macro-epidemiology in isolation but require a more holistic approach (Figure 5.1).   

When the WHO treatment guidelines for PZQ were developed (Chapter 1, Section 1.5.1), there was 

an urgent need of direction for new programmes, and since observational studies were scarce, 

guidelines were developed based on expert opinion [80–82].  These guidelines have played a useful 

role in assisting countries to implement programmes to reduce prevalence and intensity of infection 

and have enabled several countries to achieve the goal of morbidity control.  Some countries have 

been able to use these as a guide for achieving EPHP (Chapter 2).  However, some of the gaps in the 

guidelines may affect the feasibility of programmes reaching the 2020 and 2025 targets.  With 2020 

goals of control of morbidity and 2025 goals of EPHP fast approaching, the public health community 

has an opportunity to gather new information and utilize the current evidence available to provide a 

more tailored strategy to achieve these goals and to potentially transition to a more ambitious target 

of the interruption of transmission.  The findings of this PhD have direct implications on control, EPHP, 

and interruption of transmission and the validation or reformulation of the WHO guidelines. 
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Figure 5.1 Illustration of the narrative of this thesis and the approach to informing policy using a holistic 

perspective. Each layer represents an understanding of schistosomiasis at different levels, from the individual 

host to the national level, which when taken together can provide a fuller picture than if studied in isolation.   

 

5.1 Summary findings for each Research Objective 

 

For Research Objective 1, Chapter 2 was developed to address the global status of countries with 

schistosomiasis control programmes.  This thesis presents the first multi-country study using 

programmatic data (from 11 control programmes in SSA and Yemen) to track a range of progress 

metrics by Schistosoma species and baseline endemicities (Chapter 2).  Whilst a one-size-fits all 

approach to treatment (and other interventions) guidelines was a useful original starting point, this 

should now be updated using available empirical data, including the outputs of Chapter 2.  Chapter 2 

highlights that many endemic countries have already attained ‘control of morbidity’ under its current 

definition, particularly those for which the starting endemicity was low, with control being achieved 

in two treatment rounds or fewer.  This means that countries of low initial endemicity could potentially 

start with the aim of EPHP, skipping the ‘control’ strategy entirely, which leads to the question of 

whether separate targets for ‘control’ and EPHP are necessary.  Countries with endemically low 

prevalence foci (Burkina Faso, Burundi National, Burundi Pilot, Malawi and Rwanda) reached EPHP 

within three treatment rounds.  This is not only typical of schistosomiasis.  Other NTDs such as 

onchocerciasis (river blindness, caused by the Onchocerca volvulus worm transmitted through the bite 

of a blackfly), for example, has shown to be eliminated in countries with low initial endemicity levels, 

such as Colombia and foci in Guatemala [178] and trachoma (caused by Chlamydia trachomatis 

bacterium transmitted via contact with infected eye and nose discharge and spread by flies) was 
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shown to require 10 treatment rounds to reach 5% rates in areas where initial prevalence was greater 

than 50% (i.e. high baseline endemicity) [179].  Baseline endemicity thus plays an important role, with 

countries starting at low prevalence likely to reach the goals of control and EPHP sooner than the 

guidelines suggest.  These were the same countries where prevalence of heavy-intensity infection was 

lower than 5% (i.e. indicating ‘controlled’ morbidity).  Whilst some countries have been implementing 

schistosomiasis control programmes for many years and are at the reassessment phase to determine 

what future strategy to follow, some countries have only recently started treatment and may not meet 

the 2020 and 2025 goals if following the recommended timelines.  The outputs from Chapter 2 show 

that updated WHO guidance should be tailored to starting endemicity levels and schistosome species.   

With such variation of prevalence in each country, it is difficult to justify the use of aggregated country-

level figures for prevalence of heavy infection to define the control target for such a focal 

epidemiology.  Moreover, morbidity targets need to be updated with appropriate morbidity markers, 

diagnostic tools and population scale.  With the international deadlines approaching, these findings 

are timely for programme managers and policy makers. 

To address Research Objective 2, Chapter 3 was devoted to developing and evaluating a Markov 

model, a highly user-friendly tool for programme managers and policy makers.  The Markov model is 

a (relatively) simple but useful framework which was shown to predict accurately the reductions in 

prevalence reached in two countries, for different schistosome species, and in several different 

epidemiological scenarios.  The model can be used for advocacy, M&E, and to inform policy (though 

more complex mechanistic models also have an important role to play here) [180,181].  The availability 

of user-friendly tools such as the Markov model could greatly improve the monitoring and 

performance of helminth PC programmes [143,144].  The model itself uses programmatic data to 

predict (short-term) subsequent changes in prevalence in follow-up years and can be adapted for use 

in different settings and at different starting times.  These findings come at a key moment in the field 

of NTD modelling, given the impetus for programme managers and policy makers to bridge the gap 

between models and end-users.  In fact, the WHO has shown an interest in its use (the candidate’s 

collaboration with the WHO also resulted in a second-author publication for a Markov model for soil-

transmitted helminths [144]).  The next steps for this model are to create a mechanism by which the 

transition probabilities can be updated as more data become available.  At present, further 

development of the model is being conducted by the candidate for online web use (free access) using 

RShiny (Figure 5.2) with the aim of aiding its wider use.  
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Figure 5.2 Current design of the user-interface for the Markov Model app.  RShiny is being used to develop a 

web tool which will enable users to access and use the model freely by entering their data in the sliders on the 

left (outputs shown on the right, by infection intensity group).  This is still currently under development, but a 

beta version has been created (shown here).  

 

For Research Objective 3, Chapter 4 was used to design the necessary surveys for the data collection 

which was used for the analysis, describing the organisation and leading by the candidate of an annual 

large epidemiological fieldwork survey in Uganda which spanned three years, overseeing 70 members 

of the national MoH and local staff.  The candidate also trained and supervised ten teams on diagnostic 

tools, parasitological methods, and data analysis using Excel and R.  The experience shed considerable 

light on some of the challenges faced during fieldwork and some of the unique characteristics of the 

sites which would not have been appreciated without being first-hand involved in the fieldwork (such 

as proximity of the sites to water sources, the observation of broken water pumps, the poor 

maintenance of WASH facilities in some sites, market towns indicating mobile populations, etc.).  This 

survey enabled the generation of the extensive and detailed datasets used for the rest of the chapter.  

Overall, treatment has had a positive impact in most areas, particularly in low endemic sites evidenced 

by sustained reductions in prevalence and intensity of infection.  However, some areas were less 

impacted by treatment than expected.  However, and as expected given the strongly nonlinear 

relationship that exists between infection prevalence and intensity, particularly at high intensity levels 

(Chapter 2 Section 2.3.3, Appendix 3, [165]), treatment effected stronger reductions in infection 

intensity than in prevalence.   
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School-aged children (SAC) are the main target populations for treatment programmes but it is vital 

to include adults and PSAC if morbidity is to be effectively reduced in the population and eventually, 

sustained EPHP is to be reached.  The WHO guidelines (and consequently, the majority of treatment 

programmes and resulting M&E data that have been collected) largely recommend treatment of SAC.  

Irrespective of whether infection indicators in SAC provide reliable information about the intensity of 

transmission in other population groups in the community, results showed heavy-intensity infections 

were present in PSAC (who are consistently missed during PC campaigns) and adults, and are an 

indication of the potential existence of a substantial reservoir of (possibly heavily) infected PSAC and 

adults in other areas.  Reaching control and EPHP in SAC may, therefore, not translate into these goals 

also being achieved in the remaining (mostly untreated) age groups.  Cost-effectiveness studies have 

shown that including PSAC and adults in treatment programmes is beneficial in the long-run, and 

modelling suggests that inclusion of these groups may be necessary to reach the control and EPHP 

targets and essential for interrupting transmission, though WHO has only recently included the PSAC 

group in the revised treatment guidelines  and the drugs are not donated for general adult treatment 

[136–138,182].  Further empirical studies are required to address these questions, but the target 

group would need to be widened if the 2020/2025 goals are to be truly achieved (rather than just by 

WHO definition of what morbidity elimination means).  It is important to reach mobile populations, 

which may have explained some of the persistent high prevalence levels (over 80% in 10-12-year olds 

in 2014 and 2015) observed in the high endemic sites in Chapter 4.  This would require information on 

these characteristics being collected at the site level for a tailored treatment strategy.  An example of 

the impact of mobile populations is best exemplified by the recent Corsica outbreak – where there 

was fortunately a swift and effective response, containing the outbreak and tracing its source (down 

to the original migrant route from where the infection stemmed) [183].   

Additionally, the outputs of Chapter 4 highlighted the importance of obtaining fine-grain data, 

particularly in those cases in which interpretations differed through analyses of different population 

levels of the same data.  Mathematical models will need to take into account these finer details 

through the use, for instance, of precision-mapped data if they are to produce more locally accurate 

predictions.  Without these, informing policy would remain rather a general endeavour, which could 

have adverse implications for communities located in sites being classed as ‘low endemic’ when in fact 

they are ‘high endemic’, resulting in making incorrect treatment decisions.  This problem is not only 

specific to schistosomiasis; in onchocerciasis large areas classified as hypo-endemic and hence not 

under ivermectin treatment, have shown to mask pockets of high endemicity [184].  Not only does 

this lack of micro-epidemiological understanding risk the application of incorrect treatment schedules, 

but also it risks the re-introduction of infection to well-controlled areas or areas considered of lower 
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endemicity.  Likewise, using cross-sectional data alone can be potentially misleading without an 

understanding of the history of the individuals examined, for example, whether they have migrated 

from outside, uncontrolled or less well-controlled areas, or whether they were part of the treated 

population. 

 

5.2 Avenues for further research 

 

The datasets and methods generated in this PhD could be used to investigate further the questions 

identified here.  Understanding biological and social determinants of infection will advance current 

understanding of non-responsive areas/hotspots and why some areas may not be reaching their 

targets.  Exploring alternative intensity cut-offs for egg counts, markers of morbidity and diagnostic 

tools will be vital to ensure that the targets for schistosomiasis (whether control or EPHP) are truly 

met, since the targets are heavily dependent on intensity definition and diagnostic sensitivity [185].  

Following on from there, understanding the relationship between infection intensity and morbidity 

will be important if ‘true’ control and elimination of morbidity is to be achieved, as there may still be 

considerable morbidity in the population despite having reached the targets of control and EPHP as 

currently defined by the WHO.  Geographical and temporal model projections could be used to direct 

resources as well as for advocacy.  These will now be discussed in further detail.  

Determinants of infection susceptibility  

Individual-based data were used for Chapters 2 and 4.  An understanding of infection patterns could 

be further developed through analysing the distribution of infection amongst individuals in a 

population, by year, treatment history, species, starting endemicity and country – varying by 

population groups such as PSAC, women of child-bearing age, mobile populations and adults.  Data on 

occupation, school attendance and length of time lived at the sites were also collected as described in 

Chapter 5 so these could be used to understand the different disease prevalence and intensities 

amongst occupation groups (where certain occupations such as fishing are associated with high 

prevalence and intensities of infection [186]), attending vs non-attending school children (where non-

attending school children may experience higher levels of infection [187]), and the dynamics of 

infection in short-term vs long-term residents (as long-term residents would likely benefit from 

consistent PC programmes and be more receptive to behaviour changes to avert infection).  This 

would increase understanding of which groups consistently harbour the most infections and 

contribute most to transmission and which groups respond least to treatment.   
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Diagnostic tools and egg-count thresholds for morbidity 

One of the major limitations for parasitological surveys is the lack of field-ready accurate diagnostic 

tools.  The Kato-Katz (KK) method for S. mansoni is known to lack sensitivity, particularly in low 

endemic areas or in those in which prevalence has decreased as a result of interventions, but there 

are other uncertainties surrounding this technique.  The functional relationship between egg output 

and worm burden within the host remains poorly understood (there have been very few expulsion 

studies and only a handful of post-mortem studies [63]) and the relationship between intensity and 

morbidity is also poorly understood, yet the egg output is used as an indirect measure of infection 

intensity and infection intensity is used as an indication of morbidity (through heavy-intensity 

infections) [188].  There is a high variation in egg output between stool samples from the same 

individual and even within the same stool sample [56,189,190].  There is also uncertainty as to the 

proportion of eggs that remain trapped in the host, and it is these which cause the 

immunopathological response that leads to granuloma formation and subsequent morbidity.  A 

further challenge is being able to accurately identify and enumerate the species eggs under field 

conditions.  The point-of-care circulating cathodic antigen (POC-CCA) test is a promising tool already 

in use in many areas [53].  It has an increased sensitivity for detecting S. mansoni infection than Kato-

Katz and is urine based so has logistical and compliance advantages.  However, it introduces challenges 

for determining heavy-intensity infections (as it provides only a semi-quantitative measure of intensity 

for S. mansoni) [131,132].  Urine filtration for S. haematobium, though more sensitive in comparison 

to KK, is limited by the diurnal variation in egg output in the urine.  The up-converting phosphor-lateral 

flow circulating anodic antigen (UCP-LF CAA) test is a more sensitive and specific tool designed to 

diagnose S. haematobium infection but is not yet field-ready as it costly and currently requires 

centrifuging and pipetting for diagnosis (although work on making this field-ready is underway) 

[55,191].  The new diagnostic tools need to be able to provide the data required, or the guidelines 

need to be adapted to these tools.  Many studies have compared CCA to KK, showing that the 

prevalence is between 1.5- to 6-fold higher for S. mansoni infection when using the former and that 

the relationship is non-linearly related below 50% prevalence (though results are comparable when 

prevalence is above 50%) [131].  This has major implications on the control and elimination targets for 

country programmes and international targets, as some areas may be further from the goals than 

originally thought (and the goals may need to change).  The WHO guidelines for CCA are currently 

under development and will be available in the near future.  However, Kato-Katz is also the primary 

diagnostic tool for soil-transmitted helminth (STH) infections (Ascaris lumbricoides, Trichuris trichiura 

and hookworm) since there is no direct equivalent POC-CCA for STHs, so programmes may not be able 
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to stop using KK in the near future (though quantitative polymerase chain reaction, qPCR, has shown 

to be accurate and sensitive, but is not a POC test and is costly [62]).   

The data in this thesis could be used to further investigate the relationships between prevalence, 

intensity and egg-count thresholds, by conducting a sensitivity analysis to understand how changes in 

threshold definition result in variations in the proportion infected with these categories.  For example, 

for S. mansoni, rather than 0-99 epg representing “low infection intensity”, starting with 0-49 epg 

representing low intensity infection, 50-199 epg representing moderate infection and 200+ 

representing heavy infection, could have implications for the categorisation of endemic areas into 

infection-intensity groups and for measuring country progress towards the 2020/2025 goals.  An 

important question is whether the current categories of infection are truly useful and appropriate or 

whether should they change to be aligned more closely with the probability of developing morbidity, 

and hence with the goals of control and EPHP.  An associated question is whether, if the current 

categories were not to be changed, separate definitions should be applied for control of morbidity 

and EPHP.  These questions need to be urgently addressed if the KK diagnostic tool will continue being 

used in M&E surveys for S. mansoni and if CCA outputs will be compared with KK outputs for the 

determination of infection intensity.  Comparing the outputs of Chapters 2, 3 and 4 with alternative 

diagnostic tools such as CCA, CAA and PCR would provide a valuable opportunity to investigate some 

of these questions.   

True relationship between infection intensity and morbidity  

Any level of infection (including low intensity) could potentially give rise to morbidity [121].  The 

infection-intensity thresholds (S. mansoni: light, moderate and heavy intensity corresponding to 1-99 

epg, 100-399 epg and 400+ epg, respectively, and S. haematobium: light and heavy intensity only, 

corresponding to 1-50 eggs/10 ml and above 50 eggs/10 ml, respectively [36]) were proposed by the 

WHO Expert Committee in 1987, but it is not clear why no moderate intensity group exists for 

S. haematobium nor why heavy intensity infection is defined as 50 eggs/10ml for S. haematobium and 

for S. mansoni it is defined as ≥ 400 epg (though flexibility in these thresholds had been proposed) 

[123].  If a lower egg count is indeed causing an unacceptable amount of morbidity (which then gives 

rise to the question of what is acceptable?), this means that the metrics being used to define ‘control’ 

and ‘elimination as a public health problem’ may be incorrect.  Moreover, when aiming for elimination 

of infection, a single infected human, even with light infection, has the potential to re-introduce the 

disease back into the population (due to an asexual multiplicative development stage in the 

intermediate, snail host), further highlighting the need to address light intensity infections if 

interruption of transmission is to be achieved [124].  The type of morbidity and threshold intensities 
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vary for the two main species of Schistosoma affecting humans.  For example, for female (and male) 

genital schistosomiasis (caused by S. haematobium) and its sequelae (including, but not exclusive to, 

associated pain and increased susceptibility to HIV, HPV), intensity may not need to be ‘heavy’, so a 

country with a prevalence of <5% heavy-infection intensity across sentinel sites may consider 

morbidity ‘controlled’, when in fact a large proportion of the population is still experiencing significant 

morbidity [192,193].  Another complicated factor is that individuals may no longer be infected (or not 

excreting schistosome eggs) yet still experience morbidity from earlier chronic infection such as 

irreversible organ damage [194].  

 

Ultrasound studies may elucidate the level of morbidity through detecting pathological changes (such 

as periportal fibrosis, portal hypertension and intestinal wall thickening) in infected individuals of any 

infection intensities [195,196].  This could mean that although a country may have reached EPHP as 

per the current definition, the true morbidity caused by non-heavy infection intensities may still be 

considerable.  The use of ‘moderate plus heavy intensity infection’ as the morbidity indicator, as well 

as the recognition of an intermediate intensity group for S. haematobium could help to mitigate this 

whilst new morbidity thresholds are being investigated.  However, this does not address morbidity 

associated with past experience of infection sequelae (for which clinical management will be 

required), and as mentioned earlier, nor does it address other long-lasting and stigmatising 

consequences, such as infertility, genital schistosomiasis and the interactions of the latter with HIV 

and HPV [197,198].  Other NTDs, such as trachoma and lymphatic filariasis (LF) for example, have taken 

a dual approach of 1) MDA (with diethylcarbamazine (DEC), albendazole or ivermectin for LF and 

azithromycin for trachoma) to reduce infection and prevent the development of future morbidity, and 

2) Morbidity Management and Disability Prevention (MMDP) to treat current morbidity.  For MMDP, 

examples include daily washing of affected limbs to prevent secondary infection (LF), hydrocele 

surgery (LF) and eye surgery for trachomatous trichiasis (where otherwise infection would cause 

scarring of the eye resulting in the eye lashes turning in, scratching the surface of the cornea leading 

to eventual blindness) [199,200].  Further studies are required to redefine the relationship between 

egg output and morbidity since currently, “heavy” intensity as defined above, is taken as the universal 

metric of infection-associated morbidity, used to define the control and EPHP targets.  Moreover, the 

first two morbidity targets are based largely on data from SAC since it is that school-aged children 

harbour the highest prevalence and intensities of infection.  If the objective is to reach morbidity 

control or elimination by 2020 or 2025, respectively, then the peak schistosomiasis-associated 

mortality age range of 30-49 years is being missed in surveys (Figure 5.3), and even in treatment 

programmes themselves, which is particularly important [201].  
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Figure 5.3. Estimated deaths due to schistosomiasis globally by age group by year. Plotted using reported data 
from [201].  
 

 
Geographical and spatio-temporal model projections 

The Markov model developed here (Chapter 4 and reference [202]) could be easily adapted to include 

data from CCA and from adjusted infection intensity thresholds.  The development and use of 

powerful tools will be essential as programmes move closer towards attaining the global goals, using 

appropriate targets with tailored treatment and intervention approaches.  To aid countries and policy 

makers further, predictive maps could be developed from Markov model projections, varying by 

administrative level and by population groups where data are available.  This would help to provide a 

macro- to micro-level visual illustration of changes in infection under intervention and could be piloted 

using the data presented in this thesis.  If a method for updating transition probabilities can be 

developed, increasing the accuracy and time-range of outputs, these maps could be a powerful M&E 

and advocacy tools for countries and policy makers.  

Chapters 2 and 4 can also be expanded to include STH infections.  Indeed, data were also collected for 

STHs in Chapter 4 since the same diagnostic method is used.  The candidate is currently conducting 

work on age-infection profiles for hookworm infection (as A. lumbricoides and T. trichiura infections 
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were very low, at less than 3% overall prevalence) as well as a multi-country study on STH infection, 

stemming from the fieldwork conducted in this thesis.   

 

 

5.3 Possible pilot studies 

 

The WHO has provided a range (in years) to reassess whether the goals of control or EPHP have been 

achieved, but with the push towards 2020 and 2025, there is a need to specify a time or adjust these 

goals. When scrutinising the definitions for control and EPHP, it is clear that morbidity is not in fact 

eliminated when potentially there are members of the population suffering from an undefined level 

of morbidity (the population in the <1% of heavy-intensity infection in each sentinel site for instance, 

or the PSAC/adult untreated/unmonitored group).  The EPHP target may in fact be a closer definition 

of an ‘acceptable’ level of true morbidity control than the official definition of control.  Three possible 

short-term modifications to the guidelines could be piloted:  

 

1) Omit the ‘control of morbidity’ target and move straight into EPHP targets.  Chapter 3 showed that 

the goal of reaching <5% prevalence of heavy-intensity infection is feasible in a relatively short period.  

Therefore, a more ambitious approach could be for new country programmes to already start 

adopting the EPHP strategy of intensified treatment to meet the 2025 goals.  This would omit the need 

for reassessment between the ‘control’ and ‘EPHP’ phases with resultant cost savings and would 

prevent countries from having to change an established strategy. This could also apply to current 

programmes that are on a ‘control’ strategy to move directly to the intensified strategy to reach EPHP.  

2) Redefining egg-count and morbidity thresholds.  Redefining the egg-count thresholds for the WHO 

intensity (light, moderate [for S. mansoni only] and heavy) infection categories and then following the 

proposed operational thresholds of <5% across / <1% prevalence of heavy-intensity infections within 

each sentinel site for control and elimination of morbidity, respectively.  Morbidity studies will need 

to be conducted to determine the relationship between egg output and disease; morbidity thresholds 

will also need to be defined (from mild to severe), including any parasite density-dependence effects 

on the worm population.  

3) Should the aim be interruption of transmission at all? A more controversial approach is to maintain 

EPHP, without changing the (currently undefined) strategy to reach interruption of transmission, at 

least towards selected high-risk groups - who would continue to receive intensified PC and benefit 

from additional interventions.  By maintaining low (or zero) morbidity in the population this way, other 
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essential sectors, such as health system strengthening, water and sanitation infrastructure etc., in the 

country would gradually ‘catch up’ in development (provided there is government/political stability).  

This could eventually lead to the elimination of transmission, especially if complementary and 

effective interventions have been integrated (i.e. snail control, behaviour change and implementation 

of water, sanitation and hygiene (WASH) measures).  Countries currently aiming for interruption of 

transmission have typically seen a significant improvement in socio-economic development.  The 

benefits of this strategy compared to, say, a downscaling treatment approach is that the latter 

drastically reduces treatment numbers.  This could result in potentially devastating recrudescence of 

infection, especially in a susceptible population that may by then have a reduced levels of acquired 

protective immunity to infection and be vulnerable to a higher level of morbidity from the same 

intensity levels (aggressive morbidity) [34]. 

 

5.4 Conclusions 

 

The aim of this PhD was to generate evidence from the field level up to the global level in order to 

inform and influence policy.  Chapter 2 highlighted that many countries have reached control targets 

much earlier than anticipated, calling for a re-evaluation of the current operational thresholds for 

morbidity control and EPHP; Chapter 3 provided a tool for programme managers and policy makers 

to assess year-to-year progress of individual countries and finally, Chapter 4 described the approaches 

to generate a detailed dataset for analysis and modelling and  used the data generated/collected, to 

show that achieving control of morbidity at one scale may be dangerously misleading due to the high 

heterogeneity assessed at finer scales.    

As we approach the 2020 goal of the control of morbidity and the 2025 goal of elimination of 

schistosomiasis as a public health problem, it is vital for the public health and research community to 

come together and produce effective guidelines and policy to ensure that countries reach these goals, 

help alleviate the burden of this debilitating disease and unlock the potential of millions of individuals.
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Appendices 

 

1. Appendix for Chapter 3 
 
Figure A1. Results from applying transition probability (TP) matrices B and C on dataset 1 (full 
longitudinal Uganda data set). 

Figure A1a Matrix B (using year 1 and year 2 Ugandan data for TPs) and dataset 1  
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Figure A1b Matrix C (selected Ugandan districts for TPs) and dataset 1  
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Figure A2. Results from applying TP matrices A-C on dataset 2 (selected Ugandan districts) 

 

Figure A2a Matrix A (full Ugandan data for TPs) and dataset 2  
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Figure A2b Matrix B and dataset 2 
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Figure A2c Matrix C and dataset 2 
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Figure A3. Results from applying TP matrices B and C on dataset 3 (cross-sectional Ugandan 
dataset) 

Figure A3a Matrix B and dataset 3  
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Figure A3b Matrix C and dataset 3 
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Figure A4. Results from applying TP matrix D (baseline and year 1 Mali data for TPs) on 
dataset 4 (longitudinal Mali dataset) 
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2. Appendix for Chapter 4: Budget 
 

 

NAME DUTY DAYS RATE UGX GBP (as of 31 May 2016) 
Team members Entomologist Ento Team leader 26 110,000              2,860,000 581.507

Technician VCO Schisto microscopy 26 100,000              2,600,000 528.642
Technician VCO Schisto microscopy 26 100,000              2,600,000 528.642
Technician VCO Schisto microscopy 26 100,000              2,600,000 528.642
Technician AUX Stool processing 26 75,000                1,950,000 396.482
Driver 1 DRIVER Driving 26 75,000                1,950,000 396.482
DVCO Offical guide 20 20,000                400,000 81.330
Teacher/VHT Community/school guide 20 5,000                   100,000 20.332
Airtime 50,000                50,000 10.166

subtotal for personnel 15,110,000 3072.226
Fuel/vehicles
Return Journey (250km) 291,667 59.303
Local running for 20 days - 20 litres per day at 3500 per litre 1,400,000 284.654

subtotal for travel 1,691,667 343.956

subtotal for each team 16,801,667 3416.182

Total number of teams required
5 teams for ten CIFF 
survey sites SUBTOTAL 84,008,333 17080.910

Data entry Data entry clerks Entering field data into database10 50,000                500,000                            101.662
subtotal for data entry 500,000                            101.662

Total number of data entry clerks required
4 teams for ten CIFF 
survey sites SUBTOTAL 2,000,000 406.648

CENTRAL SUPERVISION

NAME DUTY DAYS RATE UGX GBP (as of 31 May 2016) 
Supervision Supervisor Supervision 7 130,000              910,000 185.025

Driver 1 DRIVER Driving 7 55,000                385,000 78.280
Airtime 50,000                50,000 10.166

subtotal for personnel 1,345,000 273.471
Fuel/vehicles
Round trip ( Ave 800km) 933,333 189.769
Local running for 6 days - 20 litres per day at 3500 per litre 420,000 85.396
Vehicle Hire for 7 days 1,800,000 365.983

subtotal for travel 3,153,333 641.148

subtotal for each team 4,498,333 914.619

Total number of  Supervision teams required
2 teams for ten CIFF 
survey sites SUBTOTAL 4,498,333 914.619
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LAB REQUIREMENTS
 ITEMS QTY Unit COST Total cost (UGX) GBP 
Slide labels 140             6,000 840,000 170.792
Fine tip markers 23               50,000 1,166,667 237.211
Newsprint 280             2,000 560,000 113.861
Pens 5                 20,000 93,333 18.977
Gloves 280             19,000 5,320,000 1081.684
Omo 42               9,000 378,000 76.856
Jik 9                 94,000 877,333 178.383
Insecticide 28               9,000 252,000 51.238
Climax 5                 20,000 93,333 18.977
Matchbox 23               2,500 58,333 11.861
Waste bags 93               5,000 466,667 94.885
Masking tape 224             3,500 784,000 159.406
Dettol Soap 14               30,000 420,000 85.396
GPS batteries 93               7,000 653,333 132.838
Box files 47               5,000 233,333 47.442
Toilet paper 19               100,000 1,866,667 379.538
Polythene sheets 467             1,200 560,000 113.861
Lens tissue 23               15,000 350,000 71.163
Photocopying paper 93               20,000 1,866,667 379.538
Distilled water (1 Jerry can) 1                 25,000 25,000 5.083
Paraffin for burning wastes( each team needs 10 Litres) 50               3,000 150,000 30.499
Glycerine (2.5litres) costs 98,000 1                 98,000 98,000 19.926
Malachite green powder (50mg) 1                 190,000 190,000 38.632
Photocopier ink 9                 150,000 1,400,000 284.654

subtotal for lab consumables 18,702,667 3802.701
Qty Unit Price

Vehicle Maintenance (Minor fixtures and repairs during field) 0 0.000
Vehicle Hire(5 teams* 26 days) 130             180,000 23,400,000 4757.782
Vehicle service -             350,000 0 0.000

subtotal additional vehicle costs 23,400,000 4757.782

UGX GBP

TOTAL CIFF FIELDWORK BUDGET 132,609,333 £26,962.660
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2. Appendix for Chapter 4: Parasitological forms 
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2. Appendix for Chapter 4: Participant ID forms  
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2. Appendix for Chapter 4: School forms 
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2. Appendix for Chapter 4: Adult/parent consent forms 
 

 

 

 



160 | P a g e  
 

2. Appendix for Chapter 4: Headteacher consent forms 
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2. Appendix for Chapter 4 
Observed	relationship	between	prevalence	and	intensity	

The relationship between infection intensity and prevalence of infection in the survey was non-linear 

as expected[203], and consistent when comparing mean intensity with prevalence and prevalence of 

heavy-intensity infection with overall prevalence (Figure A5).  This non-linearity was more evident for 

the high prevalence sites, while patterns were less consistent when investigating by prevalence group 

(Figure A6).  The relationship between mean intensity of infection (epg) and prevalence of infection in 

the low prevalence groups was less pronounced (top row Figure A6 – note the y axis scale), indicating 

that higher prevalence does not necessarily correspond to higher intensity.  When comparing the 

prevalence of heavy- infection against prevalence of any infection, the high prevalence group showed 

similar trends to mean intensity vs prevalence (bottom row, Figure A6), and indicates that the majority 

of the age groups have above 5% heavy-intensity infection prevalence.  However, for the low 

prevalence groups, the plots are more informative highlighting that many of the age categories had 

0% prevalence of heavy-intensity infection (particularly for the low prevalence untreated group). 

 

Figure A5. Relationship between mean intensity of infection and prevalence and between 

prevalence of heavy-intensity infection and prevalence, by age group. Best fit (black line) and 

standard errors (grey band) were obtained by fitting a Loess smoothed line. 
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2. Appendix for Chapter 4 
 

 

Figure A6. Relationship between mean intensity of infection vs prevalence and between prevalence 

of heavy-intensity infection vs prevalence, by age group and WHO prevalence group. Best fit (black 

line) and standard errors (grey band) were obtained by fitting a loess smoothed line. 
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3. Talks and achievements during PhD 

 

 

The data generated, and their interpretation therein, in this PhD as well as the outputs of all three 

Research Objectives, have been presented at numerous conferences and meetings, including where I 

was invited and held a seminar to the WHO’s NTD department and at the NTD Modelling Consortium 

technical meeting.  Below is a list of meetings I attended as an invited speaker, presenting work that 

was part of this PhD: 

Talks: 

Invited Speaker: 

• April 2016: Presented to modellers at the Neglected Tropical Disease Modelling Consortium 

Technical meeting (Warwick) 

• June 2016: Held a seminar at the World Health Organization headquarters for the NTD 

department (Geneva) 

• Sept 2016: Presented to NGO CEOs, senior staff and donors at the 7th Annual NTD NGDO 

Network Meeting (Washington DC) 

• March 2017: Panel meeting in Uganda at the 8th AfrEA conference with senior stakeholders 

to discuss findings of the work done on the PhD to date (President of Uganda present).   

• June 2017: Presented to the Water Infrastructure for Schistosomiasis-Endemic Regions 

(WISER) team (London)   

• Nov 2017: Guest speaker at Imperial College London’s Creative Quarter event 

 

Others: 

• Oct 2015:  Gave oral presentation on the Markov model at the annual meeting of the 

American Society of Tropical Medicine & Hygiene (ASTMH, Philadelphia) and presented the 

age-intensity work as poster  

• April 2015: Oral presentation at BSP (Markov model) 

• September 2015: Presented a poster at European Congress on Tropical Medicine and 

International Health (ECTMIH, Basel) of the Markov model 

• April 2016: Oral presentation on findings of Chapter 4 at British Society for Parasitology (BSP) 

meeting (Imperial College London)  
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• April 2016: Shortlisted and represented department for the 3-minute PhD thesis oral 

presentation competition (Imperial) 

• June 2016: Results from the Markov model presented at the PhD symposium at Imperial 

College where I won runner up prize for oral presentation 

• June 2016: Two posters at the Wellcome Trust Centre for Global Health Research Annual 

Meeting. One of the posters was based on the Markov model and the other was based on 

work of a volunteer that the candidate had supervised, based on Chapter 4 (volunteer 

presented, won runner up prize, Royal Geographical Society of London) 

• November 2016: Attendance at Coalition for Operational Research on Neglected Tropical 

Diseases (COR-NTD) and ASTMH, presentation of two posters 

• April 2017: Oral presentation on threshold work at BSP in Dundee 

• June 2017: Oral presentation on Markov model work at the SCI open day (for donors and 

general public) 

• June 2017: Oral presentation on threshold work to Global health students at Imperial College 

London 

• Nov 2017: Presented two posters at ASTMH Baltimore (A-I, Thresholds) 

• Nov 2017: The Wellcome Trust Centre for Global Health Research Scientific Meeting - 

thresholds selected for oral presenting (200 attendees) 

• Nov 2017: Oral presentation at Epidemics 6, Barcelona (on Chapter 2 findings)  

• April 2018: Attended Water Infrastructure for Schistosomiasis-Endemic Regions (WISER) 

technical meeting, Tanzania 

• October 2018: Attended COR-NTD meeting (26-27 Oct), Global Schistosomiasis Alliance 

meeting (28 October) and ASMTH (29-1 Nov) in New Orleans. 

 

Achievements:  

• Invited to WHO for monthly technical meetings with the NTD department to discuss 

Markov model and further research developments to help inform guidelines. 

• Supervised a volunteer who won a runner up prize for her work (work stemming from 

Chapter 4) 

• Supervised a volunteer who went on to win the Prime Minister's Point of Light award, 

presented to her by former president Jimmy Carter with a personal letter from former 

prime minister David Cameron (work based on Chapter 2) 

• Reviewed papers for key Primary journals including Nature, Scientific Reports, PLoS NTDs 
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• Mentoring two MSc students throughout their studies 

• Demonstrated practical sessions for the BSc, Infectious Disease Modelling short course 

and MSc students 

• Lectured for MSc and BSc students 

• Published manuscript on the Markov model, Chapter 3 

• Manuscript under consideration based on Chapter 2 

• July 2017: Chaired for the PhD symposium MRC centre at Imperial College London 

• Invited to WHO schistosomiasis STAG meeting during my attendance at WHO HQ 
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4. Manuscripts 
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Development and evaluation of a Markov
model to predict changes in
schistosomiasis prevalence in response to
praziquantel treatment: a case study of
Schistosoma mansoni in Uganda and Mali
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Abstract

Background: Understanding whether schistosomiasis control programmes are on course to control morbidity
and potentially switch towards elimination interventions would benefit from user-friendly quantitative tools that
facilitate analysis of progress and highlight areas not responding to treatment. This study aimed to develop and
evaluate such a tool using large datasets collected during Schistosomiasis Control Initiative-supported control
programmes.

Methods: A discrete-time Markov model was developed using transition probability matrices parameterized with
control programme longitudinal data on Schistosoma mansoni obtained from Uganda and Mali. Four matrix variants
(A-D) were used to compare different data types for parameterization: A-C from Uganda and D from Mali. Matrix A
used data at baseline and year 1 of the control programme; B used year 1 and year 2; C used baseline and year 1
from selected districts, and D used baseline and year 1 Mali data. Model predictions were tested against 3 subsets
of the Uganda dataset: dataset 1, the full 4-year longitudinal cohort; dataset 2, from districts not used to
parameterize matrix C; dataset 3, cross-sectional data, and dataset 4, from Mali as an independent dataset.

Results: The model parameterized using matrices A, B and D predicted similar infection dynamics (overall and
when stratified by infection intensity). Matrices A-D successfully predicted prevalence in each follow-up year for low
and high intensity categories in dataset 1 followed by dataset 2. Matrices A, B and D yielded similar and close
matches to dataset 1 with marginal discrepancies when comparing model outputs against datasets 2 and 3. Matrix
C produced more variable results, correctly estimating fewer data points.

Conclusion: Model outputs closely matched observed values and were a useful predictor of the infection dynamics
of S. mansoni when using longitudinal and cross-sectional data from Uganda. This also held when the model was
tested with data from Mali. This was most apparent when modelling overall infection and in low and high infection
intensity areas. Our results indicate the applicability of this Markov model approach as countries aim at reaching
their control targets and potentially move towards the elimination of schistosomiasis.
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Background
In recent years there has been a renewed focus on the
control and possible elimination of certain neglected trop-
ical diseases (NTDs) by the global health community. One
of the NTDs with the greatest human health and socio-
economic burden is schistosomiasis, estimated to infect
over 238 million people [1] at a global cost of 3.3–4.5
million disability-adjusted life years (DALYs). Approxi-
mately 85 % of people infected with schistosomes reside
in sub-Saharan Africa (SSA), with the disease potentially
causing over 200,000 deaths per year [2, 3]. National-scale
control programmes are now in place in many countries,
using preventive chemotherapy (PC) by mass drug admin-
istration (MDA) with praziquantel (PZQ) [4].
The pharmaceutical company Merck KGaA has

donated over 290 million tablets of PZQ to the World
Health Organization (WHO) and has committed up to a
further 250 million tablets per year from 2016 [5]. The
tablets are distributed by the Ministries of Health of en-
demic countries, where in some, non-governmental
organizations such as the Schistosomiasis Control Initia-
tive (SCI) provide technical support and assistance (and
in some cases purchasing and supplying additional PZQ)
to these programmes [6, 7]. Since its establishment in
2002, SCI has helped to provide over 140 million treat-
ments for schistosomiasis to at-risk children and adults
in SSA and the Middle East [8]. As part of the monitor-
ing and evaluation (M&E) component that runs along-
side the treatment campaigns, SCI has contributed to
the collection of rich longitudinal datasets from numer-
ous countries on the impact of treatment on prevalence,
intensity and morbidity. Many schistosomiasis control
programmes have been running for several years, and
have achieved their primary target of controlling
schistosomiasis-related morbidity (where the aim of “con-
trol” is reducing prevalence of heavy infection to < 5 %
across sentinel sites at 75 % national coverage [9]),
whether from intestinal schistosomiasis (caused predom-
inantly by Schistosoma mansoni) or from urogenital schis-
tosomiasis (caused predominantly by S. haematobium)
[10]. With this in mind, the WHO, alongside its global
partners, has set the agenda for the next stage of control.
The London Declaration on NTDs in January 2012 en-
dorsed the ambitious targets set by the WHO for the
control and elimination of many NTDs, including schisto-
somiasis, with the elimination ‘as a public health problem’
from most WHO regions and by selected African
countries by 2020 (i.e. reducing prevalence of heavy
infection < 1 % in all sentinel sites) [9, 11, 12]. In
some local settings, interruption of transmission is
also anticipated, thereby accelerating elimination of
the disease [12].
The impact of a control programme is often measured

by changes in the prevalence and/or the intensity of

infection. Preventive chemotherapy by MDA with PZQ
has been demonstrated to be, in general, highly effective
in reducing both the prevalence and intensity of schisto-
some infection [13–15]. The development of a user--
friendly quantitative tool that uses these impact
measurements to inform programme managers as to
whether their programme is on target to meet their
goals would be invaluable in assisting with programme
design and evaluation and in providing an early warning
of potential transmission ‘hotspots’ or poor programme
performance.
A Markov statistical model was developed to capture

soil-transmitted helminth (STH) infection dynamics
through rounds of MDA (with benzimidazoles), by
Montresor and colleagues in 2013 [16, 17]. The authors
demonstrated that their model successfully predicted
changes in the prevalence of Ascaris lumbricoides,
Trichuris trichiura and hookworm (consisting of the two
species that infect humans: Ancylostoma duodenale and
Necator americanus) through five rounds of MDA using
data collected at baseline and after one round of treat-
ment in Vietnam to parameterize the Markov Transition
Probability (MTP) matrix; the essential ingredient of
such Markov models. The predictive capability of the
model was also successfully validated against STH data
from 26 control programmes in 16 countries [17].
The main appeal of the Markov approach resides in its

simplicity [18], whereby the underlying transmission
dynamics are not modelled explicitly but are captured
empirically using a purely statistical approach based on
estimated transition probabilities (TP). The model can
be used to track progress and to identify deviations from
expected programme performance where observed
values fall outside of predicted uncertainty intervals (e.g.
95 % prediction intervals, PIs).
Here, for the first time, we extend the discrete-time

Markov model approach, in which both time and infec-
tion states (intensity groups) are defined, and apply it to
S. mansoni, a causative agent of intestinal schistosomia-
sis across Africa, South America, and the Yemen. We
test the model under contrasting control programme
scenarios, using unique and extensive datasets from
SCI-supported programmes in Uganda and Mali.
Our specific aims in this study were to: (i) develop and

test a discrete-time Markov model for schistosomiasis
using data on the intensity and prevalence of S. mansoni
infection during mass treatment with PZQ; (ii) introduce
measurements of precision around predictions in the
form of 95 % PIs; (iii) estimate changes in the overall
infection prevalence and the prevalence in infection in-
tensity categories over time; (iv) qualitatively compare
the predictive capabilities of the model parameterized
using MTP matrices estimated from different settings
within the same country (Uganda) and from a different
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country (Mali), to test the transferability of the TPs to
different regions; (v) test the robustness of the model’s
predictive capabilities using data from non-baseline
years to estimate the MTP matrices; and (vi) elucidate
the ability of different data types (longitudinal and cross-
sectional data) to qualitatively test the predictions of
each matrix.

Methods
Model development
The development of a Markov model for STH infection
has been explained fully elsewhere [16]. Briefly, in rela-
tion to S. mansoni, the proportion of individuals in each
of the 4 WHO-recommended infection classes defined
by estimates of eggs per gram (epg) of faeces (not
infected, 0 epg; infected at light intensity, 1–99 epg;
infected at moderate intensity, 100–399 epg; infected at
high intensity, ≥ 400 epg [19]) and referred to as “condi-
tional states” (CS), is calculated from pre-treatment
baseline data [20]. Subsequently, an individual’s prob-
ability of transition (if any) to other CS prior to the next
round of treatment (year 1) is calculated using the
observed change in the proportion of followed individ-
uals in each category (from baseline to year 1). These
observed changes are used to parameterize a MTP
matrix, formed from a set of 16 transition probabilities
(TPs), as illustrated in Fig. 1. The model is initialised
using observed baseline starting values. Then, through a

series of Markov processes defined by the MTP matrix
(see Additional file 1: Text S1 and Table S1), projections
are made on the proportion of infected individuals by in-
tensity class through rounds of MDA.
In the first instance, we focused on S. mansoni data

collected from Uganda between the inception of the
programme in 2003 and for the first 3 annual follow-up
rounds after baseline. For further details of the control
programme in Uganda see [21, 22]. As part of the na-
tional control programme, data were collected as egg
counts (expressed as the arithmetic mean epg) from a
cohort of 125 children (aged 6–13) per school, from 37
schools across the country, over a time span of 4 years.
For the calculation of the TPs from the full Uganda

dataset, longitudinal data between baseline and year 1
were used (i.e. only data from those individuals who
could be identified at each of those time points, namely
1,258 individuals). To quantify uncertainty around the
model projections (expanding on the previously pub-
lished version of the model applied to STH [15, 16]),
95 % prediction intervals (95 % PIs) associated with each
TP were calculated through bootstrap resampling (with
replacement) for 10,000 iterations, using the R package
‘boot’ version 1.3–9 [23–26]. The 95 % PIs were calcu-
lated in the following steps: 1) a new ‘dataset’ was gener-
ated through bootstrapping allowing for the calculation
of a new MTP matrix (set of 16 TPs); 2) the model was
run (using these TPs) to calculate the reduction in

Fig. 1 Transition diagram illustrating a Markov transition probability matrix [16]
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prevalence over time; 3) steps 1) and 2) were repeated
10,000 times; 4) for each time point, the predicted mean
prevalence was calculated; and 5) from the range of pre-
dicted prevalence levels generated, the 95 % PIs were
constructed using the 2.5 % and 97.5 % percentiles. Ini-
tially, for the observed data, the full cohort of individuals
who were followed up from baseline to year 3 of the
intervention was included (757 individuals). Since some
of the individuals in this dataset were also used for the
calculation of the TPs (as would be the case in practice
when using these models), it was expected that the pre-
dicted prevalence at year 1 would follow the observed
values from the full dataset 1 (Table 1) very closely. In
order to test the transferability of the model using inde-
pendent data, the TPs calculated from the full Uganda
dataset were also used to test model predictions against
longitudinal data from Mali. Conversely, to further test
the robustness of the model, longitudinal baseline and
year 1 data from Mali was also used to parameterize a
separate model and tested against observed Uganda lon-
gitudinal data. These additionally tested the flexibility of
the model to different starting baseline prevalence levels
(for Mali the baseline overall prevalence was 26.5 % for
S. mansoni infection whilst for Uganda the overall preva-
lence was 43.0 %).

Datasets used and models developed
The data were collected as part of a treatment campaign
in Uganda for school-aged children (SAC) from 2003 to
2006 and in Mali from 2004 to 2007 (Fig. 2). We
selected SCI data from Uganda as our primary dataset to
parameterize and validate our model because: (i) Uganda
was the first ‘SCI country’ to commence large-scale
control of schistosomiasis in 2003, and thus has the
most extensive longitudinal datasets (including pre-
intervention baseline); (ii) S. haematobium infections are
highly localised to specific regions within Uganda, with
prevalence mostly below 1 %, and hence the potentially
confounding impact of S. haematobium infection on the

transition probabilities can be assumed to be minimal
[27]; and (iii) Uganda has been very successful in imple-
menting control [13], making this country an ideal
candidate to move towards elimination of schistosomia-
sis as a public health problem. The extensive Ugandan
dataset also enabled the model to be tested against data
obtained from contrasting districts and disease endemic-
ities. Three districts were selected based on their
geographic spread and the distribution of infection in-
tensities: Moyo (only low intensity infections); Busia
(only low and moderate intensity infections); Masindi
(only moderate and high intensity infections). There
were no districts with only moderate or only high infec-
tion intensities. The remaining districts on which the
model was tested (i.e. dataset 2) contained a varied
composition of intensities (and were not used for the de-
velopment of matrix C) (see Fig. 2 and Additional file 1:
Table S2 for further details on the districts). The dataset
and its different subsets that were used to test the
predictive capabilities of the models are listed in Table 1.
Table 2 shows other MTP matrices that were developed
by the same method described in the previous sub-sec-
tion, Model development.
In summary, 4 matrix variants (A-D) were used to

compare different data types for parameterization: A-C
from Uganda and D from Mali. These were tested on 4
datasets (1–4): dataset 1 refers to the full longitudinal
cohort data from Uganda; dataset 2 to a subset of
dataset 1 using districts not used to parameterize matrix
C; dataset 3 to cross-sectional data from Uganda, and
dataset 4 comprises data from Mali, which acted as a
completely independent dataset. Matrix A was an ‘ideal’
scenario where longitudinal baseline and year 1 data
from a large programme were available to parameterize
the model and develop the TPs. The TPs were assumed
to be fixed throughout the years. In practice, since
changes between intensity groups are likely to be more
dramatic after the first treatment in a treatment-naïve
area, matrix B was developed using TPs from post-

Table 1 Data used for testing model/matrices

Observed baseline prevalence (%)

Dataset Data type Description Sample size (n) Overall
prevalence

Low
intensity

Moderate
intensity

High
intensity

1 Uganda longitudinal baseline
to year 3

Full longitudinal data set 747 43.0 16.6 11.4 15.0

2 Uganda longitudinal baseline
to year 3

4a Ugandan districts out of 7 400 46.5 15.5 12.3 18.8

3 Uganda cross-sectional baseline
to year 3

Varying sample size per year,
full programme data

Baseline: 4,222;
Year 1: 3,973;
Year 2: 4,192;
Year 3: 3,373

45.2 16.0 11.7 17.6

4 Mali longitudinal baseline
to year 2

Full longitudinal data set 897 26.5 12.5 7.1 6.9

aThese districts were selected for their wide range of infection intensities and NOT used to the development of matrix C
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baseline treatment, between year 1 and year 2. The use
of matrix C predictions on dataset 2 is an illustration of
a scenario where an ‘independent’ matrix might be used,
calculated from a smaller dataset, to estimate changes
on a ‘separate’ smaller dataset (dataset 2) that is not used
to develop the TPs. Matrix D illustrates a case where
longitudinal data from another country are used to
develop the TPs (Mali) in order to predict changes in
prevalence in a separate country (Uganda). In the follow-
ing sections we distinguish between ‘estimation’ (the
estimated TP values), ‘prediction’ (the model outputs),
95 % prediction intervals (95 % PIs, constructed as
described above) and 95 % confidence intervals (95 %

CIs) around the data (calculated as binomial proportion
confidence intervals). As a conservative approach to the
qualitative model assessment, we focus on the ability of
the models to capture the observed point prevalence
values within the 95 % PIs whilst also highlighting
whether the 95 % PIs of the model capture the 95 % CIs
of the observed data.

Matrix and dataset combinations
Matrix A, datasets 1, 2, 3, 4
Matrix A was calculated using all 1,245 individuals that
were followed from baseline to year one in the Uganda
dataset. Dataset 1 contains 747 of these individuals who
were followed for a further 3 years (lower numbers due
to loss of follow-up). Therefore, we expected Matrix A
to provide the most accurate predictions, on dataset 1.
In addition, to test how the model performed with
smaller sample sizes, less complete data, and other data
types, selected districts (dataset 2) and cross-sectional
data (dataset 3) were used. To test how well the model
performed using matrix A on a completely independent
dataset, longitudinal data from Mali (baseline to year 2;
dataset 4) were used.

Fig. 2 Map of Africa showing Mali (red) and Uganda (green). Subset: Uganda by district in study sample

Table 2 Markov transition probability (MTP) matrices developed

MTP
matrix

Country Number of
districts

Time points used
to develop matrix

Sample
size (n)

A Uganda 7 Baseline and year 1 1,245

B Uganda 7 Year 1 and year 2 1,260

C Uganda 3 Baseline and year 1 540

D Mali - Baseline and year 1 1,092
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Matrix B, datasets 1, 2, 3
It is important to understand how the model and its
outputs differ between 2 different time points within
the same settings, since the model explicitly assumes
that the TPs remain constant between each time
point. To explore this, instead of using the baseline
and year 1 data to calculate the TPs for the matrix,
data derived from follow-up years 1 and 2 were used
from the full Uganda dataset (matrix B). The outputs
from these TPs were compared to the observed values
from datasets 1–3.

Matrix C, datasets 1, 2, 3
A comparison was made between model outputs using
smaller sample sizes for situations in which fewer data
are available to parameterize TPs. This was achieved by
selecting district-level subsets of the data for calculating
TPs. The predictions were also tested against dataset 1
(longitudinal Uganda dataset) to represent a case where
limited data would be used for the development of the
TPs to project the expected impact of a much larger
programme. In addition, to test the least favourable data
scenario where there is very high loss to follow-up, the
model was also used to estimate changes in the propor-
tions infected according to cross-sectional data, i.e. small
sample size for TP development and poor follow-up to
test the model (dataset 3).

Matrix D, dataset 1
Transition probabilities developed from the Mali
baseline and year 1 data (Matrix D) were used to pre-
dict the longitudinal Ugandan dataset (dataset 1). This
was performed by way of testing model performance
when a dataset other than the Ugandan data are used
for calculation of the TPs. This addresses issues on
the generalizability of the MTP approach among en-
demic settings.

Results
We focus on the ability of the models to capture the ob-
served point prevalence values (and accompanying un-
certainty) within the 95 % PIs. Where the upper or
lower bounds of the 95 % CIs around the observed
values overlapped with the model predictions (or their
95 % PIs) only, the model was able to capture the uncer-
tainty in the data but not the point prevalence.

Predictions made on dataset 1
Table 3 shows all the predictions that were made for
dataset 1. The symbol next to the values highlights
predictions that were closest to the observed point
prevalence values and the values in bold highlight
predictions where observed point prevalence values fell
outside the 95 % PIs; in most cases however, the model

still captured some of the uncertainty around the
observed values (10 cases out of 13 shown in bold).
All of the predictions from each matrix captured the

observed point prevalence values within their PIs for the
low infection intensity prevalence category in each year
with the exception of matrix D (year 1 and marginally
for year 2) and for the prevalence of high intensity infec-
tions with the exception of matrix C (year 3), although
in both cases the 95 % PIs and the 95 % CIs overlapped.
When using the TPs derived from matrix A (the full
Ugandan dataset) to predict forward the reduction in
overall infection prevalence as well as in prevalence for
all infection intensity groups, the outputs matched the
observed data within the 95 % PIs for all time points
with the exception of the moderate intensity group and
the overall prevalence for year 2 (Fig. 3 and Table 3),
which indicated that the observed prevalence for each
infection intensity group was below the lower bound of
the prediction intervals of the estimated prevalence.
However, in both instances, the model captured the
95 % CIs of the observed values.
As with matrix A, matrices B (Additional file 1: Figure

S1a) and D (Fig. 4) also ‘highlighted’ year 2 for both
prevalence of moderate infection intensity and overall
prevalence as a year in which observed values fell below
95 % PIs (with matrix B capturing the upper 95 % CI
around the data, as with matrix A). Matrix C, however,
did not highlight any of the same time points identified
by the other matrices but instead, highlighted different
years in the moderate intensity, high intensity and
overall prevalence groups as time points in which
observed point prevalence levels were higher than pre-
dicted by the model (Additional file 1: Figure S1b).

Predictions made on dataset 2
Table 4 shows the predictions that were made for dataset
2 (see also Additional File 1: Figure S2). All 3 matrices
in this group indicated the same time point for the low
infection intensity group (year 3) and the overall preva-
lence group (year 1 and year 3) as performing below the
expected values, i.e. higher observed point prevalence
values than predicted (although matrix A also identified
year 2 for better programme performance than expected,
for overall infection prevalence). The same pattern in
predicted vs observed prevalence from dataset 1 by all
matrices was observed in the moderate infection inten-
sity group for all time points, with the exception of year
3 for matrix B, which mirrored matrix C estimates.
Matrices A and B performed similarly as in dataset 1 for
the high intensity group (i.e. all observations at each
time point were within the prediction intervals of the
model predictions) but matrix C indicated that the
observed prevalence values from years 1 and 2 were
marginally higher than expected. Matrix A was able to

Deol et al. Parasites & Vectors  (2016) 9:543 Page 6 of 15



Table 3 Predicted mean prevalence by matrices A-D for dataset 1 (full Uganda cohort baseline year 0 – year 3)

Low intensity (predicted mean
prevalence and 95 % CI)

Moderate intensity (predicted
mean prevalence and 95 % CI)

High intensity (predicted mean
prevalence and 95 % CI)

Overall prevalence (predicted
mean prevalence and 95 % CI)

Matrix Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

Observed
prevalence
dataset 1

0.134
(0.111–0.160)

0.099
(0.080–0.123)

0.102
(0.082–0.126)

0.075
(0.058–0.096)

0.021
(0.013–0.035)

0.033
(0.023–0.049)

0.035

(0.024–0.051)

0.016
(0.009–0.028)

0.020
(0.011–0.031)

0.244
(0.214–0.276)

0.137
(0.114–0.163)

0.154
(0.130–0.182)

Matrix A
Full dataset

0.142
(0.123–0.161)

0.108
(0.091–0.126)

0.095a

(0.077–0.113)
0.075a

(0.062–0.090)
0.044
(0.033–0.056)

0.033a

(0.023–0.045)
0.044
(0.033–0.055)

0.023
(0.015–0.032)

0.017a

(0.010–0.026)
0.261
(0.240–0.282)

0.175
(0.151–0.200)

0.144a

(0.119–0.171)

Matrix B
Uganda year
1 to year 2

0.135a

(0.112–0.158)
0.105
(0.086–0.126)

0.090
(0.072–0.109)

0.069
(0.051–0.090)

0.039
(0.028–0.051)

0.028
(0.019–0.038)

0.048
(0.031–0.066)

0.024
(0.015–0.036)

0.016
(0.009–0.024)

0.252a

(0.225–0.278)
0.168
(0.141–0.197)

0.133
(0.108–0.160)

Matrix C
3 selected districts

0.152
(0.122–0.183)

0.096a

(0.071–0.122)
0.082
(0.057–0.108)

0.045
(0.027–0.065)

0.016a

(0.008–0.027)
0.009
(0.003–0.017)

0.027
(0.013–0.043)

0.011a

(0.003–0.021)
0.008
(0.001–0.018)

0.223
(0.193–0.255)

0.123a

(0.093–0.156)
0.099
(0.069–0.132)

Matrix D
Mali full dataset

0.165
(0.141–0.190)

0.122
(0.100–0.146)

0.095a

(0.073– 0.117)
0.081
(0.062–0.101)

0.051
(0.037–0.068)

0.035
(0.023–0.049)

0.042a

(0.028–0.057)
0.021a

(0.012–0.032)
0.031
(0.007–0.021)

0.288
(0.264–0.312)

0.195
(0.164–0.226)

0.143
(0.113–0.175)

Bold = observed point prevalence values fell outside of the predicted boundaries
aClosest predictions to observed values
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Fig. 3 Matrix A predictions and dataset 1 observations. Matrix A was composed of transition probabilities derived from Uganda baseline and year 1
data and dataset 1 represents the full longitudinal Ugandan observations. These 4 plots show the predicted reduction in prevalence by Matrix A
(bands) vs observed (black points) in Uganda by overall prevalence group and by intensity group. The dotted line represents the pre-MDA prevalence

Fig. 4 Matrix D predictions and dataset 1 observations. Matrix D was composed of transition probabilities derived from Mali baseline and year 1 data
and dataset 1 represents the full longitudinal Ugandan observations. These 4 plots show the predicted reduction in prevalence by Matrix D (bands)
vs observed (black points) in Uganda by overall prevalence group and by intensity group. The dotted line represents the pre-MDA prevalence
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Table 4 Predicted mean prevalence by matrices A-C for dataset 2 (selected Ugandan districts)

Low intensity (predicted mean
prevalence and 95 % CI)

Moderate intensity (predicted
mean prevalence and 95 % CI)

High intensity (predicted mean
prevalence and 95 % CI)

Overall prevalence (predicted
mean prevalence and 95 % CI)

Matrix Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

Observed
prevalence
dataset 2

0.158
(0.125–0.196)

0.105
(0.079–0.139)

0.143
(0.112–0.180)

0.100
(0.074–0.133)

0.020
(0.010–0.030)

0.045
(0.029–0.070)

0.055
(0.037–0.082)

0.030
(0.017–0.052)

0.018
(0.009–0.036)

0.313
(0.269–0.360)

0.155
(0.123–0.194)

0.205
(0.168–0.247)

Matrix A
Full dataset

0.152a

(0.133–0.172)
0.112
(0.095–0.130)

0.096
(0.078–0.115)

0.085a

(0.070–0.101)
0.048
(0.036–0.060)

0.034a

(0.024–0.046)
0.051
(0.039–0.063)

0.025
(0.017–0.035)

0.018a

(0.010–0.026)
0.289
(0.268–0.311)

0.185
(0.161–0.211)

0.148
(0.123–0.175)

Matrix B
Uganda year
1 to year 2

0.140
(0.115–0.166)

0.109a

(0.089–0.129)
0.092
(0.074–0.111)

0.078
(0.055–0.102)

0.042
(0.030–0.055)

0.029
(0.020–0.039)

0.055a

(0.035–0.077)
0.027a

(0.016–0.040)
0.017
(0.009–0.026)

0.272
(0.242–0.302)

0.178a

(0.149–0.208)
0.137
(0.111–0.165)

Matrix C
3 selected
districts

0.166
(0.132–0.199)

0.099
(0.075–0.124)

0.082
(0.057–0.108)

0.052
(0.031–0.075)

0.018a

(0.009–0.029)
0.010
(0.003–0.018)

0.031
(0.014–0.051)

0.012
(0.003–0.023)

0.008
(0.001–0.018)

0.249
(0.216–0.282)

0.129
(0.098–0.162)

0.100
(0.070–0.132)

Bold = observed point prevalence values fell outside of the predicted boundaries
a Closest predictions to observed values
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capture the uncertainty in all 12 observed values of data-
set 2, matrix B captured 10 out of 12 and matrix C cap-
tured 9 out 12.

Predictions made on dataset 3
Table 5 shows the predictions that were made for
dataset 3 (cross-sectional observed data). Figure 5
shows the output obtained from using the matrix A
model on dataset 3 and Additional File 1: Figure S3
shows the plots corresponding to applying matrices B
and C on dataset 3.
All data points in the low intensity of infection preva-

lence group were estimated accurately by each matrix,
where both the observed point prevalence values as well
as their 95 % CIs were captured by the model. As with
dataset 1, matrices A and B produced similar outputs,
with the observed data points and their 95 % CIs
predicted by the models, with the exception of year 3, in
moderate intensity, high intensity and overall prevalence
groups. For matrix C, other than the low infection inten-
sity group, the observed prevalence levels in all of the
other infection intensity groups in all years were greater
than the predicted range.

Predictions made on dataset 4
Figure 6 and Table 6 show the model outputs when
Ugandan TPs were used to estimate changes in the
longitudinal data from Mali. The results show that the
model predictions match the changes in prevalence
closely, with only year 2 observations from the low and
high infection intensity groups falling outside of the pre-
diction intervals, yet capturing the uncertainty around
the data. The low intensity year 2 prediction shows an
increase in prevalence, but inspection of the high inten-
sity group shows that this may be due to individuals
moving from the higher infection intensity groups to the
low intensity and the non-infected group. Additional File
1: Figure S4 also shows the output obtained when apply-
ing Matrix D to dataset 4, where all data points were
captured by the model with the exception of year 2 in
the low intensity group. In all years however, matrix D
captured the 95 % CIs of all observed data points.

Discussion
The primary aim of this study was to develop a simple
quantitative tool to help programme managers to moni-
tor and evaluate the ongoing progress of their schisto-
somiasis disease control interventions and whether they
are meeting their targets. For this, we parameterized and
validated Markov models using an extensive longitudinal
dataset of S. mansoni infection in Ugandan children
treated yearly with PZQ. Additionally, in order to test
the robustness of the model predictions in a completely
different setting, we compared model predictions against

data from comparable school-aged children from the na-
tional control programme in Mali. Our focus was on the
ability of the models to capture the observed point
prevalence values, as a conservative approach to model
assessment. It is anticipated that programme managers
will be able to use their own baseline and year 1 data to
predict changes in infection prevalence in subsequent
years of the same programme, as this is the scenario
where the model performed best.
Our study therefore demonstrated that this Markov

modelling approach is useful when making (relatively
short-term) predictions on infection trends with large
datasets from which a subset has been used to
parameterize the model (as seen by matrix A vs dataset
1 and matrix D vs dataset 4). Additionally, it is useful
when completely independent data from another coun-
try have been used to parameterize the model and when
predicting cross-sectional data. These results are par-
ticularly noteworthy since the vast majority of sentinel
site survey data tend to be cross-sectional in design
given inherent logistical and financial advantages. Matri-
ces A and B performed similarly (with matrix A predict-
ing changes in prevalence correctly within the 95 % PI
range at more follow-up times in each infection intensity
group than any other matrix variant), showing that the
models performed similarly, whether TPs developed
from baseline to year 1 data (matrix A) or from year 1
to year 2 (matrix B) were used to parameterize the
model. It is important to test the performance of the
model on a completely different country as this is 1
scenario for which a programme manager may use this
model, and for these reasons data from Mali (dataset 4)
were used to both separately test the model with Ugandan
TPs (matrix A) and parameterize the model (baseline and
year 1 data for matrix D). The model was able to predict a
large majority of data points within the estimated 95 %
PIs, in both cases: matrix A predicted all but 2 data points
within the 95 % PIs (but captured the 95 % CIs around the
data) for Mali dataset 4, and matrix D performed similarly
to matrices A and B when predicting dataset 1. Con-
versely, matrix C (using data from selected districts in
Uganda) performed least well, with only 16 of the 36
estimates in this study capturing the observed point
prevalence values within the 95 % PIs. However, it is not
possible to determine how the trends would continue
without further data; therefore, this study is limited to the
data we had available.
We conclude that, in its current form, the model is a

useful additional tool for programme managers, provided
they have the data available for the parameterisation of the
model to the local setting, and is particularly useful for the
interpretation of data from low and high infection inten-
sity areas where all of the models performed best. This is
ideal for programmes preparing to move from control of
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Table 5 Predicted mean prevalence by matrices A-C for dataset 3 (cross-sectional Ugandan data)

Low intensity (predicted mean
prevalence and 95 % CI)

Moderate intensity (predicted mean
prevalence and 95 % CI)

High intensity (predicted mean
prevalence and 95 % CI)

Overall prevalence (predicted
mean prevalence and 95 % CI)

Matrix Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

Observed
prevalence
dataset 3

0.150
(0.139–0.161)

0.122
(0.112–0.132)

0.104
(0.094–0.115)

0.085
(0.077–0.094)

0.051
(0.044–0.053)

0.061
(0.053–0.070)

0.059
(0.052–0.070)

0.032
(0.028–0.038)

0.054
(0.048–0.062)

0.294
(0.280–0.308)

0.205
(0.193–0.218)

0.219
(0.205–0.233)

Matrix A
Full dataset

0.149a

(0.130–0.168)
0.111a

(0.093–0.128)
0.095a

(0.078–0.114)
0.082a

(0.068–0.097)
0.047a

(0.035–0.059)
0.034
(0.024–0.045)

0.049
(0.037–0.061)

0.024
(0.016–0.034)

0.017
(0.010–0.026)

0.280a

(0.259–0.301)
0.182a

(0.157–0.207)
0.147
(0.121–0.173)

Matrix B
Uganda year
1 to year 2

0138
(0.114–0.163)

0.108
(0.088–0.128)

0.091
(0.073–0.110)

0.075
(0.053–0.098)

0.041
(0.029–0.054)

0.028
(0.019–0.039)

0.052a

(0.033–0.073)
0.026a

(0.016–0.039)
0.017
(0.009–0.025)

0.265
(0.235–0.295)

0.174
(0.146–0.205)

0.136
(0.110–0.163)

Matrix C
3 selected districts

0.160
(0.128–0.193)

0.098
(0.074–0.123)

0.082
(0.057–0.108)

0.050
(0.029–0.072)

0.017
(0.008–0.029)

0.009
(0.003–0.018)

0.030
(0.014–0.049)

0.011
(0.003–0.022)

0.008
(0.001–0.018)

0.240
(0.208–0.273)

0.127
(0.096–0.159)

0.100
(0.070–0.131)

Bold = observed point prevalence values fell outside of the predicted boundaries
a Closest predictions to observed values
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morbidity to interruption of transmission and elimination
of infection (more feasible in low infection intensity areas)
or to elimination of schistosomiasis as a public health
problem (more severe in high infection intensity areas).
Availability of longitudinal follow-up data is not essential,
provided the sample size is large (as in this study) for
cross-sectional annual data; however, longitudinal data are
required to calculate the TPs. The use of data from Mali
for parameterization (matrix D) illustrated that the model
could, with some caution, be considered useful for
predicting prevalence changes in Uganda, but more
data would be required from other countries to test
this further.
These models are aimed to be a tool to aid decisions

and stimulate further investigation when needed rather
than be used as a precise prediction of likely impact.

Therefore, it is hoped that this heuristic technique may
be useful for programme managers as a quick and sim-
ple means of assessing the progress of programmes.
However, as seen by the results concerning dataset 4
(Mali longitudinal cohort), it is important to interpret
the data for all 4 infection intensity groups together,
since a large observed increase in the low infection
intensity group compared to model outputs, may likely
be linked to a corresponding decrease in the proportion
of the heavier infection intensity groups. The precise
change in infection patterns following treatment will de-
pend on a multitude of factors related to programmatic
design and performance. These will include therapeutic
coverage and treatment adherence, which in turn will be
related to other programmatic variables, such as the per-
formance of the drug distribution teams, the accuracy of

Fig. 5 Matrix A (full Ugandan baseline and year 1 transition probabilities) predictions and dataset 3. Dataset 3 represents cross-sectional Uganda
observations. These 4 plots show the predicted reduction in prevalence by Matrix A (bands) vs cross-sectional observed (black points) in Uganda
by overall prevalence group and by intensity group. The dotted line represents the pre-MDA prevalence

Table 6 Predicted mean prevalence by matrix A for dataset 4 (longitudinal Mali data)

Low intensity (predicted
mean prevalence and 95 % CI)

Moderate intensity (predicted
mean prevalence and 95 % CI)

High intensity (predicted
mean prevalence and 95 % CI)

Overall prevalence (predicted
mean prevalence and 95 % CI)

Matrix Year 1 Year 2 Year 1 Year 2 Year 1 Year 2 Year 1 Year 2

Observed prevalence
dataset 4

0.113
(0.094–0.135)

0.122
(0.102–0.145)

0.052
(0.040–0.069)

0.036
(0.025–0.050)

0.023
(0.015–0.036)

0.008
(0.004–0.016)

0.188
(0.164–0.215)

0.165
(0.142–0.191)

Matrix A
Full dataset

0.112
(0.095–0.129)

0.096
(0.079–0.115)

0.049
(0.039–0.059)

0.035
(0.025–0.046)

0.027
(0.020–0.035)

0.018
(0.011–0.027)

0.188
(0.169–0.207)

0.149
(0.126–0.174)

Bold = observed point prevalence values fell outside of the predicted boundaries
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census data, and the effectiveness of social mobilization
techniques, among others. Identifying the respective im-
pact of each of these factors is beyond the scope of this
paper.
Despite its advantages, the limitations of the Markov

approach must be understood if it is to constitute a use-
ful tool by programme managers. The model employed
in this study is referred to as a time-homogenous Mar-
kov process [28], which assumes that the TPs remain
constant through time. It is also assumed that they are
invariant with respect to setting (endemicity, geographic
location etc.) and host age group. This is not likely to
hold for long-term projections as interventions (in this
case MDA) are likely to have an impact on the transmis-
sion environment. For these reasons, such models may
indicate ‘abnormalities’ in the observed datasets as a
result of inevitable or expected changes over time, there-
fore the usefulness of the approach resides in its value as
an additional tool for monitoring and evaluation rather
than the definitive tool for this purpose. The data used
to validate and test the models are primarily from
school-aged children since most schistosomiasis inter-
ventions focus on this age group, who tend to harbour
the highest burden of infection [29–35]. Therefore, the
models do not consider the broader impact of MDA on
the entire community via the indirect (herd) effects on
transmission that result from reducing the force of

infection [13]. Moreover, the method also implies that
the same intervention is used each year using the same
treatment schedule, not accounting for complementary
interventions that may be implemented, such as those
relating to sanitation or education, increase in public
awareness that may accompany the progression of a
control programme, or changes in the frequency and/or
coverage of MDA. The model is based on a closed
system and, therefore, assumes no population migration
or extraneous introduction of new infections. This is an
important limitation for mobile communities that
may comprise so-called super-spreading individuals
(such as fishermen or bicycle washers) who contribute
disproportionately to community-wide transmission
and who may be more likely to miss treatment. How-
ever, this is also a general limitation of most helminth
transmission models, which rarely consider the spatial
aspects of transmission.
With these limitations in mind, this study demon-

strates that using constant TPs from the same dataset
or from different datasets provides a satisfactory pre-
diction of data (and their uncertainty) on the overall
prevalence and the prevalence of high, moderate and
light infections for up to 3 follow-up years. This
method could also be extended to S. haematobium,
adapting the model to the different WHO intensity
classes for this species (defined as 1–50 eggs/10 ml of

Fig. 6 Matrix A (Uganda baseline and year 1 transition probabilities) predictions and dataset 4. Dataset 4 represents full longitudinal Mali
observations. These 4 plots show the predicted reduction in prevalence by Matrix A (bands) vs observed (black points) in Mali by overall
prevalence group and by intensity group. The dotted line represents the pre-MDA prevalence
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urine as light intensity and > 50 eggs/10 ml of urine
as heavy intensity, with no moderate intensity group)
[9, 19] as well as to S. japonicum. In this case, the
transmission dynamics among multiple definitive
hosts would potentially pose less of a problem to this
modelling approach when compared to other models
that do not take into account the zoonotic reservoir,
as the TPs calculated from the initial data would in-
clude all of the transmission-related processes occur-
ring between the 2 time points [36–38]. This study
could also be expanded further by comparing differ-
ent TPs obtained from other datasets. In addition, the
models could be adapted to make longer-term predic-
tions (since the present study is focussed on short-
term changes of 1–3 years post-baseline due to the
stationary TP limitation), using datasets spanning
longer periods and incorporating MDA coverage
information. These extensions could, in principle, be
captured using multiple TPs based on existing data of
varying treatment coverage, or the possibility of hav-
ing dynamic TPs that change with time or are simply
updated as new data become available (developing
new TPs from the more recent followed cohort). The
use of year 1 to year 2 TPs in this study illustrated
the potential for updating TPs as the programme pro-
gresses to estimate changes in subsequent years. This
would overcome the constraints imposed by using
baseline and year 1 data only, for projecting over long
running programmes.

Conclusions
We developed and refined a Markov model to capture
changes in the prevalence of infection intensity categor-
ies for S. mansoni infection over multiple rounds of
MDA with PZQ. We parameterized our model using 2-
year (2 consecutive time points) longitudinal data from
Uganda and from Mali, using it to make longer-term
projections against different variations of the datasets.
The results from this study show that this is not only a
promising instrument for programmes in their early
years of implementation as a complementary M&E tool,
but also a useful quantitative approach for making
short-term projections of prevalence trends under inter-
ventions. With the ambitious WHO 2020 goals on the
horizon, there is a need to look beyond maintaining
control of schistosomiasis and shift focus to eliminat-
ing this debilitating disease. The global research com-
munity needs to develop practical tools to help
programmes to achieve these goals. The Markov
model has already produced encouraging results with
existing programmatic data. With the push towards
the elimination of schistosomiasis as a public health
problem by 2020, these findings come at a key time

in the field of NTD modelling for programme
managers and policy makers.
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