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Abstract
The availability and repartition of fucosylated glycans within the gastrointestinal tract contributes to the adaptation of gut 
bacteria species to ecological niches. To access this source of nutrients, gut bacteria encode α-l-fucosidases (fucosidases) 
which catalyze the hydrolysis of terminal α-l-fucosidic linkages. We determined the substrate and linkage specificities of 
fucosidases from the human gut symbiont Ruminococcus gnavus. Sequence similarity network identified strain-specific 
fucosidases in R. gnavus ATCC 29149 and E1 strains that were further validated enzymatically against a range of defined 
oligosaccharides and glycoconjugates. Using a combination of glycan microarrays, mass spectrometry, isothermal titra-
tion calorimetry, crystallographic and saturation transfer difference NMR approaches, we identified a fucosidase with the 
capacity to recognize sialic acid-terminated fucosylated glycans (sialyl Lewis X/A epitopes) and hydrolyze α1–3/4 fucosyl 
linkages in these substrates without the need to remove sialic acid. Molecular dynamics simulation and docking showed that 
3′-Sialyl Lewis X (sLeX) could be accommodated within the binding site of the enzyme. This specificity may contribute to 
the adaptation of R. gnavus strains to the infant and adult gut and has potential applications in diagnostic glycomic assays 
for diabetes and certain cancers.

Keywords  Gut microbiota · Glycoside hydrolase · Mucus · Mucin glycosylation · Lewis epitopes · Antennary fucose

Introduction

The microbial community inhabiting the human gut (gut 
microbiota) exerts a profound effect on human health 
through, e.g. polysaccharide digestion, metabolite and 
vitamin production, maturation of the immune system and 

protection against pathogens [1]. The adult gut microbiota 
is dominated by members of Firmicutes and Bacteroidetes 
phyla whereas the infant gut microbiota is dominated by Bifi-
dobacterium that are adapted to utilize human milk oligosac-
charides (HMOs), which are one of the major glycans found 
in breast milk. HMOs are composed of a linear or branched 
backbone containing galactose (Gal), N-acetylglucosamine 
(GlcNAc) and glucose (Glc), which can be decorated with 
fucose (Fuc) and/or sialic acid (Sia) residues, depending on 
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the mother’s secretory status [2, 3]. In the adult colon, gut 
bacteria have not only access to non-digestible polysaccha-
rides from the diet, but also to complex oligosaccharides 
from host mucins [4–6]. Mucins are large glycoproteins 
with a high carbohydrate content of up to 80%. Mucin-type 
O-glycans consists of N-acetylgalactosamine (GalNAc), Gal 
and GlcNAc, containing glycan chains modified by fuco-
sylation, sialylation and sulfation [7–9]. The main source 
of glycan diversity is provided by the peripheral terminal 
epitopes that show considerable variation. The H1 structure 
(α1,2-fucose) is found in populations carrying the secretor 
gene [10], and individuals may also express the Lewis gene 
and the Lewis B (LeB) histoblood group antigen if they are 
secretors, while non-secretors express Lewis A (LeA) [11]. 
Another phenotype (SeW—weak secretor) is characterized 
by the expression of both LeA and LeB antigens [12]. The 
presentation of the major mucin glycan epitopes, sialic acid 
and fucose, varies along the GI tract with a decreasing gra-
dient of fucose and ABH blood group expression and an 
increasing gradient of sialic acid from the ileum to the colon 
[7]. These gradients are reversed in mice, where the small 
intestine is dominated by sialylated structures and the colon 
with those terminating in fucose [13]. These glycans provide 
a potential source of nutrients to members of the gut micro-
biota [5]. In particular, α-l-fucosidases (α-fucosidases) are 
key enzymes for the degradation and metabolism of intesti-
nal mucin glycans or HMOs by gut microbes and therefore, 
contribute to shaping the composition of the gut microbi-
ota by favoring different bacterial species and influencing 
health and disease. Currently, α-fucosidases which catalyze 
the release of α-1–2, α-1–3, α-1–4 and α-1–6 linked fucose 
are classified into glycoside hydrolase (GH) families 29 and 
95 (CAZy, www.cazy.org). All GH95 enzymes functionally 
characterized so far show strict substrate specificity to the 
terminal Fuc α1-2Gal linkage and hydrolyze the linkage 
via an inverting mechanism whereas GH29 enzymes show 
relatively relaxed substrate specificities with hydrolysis pro-
ceeding via a retaining mechanism (www.cazy.org). It was 
suggested that GH29 can be divided into two subfamilies. 
One contains fucosidases with relaxed substrate specificities 
that can act on 4-nitrophenyl α-l-fucopyranoside (pNP-Fuc) 
(referred to as GH29-A) (EC 3.2.1.51), whereas the mem-
bers of the other subfamily show strict specificity for termi-
nal α-(1–3/4)-fucosidic linkages with little/no activity on 
pNP-Fuc (GH29-B) (EC 3.2.1.111) as shown for fucosidases 
from Streptomyces and Bacteroidetes thetaiotaomicron [14, 
15]. The GH29-A subfamily includes fucosidases from Ther-
motoga maritima [16], soil metagenome [17] or bacterial 
pathogens [18, 19] whereas the GH29-B subfamily includes 
fucosidases from Bifidobacterium bifidum (BbAfcB) [20] 
Clostridium perfringens (CpAfc2) [21] and Streptococ-
cus pneumoniae (SpGH29c) [22]. Despite the importance 
of fucose in regulating bacterial intestinal colonization in 

adults and infants, only a limited number of fucosidases 
have been studied at a biochemical level from human gut 
symbionts.

Ruminococcus gnavus is a prevalent member of the gut 
microbial community belonging to the Firmicutes division 
[23, 24]. R. gnavus is an early colonizer of the human gut 
[25] but persists in healthy adults where it belongs to the 57 
species detected in more than 90% of human faecal samples 
by metagenomic sequencing [23]. In the past few years, an 
increasing number of studies are reporting a disproportion-
ate representation of R. gnavus in diseases, such as inflam-
matory bowel disease [26]. In our previous work, we showed 
that R. gnavus ability to grow on HMOs or mucins was strain 
dependent [27, 28], underscoring the importance of analys-
ing glycan utilization by members of the human gut micro-
biota at the strain level. These differences are reflected by 
the distribution of GH families between R. gnavus strains 
[27]. For example, R. gnavus E1 genome lacks a sialidase 
encoding gene whereas R. gnavus ATCC 29149 encodes a 
GH33 enzyme which has been functionally characterized 
as an intramolecular trans-sialidase [29] and is associated 
with a unique sialic acid metabolism pathway which forms 
the basis of R. gnavus ATCC 29149 adaptation to mucus 
[30]. In contrast, both R. gnavus E1 and R. gnavus ATCC 
29149 genomes harbor fucosidase encoding genes belonging 
to GH29 or GH95 families [27], but their functional charac-
terization has not been reported. To gain further biochemi-
cal and structural insights into R. gnavus strategy to utilize 
mucin glycans, we determined the substrate and linkage spe-
cificities of a range of fucosidases belonging to GH29 and 
95 family from R. gnavus ATTC 29149 and E1 strains. We 
identified and characterized a fucosidase from R. gnavus E1 
with the capacity to recognize fucosylated glycans capped 
with sialic acid and to hydrolyze α1–3/4 fucosyl linkages in 
these substrates without the need to remove sialic acid. This 
unique specificity may contribute to the adaptation of R. 
gnavus strains to distinct nutritional niches. Since changes in 
abundances of sialyl fucosylated epitopes on human glycans 
have been associated in several diseases, such as diabetes 
and certain cancers, these novel fucosidases may have poten-
tial in diagnostic glycomic assays.

Materials and methods

Materials

All chemicals were obtained from Sigma (St Louis, MO, 
USA) unless otherwise stated. The structure of the oligo-
saccharides used in this work is shown in Fig. 1. 3′-Sialyl 
Lewis X (sLeX) was purchased from Carbosynth Limited 
(Campton, UK), Lewis A (LeA), α1–3Gal-Lewis X (αGal-
LeX), Blood group A/B tetrasaccharide type II (Blood 

http://www.cazy.org
http://www.cazy.org
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group A/B type II) were from Elicityl (Crolles, France), 
Lewis X (LeX) used for activity assay was from Dextra 
Laboratories (Reading, UK), LeX/LeA/N-Acetylneuraminic 
acid (Neu5Ac) used for ITC were from Carbosynth Lim-
ited (Campton, UK), LeX used for STD NMR was from 
the Consortium for Functional Glycomics (CFG). 3′-Sialyl 
Lewis A (sLeA), sialylated and desialylated human plasma 
N-glycans and FA2G2 N-glycans were from Ludger (Oxford, 
UK). Horseradish peroxidase (HRP) treated with BM03341 
plant specific PNGase was a kind gift from Dr Lucy Crouch 
(Newcastle University). E. coli strain (Tuner DE3 pLacI) 
was from Merck (Darmstadt, Germany).

Cloning, expression, mutagenesis and purification 
of GH29 and GH95 fucosidases

Ruminococcus gnavus ATCC 29149 or E1 genomic DNA 
(gDNA) was purified from the cell pellet of a bacterial over-
night culture (1 ml) following centrifugation (5000g, 5 min) 
using the GeneJET Genomic DNA Purification Kit (Ther-
moFisher, UK), according to the manufacturer’s instruc-
tions. The full-length sequence of E1_10125 and E1_10180, 
excluding the signal sequence were cloned into the pOPINF 
expression system [31], introducing an His-tag at the N ter-
minus. The D221A mutant of E1_10125 was produced by 
NZYTech (Lisbon, Portugal). The E1_10125G260M mutant 
was generated using the NZY Mutagenesis kit (Lisbon, 
Portugal). The ATCC_03833 and ATCC_00842 sequences 

exempt of the signal sequence were cloned into pET28a 
with N terminal His tag by Prozomix (Haltwhistle, UK). 
The E1_10587 was synthesized by NZYTech (Lisbon, Por-
tugal) into pHTP1 with N terminal His tag.

The primers used are listed in Table S1. DNA manipu-
lation was carried out in E. coli DH5α cells. Sequences 
were verified by DNA sequencing at Eurofins MWG 
(Ebersberg, Germany) or Earlham Institute (formerly 
TGAC, Norwich, UK). E. coli TunerDE3pLacI cells were 
transformed with the recombinant plasmids according to 
manufacturer’s instructions. The expression was carried 
out in 1000 ml LB media growing cells at 37 °C until 
OD600 nm reached 0.4 to 0.6 and then induced at 16 °C for 
48 h. The cells were harvested by centrifugation at 7000g 
for 10 min. The His-tagged proteins were purified by 
immobilized metal affinity chromatography (IMAC) and 
further purified by gel filtration (Superdex 75 and 200 col-
umns) on an Akta system (GE Health Care Life Sciences, 
Little Chalfont, UK). Protein purification was assessed by 
standard SDS–polyacrylamide gel electrophoresis using 
the NuPAGE Novex 4–12% Bis–Tris (Life Technologies, 
Paisley, UK). Protein concentration was measured with 
a NanoDrop (Thermo Scientific, Wilmington, USA) and 
using the extinction coefficient calculated by ProtParam 
(ExPASy-Artimo, 2012) from the peptide sequence.

Fig. 1   Fucosylated oligosaccharides used in this study. Monosaccharide symbols follow the Symbol Nomenclature for Glycans system [98]
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Glycan microarrays

Three concentrations (5, 50 and 200 µg/ml) of recombi-
nant His6-tagged E1_10125 D221A mutant were screened 
for binding to Core H glycan microarray glycans at the 
Consortium for Functional Glycomics (CFG).

STD NMR experiments

An Amicon centrifuge filter unit with a 10 kDa MW cut-
off was used to exchange the protein in 25 mM d19-2,2-
bis(hydroxymethyl)-2,2′,2″-nitrilotriethanol pH* 7.4 (uncor-
rected for the deuterium isotope effect on the pH glass 
electrode) D2O buffer and 50 mM NaCl. All the ligands were 
dissolved in 25 mM d19-2,2-bis(hydroxymethyl)-2,2′,2″-
nitrilotriethanol pH* 7.4, 50 mM NaCl. A concentration of 
50 µM was used for the enzyme and 2 mM for the ligands. 
The STD NMR spectra were performed on a Bruker Avance 
800.23 MHz at 278 K. The on- and off-resonance spectra 
were acquired using a train of 50 ms Gaussian selective satu-
ration pulses using a variable saturation time from 0.5 to 5 s, 
for binding epitope mapping determination (STD build-up 
curves). Residual protein resonances were filtered out using 
a T2 filter of 40 ms. All the spectra were performed with a 
spectral width of 10 kHz and 32768 data points using 256 
or 512 scans. Binding epitope mappings were obtained by 
determining the initial slopes ( STD0 ) calculated by perform-
ing a least-squares fitting of the following mono-exponential 
curve:

where STD
(

tsat

)

 is the STD intensity for a saturation time, 
tsat , STDmax is the maximum STD intensity and ksat is the rate 
constant for saturation transfer. In the limit, tsat → 0:

Importantly, STD0 gives a value that is independent of 
any relaxation or rebinding effects, allowing for a more accu-
rate binding epitope. The value of STD0 was then normalized 
against the proton with the largest intensity to give values 
in the range of 0–100%, which were then mapped onto the 
ligand structure to give the corresponding binding epitope 
mapping.

X‑ray crystallography

The E1_10125 fucosidase His tag was removed using 
3C-protease overnight at 4 °C at a mass ratio of 20:1, the His 
tag and 3C-protease was then removed by passing the sam-
ple over a nickel sepharose column. The final crystallization 
condition was 0.2 M magnesium chloride, 25% PEG 3350, 

STD
(

tsat

)

= STDmax

(

1 − exp
(

−ksattsat

))

,

STD0 = STDmaxksat.

0.1 M bis–tris pH 5.5, 10 mM 2-Fucosyllactose  (2′FL). 
Sitting drop vapour diffusion crystallization experiments of 
E1_10125 or E1_10125 D221A were set up at a concentra-
tion of 20 mg/ml and monitored using the VMXi beamline 
at Diamond Light Source [32]. Crystals were cryoprotected 
using the crystallization condition with the addition of 15% 
ethylene glycol. Wild-Type and D221A E1_10125 mutant 
diffraction experiments were performed at Diamond Light 
Source on beamlines I04 (wavelength 0.9795 Å) and I03 
(wavelength 0.9763 Å), respectively. The data were pro-
cessed with Xia2 making use of aimless, dials and pointless 
[33–36]. The data were phased using PHASER using pdb 
4OUE as a molecular replacement model and refined using 
REFMAC [37] and Coot [38] within the CCP4 software 
environment [39]. The PDB REDO server [40] was used 
to optimize the refinement parameters and the model was 
validated using the Molprobity server [41].

Molecular dynamics (MD) simulation and docking 
of sLeX into E1_10125 D221A

Docking calculations were run using the crystal structure of 
E1_10125 D221A mutant as it showed the highest resolu-
tion. First, a MD simulation was carried out to explore the 
flexibility of the side chains surrounding the fucose binding 
subsite and the whole binding site. The input coordinates for 
the simulation were produced by loading the X-ray coordi-
nates into Schrödinger Maestro [42] and processed using 
the protein preparation wizard [43]. Protons were added to 
the structure and then all buffer ions, buffer and structurally 
non-essential water molecules were removed. PROPKA [44] 
was then used to predict the ionization state of polar residues 
at pH 7. The OPLS force field was then used to minimize 
the protein structure, converging heavy atoms to a threshold 
of 0.3 Å.

The system was then simulated using the Amber PMEMD 
software [45]. The system was solvated using TIP3P water, 
placed within a truncated octahedron buffered to 10 Å, to a 
net charge of zero using Na+ ions. The parameter set for the 
protein atoms and structural ions used was taken from the 
ff14SB and gaff force fields. The system was initially mini-
mized with constraints of 20 kcal mol−1 Å−2 placed on solute 
atoms and then minimized a second time with no constraints 
placed on solute atoms. The system was then heated to a 
temperature of 300 K and raised to a pressure of 1 atm in two 
separate 500 ps steps under constrains of 20 kcal mol−1 Å−2 
placed on solute atoms. Over the course of four 500 ps steps 
constrains were then released in 5 kcal mol−1 Å−2 incre-
ments. The system was then simulated over the course of 
500 ns with a 2 fs time step, with frame sampling every 
0.5 ns. The SHAKE algorithm [46] was used to constrain 
bonds involving hydrogen atoms. A Berendsen barostat and 
a Langevin thermostat with a 5 ps−1 collision frequency 



Fucosidases from the human gut symbiont Ruminococcus gnavus﻿	

1 3

were used to maintain constant pressure and temperature, 
respectively. Non-bonding atom bond cutoff was set to 8 Å.

The trajectory file from the MD simulation was then 
clustered using cpptraj [47] to produce 20 average struc-
tures. The kmeans clustering algorithm within cpptraj was 
used with a random set of initial points. The clustering was 
calculated for every tenth frame and based on the distance 
between atoms measured using root-mean-square deviation 
of atomic positions (RMSD) without fitting structures to 
each other prior to calculating RMSD.

The 20 average structures were then imported into 
Schrödinger Maestro and processed using the protein prep-
aration wizard (see above). Protons were replaced in the 
structure then all buffer ions and structurally non-essential 
water molecules introduced during MD simulation were 
removed. The OPLS force field was then used to minimize 
the protein structure, converging heavy atoms to a threshold 
of 0.3 Å. Protein structures showing a wide-open binding 
site were selected from the 20 average structures to be used 
for docking of the tetrasaccharide ligand. In order to per-
form the docking calculations, a cubic grid with a 10 Å × 
10 Å × 10 Å inner box and a 30 Å × 30 Å × 30 Å outer box 
with the centroid placed at the middle of the binding site 
was generated. sLeX was built within Maestro and prepared 
using LigPrep [48] and low-energy conformers generated 
using MacroModel [49]. sLeX was then docked using Glide 
[50] with standard precision enhanced by 2 times without 
canonicalization and without sampling ring conformations.

Isothermal titration calorimetry (ITC)

ITC experiments were performed using the PEAQ-ITC sys-
tem (Malvern, Malvern, UK) with a cell volume of 200 µl. 
Prior to titration, protein samples (E1_10125D221A) were 
exhaustively dialyzed into 50 mM citrate buffer pH 6. The 
ligand was dissolved in the dialysis buffer. The cell protein 
concentration was 100 µM and the syringe ligand concen-
tration was 2 mM for all ligands tested except 20 mM for 
Neu5Ac. Three controls with titrant (sugar) injected into the 
buffer, buffer injected to protein, buffer injected into buffer, 
were subtracted from the data. The analysis was performed 
using the Malvern software, using a single-binding site 
model. Experiments were carried out in triplicate.

Activity assays and kinetics

The optimum pH of fucosidases was determined with 
0.5  mM pNP-Fuc for all fucosidase tested apart for 
E1_10587 where 5  mM pNP-Fuc was used instead, in 
50 mM citrate buffer (pH 3, 4, 5 and 6), 50 mM sodium 
phosphate buffer (pH 6, 7, 7.5 and 8) and 50 mM Tris buffer 
(pH 8.5 and 9.3). The final concentration of enzyme was 
1 µM for ATCC_00842, 2 µM for E1_10180, 20 µM for 

E1_10125, 0.015  µM for ATCC_03833 and 10  µM for 
E1_10587. The reaction duration was optimized to measure 
the reaction rates under initial conditions. After incubation 
at 37 °C, the reaction was stopped by adding 50 µl of 1 M of 
sodium carbonate into 200 µl of reaction (200 µl of 1 M of 
sodium carbonate into 40 µl of reaction for E1_10587). The 
amount of fucose released was determined using a 96-well 
plate reader (BMG Labtech, Ortenberg, Germany) by meas-
uring absorbance at 405 nm.

Kinetic studies against pNP-Fuc were performed in 
50 mM citrate buffer at optimal pH (pH 6 for ATCC_00842, 
E1_10180, E1_10125, ATCC_03833; pH 5 for E1_10587) 
with increasing amounts of pNP-Fuc and a constant enzyme 
concentration at 37 °C. The series of pNP-Fuc concentra-
tions were chosen to ensure that there were at least three 
points below and above the Km value. The amount of enzyme 
was determined to fulfil free-ligand approximation, i.e. the 
enzyme concentration was linear with product formation. 
The reaction duration was optimized to measure the reaction 
rates under initial conditions. A standard curve was made 
with a range of pNP-Fuc from 0 to 140 µM and in the same 
experimental condition as the enzymatic reactions. Kinetic 
parameters were calculated based on the Michaelis–Menten 
equation using a non-linear regression analysis program 
(Prism 6, GraphPad, San Diego, USA). Kinetic param-
eters for E1_10587 were calculated based on the Michae-
lis–Menten equation:

To determine the substrate specificity of the enzymes 
against fucosylated oligosaccharides (2′FL, 3FL, LeA 
and LeX), each enzyme was incubated with the substrate 
(0.1 mM) at 37 °C in 50 mM citrate buffer at optimal pH. 
For kinetic assays with E1_10125, 50 µM to 350 µM of 
LeX, 50 µM to 1400 µM of sLeX and 20 µM to 400 µM 
αGal-LeX was used. Higher concentrations of LeX or 
αGal-LeX were not used because they contained signifi-
cant amount of l-fucose, which affected the accuracy of 
quantification. The enzyme in the reaction was 0.01 µM 
for LeX and sLeX, 1 nM for αGal-LeX. The time course 
of reaction used for LeX, sLeX and αGal-LeX was 9 min, 
30 min and 20 min, respectively. The fucose released was 
quantified using the k-fucose kit (Megazyme, Wicklow, 
Ireland) combined with the diaphorase/resazurin assay 
[51]. Briefly, 40 µl of reaction mixed with 97 µl of mixed 
reagent (50 µl of dH2O, 20 µl of reaction buffer pH9.5, 5 µl 
of NADP + , 2 µl of l-fucose dehydrogenase suspension, 
10 µl of 1 mM resazurin solution, 10 µl of 10U/ml solu-
tion of Diaphorase) and incubated at room temperature 
for 20 min before measuring the fluorescence of resorufin 
using a 96-wells plate reader (BMG Labtech, Ortenberg, 

1

t
ln

[

S0

]

[

S
t

] = −

[

S0 − S
t

]

Kmt
+

Vmax

Km

.
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Germany) with an excitation at 550 nm and an emission at 
584 nm. One unit of activity was defined as the amount of 
enzyme needed to release 1 µmol of product per min under 
the conditions described above. The kinetic parameters 
of E1_10125 fucosidase against sLeX were calculated 
based on Michaelis–Menten equation using a non-linear 
regression analysis program (Prism 6, GraphPad, San 
Diego, USA). The curve of initial rate against substrate 
concentration for LeX and αGal-LeX was linear, which 
indicated that the substrate concentration was far below 
Km, therefore their kcat/Km was estimated from the slope 
of the curve [52], k = (kcat/Km)[E]0 where k is the slope and 
[E]0 represents the enzyme concentration.

LC–MS/MS analysis

10 µM of enzyme was incubated with a range of sub-
strates including sLeA (5 µM), sLeX (5 µM), sialylated 
and de-sialylated human plasma N-glycans released from 
0.5 µl human plasma, HRP (0.01 µg/µl), FA2G2 (5 ng/ 
µl), blood group A type II (5 µM) or blood group B type 
II (5 µM). Reactions (20 µl) were performed in 50 mM 
citrate buffer at pH 6 and 37 °C for 24 h. Reactions were 
then dried down using Savant SpeedVac centrifugal 
evaporator (Thermo Fisher, Wilmington, USA), labelled 
at the reducing end with procainamide using the glycan 
labelling kit with sodium cyanoborohydride reductant 
(Ludger, Oxford, UK) and purified using S-cartridges 
(Ludger, Oxford, UK) to remove the excess dye. The 
samples were dried by speed vacuum and resuspended in 
50 µl of acetonitrile:water solvent. Then the reactions were 
injected onto a Waters ACQUITY UPLC Glycan BEH 
amide column (2.1 × 150 mm, 1.7 µm particle size, 130 Å 
pore size) at 40 °C on a Dionex Ultimate 3000 UHPLC 
instrument with a fluorescence detector (λex = 310 nm, 
λem = 370 nm) coupled to a Bruker Amazon Speed ETD. 
A 50 mM ammonium formate solution pH 4.4 (Ludger, 
Oxford, UK) was used as mobile phase A and acetonitrile 
(Romil, UK) was used as mobile phase B. For the plasma 
samples, a 70 min gradient was used with mobile phase 
B from 76 to 51% from 0 to 53.5 min at a flow rate of 
0.4 ml/min followed by mobile phase B from 51 to 0% 
from 53.5 min to 55.5 min at flow rate of 0. 2 ml/min, and 
2 min stabilization, mobile phase B from 0 to 76% from 
57.5 min to 59.5 min at a flow rate 0.2 ml/min, and then 
last for 6 min, from 65.5 min to 66.5 min, the flow rate 
was changed back to 0.4 ml/min and then equilibrated for 
3.5 min. HRP samples used a 75 min gradient starting 
from 80 to 62% mobile B. A 70–62% gradient was used for 
FA2G2 glycan. For the shorter fucosyl-oligosaccharides, 
an 85 min gradient was used from 85 to 65% mobile B. 
The Amazon Speed was operated in the positive ion mode 

using the following settings: source temperature 180 °C; 
gas flow 4 L/min; capillary voltage, 4500 V; ICC target, 
200,000; maximum accumulation time, 50 ms; rolling 
average, 2; number of precursor ions selected, 3; scan 
mode, enhanced resolution; mass range scanned, 400 to 
1700. Singly charged ions were excluded for CID except 
for HRP and fucosyl-oligosaccharide samples.

Bioinformatics analyses

For sequence similarity networks (SSN) analysis, the 
sequences encoding GH29 and GH95 fucosidases were 
extracted from the Interpro database 66.0 (https​://www.
ebi.ac.uk/inter​pro/) after removing redundant sequences 
by CD-HIT Suite [53] (https​://weizh​ong-lab.ucsd.edu/cdhit​
_suite​/cgi-bin/index​.cgi?cmd=cd-hit). Additional sequences 
included those corresponding to functionally characterized 
GH29 and GH95 from the CAZy database (www.cazy.org) 
as well as the R. gnavus E1 and ATCC29149 fucosidases (6 
GH29 and 7 GH95). The amino acid sequences were then 
used to create SSN using the Enzyme Function Initiative-
Enzyme Similarity Tool (EFI-EST) [54]. The network set-
ting for GH29 and GH95 was made to combine proteins in 
one node sharing over 70% and 45% identity, respectively 
and nodes were linked by edges when their sequences shared 
over 40% (the e-value threshold was 1094) and 35% iden-
tity (the e-value threshold was 10130) for GH29 and GH95, 
respectively. The SSN data were visualized using Cytoscape 
3.6 [55].

ProtParam (ExPASy) [56] was used to determine the 
length, molecular weight and theoretical pI of the fucosi-
dases under study. LALIGN was used to do pairwise 
sequence alignment and obtain sequence similarities [57]. 
SignalP 5.0 Server was used to predict the presence and 
nature of signal peptides as well as cleavage sites [58]. The 
TMHMM Server v. 2.0 was used to predict the presence of 
transmembrane helices [59]. CW-PRED was used for the 
detection of LPXTG and LPXTG-like motif and thus the 
prediction of cell-wall proteins in Gram-positive bacteria 
[60]. PSORTb v3.0.2 was used for bacterial protein subcel-
lular localization prediction [61].

Results

Sequence similarity network identified 
strain‑specific fucosidases in R. gnavus ATCC 29149 
and E1

The genome of R. gnavus E1 encodes 4 predicted GH29 
fucosidases (named E1_10125, E1_10180, E1_10623 and 
E1_11127) and 4 GH95 fucosidases (named E1_10181, 
E1_10587, E1_30029, E1_40027), whereas R. gnavus 

https://www.ebi.ac.uk/interpro/
https://www.ebi.ac.uk/interpro/
https://weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi?cmd=cd-hit
https://weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi?cmd=cd-hit
http://www.cazy.org
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ATCC 29149 encodes 2 GH29 (named ATCC_03411, 
ATCC_03833) and 3 GH95 fucosidases (named 
ATCC_00842, ATCC_01058, ATCC_03121) (for detailed 
information, see Table S2). A sequence similarity network 
(SSN) analysis was conducted to identify putative functional 
relationships between GH29 or GH95 fucosidases from R. 
gnavus strains and related protein sequences (Fig. 2). The 
SSN analysis covered 6736 amino acid sequences from 
the GH29 family from Interpro database 66.0 and CAZy 
(www.cazy.org/GH29_chara​cteri​zed.html) and 825 GH95 
sequences from Interpro IPR027414 (including 8 sequences 
from functionally characterized GH95 www.cazy.org/
GH95_chara​cteri​zed.html).

For GH29, 5318 representative nodes in the SSN analysis 
were separated into 44 clusters according to their sequence 
similarity which may indicate a similar biochemical function 
and ligand specificity (Fig. S1A). GH29 fucosidases from R. 
gnavus E1 and ATCC 29149 strains were found in cluster 4 
(E1_10180), cluster 7 (ATCC_03833 and E1_11127), cluster 
9 (E1_10623) and cluster 14 (E1_10125 and ATCC_03411) 
(Fig.  2a). E1_10125 shares 94.5% sequence similarity 
with ATCC_03411, whereas ATCC_03833 is 99.8% simi-
lar to E1_11127. The catalytic domain of E1_10623 was 
62.9% similar to Blon_2336 from Bifidobacterium longum 
subsp. infantis ATCC 15697 [62]. Based on this analysis, 
E1_10125, E1_10180 and ATCC_03833 were chosen as rep-
resentatives of R. gnavus GH29 fucosidases for functional 
characterization.

The GH95 family includes fewer sequences and func-
tionally characterized proteins (www.cazy.org). The SSN 
analysis of GH95 fucosidases led to the identification of 825 
nodes, 627 of which were found in the cluster 1 (Fig. 2b). 
All GH95 fucosidases from R. gnavus E1 and ATCC 29149 
strains fall within the same cluster. Based on the pre-
screening for expression (not shown), ATCC_00842 and 
E1_10587, sharing 60% sequence similarity, were selected 
as representative GH95 fucosidases of R. gnavus ATCC 
29149 and E1, respectively for further characterization.

R. gnavus fucosidases from GH29 and GH95 families 
display novel substrate specificities

The genes encoding the selected GH29 and GH95 fucosi-
dases from R. gnavus ATCC 29149 and E1 strains were 
heterologously expressed in E. coli and the His6-tag recom-
binant proteins purified by immobilized metal ion affinity 
chromatography and gel filtration (see Materials and Meth-
ods for details). E. coli Tuner DE3 pLacI strain was chosen 
as heterologous host as it does not display any endogenous 
β-galactosidase activity (due to the deletion of the LacZ 
gene) that may interfere with the enzymatic characteriza-
tion of the recombinant enzymes. The activity of the puri-
fied enzymes was first screened against the synthetic sub-
strate pNP-Fuc. The optimum pH of all fucosidases tested, 
determined using pNP-Fuc, was found to be pH 6 apart for 
E1_10587, which was pH 5 (Fig. S2).

The kinetic parameters were determined at the optimum 
pH by calculating the initial rate of reaction with increasing 
pNP-Fuc concentrations. Fucosidase ATCC_03833 showed 
the highest catalytic efficiency with a kcat of 83.6 s−1 and a 
Km of 179.1 µM (Table 1). These values are consistent with 
fucosidases belonging to GH29 subfamily A [15, 17, 63, 
64]. Fucosidases ATCC_00842 and E1_10180 also showed 
activity against pNP-Fuc, but their high Km suggest that 
pNP-Fuc is not a good ligand for these enzymes. Fucosidase 
E1_10125 displays the lowest activity against pNP-Fuc of 

Fig. 2   The distribution of R. gnavus GH29 and GH95 fucosidases 
based on SSN analysis. a Partial representation of SSN analy-
sis of GH29 family containing fucosidases from R. gnavus E1 and 
ATCC29149 strains. b Representation of the SSN central clus-
ter of GH95 family containing all GH95 from R. gnavus E1 and 
ATCC29149 strains. Blue node: sequences extracted from the CAZy 
database encoding functionally characterized enzymes. Red nodes 
sequences from R. gnavus E1 strain. Cyan nodes, sequences from R. 
gnavus ATCC29149 strain. Green nodes, sequences common to both 
R. gnavus E1 and ATCC29149 strains

http://www.cazy.org/GH29_characterized.html
http://www.cazy.org/GH95_characterized.html
http://www.cazy.org/GH95_characterized.html
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the characterized GH29 subfamily fucosidases as shown by 
its low kcat of 1.8 10–3 s−1 [15, 20–22, 65, 66]. E1_10587 was 
merely active on pNP-Fuc as also reported for other GH95 
fucosidases [21].

Next, the substrate specificity of the recombinant fucosi-
dases was tested on a range of fucosylated oligosaccharides. 
The specific activity was determined based on fucose release 
against 2′FL (Fucα1,2Galβ1,4Glc), 3FL (Galβ1-4[Fucα1-3]
Glc), Lewis A (LeA, Galβl-3[Fucα1-4]GlcNAc) and Lewis 
X (LeX, Galβ1-4[Fucα1-3]GlcNAc) (Table 2). From this 
analysis, fucosidases E1_10125 and E1_10180 showed sub-
strate specificity towards α1,3/4 fucosylated linkages while 
fucosidases ATCC_00842 and ATCC_03833 showed prefer-
ence for α1,2 linkages (Table 2). E1_10587 showed lower 
activity against all tested substrates, therefore, it was not 
possible to assess its substrate specificity.

The activity of the recombinant fucosidases was further 
tested on more complex oligosaccharides and glycoproteins 
including sialyl Lewis X (Neu5Acα2-3Galβ1-4[Fucα1-3]
GlcNAc, sLeX), sialyl Lewis A (Neu5Acα2-3Galβl-
3[Fucα1-4]GlcNAc, sLeA), sialylated or desialylated human 
plasma N-glycans, horseradish peroxidase N-glycans con-
taining core α-1,3-fucose (HRP), blood group A type II, 
blood group B type II and α-1,6-fucosylated biantennary 
N-glycan (FA2G2) and the products of the reactions ana-
lyzed by LC–MS/MS (Table S3). Interestingly, this screen-
ing revealed that E1_10125 was active against α-1,3- and 
α-1,4-fucosylated substrates presenting a terminal sialic 
acid modification. The chromatograms clearly showed 
the appearance of peaks corresponding to Neu5Acα2-
3Galβl-3GlcNAc and Neu5Acα2-3Galβ1-4GlcNAc and the 

disappearance of the peaks corresponding to sLeA and sLeX 
(Fig. 3a). The use of sialylated and de-sialylated N-glycans 
from human plasma confirmed the ability of E1_10125 to 
accommodate sialyl residues in terminal location of fuco-
sylated N-glycans (Fig. 3b), as shown by the disappear-
ance of the peak corresponding to fucosylated antennary 
N-glycan upon incubation with E1_10125. In contrast, no 
reaction product was detected when HRP glycans (core 
α1,3-fucose), FA2G2 (α1,6-fucose) or blood group antigens 
(α1,2-fucose) were used as substrates as shown by LC–MS 
traces (Fig. 3c–e).

R. gnavus GH29 E1_10125 fucosidase can 
accommodate terminal sialic acid moieties in α1,3/4 
antennary fucosylated substrates

To further investigate E1_10125 ligand specificity, the 
enzyme was crystallized in the presence of 2′FL, providing 
the crystal structure of the complex showing the β-fucose 
anomer bound in the active site (Fig. 4). Data collection 
and refinement statistics are detailed in Table 3. Elec-
tron density maps allowed modelling of residues 23–527. 
The enzyme consists of two distinct domains, a catalytic 
domain (PF001120) domain comprising residues 46–366 
in N-terminal and a F5/8 Type C domain (PF00754) cov-
ering residues 385–526 in C-terminal (Fig. 4a). The cata-
lytic domain displays a (α/β)8 which is typical of GH29 
enzymes (www.cazy.org) whereas the type C-domains 
shows structural homology with carbohydrate binding 
module (CBM) belonging to CBM32 family (www.cazy.
org). The macromolecular architecture is conserved with 

Table 1   Kinetic parameters of 
R. gnavus fucosidases towards 
pNP-Fuc

ND could not be determined (using concentrations up to 20 mM pNP-Fuc)
a Kinetic parameters were determined from the progress curve

E1_10125 E1_10180 ATCC_03833 ATCC_00842 E1_10587a

Catalytic 
efficiency 
(s−1 M−1)

7.61 16.91 4.67 ×105 28.14 0.72

Km (µM) 237.9 ± 39.69 ND 179.1 ± 28.77 2.96 × 103 ± 3.63 × 102 1.50 × 104

kcat (s−1) 1.8 10–3 ± 8.8 10–5 ND 83.6 ± 2.97 0.0832 ± 0.0032 0.0108

Table 2   Specific activity of R. 
gnavus fucosidases towards 
fucosylated oligosaccharides

ND not detected under experimental conditions, NS not significant, less than 0.01 U/µmol

Specific activity (U/µmol)

2′FL 3FL LeA LeX

E1_10125 NS 63.23 ± 2.03 83.88 ± 2.56 114.72 ± 1.76
E1_10180 NS 0.119 ± 0.001 0.45 ± 0.02 0.36 ± 0.01
ATCC_03833 5.47 ± 0.28 4.82 10–2 ± 7.09 10–4 0.069 ± 0.003 ND
ATCC_00842 1.13 104 ± 3.06 102 15.96 ± 0.67 NS NS
E1_10587 NS NS NS NS

https://www.cazy.org
https://www.cazy.org
https://www.cazy.org
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the recently solved GH29 fucosidase enzymes from S. 
pneumoniae (RMSD: 0.969  Å) [22] and Bifidobacterium 
longum subsp. infantis (RMSD: 1.128 Å) [67]. Residues 
23–45 wrap around the C-terminal β-sandwich domain. 
The catalytic machinery sits in a cleft in the center of 
the N-terminal domain (Fig. 4b). By proximity to the 
bound fucose residue and homology to other fucosidases, 
Asp221 was identified as the catalytic nucleophile and 
Glu273 as the acid/base (amino acid numbering based on 
recombinant protein sequence) (Fig. 4b). Trp325 creates a 
CH–π interaction with the bound ligand and His61, Trp72, 
His114, His115 and Tyr162 provides additional hydrogen 
bonding interactions. Phe59 and Trp219 provide a hydro-
phobic pocket to accommodate the fucose C6 methyl group 
(Fig. 4b). The fucose binding site is conserved with the S. 
pneumoniae [22] and B. longum GH29 fucosidases [67] 
and is henceforth referred to as the − 1 subsite (Fig. 4c). In 
an attempt to obtain crystal structures in complex with the 
substrate, an active site mutant (E1_10125 D221A) was 
generated. However, following co-crystallization experi-
ments with 2′FL, fucose was found bound in the active 
site, indicating residual fucosidase activity. Clear electron 
density was present for both α- and β-fucose anomers (Fig. 
S3A and S3B). It was not possible to obtain crystals of 
E1_10125 D221A in the absence of 2′FL. Attempts were 
made to displace the fucose molecule with other fuco-
sylated ligands; however, these were unsuccessful, perhaps 
due to the substrate binding site being present at a tightly 
packed interface between two symmetry related protein 
molecules. No crystal structures could be obtained with 
other substrates tested including l-fucose, Neu5Ac, 3FL, 
LeA, LeX and sLeX. 

Superimposition of the E1_10125 crystal structure with 
that of α-1,3/4-fucosidase from B. longum subsp. infantis 
D172A/E217A mutant complexed with lacto-N-fucopen-
taose II (pdb 3UET) [67] (Fig. S4C) or with S. pneumo-
niae SpGH29CT D171N/E215Q in complex with LeA (pdb 
6ORF) (Fig. S4D) or with LeX (pdb 6OR4) [62] (Fig. S3E) 
indicate that there are unlikely to be E1_10125 interactions 
that form a distinct + 1 site (GlcNAc in LeA and LeX trisac-
charide antigens). E1_10125 Trp269 is conserved with S. 
pneumoniae and B. longum fucosidases, maintaining the + 2 
site. More specifically, Trp269 is likely to form a CH/π 
stacking interaction with the galactose ring, and Asp318 to 
form a hydrogen bond with the galactose C6 hydroxyl. In the 
E1_10125 crystal structure, adjacent to the proposed + 2 site 
is an open platform comprises primarily neutral and hydro-
phobic residues, which would accommodate Neu5Ac (Fig. 
S3F). This is in marked contrast to the S. pneumoniae and B. 
longum homologue structures where this region is partially 
occluded by incoming loops. Molecular modelling calcu-
lations were carried out to further support this hypothesis 
and to provide a model for the orientation of the sialic acid 

ring of sLeX when bound to E1_10125 fucosidase (Fig. 4d). 
Following 500 ns MD simulations of the E1_10125 D221A 
mutant and docking of the sLeX ligand, the molecular model 
showed that sialic acid ring sits in the neighboring subsite. 
Polar contacts are established between nearby residues, 
Glu262 and Trp269; in particular, and hydroxyl groups pre-
sent at sialic acid C4, C8 and C9 positions. This analysis 
confirmed that the E1_10125 fucosidase enzyme shows an 
open binding site able to accommodate the sLeX ligand.

In the absence of a complex structure of E1_10125 with a 
fucosylated oligosaccharide and in order to test the hypoth-
esis that the cavity could accommodate the sialic acid moi-
ety, E1_10125 R268W and E1_10125 G260M mutants were 
produced in which these introduced side-chains are expected 
to block access to the cavity. The E1_10125 R268W mutant 
showed a complete loss of activity towards all substrates 
tested including pNP-Fuc, 2′FL, 3FL, blood group A type 
II, blood group B type II, LeX and sLeX (data not shown) 
whereas the E1_10125 G260M mutant showed a significant 
decrease in activity towards sLeX down to 28% activity 
while 76% activity remained towards LeX (Table S4), sug-
gesting that the cavity is important to accommodate terminal 
modifications of the fucosylated substrates.

Glycan arrays were then used to further define the ligand 
and linkage specificity of E1_10125 (Fig. S5). The purified 
recombinant His6-tagged E1_10125 D221A inactive mutant 
was screened at three protein concentrations against the Core 
H glycan microarray glycans at the Consortium for Func-
tional Glycomics (CFG). Among the 585 glycans screened 
on the microarray, significant RFU values (> 300) were 
obtained for 5 fucosylated glycans using the highest pro-
tein concentration. Glycan ID 389 with α-Gal-LeA epitope 
displayed the highest RFU value (1072 ± 47) followed by 
two glycans, ID 249 and ID 526, containing sLeX epitopes. 
This recognition pattern therefore suggests that E1_10125 
could recognize fucosylated substrates with diverse terminal 
modifications at the reducing end.

In order to further test this hypothesis, ITC was used 
to determine the binding parameters of E1_10125 D221A 
mutant towards these ligands (Fig. 5 and Table S5). The 
enzyme bound to LeX with a Kd of 51.43 ± 1.93 μM (Fig. 5a) 
and to sLeX with a Kd of 3.59 ± 0.48 μM (Fig. 5b). Fur-
ther, a Kd of 47.13 ± 5.60 μM was obtained when αGal-LeX 
(Fig. 5c) was used as a ligand whereas a Kd of 17.98 mM and 
21.7 μM were obtained with the monosaccharides Neu5Ac 
or Fuc used as a control (Fig. 5d, e). To compare the sub-
strate specificity among LeX, sLeX and αGal-LeX, the 
kinetic parameters were determined against these substrates 
(Table 4). E1_10125 showed strongest affinity to sLeX with 
a Km of 163.1 µM and the presence of sialic acid or galactose 
on the non-reducing end of LeX significaly increased the 
catalytic efficienty up to 20-fold, consistent with the binding 
parameters (Table 4). 
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To gain further structural insights into the unique ligand 
specificity of E1_10125, STD NMR studies [68] were con-
ducted with E1_10125 D221A mutant in the presence of 
2′FL, 3FL, LeA, LeX, sLeX and αGal-LeX (Fig. 6). Transfer 
of magnetization as saturation from the protein to the ligand 
was observed for all substrates tested, in agreement with the 
binding of E1_10125 to these substrates with medium-weak 
affinities (µM-mM). The enzyme intimately recognized the 
three sugar residues constituting 3FL and LeA (Fig. 6a, b) 
with no significant differences in their binding epitopes. 
2′FL showed binding to E1_10125 D221A by STD NMR 
(Fig. 6c), but the main contacts were restricted to the fucose 
residue, whereas loose contacts were observed with the 
lactose disaccharidic moiety. The binding epitope of LeX 
also revealed a reduction in close contacts with the enzyme, 
particularly at the fucose residue. A comparison between 
3FL (Fig. 6a) and LeX (Fig. 6d) supports an impact of the 
acetamido group (NHAc) at position 2 of GlcNAc on bind-
ing, which leads to changes in the contacts of the fucose 
ring with the protein in the bound state. This is highlighted 
by the reduction of the relative STD intensity of the methyl 
group at position 6 of this ring in the case of LeX. It is well 
established that the NHAc group in LeX limits the flexibility 
of the Fucα1–3GlcNAc linkage via steric hindrance with 
the adjacent fucose ring [69]. This leads to the observed 
changes in the contacts of the fucose ring in the bound 
state of LeX in comparison 3FL (Fig. 6d). These structural 
changes together with the advantageous reduction in entropy 
penalty upon binding expected for LeX due to the limited 
inter-glycosidic flexibility, are in good agreement with the 
observed differences in fucosidase activities (Table 2). The 
STD NMR results, in alignment with the activity assays and 
LC–MS/MS data, confirmed that the E1_10125 fucosidase 
shows a preference for α1-3/4 linkage (Fig. 3, Table 2), in 
which the fucose is linked at the reducing glucopyranose 
ring of the Gal β 1–3/4Glc(NAc) disaccharidic sequence. 
Interestingly, STD NMR revealed that the sialic acid moi-
ety of sLeX makes contacts with the enzyme at C3 and C5 

positions (Fig. 6e), suggesting that the sialic acid moiety is 
in part solvent exposed, and in part surrounded by residues 
at the protein surface, in agreement with the crystal structure 
showing a cavity that could accommodate such a sialic acid 
residue at the non-reducing end of the ligand. The molecu-
lar model (Fig. 4d) is also in excellent agreement with the 
experimental NMR data, as in this binding mode, protons at 
C3 and C5 are pointing towards the surface of the enzyme 
in the pocket. Likewise, in αGal-LeX, weak contacts were 
observed for the non-reducing αGal and βGal rings in the 
bound state, whereas fucose was the main ligand recognition 
moiety, followed by GlcNAc (Fig. 6f). Together, these data 
support the X-ray crystal structure that the binding pocket 
of E1_10125 could accomodate terminal residues although 
with a clear preference for sialic acid.

Discussion

Fucose decorating glycan chains in HMOs or mucins con-
tributes to shaping the composition of the gut microbiota 
in adults and infants. Previous studies in mice showed that 
the loss of the α-1,2-fucosyltransferase FUT2, and there-
fore fucosylated host glycans, leads to a decreased diversity 
and differences in intestinal microbial community [70–73], 
whereas an association between the composition of the intes-
tinal microbiota and the ABO blood group or FUT2 secre-
tor status was reported in humans [72, 74–77]. Human fetal 
mucins along the GI tract harbor a repertoire of O-glycans 
similar to HMOs [78, 79] which may also contribute to the 
differences in gut microbiota composition as compared to 
adults [80]. The ability to utilize fucosyllactose is a trait of 
early inhabitants of the human GI tract, such as R. gnavus 
[27] or various bifidobacteria species [81] as well as pro-
biotic strains, such as Lactobacillus casei [82]. To access 
this nutrient source, gut bacteria have evolved to express a 
wide range of fucosidases with distinct ligand specificity, 
contributing to their fitness across nutritional niches [5, 6]. 
Furthermore, in its free form, fucose released by bacterial 
fucosidases may affect gut homeostasis. For example, B. 
thetaiotaomicron produces multiple fucosidases that cleave 
fucose from host glycans, resulting in high fucose availabil-
ity in the gut lumen [83] which can then act as a signal to 
modulate the pathogenicity and metabolism of the pathogen 
enterohaemorrhagic E. coli (EHEC) [84].

Complexity in HMOs or mucins lies in the diversity 
of glycosidic bonds in these molecules, rendering a large 
number of potential combinations. Since fucosylation 
varies across and along the intestine and that fucosidase 
activity is dependent on the type of linkages present in 
the glycans or glycoconjugates, it is critical to understand 
the ligand specificity of the fucosidases encoded by major 
gut symbionts. Recently, the substrate specificities of 

Fig. 3   LC–MS/MS analysis of R. gnavus GH29 fucosidase E1-10125 
towards various fucosylated substrates. a LC–MS/MS analysis of the 
products released from the enzymatic reaction of E1-10125 with LeA 
(left) and LeX (right), the upper graph is the negative control and the 
lower one corresponds to the enzymatic reaction. B LC–MS analy-
sis of the products released from the enzymatic reaction of E1-10125 
with sialylated (upper) and desialylated (lower) human plasma. The 
negative controls are showed on top of the enzymatic reactions. c 
LC–MS analysis of the products released from the enzymatic reaction 
of E1-10125 with HRP (core α1,3-fucose) (lower). The negative con-
trol is shown in the upper panel. D. LC–MS analysis of the products 
released from the enzymatic reaction of E1-10125 with FA2G2 (α1,6-
fucose) (lower). The negative control is shown in the upper panel. e 
LC–MS analysis of the products released from the enzymatic reaction 
of E1-10125 with blood group A type II (left) and blood group B type 
II (right) (upper). The negative control is shown in the upper panel

◂
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two structure-solved GH29 fucosidases from B. thetaio-
taomicron VPI-5482 were determined showing that the 
protein with locus tag BT 2970 belongs to GH29-A while 
BT 2192 belongs to GH29-B [15]. R. gnavus is a human 
gut symbiont of the infant and adult microbiota [23–25]. 
Here, we showed that R. gnavus strains encodes a range of 
fucosidases belonging to GH95 and GH29-A and GH29-B 
families with varied specificities, highlighting the versatil-
ity of fucosylated substrates they can access, such as those 
present in HMOs or intestinal mucins. The enzymatic 

characterization of R. gnavus fucosidases focused on pre-
viously uncharacterized bacterial fucosidases revealed 
that fucosidase ATCC_03833 belongs to GH29-A while 
E1_10125 belongs to GH29-B subfamily. GH29-B 
E1_10125 and E1_10180 showed strict substrate specific-
ity towards α1,3/4 fucosylated linkages while fucosidases 
GH95 ATCC_00842 and GH29-A ATCC_03833 showed 
preference for α1,2 linkages, as reported for B. bifidum 
AfcA fucosidase [85]. O-glycan analyses of human fetal 
mucins showed that fucose is present in a large variety 

Fig. 4   Crystal structure of R. gnavus GH29 fucosidase E1_10125. 
a Cartoon representation of E1_10125 fucosidase, the catalytic 
domain is coloured green and the proposed CBM is coloured orange. 
A fucose residue in a sphere representation indicates the location of 
the active site. The views are related by a 45° rotation around the y 
axis. b The E1_10125 fucose binding site. The β-anomer of fucose 
is shown in yellow with nearby active site residues shown in green. 
Black dashed lines indicate hydrogen-bonding interactions. Fo–Fc 
difference map density for the fucose residue is displayed as a black 

mesh, contoured at 2σ. c The fucose binding sites of E1_10125 
(green), S. pneumoniae GH29 fucosidase (magenta), and B. longum 
subsp. infantis GH29 fucosidase (cyan) are aligned. Residue numbers 
refer to E1_10125. The binding site residues are conserved across the 
three structures and differences present at the D221 and E273 posi-
tions are catalytic mutants. Fucose bound in the E1_10125 is show 
in yellow for reference. d Model of the orientation and conformation 
of sLeX bound to R. gnavus E1_10125 proposed by MD simulations
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of terminal linkages, including blood group H as well as 
LeA (Galβ(1–3[Fucα1-4]GlcNAc), LeB (Fucα1-2Galβ1-
3[Fucα1-4]GlcNAc), LeX (Galβ(1–4 [Fucα1-3]GlcNAc) 
and LeY (Fucα1-2Galβ1-4[Fucα1-3] GlcNAc) determi-
nants [79]. The diversity of fucosidases may confer R. 
gnavus strains with an advantage in colonizing the infant 
gut [25].

In addition, we showed that E1_10125 could act on LeA 
and LeX even when the galactose moiety was linked to 
a sialic acid residue or other decorations. In particular, 
E1_10125 showed highest affinity towards sLeX. The abil-
ity to accommodate the sialic acid moiety, as also con-
firmed by STD NMR, appears to be enabled by an open 
region adjacent to the + 2 site (Gal residue in Le antigens), 
which   comprises residues Met220, Phe259, Gly260, 
Ala261 and Thr265 with additional stabilizing interac-
tions likely to be provided by Trp269 and Glu262. This 

structural arrangement lacks the incoming loops present in 
the S. pneumoniae and B. longum GH29 enzymes [22, 67], 
supporting the unique specificity of R. gnavus E1_10125 
fucosidase. Glycan array analyses suggested that E1_10125 
could recognize fucosylated glycans with diverse terminal 
modifications as also supported by ITC showing binding 
of E1_10125 to both sialic acid and αGal linked to Gal 
of LeX. Extensive differences in the glycosylation profile 
of mucins occur along the GI tract, characterized by the 
presence of decreasing gradients of fucose and ABH blood 
group and increasing gradients of sialic acid from ileum 
to rectum [7, 86]. In human colonic mucin, more than 
100 complex O-linked oligosaccharides were identified, 
mostly based on the core 3 structure with sialic acid at the 
6-position of the GalNAc [9]. The most abundant com-
ponents were -Gal-(Fuc)GlcNAc-3(NeuAc-6)GalNAcol, 
GalNAc-(NeuAc-)Gal-4/3GlcNAc-3(NeuAc-6)GalNAcol, 

Table 3   Data collection and 
refinement statistics

Numbers in parenthesis refer to the highest resolution shell

Data set WT—Fucose D221A—Fucose

PDB identifier 6TR3 6TR4
Data collection
 Space group C2 P1

Cell dimensions
 a, b, c (Å) 164.2, 48.8, 132.1 49.8, 74.1, 76.5
 α, β, γ (°) 90.0, 151.1, 90.0 82.5, 80.4, 70.4

Resolution (Å) 63.90–1.70 (1.73–1.70) 69.54–1.45 (1.47–1.45)
 Rmerge 0.08 (0.59) 0.04 (0.11)
 Rmeas 0.10 (0.72) 0.06 (0.16)
 I/σI 6.9 (1.1) 12.7 (3.4)
 CC half 0.99 (0.58) 0.99 (0.96)
 Completeness 99.1 (97.5) 92.7 (56.9)
 Redundancy 3.1 (2.9) 2.0 (1.8)

Refinement
 Resolution (Å) 63.86–1.70 69.54–1.45
 No. of reflections 55,403 166,349
 Rwork/Rfree 0.174/0.227 0.141/0.161

No. of atoms
 Protein 4022 8134
 Ligand/ion 30 48
 Water 282 1507

B-factors
 Protein 25.2 11.5
 Ligand/ion 39.0 6.7
 Water 26.9 23.6

r.m.s.d
 Bond lengths (Å) 0.03 0.01
 Bond angle (°) 2.8 1.4

Ramachandran statistics (%)
 Favoured 96 97
 Outliers 0 0
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GalNAc-3(NeuAc-6) GalNAcol and GlcNAc-3(NeuAc-6)
GalNAcol [9]. The unusual specificity of E1_10125 may, 
therefore, contribute to the fitness and spatial adaptation 
of R. gnavus strains into the adult human GI tract [23, 24].

The specificities of R. gnavus fucosidases could be 
exploited for diagnostic assays. For example, changes in the 
abundance of antennary fucosylation in plasma N-glycans have 
been associated with diabetes [87, 88] and with colorectal 

A

D E

B C

Fig. 5   ITC isotherms of R. gnavus GH29 fucosidase E1_10125 binding to fucosylated ligands. a E1_10125 binding to LeX. b E1_10125 bind-
ing to sLeX. c E1_10125 binding to αGal-LeX. d E1_10125 binding to Neu5Ac. e E1_10125 binding to l-Fucose. DP differential power

Table 4   Kinetic parameters of 
E1_10125 towards LeX, sLeX 
and aGal-LeX

ND could not be determined under experimental conditions

LeX sLeX αGal-LeX

Catalytic efficiency 
(s−1 M−1)

1416.67 ± 288.68 12,874.85 ± 1620.36 28,888.89 ± 2545.88

Km (µM) ND 163.1 ± 16.67 ND
kcat (s−1) ND 2.10 ± 0.07 ND
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cancer [89–91]. The quantitation of these low abundant anten-
nary fucosylated glycans in the plasma N-glycome is complex 
because the structural diversity of its component glycans [92, 
93] that rely on chromatographic platforms requiring extensive 
measurement time [91–95]. However, the recent technological 
advances integrating the use of fucosidases or other glycosi-
dases and analysis on a MALDI-MS platform enabled identifi-
cation and quantification of glycans of specific fucose isomers 
[96, 97]. The antennary fucosidase specificity reported in this 
work could therefore be used as a discriminatory tool to iden-
tify N-glycan biomarkers of diseases and as a valuable tool for 
the purpose of glycoprofiling biopharmaceutical glycoproteins.
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