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ABSTRACT 32 

Molecules within cells are segregated into functional domains to form various organelles. While 33 

some of those organelles are delimited by lipid membranes demarcating their constituents, others 34 

lack a membrane enclosure. Recently, liquid-liquid phase separation (LLPS) revolutionized our 35 

view of how segregation of macromolecules can produce membraneless organelles. While the 36 

concept of LLPS has been well-studied in the areas of soft matter physics and polymer chemistry, 37 

its significance has only recently been recognized in the field of biology. It occurs typically between 38 

macromolecules that have multivalent interactions. Interestingly, these features are present in many 39 

molecules that exert key functions within neurons. In this review, we will cover recent topics of 40 

LLPS in different contexts of neuronal physiology and pathology. 41 

  42 
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INTRODUCTION 43 

A neuron has a highly polarized and compartmentalized structure, which requires precise 44 

localization of various cellular components. Molecules synthesized in the cell body must travel long 45 

distances to reach their final destination. Upon reaching their destination, the molecules must be 46 

retained in an appropriate concentration relative to other factors. Additionally, the molecules may 47 

need to be segregated from their immediate environment, in order to establish a functional domain. 48 

Anomalies in this process can lead to pathological outcomes in the brain.  49 

Compartmentalization of molecular processes is accomplished by various intracellular 50 

organelles that spatially segregate functionally related molecules. Major organelles such as the 51 

nucleus, endoplasmic reticulum, mitochondria, lysosome, endosome, etc. have demarcating 52 

membranes. In contrast, there are organelles that lack any demarcating membrane. These include 53 

the nucleoli, chromosomes, ribosomes, centrosomes, RNA granules, and stress granules. How such 54 

organelles maintain their constituent molecules was mostly overlooked in early studies using static 55 

images. However, a live-imaging study of P granules, cytosolic protein granules found in germline 56 

cells of C. elegans, revealed that these granules have liquid-like properties, including fusion, fission 57 

events, changes in size and reversibility (Brangwynne et al., 2009). At the same time, the molecules 58 

undergo constant exchange between the external environment, or dilute phase, and the condensed 59 

phase. This exchange was demonstrated by the photobleaching of fluorescently-labelled molecules 60 

(Brangwynne et al., 2009). These observations required us to re-think how membraneless organelles 61 

maintain their shape and constituents.  62 

 Subsequently, it was demonstrated that biological macromolecules including proteins and 63 

nucleic acids can condense and self-assemble into protein droplets in vitro (Kato et al., 2012; Li et 64 

al., 2012). Inside the condensate, the molecule can be enriched hundreds of folds compared with the 65 

original concentration in the cellular milieu (Zeng et al., 2018). In the simplest scenario, the 66 

molecules segregate from the solvent because they can exist more stably in a condensed phase than 67 

in a diluted phase, similar to the formation of oil droplets in a water-enriched environment. This 68 

phenomenon is called liquid-liquid phase separation (LLPS) because both diluted and condensed 69 

phases still retain properties as liquid (Hyman et al., 2014; Banani et al., 2017).  70 

Importantly, the proteins condensed by the mechanism of LLPS still retain native  71 

physiological conformation and functions while undergoing exchange between the dilute and 72 

condensed phases. This is unlike more solid protein aggregates where the constituents proteins can 73 

be misfolded and immobile. However, LLPS can trigger the aggregation of proteins localized to the 74 

condensed phase (Hyman et al., 2014; Banani et al., 2017).  75 
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LLPS elucidates a wide variety of cellular functions, such as transcriptional and translational 76 

regulation, metabolism and catabolism, signal transduction, and cellular motility. It is possible that 77 

many reported protein-protein interactions mediating these cellular functions are actually part of a 78 

larger protein interaction network underlying LLPS. In this review we will discuss the role of LLPS 79 

in neurons, with a focus on local protein synthesis, synaptic organization, and neurodegenerative 80 

disease.  81 

 82 

Biophysics behind LLPS 83 

LLPS has been well-studied in the field of soft-matter physics, but biologists have only 84 

recently discovered its importance and implications in divergent cellular functions (Hyman et al., 85 

2014; Banani et al., 2017). The governing mechanism for forming phase-separated condensates in 86 

biological systems is multivalent interactions (Li et al., 2012; Banani et al., 2017; Chen et al., 2020). 87 

Such interactions can occur between molecules with multiple pairs of specific interactions (e.g. 88 

between multidomain scaffold proteins and their binding partners). An increase in multivalency 89 

lowers the critical protein concentration required for phase separation (Li et al., 2012). Multivalent 90 

interactions can also occur among proteins with intrinsically disordered regions, a region of protein 91 

without any fixed conformation or domain structure, or with various RNA species. Intrinsically 92 

disordered regions are often composed of low-complexity amino acids that are rich in hydrophilic 93 

residues (serine, glutamine, glutamate, arginine, and lysine) and which can form electrostatic 94 

interactions. Aromatic residues, such as phenylalanine, tyrosine, and tryptophan are stacked upon 95 

each other to form π electron cloud (π-π interaction) or interact with positively charged residues via 96 

cation-π interactions. In contrast, aliphatic residues, such as valine, leucine, and isoleucine, are less 97 

frequently observed in low complexity domains. Both protein-domain interactions and electrostatic 98 

interactions in the intrinsically disordered region contribute to the formation of condensed 99 

molecular assemblies with specific and distinct biological functions via phase separation.  100 

In a simple two molecule system such as a protein in water, the phase behavior of the 101 

solution can be characterized by the free energy diagram (Fig. 1A) and the corresponding phase 102 

diagram (Fig. 1B). Under conditions relevant to living cells, most proteins in water form a 103 

homogenous one-phase solution due to the tendency of the mixture to increase its entropy (Fig. 1C). 104 

However, upon self-interaction, the protein may undergo liquid-liquid phase separation leading to 105 

two distinct phases: a highly condensed phase and a dilute phase (Fig. 1C). In the two-phase 106 

mixture, there is no free energy difference between the condensed and the dilute phases. The 107 

diffusion chemical potential (µ) of the protein generated by the concentration gradient between the 108 

two phases is offset by the net free energy gain (ΔΔG) of increased binding between protein 109 
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molecules in the condensed phase due to its higher concentration (i.e. µ =ΔΔG). Thus, the phase 110 

separated liquid solution is at a thermodynamic equilibrium. Nonetheless, protein molecules in the 111 

condensed phase can freely exchange with molecules in the dilute phase (Fig. 1D).  112 

The free-energy state of a two component mixture at any specific condition within the phase 113 

separation zone (pale blue and blue regions in Fig. 1B, see the corresponding free energy states of 114 

the regions in Fig. 1A) dictates that the system will spontaneously reach to two local minima, 115 

corresponding to Φd and Φc. Depending on the free energy state, phase separation can occur via 116 

binodal nucleation (formation of condensed phase requiring a nucleation processes) or spinodal 117 

decomposition (rapid and spontaneous phase separation without nucleation) (Fig. 1E). In a 118 

membrane-sealed compartment, exchange of molecules within and outside of the compartment 119 

needs to go through the membrane bilayer and requires energy (Fig. 1F). Thus, membraneless 120 

organelles are radically different from membrane-based organelles.  121 

Due to the complexity of interactions between biological macromolecules, more than two 122 

condensates of different composition can form at the same time in the same cellular compartment. 123 

They can form independently of each other (phase-to-phase) or one condensate can form inside of 124 

another condensate (phase-in-phase) (Kato, 2012; Quiroz et al., 2020; Hosokawa, in press). This 125 

might account for subdomains observed in some membraneless organelles such as core-shell 126 

architecture of nucleoli, stress granules, and P granules (Kato, 2012).  127 

To observe LLPS in vitro, proteins of interest are purified, fluorescently labelled, mixed, and 128 

observed by diffusion interference contrast (DIC) microscopy or fluorescence microscopy (Fig. 1E). 129 

Photobleaching of a single fluorescent droplet or part of a fluorescent droplet enables measurements 130 

of protein movement within the droplet as well as protein in exchange with diluted phase (Feng et 131 

al., 2019). These studies enable researchers to understand how protein components regulate LLPS 132 

in vitro,  however, it is important to reproduce in vitro studies in the living cell.  133 

 134 

LLPS and local protein synthesis  135 

 Membraneless organelles control gene expression, from transcription in the nucleus to local 136 

protein synthesis in distal processes (Martin and Ephrussi, 2009; Hnisz et al., 2017; Langdon and 137 

Gladfelter, 2018). These organelles circumvent the need for active transport of macromolecules 138 

across a membrane, enabling rapid signal transduction. While many of the membraneless organelles 139 

involved in gene expression share the biophysical trait of LLPS, each organelle is distinct in its 140 

molecular composition and function. Here, we focus on neuronal mRNA-containing 141 

ribonucleoprotein (mRNP) granules.  142 
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 Proteins and mRNAs within neuronal mRNP granules can be dendritically localized 143 

(Kiebler and Bassell, 2006), where their translation can be regulated at synapses (Knowles et al., 144 

1996; Kohrmann et al., 1999; Krichevsky and Kosik, 2001; Mallardo et al., 2003; Kanai et al., 145 

2004) (Fig. 2). Retrograde and anterograde transport of these granules are microtubule-dependent 146 

(Knowles et al., 1996; Kohrmann et al., 1999). The movement of mRNAs to specific distal sites is 147 

necessary for synaptic plasticity and the strengthening of neuronal connections, a critical 148 

component of cognitive processes such as long-term memory (Richter and Lorenz, 2002; Klann and 149 

Dever, 2004). 150 

 LLPS of components of neuronal mRNP granules plays essential roles in mRNA trafficking 151 

and local protein synthesis (Fig. 2). Work from the Kandel and Fioriti laboratories posits a link 152 

between LLPS of cytoplasmic polyadenylation element binding protein 3 (CPEB3) in trafficking 153 

dendrite-bound mRNAs that contain cytoplasmic polyadenylation elements (CPEs) (Ford et al., 154 

2019). Indeed, neuronal mRNP granules concentrate a large amount of CPE-containing mRNAs, 155 

including CaMKIIα (Huang et al., 2003; Martin, 2004). The CPEs promote cytoplasmic 156 

polyadenylation-induced translation of the mRNAs in response to synaptic stimulation, such as 157 

NMDA-dependent long-term potentiation (Gu et al., 1999; Huang et al., 2006; Fioriti et al., 2015). 158 

Kandel and Fioriti have shown that CPEB3 binds CPEs of dendrite-bound mRNAs, providing 159 

translational regulation that is necessary for memory persistence (Fioriti et al., 2015). Additionally, 160 

they found that CPEB3 undergoes LLPS when bound to its target mRNA and is SUMOylated (Ford 161 

et al., 2019), suggesting that LLPS plays a role in translation regulation. Indeed, CPEB3 leaves the 162 

membraneless Processing Body (P body) to join the distally-located polysome after chemically-163 

induced long-term potentiation (Ford et al., 2019). This work identifies the movement of phase 164 

separated, translation-dependent components from a repressed state in neuronal mRNP granule-like 165 

P bodies (Barbee et al., 2006) to an active state at distal ribosomes, and suggests that P bodies are 166 

playing an essential role in this process (Cougot et al., 2008; Ford et al., 2019). 167 

 Fragile X Mental Retardation Protein (FMRP) is another well-characterized component of 168 

neuronal mRNP granules, largely studied for its role in the pathogenesis of fragile X syndrome, the 169 

most commonly inherited form of mental retardation (Jin and Warren, 2003). Disruption of FMRP 170 

results in altered neural morphology in the form of excessively long and thin filopodia-like spines 171 

and fewer mature spines (Nimchinsky et al., 2001). FMRP is localized to the synapse upon 172 

metabotropic glutamate receptor activation, where it functions to target dendritic mRNAs and 173 

regulates translation (Jin and Warren, 2003; Antar et al., 2004). FMRP represses mRNA translation 174 

both in vivo and in vitro, possibly by blocking ribosome elongation at the polysome (Zalfa et al., 175 

2006) and/or by microRNA-FMRP interaction, which would repress translation via the RNA-176 
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induced silencing complex (Zalfa et al., 2006). Experiments conducted in vitro using reticulocytes 177 

extracts and recombinant FMRP suggest that this translation repression likely occurs within the 178 

LLPS state, since FMRP-containing droplets can recruit translational repressors and microRNA 179 

(Tsang et al., 2019). However the same authors do not show direct evidence that only the phase 180 

separated state is capable of repressing translation in an intact cellular environment. Thus additional 181 

studies are necessary to clarify whether the ability to repress translation is an exclusive property of 182 

the condensed phase. Interestingly, FMRP LLPS is mediated by  binding to its mRNA targets and 183 

by post translational modifications such as phosphorylation (Tsang et al., 2019). Tsang et al. predict 184 

that additional RNA-binding proteins involved in translational repression might undergo LLPS to 185 

function as translational repressors in neurons (Tsang et al., 2019).  186 

 mRNAs in neuronal mRNP granules can also drive LLPS and direct dendritic targeting of 187 

mRNP granules. RNA modifies the LLPS behavior of RNA-binding proteins (Maharana et al., 188 

2018), and the post-transcriptional state of the RNA, such as secondary structure, also plays a role 189 

in changing LLPS behavior (Langdon and Gladfelter, 2018; Van Treeck and Parker, 2018). 190 

Recently, the Jaffery lab identified a facilitating role of methylation of adenosine at the nitrogen-6 191 

position (m6A) in LLPS in vitro, and linked the high abundance of m6A RNA to LLPS of specific 192 

membraneless organelles (Ries et al., 2019). Interestingly, transcripts critical for synaptic 193 

organization and function are highly modified with m6A and are translocated to synapse 194 

(Merkurjev et al., 2018). Like the disrupted neuromorphology seen with FMRP mutations 195 

(Nimchinsky et al., 2001; Tsang et al., 2019), reducing the levels of the protein “m6A reader”, a 196 

protein that interacts with m6A-modified mRNA, caused structural and functional deficits in 197 

hippocampal dendritic spines (Merkurjev et al., 2018). 198 

Local translation also takes place in axons (Jung et al., 2012; Wong et al., 2017; Hafner et 199 

al., 2019). Similarly to the local protein synthesis in dendrites, RNA-binding proteins play a major 200 

role in regulating axonal local translation (Antar et al., 2004; Kiebler and Bassell, 2006). A co-201 

culture system of Aplysia sensory presynaptic and motor postsynaptic neurons has been used for      202 

studies of axonal local translation. After stimulation to induce long-term facilitation, relevant 203 

mRNAs, such as sensorin, rapidly concentrate in the presynaptic terminus of sensory neurons 204 

(Lyles et al., 2006). Moreover, live-cell imaging of fluorescent translational reporters revealed      205 

accumulation of newly synthesized proteins in the presynaptic terminus (Wang et al., 2009), 206 

suggesting local translation occurs in the presynaptic terminus during long-term facilitation.  207 

      As they are transported along axons to growth cones or presynaptic structures, RNA-208 

binding proteins and mRNAs form mRNP granules through LLPS. Translation is suppressed in 209 

these granules until they receive extracellular signals that initiate local translation. FMRP, together 210 
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with proteins such as fragile X-related (FXR) 1 and FXR2, forms FMRP-containing granules 211 

(FXGs) by LLPS which plays an important role in the translation control (Antar et al., 2006; Li et 212 

al., 2009; Till et al., 2011; Parvin et al., 2019; Tsang et al., 2019). These granules are often localized 213 

near synaptic vesicles (Christie et al., 2009), which may serve as platforms for local translation at 214 

presynaptic structures. The synaptic vesicle protein synapsin 1 condenses into liquid droplets and 215 

promotes clustering of synaptic vesicles at presynaptic terminals (Milovanovic et al., 2018). 216 

Because FXGs localize with synaptic vesicles, it is possible that FMRP suppresses local translation 217 

to maintain mRNAs and translational machinery at the synapsin/synaptic vesicles condensate. Once 218 

a signal to initiate translation for synapse formation or plasticity is received, FMRP is 219 

dephosphorylated and FXGs are dispersed to initiate translation. The surrounding phase 220 

environment (synapsin/synaptic vesicles condensate) may affect the process of forming/dispersing 221 

FXGs by LLPS. However, further studies at higher resolution are necessary to detect translating 222 

ribosomes and FXGs in presynaptic structures in response to extracellular signals     .  223 

In summary, a multitude of nuclear and cytoplasmic membraneless organelles play critical 224 

roles in gene expression and local protein synthesis. The dense nature of these organelles, with high 225 

concentrations of select protein and RNA components, allow for “packets of information” to be 226 

delivered directly to relevant active sites. This allows for the efficient, and spatially-dependent, 227 

production of transcription and translation products in the polarized neuron. 228 

 229 

LLPS at the synapse 230 

Synaptic proteins are continuously turning over (Kuriu et al., 2006; Sharma et al., 2006) and 231 

yet synapses can persist for weeks, months or even the lifetime of the animal (Grutzendler et al., 232 

2002; Yang et al., 2009; Isshiki et al., 2014). This is fascinating considering the synapse is an 233 

organelle that is not enclosed by a plasma membrane. A presynaptic terminus shows specific 234 

accumulation of component proteins, which tether the synaptic vesicles at rest and, upon the influx 235 

of Ca
2+

, fuse them with a specialized part of the presynaptic membrane called the active zone. 236 

Postsynaptic receptors are embedded in the plasma membrane, beneath which, various cellular 237 

components involved in signal transduction and regulation are enriched and comprise the 238 

postsynaptic density (PSD) (Sheng and Hoogenraad, 2007). These pre- and postsynaptic structures 239 

lack any demarcating membranes that prevent the diffusion of the component molecules into the 240 

cytoplasm. Indeed, synaptic proteins turn over at rates ranging from minutes to hours, yet the 241 

synapse still maintains its molecular and structural identity over days and weeks (Grutzendler et al., 242 
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2002; Kuriu et al., 2006; Sharma et al., 2006; Yang et al., 2009; Isshiki et al., 2014). These 243 

properties of protein accumulation are consistent with the phenomenon of LLPS (Fig. 3). 244 

Synapsin is a presynaptic protein that crosslinks synaptic vesicles and tethers them to the 245 

cytoskeleton within the resting presynaptic terminus. Upon Ca
2+

 entry, activated CaMKII 246 

phosphorylates synapsin. This reduces the interaction of synapsin with synaptic vesicles and the 247 

cytoskeleton, and facilitates the process of vesicular release. When purified, synapsin can undergo 248 

LLPS in vitro in a manner recapitulating its in vivo properties (Milovanovic et al., 2018). Synapsin 249 

condensates can capture liposomes and are dispersed by CaMKII phosphorylation (Milovanovic et 250 

al., 2018). From these observations, synapsin is proposed to cluster synaptic vesicles in the 251 

presynaptic terminus by a LLPS-mediated mechanism.  252 

The clustering of membrane surface proteins can also be regulated by LLPS of proteins that 253 

bind to intracellular regions of membrane proteins. Ca
2+

 comes into the presynaptic terminus 254 

through voltage-gated Ca
2+

 channels at the active zone of the presynaptic membrane. The clustering 255 

of the voltage-gated Ca
2+

 channels is mediated by two active zone proteins, Rab3-interacting 256 

molecule (RIM) and RIM-Binding Protein (RIM-BP) that interact with voltage-gated Ca
2+

 channels. 257 

RIM has a proline-rich domain and a PDZ domain, which interact with three SH3 domains in RIM-258 

BP and with the PDZ binding motif of the N-type voltage-gated Ca
2+

 channels, respectively (Wu et 259 

al., 2019; Wu, 2020). Through these multiple domain interactions, RIM, RIM-BP, and voltage-260 

gated Ca
2+

 channels can phase separate and form clusters at the active zone (Wu et al., 2019). Wu et 261 

al. (2020) demonstrated that purified synaptic vesicles coat the surface of the RIM/RIM-BP 262 

condensates either in solution or tethered to membrane bilayers by the cytoplasmic tail of voltage-263 

gated Ca
2+

 channels, forming a new type of interaction between a membrane organelle and 264 

membraneless organelle. The coating of synaptic vesicles on the surface of active zone condensates 265 

implies that the total number of synaptic vesicles tethered to each active zone is determined by its 266 

surface area (Schikorski and Stevens, 1997). Remarkably, when the synapsin/vesicle condensates 267 

mixed with the vesicle-coated  RIM/RIM-BP condensates, the vesicle-coated RIM/RIM-BP 268 

condensates are encapsulated by synapsin/small unilamellar vesicle (SUV) condensates, forming 269 

two distinct SUVs pools reminiscent of the reserve and tethered synaptic vesicle pools existing in 270 

presynaptic boutons. Thus, the authors have reconstituted a presynaptic bouton-like structure 271 

containing vesicle-coated active zone with one side attached to the presynaptic membrane and the 272 

other side connected to the synapsin-clustered synaptic vesicle condensates.   273 

Purified postsynaptic scaffolding proteins Shank and Homer self-assemble into 274 

macromolecular complexes when they are mixed together in vitro. Both Shank and Homer are 275 

multimeric proteins, and Homer has Enabled/Vasp Homology (EVH) domain that interacts with 276 
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Shank (Hayashi et al., 2009). Through this multimer-multimer interaction, the protein complex 277 

takes on a high-order meshwork structure and is the proposed underlying framework of the PSD at 278 

the excitatory synapse (Hayashi et al., 2009). Similarly, SynGAP, a postsynaptic Ras activating 279 

protein, is a trimeric protein with a PDZ binding motif (Zeng et al., 2016). PSD-95, a postsynaptic 280 

scaffolding protein, multimerizes in vitro (Hsueh and Sheng, 1999; Zeng et al., 2018). When 281 

purified SynGAP and PSD-95 are combined, they form a macromolecular complex. Interestingly, 282 

the resultant complex has droplet-like structures consistent with the properties of LLPS (Zeng et al., 283 

2016). The properties of these droplets, such as spontaneous formation, constant exchange between 284 

condensed and diluted phase, and spontaneous fusion, are consistent with the idea that these 285 

droplets are formed by LLPS. The phase separation of the PSD-95 and SynGAP mixture also 286 

suggests that the dense PSD assemblies beneath but not enclosed by the postsynaptic plasma 287 

membranes are formed via LLPS. A mutant that abolishes LLPS in vitro significantly impaired the 288 

enrichment of these proteins in neurons (Hayashi et al., 2009; Zeng et al., 2016). 289 

When additional components of the PSD, including the NMDA receptor (NMDAR) subunit 290 

GluN2B (which has a PDZ binding motif), GKAP (which bridges PSD-95 and Shank), Shank, and 291 

Homer were added to a PSD-95/SynGAP mixture, this resulted in LLPS at lower protein 292 

concentration, indicating a synergetic effect on the phase formation (Zeng et al., 2018; Wu, 2020; 293 

Chen et al., 2020). However, the contribution of each protein to phase separate is different. 294 

Removal of PSD-95 significantly reduced GluN2B but not Shank and Homer. In contrast, removal 295 

of Shank significantly reduced Homer but had less impact on PSD-95 and SynGAP. This suggests 296 

that some proteins serve as a “driver” for the formation of phase separation while others serve as a 297 

“client”. PSD-95 serves as a major driver of phase separation while GluN2B serves as a client. In 298 

contrast, Homer and Shank form an independent layer that does not serve as a driver or client for 299 

PSD-95/SynGAP/GluN2B. This is consistent with electron microscopic observations of the laminal 300 

structure of PSD (Valtschanoff and Weinberg, 2001), where PSD-95 and GluN2B are layered 301 

together immediately beneath the synaptic membrane, while Shank is in a deeper layer. GKAP is an 302 

interesting molecule in this structure: when it was removed, both PSD-95/SynGAP/GluN2B and 303 

Shank/Homer had significantly reduced phase formation. GKAP is situated between these two 304 

layers in the protein complex and may serve as an interface. Indeed, in native PSDs, GKAP is 305 

layered between PSD-95/GluN2B and Shank (Valtschanoff and Weinberg, 2001). 306 

AMPA type glutamate receptors (AMPAR) are another major receptor group of the 307 

excitatory synapse. They interact with a myriad of proteins that regulate the synthesis, function, and 308 

subcellular distribution of AMPAR. Major interactors include the Transmembrane AMPA 309 

Receptor-interacting Proteins (TARPs), which interact with the transmembrane domain of 310 
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AMPARs and determine receptor localization and function (Nicoll et al., 2006). A prototypical 311 

TARP, Stargazin, can interact with PSD-95 through a PDZ-binding motif, as well as through an 312 

arginine-rich motif (Zeng et al., 2019). Through such multivalent interactions, Stargazin undergoes 313 

LLPS with PSD-95. This is required for efficient incorporation of AMPAR into the synapse. 314 

 The induction of synaptic plasticity can persistently alter the amount of the AMPAR and 315 

various other proteins residing at the synapse (Bosch et al., 2014). Thus, an important and 316 

outstanding question is how neuronal activity modulates postsynaptic LLPS to trigger the delivery 317 

of synaptic proteins. The induction of long-term potentiation (LTP) induces a delivery of 318 

postsynaptic proteins in a specific order from the dendritic shaft. Actin and actin-related proteins 319 

are the first to arrive at the synapse, followed by AMPAR. PSD scaffolding proteins such as PSD-320 

95 and Homer take longer to increase (~2 hours) after LTP induction, and require the synthesis of 321 

new protein (Bosch et al., 2014). In contrast, SynGAP, another PSD protein that inhibits Ras 322 

activity, dissociates quickly from the synapse upon phosphorylation by CaMKII (Araki et al., 2015). 323 

Furthermore, phosphorylation of Stargazin by CaMKII negatively affects LLPS (Zeng et al., 2019). 324 

Because activation of CaMKII transiently occurs after LTP induction (Lee et al., 2009), this might 325 

create a time-window for reorganization of the postsynaptic protein condensate.  326 

 Indeed, CaMKII has several properties that enable it to undergo LLPS. Once activated by 327 

Ca
2+

/calmodulin, CaMKII can form a persistent complex with substrate proteins including the 328 

intracellular carboxyl tail of the NMDA receptor subunit GluN2B, Rac guanine nucleotide 329 

exchange factor (RacGEF) Tiam1, GJD2/connexin 36, LRRC7/densin-180, and the L-type Ca
2+

 330 

channel. In addition, CaMKII has a rotationally symmetric dodecameric structure that can 331 

simultaneously interact with these proteins and cross link them. The ability of CaMKII to undergo 332 

LLPS was experimentally demonstrated by using purified CaMKII and other PSD proteins, 333 

including the scaffolding protein PSD-95, GluN2B, and Stargazin as a proxy of AMPAR itself. 334 

Notably, CaMKII undergoes phase separation with these proteins only in the presence of Ca
2+

 and 335 

after it undergoes LLPS, this state persists even after chelation of Ca
2+

. This persistence of LLPS 336 

after Ca
2+

  chelation requires phosphorylation of threonine 286 (T286) of CaMKII, which has been 337 

shown to render CaMKII constitutively active. Therefore, one major role of CaMKII at the synapse 338 

may be to link different postsynaptic molecules through LLPS in a manner triggered by Ca
2+

 339 

(Hosokawa, in press).  340 

In a related study, Cai et al. discovered that autoinhibited CaMKIIα specifically binds to 341 

Shank3. In a reconstitution buffer containing no Ca
2+

, mixing CaMKIIα and Shank3 leads to phase 342 

separation of the mixture. Addition of Ca
2+

 induces GluN2B-mediated recruitment of active 343 

CaMKIIα and formation of the GluN2B/PSD-95/CaMKIIα condensates, which is autonomously 344 
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dispersed upon Ca
2+

 removal. Protein phosphatases control the Ca
2+

-dependent shuttling of 345 

CaMKIIα between the two PSD subcompartments (the upper layer composed of GluN2B/PSD-95 346 

and the lower layer composed of GKAP/Shank3/Homer). Activation of CaMKIIα further enlarges 347 

the PSD assembly, mimicking activity-induced structural LTP in synapse. Therefore, Ca
2+

-driven 348 

and phosphatase-checked shuttling of CaMKIIα between distinct PSD nanodomains may underlie 349 

structural plasticity of PSD assemblies via LLPS (Cai et al., in press).  350 

LLPS of CaMKII is also involved in the segregation of synaptic surface proteins. Glutamate 351 

receptor subtypes are organized into nanodomains at the synapse. In each hippocampal synapse, 352 

NMDAR forms one dominant nanodomain and several small domains, while AMPAR segregates 353 

into several nanodomains of similar size surrounding the NMDAR. In contrast, metabotropic 354 

glutamate receptors (mGluR) are more diffuse (Goncalves et al., 2020). Postsynaptic nanodomains 355 

connect to the presynaptic active zone via cell adhesion molecules, thereby forming trans-synaptic 356 

nanocolumns (Tang et al., 2016; Biederer et al., 2017; Scheefhals and MacGillavry, 2018). CaMKII 357 

preferentially interacts with the NMDAR subunit GluN2B rather than the AMPAR, represented by 358 

Stargazin. This leads to the formation of a phase-in-phase structure of AMPARs within the 359 

NMDAR-CaMKII phase. Further, the cell-adhesion molecule neuroligin segregates with the 360 

AMPAR and connects the presynaptic neurexin with the presynaptic release machinery. This 361 

mechanism may place AMPARs just beneath the transmitter release site, thereby optimizing the 362 

transmission efficacy and serving as a novel mechanism CaMKII-mediated synaptic plasticity.  363 

In contrast to prominent PSD assemblies in excitatory synapses, inhibitory synapses do not 364 

contain obvious dense thickening underneath synaptic membranes. However, recent cryo-EM 365 

tomography studies reveal a sheet-like dense assembly (referred to as iPSD) with a thickness of ~5 366 

nm (Tao et al., 2018). A recent study has demonstrated that glycine or GABAA receptors, together 367 

with gephyrin, a key scaffold protein in inhibitory synapses, can undergo phase separation, forming 368 

iPSD condensates. The formation of the iPSD condensates can be regulated by phosphorylation of 369 

gephyrin or binding of target proteins to gephyrin (Bai et al., 2020). Thus, analogous to excitatory 370 

PSDs, iPSDs are likely formed by phase separation-mediated condensation of scaffold 371 

protein/neurotransmitter receptor complexes.  372 

   373 

LLPS in neurodegenerative disease.  374 

Neurodegenerative diseases such as Alzheimer’s (AD) and Parkinson’s (PD) are currently incurable 375 

and have no effective treatments. To identify potential treatments, it is paramount to understand the 376 

cellular and pathological basis of disease. One defining cellular feature of neurodegenerative 377 
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disease is the deposition of protein aggregates in affected brain regions. Protein aggregates in a 378 

given disease are formed by a specific protein, e.g. the microtube-associated protein tau (MAPT) in 379 

AD and 50% of patients with frontotemporal degeneration (FTD) (Mackenzie and Neumann, 2016; 380 

Vogels et al., 2020),  α-synuclein in PD and Lewy body dementia (Luna and Luk, 2015; Zbinden et 381 

al., 2020); and TDP-43 in >95% of patients with amyotrophic lateral sclerosis (ALS) and in ~45% 382 

of patients with FTD (Mackenzie and Neumann, 2016; Taylor et al., 2016). MAPT, α-synuclein, 383 

and TDP-43 have an inherent capacity to aggregate; they harbor disease-causing mutations and the 384 

anatomical burden of these protein aggregates correlate with symptomatic decline (Luna and Luk, 385 

2015; Mackenzie and Neumann, 2016; Taylor et al., 2016; Harrison and Shorter, 2017; Vogels et al., 386 

2020; Zbinden et al., 2020). How protein aggregates correlate with disease is unclear, but it is 387 

emerging that LLPS may be involved. Here we will focus on the role of LLPS in ALS. 388 

ALS is an incurable motor neuron disease that leads to paralysis and death within 2-5 years 389 

of symptomatic onset (Taylor et al., 2016). In >95% of ALS patients, TDP-43 forms 390 

phosphorylated protein aggregates in the cytoplasm of affected motor neurons (Arai et al., 2006; 391 

Neumann et al., 2006). Mutations in several ALS-linked genes have been identified, and these give 392 

rise to ~15% of ALS cases (Taylor et al., 2016). Many of the mutated genes, including TDP-43, 393 

FUS, and TIA1, are RNA-binding proteins that harbor a prion-like domain (Sreedharan et al., 2008; 394 

Kwiatkowski et al., 2009; Vance et al., 2009; Kim et al., 2013; Mackenzie et al., 2017). The prion-395 

like domain is an intrinsically-disordered region that can promote protein aggregation and protein 396 

phase separation both in vitro and in the cell (Johnson et al., 2009; Sun et al., 2011; Han et al., 397 

2012; Kato et al., 2012; Lin et al., 2015; Molliex et al., 2015; Murakami et al., 2015; Patel et al., 398 

2015; Xiang et al., 2015; Conicella et al., 2016; Ryan et al., 2018; McGurk et al., 2018a; McGurk et 399 

al., 2018b; Murthy et al., 2019; Conicella et al., 2020), and it is often the site of disease-causing 400 

mutations (Sreedharan et al., 2008; Kwiatkowski et al., 2009; Vance et al., 2009; Kim et al., 2013; 401 

Mackenzie et al., 2017). Thus, LLPS is a focus in the underlying pathogenesis of ALS. 402 

In ALS, neurons are under constitutive stress that can arise from misfolded proteins in the 403 

endoplasmic reticulum and mitochondrial dysfunction (Kiskinis et al., 2014; Montibeller and de 404 

Belleroche, 2018). As a survival mechanism during stress, the cell inhibits global protein translation 405 

by sequestering RNA-protein complexes involved in the pre-initiation of protein synthesis into 406 

stress granules (Ivanov et al., 2019; Jaud et al., 2020). TDP-43 and several of the RNA-binding 407 

proteins linked to ALS localize to stress granules (Bosco et al., 2010; Dewey et al., 2011; 408 

Mackenzie et al., 2017; Fernandes et al., 2018). The hypothesis that stress granules are linked to 409 

ALS is further supported by evidence that demonstrates that disease-causing mutations in the RNA-410 

binding proteins linked to ALS alter LLPS in vitro and localization of the respective proteins to 411 
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stress granules (Lin et al., 2015; Molliex et al., 2015; Murakami et al., 2015; Patel et al., 2015; 412 

Conicella et al., 2016; Lee et al., 2016; Lin et al., 2016; Boeynaems et al., 2017; Dao et al., 2018; 413 

Wang et al., 2018; McGurk et al., 2018b), that downregulation of pathways that promote stress 414 

granule formation mitigate TDP-43-associated toxicity and/or aggregation in various cellular and 415 

animal models (Elden et al., 2010; Kim et al., 2014; Becker et al., 2017; Zhang et al., 2018; 416 

McGurk et al., 2018c; Duan et al., 2019; Fernandes et al., 2020), and that stress-granule resident 417 

proteins co-aggregate with ~30% of TDP-43 inclusions in human ALS tissue (Liu-Yesucevitz et al., 418 

2010; Bentmann et al., 2012; McGurk et al., 2014).       419 

An overarching hypothesis has been that stress-granule localization of TDP-43 seeds the 420 

protein aggregation observed in ALS. Stress granules and LLPS condensates are highly 421 

concentrated sources of protein, which is a biophysical property that promotes LLPS. Thus, by 422 

increasing local protein concentration, LLPS provides an environment that can promote phase 423 

transition events that lead to the formation of protein oligomers with solid-like characteristics (Kato 424 

et al., 2012; Molliex et al., 2015; Murakami et al., 2015; Patel et al., 2015; Guo et al., 2018). In in 425 

vitro experiments, solid protein oligomerization within protein condensates can also be promoted by 426 

increasing the time the proteins are in the protein droplet, by repeated forming and dissolving the 427 

protein droplets, and by introducing disease-associated mutations to the protein (Lin et al., 2015; 428 

Molliex et al., 2015; Patel et al., 2015). In line with these in vitro data, cells exposed to chronic 429 

stress form stress granules and persistent TDP-43 aggregates (McGurk et al., 2018b; Gasset-Rosa et 430 

al., 2019; Fernandes et al., 2020), suggesting that chronic stress and/or stress-granule localization 431 

leads to disease-like aggregation of TDP-43. However, under short-term stress,  stress granules 432 

inhibit the formation of disease-like aggregates of TDP-43 and promote the solubility and 433 

dissolution of the protein after the removal of stress (McGurk et al., 2018b; Chen and Cohen, 2019; 434 

Gasset-Rosa et al., 2019; Mann et al., 2019; Fernandes et al., 2020). Thus, under short-term stress 435 

the cell controls both the accumulation and dissolution of TDP-43 aggregates, but under continued 436 

stress and maintenance of a condensed phase, TDP-43 transitions into disease-like aggregates. 437 

Elucidation of the LLPS-associated dynamics of membraneless organelles and disease-438 

causing proteins may explain the pathology observed in ALS and other neurodegenerative diseases. 439 

However, whether protein aggregation causes dysfunction and clinical symptoms is unknown. Data 440 

from animal models suggest that targeting pathways that promote LLPS and stress granule 441 

biogenesis is therapeutic (Elden et al., 2010; Kim et al., 2014; Becker et al., 2017; Guo et al., 2018; 442 

Zhang et al., 2018; McGurk et al., 2018c; Duan et al., 2019; Fernandes et al., 2020). Thus, studying 443 

the mechanisms of LLPS is directing us towards pathways with therapeutic potential for incurable 444 

diseases such as ALS. 445 
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 446 

Concluding remarks 447 

LLPS is emerging as a key biological phenomenon that mediates several aspects of the basic 448 

organization and proper functions of cells in general, and neurons, in particular. It will be 449 

interesting to see where the field of LLPS will take us in the next few years. We anticipate that 450 

combined the technological advancements in super-resolution microscopy and other imaging 451 

techniques we will be able to fill the gaps between in vitro studies and in vivo conditions. Further 452 

advancements in our understanding of this phenomenon will also allow us to design new therapeutic 453 

approaches against neurodegenerative diseases. 454 

  455 
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Figure Legends 456 

Figure 1: Phase separation illustrated by a simple two-component system. 457 

(A) Free energy diagram showing phase separation of a two-component system (e.g. a protein 458 

indicated by blue dots in water indicated by brown dots) under a certain condition. A uniformly 459 

mixed system can undergo phase separation by lowering the free energy to its minima, which      460 

results in a two-phase system: a dilute phase (Φd, expressed as fraction volume for the dilute 461 

phase) and a condensed phase (Φc, fraction volume for the condensed phase).  462 

(B) Phase diagram of the two-component system constructed by plotting the free energy minima as      463 

a function of temperature. The blue curve indicates a sharp boundary (or the threshold 464 

concentration) of the system transitioning from a homogenous single-phase state to a two-phase 465 

state. Within the phase separation region, two modes of phase separation, binodal nucleation 466 

and spinodal decomposition, can occur.  467 

(C) In a phase-separated two-component system, a thermodynamic equilibrium is reached (i.e. ΔGd/c 468 

=0). A sharp gradient in the concentration of the blue molecule is established between the two 469 

phases. 470 

(D) After phase separation, the components of the condensed phase and the diluted phase can freely 471 

exchange. However, there is no net flow of components between the two phases.  472 

(E) An example of binodal nucleation-induced phase separation forming condensed spherical 473 

droplets (left) and an example of spinodal decomposition-induced phase separation forming 474 

worm-like condensed networks (right). 475 

(F) In sharp contrast to membraneless condensates, spontaneous compartment fusion or materials 476 

exchange do not occur in membrane-separated organelles.  477 

 478 

Figure 2. RNA binding proteins involved in RNA stability (P-bodies), mRNA transport 479 

(mRNA transport granules), translation, and stress granules (SG) formation.  480 

Under transient stress, protein-protein and RNA interactions form a dense SG core. Several RNA 481 

binding proteins can be recruited to SG cores and undergo liquid-liquid phase separation forming 482 

functional dynamic structures (physiological LLPS). Under conditions of transient stress, SGs are 483 

transiently formed but disassemble after the stress is gone. In case of prolonged stress, and after 484 

post-translational modifications like phosphorylation, proteins can become insoluble (pathological 485 
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LLPS). The same RNA binding proteins can participate in the formation of non-toxic hydrophobic 486 

aggregates and toxic cytoplasmic inclusions. 487 

 488 

Figure 3. Schematic diagram LLPS at synapses.  489 

Synapses contain various unique biological condensates, such as active zones and post-synaptic 490 

density (PSD). In a presynaptic bouton (represented in light blue), the reserve pool of synaptic 491 

vesicles (SV) can form molecular condensates via coacervating with the synapsin condensates. The 492 

docked pool of synaptic vesicles instead coat the surface of active zone condensates formed by 493 

proteins including RIM, RIM-BP and ELKS. In the postsynaptic neuron (represented in purple) and 494 

both in excitatory and inhibitory synapses, formation of PSD assemblies may also involve phase 495 

separation of synaptic scaffold proteins interacting with neurotransmitter receptors. 496 

  497 
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