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RESEARCH ARTICLE Open Access

A heart failure phenotype stratified model
for predicting 1-year mortality in patients
admitted with acute heart failure: results
from an individual participant data meta-
analysis of four prospective European
cohorts
Yuntao Chen1* , Adriaan A. Voors2, Tiny Jaarsma3, Chim C. Lang4, Iziah E. Sama2, K. Martijn Akkerhuis5,
Eric Boersma5, Hans L. Hillege1 and Douwe Postmus1

Abstract

Background: Prognostic models developed in general cohorts with a mixture of heart failure (HF) phenotypes,
though more widely applicable, are also likely to yield larger prediction errors in settings where the HF phenotypes
have substantially different baseline mortality rates or different predictor-outcome associations. This study sought to
use individual participant data meta-analysis to develop an HF phenotype stratified model for predicting 1-year
mortality in patients admitted with acute HF.

Methods: Four prospective European cohorts were used to develop an HF phenotype stratified model. Cox model
with two rounds of backward elimination was used to derive the prognostic index. Weibull model was used to
obtain the baseline hazard functions. The internal-external cross-validation (IECV) approach was used to evaluate
the generalizability of the developed model in terms of discrimination and calibration.

Results: 3577 acute HF patients were included, of which 2368 were classified as having HF with reduced ejection
fraction (EF) (HFrEF; EF < 40%), 588 as having HF with midrange EF (HFmrEF; EF 40–49%), and 621 as having HF
with preserved EF (HFpEF; EF ≥ 50%). A total of 11 readily available variables built up the prognostic index. For four
of these predictor variables, namely systolic blood pressure, serum creatinine, myocardial infarction, and diabetes,
the effect differed across the three HF phenotypes. With a weighted IECV-adjusted AUC of 0.79 (0.74–0.83) for
HFrEF, 0.74 (0.70–0.79) for HFmrEF, and 0.74 (0.71–0.77) for HFpEF, the model showed excellent discrimination.
Moreover, there was a good agreement between the average observed and predicted 1-year mortality risks,
especially after recalibration of the baseline mortality risks.
(Continued on next page)
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Conclusions: Our HF phenotype stratified model showed excellent generalizability across four European cohorts
and may provide a useful tool in HF phenotype-specific clinical decision-making.

Keywords: Acute heart failure, Mortality, IPD meta-analysis, Prognostic model

Background
Heart failure (HF) is a rapidly growing public health
concern with high prevalence, poor prognosis, and high
cost. It is estimated that 0.4–2.2% of the population in
industrialized countries suffer from HF, with 500k–600k
incident cases diagnosed each year [1]. Data from the
2016/2017 UK National Heart Failure Audit [2] showed
that mortality remains high with in-hospital mortality
and 1 year post-discharge mortality rates of 9.4% and
23.3%, respectively. The total medical expenditure on
HF is predicted to rise from US$20.9 billion to $53.1
billion, of which 80% are attributed to increased
hospitalization [3]. All of the aforementioned statistics
will even deteriorate with the global aging. Accurately
predicting prognosis for HF can help in tailoring treat-
ments to subgroups of patients, as was recently shown
for the selective adenosine A1 receptor antagonist rolo-
fylline [4] as well as for the disease management pro-
grams evaluated in the COACH study [5].
Many clinical prediction models have been developed

with the goal of helping physicians stratify patients with
HF [6]. Some of these models were developed in patient
populations with a particular HF phenotype, such as the
Seattle Heart Failure Model (SHFM) [7] that was devel-
oped in the setting of HF with reduced ejection fraction
(HFrEF), while others were developed in more general
cohorts with a mixture of HF phenotypes, such as the
MAGGIC risk score [8]. While such latter heteroge-
neous population models are more widely applicable,
they are also likely to yield larger prediction errors for
two reasons. One is the potential different baseline mor-
tality rates of three HF subtypes, as indicated by several
large studies [9, 10] that mortality of HF with preserved
ejection fraction (HFpEF) is lower than that in HFrEF,
even after adjusting for age, sex, and clinical covariates.
However, a recent meta-analysis [11] showed no signifi-
cant difference in mortality rates between HFrEF and
HFpEF. The other one is the potential different
predictor-outcome associations across HF subtypes.
Among those, age, systolic blood pressure (SBP), and
diabetes were verified by large cohort studies [8, 12] to
have different associations with mortality in patients
with HFrEF and HFpEF. Reducing uncertainty in risk
prediction model by addressing the aforementioned two
factors is essential to improve the prediction accuracy,
which could in turn lead to improvements in advanced
care planning, treatment adherence, and integration with

wider healthcare teams such as palliative care. The pur-
pose of this study was to use individual participant data
(IPD) meta-analysis to develop an HF phenotype strati-
fied model for predicting 1-year mortality in patients ad-
mitted with acute HF.

Methods
Study cohorts
Four cohorts were included in the IPD meta-analysis:
BIOSTAT-index, BIOSTAT-validation, THRIUMPH,
and COACH (Table 1). Detailed inclusion and exclusion
criteria of the four cohorts are provided in Table S1 in
Additional file 1. In short, BIOSTAT-CHF [13] was a
large European project aimed to characterize biological
pathways related to response or non-response to the rec-
ommended therapy for HF. To characterize these path-
ways, two independent HF cohorts were assembled: an
index cohort (BIOSTAT-index) consisting of 2516 pa-
tients from 69 centers in 11 European countries and a
validation cohort (BIOSTAT-validation) consisting of
1738 patients from 6 centers in Scotland, UK. TRI-
UMPH [14] was a translational bench-to-bedside study
program encompassing the entire spectrum of bio-
marker discovery to clinical validation. The clinical val-
idation study was an observational prospective study
that enrolled 475 patients admitted with acute HF from
14 centers in the Netherlands. This study was designed
to establish the clinical value of biomarkers successfully
passing the bio-informatics and early-validation stages of
TRIUMPH as well as to further evaluate more estab-
lished biomarkers of HF. COACH [15] was a multicenter
randomized controlled trial (RCT) that enrolled 1023
patients admitted with acute HF. This study was de-
signed to evaluate the long-term effects of moderate or
intensive disease management on outcome in patients
with HF. All patients provided written informed consent.
This study was conducted in compliance with the Dec-
laration of Helsinki and was approved by all relevant
local ethics committees.
Patients who were enrolled from outpatient clinics

(N = 1625), had missing outcome data (N = 29), or had
missing ejection fraction values (N = 459) were succes-
sively excluded for the present analysis. This resulted in
a total sample of 3577 patients, of which 2368 were
HFrEF patients, 588 were HF with midrange ejection
fraction (HFmrEF) patients, and 621 were HFpEF pa-
tients. The HF subtypes were defined according to the
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European Society of Cardiology guidelines: HFrEF as
< 40%, HFmrEF as 40–49%, and HFpEF as ≥ 50% [16].

Outcome and predictor variables
The outcome of interest was 1-year mortality, defined as
the time from hospital admission to death from any
cause within 1 year after hospital admission. The candi-
date predictor variables consisted of a set of demo-
graphic, clinical, and laboratory variables that were
selected according to clinical knowledge, literature [6],
and data availability. This included age, sex, myocardial
infarction (MI), atrial fibrillation, COPD, peripheral
arterial disease, stroke, diabetes, previous HF
hospitalization, NYHA class, SBP, diastolic blood pres-
sure, heart rate, BMI, hemoglobin, N-terminal pro-B-
type natriuretic peptide (NT-proBNP), serum potassium,
serum sodium, serum creatinine, blood urea nitrogen
(BUN), coronary artery bypass grafting (CABG), and im-
plantable cardioverter defibrillator (ICD) or pacemaker.
Medication use were excluded from the candidate vari-
ables because they might be confounded by disease se-
verity influencing tolerability of the use [17]. For the
clinical and laboratory variables, the measurements clos-
est to the day of hospital admission were taken. Since
patients who died during the index admission were ex-
cluded from the COACH study [15], the survival times
for patients in COACH were left-truncated at the time
of hospital discharge.

Model derivation
Our prognostic model consists of two parts: (i) a prog-
nostic index (PI) that captures the effects of the pre-
dictor variables, and (ii) HF subtype (HFrEF, HFmrEF,
and HFpEF) specific baseline hazard functions that de-
termine the baseline mortality rates in these three
subpopulations.
Following Royston et al. [18], the PI was estimated

from a Cox model stratified by cohort and HF subtype.
First, a full model with all the predictors and their inter-
action with HF subtype was built. Backward elimination
was then applied to the interaction terms. Another
round of backward elimination was subsequently applied

to the main effect terms, with the main effects of vari-
ables with significant interaction terms retained in the
model. The significance level to stay in the model was
set to .05. The counting process method was used to ac-
count for the left-truncated time-to-event data in
COACH [19]. Missing values for the predictor variables
were handled using multiple imputation with Rubin’s
rules applied to obtain pooled estimates and P values at
each step of the two backward elimination procedures
[20]. Fractional polynomials were used to check the lin-
earity of continuous predictors and to find suitable
transformations in case the linearity assumption did not
hold [21].
The baseline hazard functions were obtained by fitting

an HF subtype stratified Weibull model to the pooled
data with the PI obtained from the Cox model included
as an offset. The full parameterization of our HF subtype
stratified prognostic model can be found in
Additional file 2.

Model validation
Model performance was assessed in terms of discrimin-
ation and calibration [22]. Discrimination was assessed
using the area under the cumulative/dynamic time-
dependent ROC (AUC) computed at the evaluation time
of 1 year [23]. Calibration was assessed by calibration
plots comparing predicted vs. observed 1-year mortality
rates in total and in subgroups with different predicted
risks.
To evaluate the generalizability of our prognostic

model, both raw AUCs and internal-external cross-
validated AUCs were computed. The internal-external
cross-validation (IECV) approach was also used for gen-
erating the calibration plots. IECV is a sequential ap-
proach in which every study is excluded once to serve as
an external validation cohort for a prognostic model de-
veloped in the remaining three cohorts [24]. In this way,
it can be evaluated whether the derived model has good
prognostic separation in independent cohorts and
whether the baseline mortality is comparable across
study populations.

Table 1 Detailed information for four included cohorts

ID Study N Period Study type Site Median follow-up
(months)

Primary outcomes

1 BIOSTAT-index 2516 2010–2012 Cohort 69 centers in 11
European countries

21 Time to composite death or
unscheduled hospitalizations for HF

2 BIOSTAT-validation 1738 2010–2014 Cohort 6 centers in Scotland 21 Time to composite death or
unscheduled hospitalizations for HF

3 TRIUMPH 475 2009–2012 Cohort 14 centers in the
Netherlands

10.8 All-cause mortality and readmission
for HF

4 COACH 1023 2002–2007 RCT 17 centers in the
Netherlands

18.4 Time to death or rehospitalization
because of HF
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Comparison with other risk scores
To compare the predictive performance of our model
with the predictive performance of three existing risk
scores, namely the MAGGIC risk score [8], the GWTG-
HF score [25], and the BCN Bio-HF Calculator [26], the
AUCs of these three models were compared with the
internal-external cross-validated AUCs of our model.
Calculations were performed separately for each of the
four study cohorts and stratified by HF phenotype.

Results
Patient population
Baseline characteristics stratified by study cohort are
provided in Table 2. BIOSTAT-validation had the largest
proportion of HFmrEF and HFpEF patients, while these
two subpopulations were underrepresented in
BIOSTAT-index. Compared to the other three cohorts,
COACH had fewer NYHA class I/II patients and more
NYHA class IV patients. TRIUMPH had the smallest
proportion of patients with previous HF hospitalization
compared to the other three cohorts. Concerning med-
ical history, TRIUMPH had a larger proportion of pa-
tients with CABG or ICD/pacemaker, while COACH
had a smaller proportion of patients with diabetes.
Concerning medication use before admission, a larger
proportion of patients in BIOSTAT-index used β-
blockers or ACE/ARBs. A smaller proportion of patients
in COACH used β-blockers or ACE/ARBs. Diuretics
were used by almost all the patients in BIOSTAT-index
and BIOSTAT-validation. The distributions of the other
variables were comparable across the four cohorts.
The extent of missing data for baseline characteristics

is provided in Table S2 in Additional file 1. The propor-
tion of missing data for most of the candidate predictors
was very small (< 2%). BUN and NT-proBNP had a rela-
tively larger proportion of missing data (6.7% and 33.2%,
respectively).
Within 1 year of follow-up, the number of mortality

events was 469 (19.8%) in patients with HFrEF, 121
(20.6%) in patients with HFmrEF, and 128 (20.6%) pa-
tients with HFpEF (Table 2).

Clinical prediction model
The final model included 11 predictors: age, COPD,
NYHA class, hemoglobin, serum sodium, BUN, NT-
proBNP, SBP, serum creatinine, MI, and diabetes. Four
of these predictors, namely SBP, serum creatinine, MI,
and diabetes, interacted with HF subtype. SBP, BUN,
serum creatinine, and NT-proBNP were transformed be-
cause of non-linear relationships with mortality. The
relative effects of the predictors after transformation are
presented in Table 3.
The PI for a specific patient is calculated as the linear

combination of the regression coefficients (Table 3) and

the values of the corresponding (transformed) predictors
for that patient. The distribution of the PI in the pooled
dataset is presented in Fig. 1, which also shows the
predicted 1-year mortality risk associated with the differ-
ent values of the PI stratified by HF subtype. Specifically,
the median and interquartile range of the PI was − 2.0
(− 2.7 to − 1.3) for HFrEF, − 2.8 (− 3.4 to − 2.3) for
HFmrEF, and − 1.4 (− 2.0 to − 0.9) for HFpEF, which as-
sociated 1-year predicted mortality risks of 14.8% (7.6 to
28.3%), 18.5% (10.8 to 28.4%), and 18.5% (11.3 to 28.9%)
for HFrEF, HFmrEF, and HFpEF, respectively. The
mathematical formulas underlying the predicted 1-year
mortality risk curves shown in Fig. 1 are provided in
Additional file 3 together with an illustration of how
these calculations can be conducted for an example
patient.

Model validation
The raw AUCs (95% CIs) for HFrEF, HFmrEF, and
HFpEF were 0.78 (0.76–0.81), 0.75 (0.70–0.80), and 0.74
(0.70–0.79), respectively. The IECV approach yielded
comparable estimates, with a weighted IECV-adjusted
AUC (95% CI) of 0.79 (0.74–0.83) for HFrEF, 0.74
(0.70–0.79) for HFmrEF, and 0.74 (0.71–0.77) for
HFpEF. Moreover, the relatively small differences be-
tween the estimated and predicted AUCs for the individ-
ual cohorts in the IECV showed that the discrimination
reproduced well across four cohorts (Table 4).
In the pooled dataset, the average observed vs. pre-

dicted 1-year mortality rates were 20.3% vs. 20.6% for
HFrEF, 21.2% vs. 21.5% for HFmrEF, and 21.3% vs.
21.6% for HFpEF. The results of the IECV showed that
the discrepancies between the observed vs. predicted 1-
year mortality rates were larger for the four individual
cohorts (Fig. 2), especially for BIOSTAT-index and
BIOSTAT-validation. These discrepancies disappeared
after recalibration of the baseline mortality risks in each
of the omitted cohorts [27] (Fig. 2). Calibration plots
comparing the average observed vs. predicted 1-year
mortality in different risk groups (deciles of predicted 1-
year mortality in HFrEF and quintiles of predicted 1-
year mortality in HFmrEF and HFpEF) yielded similar
findings (Additional file 1: Figures S1–S6).

Comparison with other risk scores
In HFrEF, our model outperformed the three existing
risk scores. In HFmrEF and HFpEF, the BCN Bio-HF
score showed a similar performance to our model, while
the predictive performance of the MAGGIC score and
the GWTG-HF score was lower (Table 5).

Discussion
Using data collected from 3577 patients across four
European cohorts, we developed an HF phenotype
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Table 2 Basic characteristics

BIOSTAT-index
(n = 1469)

BIOSTAT-validation
(n = 809)

TRIUMPH
(n = 372)

COACH
(n = 927)

Overall
(n = 3577)

Characteristics

Female sex 407 (27.7%) 309 (38.2%) 135 (36.3%) 344 (37.1%) 1195 (33.4%)

Age, mean (SD), years 68.1 (12.4) 74.7 (10.8) 70.7 (12.3) 70.5 (11.4) 70.5 (12.0)

BMI, mean (SD) 27.8 (5.61) 28.6 (6.63) 28.3 (5.54) 26.2 (5.15) 27.6 (5.80)

Blood pressure, mean (SD), mmHg

Systolic 124 (22.0) 122 (22.3) 131 (28.8) 118 (21.0) 122 (22.9)

Diastolic 73.9 (13.3) 66.5 (13.5) 76.2 (17.3) 68.5 (12.1) 71.1(14.0)

Heart rate, mean (SD) 82.5 (20.5) 77.0 (17.5) 88.1 (22.3) 74.4 (13.4) 79.7 (18.9)

Previous HF hospitalization 419 (28.5%) 234 (28.9%) 80 (21.5%) 293 (31.6%) 1026 (28.7%)

NYHA class

I/II 424 (28.9%) 201 (24.8%) 67 (18.0%) 49 (5.3%) 741 (20.7%)

III 756 (51.5%) 407 (50.3%) 193 (51.9%) 477 (51.5%) 1833 (51.2%)

IV 249 (17.0%) 201 (24.8%) 93 (25.0%) 393 (42.4%) 936 (26.2%)

HF subtypes

HFrEF 1159 (78.9%) 332 (41.0%) 254 (68.3%) 623 (67.2%) 2368 (66.2%)

HFmrEF 187 (12.7%) 201 (24.8%) 54 (14.5%) 146 (15.7%) 588 (16.4%)

HFpEF 123 (8.4%) 276 (34.1%) 64 (17.2%) 158 (17.0%) 621 (17.4%)

Medical history

Myocardial infarction 513 (34.9%) 409 (50.6%) 141 (37.9%) 387 (41.7%) 1450 (40.5%)

CABG 244 (16.6%) 133 (16.4%) 103 (27.7%) 149 (16.1%) 629 (17.6%)

Atrial fibrillation 681 (46.4%) 372 (46.0%) 153 (41.1%) 410 (44.2%) 1616 (45.2%)

ICD/pacemaker 336 (22.9%) 83 (10.3%) 111 (29.8%) 79 (8.5%) 609 (17.0%)

COPD 264 (18.0%) 184 (22.7%) 68 (18.3%) 237 (25.6%) 753 (21.1%)

Peripheral arterial disease 173 (11.8%) 161 (19.9%) 81 (21.8%) 155 (16.7%) 570 (15.9%)

Stroke 136 (9.3%) 176 (21.8%) 67 (18.0%) 144 (15.5%) 523 (14.6%)

Diabetes 505 (34.4%) 281 (34.7%) 132 (35.5%) 254 (27.4%) 1172 (32.8%)

Medication*

β-Blocker use 1164 (79.2%) 562 (69.5%) 231 (62.1%) 427 (46.1%) 2384 (66.6%)

ACE/ARBs use 1007 (68.6%) 504 (62.3%) 231 (62.1%) 463 (49.9%) 2205 (61.6%)

Diuretics use 1467 (99.9%) 800 (98.9%) 261 (70.2%) 692 (74.6%) 3220 (90.0%)

Laboratory, mean (SD)

Hemoglobin, mmol/L 8.14 (1.20) 7.92 (1.30) 8.17 (1.30) 8.39 (1.22) 8.16 (1.25)

Hematocrit, % 39.8 (5.41) 39.9 (6.20) 40.0 (6.06) 41.0 (5.81) 40.1 (5.79)

Serum potassium, mmol/L 4.21 (0.58) 4.18 (0.50) 4.24 (0.64) 4.21 (0.61) 4.21 (0.58)

Serum sodium, mmol/L 139 (4.07) 138 (3.63) 139 (4.12) 138 (4.66) 139 (4.15)

Serum creatinine, μmol/L 115 (52.3) 111 (51.7) 126 (63.7) 123 (54.0) 117 (54.1)

BUN, mmol/L 16.4 (13.1) 10.6 (6.20) 12.0 (9.76) 10.7 (5.64) 13.0 (10.1)

NT-proBNP, ng/L 7670 (8830) 4990 (8080) 6910 (7650) 4960 (6980) 6080 (8120)

Death†

HFrEF 195 (16.8%) 94 (28.3%) 54 (21.3%) 126 (20.2%) 469 (19.8%)

HFmrEF 40 (21.4%) 42 (20.9%) 11 (20.4%) 28 (19.2%) 121 (20.6%)

HFpEF 26 (21.1%) 69 (25.0%) 11 (17.2%) 22 (13.9%) 128 (20.6%)

*Medication use was assessed prior to hospital admission
†Number (%) of death within 1 year of follow-up by study cohort and HF phenotype
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Table 3 Results from multivariable Cox regression stratified by study cohort and HF subtype

Variables Transformation Coef (SE) HR (95% CI) Pinteraction

Age, year 0.023 (0.004) 1.02 (1.02–1.03)

COPD 0.298 (0.087) 1.35 (1.14–1.60)

NYHA class III 0.360 (0.124) 1.43 (1.12–1.83)

NYHA class IV 0.298 (0.133) 1.35 (1.04–1.75)

Hemoglobin, mmol/L − 0.164 (0.034) 0.85 (0.79–0.91)

Sodium, mmol/L − 0.032 (0.009) 0.97 (0.95–0.99)

BUN, mmol/L = log2(x*) 0.335 (0.065) 1.40 (1.23–1.59)

NT-proBNP, ng/L = log2(x) 0.294 (0.035) 1.34 (1.25–1.44)

SBP (HFrEF), mmHg =min(x,130)† − 0.029 (0.003) 0.97 (0.96–0.98) < .001

SBP (HFmrEF), mmHg =min(x,130) − 0.009 (0.008) 0.99 (0.98–1.01)

SBP (HFpEF), mmHg =min(x,130) − 0.006 (0.007) 0.99 (0.98–1.01)

Creatinine (HFrEF), μmol/L = log2(x) 0.037 (0.100) 1.04 (0.85–1.26) .010

Creatinine (HFmrEF), μmol/L = log2(x) − 0.367 (0.140) 0.69 (0.53–0.91)

Creatinine (HFpEF), μmol/L = log2(x) − 0.209 (0.150) 0.81 (0.54–1.19)

MI (HFrEF) 0.430 (0.097) 1.54 (1.27–1.86) .001

MI (HFmrEF) − 0.032 (0.188) 0.97 (0.67–1.40)

MI (HFpEF) − 0.216 (0.201) 0.79 (0.53–1.17)

Diabetes (HFrEF) 0.265 (0.101) 1.30 (1.07–1.59) .041

Diabetes (HFmrEF) − 0.176 (0.202) 0.84 (0.56–1.25)

Diabetes (HFpEF) − 0.077 (0.190) 0.93 (0.64–1.34)

*x stands for original value
†The SBP has a linear trend up to 130 mmHg, while above 130 mmHg the risk is constant. Therefore, we truncated SBP at 130 mmHg

Fig. 1 Distribution of prognostic index and its relation with 1-year mortality in HFrEF, HFmrEF, and HFpEF
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stratified model for predicting 1-year mortality in pa-
tients hospitalized because of acute HF. All the 11 pre-
dictors in the model should be readily available in
routine clinical practice worldwide. Four of the predic-
tors, namely SBP, serum creatinine, MI, and diabetes, in-
fluenced mortality risk differently in the HF phenotypes.
For the other 7 variables, the effect on mortality was the
same across the three phenotypes. The results of the
IECV showed excellent discrimination with a weighted
IECV-adjusted AUC of 0.79 (0.74–0.83) for HFrEF, 0.74
(0.70–0.79) for HFmrEF, and 0.74 (0.71–0.77) for
HFpEF. These results also showed a good agreement
between the average observed and predicted 1-year mor-
tality risks, especially after recalibration to the cohort-
specific baseline risks.
The vast majority of the existing prediction models

were derived using data from a single HF cohort and

then either internally validated or externally validated
using data from a second HF cohort. An alternative ap-
proach that makes better use of the available data is to
perform IPD meta-analysis [24]. While the use of IPD
meta-analysis can result in more generalizable prediction
models [28], this approach has so far only been applied
for the MAGGIC risk score [8], which was predomin-
ately developed in ambulatory HF patients. To our
knowledge, our study was the first IPD meta-analysis to
develop an HF phenotype stratified model in the setting
of acute HF. By including patients from three prospect-
ive cohorts and one RCT across Europe, the patient
population used to develop our model was relatively
broad and heterogeneous, and closer to routine clinical
practice, especially compared to previous models that
were derived from a single HF cohort. Our model never-
theless still showed a very good discriminative ability,
with IECV-adjusted AUC of 0.79 for HFrEF, 0.74 for
HFmrEF, and 0.74 for HFpEF. The discriminative ability
of our model is promising as compared to mean c-
statistics of 0.71 across 117 models for predicting mor-
tality in a meta-analysis [6].
Our model outperformed the MAGGIC risk score, es-

pecially in HFrEF, indicating that the MAGGIC risk
score might be not applicable for patients with decom-
pensated HF, but more suitable for patients with a stable
state. It is not unexpected that our model was also better
than the GWTG-HF risk score since the latter was ini-
tially developed to predict in-hospital mortality. The
BCN Bio-HF risk score is a more comprehensive tool in

Fig. 2 Internal-external cross-validation-based cohort-specific observed vs. predicted 1-year mortality in HFrEF, HFmrEF, and HFpEF. Recalibrated
refers to the predicted 1-year mortality after recalibration of the baseline mortality risks

Table 4 Evaluation of heterogeneity of AUC across four studies
(internal-external cross-validation)

Study(k) HFrEF HFmrEF HFpEF

AUC(k)* AUCk
† AUC(k) AUCk AUC(k) AUCk

BIOSTAT-index 0.80 0.76 0.73 0.77 0.76 0.70

BIOSTAT-validation 0.77 0.84 0.79 0.69 0.76 0.75

TRIUMPH 0.78 0.80 0.75 0.80 0.75 0.68

COACH 0.79 0.76 0.75 0.74 0.73 0.78

Total‡ 0.79 0.79 0.76 0.74 0.75 0.74

*AUC estimated in other three cohorts after omitting study k
†AUC predicted in study k
‡Weighted mean across four cohorts. See Royston et al. [18]
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that it incorporates the combinations of three bio-
markers (NT-proBNP, hs-cTnT, and ST2) into the
model. Nevertheless, our model, by only incorporating
NT-proBNP, performed equally well in HFmrEF and
HFpEF, and even better in HFrEF. Lastly, our compari-
sons to the MAGGIC, GWTG-HF, and BCN Bio-HF risk
scores are pragmatic but potentially unfair since the pre-
dictors in our model were derived from the data we used
for comparison. However, this bias should be largely
lessened since the AUCs of our model were adjusted
using the IECV technique.
Many of the prognostic factors identified in this

study were already well established in previous stud-
ies. BUN and serum sodium were previously shown
to have the highest predictive values among the most
frequently used predictors and were also strongly as-
sociated with mortality in our study [6]. Most of the
predictors in MAGGIC, such as age, SBP, COPD, dia-
betes, and serum creatinine, were further confirmed
in our study. Like BIOSTAT-CHF [17], lower
hemoglobin was associated with an increased risk of
mortality. Consistent with several studies [29, 30],
NT-proBNP was confirmed to be strongly associated
with mortality. Inclusion of NT-proBNP is particularly
an advantage of our model over the MAGGIC risk
score. While it is still under debate whether the prog-
nostic impact of NT-proBNP differs among HF sub-
types [31], our study did not find the interaction
between NT-proBNP and HF subtypes.
A novelty factor of this study is that we used a strati-

fied Cox model to account for the cross-phenotype het-
erogeneity and this phenotype-specific model allowed
both the baseline mortality risk as well as the effect of
the prognostic variables to be different for each pheno-
type. Particularly, having a history of MI indicated in-
creased mortality risk in HFrEF, while the effect of this
variable was neutral in HFmrEF and HFpEF. It has been
reported that ischemic etiology is associated with an in-
creased risk of mortality in HFrEF but neutral in HFpEF
[7, 32–35], and thus, it is not surprising that history of
MI is more strongly associated with mortality in HFrEF.

Consistent with Go et al. [12], history of diabetes was as-
sociated with higher mortality in HFrEF, but neutral in
HFmrEF and HFpEF in our study. However, this was
discordant with two previous studies [34, 36], in which
diabetes was also associated with poor outcome in
HFpEF. Consistent with MAGGIC, increased baseline
SBP was associated with lower mortality in HFrEF, and
this association disappeared in HFmrEF and HFpEF. Ele-
vated serum creatinine was associated with lower mor-
tality in HFmrEF, but neutral in HFrEF and HFpEF. This
finding may suggest HFmrEF patients had a good diur-
etic response, which commonly showed an increase in
serum creatinine, but still had good clinical outcomes
[37]. Overall, we found the effect of the predictor vari-
ables to be similar for HFmrEF and HFpEF and more
likely to be different for HFrEF, suggesting that HFmrEF
is closer to HFpEF than to HFrEF.
The results of the IECV showed that our model dis-

criminated well across the four different cohorts. Par-
ticularly in HFrEF, our model discriminated not only
well in three cohorts close to routine clinical practice
(BIOSTAT-index, BIOSTAT-validation, and TRI-
UMPH; AUC 0.76, 0.84, and 0.80), but equivalently
well in the population from a RCT (COACH; AUC
0.76). In HFmrEF, the results suggested the Scottish
patients in BIOSTAT-validation might have a differ-
ent predictor-outcome association from other patients.
In HFpEF, our model discriminated very well in
BIOSTAT-validation and COACH, though not so well
in BIOSTAT-index and TRIUMH. For BIOSTAT-
index, this finding may be explained by the fact that
HFpEF patients in this cohort were confined to NT-
proBNP levels > 2000 pg/mL, resulting in a different
population of HFpEF patients compared to the other
three cohorts.
While differences in the baseline mortality risks among

the four cohorts did not have a profound impact on
model discrimination, model calibration was more heav-
ily affected by this. For example, the predicted 1-year
mortality risk was higher than the observed 1-year mor-
tality risk for patients with HFrEF in BIOSTAT-index

Table 5 Comparison of internal-external cross-validated AUC of our model with AUCs of the MAGGIC, GWTG-HF, and BCN Bio-HF
risk scores in each of the study cohorts stratified by HF subtype

Study HFrEF HFmrEF HFpEF

MAGG
IC

GWTG-
HF

BCN Bio-
HF

Our
model

MAGG
IC

GWTG-
HF

BCN Bio-
HF

Our
model

MAGG
IC

GWTG-
HF

BCN Bio-
HF

Our
model

BIOSTAT-index 0.71 0.69 0.70 0.73 0.71 0.66 0.76 0.73 0.50 0.53 0.66 0.67

BIOSTAT-
validation

0.78 0.77 0.78 0.83 0.69 0.66 0.75 0.67 0.66 0.65 0.72 0.70

TRIUMPH 0.73 0.71 0.72 0.78 0.64 0.57 0.84 0.79 0.63 0.66 0.69 0.65

COACH 0.66 0.70 0.69 0.76 0.64 0.62 0.67 0.70 0.72 0.68 0.75 0.72
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(Fig. 2), which is consistent with the lower observed
mortality rate in this cohort relative to the other three
cohorts (Table 2). Such discrepancies between the ob-
served and predicted 1-year mortality risks attenuated
after recalibration to the cohort-specific baseline risks,
suggesting that more accurate predictions can be ob-
tained by tailoring the parameter values of the baseline
hazard functions to the baseline risk in the patient popu-
lation to which the model is applied [28] (e.g., by taking
the baseline hazard functions from the study cohort
which has the closest observed outcome incidences).
The implication of our model relates to its ability

to support bedside decision-making by complement-
ing physician’s clinical judgment. Currently, treatment
decisions in HF are based on population-averaged ef-
fects observed in RCTs. However, patients enrolled in
RCTs can differ substantially in their risks of outcome
and treatment effects are not necessarily homoge-
neous across the risk spectrum [38]. For example, in
the PROTECT trial, the experimental treatment rolo-
fylline was found to have a neutral effect in the treat-
ment of acute HF with renal dysfunction [39].
However, in a subsequent post hoc analysis, Demissei
et al. [4] found this treatment effect to be moderated
by the predicted 180-day all-cause mortality risk, with
rolofylline being beneficial in higher-risk patients but
harmful in low-risk patients. These results suggest
that there may still be a window of opportunity for
rolofylline and other novel acute HF therapies that
showed disappointing population-averaged effects,
such as serelaxin [40], provided that a more targeted
approach is implemented for the administering of
these treatments. Risk prediction models, such as the
one developed in this paper, are fundamental in mov-
ing forward such a more personalized approach in
the treatment of acute HF.
Our study has several limitations. Firstly, the IPD

meta-analysis included relatively small numbers of
HFmrEF and HFpEF patients, which may hinder the
generalizability of the results to other HFmrEF and
HFpEF populations. Secondly, only variables that were
measured in all four cohorts were considered as can-
didate predictors. Some of the more recently estab-
lished prognostic markers such as ST2 [41] and
Galectin-3 [42] could therefore not be included in
our prognostic model. Finally, all the predictors in-
cluding the ejection fraction were treated as time-
fixed covariates, meaning that their values were as-
sumed to remain constant across the prediction
period. This is a limitation when large fluctuations in
the values of the predictor variables are expected.
However, given the relatively short prediction window
and good model performance, it seems reasonable to

treat the predictors as time-fixed for the present
study.

Conclusion
To conclude, using IPD meta-analysis, we were able to
develop an HF phenotype stratified model for predicting
1-year mortality in patients hospitalized with acute HF
that was generalizable across a range of European HF
populations. Our model can therefore become a helpful
tool in quantifying and classifying the prognosis of pa-
tients hospitalized with acute HF, allowing targeted
treatment and management of those patients.
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