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ABSTRACT  22 

Cereal grain develops from fertilised florets. Alterations in floret and grain development greatly 23 

influence grain yield and quality. Despite this, little is known about the underlying genetic control of 24 

these processes, especially in key temperate cereals such as barley and wheat. Using a combination 25 

of near-isogenic mutant comparisons, gene editing and genetic analyses, we reveal that 26 

HvAPETALA2 (HvAP2) controls floret organ identity, floret boundaries, and maternal tissue 27 

differentiation and elimination during grain development. These new roles of HvAP2 correlate with 28 

changes in grain size and HvAP2-dependent expression of specific HvMADS-box genes, including the 29 

B-sister gene, HvMADS29. Consistent with this, gene editing demonstrates that HvMADS29 shares 30 

roles with HvAP2 in maternal tissue differentiation. We also discovered that a gain-of-function 31 

HvAP2 allele masks changes in floret organ identity and grain size due to loss of barley LAXATUM.A/ 32 

BLADE-ON-PETIOLE2 (HvBOP2) gene function. Taken together, we reveal novel, pleiotropic roles and 33 

regulatory interactions for an APETALA2-like gene controlling floret and grain development in a 34 

temperate cereal. 35 

 36 
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 45 

INTRODUCTION 46 

Sex in angiosperms occurs in the flower, a complex structure of multiple organs whose coordinated 47 

growth leads to production of seed. Double fertilisation of the embryo sac within the ovary 48 

generates two filial seed tissues, the embryo and endosperm, which proliferate and expand while 49 

enclosed by layers of maternal ovary tissue, including the proximal, nutritive nucellus and the more 50 

distal integuments that form the protective seed coat (Wilkinson et al., 2018). The grass flower or 51 

‘floret’ ovary is additionally encircled by the ovary wall or pericarp which with the underlying 52 

maternal and filial tissues grow into the grain fruit or ‘caryopsis’. The caryopsis isotopically expands 53 

following fertilisation and then elongates and swells to fill the cavity between opposing floret hulls 54 

(Brinton & Uauy, 2019). Several genes that regulate ovary, nucellus, integument, pericarp and/or 55 

hull development also influence grain size (Song et al., 2007; Yin & Xue, 2012; Brinton et al., 2017; 56 

Ren et al., 2018; Zhao et al., 2018; Wilkinson et al., 2019). However, the mechanism used by these 57 

genes to influence grain size is poorly understood. This problem has major translational significance 58 

in cultivated cereal grasses whose endosperm provides more calories than any other source to the 59 

human diet.  60 

Learning more about the genetic and functional networks in the floret and grain may help to dissect 61 

this problem. Each floret arises from a floret meristem made by the spikelet, the basic reproductive 62 

unit of grasses. Floret meristems form opposing lemma and palea hulls which enclose the stamens 63 

and single-ovary carpel (Schrager-Lavelle et al., 2017). Small sacs called lodicules develop between 64 

the lemma and stamens which enlarge at anthesis (pollen shed), prising open the lemma to facilitate 65 

pollen transfer (Kellogg, 2015). Molecular patterns controlling floret morphogenesis appear partially 66 

conserved with the ABCDE gene combinatorial model proposed to explain flower development in 67 

dicots such as Arabidopsis thaliana (Schrager-Lavelle et al., 2017). In the Arabidopsis flower, activity 68 

of class ‘A’ genes defines the outer perianth (sepals), ‘AB’, the inner perianth (petals), ‘BC’, the 69 



stamens, ‘C’, the carpel, and ‘CD’ the ovule, with the ‘E’ class genes contributing to all other class 70 

functions (Theißen et al., 2016; Irish, 2017). Other than the ‘A’ class APETALA2 (AP2) gene, the 71 

ABCDE genes encode MADS-box transcription factors. Orthologous MADS-box expression in rice 72 

suggests that the palea and lemma are analogous to sepals (Lombardo & Yoshida, 2015) while the 73 

lodicules are highly-derived petals (Yoshida, 2012). Lemma formation also represents a commitment 74 

of the axillary meristem to floret fate (Arber, 2010; Kellogg, 2015). Thus, grass perianth development 75 

involves decisions about organ identity and spikelet versus floret fate.    76 

Specific genes establishing floret and organ identity in grasses are not completely resolved, 77 

especially in temperate cereals such as barley and wheat that develop unbranched ‘spike’ 78 

inflorescences. However, the A-class APETALA2-like (AP2L) genes and their regulation by 79 

microRNA172 (miR172) appears to play a central role.  In spikes, spikelets directly attach to the spike 80 

axis at alternating nodes flanked by two bract-like glumes. In wheat, miR172-resistant alleles of 81 

TaAP2L5 (the Q domestication gene) or TaAP2L2 cause glume to lemma transformations, ectopic 82 

florets and compact spikes, while overexpression of miR172, or loss of TaAP2L5 or TaAP2L2 function, 83 

leads to longer spike internodes, glume-like lemmas and reiterations of empty glumes (Simons et al., 84 

2006; Sormacheva et al., 2015; Debernardi et al., 2017, 2020; Greenwood et al., 2017). These 85 

phenotypes suggest that TaAP2Ls promote lemma identity and floret establishment, a role partially 86 

conserved in rice based on loss of function phenotypes of the SUPERNUMERARY BRACT (SNB) and 87 

INDETERMINATE SPIKELET1 (IDS1) AP2L-genes (Lee et al., 2007; Lee & An, 2012; Ji et al., 2019). In 88 

barley, a gain-of-function HvAP2 allele called Zeo1.b disrupts miR172-directed HvAP2 transcript 89 

cleavage, elevating HvAP2 transcript levels and leading to small, non-swelling lodicules, semi-90 

dwarfism and dense spikes (Houston et al., 2013; Patil et al., 2019). We do not know whether HvAP2 91 

fulfils similar roles as TaAP2L5 or TaAP2L2 in floret establishment or organ identity.  The only gene 92 

currently identified that controls floret organ identity in barley is the LAXATUM.A/ HvBLADE-ON-93 

PETIOLE2 (HvBOP2) gene encoding a transcription factor necessary for lodicule identity and 94 



repression of spike internode elongation (Jost et al., 2016). The regulatory mechanism(s) of HvBOP2 95 

and its relationship to HvAP2 or the ABCDE model are unknown. 96 

AP2L genes also regulate post-fertilisation development across different plants. In Arabidopsis, 97 

AtAP2 restricts integument cell expansion, seed size and seed mass (Modrusan et al., 1994; Jofuku et 98 

al., 1994; Ohto et al., 2005) while in rice, SNB limits grain size and weight, a role associated with 99 

constraining floret hull cell expansion (Jiang et al., 2019; Ma et al., 2019). Whether AP2L genes also 100 

control post-fertilisation development in temperate cereals is unexplored. Here, we identify and 101 

characterise a new HvAP2 allele in the barley Bowman Near-Isogenic Line (BWNIL) mutant 102 

population (Druka et al., 2011) and generate additional alleles by gene editing to reveal both 103 

conserved and novel roles for HvAP2 in floret and grain development. 104 

 105 

RESULTS  106 

BW381 (gigas1.a) shows altered floret organ identity and growth 107 

To learn more about HvAP2, we screened the BWNILs for loss of function HvAP2 alleles, focusing on 108 

mutants with introgressions that overlapped HvAP2 (Druka et al., 2011; Houston et al., 2013). We 109 

selected the BW381 line containing the gigas1.a locus (Greek for giant), originally isolated in the 110 

cultivar (cv.) Golden Melon (Tsuchiya, 1962; Franckowiak, 1995; Druka et al., 2011; Table S1). BW381 111 

(hereafter called gigas1.a) showed multiple elongated features compared to the recurrent parent cv. 112 

Bowman (Fig. 1; Table S2). Spike internodes were longer (p=0.036), causing less dense or laxatum 113 

spikes, glumes were 20% longer (p=0.028), and lemmas and paleas were 50% longer (p≤0.001) 114 

shifting the gigas1.a spikelet shape from wedge to lance-shaped (Fig. 1A-D,F,G; Fig S1A-C; Table S2). 115 

Adaxial lemma epidermal cell length in gigas1.a was 52% increased compared to Bowman (p≤0.001, 116 

Fig. S1D), suggesting that increased cell elongation explained longer gigas1.a lemmas, although 117 

these cells were also 16% wider compared to Bowman (p≤0.001, Fig S1E). In Bowman and most 118 



cultivated barleys, lemmas and glumes tips have thin projections called awns; the lemma awn is 119 

longer with a distinct boundary from the lemma (Fig. 1C,E). Glume awns in gigas1.a were 50% longer 120 

compared to those of Bowman (p<0.001; Fig. 1C,E,G; Table S2) yet lemma awns in gigas1.a were 121 

23% shorter (p≤0.001), with a less distinct lemma-awn boundary (Fig. 1C,E,F; Table S2), two glume 122 

awn-like features. Lodicules in gigas1.a developed ectopic distal lamina (Fig. 1H, I), associated with 123 

extreme open-flowering (Fig. S1F), decorated with glume-like hairs (Fig. 1J; Fig. S1G,H). We observed 124 

that gigas1.a stigmas had fewer, shorter papillae branches in contrast to feathery ‘plumose’ stigmas 125 

of Bowman (Fig. 1K), which may contribute to reduced seed set in gigas1.a, as previously reported 126 

(Tsuchiya, 1962). Grain length in gigas1.a mirrored the longer hulls and increased by 47% compared 127 

to Bowman (p≤0.001; Fig. 1L–N; Table S2). Pericarp epidermal cells in gigas1.a were only 16% longer 128 

compared to Bowman, as well as 23% wider (p≤0.001; Fig. S2B,C), suggesting that changes in grain 129 

length likely involves increases in cell size and cell number. However, gigas1.a thousand grain weight 130 

(TGW) increased only 7% since gigas1.a grain was also narrower and thinner compared to Bowman 131 

(p≤0.001; Fig. 1M; Fig. S2; Table S2), although its lemma width was unchanged (Fig. S1A). Caryopses 132 

in gigas1.a were darker than Bowman (Fig. 1M), suggesting increased proanthocyanidins in the seed 133 

coat (Aastrup et al., 1984). We re-examined Zeo1.b for additional phenotypes, finding that Zeo1.b 134 

glumes often transform into lemmas (Fig. 1O) and that Zeo1.b grain is 8% wider compared to 135 

Bowman (p≤0.001; Fig. S2; Table S2).  While we did not observe differences in cell length or width in 136 

the adaxial lemma of Zeo1.b, the pericarp cells were 52% wider compared to Bowman (p≤0.001Fig 137 

S2C), suggesting that HvAP2 promotes medial cell expansion in the barley pericarp. Taken together, 138 

elongated glume-like organs, expanded cells, lax spikes, open-flowering, and longer grain of gigas1.a 139 

contrasted with the closed-flowering, compressed growth, glume to lemma transformation and 140 

wider grain of Zeo1.b. 141 

 142 

gigas1.a phenotypes result from a deletion of HvAP2 143 



Given the opposing phenotypes to Zeo1.b, we speculated that gigas1.a may be a loss of function 144 

HvAP2 allele. To clone the locus, we first placed the BOPA2 markers associated with the gigas1.a 145 

introgression on the physical map (Mascher et al., 2017) which located a Golden Melon introgression 146 

on 2H between 710843099bp and 758851055bp (Fig. S3).  Testing gigas1.a genomic DNA on the 147 

barley 50K iSelect SNP Array  (Bayer et al., 2017) identified a slightly larger area on 2H from 148 

710163110bp to 760762651bp (Fig. 2A; Table S3). SNPs starting after 729506693bp and ending 149 

between 730687131bp and 730852717bp on 2H were present in Golden Melon and Bowman 150 

appeared as missing in gigas1.a, demarked an area encompassing HvAP2 (HORVU2Hr1G113880.23) 151 

and six other high confidence genes (Fig. 2A; Table S3, S4). Using gigas1.a genomic DNA, we 152 

successfully amplified two genes outside this region but could not amplify HvAP2 or two other genes 153 

in this region (Fig. S3). We detected HvAP2 transcripts in Bowman and Zeo1.b spikes but not gigas1.a 154 

(Fig. 2B). Collectively, our evidence suggests that a deletion on 2H in gigas1.a removed HvAP2 and at 155 

least six other genes. 156 

To our knowledge, gigas1.a was the only available gigas1 allele. To confirm that gigas1.a 157 

phenotypes do not result from the deletion of genes other than HvAP2, we targeted the HvAP2 gene 158 

using CRISPR/Cas9 gene editing. We transformed Golden Promise with two binary vectors containing 159 

the bcoCas9 (barley codon optimised Cas9) sequence and one guide RNA sequence targeting HvAP2 160 

sequences upstream of those encoding the first AP2 DNA-binding domain (Fig. 2C). Screening 18 161 

independent T1 transformants identified two new HvAP2 alleles, hvap2-1 and hvap2-2, with a 39bp 162 

and 40bp deletions, respectively, in the first exon (Fig. 2C). The hvap2-1 deletion (175bp to 214bp 163 

relative to the coding sequence start) removed 13 amino acids (residues 60-73) before the first AP2 164 

domain in the predicted protein but kept the remaining sequence in frame (Fig. 2C). We observed no 165 

obvious morphological differences in hvap2-1 compared to Golden Promise (Fig. 2D–F). The hvap2-2 166 

deletion (175bp–215bp) removed the same 13 amino acids but also caused a frame shift and a 167 

premature stop codon in exon 5 (368bp), predicted to significantly impair HvAP2 function (Fig. 2C). 168 

The hvap2-2 mutant largely phenocopied gigas1.a, with longer lemmas (p≤0.001), lax spikes 169 



(p=0.005) and long, slender grain compared to Golden Promise (Fig. 2D,E; Fig. S4; Table S3). We note 170 

that in this experiment, gigas1.a had marginally wider lemmas compared to Bowman (Fig S4A, 171 

p<0.05). Lodicules in hvap2-2 were larger, extended and swollen compared to the non-swelling 172 

lodicules of Golden Promise (Fig. 2F), a cleistogamous cultivar with the Zeo2 allele (Houston et al., 173 

2013).  Green organs with a hybrid composition of stamen-like filaments and smooth and hairy 174 

bract-like regions replaced the lodicules in 3% of hvap2-2 florets (Fig. 2G,H), a more severe loss of 175 

lodicule identity compared to gigas1.a, potentially reflecting the different cultivar backgrounds. 176 

Overall hvap2-2 closely phenocopied gigas1.a, corroborating that gigas1.a phenotypes result from 177 

deletion of HvAP2 alone. Thus, we propose that HvAP2 defines the boundary between the glume 178 

and lemma (outer perianth), promotes floret perianth identity, increases stigmatic papillae 179 

branching and widens grain, while also restricting longitudinal growth of spike internodes, spikelets, 180 

floret organs and grain. 181 

 182 

HvAP2 functions during early floral development  183 

We compared early spikelet development in Bowman, Zeo1.b and gigas1.a to understand when and 184 

how HvAP2 influences organ identity. We staged floret organ development using the Waddington 185 

(WD) stages (Waddington et al., 1983). WD4 stage Zeo1.b spikelets exhibited wider glumes than 186 

Bowman, leading to two interlocking lemma-like organs (Fig. 3A) which later overgrew the floret 187 

lemma (Fig. 3B). Lodicule primordia emerged similarly in Bowman, gigas1.a and Zeo1.b at WD4 but 188 

by WD5.5, WD7 and later, Bowman lodicules displayed distinct proximal cushion and distal fringe 189 

tissues (Fig. 3C, Fig. S5). In contrast, gigas1.a lodicules were flatter with distal extensions while 190 

Zeo1.b lodicules remained small, lacked cushions, and formed hairs (Fig. 3C; Fig. S5). These data 191 

suggest that HvAP2 and its miR172-regulation between WD4 and WD7 influence early spikelet 192 

differentiation. 193 



AtAP2 controls Arabidopsis floral organ development in part through regulating MADS-box gene 194 

expression (Drews et al., 1991; Yant et al., 2010; Dinh et al., 2012). We hypothesised that HvAP2 also 195 

controls floral development by modulating target gene(s) expression. We selected candidate 196 

HvMADS-box genes based on their predicted function, AP2-like binding motifs in their regulatory 197 

regions, expression in relevant tissues and whether they were differentially expressed in our earlier 198 

Zeo1.b microarray study (Fig. S6, S7; Table S5; Patil et al., 2019). Our top candidate was HvMADS1 199 

(HORVU4Hr1G067680.2). The HvMADS1 rice orthologue in rice, OsMADS1/ LEAFY HULL STERILE 200 

(LHS1) promotes lemma and lodicule identity and differentiation, transforms glumes into lemmas 201 

when overexpressed and causes glume-like lemmas and elongated bract-like lodicules when down-202 

regulated (Prasad et al., 2001, 2005). HvMADS1 is expressed in differentiating spikelets, lemmas and 203 

lodicules (Fig. S7) and co-expressed with HvAP2 in RNA-seq datasets of spikelet development (Digel 204 

et al., 2015). We sampled developing spikes in Bowman, gigas1.a and Zeo1.b genotypes, normalising 205 

expression to Bowman. HvMADS1 expression increased in all genotypes between WD3.5 to WD4.0, 206 

suggesting this temporal pattern is independent from HvAP2. Overall, HvMADS1 transcripts were 207 

little changed in gigas1.a, so factors other than HvAP2 likely contribute to HvMADS1 expression in 208 

gigas1.a. However, we detected increased HvMADS1 expression in Zeo1.b WD4 and WD5.5 spikes 209 

compared to Bowman (Fig. 3D; Fig. S8). In situ hybridisation with an antisense HvMADS1 probe gave 210 

a strong signal in young and older Zeo1.b spikelets compared to Bowman, especially within 211 

developing glumes, lemma/palea, lodicule and stamen primordia (Fig. 3E,F). These data support that 212 

ectopic HvAP2 promotes HvMADS1 expression, potentially explaining the glume to lemma 213 

transformations in Zeo1.b. 214 

Other potential HvAP2 targets include HvMADS2 (HORVU3Hr1G091000.8) and HvMADS4 215 

(HORVU1Hr1G063620.2), whose orthologue, the ‘B’ class PISTILLATA (PI) gene, is a direct negative 216 

target of Arabidopsis AtAP2 (Krogan et al., 2012). HvMADS2 expression increased in gigas1.a at 217 

WD5, and HvMADS4 expression showed no HvAP2-dependent differences (Fig S8).  We also 218 

examined the expression of HvMADS3 (HORVU3Hr1G026650.1) and HvMADS58 219 



(HORVU1Hr1G029220.1),  two AGAMOUS-like genes whose orthologues in Arabidopsis are direct 220 

targets of AtAP2 (Zhao et al., 2007; Yant et al., 2010; Ripoll et al., 2011). HvMADS3 was lower in 221 

Zeo1.b at WD5 and HvMADS58 expression was lower in gigas1.a at WD4 compared to Bowman and 222 

Zeo1.b (Fig. 3D; Fig. S8). Reduced HvMADS58 expression could contribute to gigas1.a lodicule and 223 

pistil phenotypes, since OsMADS58 is essential for carpel and lodicule identity in rice (Yamaguchi et 224 

al., 2006; Dreni et al., 2011) while AtSHP1 orthologue promotes stigmatic papillae formation in 225 

Arabidopsis (Colombo et al., 2010). Altogether, our comparative gene expression analyses link 226 

HvAP2-dependent changes in floral organ development with and specific MADS-box gene mis-227 

expression. Whether this relationship is direct is unknown. 228 

 229 

HvAP2 promotes maternal tissue degeneration during caryopsis development  230 

To learn when HvAP2 alters grain parameters, we tracked changes in pre-anthesis ovary and 231 

caryopsis dimensions at days post anthesis (DPA). Depth was measured along the dorsal:ventral axis. 232 

Compared to Bowman, gigas1.a ovaries were 12% longer, 20% wider, 24% deeper (all p<0.001) and 233 

70% lighter (p<0.01; Fig 4A,B; Fig S9; Table S6). Post-fertilisation, gigas1.a caryopses became 36% 234 

and 55% longer at 10 and 30 DPA respectively (p<0.001), and remained narrower during most 235 

growth (p<0.05; Fig 4A,B; Table S6). Caryopses in gigas1.a were 9–16% shallower 15–25 DPA 236 

(p<0.05) and 10-50% lighter (p<0.01) compared to Bowman until final stages (Fig S9; Table S6). Pre-237 

anthesis, Zeo1.b ovaries were 16% deeper (p<0.001), 6% shorter (p<0.001) and 36% lighter (p<0.01) 238 

and following fertilisation, Zeo1.b caryopses 5 DPA were 30% shorter (p<0.05) and afterwards 239 

showed no clear length or depth trend but became progressively heavier (Fig 4A; Table S6).  Zeo1.b 240 

caryopses were 20% wider (p<0.001), and 10% heavier (p<0.01) than Bowman by 30 DPA (Table S6). 241 

Overall, HvAP2 activity positively correlated with wider and heavier grain during grain fill while loss 242 

of HvAP2 function lengthened and narrowed grain. 243 



We examined transverse sections of developing caryopses to explore potential causes of HvAP2-244 

dependent differences. Bowman caryopses showed a dumbbell-shaped embryo sac with dorsal 245 

indentations at 5 DPA, while the gigas1.a embryo sac was rectangular-shaped and the Zeo1.b 246 

embryo uniformly oval (Fig. 4C). Variation in embryo sac shape correlated with differences in the 247 

lateral and dorsal mesocarp provascular strands, structures that supply nutrients to the pericarp 248 

before degenerating (Fisher, 1990). Caryopses from gigas1.a displayed provascular strands, Bowman 249 

showed remnants of provascular strands and Zeo1.b lacked any trace of provascular strands (Fig. 250 

4C), suggesting that HvAP2 accelerates provascular degeneration, potentially influencing the shape 251 

of the expanding embryo sac. The nucellar projection, a specialised structure that differentiates from 252 

the nucellus, also differed amongst alleles. Flanked by a pigment strand and vascular bundle, the 253 

nucellar projection transports nutrients from maternal to filial tissues before undergoing 254 

programmed cell death (PCD), leaving a large cavity (Radchuk et al., 2006; Thiel et al., 2008; 255 

Dominguez & Cejudo, 2014; Lu & Magnani, 2018). At 10 DPA, nucellar projection degeneration was 256 

least noticeable in gigas1.a while Zeo1.b showed more break-down compared to Bowman, with 257 

corresponding differences in cavity size (Fig. 4D). Thus, HvAP2 may promote break-down of nucellar 258 

tissues. We also detected differences in the integuments across HvAP2 alleles. Grass ovules have 259 

outer and inner integuments, and the outer integument degrading rapidly following fertilisation 260 

(Kellogg, 2015). At 5 DPA, Bowman and Zeo1.b showed the two-layered inner integument while 261 

gigas1.a had inner integuments plus multiple layers of enlarged integument-like cells which may be 262 

a non-degraded outer integument (Fig. 4E). By 10 DPA, the inner integuments of Bowman and 263 

Zeo1.b were crushed, along with most of the nucellar epidermis, to form the seed coat (Fig. 4F). At 264 

10 DPA, the inner integuments and nucellar epidermis of gigas1.a also compressed into the seed 265 

coat, but the extra integument-like layers persisted, separated from the pericarp by a prominent 266 

cuticle (Fig. 4F). Altogether, loss of HvAP2 function inhibited or profoundly delayed the degradation 267 

of multiple maternal tissues while gain of HvAP2 function promoted the degradation of multiple 268 



maternal tissues. We propose that HvAP2 is a critical negative regulator of maternal tissue growth 269 

and survival during grain development.  270 

We asked whether HvAP2 expression correlated with its proposed roles in the grain. HvAP2 271 

transcripts localise to lodicule primordia as well as the lemma and glume (Nair et al., 2010; Anwar et 272 

al., 2018) but the HvAP2 expression pattern in grain has yet to be reported. We detected HvAP2 273 

mRNA in the lemma and pre-anthesis ovary, and concentrated expression in the vascular bundle, 274 

pigment strand and nucellar projection at 2 DPA (Fig. 4G; Fig. S10). By 5 and 10 DPA, HvAP2 275 

transcripts persisted in remaining nucellar tissues, seed coat and pericarp (Fig. 4G). Taken together, 276 

HvAP2 transcripts accumulate in tissues altered due to HvAP2 allelic variation.  277 

We used qPCR to examine expression levels of potential downstream genes in the developing grain. 278 

We were particularly interested in HvMADS29 (HORVU6Hr1G032220), a gene almost exclusively 279 

expressed in young grain (Fig. S7) and the orthologue of a B-sister gene (the closest relatives of B-280 

class genes) in rice called OsMADS29. Down-regulation of OsMADS29 in rice inhibits degradation of 281 

all maternal tissues, including the nucellus and nucellar projection, leading to shrunken seeds (Yin & 282 

Xue, 2012; Yang et al., 2012). HvMADS29 expression was reduced to 37% of the Bowman level in 283 

gigas1.a grain at 5 DPA (Fig. 4H). Although the ‘C’ class HvMADS3 and HvMADS58 are also highly 284 

expressed in grain (Fig. S7, S11), neither were differentially regulated in gigas1.a 5 DPA grain (Fig. 285 

S12). Jasmonate (JA) positively regulates nucellus programmed cell death (PCD( in tomato (Schubert 286 

et al., 2019) and is associated with PCD in barley grain (Sreenivasulu et al., 2006). Our previous work 287 

suggested that HvAP2 promotes JA-associated gene expression to suppress growth (Patil et al., 288 

2019). Here, we show that transcripts encoding two jasmonate-induced proteins, JIP23 and JIP60, 289 

expressed during barley grain development (Fig. S7, S11), were strongly downregulated in gigas1.a 290 

caryopses at 5DPA compared to Bowman (Fig. 4H). In sum, lower levels of HvMADS29 and JIP 291 

transcripts agree with the reduced maternal PCD in gigas1.a and consistent with being putative 292 

targets of direct or indirect regulation by HvAP2. 293 



 294 

HvMADS29 contributes to the formation of nucellus projection and vascular bundle  295 

To assess the relationship between HvAP2 and HvMADS29 in greater detail, we addressed the role of 296 

HvMADS29 in caryopsis development. RNA-seq data from unfertilised pistils and developing grain 297 

staged by days after pollination (DAP) (Aubert et al., 2018) indicated that HvMADS29 expression 298 

increases during pre-anthesis stages before peaking around 9 DAP and subsequently decreasing 299 

during grain development (Fig 5A). Prior to fertilisation, HvMADS29 expression overlaps with HvAP2 300 

(in addition to HvMADS1, HvMADS3 and HvMADS58), although HvMADS29 is subsequently 301 

maintained during grain development when HvAP2 levels decrease (Fig S11). In situ hybridisation 302 

showed HvMADS29 expression in the developing ovule, predominantly in the nucellus, integuments 303 

and embryo sac (Fig S11), in agreement with previous microarrays showing HvMADS29 expression in 304 

maternal tissues (Thiel et al., 2008). After fertilisation, HvMADS29 showed weak expression in the 305 

integuments and strong signals in the vascular bundles overlying the nucellar projection and in 306 

peripheral vascular bundles (Fig. 5B), overlapping with the pattern observed for HvAP2. 307 

To directly demonstrate the importance of HvMADS29 for caryopsis development, we edited the 308 

HvMADS29 gene using the CRISPR/Cas9 system (Ma et al., 2015). Screening of 25 T0 transformants 309 

in Golden Promise revealed five lines (hvmads29) with a one bp deletion in HvMADS29, leading to a 310 

frame shift, early stop codon, and predicted complete loss of function (Fig. 5C). Caryopses of 311 

hvmads29 were malformed and shrivelled compared to Golden Promise with differences in ovule 312 

development already evident at anthesis (Fig. 5D, Fig S12). In particular, the two layers of inner 313 

integument cells showed similar morphology to Golden Promise but with an overall misshapen 314 

structure, possibly due to reduced nucellus growth. In addition, the outer integument cells in 315 

hvmads29 were abnormally enlarged and occasionally exhibited three cell layers rather than the two 316 

cell layers detected in Golden Promise (Fig S13). Defects in caryopsis development were particularly 317 

obvious at 5 DPA, when hvmads29 grain appeared thinner and unfilled, suggesting that defective 318 



transport tissues including the nucellar projection and vascular bundle (Fig. 5E). Transverse sections 319 

of developing caryopses revealed that 5 DPA Golden Promise contained a well-developed nucellar 320 

projection, and a vascular bundle from the ventral pericarp joining the nucellar projection (Fig. 5F). 321 

Notably, the phloem cells intensely stained by calcofluor white highlighted the vascular bundle in a 322 

semi-circle pattern. By 10 DPA, the nucellar projection increased in size and differentiated various 323 

cell types. In hvmads29, the nucellus failed to degrade, the nucellar projection did not differentiate, 324 

no transport tissue was formed and the vascular bundle was shrunken with fewer phloem fibres, 325 

compared with wild type (Fig. 5F). Importantly, hvmads29 mutants failed to produce endosperm or 326 

viable seed. Collectively, the putative hvmads29-2 null allele shows several tissue-specific defects 327 

similar to gigas1.a in terms of defective integument development and an under-developed nucellar 328 

projection. Along with the qPCR, RNAseq and in situ data, this provides additional evidence that 329 

HvAP2 and HvMADS29 both influence the development and differentiation of transport tissues, 330 

particularly in the nucellar projection. We speculate that HvAP2 may contribute to upstream control 331 

of HvMADS29 expression, but this relationship remains to be tested. 332 

HvAP2 interacts with HvBOP2 to control lodicule identity and grain length 333 

While HvMADS29 and HvMADS1 may mediate some HvAP2 functions, we know little other factors 334 

interacting with HvAP2 beyond miR172. Deletion of the transcription factor-encoding gene 335 

HvBLADE-ON-PETIOLE2 (HvBOP2) in laxatum.a (lax.a, BW419) causes lax spikes, elongated, narrow 336 

paleas and lemmas, an impaired lemma-awn boundary, skinny grain, and transforms lodicules into 337 

stamens, leading to open-flowering (Jost et al., 2016;Fig. 6A–I). We noted that lax.a also develops 338 

needle-like glumes, elongated, narrow ovaries and shorter lemma awns (p<0.04; Fig. 6C–D; Fig. S13). 339 

Since lax.a and gigas1.a share some phenotypes, we speculated that HvAP2 and HvBOP2 may 340 

interact. To explore this hypothesis, we generated gigas1.a lax.a and Zeo1.b lax.a double mutants. 341 

Most double mutant phenotypes suggested independent, additive roles of HvAP2 and HvBOP2. The 342 

gigas1.a lax.a double mutant displayed more extreme open-flowering than either parent, needle-343 



like lax.a glumes equivalent in length to gigas1.a (p=0.86), lemma length equivalent to lax.a (p=0.31) 344 

and lemma awns shorter than either parent (p<0.02), and with a more impaired awn-lemma 345 

boundary, as well as narrow ovaries lacking stigmatic papillae and extremely narrow grain (p≤0.001; 346 

Fig. 6A-I; Fig S13, S14; Table S7). Zeo1.b lax.a lemmas had shorter awns (p≤0.001) similar to Zeo1.b, 347 

and defective awn-lemma boundaries similar to lax.a. (Fig. 6E,F; Fig. S13; Table S7). The Zeo1.b lax.a 348 

mutant also retained Zeo1.b glume to lemma transformation but these organs were extremely thin 349 

with longer awns, indicating that loss of HvBOP2 influences lemma morphology regardless of 350 

position, (p≤0.001; Fig. 6C,D; Table S7). Grain of gigas1.a lax.a showed the same narrow grain as 351 

lax.a (p=0.26; Fig 6I; Fig S14). Interestingly, the Zeo1.b lax.a mutant showed both lax.a elongated 352 

lemmas while also displaying Zeo1.b shortened grain (p<0.05; Fig 6I,J; Fig S14), suggesting that these 353 

two traits can be uncoupled. However, Zeo1.b lax.a double mutants also showed striking epistasis in 354 

other features. Double mutants showed Zeo1.b-like spike density (p≤0.001) and a recovery of 355 

lodicule identity with Zeo1.b-like morphology (Fig. 6A,B,G,H; Fig. S14, S15, Table S6), while Zeo1.b/+ 356 

lax.a plants showed lodicule/stamen mosaic-like structures (Fig. S15). Thus, we propose that HvAP2 357 

may act downstream of HvBOP2 in the control of spike density, grain length and lodicule identity. To 358 

explore the molecular nature of this interaction, we analysed HvAP2 and Hvmir172 expression in 359 

Bowman and lax.a mutant plants. We detected no difference in HvAP2 mRNA levels in entire 360 

seedlings at two weeks after planting or developing spikes; however, However, we detected slightly 361 

elevated levels of Hvmir172 in lax.a as well as lowered levels in Zeo1.b, suggesting that HvAP2 362 

suppresses levels of HvmiR172 and that HvBOP2 may enhance HvmiR172 expression (Fig S16). 363 

 364 

DISCUSSION  365 

Cereal yield depends upon multiple factors including floret number, coordinated growth of floral 366 

organs, fertilisation and relocation of maternal nutrients to the developing seed (Brinton et al., 2017; 367 

Wilkinson et al., 2019; Sakuma & Schnurbusch, 2020; Ren et al., 2020; Paul et al., 2020). Targeted 368 



modification of individual factors is challenging because they typically have both direct and indirect 369 

impacts on grain size, number and quality (Wang et al., 2012; Xie et al., 2015; Si et al., 2016; Bull et 370 

al., 2017; Wilkinson et al., 2018; Li et al., 2019). One way to dissect pleiotropic effects is to 371 

characterise key regulatory modules and genes that contribute to tissue-specificity. Here we show 372 

via analysis of the gigas1.a, hvap2 and Zeo1.b mutants that HvAP2 is a major regulator of barley 373 

reproductive development that influences tissue-specific factors in the flower and seed (Fig 6).  374 

 375 

HvAP2 promotes and accelerates the transition to floret identity 376 

Effects on the perianth from gain and loss of HvAP2 function alleles (Fig1,2) and restored lodicule 377 

identity in Zeo1.b lax.a (Fig 6) show that HvAP2 promotes perianth organ identity and defines the 378 

outer perianth boundary, suggesting that HvAP2 participates in the commitment to floret fate. 379 

Barley lacking HvmiR172 expression and wheat with strong overexpression of TaAP2L5 shows a 380 

complete conversion of glumes to florets (Brown & Bregitzer, 2011; Debernardi et al., 2017; 381 

Greenwood et al., 2017; Song et al., 2019). Since homeotic lemmas in Zeo1.b did not enclose floret 382 

organs, we suggest that gain of HvAP2 function in Zeo1.b is insufficient for ectopic florets and 383 

instead gives rise to ‘sterile lemmas’ - intermediate organs normally found in cultivated rice, and in 384 

wheat with moderate overexpression of TaAP2L5 (Debernardi et al., 2017; Greenwood et al., 2017; 385 

Song et al., 2019). Our interpretation supports previous suggestions that glumes, sterile lemmas and 386 

lemmas develop on an ontogenetic gradient which determines their axillary meristem’s fate, from 387 

glumes subtending spikelet meristems, to empty sterile lemmas, and finally to fertile lemmas 388 

subtending floret meristems (Malcomber et al., 2006; Lee et al., 2007; Chuck et al., 2008; Lee & An, 389 

2012; Song et al., 2019; Debernardi et al., 2020). We propose that the gradient shifts towards fertile 390 

lemma identity with increasing AP2L function, making AP2L genes master regulators of floret 391 

establishment in grasses.  392 



Control of floral fate by AP2Ls likely involves the LHS1-like subclade of the ‘E’ class SEPALLATA genes 393 

considered central for the evolution of the floret-bearing grass spikelet (Malcomber & Kellogg, 394 

2004). The rice APL2s SNB and IDS1 promote the expression of the LHS1-like OsMADS1 which 395 

confers perianth organ identity and accelerates the transition from spikelet to floret meristem fate 396 

(Jeon et al., 2000; Prasad et al., 2001, 2005; Ohmori et al., 2009; Lee & An, 2012; Khanday et al., 397 

2013; Dai et al., 2016). HvAP2-dependent changes in HvMADS1 expression (Fig 3D,F; Fig S5B), 398 

suggest that HvMADS1 also promotes perianth and floret identity in barley. Elevated JA-signalling in 399 

Zeo1.b (Patil et al., 2019) may also contribute to HvAP2 regulation of HvMADS1 since JA-signalling 400 

upregulates OsMADS1 expression in rice (You et al., 2019). OsMADS1 inhibits miR172 accumulation 401 

and possibly directly regulates AP2Ls (Khanday et al., 2016; Dai et al., 2016). We propose that 402 

HvMADS1 and HvAP2 co-expression (Digel et al., 2015) and our data showing HvAP2-responsive 403 

HvMADS1 expression, reflect positive feedback which may coordinate identity switches and 404 

hormone signalling to ensure a sharp transition from spikelet to floret fate. However, since 405 

substantial HvMADS1 levels persist in gigas1.a (Fig. 3D), factors besides HvAP2 must also upregulate 406 

HvMADS1 expression. 407 

 408 

HvAP2 promotes lodicule identity 409 

AP2 was first described in Arabidopsis as a class ‘A’ gene conferring sepal and petal identity 410 

(Bowman et al., 1989, 1991; Kunst et al., 1989; Drews et al., 1991). Weak ap2 alleles develop 411 

stamenoid  petals and stronger ap2 alleles show carpel-like transformation in the sepal and petal 412 

whorl, phenotypes associated with  loss of ‘B’ and ‘E’ class function and expanded ‘C’ class function 413 

(Kunst et al., 1989; Drews et al., 1991; Jack et al., 1992; Modrusan et al., 1994; Goto & Meyerowitz, 414 

1994). In wheat, loss of both TaAPL2 and TaAPL5 function leads to carpel-like structures on lodicules, 415 

consistent with increased ‘C’ class MADS3/ MADS58 (TaAG1/ TaAG2) expression and reduced ‘B’ 416 

class gene expression at WD3.5–WD4.25 stages (Debernardi et al., 2020). We did not observe 417 



carpelloidy in gigas1.a or hvap2-2 lodicules, which instead showed bract and filament-like 418 

transformations (Fig 1J-L; Fig. 2F–H). This may reflect reduced HvAP2 activation of HvMADS1, as 419 

SNB/OsIDS1-dependent expression of OsMADS1 is important for lodicule formation development 420 

(Jeon et al., 2000; Prasad et al., 2001, 2005; Lee & An, 2012), rather than HvAP2 regulation of B or C 421 

class genes. However, Zeo1.b WD5.5 spikelets showed reduced HvMADS3 mRNA abundance (Fig S8). 422 

In rice, ectopic expression of OsMADS3 converted lodicules to stamens (Kyozuka & Shimamoto, 423 

2002), an identical phenotype to lax.a (Jost et al., 2016; Fig 6G). Thus, Zeo1.b dependent reductions 424 

in HvMADS3 expression may help suppress homeotic stamen identity in Zeo1.b lax.a lodicules (Fig 425 

6G). Thus, we propose that HvAP2 may control lodicule differentiation through regulating both ‘C’ 426 

and ‘E’ class genes. Nonetheless, lodicules in gigas1.a or hvap2-2 usually retained lodicule features, 427 

so other genes must confer lodicule identity either along with HvAP2 or when HvAP2 function is 428 

impaired, consistent with redundant control of lodicule identity amongst wheat AP2Ls (Debernardi 429 

et al., 2020). In Arabidopsis, AtBOP promotes AtAP2 function via the miR172-AP2 network (Khan et 430 

al., 2015). While we did not detect changes in HvAP2 expression in lax.a, we speculate HvBOP2 could 431 

regulate HvAP2 at a protein level or that HvBOP2 may promote the function of other miR172-432 

regulated HvAP2L genes to regulate lodicule identity. 433 

 434 

HvAP2 elongates hulls and caryopses 435 

Hulls are proposed to physically limit grain size in rice (Li & Li, 2016; Li et al., 2019) and multiple rice 436 

grain size QTL control hull cell number and/or expansion (Song et al. 2007; Wang et al. 2012; Zhang 437 

et al. 2012; Si et al. 2016; Ren et al. 2016, 2018; Lyu et al. 2020; Ruan et al. 2020). Here, we found 438 

that hulls and grain in gigas1.a and hvap2-2 equally elongated (Fig 1C,D,L-N; Fig 2D–E; Fig S4), 439 

suggesting that HvAP2 limits both hull and grain length. Interestingly, the mechanism differs 440 

between these tissues, with HvAP2-dependent repression of cell expansion underlying changes in 441 

lemma length, while HvAP2 is required to suppress both cell length and number in the pericarp. 442 



Caryopses in gigas1.a extended longer than Bowman at 10 DPA, corresponding with the timing of 443 

pericarp cell expansion in barley (Radchuk et al., 2011). As pericarp cell number and length were 444 

increased in gigas1.a, HvAP2 could limit this final cell longitudinal expansion event as well as earlier 445 

proliferation, similar to its role in the internode (Patil et al., 2019). HvAP2’s role in ovary wall cell 446 

length control appears conserved in grasses, where the rice SNB shortens both hull cell length and 447 

pericarp epidermis cell length (Jiang et al., 2019; Ma et al., 2019), as well as in Arabidopsis where 448 

miR172-resistant AP2 represses cell expansion in the replum valves (Ripoll et al., 2015). However, 449 

while multiple genes, including HvAP2, may modulate grain length by influencing hull length, how 450 

the hull mechanistically limits caryopsis growth is largely unexplained. For instance, do changes in 451 

grain length occur in direct response to the hull, such as surface-surface contact and/or mechanical 452 

pressure? Uncoupling of hull from grain length in the double mutant Zeo1.b lax.a mutant suggests 453 

that HvAP2 and HvBOP2 may be key nodes in this communication. Learning the identity of putative 454 

hull “signals” and how they might synchronise caryopsis development with hull proportions would 455 

be a major advance in our understanding of the control of cereal grain size. 456 

 457 

HvAP2 and maternal degradation transitions 458 

While increased grain length can lead to heavier grain (Zhang et al., 2012; Brinton et al., 2017), 459 

thousand grain weight increased only by 7% in gigas1.a since its grain in narrower and shallower (Fig 460 

1; Fig S2; Fig 4; Fig S8). Our data links HvAP2-dependent variation in grain width and depth to an 461 

altered balance between maternal versus filial growth and survival. Most strikingly, multiple 462 

maternal tissues in gigas1.a show defective and/or delayed degradation (Fig 4) which may reduce 463 

remobilisation of nutrients and/or space to enlarge, both considered critical for endosperm growth 464 

(Radchuk et al., 2006; Thiel et al., 2008; Dominguez & Cejudo, 2014; Wilkinson et al., 2019). 465 

Impaired maternal elimination correlates with defective endosperm development across plants 466 

(Radchuk et al., 2011; Yin & Xue, 2012; Dominguez & Cejudo, 2014; Xu et al., 2016), with nucellar 467 



degradation playing a major role in promoting endosperm growth (Lu & Magnani, 2018). We show 468 

here that HvMADS29 expression is significantly reduced in gigas1.a (Fig 4H) and demonstrate for the 469 

first time in temperate cereals that MADS29 function is essential for nucellar differentiation and 470 

degradation, control of integument growth and endosperm development. We propose that HvAP2 471 

controls grain width and weight in part by influencing the rate of maternal degradation via MADS29-472 

driven processes, suggesting that coordination of filial endosperm expansion with the maternal 473 

tissue degradation and differentiation is at least partially under phase change miR172/AP2 control. 474 

In rice and Arabidopsis, the B-sister genes OsMADS29 and TRANSPARENT TESTA16 (TT16), 475 

respectively, promote the degeneration of nucellar and other maternal tissues in response to auxin 476 

produced from the endosperm following fertilisation (Yin & Xue, 2012; Yang et al., 2012; Nayar et al., 477 

2013; Xu et al., 2016; Lu & Magnani, 2018). Whether HvAP2 directly regulates HvMADS29 and/or 478 

other activators of nucellar elimination in response to filial signals remains a pressing question.  479 

In Arabidopsis, signals from the endosperm transform integuments into the seed coat (Figueiredo et 480 

al., 2016), a process sustained by mechanical pressure from the expanding endosperm (Creff et al., 481 

2015). This in turn limits endosperm growth (Garcia et al., 2005), highlighting a developmental 482 

interdependency which may underlie ap2 mutant seed phenotypes. AtAP2 appears necessary to 483 

restrict integument cell expansion, promote seed coat epidermal differentiation, accelerate 484 

endosperm cellularisation and constrain endosperm cell expansion, roles linked to limits on seed 485 

weight and size, embryo size, storage protein accumulation and sugar metabolism (Jofuku et al., 486 

1994; Ohto et al., 2005, 2009). Our data suggest that HvAP2 limits integument number in barley, 487 

potentially by promoting the degradation of the outer integument, showcasing a role for an AP2L 488 

gene in cereal integument development, a role which may relate to regulation of HvMADS29, since 489 

anthesis-stage hvmads29 ovules showed abnormally enlarged cells in disorganised integument 490 

layers. In Arabidopsis, TT16 coordinates communication between the integuments and endosperm 491 

(Xu et al., 2016), promotes inner integument flavonoid deposition and differentiation (Nesi et al., 492 

2002) and controls outer integument thickness (Fiume et al., 2017) while a recently duplicated B-493 



sister gene, GORDITA (GOA) contributes to outer integument differentiation (Prasad et al., 2010). 494 

Although HvMADS29 is clearly not relevant to all functions of HvAP2, tissue-specific regulation of 495 

one or more of the three barley B-sister genes (Yang et al., 2012) by HvAP2 may explain the darker 496 

seeds and persistence of the outer integuments in gigas1.a, in addition to alterations in the rate of 497 

nucellar degradation. Increased proanthocyanidins in the seed coat of barley are associated with 498 

increased dormancy (Himi et al., 2012). We observed that germination of gigas1.a grain was less 499 

efficient compared to wild type, suggesting that HvAP2 may influence seed germination through its 500 

effects on the seed coat. 501 

 502 

Spikelet and grain traits and domestication 503 

Changes in lemma and palea dimensions control the overall shape of the floret, influencing final 504 

grain size while lodicule size and swelling leads to open flowering. Similar to gigas1.a, wild barley 505 

(Hordeum spontaneum) shows elongated lance-shaped hulls and open flowering compared to the 506 

wedge-shaped form of cultivated barley (Abdel-Ghani et al., 2004; Clayton, 2006). While wild barley 507 

populations show large variation in seed size (Chen et al., 2004), cultivated barley grain tends to be 508 

shorter, wider and heavier (Fuller, 2007; Hughes et al., 2019) with more uniform germination (Fuller 509 

& Allaby, 2018). Our data suggests that HvAP2 controls multiple traits which differ between wild and 510 

cultivated barley. In wheat and rice, selection of allelic variation in AP2L genes was associated with 511 

improved grain traits (Xie et al., 2018; Jiang et al., 2019). It is tempting to speculate that changes in 512 

HvAP2 function and/or HvMADS regulation contributed to selection for changes in spikelet and grain 513 

during barley cultivation.   514 

 515 

MATERIALS AND METHODS 516 

Plant material, growth conditions and BWNIL genotyping 517 



Parent cultivars and mutant germplasm are listed in Table S1. Plants were grown in the glasshouse 518 

under 16 hours light and day/night temperatures of 18/15°C. Plants were grown in plastic pots filled 519 

with universal compost (1200l of peat, 100l of sand, 2.5kg of magnesium limestone, 2.5kg of calcium 520 

limestone, 1.5kg of Osmocote® Start (11N-4.8P-14.1K+1.2Mg+TE), 3.5kg of Osmocote® Exact 521 

Standard 3-4M (16N-3.9P-10K+1.2Mg+TE), 0.5kg of Celcote, 100l of Perlite, 390g of Intercept 522 

insecticide (active ingredient: imidacloprid). Golden Promise and hvmads29 plants were grown in 523 

controlled environment reach-in chambers in The Plant Accelerator, the University of Adelaide, 524 

under the same conditions as plant materials grown in the UK. gDNA from the gigas1.a (BW381), 525 

Bowman and Golden Melon were genotyped using the Barley 50K SNP chip (Bayer et al., 2017).  526 

 527 

Phenotyping, microscopy and in situ hybridisation 528 

Whole plant phenotypic measurements were taken from mature plants. Spikelet length was 529 

measured from the base of the spikelet to the lemma-awn boundary on the 4th spikelet from the 530 

base of the spike. Awns were measured from awn tip to the top of the glume or lemma body. Spike 531 

length was the length from the collar node to the top of the rachis (spike axis). Spikelet width was 532 

measured at the widest part of the lemma. Culm height was measured from the top of the soil to the 533 

collar at the base of the spike. Mature and developing Bowman, Zeo1.b and gigas1.a spikes were 534 

harvested at 21, 23, 25, 30 and 35 days after germination, their length recorded and stages assigned 535 

based on (Waddington et al., 1983); Table S7). Scanning electron microscopy was performed as 536 

described (Houston et al., 2012). Mature grain width and length were analysed using MARVIN-537 

Universal (GTA Sensorik GmbH). Developing caryopses (n=5 independent replicate grains per 538 

genotype) were sampled on their respective DPA. For Golden Promise and hvmads29 samples, 539 

caryopses were collected at anthesis, 5 and 10 DPA, photographed by stereo microscope (Leica, MZ 540 

FLIII) or fixed in FAA solution, dehydrated in an ethanol series and embedded in Technovit 7100 resin 541 

(Kulzer Technique). Transverse 1.5 μm sections were stained with Calcofluor White (Sigma-Aldrich) 542 



or 1% toluidine blue. Sections were photographed using a Zeiss AxioImager M2, for cell wall 543 

(excitation, 335–383 nm; emission, 420–470 nm) and auto fluorescence (excitation, 538–562 nm; 544 

emission, 570–640 nm).  545 

HvAP2 in situ hybridization was performed as described previously (Hands et al., 2012) and 546 

HvMADS29 in situ hybridisation was performed automatically using an InsituPro VSi robot (Intavis), 547 

following a standard protocol (Javelle et al., 2011). 2225bp and 319bp cDNA fragments were 548 

amplified from Bw cDNA using primers fused to the T7 promoter as a template for HvAP2 and 549 

HvMADS1 in situ probes, respectively (Table S9). Digoxigenin-labeled antisense and sense probes 550 

were transcribed using T7 polymerase (ThermoFisher) according to the manufacturer’s instructions.  551 

 552 

CRISPR/Cas9 vector cloning  553 

CRISPR/Cas9 technology was used to generate mutations in HvAP2 at the University of Dundee 554 

(Garcia-Gimenez et al., 2020). Two guide RNAs (gRNAs) were designed (Table S9) using the Broad 555 

Institute sgRNA Designer and the Zhao Bioinformatics Laboratory pssRNAit (Noble Foundation). Each 556 

gRNA was cloned into pC95-gRNA entry vector downstream of the rice small nuclear RNA (snRNA) 557 

U6 promoter (OsU6p) by Gibson Assembly®. Each sgRNA cassette was then released and inserted 558 

into pBract214m-bcoCas9-HSPT expression vector which contains a barley codon optimised Cas9 559 

(bcoCas9) under the control of maize ubiquitin promoter and Arabidopsis heat shock protein 18.2 560 

terminator. The resultant construct was transformed by electroporation into Agrobacterium strain 561 

AGL1 containing replication helper pSoup. Transformed Agrobacterium clones from each CRISPR 562 

construct were combined and co-transformed into Golden Promise immature embryos (Bartlett et 563 

al., 2008) in the FUNGEN facility at The James Hutton Institute, Dundee, UK. Transgenic plants 564 

containing CRISPR constructs were regenerated under hygromycin selection. Of the 174 T0 plants, 565 

143 were transformed with a single gRNA from 35 separate calli and 31 plants transformed with the 566 

two gRNAs from 12 different calli. No mutations were found in the single gRNA transformation lines 567 



and one was detected in the double transformation lines. We examined 16 individuals from 18 T1 568 

lines (originating from 10 different T0 calli) which still contained the Cas9 gene. We detected three 569 

homozygous mutations in these T1, including a 39bp deletion (hvap2-1) in nine different lines from 570 

three different calli and a 40bp deletion (hvap2-2) in four lines from two different calli. In the T2 571 

generation, following segregation of Cas9, hvap2-1, hvap2-2 and Golden Promise were phenotyped 572 

(n = 8 per genotype). 573 

We used a monocot-optimised CRISPR/Cas9 system (Ma et al., 2015) to create the hvmads29 mutant 574 

at the University of Adelaide. The selected target of HvMADS29 was sequenced before the sgRNA 575 

expression cassette was amplified from vector pYLsgRNA-OsU6a and cloned into a binary vector 576 

pYLCRISPR/Cas9Pubi-H using BsaI sites as described (Ma et al., 2015). The CRISPR construct was 577 

transformed into Golden Promise by A. tumefaciens AGL1 as previously described (Harwood et al., 578 

2009). A total of 25 T0 transformants were analysed in greater detail. 579 

 580 

CRISPR/Cas9 screening and genotyping 581 

For HvAP2 CRISPR lines, genotyping conditions are described in Methods S1 and primers listed in 582 

Table S10. Genomic DNA (gDNA) was isolated from young leaf tissue using the Qiagen DNA easy 583 

plant mini kit. Cas9 was detected using Cas9 primers. A region spanning 1kb around the gRNA target 584 

region was amplified using external primers followed by a nested PCR using FAM-labelled internal 585 

primers. This product was analysed using a capillary sequencer, and genotypes were determined 586 

using GeneMapper® Software 5. Samples predicted to contain insertions and/or deletions (indels) 587 

were re-amplified without FAM-labelling and sequenced. T0 and T1 plants from HvMADS29 CRISPR 588 

transformation events were genotyped using a Phire Plant Direct PCR Kit (Thermo Fisher Scientific) 589 

to amplify a 588bp fragment that was directly sequenced by Sanger sequencing (AGRF, Australia).  590 

 591 



qRT-PCR 592 

RNA extraction and qRT-PCR were performed as in (Patil et al., 2019) with the following 593 

modifications. RNA was isolated from entire spikes harvested at 23 days after sowing (DAS), 25 DAS, 594 

30 DAS, 35 DAS and 40 DAS. cDNA was synthesised using ProtoScriptII kit (NEB) using random 595 

primers. The qPCR was normalised using RQ values calculated by the Pfaffl method 2^ (-ddCT) (Pfaffl, 596 

2001). One replicate of Bowman at the earliest timepoint was normalised to 1.0 and each other 597 

sample replicates normalised to this value. We used ACTIN2 (HvACT2) and PROTODERMAL FACTOR7 598 

(HvPDF7), as endogenous controls as in Patil et al (2019). SYBR Green Power Up (Thermofisher) kit 599 

was used to detect HvJIP23, HvJIP60, HvmiR172 and HvsnoR101 transcripts. Primers for qPCR are 600 

listed in Table S11. 601 

 602 

Double mutant generation 603 

Double mutants between gigas1.a or Zeo1.b with lax.a were generated by crossing. Double Zeo1.b 604 

lax.a and Zeo1.b/ + heterozygote lax.a mutants were isolated by screening a segregating 605 

Zeo1.b/lax.a F2 population which showed the expected ratio of double homozygotes of 1:16 (Table 606 

S12). An F3 population from a Zeo1.b/lax.a F2 individual was grown and segregated as expected. The 607 

gigas1.a lax.a F2 population was screened by genotyping with CAPS markers to isolate double 608 

mutants (Methods S1, Table S10).  609 

 610 

Statistical analysis 611 

Data were modelled in R 3.5.1 using an analysis of variance. Models were checked visually for 612 

normality in variance and any non-significant terms dropped from the model. Where only two 613 

genotypes were compared, and a two-tailed un-paired t-test was performed. Multiple genotypes 614 



were compared using a Tukey honestly significant difference (HSD) test on the modelled data. Grain 615 

dimensions over time were analysed by ANOVA followed by a Dunn’s post-hoc test. 616 
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 916 

FIGURE LEGENDS  917 

Fig. 1. gigas1.a mutants show altered reproductive organ and grain morphology. Bowman and 918 

gigas1.a: (A) spikes; (B) spike density (nodes/ cm); (C) spikelets (white arrows show distal end of the 919 

lemma and red arrows denote the awn-lemma boundary); (D) lemma length (mm); (E) Length of awn 920 

length (cm) on lemmas (left) and glumes (right); (F) lemmas; (G) glumes; (H) lodicules. (I) Scanning 921 

electron micrographs (SEMs) of Bowman and gigas1.a lodicules. (J) SEM showing ectopic hairs on 922 

gigas1.a lodicules (arrow). (K) SEMs of Bowman and gigas1.a stigmas. Arrow points to stigma hairs 923 

on Bowman. Right panel shows a magnification of a single gigas1.a stigma lacking hairs. (L-M) 924 

Bowman and gigas1.a (L) hull covered and (M) hull removed grains. (N) Violin plots of Bowman 925 

(n=97), gigas1.a (n=69) and Zeo1.b (n=72) grains show the probability distribution of grain length 926 

(mm). (O) Zeo1.b spikelets show glume to lemma conversion (white arrows indicate glume position 927 



organ). Box plots (B,D,E) show 25th and 75th percentile, red line show the median, whiskers show 928 

1.5* the interquartile range. Scale bars: 2cm (A,F); 2mm (C,G,L,M); 500µm (I,J,K (left, centre)); 929 

100µm (K right); 1mm (N)). *** p<0.001 (t-test, two-tailed). (B,D,E) n=8/ genotype.  930 

 931 

Fig. 2. Mapping of gigas1.a and gene editing of HvAPETALA2. (A) Grey block on chromosome 2H 932 

indicates introgression from Golden Melon in gigas1.a BW381. JHI-50k-2016 SNP markers and genes 933 

shown along with their physical position (Mbp). Missing markers (red) delineate a 1.3Mbp deletion 934 

overlapping seven high confidence gene models, including HORVU2Hr1G113880 (HvAP2) and 935 

HORVU2Hr1G113940; (B) RT-qPCR of HvAPETALA2 (HvAP2) transcripts in Bowman, gigas1.a, and 936 

Zeo1.b spikes. Individual points are independent biological replicates. (C) HvAP2 gene model with 937 

sequences encoding the APETALA2 DNA binding domains (grey) and miR172 binding site (black).  938 

Nucleotides 167 to 239 and their corresponding protein sequences shown underneath for Golden 939 

Promise (GP), hvap2-1, and hvap2-2. Lines over GP sequence indicate guide RNA target (red) and 940 

protospacer adjacent motif (PAM, blue). Dashes indicate deleted bases and triangles indicate 941 

deletion length in hvap2-1, and hvap2-2. (D-H) Phenotypes of GP, hvap2-1 and hvap2-2. (D) 942 

Spikelets. (E) Grains with hull on (left) and removed (right). (F) Lodicules. (G) Arrow shows 943 

transformation of lodicule to bract in hvap2-2. (H) Scanning electron micrograph showing ectopic 944 

hairs on hvap2-2 lodicules. Scale bars: 2mm (D,E); 1mm (F); 100µm (H).  945 

 946 

Fig. 3. HvAPETALA2 regulates early spikelet organogenesis and gene expression. (A,B) Scanning 947 

electron micrographs (SEMs) of Bowman and Zeo1.b spikelets at (A) Waddington stage 4 (WD4) and 948 

(B) WD5.5. Arrows point to homeotic glume to lemma conversions in Zeo1.b. (C) SEMs of WD4, 949 

WD5.5 and WD7 Bowman, gigas1.a, and Zeo1.b with lemmas removed and inner floret primordia 950 

false coloured: lodicules, yellow; stamens, blue; carpel, red. (D) qRT-PCR of HvMADS1 and 951 

HvMADS58 mRNA in Bowman, Zeo1.b and gigas1.a spikelets. Individual points are independent 952 



biological replicates. (E, F) In situ hybridisation of HvMADS1 probe (E) WD4 and (F) WD7. Scale bars: 953 

1mm (A); 0.5mm (B); 100µm (C); 1mm (E,F). 954 

 955 

Fig. 4. HvAPETALA2 alleles influence grain maturation and gene expression. (A-B) Bowman, 956 

gigas1.a, and Zeo1.b caryopses parameters measured at preanthesis (PA) and days post anthesis 957 

(DPA). (A) caryopsis length (mm). (B) caryopsis width (mm). (C-F) Grain ultrastructure in Bowman, 958 

Zeo1.b and gigas1.a at 5 DPA (C,E) and 10 DPA (D,F). (C) Arrows show provasculature strands. (D) 959 

Arrows show degradation of the nucellar projection. (G) HvAP2 in situ hybridisation in pre-anthesis 960 

spikelets (top panel) and caryopses. (H) qRT-PCR of HvMADS29, HvJIP23 and HvJIP60 mRNA in 961 

Bowman and gigas1.a caryopses at 5 DPA. Individual points are independent biological replicates. 962 

ca, carpel; cc, cross cells; ch, chlorenchyma; ii, inner integument;  ma, maternal aleurone; ms, 963 

mesocarp; np, nucellar projection; nu, nucellus epidermis; eil, extra integument layer; pem, pericarp 964 

mesocarp; ov, ovary; ps, pigment strand; vb, vascular bundle; se, starchy endosperm; t, testa; tc, 965 

tube cells. (A-B) n=5/ genotype.  Box plots show the median (red line), 25th and 75th percentile, 966 

whiskers show 1.5* the interquartile range. *Significant difference between gigas1.a and Bowman; 967 

^Significant difference between Zeo1.b and Bowman, p<0.05 (Dunn’s post-hoc test). 968 

 969 

Fig. 5. HvMADS29 controls post-fertilisation development. (A) HvMADS29 expression in ovary and 970 

caryopses based on RNA-seq. (B) HvMADS29 in situ hybridisation on developing caryopses. Upper 971 

panel shows caryopsis section and lower panel shows higher magnification of the nucellar projection 972 

region. (C) HvMADS29 gene model shows coding region sequence between nucleotides 55-195 and 973 

corresponding protein sequence for Golden Promise (GP) and hvmads29-2. Lines over GP sequence 974 

indicate guide RNA target (red) and protospacer adjacent motif (PAM, blue). Dash in hvmads29 975 

indicates the deleted base. (D) Mature GP and hvmads29 caryopses. (E,F) GP and hvmads29 976 

caryopses at 0,5 and 10 days post anthesis (DPA). (E) Whole. (F) Sections show vascular bundles in 977 



the nucellus projection. For each genotype, left lane, calcofluor white staining (cyan) and auto 978 

fluorescence (red), right lane, toluidine blue staining. Scale bars: 100μm (B upper panel); 50μm (B 979 

lower panel); 2mm (D,E); 50μm (F). 980 

 981 

Fig. 6. Genetic analyses between gigas1.a, lax.a and Zeo1.b. (A,B) Spike, (C-H) spikelet, and (I,J) 982 

grain phenotypes in Bowman, gigas1.a, Zeo1.b, lax.a, gigas1.a lax.a and Zeo1.b lax.a. (A) Spikes. (B) 983 

Spike density (nodes/ cm). (C) Glume position organs. (D) Glume awn length (cm). (E) Palea/lemma 984 

position organs. (F) Lemma length (cm). (G) Lodicule and stamen position organs. (H) Lodicule and 985 

stamen organ counts per spikelet. (I) Grain. (J) Grain length (mm). Box plots show the median (red 986 

line), 25th and 75th percentile, whiskers show 1.5* the interquartile range and outliers as dots. 987 

Letters indicate significant difference (p<0.05; Tukey HSD). n= 8/ genotype. Scale bars: 2mm (A-G, 988 

apart from Zeo1.b lax.a in C, 2cm);  0.5 cm (I). 989 

 990 

Fig 7. Model of HvAP2 function with putative up and downstream regulators. HvAP2 has multiple 991 

roles in pre- and post-fertilisation development.  Diagrams underneath each role show the tissue 992 

involved. HvAP2 promotes the transition from spikelet to floret identity and perianth formation. 993 

miR172 regulation of HvAP2 is necessary to exclude floret/perianth identity from the glume 994 

primordia. These roles may be mediated by HvAP2 upregulation of HvMADS1. Elevated HvAP2 995 

function represses stamen formation in the lodicule whorl, potentially by down-regulating of 996 

HvMADS3.  HvAP2 promotes stigmatic branching, associated with HvMADS58 expression. HvAP2 997 

inhibits integument layer proliferation and promotes integument degradation. HvAP2 limits final 998 

grain length by restricting pericarp cell number and length. HvAP2 promotes nucellar tissue 999 

elimination, associated with HvMADS29 expression, associated with endosperm growth and grain 1000 

widening. HvBOP2 may promote HvAP2 function in the lodicule and grain through unknown 1001 



mechanisms. Yellow colour in integument proliferation, grain length, nucellar elimination and grain 1002 

width diagrams indicates integuments, pericarp, nucellar projection and endosperm, respectively. 1003 
















