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Ευχαριστίες 

Κάθε  ταξιδιώτης,  όταν  πλησιάζει  το  τέλος  ενός  μεγάλου  και  περιπετειώδους  ταξιδιού, 
πραγματοποιεί έναν απολογισμό. Στο πλαίσιο αυτού του απολογισμού, θα ήταν σημαντικότατη 
παράλειψη  η  μη‐αναφορά προσώπων που  συνέβαλαν,  ο  καθένας  με  τον  δικό  του  τρόπο,  στην 
υποστήριξη του ταξιδιώτη‐γράφοντος κατά τη διάρκεια της εκπόνησης της παρούσας.  

Πρώτα  και  πάνω  απ’  όλα,  ιδιαίτερη  ευγνωμοσύνη  οφείλω  στην  οικογένειά  μου,  στους 
γονείς μου Τιμολέοντα και Ναυσικά, καθώς και στην αδελφή μου Αθηνά. Οι λόγοι προφανείς και 
η όποια απόπειρα αιτιολόγησης αυτού απλά θα μείωνε την ανεκτίμητη προσφορά τους. Επίσης, 
οφείλω να ευχαριστήσω τα μέλη της Τριμελούς Συμβουλευτικής μου Επιτροπής, Καθηγητή ΕΜΠ 
κο  Χριστόφορο  Προβατίδη,  Αν.  Καθηγητή  ΕΜΠ  κο  Παναγιώτη  Μακρή  και  Καθηγητή  ΕΜΠ 
Ανδρέα Κανάραχο. Κατά πρώτον, οφείλω να ευχαριστήσω τον επιβλέποντά μου, Καθηγητή ΕΜΠ 
κο Χριστόφορο Προβατίδη,  η συνεργασία με  τον οποίο υπήρξε καταλυτική σε  εκπαιδευτικό,  σε 
ερευνητικό αλλά και σε  επαγγελματικό  επίπεδο. Ασχέτως  των όποιων μεταξύ μας διαφωνιών, 
κάτι  που,  άλλωστε,  προβλέπεται  και  επιβάλλεται  σε  τέτοιου  είδους  συνεργασίες,  δεν  είναι 
δυνατόν να μην αναγνωρίσω την πάντοτε καλόψυχη και άκρως θετική επίδρασή του στην όλη 
πορεία  μου.  Η  επιμονή  του  τόσο  για  μία  πρώτη  προσέγγιση  των  όποιων  εξεταζόμενων 
φαινομένων, μέσα από την  ενδελεχή μελέτη απλοποιημένων και  ελεγχόμενων υπολογιστικών 
μοντέλων,  όσο  και  για  τη  διατύπωση  θεωρήσεων,  με  τρόπο  πλήρη,  τεκμηριωμένο  και 
πλαισιωμένο  με  πληθώρα  αριθμητικών  αποτελεσμάτων,  αποτελεί  για  μένα  ένα  σπουδαίο  και 
χρήσιμο μάθημα. Παρόμοιας αξίας είναι για μένα και όλες οι ευκαιρίες που συνεχώς μου δίνει ο 
κος Προβατίδης, τόσο σε εκπαιδευτικό όσο και σε ερευνητικό επίπεδο, καθ’ όλη τη διάρκεια της 
ενδεκαετούς  παρουσίας  μου  στην  ερευνητική  του  ομάδα,  διότι  μέσω  αυτών  μου  δίδεται  η 
δυνατότητα να ασχοληθώ με μία ποικιλία θεμάτων, διαφορετικής φύσεως και πολυπλοκότητας, 
κάτι που σαφώς συμβάλλει σημαντικά στην προσαύξηση της γνώσης, στην απόκτηση πολύτιμης 
εμπειρίας  και  στη  σφυρηλάτηση  νοοτροπίας,  τρόπου  σκέψης  και  τρόπου  εργασίας.  Το 
πραγματικό  ενδιαφέρον  και  η  υποστήριξη  του  επιβλέποντός  μου  προς  το  πρόσωπό  μου  έχει 
αποδειχθεί επανειλημμένως. Από βάθους ψυχής οφείλω να ευχαριστήσω και τον Αν. Καθηγητή 
ΕΜΠ  κο  Παναγιώτη  Μακρή,  δίπλα  στον  οποίο  συνειδητοποίησα  τι  εστί  ακαδημαϊκός 
Παιδαγωγός  (με  κεφαλαίο  Π),  τι  εστί  Άνθρωπος  (με  κεφαλαίο  Α)  και  τι  εστί  Μηχανικός  (με 
κεφαλαίο  Μ).  Μακάρι  με  κάποιον  τρόπο,  κάποτε  να  μπορέσω  να  ανταποδώσω  το  καλό  που 
εισέπραξα από αυτόν  τον  εκπληκτικό  και  υποδειγματικό Δάσκαλο  και Άνθρωπο.  Ένα μεγάλο 
ευχαριστώ  οφείλω  και  στον Καθηγητή  ΕΜΠ  κο Ανδρέα Κανάραχο,  ο  οποίος,  τις  όποιες  φορές 
συνομιλήσαμε, ήταν προθυμότατος να ακούσει, να υποδείξει, να συμβουλεύσει και να βοηθήσει. 
Ιδιαίτερη αναφορά οφείλω στον Καθηγητή ΤΕΙ Πειραιά  κο Σάββα Βασιλειάδη. Η γνωριμία  και 
συνεργασία  μαζί  του  υπήρξε  σταθμός,  τόσο  σε  ανθρώπινο  επίπεδο  όσο  και  σε  επίπεδο 
παραγωγής έργου. Απλά,  εξαιρετικός.  Τυχεροί  εκείνοι  οι φοιτητές που  τον  είχαν και  εκείνοι  οι 
φοιτητές που θα τον έχουν Καθηγητή τους. Ένα μεγάλο ευχαριστώ οφείλω στον Καθηγητή ΕΜΠ 
κο  Βασίλειο  Παπάζογλου  και  στον  Αν.  Καθηγητή  ΕΜΠ  κο  Νικόλαο  Τσούβαλη,  δίπλα  στους 
οποίους  μου  δόθηκε  η  ευκαιρία  όχι  μόνον  να  μάθω  πολλά,  τόσο  σε  θεωρητικό  όσο  και  σε 
πρακτικό  επίπεδο,  αλλά  και  να  συμμετάσχω  σε  έργα  μοναδικής  σημασίας  και  παγκοσμίου 
εμβέλειας,  όπως  είναι  το  πρόγραμμα ΝΕΣΤΩΡ.  Θα πρέπει  να  ευχαριστήσω  και  τον Καθηγητή 
ΕΜΠ κο Κωνσταντίνο Σπέντζα, ο οποίος με την αυστηρή, αλλά πάντοτε καλοπροαίρετη, κριτική 
του  έθετε  ψηλά  τον  πήχυ  των  απαιτήσεων,  ενώ  σε  συγκεκριμένη  χρονική  στιγμή,  με  μία 
αξιοθαύμαστη  υπέρβαση,  με  υποστήριξε  και  έδωσε  άμεσα  λύση  σε  καίριο  επαγγελματικό 
ζήτημα. Τέτοιες ενέργειες δεν είναι δυνατόν να λησμονούνται ή να μην μνημονεύονται. Στο ίδιο 
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μήκος  κύματος,  θα  πρέπει  να  αναφερθώ  στους  Καθηγητές  ΕΜΠ  κ.κ.  Σωκράτη  Τσαγγάρη, 
Κωνσταντίνο  Κυριακόπουλο  και  Δημήτριο  Μανωλάκο,  όπως  επίσης  και  στους  Επίκουρους 
Καθηγητές Μάριο  Αναγνωστάκη  και  Ευάγγελο  Χίνη,  οι  οποίοι,  σε  διάφορες  χρονικές  στιγμές 
παρείχαν πολυτιμότατες συμβουλές και υποστήριξη, χωρίς τις οποίες συγκεκριμένοι στόχοι δεν 
θα  είχαν  υλοποιηθεί.  Ιδιαίτερη  μνεία  οφείλω  στον  Αν.  Καθηγητή  κο Θεόδωρο  Κωστόπουλο,  ο 
οποίος  πάντοτε  διέθετε  χρόνο  και  διάθεση  για  συζήτηση  και  πάντοτε  προέτρεπε,  με  τον 
χαρακτηριστικό  δυναμικό  και  μοναδικό  του  τρόπο,  για  την  επίτευξη  του  καλύτερου  δυνατού 
αποτελέσματος. Ομοίως, οφείλω να ευχαριστήσω τον Καθηγητή ΕΜΠ κο Δημήτριο Παντελή και 
τον  Αν.  Καθηγητή  ΕΜΠ  κο  Κυριάκο  Γιαννάκογλου  διότι,  στις  κατά  καιρούς  συζητήσεις  μας, 
πάντοτε  και  με  καλή  διάθεση  διετύπωναν  εύστοχες  παρατηρήσεις  και  συμβουλές  προς  το 
συμφέρον του γράφοντος. Επίσης, θα πρέπει να αναφερθώ στον Επίκουρο Καθηγητή κο Στέφανο 
Διπλάρη,  ο  οποίος  έχει  αποτελέσει  για  τον  γράφοντα  παράδειγμα  ήθους,  ευφυούς  νου  και 
μαχόμενου Μηχανικού, καθώς και στον Καθηγητή ΕΜΠ κο Ευάγγελο Παπαδόπουλο, ο οποίος, 
με  τον  εξαιρετικά  δομημένο και συστηματικό  τρόπο  εργασίας  του,  σηματοδοτεί  το  δρόμο προς 
την  υλοποίηση υψηλών στόχων και  οραμάτων. Ένας ακόμη άνθρωπος στον  οποίο  οφείλω  ένα 
μεγάλο ευχαριστώ είναι ο Αν. Καθηγητής ΕΜΠ κος Ιωάννης Αντωνιάδης, ο οποίος, με τον δικό 
του  τρόπο,  με  έχει  υποστηρίξει  και  βοηθήσει  σε  διάφορα  θέματα.  Ομοίως,  θα  πρέπει  να 
ευχαριστήσω τους Καθηγητές ΤΕΙ Πειραιά, κ.κ. Αθανάσιο Πέππα και Αντώνιο Πριμέντα, για τις 
ευκαιρίες  και  την  εμπιστοσύνη  που  μου  έδειξαν,  τόσο  σε  εκπαιδευτικά  όσο  και  σε  ερευνητικά 
θέματα. 

Εκτός  των Καθηγητών και  δασκάλων μου,  δεν  είναι  δυνατόν να μην αναφερθώ στην κα 
Αδαμαντία Άννη και στην κα Αναστασία Κοτσιρέα, αμφότερες ανεκτίμητης αξίας στελέχη του 
Τομέα  Μηχανολογικών  Κατασκευών  και  Αυτομάτου  Ελέγχου  (Τομέας  ΜΚΑΕ)  της  Σχολής 
Μηχανολόγων Μηχανικών ΕΜΠ. Ουκ ολίγες φορές με συμβούλευσαν σε διοικητικά θέματα και 
ουκ  ολίγες φορές ανταλλάξαμε απόψεις  επί παντός  επιστητού. Οι  κ.κ. Μιχάλης Δροσάκης,  Δρ 
ΕΜΠ  Λεωνίδας  Μενδρινός,  Διονύσιος  Ασβεστάς,  Αθανάσιος  Τριάντης  και  η  Δρ  ΕΜΠ  κα  Βίκυ 
Λούλη, επίσης στελέχη του Τομέα ΜΚΑΕ, είναι άνθρωποι στους οποίους θα πρέπει να αναφερθώ 
τόσο για την ευγένειά τους όσο και για την προθυμία τους να εξυπηρετήσουν σε όποιο τεχνικό ή 
διοικητικό πρόβλημα ανέκυπτε κατά διαστήματα. Επίσης, θα πρέπει να αναφερθώ στον Δρ ΕΜΠ 
κο  Νικόλαο  Παντελέλη  για  τις  εποικοδομητικές  συζητήσεις  μας,  όπως  και  στον  Δρ  ΕΜΠ  κο 
Δημήτριο Κουλοχέρη, ομοίως για τις αμέτρητες συζητήσεις μας, για την αμέριστη πρακτική του 
συμπαράσταση σε ποικίλα θέματα καθώς και για τη δυνατότητα που μου έδωσε να ασχοληθώ με 
θέματα εφηρμοσμένης υπολογιστικής μηχανικής. Τέλος, θα πρέπει να αναφερθώ στις κυρίες της 
Γραμματείας  της  Σχολής  Μηχανολόγων  Μηχανικών  ΕΜΠ,  κ.κ.  Ειρήνη  Μουντζουρίδη,  Καίτη 
Φούσκα  και  Ειρήνη  Βαρδακώστα,  οι  οποίες  πάντοτε  με  ευγένεια,  προθυμία  και 
αποτελεσματικότητα επέλυαν όποιο διαδικαστικό θέμα προέκυπτε. 

Εκτός  διδασκόντων  και  στελεχών  της  Σχολής,  νοιώθω  την  ανάγκη  να  αναφερθώ  στους 
συνεργάτες  και  συναδέλφους,  προπτυχιακούς  και  μεταπτυχιακούς,  από  τους  οποίους  έχω 
εισπράξει πάρα πολλά και σε πολλά επίπεδα. Κατά πρώτον, θα πρέπει να αναφερθώ στα παιδιά 
του  Εργαστηρίου,  τον  ανεπανάληπτο  Βασίλη  ‘Billy’  Γεωργιόπουλο,  τον  ικανότατο  Ευάγγελο 
Θεοδώρου,  το  διαμάντι  του  Εργαστηρίου  Αργυρώ  ‘Arkal’  Καλλιβρετάκη,  τον  εξαίρετο  Στέλιο 
Ισιδώρου, την Κλειώ Βόσου και τον Γιάννη Κουκούλη. Επίσης, θα πρέπει να αναφερθώ σε όλες 
και σε όλους εκείνους με τους οποίους είχα την τύχη να συνεργαστώ: τον Γιώργο Παραδείση, τη 
Τζένη Μαρώση,  τον  Λάμπρο  Τσιγγινό,  τον  Άκη  Κουφή,  τον Θέμη Μπαλωμένο,  τον  Αθανάσιο 
Νιαούρη,  τον  Δημήτρη  Ρελλάκη,  την  ασυναγώνιστη  Λένα  Αναστασιάδου,  τον  Παναγιώτη 
Καλογιάννη,  τον  Δημήτρη  Γεωργούλα,  τον Θοδωρή Αλυσανδράτο,  τον  Δημήτρη Μητράκο,  τον 
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Μάνθο Χιονίδη,  τον Διονύσιο Αποστόλου,  τον  Γεώργιο  Βαονάκη,  τον Σταύρο Καραγιάννη,  τον 
Μάνο Τζανακάκη, την Βάσω Καμπύλη, τον Κώστα Αργυρό, τον Τάσο Παπαγεωργίου, τον Νίκο 
Κεσίμογλου,  τον Παναγιώτη Μάρκο,  τον Μελέτη Λινάρδο,  τον Σαράντη Χαμπιλό,  την Νατάσα 
Βασιλείου,  τον Όμηρο Έξαρχο,  την Έφη Κυριαζή,  τη Σοφία Μωυσιάδου,  τον  Γιάννη Νικητάκη, 
τον  Γιάννη  Λογοθέτη,  τον  Σωτήρη  Σκαρμέα,  την  Ευφροσύνη‐Αικατερίνη  Μαγουλά,  την  Λίνα 
Καβάγια,  την  Πένυ  Κούλη,  τον  Κλήμη  Ιωάννου,  τον  Ευάγγελο  Κασελούρη,  τον  Αλέξανδρο 
Καπόγιαννη  και  τον  Στράτο  Σπαθάρη.  Η  συνεργασία  και  συνύπαρξη  με  όλους  αυτούς  τους 
εξαίρετους χαρακτήρες και μοναδικούς ανθρώπους υπήρξε μία ανεκτίμητη και μη‐ανταλλάξιμη 
εμπειρία.  Χίλια  καλά πράγματα θα μπορούσαν να  ειπωθούν για  κάθε  έναν και  κάθε μία από 
τους  προαναφερομένους,  οι  οποίοι  είτε  είναι  πλέον  κάτοχοι  ενός  μεταπτυχιακού  ή  και  δύο 
μεταπτυχιακών τίτλων, ή έχουν ξεκινήσει ή κοντεύουν να ολοκληρώσουν ή έχουν ολοκληρώσει 
το  δικό  τους  περιπετειώδες  ταξίδι  στον  κόσμο  της  έρευνας  ή  σταδιοδρομούν ως  εξαίρετοι  νέοι 
Μηχανικοί.  Σε  αυτό  το  σημείο,  θα  πρέπει  να  αναφερθώ  με  ιδιαίτερη  θέρμη  στην  Ευφροσύνη‐
Αικατερίνη,  στην Λίνα  και  ειδικά  στον  Σωτήρη,  στον Όμηρο  και  στην  οικογένειά  του,  για  την 
μοναδική υποστήριξή τους σε δεδομένη χρονική στιγμή, καθώς και στη Νατάσα, η παρουσία της 
οποίας  αποτέλεσε  αρωγό,  έως  και  έμπνευση,  στο  τελευταίο  στάδιο  εκπόνησης  της  παρούσης. 
Ιδιαίτερη αναφορά οφείλω στον Διευθυντή‐Αν. Καθηγητή της Β’ Ορθοπαιδικής Κλινικής Ιατρικής 
Σχολής  του  Πανεπιστημίου  Αθηνών  κο  Νικόλαο  Ευσταθόπουλο  και  στον  Ορθοπαιδικό 
Χειρουργό  Δρ  Πανεπιστημίου  Αθηνών  κο  Φραγκίσκο  Ξυπνητό  για  την  πολλά  υποσχόμενη 
συνεργασία  που  έχουμε  αναπτύξει  σε  θέματα  αιχμής  στην  περιοχή  της  ορθοπαιδικής 
χειρουργικής. Ιδιαίτερη ευγνωμοσύνη και ευχαριστίες οφείλω και στην Υποψήφια Διδάκτορα κα 
Αναστασία  Πετράκη,  Κοινωνιολόγο  MSc,  ME,  για  την  αμέριστη  υποστήριξη  και  συνεχή 
συμπαράστασή της προς το πρόσωπό μου τα τελευταία χρόνια.  

Τέλος, θα ήθελα να αναφερθώ στον αποθανόντα Δρ ΕΜΠ Νικόλαο Ζαφειρόπουλο, με τον 
οποίο  περάσαμε  αμέτρητες  στιγμές  στο  Εργαστήριο  συζητώντας  επί  θεωρητικών  θεμάτων, 
αναπτύσσοντας κάποιον υπολογιστικό κώδικα, αναφερόμενοι στις στρατιωτικές μας θητείες και 
ανταλλάσοντας απόψεις  επί  διαφόρων θεμάτων. Ο Νίκος,  μαζί  με  τον  κο  Βασιλειάδη,  ήταν  οι 
άνθρωποι  που  με  παρακίνησαν  πρώτοι  για  αυτό  το  μεγάλο  και  περιπετειώδες  ταξίδι  που 
ονομάζεται Διδακτορική Διατριβή, παρακίνηση η οποία δεν είναι δυνατόν να περάσει στη λήθη. 

Το παρόν ταξίδι τελείωσε – πέρας αποστολής. Καιρός να ξεκινήσει το επόμενο ταξίδι… 

 

Δημήτριος Τ. Βενετσάνος 

Διπλ. Μηχ/λογος Μηχ/κος ΕΜΠ 

Ιούλιος 2009 
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Εισαγωγή 

Το αντικείμενο  της  παρούσας  Διδακτορικής  Διατριβής,  όπως  άλλωστε  δηλώνει  και  ο  τίτλος 
της,  είναι  η  μελέτη  και  ανάπτυξη  μεθοδολογιών  βελτιστοποίησης  τοπολογίας  και  σχήματος 
μηχανολογικών  κατασκευών.  Για  την  καλύτερη  περιγραφή  τόσο  του  περιεχόμενου  όσο  και  του 
αντικειμενικού  σκοπού  της  παρούσης,  κρίνεται  σκόπιμη  μία  σύντομη  ετυμολογική  ερμηνεία  των 
όρων  του  τίτλου  αυτής.  Ειδικότερα,  ο  όρος  ‘μεθοδολογία’  δηλώνει  την  αναφορά  (λόγος)  σε 
‘μέθοδο’,  δηλαδή  σε  δρόμο  (οδός)  αναζήτησης  και  επιδίωξης  της  γνώσης.  Ο  όρος  ‘βέλτιστος’ 
αποτελεί τον υπερθετικό βαθμό του επιθέτου ‘αγαθός’, δηλαδή ‘άξιος’. Ο όρος ‘κατασκευή’ έχει ως 
δεύτερο  συνθετικό  τη  λέξη  ‘σκευή’  που  σημαίνει  ενδυμασία,  στολή.  Ο  επιθετικός  προσδιορισμός 
‘μηχανολογική’  χαρακτηρίζει  την  κατασκευή  και  δηλώνει  ότι  αυτή  σχετίζεται  με  την  μετατροπή 
ενέργειας  από  μία  μορφή  σε  μία  άλλη.  Τέλος,  οι  όροι  ‘τοπολογία’  και  ‘σχήμα’  αφορούν  στην 
(εξωτερική) μορφή που μπορεί να λάβει μία εφεύρεση/επινόηση που σχετίζεται με την μετατροπή 
ενέργειας  (μηχανή). Συνεπώς, σε ελεύθερη απόδοση, στην παρούσα Διδακτορική Διατριβή γίνεται 
λόγος  για  αναζήτηση  τρόπων,  μέσω  των  οποίων  επιδιώκεται  η  εύρεση  της  πλέον  κατάλληλης 
μορφής  την  οποία  μπορεί  να  λάβει  μία  μηχανή.  Ισοδύναμα,  αναζητείται  ο  καλύτερος  τρόπος 
διαστασιολόγησης και συνδεσμολογίας ενός συνόλου δομικών στοιχείων, έτσι ώστε να καθίσταται 
ασφαλής η, για συγκεκριμένο σκοπό, χρήση του.  

Το  κριτήριο  για  την  επιλογή  της πλέον  κατάλληλης μορφής,  ανάμεσα από ένα,  θεωρητικώς 
άπειρο, πλήθος δυνατών σχεδιάσεων, πρέπει να είναι μία ποσότητα άκρως αντιπροσωπευτική και 
χαρακτηριστική για κάθε σχεδίαση. Το συνολικό κατασκευαστικό κόστος μπορεί και ενδείκνυται να 
χρησιμοποιείται ως τέτοια ποσότητα, δεδομένου ότι σε αυτό συμπεριλαμβάνονται τόσο ο βαθμός 
δυσκολίας  υλοποίησης  της  εκάστοτε  σχεδίασης  όσο  και  ο  χρόνος  που  απαιτείται  για  την 
ολοκλήρωση  της  κατασκευής.  Ωστόσο,  ο  υπολογισμός  του  συνολικού  κατασκευαστικού  κόστους 
αποτελεί μία εξαιρετικά σύνθετη διαδικασία,  το τελικό αποτέλεσμα της οποίας δεν είναι σταθερό 
αλλά,  αντιθέτως,  μεταβάλλεται  ανάλογα  με  τις  εκάστοτε  τιμές  που  έχουν  διάφορες  οικονομικές 
παράμετροι,  όπως  το  κόστος  μεταφοράς  και  τα  επιτόκια.  Για  αυτόν  το  λόγο  και  σε  πρακτικές 
εφαρμογές Μηχανικού, αντί  του συνολικού κατασκευαστικού κόστους, προτιμάται ο υπολογισμός 
της  ποσότητας  του  υλικού  (είτε  ως  βάρος  είτε  ως  όγκος)  που  πρέπει  να  χρησιμοποιηθεί  για  την 
υλοποίηση  μίας  σχεδίασης.  Αν  και  πρόκειται  για  ένα  αντιπροσωπευτικό  μέγεθος,  τονίζεται  όλως 
ιδιαιτέρως  ότι  η  επίτευξη  της  ελαχιστοποίησης  του  βάρους  (ή  του  όγκου)  του  υλικού  δεν 
συνεπάγεται πάντοτε και ελαχιστοποίηση του συνολικού κόστους. Αυτό είναι  ιδιαίτερα αληθές σε 
περιπτώσεις στις οποίες πρέπει  να  χρησιμοποιηθούν δομικά στοιχεία  τυποποιημένων  (διακριτών) 
διαστάσεων,  όπως  συμβαίνει  στους  συγκολλητούς  φορείς  γερανογεφυρών  και  στις  δεξαμενές 
αποθήκευσης  πετρελαιοειδών.  Είναι  προφανές  ότι  η  ελάχιστη  ποσότητα  της  ύλης  που  πρέπει  να 
χρησιμοποιηθεί  σε  μία  κατασκευή  εξαρτάται  από  τους  περιορισμούς  που  επιβάλλονται  στην 
συμπεριφορά  αυτής  υπό  την  εφαρμογή  συγκεκριμένων  εξωτερικών  αιτίων.  Τέτοιοι  περιορισμοί 
είναι  μέγιστες  τιμές  τασικού  και  παραμορφωσιακού  πεδίου,  μέγιστες  τιμές  βελών  κάμψης, 
ελάχιστες τιμές κρισίμων φορτίων λυγισμού, ελάχιστες τιμές συχνοτήτων κ.α. 

Η περιοχή της βελτιστοποίησης μηχανολογικών κατασκευών έχει τεράστια πρακτική αξία σε 
πολλούς  τομείς.  Μερικοί  εκ  των  σημαντικότερων  τομέων  είναι  η  αυτοκινητοβιομηχανία,  η 
αεροπορική  και  η  διαστημική  βιομηχανία,  η  ναυπηγική  βιομηχανία  και  γενικά  ο  χώρος  των 
μεταλλικών  και  των  ελαφρών  κατασκευών.  Εκτός  της  πρακτικής  αξίας  της,  η  βελτιστοποίηση 
μηχανολογικών κατασκευών παρέχει εξαιρετικές προκλήσεις σε επίπεδο τόσο Θεωρητικής όσο και 
Υπολογιστικής Μηχανικής.  Ως  εκ  τούτου,  δεν  είναι  απορίας  άξιον  το  γεγονός  ότι  έχει  αποτελέσει 
πεδίο ενδελεχούς έρευνας και συστηματικής μελέτης κυρίως τα τελευταία 60 χρόνια, δηλαδή από 
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την εποχή γένεσης της Υπολογιστικής Μηχανικής. Είναι πρόδηλο ότι μέσα σε αυτές τις έξι δεκαετίες, 
χιλιάδες Μηχανικοί και, γενικότερα, Ερευνητές, είτε μέσα από το Ακαδημαϊκό περιβάλλον είτε μέσα 
από κάποιον δημόσιο ή ιδιωτικό φορέα/βιομηχανία, έχουν συμβάλλει στο συγκεκριμένο ερευνητικό 
πεδίο  με  το  προσωπικό  τους  έργο,  το  οποίο,  συνολικά,  έχει  αποτυπωθεί  σε  χιλιάδες  βιβλία  και 
εκατομμύρια  δημοσιεύσεων  σε  έγκριτα  επιστημονικά  περιοδικά.  Μέσα  σε  αυτό  το  πλαίσιο,  το 
εύλογο  ερώτημα  που  ανακύπτει  είναι  τι  θα  μπορούσε  να  προσφέρει  μία  ακόμα  Διδακτορική 
Διατριβή  σε  ένα  πεδίο  που  έχει  διερευνηθεί  τόσο  πολύ,  από  τόσο  πολλούς  και  για  τόσο  μακρύ 
χρονικό  διάστημα.  Το  ερώτημα  αυτό  καθίσταται  ακόμα  πιο  οξύ,  εάν  σε  αυτό  προστεθεί  τόσο  η 
γενικότερη  αίσθηση  της  επιστημονικής  κοινότητας  ότι,  λίγο  έως  πολύ,  ο,τιδήποτε  υπήρχε  να 
ειπωθεί  στη  βελτιστοποίηση  έχει  ήδη  ειπωθεί  όσο  και  η  άποψη  ότι  η  γνώση  σχετικά  με  τη 
βελτιστοποίηση  κατασκευών  έχει  χαθεί  μέσα  στα  χρόνια,  δηλαδή  ότι  οι  νεώτεροι  απλά 
ανακαλύπτουν  εκ  νέου  θεωρίες  και  απόψεις  που  κάποτε  είχαν,  έστω  και  σε  πρωτόλεια  μορφή, 
διατυπωθεί. 

Η απάντηση στο ερώτημα ‘προς τι ετούτη η Διατριβή’ είναι εξαιρετικά απλή και ταυτόσημη με 
την απάντηση στο  ίδιο  ερώτημα που θα μπορούσε  να  είχε  τεθεί  10  ή  και 20  χρόνια  νωρίτερα.  Η 
εσφαλμένη αίσθηση σχετικά με  τον κορεσμό και  την εξάντληση ενός επιστημονικού πεδίου απλά 
διαψεύδεται,  όχι  καθημερινά,  αλλά  σε  τακτά  χρονικά  διαστήματα,  είτε  με  εντελώς  νέες 
ανακαλύψεις  είτε  με  νέες  παραλλαγές  πάνω  σε  ήδη  υπάρχουσες  θεωρίες.  Αν  με  τις  πρώτες 
επιτυγχάνεται ‘ένα τεράστιο άλμα για την ανθρωπότητα’, με τις δεύτερες επιτυγχάνεται  ‘ένα μικρό 
βήμα για τον άνθρωπο’, το οποίο κάποια στιγμή σίγουρα θα οδηγήσει σε ένα μεγαλύτερο βήμα και 
γιατί όχι σε ένα τεράστιο άλμα. Άλλωστε μία από τις βασικές αρχές του Μηχανικού είναι ‘ένα βήμα 
κάθε φορά’  (‘one  step at a  time’). Μάλιστα,  από φιλοσοφική  άποψη,  η  έμπνευση,  ακρογωνιαίος 
λίθος για την πραγματοποίηση αλμάτων, θα έλθει σε κάποια στιγμή κατά την οποία, μέσα από την 
συστηματική ποσοτική και ποιοτική εργασία, ιδέες θα έχουν ωριμάσει. Όπως άλλωστε έχει ειπωθεί, 
‘η  έμπνευση  είναι  μία  πολύ  περίεργη  κυρία,  η  οποία  δεν  θα  σε  προειδοποιήσει,  όταν  κάποτε 
αποφασίσει να σε επισκεφθεί, γι’ αυτό κι εσύ θα πρέπει να είσαι στο γραφείο σου’. Εκτός αυτού, 
πάντοτε  υπάρχει  το  περιθώριο  περαιτέρω  έρευνας  πάνω  σε  θέματα  τα  οποία  έχουν  ήδη 
προσεγγιστεί  ίσως  με  έναν  πιο  χονδροειδή  τρόπο,  οπότε  προσεγγίσεις  που  ενδεχομένως  και  να 
έχουν  παρουσιασθεί  κάποτε  στο  παρελθόν  είναι  δυνατόν  να  διατυπωθούν  εκ  νέου  σε  ένα  πιο 
πλήρες και στιβαρό πλαίσιο. Κάτι τέτοιο προφανώς δεν ακυρώνει την πρωτογενή διατύπωση, χωρίς 
την  οποία  δεν  θα  υπήρχε  το  υλικό  για  την  νεώτερη  προσέγγιση,  αλλά  ούτε  μειώνει  τη  νεώτερη 
προσέγγιση, χωρίς την οποία η αρχική διατύπωση θα παρέμενε σημαντικά μικρότερη σε εμβέλεια 
και  ισχύ.  Τέλος,  δεν  πρέπει  να  λησμονείται  ότι  ο  σκοπός  μίας  Διδακτορικής  Διατριβής  δεν  είναι 
άλλος από την πραγματοποίηση μίας συστηματικής, αυτοδύναμης και εμπεριστατωμένης έρευνας 
σε  ένα  θεματικό  πεδίο,  η  οποία  καταλήγει  σε  μία  συγκεκριμένη  συνεισφορά  και  σαφώς  δεν 
αποσκοπεί στην ανακάλυψη του αεικίνητου.  

Μέσα στο προαναφερθέν ρεαλιστικό πλαίσιο, η παρούσα εργασία αποτελεί μέρος του έργου 
του  γράφοντος από  το 2000  στο  Εργαστήριο Δυναμικής  και  Κατασκευών  του  Εθνικού Μετσοβίου 
Πολυτεχνείου υπό την διαρκή επίβλεψη και άοκνη καθοδήγηση του Καθηγητή Χρ. Γ. Προβατίδη. Ο 
κεντρικός  θεματικός  πυρήνας  της  αφορά  στην  βελτιστοποίηση  της  τοπολογίας  και  του  σχήματος 
μηχανολογικών  κατασκευών  συνεχούς  μέσου.  Ακολουθήθηκαν  δύο  προσεγγίσεις  των  εν  λόγω 
κατασκευών.  Στην  πρώτη  χρησιμοποιήθηκαν  σκελετικές  κατασκευές  (δηλαδή  το  συνεχές  μέσο 
αντικαταστάθηκε από μία σκελετική,  άρα διακριτή,  κατασκευή)  και στη δεύτερη  το συνεχές μέσο 
αντιμετωπίσθηκε ως τέτοιο.  

Η  βελτιστοποίηση  των σκελετικών  κατασκευών στηρίχθηκε  στη δημιουργία  ενός πλέγματος 
ραβδόμορφων στοιχείων, με το οποίο υποκαταστάθηκε το συνεχές μέσο. Οι διατομές των στοιχείων 
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αυτών  υποβλήθηκαν  σε  μία  διαδικασία  επαναδιαστασιολόγησης  σύμφωνα  με  τρόπους  που 
προέκυψαν μέσα από ενεργειακές θεωρήσεις. Ακρογωνιαίος λίθος στην όλη προσέγγιση αποτέλεσε 
η  έννοια  της  πυκνότητας  της  ενέργειας  παραμόρφωσης  καθώς  και  της  πυκνότητας  της  δυνατής 
συμπληρωματικής  ενέργειας  παραμόρφωσης.  Η  μεταβολή  της  τοπολογίας  επετεύχθη  μέσα  από 
συστηματική  αλλαγή  του  λόγου  πλευρών  (aspect  ratio)  του  προαναφερθέντος  πλέγματος.  Η 
συνδυασμένη αξιοποίηση της επαναδιαστασιολόγησης και της αλλαγής της τοπολογίας, είτε μέσα 
σε  ένα  σχήμα  σειριακής  εκτέλεσης  διαδικασιών  είτε  μέσα  στο  πλαίσιο  μίας  ιεραρχικής 
βελτιστοποίησης,  παρείχε  την  καλύτερη δυνατή  λύση.  Προς αυτήν  την  κατεύθυνση,  αναπτύχθηκε 
και  ένας  αλγόριθμος  ‘ομαδοποίησης  και  διαγραφής’,  έτσι  ώστε  να  μειωθεί  και  το  πλήθος  των 
δομικών στοιχείων της βέλτιστης σχεδίασης αλλά και η ανομοιογένεια μεταξύ των στοιχείων αυτών, 
ως προς το εμβαδόν των διατομών τους, συμβάλλοντας με τον τρόπο αυτό στην ελαχιστοποίηση όχι 
μόνον  του  βάρους  αλλά  και  του  κόστους  της  κατασκευής.  Οι  ενεργειακές  θεωρήσεις  που 
αναπτύχθηκαν,  στηρίχθηκαν  στην  εφαρμογή  της  Μεθόδου  των  πολλαπλασιαστών  Lagrange  σε 
κατάλληλη  διατύπωση  του  αντιστοίχου  προβλήματος  βελτιστοποίησης.  Με  τον  τρόπο  αυτό 
προέκυψαν  ενεργειακές  προτάσεις  που  ισχύουν  στην  βέλτιστη  σχεδίαση.  Διευκρινίζεται  ότι 
σκελετικές κατασκευές εξετάσθηκαν και στις δύο και στις τρεις διαστάσεις. 

Η  βελτιστοποίηση  κατασκευών  συνεχούς  μέσου,  θεωρώντας  τες  ως  τέτοιες,  διακρίθηκε  σε 
δύο στάδια. Κατά το πρώτο στάδιο εξετάσθηκε το πρόβλημα βελτιστοποίησης στις δύο διαστάσεις 
(ψευδο‐τρισδιάστατη  κατάσταση),  ενώ  κατά  το  δεύτερο  στάδιο  αντιμετωπίστηκε  το  αντίστοιχο 
πρόβλημα  στις  τρεις  διαστάσεις.  Και  σε  αυτά  τα  προβλήματα  βελτιστοποίησης,  αναπτύχθηκαν 
ενεργειακές  θεωρήσεις  βάσει  της  Μεθόδου  των  πολλαπλασιαστών  Lagrange,  καταλήγοντας  σε 
ενεργειακές  προτάσεις  που  ισχύουν  στην  βέλτιστη  σχεδίαση.  Η  κεντρική  ιδέα  σε  αυτές  τις 
περιπτώσεις ήταν η ενεργειακή αξιολόγηση (βαθμολόγηση) της συμμετοχής υλικού στην παραλαβή 
των  εξωτερικώς  ασκουμένων φορτίων,  είτε  σε  επίπεδο  πεπερασμένου  στοιχείου  είτε  σε  επίπεδο 
κόμβου  πλέγματος,  και  η  αντίστοιχη  προσθήκη  ή  αφαίρεση  υλικού  υπό  την  μορφή  κατάλληλης 
μεταβολής του πάχους της κατασκευής, είτε σε επίπεδο πεπερασμένου στοιχείου είτε σε επίπεδο 
κόμβου  πλέγματος.  Η  μεταβολή  πάχους  υπαγορευόταν  από  τις  προαναφερθείσες  ενεργειακές 
προτάσεις. 

Συνοψίζοντας, στην παρούσα Διδακτορική Διατριβή: 

 συγκεντρώθηκαν οι βασικότερες προσεγγίσεις στο πεδίο της βελτιστοποίησης μηχανολογικών 
κατασκευών, με έμφαση στην βελτιστοποίηση της τοπολογίας και του σχήματος αυτών,  

 εξετάσθηκε  πλήθος  χαρακτηριστικών  βιβλιογραφικών  παραδειγμάτων  προς  βαθύτερη 
κατανόηση των εν λόγω θεωριών και αποκάλυψη σημείων που έχρηζαν βελτίωσης,  

 εισήχθησαν νέοι δείκτες απόδοσης προς πληρέστερη αξιολόγηση των εκάστοτε μεθοδολογιών 
βελτιστοποίησης, 

 διατυπώθηκαν,  επί  συγκεκριμένων  θεωριών,  παραλλαγές  οι  οποίες  εμφάνισαν  βελτιωμένη 
απόδοση συγκριτικά με τις αρχικές προσεγγίσεις, 

 αναπτύχθηκαν νέα αριθμητικά σχήματα βελτιστοποίησης,  

 συντάχθηκαν  κώδικες  σε  FOTRAN,  σε  MatLab  και  σε  APDL  (ενσωματωμένη  γλώσσα 
προγραμματισμού στο εμπορικό λογισμικό Ansys) και τέλος 

Ωστόσο,  η  μεγαλύτερη  συνεισφορά  της  παρούσης  Διδακτορικής  Διατριβής  έγκειται  στην 
επιτυχή αντιμετώπιση δύο κατηγοριών προβλημάτων βελτιστοποίησης.  
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Πιο συγκεκριμένα, στη διεθνή βιβλιογραφία, ήδη από τις αρχές της δεκαετίας του  ’70, είναι 
γνωστή η επίλυση του ειδικού προβλήματος της ελαχιστοποίησης βάρους μίας κατασκευής υπό την 
επιβολή  ενός  περιορισμού  κομβικής  μετατόπισης,  αλλά  υπό  την  αυστηρή  προϋπόθεση  ότι  ο  υπό 
περιορισμό κόμβος, ή ακριβέστερα ο υπό περιορισμό βαθμός ελευθερίας,  είναι εκ  των προτέρων 
γνωστός (single displacement constraint problem). Στην παρούσα Διδακτορική Διατριβή επελύθη η 
γενίκευση του εν λόγω προβλήματος, κατά την οποία θεωρείται μεν ότι στη βέλτιστη σχεδίαση είναι 
ενεργός ένας περιορισμός μετατόπισης αλλά χωρίς να είναι εκ των προτέρων γνωστό σε ποιο βαθμό 
ελευθερίας αυτός ο περιορισμός τελικά επιβάλλεται. Η επίλυση επετεύχθη μέσα από τη διατύπωση 
μίας  πρωτότυπης,  ενεργειακής  φύσεως  μεθοδολογίας,  η  οποία  στηρίζεται  στη  μέθοδο 
πολλαπλασιαστών  Lagrange,  αλλά,  σε  αντίθεση  με  τις  υπάρχουσες  διεθνώς  δημοσιευμένες 
θεωρήσεις, τελικώς παρακάμπτεται ο υπολογισμός τέτοιου τύπου πολλαπλασιαστών. 

Κατ’ επέκταση του ανωτέρω προβλήματος, διατυπώθηκε η θεωρητική λύση του αντιστοίχου 
προβλήματος  της  επιβολής  περιορισμού  τάσης,  κατά  το  οποίο  θεωρείται  μεν  ότι  στη  βέλτιστη 
σχεδίαση είναι ενεργός ένας περιορισμός τάσης, αλλά χωρίς να είναι εκ των προτέρων γνωστό το 
δομικό μέλος στο οποίο ο εν λόγω περιορισμός τελικά επιβάλλεται. Και πάλι, η επίλυση στηρίχθηκε 
στη  μέθοδο  πολλαπλασιαστών  Lagrange,  χωρίς  τελικά  να  απαιτείται  ο  υπολογισμός  τέτοιων 
πολλαπλασιαστών.  Σε  αντίθεση  με  τις  διεθνώς  δημοσιευμένες  θεωρήσεις,  η  συγκεκριμένη 
προσέγγιση προκύπτει μέσα από ένα αυστηρά μαθηματικό πλαίσιο και περιγράφει την ενεργειακή 
κατάσταση  της  βέλτιστης  σχεδίασης,  χωρίς  παραδοχές  σχετιζόμενες  με  την  υπερστατικότητα  της 
κατασκευής. Γι’ αυτόν το λόγο υπερτερεί της εξαιρετικώς διαδεδομένης και γνωστής τεχνικής stress‐
ratio, βάσει της οποίας προκύπτει μία σχεδίαση πλήρους εντάσεως  (Fully Stressed Design), δηλαδή 
μία  σχεδίαση  στην  οποία  επιδιώκεται  όλα  τα  δομικά  της  μέλη  να  εμφανίσουν  τάση  ίση  με  την 
μέγιστη επιτρεπόμενη, κάτι που μαθηματικά αποδεικνύεται ότι δεν αντιστοιχεί σε ελάχιστο βάρος, 
παρά μόνον υπό αυστηρές και συγκεκριμένες προϋποθέσεις.  

Αναφορικά με την διάρθρωση της παρούσας, στο 1ο Κεφάλαιο διατυπώνεται το γενικευμένο 
πρόβλημα  της  ελαχιστοποίησης  του  βάρους  κατασκευών  και  παρουσιάζονται  οι  βασικότερες 
‘Σχολές’ βελτιστοποίησης τοπολογίας και σχήματος μηχανολογικών κατασκευών. Ειδικότερα, γίνεται 
αναφορά στην εφαρμογή γενικών αιτιοκρατικών μαθηματικών μεθοδολογιών βελτιστοποίησης, οι 
πιο  αντιπροσωπευτικές  από  τις  οποίες  παρατίθενται  με  τρόπο  συνοπτικό  και  προσανατολισμένο 
προς  το  πρόβλημα  της  βελτιστοποίησης  κατασκευών.  Στο  ίδιο  μήκος  κύματος  κινείται  και  η 
παρουσίαση  των  πλέον  αντιπροσωπευτικών  στοχαστικών  μεθοδολογιών  βελτιστοποίησης. 
Ακολουθεί  η  διατύπωση  μεθοδολογιών  που  στηρίζονται  στα  επονομαζόμενα  Βέλτιστα  Κριτήρια, 
δηλαδή  σε  προτάσεις  που  περιγράφουν  την  ενεργειακή  ή  άλλη  κατάσταση  που  επικρατεί  στην 
βέλτιστη  σχεδίαση,  ενώ  στη  συνέχεια  αναφέρονται  οι  μεθοδολογίες  COC  και  DCOC  που 
αναπτύχθηκαν  υπό  την  καθοδήγηση  και  εποπτεία  του  G.I.N.  Rozvany,  του  άξιου  μαθητή  και 
συνεχιστή του έργου του W. Prager. Στο ίδιο κεφάλαιο παρατίθενται συνοπτικά η προσέγγιση του 
τεχνητού  υλικού  (artificial  material)  του  Ν.  Olhoff,  αναπτύσσεται  η  θεωρία  ομογενοποίησης 
(Homogenization theory) που εισήγαγε ο Ν. Kikuchi, καταγράφεται η προσέγγιση του M.P. Bendsøe 
(μοντέλο  SIMP),  αναφέρεται  η  μέθοδος  των  Μετακινουμένων  Ασυμπτώτων  (Method  of Moving 
Asymptotes) του C. Svanberg και, τέλος, περιγράφεται η μέθοδος των φυσαλίδων (Bubble method) 
του H.  Eschenauer.  Ιδιαίτερη  αναφορά  γίνεται  στην  μέθοδο  Evolutionary  Structural Optimization 
(ESO) των Steven και Xie. Στο ίδιο κεφάλαιο γίνεται μνεία στη χρήση των Νευρωνικών Δικτύων, των 
μη‐πλεγματικών μεθόδων και στην τεχνική Design Of Experiment (DOE).  

Στο  2ο  Κεφάλαιο  παρατίθεται  μία  ενδελεχής  ενασχόληση  με  τις  κυριότερες  άμεσες 
μεθοδολογίες βελτιστοποίησης  (αιτιοκρατικές και στοχαστικές), οι οποίες και αξιολογήθηκαν μέσα 
από μία εκτενή σειρά βιβλιογραφικών παραδειγμάτων (μαθηματικές συναρτήσεις και δικτυώματα). 
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Επίσης,  παρουσιάζεται  μία  πρωτότυπη  υβριδική  μέθοδος  κατά  την  οποία  μία  αιτιοκρατική 
διαδικασία  (μέθοδος  Powell)  συνδυάστηκε  κατάλληλα  με  μία  στοχαστική  διαδικασία  (μέθοδος 
Προσομοιούμενης Ανόπτησης) προς επίλυση προβλημάτων βελτιστοποίησης μετά περιορισμών.  

Στο 3ο Κεφάλαιο πραγματοποιείται μία ενεργειακής θεώρησης προσέγγιση του προβλήματος 
βελτιστοποίησης κατασκευών που αφορά στην μερική ή ολική αφαίρεση υλικού από ένα συνεχές 
μέσο, με σκοπό την ελαχιστοποίηση του βάρους. Στο ίδιο κεφάλαιο, διατυπώνεται και σχολιάζεται 
το  πρόβλημα  ελαχιστοποίησης  του  βάρους  μίας  κατασκευής  υπό  έναν  περιορισμό  ανάπαλσης 
καθώς  και  το  πρόβλημα  ελαχιστοποίησης  του  βάρους  μίας  κατασκευής,  όταν  αυτή  βρίσκεται  σε 
πλήρη ένταση (Fully Stress Design – FSD). 

Στο  4ο  Κεφάλαιο  εξετάζεται  το  πρόβλημα  της  βελτιστοποίησης  μίας  κατασκευής,  όταν 
χρησιμοποιείται  η  σχεδίαση  πλήρους  εντάσεως.  Αρχικά,  αντιμετωπίζονται  σκελετικές  κατασκευές 
που αντικαθιστούν το συνεχές μέσο, ενώ στη συνέχεια αντιμετωπίζεται το συνεχές μέσο ως τέτοιο. 
Ειδικότερα,  διατυπώνονται  δύο  προσεγγίσεις:  η  πρώτη  αφορά  σε  επανασχεδίαση  σε  επίπεδο 
πάχους πεπερασμένων στοιχείων και η δεύτερη αφορά σε επανασχεδίαση σε επίπεδο ανεξάρτητης 
μετακίνησης κόμβων του πλέγματος, ακόμα και εάν αυτοί ανήκουν στο ίδιο πεπερασμένο στοιχείο. 
Στη συνέχεια εξετάζεται η εφαρμογή της μεθόδου FSD και ESO στην περίπτωση πλακών, ενώ, τέλος, 
εξετάζεται το πρόβλημα της ελαχιστοποίησης του βάρους 3Δ κατασκευών συνεχούς μέσου με ολική 
αφαίρεση  πεπερασμένων  στοιχείων,  σύμφωνα  με  μία  βιβλιογραφική  μέθοδο,  που 
χρησιμοποιήθηκε  ως  αναφορά,  και  σύμφωνα  με  μία  προτεινόμενη  παραλλαγή  αυτής,  η  οποία 
προέκυψε ότι οδηγεί σε ανώτερες σχεδιάσεις και με λιγότερες επαναλήψεις. Τέλος, διατυπώνεται η 
θεωρητική  λύση  της  γενικευμένης  θεώρησης  του  προβλήματος  της  βελτιστοποίησης  μίας 
κατασκευής, όταν επιβάλλεται ένας περιορισμός τάσης. 

Στο 5ο Κεφάλαιο εξετάζεται η  γενικευμένη θεώρηση  του προβλήματος  της  βελτιστοποίησης 
μίας  κατασκευής,  όταν επιβάλλεται  ένας περιορισμός μετατόπισης.  Διατυπώνεται μία πρωτότυπη 
μεθοδολογία  βάσει  της  οποίας  είναι  δυνατή  η  αντιμετώπιση  τόσο  ισοστατικών  όσο  και 
υπερστατικών σκελετικών κατασκευών, οι οποίες χρησιμοποιούνται για τη μοντελοποίηση συνεχών 
μέσων, σύμφωνα με την κλασσική θεώρηση του προβλήματος βέλτιστης κατανομής υλικού.  

Στο 6ο Κεφάλαιο εξετάζεται η επέκταση της θεώρησης που παρουσιάστηκε στο 5ο Κεφάλαιο, 
σε προβλήματα 2Δ συνεχών μέσων, τα οποία αντιμετωπίζονται ως τέτοια. Και πάλι, εξετάζονται δύο 
προσεγγίσεις.  Σύμφωνα  με  την  πρώτη  προσέγγιση,  η  επανασχεδίαση  του  συνεχούς  μέσου 
επιτυγχάνεται  σε  επίπεδο  πάχους  πεπερασμένων  στοιχείων,  ενώ  σύμφωνα  με  την  δεύτερη 
προσέγγιση,  η  επανασχεδίαση  επιτυγχάνεται  μέσω  της  ανεξάρτητης  μετακίνησης  κόμβων  του 
πλέγματος,  ακόμα  και  εάν  αυτοί  ανήκουν  στο  ίδιο  πεπερασμένο  στοιχείο.  Επίσης,  εξετάζεται  η 
επανασχεδίαση  σύμφωνα  με  την  μέθοδο  ESO  (ολική  αφαίρεση  πεπερασμένων  στοιχείων)  και 
σύμφωνα με μία προτεινόμενη παραλλαγή της μεθόδου, η οποία προέκυψε ότι οδηγεί σε ανώτερες 
σχεδιάσεις, ενώ απαιτεί και λιγότερες επαναλήψεις.  

Στο  7ο  Κεφάλαιο  εξετάζεται  το  πρόβλημα  της  ελαχιστοποίησης  του  κόστους  μίας 
μηχανολογικής  κατασκευής,  μέσα  από  την  επιδίωξη  της  ελαχιστοποίησης  του  βάρους  της 
κατασκευής  και  την  ταυτόχρονη  επιδίωξη  της  μεγιστοποίησης  της  κοινοτυπίας  της  ίδιας 
κατασκευής.  Για  τον  σκοπό  αυτό,  παρουσιάζεται  μία  πρωτότυπη  διαδικασία  ομαδοποίησης  και 
διαγραφής δομικών στοιχείων σε σκελετικές κατασκευές. Επίσης, εξετάζεται η ελαχιστοποίηση του 
κόστους κατασκευής δεξαμενών αποθήκευσης πετρελαιοειδών ως παράδειγμα ελαχιστοποίηση του 
κόστους μίας πραγματικής κατασκευής από ελάσματα, λαμβάνοντας υπόψη το κόστος των μέσων 
σύνδεσης (συγκόλληση) αλλά και την αναξιοποίητη ποσότητα της πρώτης ύλης (φύρα). Το εν λόγω 
παράδειγμα αποτελεί αντιπροσωπευτική περίπτωση κατά την οποία η διαδικασία βελτιστοποίησης 
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πρέπει  να  διαμορφωθεί  κατάλληλα,  έτσι  ώστε  να  ανταποκρίνεται  στις  απαιτήσεις  της  εκάστοτε 
συγκεκριμένης εφαρμογής. 

Στο  8ο  Κεφάλαιο  διατυπώνεται  μία  πρωτότυπη  ευριστική  μέθοδος  συνδυαστικού  τύπου, 
κατάλληλη  για  την  ελαχιστοποίηση  του  βάρους  μίας  κατασκευής  αποτελούμενης  από 
τυποποιημένες διατομές εμπορίου. Ως εφαρμογές, εξετάζονται τυπικές περιπτώσεις από τον χώρο 
των  γερανογεφυρών,  ενώ  παρατίθεται  και  μία  εφαρμογή  μεγάλης  κλίμακας  (ελαχιστοποίηση 
βάρους υποστέγου αεροσκαφών). 

Στο 9ο Κεφάλαιο καταγράφονται επιγραμματικά τα συμπεράσματα τα οποία προκύπτουν από 
την παρούσα Διδακτορική Διατριβή, ενώ διατυπώνονται και σκέψεις για περαιτέρω έρευνα. 

Τέλος,  στο  Παράρτημα  Ι  παρατίθεται  μία  σειρά  παραδειγμάτων  βελτιστοποίησης 
πραγματικών κατασκευών είτε μελετώντας παραμετρικά τα βασικά σχεδιαστικά χαρακτηριστικά της 
κατασκευής (ανάλυση ευαισθησίας), είτε αξιοποιώντας τις δυνατότητες βελτιστοποίησης που είναι 
ενσωματωμένες σε εμπορικό λογισμικό ανάλυσης κατασκευών με τη Μέθοδο των Πεπερασμένων 
Στοιχείων (ΜΠΣ). 

Μέρος  της  παρούσης  Διδακτορικής  Διατριβής  έχει  καταγραφεί  σε  δύο  δημοσιεύσεις  σε 
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Preface 
The present PhD thesis concerns the optimization of engineering structures and more particularly 

the weight minimization  of  a  structure when  various  and  different  constraints  are  imposed.  This 
subject is most important and popular in the Engineering community, with a wide range of research, 
application and history. Based on  the  existing  literature,  the  structural optimization methodologies 
may  be  categorized  in  three  large  groups:  those  concerning  size  optimization,  those  concerning 
topology  optimization  and  those  concerning  shape  optimization.  The  first  group  includes  those 
methodologies  that  seek  the  cross‐section  of  the  structural  members  for  the  total  weight  to  be 
minimized and  for no constraint  to be violated. The second group  includes  those procedures which 
result in the formation of holes inside the design domain by appropriately moving inner nodes; in this 
way,  redundant material  is  removed and  the  structural weight  is minimized while no  constraint  is 
violated.  The  third  group  includes  those  methods  according  to  which  the  border  nodes  are 
appropriately moved so  that again  the structural weight  is minimized and all of  the constraints are 
fulfilled. In the most general case, the aforementioned optimization problems are not uncoupled. This 
is  the reason why  the  interest has been  focused on methodologies  that simultaneously deal with all 
three  problems.  From  this  viewpoint,  the  term  ‘layout  optimization’  refers  to  that  optimization 
procedure that seeks for the best distribution/configuration/layout of the available material so that the 
objective  target  is  achieved,  while  at  the  same  time  the  imposed  constraints  are  not  violated. 
According to G.I.N. Rozvany, a distinguishing person in the field of Computational Mechanics, there 
are  two  possible  approaches  for  the  layout  optimization  problem,  the  former  being  termed  as  the 
‘classical  layout optimization’ and  the  latter being  termed as  ‘advanced  layout optimization’.  In  the 
current Thesis, the aforementioned consideration was adopted, and served as a basis on which known 
optimization  techniques  were  investigated,  their  limits  were  defined  and  new  suggestions  for 
improving their performance were proposed. In addition, new novel approaches were introduced and 
evaluated through a comparison with already existing ones. 

The main  contribution  of  the  present  thesis  boils  down  to  the  formulation  of  a  novel,  energy‐
oriented,  weight  minimization  procedure,  which  was  used  to  successfully  solve  the  generalized 
problem  of  minimizing  the  structural  weight  under  a  displacement  constraint.  Extending  this 
approach, the problem of minimizing the structural weight under a stress constraint was also solved. 

In brief, in the present Thesis: 

 the  state‐of‐the‐art  procedures  for  optimizing  engineering  structures  were  gathered,  with 
emphasis being put on those procedures applicable to the shape and topology optimization of 
structures,  

 characteristic  literature  examples  were  investigated  for  understanding  better  the  applied 
procedures and disclosing weak points that needed to be improved, 

 new performance  indices were  introduced,  suitable  for evaluating  the examined optimization 
procedures, 

 variations of approaches  found  in  the  literature were  introduced,  the  variations providing  an 
improved performance with respect to the initially stated procedures, 

 new numerical schemes for structural optimization were developed,  
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 codes  in  FOTRAN, MatLab  and  APDL  (the  programming  language  found  in  Ansys, which  is  a 
commercial software for structural analysis) were developed and finally 

 the  entire  research work was  supported with  three  journal  papers  and  27  papers  in world 
congresses and international conferences. 

However,  as mentioned  earlier,  the main  contribution  of  the  present  Thesis was  the  successful 
handling of two types of optimization problems.  

More  particularly,  in  the  literature,  from  the  early  70s,  the  solution  to  the  single  constraint 
optimization  problem  was  known.  However,  this  type  of  problem  strictly  assumed  that,  at  the 
optimum,  not  only was  one  displacement  constraint  active  but  also  the  corresponding  degree  of 
freedom was  a priori known.  In  the present Thesis,  the generalization of  this problem was  solved 
meaning that the aforementioned a priori knowledge was removed. The solution was achieved using 
an  energy‐oriented  procedure  based  on  the  Lagrange  multipliers  method,  but,  opposing  to  the 
existing published approaches, the estimation of such a multiplier is avoided. 

Extending  the  aforementioned  proposed  approach,  the  theoretical  solution  to  the  problem  of 
imposing a  single  stress  constraint was also  solved.  In  this  case, again only one  constraint, a  stress 
constraint  this  time,  is  active  at  the  optimum  but  it  is  not  known  a  priori  the  structural member 
corresponding  to  the  active  constraint.  Once  again,  even  though  the  solution  was  based  on  the 
Lagrange  multipliers  method,  such  a  multiplier  was  not  necessary  to  be  estimated,  while  no 
assumptions  concerning  the  indeterminacy  of  the  structure  was  made.  Due  to  this  reason,  the 
proposed  approach  outmatches  the most  popular  and widely  known  Stress‐Ratio  (SR)  technique 
because the latter tends to make all structural members take on the maximum allowable stress (Fully 
Stressed Design), which  has  been mathematically  proved  to  be  an  optimal  design  only  if  certain 
conditions of determinacy hold.  

Regarding the structure of the present Thesis, in Chapter 1 the generalized problem of minimizing 
the  structural weight  is  stated  and  some  of  the modern  optimization methodologies  attacking  this 
problem  are  briefly  referred. More  particularly,  general  deterministic mathematical  programming 
methods  are  presented.  Similarly,  the  most  representative  stochastic  optimization  methods  are 
discussed.  In  the  sequel,  the  so‐called Optimality Criteria  are mentioned;  these  are  statements  that 
describe some sort of energy state at the optimum. In the same Chapter, the homogenization method 
by  Kikuchi,  the  SIMP method  by  Bendsøe,  the Method  of Moving Asymptotes  by  Svanberg,  the 
Bubble method by Eschenauer as well as the Evolutionary Structural Optimization (ESO) method by 
Xie and Steven are presented.  

In  Chapter  2,  some  of  the  most  well‐known  and  widely‐used  optimization  methods,  both 
deterministic  and  stochastic  are  thoroughly  evaluated  through  an  extensive  series  of  literature 
benchmarking  problems  (mathematical  functions  and  trusses).  Furthermore,  a  novel  hybrid 
optimization  method  combining  a  deterministic  search  direction,  using  Powell’s  method,  and  a 
stochastic determination of the step size, using Simulated Annealing, is introduced. According to the 
presented evaluation, this method outperforms the competition but has a higher computational cost. 

In Chapter 3,  the  structural optimization problem  is approached  from an energy viewpoint  that 
concerns  the, partial or  total,  removal of excessive material  from a  continuum aiming at  its weight 
reduction but without violating any of the  imposed constraints.  In  the same chapter  the compliance 
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constraint  optimization  problem  is discussed,  as well  as  the  problem  of minimizing  the  structural 
weight for a Fully Stressed Design (FSD). 

In Chapter 4, the optimization of a structure utilizing FSD is examined. In the beginning, skeletal 
structures, substituting the continuum, are examined, while in the sequel the continuum is examined 
as  such. More  particularly,  two  approaches  are  presented,  the  former  being  the  redesign  of  the 
continuum  using  finite  elements  of  constant  thickness  and  the  latter  using  for  the  redesign  finite 
elements of element‐wise variable thickness, thus permitting the uncoupled movement of the nodes, 
even  if  these nodes belong  to  the same element.  In  the sequel,  the application of  the  (FSD) and  the 
(ESO) methods  in  plates  is  examined.  Furthermore,  for  the minimum weight  of  a  3D  continuum 
through the total removal of finite elements, a removal scheme using the von Mises stress was applied 
and compared to a proposed variation, which the cases studied show that outperforms the originally 
stated  approach because  it  results  in better designs  and  in  a  lower number of  iterations. Finally,  a 
theoretical solution to the, as coined in the present Thesis, extended single stress constrained problem 
is introduced. 

In  Chapter  5,  the,  as  coined  in  the  present  Thesis,  extended  single  displacement  constrained 
problem is solved for skeletal structures. The solution is based on a novel redesign procedure and the 
validity of the proposed method is thoroughly examined through 48 examined cases. The applicability 
of this procedure extends to both determinate and indeterminate structures. 

In  Chapter  6,  the  applicability  to  2D  continua  of  the  procedure  introduced  in  Chapter  5  is 
examined, when  the  2D  continua  are dealt  as  such. Once  again,  two  approaches  are  examined  the 
former  being  the  implementation  of  constant  element‐wise  thickness  and  the  latter  being  the 
implementation of variable element‐wise thickness. On top of that, a variation of the (ESO) method is 
introduced.  According  to  this  variation,  the  criterion  for  selecting  the  redundant  material  (finite 
elements) to be removed is normalized with respect to the active part of the structure. This variation is 
shown to result in better designs and with a lower computational cost. 

In Chapter 7, the problem of minimizing the cost of an engineering structure is examined through 
minimizing  the  structural  weight  and  increasing  the  commonality  of  the  remaining  structural 
members.  To  this  end,  a  novel  procedure  for  skeletal  structures  is  introduced  implementing  two 
operators, one for grouping structural members with similar cross section (commonality) and one for 
eliminating redundant structural members. On top of that, the real‐life problem of minimizing the cost 
of oil  tanks  is examined.  In  this case,  for  the cost minimization,  the cost  for welding, as well as  the 
quantity of the remaining unexploited material (scrap), is taken into consideration.  

In  Chapter  8,  a  novel  heuristic  combinatorial  optimization method  is  introduced,  suitable  for 
minimizing the weight of structures assembled from standard beams or standard plates. As real‐life 
applications, crane girders and crane runway beams, as well as a hangar, are examined. 

In  Chapter  9,  the  conclusions  of  the  present  Thesis  and  ideas  for  further  research  are  briefly 
presented. 

Last,  in Appendix  I,  the  optimization  of  a  series  of  real‐life  engineering  structures  is  examined 
either  through  the  implementation  of  a  sensitivity  analysis  with  respect  to  the  basic  geometric 
characteristics of the structures or through the use of optimizers embedded in commercially available 
software suitable for structural analysis with the Finite Element Method (FEM). For the needs of this 
section, optimizers found in Ansys were used. 
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1.1. Introduction 
The term ‘optimization’ has always been one of the most popular terms, due to the fact that 

it reflects the desire of achieving a certain goal using the least possible sources. Therefore, 
this term has a classical and decisive importance, emerging in all expressions of life, from the 
creation of the universe itself and the everyday struggle for survival to the most unique human 
achievements. 

Looking back to the very birth of the universe and according to the most modern 
cosmogonic theory, at first, matter started to scatter after the Big Bang and then, slowly but 
progressively, the formation of the celestial bodies took place. However, these bodies are 
nothing else than matter restrained in stable structures, which are structures characterized by a 
low energy level. Therefore, the celestial bodies have been created through a sort of 
optimization procedure where the objective was the minimization of the energy level of the 
body. There is a great many number of examples in optimization found in the immediate 
environment of the human. The trunk of almost all trees has a larger cross-section near its root 
and becomes smaller towards the tree apex, thus both facilitating the development of a more 
effective nutrition network and allowing for carrying more safely strong wind loads. The fish 
and other creatures living in the water have hydrodynamic shapes, so that their motion in the 
water is characterized by low energy losses due to water friction; that is, with these shapes, 
the aforementioned creatures have been optimally adapted to their physical environment. 
Furthermore, the light bone structure of the birds, in combination with flexible flow-control 
surfaces (wings), forms a flying machine with improved characteristics. The list of such 
examples is very long, since the evolutionary procedure that takes place in nature is nothing 
else than preserving and updating those characteristics that endure a higher probability for 
survival, as the Darwinian approach dictates. In other words, it is about characteristics derived 
from some sort of optimization procedure aiming at maximizing the probability of survival. 
Of course, in all of these cases, the final result is not necessarily the best possible (optimum); 
however, it is significantly improved compared to the initial state and, in many cases, this is 
adequately enough. 

Apart from observing the way that nature implements the concept of optimization, man 
himself embodied this concept in his everyday life from the early moments of his existence. 
In order first to ensure his survival and then to improve his standard of living, man was forced 
to find ways of using the resources available in his surrounding environment. His first and 
main priority was to develop techniques both for finding food and for protecting himself from 
whatever he considered as a threat. Towards this direction, man started using pointed objects, 
such as pointed stones and branches. Based on his imagination and ingenuity, he started 
developing techniques in order to make his weapons more lethal; that is, to cause the 
maximum possible damage with the least possible effort. The same elements of imagination 
and ingenuity were also used in more amicable designs, such as the invention of the wheel 
(optimum shape for rolling), the use of clothes depending on the season (optimum use of 
natural fibres for protection against the cold during the winter and the heat during the 
summer), the construction of houses (optimum protection against the elements of nature) and 
the construction of ships (optimum means for sea transportations). 

Apart from seeking the best possible solutions for problems related to his survival, man 
started embedding the optimization concept in other aspects of life as well, such as athletics, 
art, military and religion. Numerous distinctive examples may be found in the ancient Greek 
civilization. In more details, during athletic competitions, an athlete had to perfect (optimize) 
his technique in order to achieve the best performance and win. The ancient Greek theatres 
are famous for their excellent acoustic; that is, they have been built in such a way (optimum 
way) so that the same crystal clear and loud sound is distributed all over the theatre. During 
the symposia, the delicacies were served in such an order and the day-beds were of such 
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shapes so that the guests could be highly pleased (optimization in delight). The battleships 
had a ram bow not only for minimizing the hydrodynamic resistance (optimizing the cruise) 
but also for ramming enemy ships (optimizing the military performance of the ship). The 
columns found in the ancient Greek temples have a circumferential uniform distribution of 
ribs; these ribs provide an optimum aestheticism when light is shed over them, as is apposite 
to places of worship, and an optimum structural reinforcement of the columns with respect to 
their strength against bending loads, as in earthquakes. In addition, Ancient Greek architects 
designed marble beams (coffer slabs, ceiling beams) using different techniques 
(stiffening/hollowing), in order to meet the relevant requirements, namely structural integrity 
and lightness. For instance, in order to facilitate the transportation of heavy marbles in the 
mountainous region of Apollo Epicurios at Bassae, instead of stiffening the porch beams, the 
architect decided to hollow them out reducing the weight by 50%, while it can be shown that 
these U-shaped beams were hollowed out to such a degree that the maximum bending stress 
remains lower than that of the initial block. 

Similar examples of applied optimization may be found in all civilizations and at all times. 
The common characteristic in these cases is that the optimal result is mainly sought though a 
trial-and-error procedure. However, during the last two centuries, the development of 
mathematics made possible the statement of both optimization problems and optimization 
solution procedures in a formal and systematic manner. Especially in the field of Mechanics, a 
titanic effort for developing, exploring and exploiting effective optimization procedures has 
been taking place during the past sixty years, that is, since the birth of Computational 
Mechanics. The most impressive achievements resulting from these efforts have been 
recorded as monumental moments of conquering the deep seas, the sky and the outer space. 
These achievements have been derived while seeking the distribution of the least material 
quantity required for building a structure which can carry with safety the externally applied 
loads while violating none of the imposed constraints related to the response of the structure. 
That is, these achievements result from trying to solve the generalized optimization problem 
of minimizing the structural weight. 

 
1.2. Statement of the generalized problem of minimizing the structural 
weight 

In the generalized problem of minimizing the structural weight, a design vector X  is 
sought such that a scalar quantity ( )f X  is minimized under the restriction that no imposed 

constraints, both equality ( ) 0jh =X  and inequality ( ) 0jg ≤X , are violated. The 
mathematical statement of this problem is the following:  
 

( ) [ ] , ,min , ,i i lower i i upperf x x x x= ≤ ≤X X                                        (1.1) 
 
such that:  
 

( )
( )

0,    1, 2,...,

0,    1, 2,...,
j

j

h j m

g j m m p

= =

≤ = + +

X

X
                                            (1.2) 

where: 
 

[ ]1 2 ... T
nx x x=X                                                     (1.3) 
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The quantity f  is called the objective function, the vector X  contains all the independent 
design variable of the problem, while the elements ix  of X  are called design variables. Each 
one of the design variables has its own domain. For mechanical structures, the domain of the 
design variables must be adequately wide. Having in mind that mechanical structures have a 
physical substance and are not abstract theoretical concepts, both the lower bounds ,i lowerx  and 

the upper bounds ,i upperx  must obtain logical values with physical meaning. The number n  of 

the design variables denotes the dimension of the solution space nR  of the corresponding 
optimization problem. In case where the maximization of the objective function is sought, 
then the following statement is used: 
 

( ) ( )( )max minf f= −X X                                                   (1.4) 
 
The number n  of the design variables depends on neither the number m of the equality 
constraints nor the number p  of the inequality constraints. In case were 0m p= = , then the 
optimization problem is characterized as ‘unconstrained’, while in the opposite case, that is 
when 0m≠  and/or 0p ≠ , then the optimization problem is characterized as ‘constrained’. 

With respect to the constraints, a constraint is called linear, when it is expressed as a linear 
combination of the design variables, and non-linear in any other case. Furthermore, an 
objective function is characterized as linear, when it is expressed as a linear combination of 
the design variables, and non-linear otherwise. In the special case where the objective 
function and all of the constraints (both equality and inequality) are linear, the optimization 
problem is characterized as linear. In any other case, it is characterized as non-linear. 

With respect to the existence of a minimum, generally speaking, the range of a function f  
defined in the solution space nR  may have none, one or many local minima. In the first case, 
the function is constant thus independent from the design vector: 
 

( ) ,   nf ct R= ∀ ∈X X                                                     (1.5) 
 
In the second case, there is a design vector optiX  for which it holds:  
 

( ) ( ) ,   ,  n
opti optif f R< ∀ ∈ ≠X X X X X                                        (1.6) 

 
In the third case, there are many design vectors _ , ,   1,2,..,local opti k k l=X  for which it holds: 
 

( ) ( )_ , _ ,local opti k local opti kf f ε< ±X X                                            (1.7) 
 
where ε  is a small positive quantity. Among the design vectors _ ,local opti kX , it is possible that 

there exists a design vector _ ,local opti gX  such that: 
 

( ) ( ){ }_ , _ ,min , 1,2,.., 1, 1,..,local opti g local opti kf f k g g l< = − +X X                      (1.8) 

 



D.T. Venetsanos – PhD Thesis ‐ 2010 

 P a g e  | 1.5 

In this case, the vector _ ,local opti gX  corresponds to the global minimum value (minimum 
between the minimum values of the function). At this point, it is clarified that a function f  
may have the same minimum value for different design vectors (solution multiplicity). 

The optimization problem, as stated in Eqs.(1.1-1.3), is general and applicable in any case 
that the minimum structural weight is sought. As mentioned in the Introduction, based on the 
existing literature, the methodologies attacking this problem may be categorized in three large 
groups: those concerning size optimization, those concerning topology optimization and those 
concerning shape optimization. The first group includes those methodologies that seek the 
cross-section of the structural members for the total weight to be minimized and for no 
constraint to be violated. The second group includes those procedures which result in the 
formation of holes inside the design domain by appropriately moving inner nodes; in this 
way, redundant material is removed and the structural weight is minimized while no 
constraint is violated. The third group includes those methods according to which the border 
nodes are appropriately moved so that again the structural weight is minimized and all of the 
constraints are fulfilled. In the most general case, the aforementioned optimization problems 
are not uncoupled. This is the reason why the interest has been focused on methodologies that 
simultaneously deal with all three problems; these are the so-called layout optimization 
methods. 

Without loss of generality, the optimization of a structure, or, more correctly, the 
optimization of the design of a structure, constitutes a systematic procedure of determining 
that design, among many feasible ones, that satisfies in the best possible way one or more 
objectives, while at the same time fulfils well-defined constraints referring to the design 
variables and the behavior of the structure under optimization. In most cases, the optimization 
of a structure is sought using an iterative procedure, the route of which as well as its ending 
are strongly affected by many factors, such as the size of the design domain, the form of the 
objective function, the imposed constraints and the accuracy used for terminating the iterative 
optimization procedure. Even though the scientific community is systematically and 
intensively active in the field of optimization, especially during the past decades, no 
procedure has been stated so far that can be proved to solve the generalized optimization 
problem successfully. This means that tracing the global optimum for the generalized 
optimization problem still remains the Holy Grail for the scientific community. 
 
1.3. Short historical review 

Optimization, as mentioned in Section 1.1, is dated since the creation of the world. 
However, the first optimization problems stated in the formal and strict language of 
mathematics are dated some centuries B.C. More specifically, Euclid (300B.C.) dealt with 
various optimization problems, such as finding the shortest distance between a given point 
and a given line, finding the shortest and the longest line that can be drawn from a given point 
to the circumference of a given point and finding the largest parallelogram that can be drawn 
for a parallelogram of given perimeter. In addition, Heron of Alexandria (100B.C.) dealt with 
the problem of finding the shortest distance that a light beam travels between two given points 
in space (Russo, 2004).  

Several centuries later, Fermat (1657) stated the general principle that light requires the 
minimum time when it travels between two points (Veselago, 2002), while Cauchy (1847) 
presented for the first time a mathematically-based optimization procedure (Method of 
Steepest Descent), in which first derivatives of the objective function were implemented 
(Cauchy, 1847). Due to the development of the numerical analysis, the mathematical theory 
of optimization was introduced and the so-called Mathematical Programming Optimization 
Methods were formed. The beginning of the modern era of optimization was denoted by the 
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pioneering papers by Courant (1943) on the penalty functions (Courant, 1943), Dantzig 
(1951) on linear programming (Dantzig, 1951), Karush (1939) and Kuhn & Tucker (1951) on 
the necessary and sufficient conditions for optimality in constrained problems (Karush, 1939; 
Kuhn and Tucker, 1951). During the 60’s numerous mathematical methods for solving non-
linear optimization problems were published. Rosenbrock (1960) presented the Method or 
Orthogonal Directions (Rosenbrock, 1960), Rosen (1960) suggested the Gradient Projection 
Method (Rosen, 1960), Zoutendijk (1960) introduced the Method of Feasible Directions 
(Zoutendijk, 1960), Hooke και Jeeves (1961) developed a pattern search method (Hooke and 
Jeeves, 1961), Davidon, Fletcher and Powell (1963) introduced the Variable Metric Method 
(Fletcher and Powell, 1963), Powell (1964) suggested the Conjugate Direction Method 
(Powell, 1964), Fletcher and Reeves (1964) presented the Method of Conjugate Gradients 
(Fletcher and Reeves, 1964), Nelder and Mead (1965) suggested a variation of the Simplex 
Method (Nelder and Mead, 1965), Box (1965) published the homonymous method (Box, 
1965), while Fiacco and McCormick (1966) formed the so-called Sequential Unconstrained 
Minimization Technique (SUMT) (Fiacco and McCormick, 1966).  

From the previous brief report of only but a few of the hundreds papers published during 
the 60s on optimization, it becomes clear that, during that period of time, optimization 
methods and their variations were being presented at very high rates. However, the vast 
majority of those methods and variations were deterministic, meaning that no matter how 
many times the procedure is initiated from the same design vector iniX , always the same final 
design vector finX  is derived, which is not ensured that describes the global optimum design 
(it often corresponds to a local optimum design). Since the methodologies of this type are 
based on the generalized optimization problem, it is possible to be used in any type of 
optimization problem, independently of the inherent nature of the problem, as long as the 
statement described in Eqs.(1.1, 1.2) is followed. Due to the general character of the 
aforementioned optimization procedures, initially it was believed that these procedures could 
be used for solving structural optimization problems as well. At the same time, significant 
steps forward were achieved in developing new computational systems which appeared more 
and more frequently with more and more computational power. Eventually, a strong belief 
started to be formed according to which it was just a matter of time until such optimization 
methods could be used for solving efficiently structural optimization problems. However, the 
initial enthusiasm did not last for very long. In practice, it was proven that the aforementioned 
methodologies presented two major drawbacks, the former being that these procedures could 
easily get trapped into local minima and the latter being that the computational cost increased 
significantly, even becoming prohibitive, as the number of the design variables increased. 
These two issues became the apple of discord between the members of the scientific 
community, who soon enough were separated in two groups: those in favor of the 
Mathematical Optimization Methods (MOPs) and those in favor of methods based more on an 
engineering viewpoint. 

Those advocating the (MOPs) were claiming that the necessary element for stating any 
kind of optimization method was the formulation of a sound mathematical background; 
therefore, according to their opinion, the right way of conducting research was by investing 
time and effort in extending already existing methods, in investigating in a more thorough 
way already stated methods or even in developing entirely new procedures but without any 
trade-offs concerning the existence of the aforementioned mathematical background. Within 
this framework, a step forward was the formulation of the sequential programming 
techniques, such as Sequential Linear Programming (SLP) and the most powerful Sequential 
Quadratic Programming (SQP) (Venkatamaran, 2002). However, the revolutionary new 
element was the introduction of randomness during the optimization procedures, which 
increased the probability of not getting trapped at local minima. Among the most important 



D.T. Venetsanos – PhD Thesis ‐ 2010 

 P a g e  | 1.7 

delegates of this trend, one must refer the Evolutionary Strategies (Rechenberg, 1989), the 
Genetic Algorithms (Goldberg, 1989) and the Simulated Annealing (Kirkpatrick, 1984). 

On the other hand, those advocating the use of an engineering viewpoint, supported the 
development of methodologies that had a less strict mathematical background but allowed for 
the engineer’s intuition and judgment to be a part of the optimization procedure. In the same 
category, one can find methodologies whose validity can be proved in a strict mathematical 
way but only for some specific cases, while their generalization is accepted as an adequate 
approximation. Within this frame, the famous Optimality Criteria (OC) methods were 
developed; that is methods which describe explicitly or implicitly some kind of energy state at 
the optimum. The (OC) statements were also combined with elements of numerical analysis, 
such as the gradient of a vector function and the binomial expansion, resulting in powerful 
optimization procedures. However, these procedures were suitable only for structural 
optimization problems exactly because they were formulated using inherent characteristics of 
the problem to be solved (strain energy or some other similar expression). The golden age of 
the (OC) methods, as proved from the huge numbers of published papers at that time, was the 
70s. Indicatively, it is mentioned that it was reported (Sargent, 1980) in 1979 papers on (OC) 
methods were being published at the rate of about 200 per month in more than 30 journals, 
not counting conference proceedings and special collections (a conference in 1979 added 450 
papers to the list). The spearhead of the (OC) approaches was the fact that they were able to 
handle very large numbers of design variables since they used the same simplified redesign 
formula for all of the design variables. 

Between the two aforementioned groups, the most significant difference concerns the 
perception with respect to the description of the objective target. From the Engineer’s 
viewpoint, the objective target is the formulation of a design which is adequately optimized 
under the strict assumption that all of the imposed constraints are either not violated or 
violated in such a way that the structural behavior is negligibly affected. In other words, from 
the Engineer’s viewpoint, the objective target is to find a feasible design that satisfactorily 
compromises the demand for high-level safety with the demand for a low cost. On the 
contrary, the mathematical perception requires a completely theoretical approach, without 
taking into consideration the physical interpretation of the involved quantities. Consequently, 
it rejects solutions which are either non- strictly proved to be optimal or non-optimal but of 
high practical value. As always in such cases, the optimum compromise lies somewhere in the 
middle, meaning that neither the theoretical-mathematical background nor the Engineer’s 
intuition and judgment may be neglected. As a matter of fact, it is the combination of those 
that results to the best possible designs, as far as structural optimization is concerned. 

From the short history review mentioned in this section, it becomes obvious that numerous 
methodologies and even more papers have been published on the layout optimization of 
structures. In the literature, one can find very enlightening review papers referring to hundreds 
of papers, while there are many textbooks that one may consult in order to find detailed 
information on a specific optimization method. Therefore, it is not the intention of the writer 
to refer to information that can be retrieved from the literature and for this reason a short 
description and an extended bibliography is reported for the most significant categories of 
optimization problems and/or procedure. 
 
1.4. Representative optimization methods 

A first categorization of the existing optimization methods is with respect to the explicit or 
the implicit way of searching for the optimum. From this viewpoint, there are methods that 
seek to explicitly minimize the structural weight, while, on the other hand, there are methods 
that aim at fulfilling a certain criterion that describes the structural energy state at the 
optimum. In addition, the explicit optimization methods may be further subdivided into two 
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categories, the former including the deterministic and the latter including the stochastic 
optimization methods.  

In the category of the explicit deterministic optimization methods, one may find the 
method by Hooke & Jeeves, the Simplex method, the Complex method (Box), the Powell’s 
method, the Steepest Descent Method, the Conjugate Gradient Method, the Conjugate 
Direction Method, the Sequential Linear Programming (SLP) and the Sequential Quadratic 
Programming (SQP).  

In the category of the explicit stochastic optimization methods, the most characteristic 
representatives of which are the Evolution Strategies (ES) with all of their variations, the 
Genetic Algorithms (GA), again with a vast number of variations, the Simulated Annealing 
(SA), the Tabu Search Method, the Swarm Particles Technique and the Harmony method. For 
each one of the aforementioned methods, a short description follows. 

Evolution strategy (ES) is an optimization technique based on ideas of adaptation and 
evolution. It was created in the early 1960s and developed further along the 1970s and later by 
Rechenberg, Schwefel and his co-workers, and belongs to the more general class of 
evolutionary computation or artificial evolution. Evolution strategies use natural problem-
dependent representations, and primarily mutation and selection as search operators. As 
common with evolutionary algorithms, the operators are applied in a loop. An iteration of the 
loop is called a generation. The sequence of generations is continued until a termination 
criterion is met. As far as real-valued search spaces are concerned, mutation is normally 
performed by adding a normally distributed random value to each vector component. The step 
size or mutation strength (i.e. the standard deviation of the normal distribution) is often 
governed by self-adaptation (see evolution window). Individual step sizes for each coordinate 
or correlations between coordinates are either governed by self-adaptation or by covariance 
matrix adaptation (CMA-ES). The (environmental) selection in evolution strategies is 
deterministic and only based on the fitness rankings, not on the actual fitness values. The 
simplest (ES) operates on a population of size two: the current point (parent) and the result of 
its mutation. Only if the mutant's fitness is at least as good as the parent one, it becomes the 
parent of the next generation. Otherwise the mutant is disregarded. This is a (1+1)-ES. More 
generally, λ mutants can be generated and compete with the parent, called (1+λ)-ES. In a 
(1,λ)-ES the best mutant becomes the parent of the next generation while the current parent is 
always disregarded (Beyer, 2001; Beyer and Schwefel, 2002; Rechenberg, 1971; Schwefel, 
1995; Schwefel, 2002). 

A Genetic Algorithm (GA) is a search technique used in computing to find exact or 
approximate solutions to optimization and search problems. Genetic algorithms are 
categorized as global search heuristics and are a particular class of Evolutionary Algorithms 
(EA) that use techniques inspired by evolutionary biology such as inheritance, mutation, 
selection, and crossover. Genetic Algorithms are implemented in a computer simulation 
according to which a population of abstract representations (so-termed ‘chromosomes’) of 
candidate solutions (so-termed ‘individuals’) to an optimization problem evolves toward 
better solutions. The most common type of representation is to use the binary of the Gray 
code, that is strings of 0s and 1s, but other encodings are also possible. The evolution usually 
starts from a population of randomly generated individuals and takes place in generations. In 
each generation, the fitness, that is the value of the augmented objective function, of every 
individual in the population is evaluated, multiple individuals are stochastically selected from 
the current population (based on their fitness), and modified (recombined and possibly 
randomly mutated) to form a new population. The new population is then used in the next 
iteration of the algorithm. With respect to the termination criteria of a typical GA, it is 
possible to use either a maximum number of generations or a satisfactory fitness level for the 
population. However, if the algorithm has terminated because the maximum number of 
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generations has been reached, it is not necessary for a satisfactory solution to have been 
found. A typical genetic algorithm requires a genetic representation of the solution domain 
and a fitness function to evaluate the solution domain. A standard representation of the 
solution is as an array of bits, while arrays of other types and structures can be used in 
essentially the same way. The main characteristic that makes these genetic representations 
convenient to handle is that their parts are easily aligned due to their fixed size, which 
facilitates simple crossover operations. However, it is possible to use variable length 
representations as well but in this case crossover implementation is more complex. The fitness 
function is defined over the genetic representation and measures the quality of the represented 
solution. The fitness function is always problem dependent. A representation of a solution 
might be an array of bits, where each bit represents a different object, and the value of the bit 
(0 or 1) represents whether or not the object is in the knapsack. In some problems, it is hard or 
even impossible to define the fitness expression; in these cases, interactive genetic algorithms 
are used. Once the genetic representation and the fitness function are defined, GA proceeds to 
initialize a population of solutions randomly, then improve it through repetitive application of 
mutation, crossover, inversion and selection operators (Goldberg, 1989; Goldberg, 2002; 
Fogel, 2006; Holland, 1975; Koza, 1992; Michalewicz, 1999). 

Simulated annealing (SA) is a related global optimization technique that traverses the 
search space by testing random mutations on an individual solution. A mutation that increases 
fitness is always accepted while a mutation that lowers fitness is accepted probabilistically 
based on the difference in fitness and a decreasing temperature parameter (Metropolis 
criterion). In (SA) terminology, the lowest energy, instead of the maximum fitness, is sought. 
(SA) can also be used within a standard GA algorithm by starting with a relatively high rate 
of mutation and decreasing it over time along a given schedule (Kirkpatrick et al, 1983; 
Cerny, 1985; Metropolis et al, 1953). Tabu search (TS) is similar to simulated annealing in 
that both traverse the solution space by testing mutations of an individual solution. While 
simulated annealing generates only one mutated solution, (TS) generates many mutated 
solutions and moves to the solution with the lowest energy of those generated. In order to 
prevent cycling and encourage greater movement through the solution space, a Tabu list is 
maintained of partial or complete solutions. It is forbidden to move to a solution that contains 
elements of the Tabu list, which is updated as the solution traverses the solution space. (TS) is 
a metaheuristic algorithm that can be used for solving combinatorial optimization problems 
(Glover and Laguna, 1997; Glover, 1989; Glover, 1990; Cvijovic et al, 1995). 

Harmony search (HS) is a metaheuristic algorithm (also known as soft computing 
algorithm or evolutionary algorithm) mimicking the improvisation process of musicians. In 
the process, each musician, that is each decision variable, plays, that is generates, a note, that 
is a value, for finding a best harmony, that is the global optimum, all together. The (HS) 
algorithm has a novel stochastic derivative (for discrete variable) based on musician's 
experience, rather than gradient (for continuous variable) in differential calculus. The (HS) 
method is a recent numerical optimization technique that imitates the musical performance 
process which takes place when a musician searches for a better state of harmony. Jazz 
improvisation seeks to find musically pleasing harmony similar to the optimum design 
process which seeks to find the optimum solution (Saka and Kameshki, 1998; Erdal and Saka, 
2006; Geem et al, 2001; Geem et al, 2002; Saka, 2003). 

The Particle Swarm Optimization (PSO) is a direct search, stochastic, population-based 
computer algorithm, modeled on swarm intelligence. Swarm intelligence is based on social-
psychological principles and not only does it provide insights into social behavior but also 
contributes to engineering applications. Social influence and social learning enable a person to 
maintain cognitive consistency. It is a fact that people solve problems by talking with other 
people about them. As they interact their beliefs, attitudes, and behaviors, they change. The 
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changes could typically be depicted as the individuals moving toward one another in a socio-
cognitive space. The (PSO) resembles this kind of social behavior. More particularly, first the 
optimization problem must be clearly described and then an objective function for measuring 
the efficiency of a proposed solution is defined. In addition, a communication structure is also 
created, assigning neighbors for each individual to interact with. Then a population of 
individuals, also known as particles or candidate solutions, is defined as random guesses at 
the problem solutions is initialized. In the sequel, an iterative process aiming at improving 
these particles is initiated. The objective function is estimated for every candidate solution. 
The individual's best solution is called the particle best or the local best. Each particle makes 
this information available to their neighbors. They are also able to see where their neighbors 
have had success. Movements through the search space are guided by these successes, with 
the population usually converging, by the end of a trial, on a problem solution better than that 
of non-swarm approach using the same methods (Kennedy and Eberhart, 1995; Eberhart and 
Kennedy, 1995; Eberhart and Shi, 1998; Shi and Eberhart, 1998a; Shi and Eberhart, 1998b; 
Eberhart and Shi, 2001). 

The ant colony optimization (ACO) is a probabilistic technique for solving optimization 
problems which can be reduced to finding good paths through graphs. (ACO) may be 
considered as a metaheuristic optimization procedure, the basic idea which is found in the 
way ants behave when seeking for food. In more details, ants initially wander randomly in 
search of food and when they succeed in doing so they return to their colony while laying 
down pheromone trails. If other ants detect such trails, it is highly probable to stop travelling 
at random and to start following the trails towards the food. Once they also find the food, they 
also return to their colony thus reinforcing the initial path with pheromone trails. However, 
the pheromone trails tend to evaporate thus trails corresponding to longer paths disappear 
faster than trails corresponding to shorter paths. In this way, shorter paths present higher 
pheromone densities and over time the ants are attracted to these densities thus preferring the 
shorter paths than the longer ones (Dorigo, 1992; Deneubourg et al, 1990; Di Caro and 
Dorigo, 1998; Dorigo and Blum, 2005; Dorigo and Gambardella, 1997; Dorigo et al, 1996; 
Dorigo and Stützle, 2004; Gutjahr, 2000; Stützle and Hoos, 2000; Serra and Venini, 2006). 

In the category of the implicit optimization methods, one may find the so-termed 
Optimality Criteria and the seminal works by Michell, Venkayya, Gelatly, Khot, Berke, 
Allwood and Patnaik. In the same wavelength, the so-called COC and DCOC methods, 
developed by Rozvany and his team, remain on the top of the OC procedures. Since the most 
recent of these works have been published more than twenty years ago, these procedures 
cannot be regarded as state-of-the-art, thus related literature references are recorded (Michell, 
1904; Venkayya, 1971; Allwood and Chung, 1984; Patnaik et al, 1993; Zhou and Rozvany, 
1992/93; Rozvany and Zhou, 1989/90; Rozvany and Zhou, 1990). 

Apart from all the aforementioned procedures, special reference must be made to 
methodologies that now are considered to be state-of-the-art. From this perspective, the 
homogenization method, the SIMP method, the Method of Moving Asymptotes (MMA), the 
bubble method as well as the ESO method must be referred. 

In general, it is possible, from structural elements based on boundary variations, to get 
final designs that are topologically equivalent to the initial choice of design. For this purpose, 
stable computational schemes often require some kind of remeshing of the finite element 
approximation of the analysis problem. On the contrary, the so-called homogenization method 
refers to optimal shape design where no such drawbacks are present. This method is related to 
modern production techniques and consists of computing the optimal distribution in space of 
an anisotropic material that is constructed by introducing an infimum of periodically 
distributed small holes in a given homogeneous, isotropic material, with the requirement that 
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the resulting structure can carry the given loads as well as satisfy other design requirements 
(Bendsøe and Kikuchi, 1988). 

Another approach of the shape optimization problem is to consider it as determining the 
optimal spatial material distribution for given loads and boundary conditions (SIMP method). 
In this way, every point in space is a material point or a void and the optimization problem is 
a discrete variable one. From this viewpoint, it is possible to describe various ways of 
removing this discrete nature of the problem by introducing a density function that is a 
continuous design variable. Domains of high density then define the shape of the mechanical 
element. For intermediate densities, material parameters given by an artificial material law 
can be used. Alternatively, the density can arise naturally through the introduction of 
periodically distributed, microscopic voids, so that effective material parameters for 
intermediate density values can be computed through homogenization. (Bendsøe, 1989). 

The ‘Method of Moving Asymptotes’ (MMA) developed by Svanberg is an iterative 
process, in each step of which a strictly convex approximation subproblem is generated and 
solved. The generation of these subproblems is controlled by the so-called ‘moving 
asymptotes’, which may stabilize and speed up the convergence of the general process. This 
method is able to handle all kinds of constraints, the only limitation being that the derivatives 
of the constraint functions can be calculated, either numerically or analytically (Svanberg, 
1987). 

The so-called ‘Bubble Method’ developed by Eschenauer is based on the iterative 
positioning of new holes (termed as ‘bubbles’) into the present structure of the component. 
This concept is therefore called the ‘bubble method’. The iterative positioning of new bubbles 
is carried out by means of different methods, among others by solving a variational problem. 
The insertion of a new bubble leads to a change of the class of topology. For these different 
classes of topology, hierarchically structured shape optimizations that determine the optimal 
shape of the current bubble, as well as the other variable boundaries, are carried out 
(Eschenauer, 1994). 

The ESO method proposed by Xie and Steven has been developed to simplify the 
traditional structural optimization procedures. Its main idea is to find a Optimum Uniform 
Design (OUD), meaning to find that thickness for which the imposed constraints become 
active and then systematically remove material from the least efficient regions. Two 
variations of this extremely but working simple concept is the so-called Additive ESO (ESO) 
and the co-called Bidirectional ESO (BESO). The former enables the initiation of the 
optimization procedure from an under-dimensioned structure and then starts adding material 
onto the most efficient regions. The latter allows for both addition and removal of material 
from the structure.  

Another very interesting category of optimization methods refers to integer programming 
techniques, which are suitable for solving the minimum structural weight problem when 
standard structural members, such as beams and plates, are to be used. In this category, one 
may find the branch-and-bound method and the cutting plane method of Gomory (Neumaier 
1990, Hansen 1992, Ratschek and Rokne 1995, Kearfott 1996, Horst and Tuy 1996, Pintér 
1996). 

Apart from dealing with only one target, it is possible to seek for the best compromise 
between two or even more targets, which, on top of that, may be contradictory. A typical 
example is the desire to have a top speed vehicle with low-fuel consumption. The Pareto 
technique and the formation of the Pareto front still remains one of the most popular tools for 
dealing with such problems. In the same category of multi-objective problems, one may find 
the so-called MultiDisciplinary Optimization (MDO) problems, for which various disciplines 
are taken into consideration in the same optimization problem statement. Last but not least, 
the Design of Experiments (DOE), the use of Artificial Neural Networks (ANN), as well as 
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the implementation of meshless methods must be referred. Finally, an illustrative literature 
review is presented at the end of this chapter. 
 
1.5. Recapitulation 

From the aforementioned short literature review, it is more than obvious that a lot of 
researchers have done a lot on the area of structural optimization. The published works cover 
a very wide range of structural optimization problems, both in terms of optimization problem 
type (size, shape, topology, layout) and in terms of the disciplines involved (static or dynamic 
elasticity, thermal, acoustics, fluids etc). It is possible to distinguish several seminal works 
that serve not only as breakthrough points but also as an inspiration for the others. It is also 
possible to endlessly debate about the most promising concepts and methods that should be 
followed in the quest of the Engineer’s Holy Grail, which is nothing less than the global 
optimum design. The bottom line is that the generalized structural optimization problem has 
not yet been solved thus the challenge for dealing with it either in its full statement or in some 
partial sub-problem statement remains a fascinating aim. 
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CHAPTER 2 
 
 

DIRECT SEARCH  

IN OPTIMIZATION AND  

INTRODUCTION OF A NEW  

HYBRID OPTIMIZATION METHOD 
 
 
 
 

 
Abstract 

In this chapter, some of the most popular direct search methods in optimization are investigated for their 
performance to be evaluated, while a new hybrid optimization procedure is introduced. More particularly, the 

deterministic methods of Box, Hooke & Jeeves, Nelder & Mead, the Sequential Quadratic Programming 
technique, the stochastic methods of Genetic Algorithms (GAs) and Simulated Annealing (SA), as well as a 
stochastic method implementing Artificial Neural Networks (EASY) are applied for the solution of various 
mathematical benchmark problems as well as of typical size structural optimization problems found in the 

literature. From this investigation it was found that for optimization problems with a small number of design 
variables, the (SA) procedure outperformed the other methods, while for optimization problems with a larger 

number of design variables it is preferable to choose a deterministic optimization procedure. Based on this fact, a 
new hybrid optimization procedure is introduced, the main features of which are the determination of the search 

direction using Powell’s method (deterministic procedure), the search of the optimal design along a search 
direction using (SA) (stochastic procedure) and the initiation of a local search using (SA) when convergence 
seems to have been achieved. The evaluation of the proposed method took place using twelve mathematical 

benchmark functions. The conclusion of this investigation was that the proposed hybrid scheme presented an 
exceptional behavior with respect to the location of the global minimum but at a high computational cost, which 

denoted the necessity for exploring other types of optimization schemes, such as indirect search procedures. 
 
 

Keywords 
Direct search methods, benchmark problems, hybrid optimization,  

deterministic direction exploration, stochastic search. 
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2.1. Introduction 
Optimization is the process of maximizing or minimizing the value of a desired objective 

function while satisfying the prevailing constraints. For this purpose, it is possible to use 
numerous techniques, the so-called optimization methods, which may be categorized in two 
large groups, the former being the direct search methods and the latter being the indirect 
search methods. For the methods of the former group, the aim is to explicitly minimize (or 
maximize) the value of a given objective function. For the methods of the latter group, the 
aim is to construct an optimality condition which is then tried to be reached, thus the quantity 
to be minimized (or maximized) is implicitly improved. In the literature, a great many number 
of methods of both groups may be found, some of which are more popular mainly due to 
some inherent characteristic that allows for a very good performance under certain conditions. 
Therefore, the vexed question is whether the existing optimization techniques may be 
considered adequately efficient for the solution of structural layout optimization problems. 
Furthermore, another interesting question to be answered is whether the combination of 
existing optimization techniques may provide an even better behavior with respect to locating 
the global minimum (or optimum), on the basis that the combination of the advantages of 
various methods may annihilate the disadvantaged, which each method separately suffers 
from. The aim of this chapter is to provide insight into these questions. Towards this 
direction, the following four-step procedure was carried out: 
Step 1: Retrieve from the literature some of the most popular optimization methods and 

evaluate them.  
Step 2: Apply the same methods to structural optimization problems.  
Step 3: Investigate the Genetic Algorithms (GA), which formulate a separate concept in 

optimization.  
Step 4: Based on the obtained experience, introduce a new optimization method and apply a 

thorough evaluation.  
In the next sections of the present chapter, the aforementioned steps are presented in more 

details. For each step, the implemented methods, the examined optimization problems, the 
used performance indices and the corresponding conclusions are recorded. 
 
2.2. Theoretical analysis 

The direct search methods explore the design space and seek the optimum through the 
explicit evaluation of the quantity to be minimized or maximized. The exploration may be 
performed either in a deterministic or in a stochastic way. In the former way, the same 
optimum design vector yields no matter how many times the optimization procedure is 
initiated from the same, but randomly selected, initial design vector. In the latter way, it is 
possible, but not necessary, to get different optimum design vectors even though the 
procedure is initiated from the same initial design vector.  

The deterministic optimization procedures may use either objective function values only 
(zero order or non-gradient methods), or gradients (first order methods) or even Hessian 
information (second order methods). The basic difference between gradient and non-gradient 
methods is the nature of the pattern search. In the former methods, the implementation of 
gradient and/or Hessian information demands the calculation of derivatives, which has a 
significant computational cost, may cause numerical instabilities and may result in locating 
local rather than global minima. On the other hand, the stochastic techniques are derivative-
free, at least at their basic version, but need to perform a thorough exploration and 
exploitation of the feasible region, which in turn results to a cumulated high computational 
cost. Obviously, each technique has its own advantages and disadvantages, while a logical 
addition to the existing deterministic and stochastic optimization methods would be the 
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introduction of deterministic elements as operators in a stochastic procedure and vice versa. In 
order to obtain a first-hand experience with respect to the performance of characteristic 
optimization methods, two sets of benchmark problems were formed.  

The first set of benchmark problems concerned mathematical functions (Benchmark 
Mathematical Functions - BMF), retrieved from the literature, with one variable (BMF1), two 
variables (BMF2), three variables (BMF3), four variables (BMF4) and eight variables 
(BMF5), respectively; that is a total of five cases for which the global optimum is known. For 
the trace of the optimum, six most popular methods, also retrieved from the literature, were 
applied. In more details, the Simulated Annealing (SA), which is a stochastic procedure, the 
Downhill Simplex (variation of Nelder & Mead), the Box (complex) method, and the Hooke 
& Jeeves method, all three being of deterministic nature, were used. More information 
concerning these procedures may be found in Chapter 1. For the implementation of the 
Sequential Quadratic Programming (SQP), the corresponding routine found in 
FORTRAN/IMSL was used. On top of that, a stochastic method implementing Artificial 
Neural Networks (ANN) and meta-models, developed at the Laboratory of Thermal 
Turbomachines (National Technical University of Athens) and named Evolutionary 
Algorithm SYstem v.1.3.4 (EASY) was also used. For the quantification of their efficiency, 
four evaluation indices were used while, in total, 2500 (2.5K) analyses were carried out. The 
investigation of the first set of benchmark problems is presented in the section ‘Investigation 
of the mathematical functions’. 

The second set of benchmark problems concerned the weight minimization of typical 
trusses, under a variety of constraints, both in type and in number. In more details, the same 
optimization algorithms, as of the first set of benchmark problems, were used (EASY 
excluded), while four very well-known problems (Skeletal Structural Benchmarks - SSB)) 
were selected, namely the 3-bar problem, two variations of the 10-bar problem and the 25-bar 
problem. The results were ranked according to the required number of iterations and to the 
ability of locating the global optimum. In this way, a clear impression regarding the 
performance of the aforementioned algorithms in size optimization of trusses was obtained. 
Again, the evaluation indices used for the first set of benchmark problems were applied, 
while, in total, 2000 (2K) analyses were carried out. The investigation of the first set of 
benchmark problems is presented in the section ‘Investigation of skeletal structures’. 

Apart from the aforementioned sets of benchmark problems, a further investigation was 
carried out with respect to the GAs. It is true that (GAs) consist a special class of optimization 
methods because they are based on the Darwinian approach concerning the evolution of 
species, an evolution that is of some billion years of age. The main characteristic of GAs is 
that not only do they implement a stochastic optimization procedure but also they handle a set 
of design vectors, and not only one design vector at a time. For the investigation of the GAs, 
the corresponding tool found in MatLab was extensively tested, using four mathematical 
functions, two from the first set of MBFs and two other (the so-called Powell and Suzuki 
functions). In total, eleven GA controlling parameters were examined. For the evaluation of 
the GA efficiency, two new performance indices were introduced (normalized sensitivity and 
cumulative probability), while, in total, 1.120.000 (1.12M) analyses were carried out. The 
investigation of the GAs is presented in the section ‘Investigation of Genetic Algorithms’. 

The experience obtained from the aforementioned investigations was quite revealing. One 
of the main observations was that the stochastic methods for direct search outperform the 
deterministic ones, when the number of the design variables is small. On the contrary, as the 
dimension of the design space increases so does the relative efficiency of the deterministic 
procedures with respect to the stochastic ones. Therefore, within an optimization scheme, a 
good idea would be to handle, with a stochastic (deterministic) approach, procedures that 
embed a small (large) number of design variables. Towards this direction, the proposed 
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hybrid procedure was formulated. In more details, a typical deterministic optimization scheme 
consists of two operators, the former regarding the estimation of the direction that must be 
followed (search direction) and the latter regarding how far the aforementioned direction 
should be followed (step size). The search direction is described by a vector whose dimension 
is, obviously, equal to the dimension of the design space. As a result, the higher this 
dimension is the more design variables are involved, thus a deterministic scheme seems more 
appropriate for solving the problem of the search direction. In the present study, the Powell’s 
method was selected for this task. The reasoning behind this selection was straightforward: 
Powell’s method is simple to program and very powerful due to the so-called ‘left-shifting’ of 
the pattern search that Powell introduced. On the other hand, the step size is a scalar quantity, 
thus its estimation along a search direction may be expressed as a 1-D optimization problem; 
in turn, a stochastic procedure seems more suitable for this estimation. In the present study, 
the (SA) algorithm was selected for this task. Again, the reasoning behind this selection was 
straightforward: the (SA) approach significantly outperformed the other methods for the 
examined 1-D mathematical benchmark function. Apart from the aforementioned operators, 
another operator was introduced as an effort to provide the optimization procedure with the 
ability to escape from potentially local minima. This phase is nothing else than a local search, 
using the (SA) approach, within a sphere around the current optimum design vector. The 
iterative application of the aforementioned operators consists the proposed optimization 
procedure. For its evaluation, another set of mathematical benchmark functions was 
formulated. In more details, the aforementioned benchmark mathematical functions (BMF1), 
(BMF2), (BMF4) and (BMF5) were examined, while two more variations for each function 
were introduced and examined (in total, twelve cases). In addition, three performance indices 
were recorded while a comparison with the (SA), the Powell method, the Hooke & Jeeves 
method and the Nelder & Mead method was carried out. In total, 7200 (7.2K) analyses were 
carried out. The investigation of the first set of benchmark problems is presented in the 
section ‘The proposed hybrid optimization procedure’. 

One important aspect concerning the performance of an optimization procedure is the way 
the constraints are handled. This task can be carried out in various ways, such as the use of 
penalty functions (exterior, interior or combination of them), where the initial constrained 
optimization problem is turned into a sequence of unconstrained optimization problems. The 
same optimization algorithm, when combined with different penalty functions, may provide 
different outputs (converged value and number of required iterations). Therefore, in order to 
evaluate the optimization algorithm itself, it is necessary to eliminate any beneficial 
contribution originating from the chosen penalty method. In the investigation presented in this 
chapter, if a constraint was violated, then the objective function was given a very large value 
(hard kill penalization scheme). This choice pushed the optimization algorithms to their limits 
because this kind of penalization is definitely hard, as its name implies, since no distinction 
between design vectors causing small or large violations was made.  

Another very important aspect in evaluating an optimization algorithm is related to its 
sensitivity to various parameters, such as the initial design vector. If different optimization 
methods are initiated from the same design vector, then it is highly possible to get different 
optimum values. Therefore, in order to get a representative picture of the behavior of an 
optimization method it is required to perform a parametric investigation; that is to run the 
method many times using different initial values for the governing parameter. In the 
investigation presented in this chapter, each one of the benchmark functions was analyzed by 
each one of the tested methods 100 times using different initial design vectors. Especially for 
the (SA), the parametric investigation was performed with respect to the initial temperature, 
which is a governing parameter; on the contrary, the initial design vector does not play any 
role because, according to the concept of (SA), all the tested design vectors are randomly 
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formed (there is no dependency between two successive design vectors). Furthermore, 
(EASY) was excluded from this parametric investigation because (EASY) asks only for the 
domain of the design variables and not for an initial design vector as well (results from EASY 
are discussed separately).  
 
2.3. Investigation of mathematical functions 

The first set of benchmark problems, concerning mathematical functions retrieved from the 
literature, is briefly presented in the next paragraph. In the sequel, the evaluation indices used, 
as well as the analysis carried out, a brief discussion and the conclusions drawn are stated. 
 
2.3.1. Definition of the Benchmark Mathematical Functions (BMF) 
2.3.1.1. Benchmark Mathematical Function - 1  (BMF-1) 

The one-variable benchmark function used was (let it be BMF1): 
 

( ) 10sin sin
3
xf x x ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
                                                (2.1) 

 
where [ ]2.7,  7.5x∈ . The graph of (Eq.2.1) is shown in Fig.2.1a. For the aforementioned 
domain, the global minimum is located at 5.145x =  with min 1.8996f = − , while two more 
local minima also exist. 
 
2.3.1.2. Benchmark Mathematical Function - 2  (BMF-2) 

The two-variable benchmark function used (let it be BMF2) was the Rastrigin function 
for the 2-D space: 
 

( ) 2 2
1 2 1 2 1 2, cos(18 ) cos(18 )f x x x x x x= + − −                                   (2.2) 

 
where [ ]1 2, 1,  1x x ∈ − . For the specific domain, (Eq.2.2) has 50 local minima and 1 global 

minimum located at ( ) ( )1 2, 0,0x x =  with min 2.0f = − . The iso-curve graph of (Eq.2.2) is 
illustrated in Fig.2.1b. 
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2.3.1.3. Benchmark Mathematical Function - 3  (BMF-3) 
The three–variable benchmark function used (let it be BMF3) was the constrained 

Rosenbrock function: 
 

( )1 2 3 1 2 3, ,f x x x x x x= −                                                  (2.3) 
 
where [ ]1 2 3, , 0,  42x x x ∈ , while the following additional constraint was also imposed: 
 

1 2 30 2 2 72x x x≤ + + ≤                                                  (2.4) 
 
The global minimum of (Eq.2.3) is located at ( ) ( )1 2 3, , 24,12,12x x x =  with min 3456f = − . 
 
2.3.1.4. Benchmark Mathematical Function - 4  (BMF-4) 

The four-variable benchmark function used (let it be BMF4) was: 
 

( ) ( )
4

4 2
1 2 3 4

1

1, , , 16 5
2 j j j

j

f x x x x x x x
=

= − +∑                                     (2.5) 

 
where [ ]1 2 3 4, , , 4.0,  0x x x x ∈ − . The global minimum of (Eq.2.5) is min 156f = − . 
 
2.3.1.5. Benchmark Mathematical Function - 4  (BMF-4) 

The eight-variable benchmark function used (let it be BMF5) was the Rastrigin function: 
 

( ) ( )
8

2

1
80 10cos(2 )m m

m
f x x xπ

=

= + −∑r                                        (2.6) 

 
where [ ]0,0,...,0 ,  1,...,8mx m∈ = . The global minimum of (Eq.2.6) is min 0f = . 
 
2.3.2. Evaluation Indices 

In order to evaluate the performance of the tested optimization algorithms, four evaluation 
indices were used. Three of them are well-known indices, while a new index is introduced for 
quantifying the probability of tracing the global optimum. 

 
2.3.2.1. Probability of getting the global minimum and near global minimum values.  

Εach Mathematical Benchmark Function was analyzed 100N =  times. The tested 
algorithm did converge (successive runs) sN  times but f sN N N= −  times failed to converge 
within the prescribed limits (maximum number of function evaluations, maximum number of 
iterations etc) or the converged solution failed when checked after the completion of the 
optimization procedure for constraint violations. Among the sN  results, there was a minimum 

,minsF  and a maximum ,maxsF  value. The range ,min ,min,s sF F⎡ ⎤⎣ ⎦  was divided in 5 intervals of the 

form ,min, ,min,,s j s jF F⎡ ⎤⎣ ⎦  where ( ) ( ),max, ,min ,max ,min1 / 5s j s s sF F j F F= + − ⋅ −  and 1,..,6j = . 

Obviously, for 1j =  it holds ,min,1 ,mins sF F= . The probability of getting a value F  within the 

interval ,min ,max,,s s jF F⎡ ⎤⎣ ⎦  was defined as: 

( ) ( )Pr /FF N N=                                                    (2.7a) 
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or equivalently as: 
 

( ) ( )
,max,,max,Pr 1

s js j F FF F N N ≤≤ = ∑                                      (2.7b) 
 
(Eqs.2.7) represent the cumulative probability and the corresponding histograms, for each one 
of the examples and for all the tested methods (EASY excluded), were plotted. It is 
emphasized that (Eq.2.7) must be evaluated in combination with the width of ,min ,max,s sF F⎡ ⎤⎣ ⎦  
(see Section 2.3.2.3, below). Evidently, the performance of an algorithm is better when the 
probability of getting results within the first interval is high and the range ,min ,max,s sF F⎡ ⎤⎣ ⎦  is 
short. Furthermore, the plots of cumulative probability implicitly inform on the number of 
successive runs, which is another performance index. The total cumulative probability is 
equal to ( ) ( ),maxPr s sF F N N≤ = , thus multiplication of ( ),maxPr sF F≤  by N , which is 

equal to 100 , gives sN . 
 
2.3.2.2. Average and standard deviation of the required evaluations of the objective 
function.  

Another performance index of an algorithm is the total number of objective function 
evaluations required until convergence is achieved. Alternatively, the total number of 
iterations or the CPU time may be used. 
 
2.3.2.3. Range of the objective function minima. 

As mentioned in 1 above, for each benchmark function and for each algorithm, among the 
sN  results (optima), there was a minimum ,minsF  and a maximum ,maxsF  value. It is evident 

that the shorter the range ,min ,max,s sF F⎡ ⎤⎣ ⎦  is, the better the optimization algorithm is because the 
deviation from the global optimum is small.  
 
2.3.2.4. Convergence history.  

In order to demonstrate the behavior of each one of the tested optimization algorithms, the 
convergence history of the analyses that resulted in the global optimum was recorded and 
plotted. 
 
2.3.3. Numerical Results 

The results of the current work are illustrated in the Figures 2.2-2.6. In total, four indices 
were used for the evaluation of the tested methods: 
 
2.3.3.1. Results for (MBF1) 

The results of the investigation concerning the one-variable benchmark function are 
illustrated in Fig.2.2. Especially for this function, it is possible to locate in an analytical way 
the minima within the examined domain. As Fig.2.1a illustrates, there are three minima; 

min, 1.8996globalF = −  (global minimum) and two local minima min, ,1 1.1999locF = −  and 

min, ,1 0.317locF = − . The results obtained for this case showed that all algorithms converged to 
one of these minima, thus there was no need to create a cumulative probability diagram; 
instead, the probability of converging to each one of the aforementioned values was 
estimated. In more details, Fig.2.3a shows this probability, defined as ( )min, /k sN N  where 

1,2,3k =  respectively for the aforementioned minimum values. It is noted that no failures 
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were observed (all methods gave 100sN = ). Evidently, (SA) outperformed the other 
optimization methods in terms of locating the global optimum. However, it required a 
significantly larger number of objective function evaluations (Fig2b). Finally, the 
convergence history diagrams showed that the selected penalty scheme did push the tested 
optimization algorithms to their limits (peaks along the convergence history curve). 
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(c) convergence history 

Figure 2.2: Results for the one-variable benchmark function 
 
 
2.3.3.2. Results for (MBF2) 

The results of the investigation concerning the two-variable benchmark function are 
illustrated in Fig.2.3. As Fig.2.3a shows, only (SA) managed to converge to an acceptable 
value in all 100 runs. Furthermore, as Fig.2.3c shows, the deviation from the global minimum 
is least for (SA). Therefore, it is evident that (SA) outperformed the other methods in terms of 
locating the global minimum. However, it required a significantly larger number of objective 
function evaluations (Fig3b). On the contrary, SQP required the least number of function 
evaluations but performed worse since it got trapped to a local minimum (Fig.2.3a) and had a 
wider range of results(Fig3c). 
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Figure 2.3: Results for the two-variable benchmark function 
 
The convergence history diagrams (Fig.2.3d) show that peaks do appear due to the hard 
penalty scheme selected. 
 
2.3.3.3. Results for (MBF3) 

The results of the investigation concerning the three-variable benchmark function are 
illustrated in Fig.2.4. This time SQP outperformed the other methods because it required the 
least number of function evaluations (Fig.2.4b), converged only to the global optimum 
(Fig.2.4c) and appeared negligible failures (Fig.2.4b).  
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Figure 2.5: (continued): Results for the three-variable benchmark function 
 
On the contrary, Hooke-Jeeves and Nelder-Mead algorithms presented a very poor 
performance (high number of failures, wide range of minima while Hooke-Jeeves converged 
to values away from the global minimum). However, it is strongly emphasized that this poor 
behavior was due to the domain of the initial design vectors. When this domain was 
narrowed, the performance became significantly better. The same was valid for Box as well. It 
is also noted that Fig.2.4d does not include convergence histories for Hooke-Jeeves and 
Nelder-Mead due to presentation reasons (they presented very strong peaks and valleys).  
 
2.3.3.4. Results for (MBF4) 

The results of the investigation concerning the four-variable benchmark function are 
illustrated in Fig.2.5. 
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Figure 2.6: Results for the four-variable benchmark function 
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This time (SA) outperformed the other methods in terms of locating the global minimum 
because it presented the best cumulative probability distribution with no failures (Fig.2.5a) 
and the resulting range of the objective value functions was quite narrow (Fig.2.5c). However, 
as in the previous cases, it required a significantly larger number of objective function 
evaluations (Fig.2.5b). On the contrary, SQP presented the worst behavior, because it got 
trapped in a local minimum (Fig.2.5a), while Box and Hooke-Jeeves presented a quite good 
behavior. The convergence history diagram (Fig.2.5d) shows that this time all algorithms did 
not encounter problems with the imposed penalty scheme. 
 
2.3.3.5. Results for (MBF5) 

The results of the investigation concerning the eight-variable benchmark function are 
illustrated in Fig.2.6. 
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Figure 2.7: Results for the eight-variable benchmark function 
 
Again (SA) outperformed the other methods in terms of locating the global minimum because 
it presented the best cumulative probability distribution with no failures (Fig.2.6a) and the 
resulting range of the objective value functions was quite narrow (Fig.2.6c). However, as in 
all previous cases, it required a significantly larger number of objective function evaluations 
(Fig.2.6b). From the same figures, it is evident that Box also presented a very good behavior. 
The convergence history diagram (Fig.2.6d) shows a quite smooth convergence (weak peaks 
and valleys). It is also noted that for presentation reason the maximum value along the 
horizontal axis is 100. 
 
2.3.3.6. Results from (EASY) 

As mentioned before, EASY is a GA-based optimization software that may also implement 
Artificial Neural Networks (ANN). The benchmark functions used in the current work were 
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optimized with EASY (with and without the activation of ANN). The results (Table 1) 
showed that in all cases the global minimum was located.  
 
Table 2.1: Results from EASY 

 MBF1 MBF2 MBF3 MBF4 MBF5 
Optimum (without ANN) -1.8996 -2.0000 -3456 -156.665 0.0000 
Iterations (without ANN) 980 1050 2048 1015 5553 
Optimum (with ANN) -1.8996 -2.0000 -3456 -156.665 0.0000 
Iterations (with ANN) 980 785 1011 1750 1481 
 
2.3.4. Conclusions 

The investigation presented concerning the application of popular deterministic and 
stochastic optimization methods in tracing the global minimum of Mathematical Benchmark 
Functions showed that, for the examined functions, none of the tested optimization algorithms 
outperformed the others. However, especially for the MBF1, it was found that the (SA) 
algorithm did outperform the competitive optimizers, thus strongly suggesting that (SA) 
should be the preference for such type of problems. 
 
2.4. Investigation of skeletal structures 

The second set of benchmark problems, concerning the weight minimization of skeletal 
structures retrieved from the literature, is briefly presented in the next paragraph. As in the 
Section ‘Investigation of Benchmark Mathematical Functions’, the evaluation indices used, as 
well as the analysis carried out, a brief discussion and the conclusions drawn are stated. 
 
2.4.1. Description 

The cases studied were three plane trusses, namely the 3-bar truss and two variations of the 
10-bar truss, and a space truss, namely the 25-bar truss. All the Finite Element Analyses 
performed were based on an in-house code.  
 
2.4.2. Skeletal Structure Benchmarks (SSB1) 
2.4.2.1. (SSB1): 3-bar plane truss 

The minimum weight of the 3-bar plane truss illustrated in Fig.2.1a is sought. The 
topology of the structure is fixed and only the cross-sectional areas of the bars may change. 
The structure is subjected to two load cases (see Fig.2.1). The allowable stress is equal to 

20o ksiσ =  both in tension and in compression. This limitation is imposed to all bars. The 
displacement constraints are 0.20ou in= ±  and 0.05ov in= ±  respectively for the horizontal and 
the vertical direction respectively. Obviously these constraints refer to the only free node of 
the structure The modulus of elasticity is considered to be 30,000E ksi= , while the material 
density is 30.1 /o lb inρ = . It is noted that there is no lower bound for the cross-sectional areas, 
which are the design variables of the optimization problem.  

 
2.4.2.2. (SSB2, SSB3): 10-bar plane truss (variation A – variation B) 

The minimum weight of the 10-bar plane truss illustrated in Fig.2.1b is sought. Again, the 
topology of the structure is fixed and only the cross-sectional areas of the bars may change. 
The allowable stress is equal to 25,000o psiσ =  both in tension and in compression, while this 
limitation is imposed to all bars. The displacement constraints for all the free nodes of the 
structure are 0.20o ou v in= = ± ; that is the same displacement limitation is imposed for both the 
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horizontal and the vertical direction. The modulus of elasticity is considered to be 710E psi= , 
while the material density is 30.1 /o lb inρ = . The lower bound for the design variables (cross-
sectional areas) is 2

min 0.1A in= . In the present work, two variations concerning the loads that 
the structure is subjected to are studied.  
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32
0"

320"320"
P1

P2  
(a) (b) 

Figure 2.8: Problem definition for (a) the 3-bar truss and (b) the 10-bar truss 
 
2.4.2.3. (SSB4): 25-bar space truss (power transmission tower)  

The minimum weight of the 25-bar space truss illustrated in Fig.2.2 is sought. This 
structure represents a tower used for carrying transmission lines. Once again, the topology of 
the structure is fixed and only the cross-sectional areas of the bars may change. The allowable 
stress is equal to 40,000o psiσ =  in tension. The allowable compressive stresses are shown in 
Fig.2.2. The displacement constraints are 0.35o ou v in= = ± , that is the same displacement 
limitation is imposed for both the horizontal and the vertical direction, only for the top most 
nodes 1 and 2 (see Fig.2.2). The modulus of elasticity is considered to be 710E psi= , while 
the material density is 30.1 /o lb inρ = . The lower bound for the design variables (cross-
sectional areas) is 2

min 0.1A in= . It is noted that the bars of this structure are grouped, as shown 
in Fig.2.2. 

Figure 2.9: Problem definition for the 25-bar truss 
 
2.4.3. Results 

For the cases studied, the upper bound for the design variable (cross-sectional area) was 
selected to be equal to 2100uX in= . The main reason for this choice was based on the fact 
that from a Fully Stressed Design (FSD) analysis it was possible to get a good impression 
concerning the order of the cross-sectional areas corresponding to the optimum design (the 
selected value 2100uX in=  was adequately large). Not imposing an upper limit, or 
equivalently letting the upper limit be infinite, would force the optimization methods to 

Variation A 

1P [klb] 500 

2P [klb] 150 
 
Variation B 

1P [klb] 0 

2P [klb] 100 

Load case #1 

xP [lb] -50 

yP [lb] -100 
 
Load case #2 

xP [lb] +50 

yP [lb] 0 

Group Bars 
1 1 
2 2, 3, 4, 5 
3 6, 7, 8, 9 
4 10, 11 
5 12, 13 

6 14, 15, 16, 
17 

7 18, 19, 20, 
21 

8 22, 23, 24, 
25 

 

  Applied force [lb] 

Case Node 
xF  yF  

zF  

1 

1 1000 10000 -5000 

2 0 10000 -5000 

3 500 0 0 

6 500 0 0 

2 
1 0 20000 -5000 

2 0 -20000 -5000 
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explore and exploit a very large domain, thus increasing the computation cost in a 
meaningless way, since from the FSD analysis it was already estimated that no cross-sectional 
area would exceed the aforementioned bound.  

With respect to the results of the current work, these are illustrated in Figures 2.3-2.6. The 
evaluation of the tested optimization algorithms was based on four indices presented below. 
 
2.4.3.1. Results for (SSB1) 

The results of the investigation concerning the 3-bar problem are illustrated in Fig.2.3. 
Especially for this case, it is possible to estimate the global minimum, which is 

min, 100.0globalW lb= , in an analytical way [8]. The results obtained for this case showed that 
(SQP) outperformed the other methods because it required the smaller number of objective 
function calls (Fig.2.3b), it presented the only two failures (Fig.2.3a) and it converged to the 
optimum result in all successful analyses (Fig.2.3c). On the contrary, Box presented the worst 
behavior with the lowest percentage of successful analyses (Fig.2.3a) and the largest range of 
optimum values (Fig.2.3c). However, at this point it must be strongly emphasized that Box is 
based on the formation of the so-called ‘complex’; if the initial design vector forms an 
unacceptable ‘complex’, then no analysis is performed and this is the main reason for Box’s 
low percentage of successful analyses. Furthermore, (SA) performed very well in locating the 
global optimum (Figs.3a, 3c) but, in comparison to the other methods, it required a 
significantly larger number of objective function evaluations NFE , while it presented the 
largest standard deviation for NFE  as well (Fig.2.3b). Finally, the convergence history 
diagrams (Fig.2.3d) showed that the selected penalty scheme did push the tested optimization 
algorithms to their limits (peaks along the convergence history curve). 
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Figure 2.10: Results for the three-bar problem 
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2.4.3.2. Results for (SSB2) 
The results of the investigation concerning the first variation of the 10-bar problem are 

illustrated in Fig.2.4. Again, the obtained results showed that (SQP) outperformed the other 
methods, because it required the smaller number of objective function calls (Fig.2.4b), it 
presented now failures (Fig.2.4a) and it converged to the optimum result in all successful 
analyses (Fig.2.4c). As in the previous case study, Box presented the worst behavior with a 
very low percentage of successful analyses (Fig.2.4a) and the largest range of optimum values 
(Fig.2.4c). (HJ) and (NM) also presented a poor behavior. Especially (NM) had the second 
wider range of optimum values (Fig.2.4c). Furthermore, (SA) performed quite well in locating 
the global optimum (Figs.4a, 4c) but, in comparison to the other methods, it required a 
significantly larger number of objective function evaluations NFE , while it presented the 
largest standard deviation for NFE  as well (Fig.2.4b). It is worth mentioning that these 
differences between (SA) and the other methods were as high as of order 1 and this is the 
reason why a logarithmic scale was selected for the x-axis of Fig.2.4d. Finally, the 
convergence history diagrams (Fig.2.4d) showed that the selected penalty scheme was indeed 
hard because the convergence history curves, although smooth enough, were quite long.  
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Figure 2.11: Results for the ten-bar problem (variation A) 
 
2.4.3.3. Results for (SSB3) 

The results of the investigation concerning the second variation of the 10-bar problem are 
illustrated in Fig.2.5. Once again, the obtained results showed that (SQP) outperformed the 
other methods because it required the smaller number of objective function calls (Fig.2.5b), it 
presented now failures (Fig.2.5a) and it converged to the optimum result in all successful 
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analyses (Fig.2.5c). As in the previous cases, Box’s behavior was poor with a very low 
percentage of successful analyses (Fig.2.5a) and the largest range of optimum values 
(Fig.2.5c), while it never converged to the global optimum (distance between the bottom of 
the corresponding column and the line depicting minf  in Fig.2.5c). 
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Figure 2.12: Results for the ten-bar problem (variation B) 
 
(HJ) and (NM) also presented a poor behavior. In more details, (HJ) was characterized by a 
short range of optimum values (Fig.2.5c) but, like Box, it never converged to the global 
optimum. On the contrary, (NM) appeared a shorter range of optimum values (Fig.2.5c) and it 
did converge to global optimum (Fig.2.5a) but only a very few times (poor performance). 
Furthermore, (SA) did not perform as well as in the previous cases since its range of optimum 
values was quite wide (Fig.2.5c). Once again, in comparison to the other methods, (SA) 
required a significantly larger number of objective function evaluations NFE  and presented 
the largest standard deviation for NFE  as well (Fig.2.5b). Finally, the convergence history 
diagrams (Fig.2.5d) showed that the selected penalty scheme was indeed hard because the 
convergence history curves, although smooth enough, were quite long. It is also noted that, 
like in the previous case, a logarithmic scale was selected for the x-axis of Fig.2.5d. 
 
2.4.3.4. Results for (SSB4) 

The results of the investigation concerning the 25-bar problem are illustrated in Fig.2.6. 
This time the performance picture of the optimization algorithms was not so clear. 
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Figure 2.13: Results for the 25-bar problem 
 

In more details, (SQP) again required the smallest number of objective function calls 
(Fig.2.6b) and it converged to the optimum result in all successful analyses (Fig.2.6c) but it 
presented the second largest number of failures (Fig.2.6a). (SA) had the lowest number of 
failures (Fig.2.6a) and a negligible width of range of optimum values (Fig.2.6c) but appeared 
a worse cumulative distribution profile than SQP (Fig.2.6a) and required a significantly 
amount of re-analyses (Fig.2.6b). Box’s behavior was very poor because it resulted in an 
extremely wide range of optimum values (Fig.2.6c); (NM) presented a similar behavior 
(Fig.2.6c). On the other hand, (HJ) behaved very well in terms of required re-analyses 
(Fig.2.6b) and in terms of converging to the global optimum (Fig.2.6c) but its cumulative 
distribution profile was worse than that of (SA) or (SQP) (Fig.2.6a). Finally, the convergence 
history diagrams (Fig.2.5d) showed that the selected penalty scheme was quite hard because 
the convergence history curves did appear several peaks and were quite long. It is also noted 
that, like in the previous case, a logarithmic scale was selected for the x-axis of Fig.2.5d. 
 
2.4.4. Other penalty schemes 

Apart from the investigation presented above and due to the poor performance of Box, 
(HJ) and (NM), a further investigation was performed on these three optimization algorithms 
using other penalty schemes, namely the classical scheme for exterior penalizing and the 
inverse barrier and the inverse log barrier interior penalty functions. The result was that their 
behavior was dramatically improved as they almost always converged to the global minimum; 
the only drawback was the necessity for many iterations.  
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2.4.5. Conclusions 
The current work presented the application of some of the most popular optimization 

algorithms, namely Simulated Annealing (SA), Box, Hooke & Jeeves (HJ), Downhill Simplex 
(Nelder-Mead) and a Sequential Quadratic Programming (SQP) approach, in four cases of 
size optimization of trusses, namely the 3-bar problem, two variations of the 10-bar problem 
and the 25-bar problem which is a space truss. Each algorithm was applied to each case 100 
times initiating from a different design vector; especially for the Simulated Annealing the 
optimization procedure was initiating from a different temperature instead. The results 
obtained from the 2000 runs were evaluated according to four performance indices, namely 
the probability of getting the global minimum and near global minimum values (cumulative 
distribution profiles), the average and standard deviation of the required evaluations of the 
objective function, the range of the objective function minima and the convergence history. 
The output of the current investigation was that the SQP approach, in almost all cases, 
outperformed the other methods, because it required the least number of objective function 
evaluations, it presented a very high percentage of successive runs and the range of the 
optimum values was insignificantly wide. The (SA) presented a very good ability in locating 
the global optimum but proved to be very demanding in terms of computational cost. Box, 
(HJ) and (NM), when using a hard penalty scheme, generally presented a poor performance, 
while when the classical exterior or interior penalty methods were applied, their performance 
was impressively improved. 
 
2.5. Investigation of Genetic Algorithms 
2.5.1. Description 
Genetic Algorithms (GAs) have a history extending in several decades. Cannon, one of the 
earliest progenitors of that history noted that evolution was a learning process and made a 
direct comparison to individual learning (Cannon, 1932). Turing stated that there is an 
obvious connection between machine learning and evolution (Turing, 1950). Barricelli 
worked on John von Neumann’s high-speed computer at the Institute for Advanced Study in 
Princeton in the area of artificial life, in which numbers were placed in a grid and moved 
based on local interaction rules. His original research was published in Italian, but was 
republished in 1957 in English, while two additional publications extended his work 
(Barricelli, 1962a; 1962b). As noted in Fogel, Barricelli perhaps published the earliest record 
of any work in evolutionary computation (Fogel, 2006). In the late 1950s and early 1960s, 
evolutionary biologists were trying to model aspects of natural evolution on computers. By 
that time, it was not clear that this strategy could be applied to artificial problems. By 1962, 
researchers such as Box (Box, 1957), Friedberg (Friedberg, 1958; 1959), Bledsoe (Bledsoe, 
1962a; 1962b) and Bremermann (Bremermann, 1962) had all independently developed 
evolution-inspired algorithms for function optimization and machine learning. In the late 
1960s, Conrad offered a seminal contribution to artificial life (Conrad, 1969), the journal 
version of which was published by Conrad and Pattee (Conrad and Pattee, 1970). A 
population of cell-like individual organisms was subjected to a strict material conservation 
law that induced competition for survival. The organisms were capable of mutual cooperation 
as well as executing biological strategies that included genetic recombination and 
modification. No fitness criteria were introduced explicitly as part of the program. Instead, the 
simulation was viewed as an ecosystem in which genetic, individual, and population 
interactions would occur and behavior patterns would emerge. However, the work of the 
aforementioned researchers attracted little follow-up due to both the shortcomings that the 
methodologies presented suffered from and the lack of available powerful computer platforms 
at that time. A fundamental contribution is due to Rechenberg, who introduced the evolution 
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strategy technique, which was more similar to hill-climbing methods than to genetic 
algorithms (Rechenberg, 1965). In this technique, there was no population or crossover; one 
parent was mutated to produce one offspring, and the better of the two was kept and became 
the parent for the next round of mutation. In later versions, the idea of a population was 
introduced. Another very important development was due to Fogel, Owens and Walsh, who 
introduced the evolutionary programming technique (Fogel, Owens and Walsh, 1966). In this 
method, simple finite-state machines resembled candidate solutions to the investigated 
problems. Similarly to Rechenberg's evolution strategy, the algorithm worked by randomly 
mutating one of these simulated machines and keeping the better of the two. However, what 
was still lacking in both these methodologies was recognition of the importance of crossover. 
Holland was the first to explicitly propose crossover and other recombination operators. 
Although he had published other papers as well (Holland, 1973), his seminal work in the field 
of genetic algorithms came in 1975 (Holland, 1975). In this book, research and papers both by 
Holland and by his colleagues at the University of Michigan, perhaps for the first time, 
systematically and rigorously presented the concept of adaptive digital systems using 
mutation, selection and crossover, thus simulating processes of biological evolution as a 
problem-solving strategy. The book also attempted to put genetic algorithms on a firm 
theoretical footing by introducing the notion of schemata (Haupt and Haupt, 1998). That same 
year, De Jong's important dissertation established the potential of GAs by showing that they 
could perform well on a wide variety of test functions, including noisy, discontinuous, and 
multimodal search landscapes (De Jong, 1975). Another pioneer in GA optimization was 
Goldberg, with a landmark text published in 1989 (Goldberg, 1989), who believes that ‘Three 
billion years of evolution can't be wrong. It's the most powerful algorithm there is’. These 
foundational works were the cornerstone for the explosive development that followed in the 
next years (Michalewicz, 1996). By the early to mid-1980s, genetic algorithms were being 
applied to a broad range of subjects, such as biology, computer science, engineering, 
operations research, image processing, pattern recognition, physical sciences and social 
sciences to name but a few (Goldberg, 1989). Some examples of successful engineering 
applications in various industries is the use of GA by J. Deere to optimize plant production 
scheduling, the implementation of GA by Texas Instruments for circuit design to minimize 
computer chip sizes, the use of GA by General Electric for gas turbine design to increase fuel 
efficiency, which led to the development of the Boeing 777 engine, the use of GA by the US 
West to design fiber-optic cable networks, cutting design times from two months to two days, 
and saving US West $1 million to $10 million on each network design, and many more 
(Begley, 1995).  

Therefore, it is more than obvious that the performance of a GA is of major importance 
and controlled by various parameters. The aim of investigating GAs was to evaluate the 
influence that these parameters have on their performance, or equivalently to investigate the 
sensitivity of the GA performance with respect to the controlling parameters. The set of 
benchmark problems used for this investigation, also retrieved from the literature, is briefly 
presented in the next paragraph. In the sequel, the evaluation indices used, as well as the 
analysis carried out, a brief discussion and the conclusions drawn are stated. 
 
2.5.2. GA controlling parameters 
For the completeness of the text, a brief presentation of a typical GA is required. However, 
since there are many text books describing GAs very thoroughly (Holland, 1975; Goldberg, 
1989; Michalewicz, 1996), emphasis has been put only on presenting the parameters, along 
with their main options, that control the GA performance. Therefore, the parameters 
investigated in the present work are presented in the following paragraphs. 
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The parameter Generations determines the maximum number of iterations that the GA will 
perform and serves as a stopping criterion. It is emphasized that this quantity should not be 
confused with the Stall Generation parameter mentioned later. 

The parameter Population Size determines the number of individuals existing in each 
generation. It is clarified that the population size remains unchanged during the optimization 
process. 

The parameter Population creation determines the method that the creation of the initial 
population is based on. For the present work, the initial population was created randomly by 
implementing a uniform distribution.  

The parameter Fitness Scaling converts raw fitness scores obtained using the objective 
(fitness) function to values in a range that is suitable for the selection function. A specific 
function, called scaling function, specifies the way the scaling is to be performed. The scaling 
functions investigated were:  

• The Rank function, which removes the effect of the spread of the raw scores by scaling 
the raw scores according to the rank of each individual and not according to the score 
itself. The rank of an individual is defined as its position in the sorted scores (the fittest 
individual has rank 1, the next fittest has rank 2, etc).  

• The Proportional function, which makes the expectation proportional to the raw fitness 
score. It is noted that the performance of this function may be poor depending on the 
disparity of the raw scores.  

• The Top function, which scales the individuals with the highest fitness values equally, 
thus each one of these individuals has an equal probability of reproducing.  

• The Shift linear function, which scales the raw scores so that the expectation of the 
fittest individual is equal to a user-defined constant multiplied by the average score.  

The parameter Selection defines the parents for the next generation taking into 
consideration their scaled values. The following functions were investigated:  

• The Stochastic uniform function, which, as the name suggests, assigns parents 
stochastically. In more details, a line is constructed of segments each length of which is 
proportional to the expectation of each parent and then a movement along this line is 
performed in steps of equal size (one step for each parent). At each step the 
aforementioned movement ends in a segment and the corresponding parent is chosen. It 
is noted that the first step is a uniform random number less than the step size. 

• The Remainder function, which attributes each individual with a scaled value having an 
integer part and a fractional part. For the parent selection, the integer part is combined 
with the result of a roulette selection performed on the remaining fractional part. 

• The Uniform function, which, based on the expectations and the number of parents, uses 
a uniform distribution for the random selection of the parents (undirected search). 
Although the uniform selection is not a very useful search strategy, it is used for 
evaluation purposes.  

• The Roulette function, which simulates a roulette wheel. More particularly, a wheel is 
divided in as many sectors as the potential parents are and each sector has an area 
proportional to the expectation of the corresponding potential parent. In the sequel, a 
random number is used to select one of the sectors with a probability equal to its area, 
thus the corresponding parent is selected.  

• The Tournament function, which picks an individual to be a parent as the fittest out of a 
group of individuals which are randomly selected and evaluated. The size of the group 
is defined by the user.  

The parameter Crossover defines the way two individuals (parents) are to be combined so 
that a new individual (offspring or child) is created for the next generation. The crossover 
options investigated were:  
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• The Scattered crossover with which a new individual is created in a two-step procedure, 
the first step being the random creation of a binary vector and the second step being the 
use of information from the first or the second parent depending whether the 
aforementioned vector has an entry ‘1’ or ‘0’, respectively. 

• The Single point crossover with which a new individual is created in a two-step 
procedure. The first step is the random selection of an integer number scN  between 1 
and the total number of the design variables. The second step is the concatenation of 
information retrieved from the first parent and for the first scN  entries with information 
retrieved from the second parent and for the rest entries, respectively.  

• The Two point crossover, which, as the term suggests, is a single point crossover 
performed twice. In more detail, two integer number ,1tpN  and ,2tpN  between 1 and the 
total number of the design variables are selected. A new individual is created as follows: 
for the first ,1tpN  entries information is retrieved from the first parent, for the next 

( ),2 ,1tp tpN N−  entries information is retrieved from the second parent, while for the rest 
entries information is retrieved from the first parent again.  

• The Intermediate crossover with which children are created by a weighted average of 
their parents. The controlling quantity (Ratio) in this case is a random positive real 
number less or at most equal to one.  

• The Heuristic crossover uses the fitness values of the two parents to determine the 
direction of the search. The offspring are created according to the following equations: 

 ( )Offspring_1=Best parent + Best parent - Worst parentr , Offspring_2=Best parent  
 where r  is a random number between 0 and 1. 
The parameter Mutation is a genetic operator that alters one or more design variables 

(genes in the GA terminology) from its initial state. In this way entirely new design vectors 
can be formed and the GA may be able to arrive at a better solution than was previously 
possible. Mutation is an important part of the genetic search as it helps the prevention from 
stagnating at local optima. Mutation occurs during evolution according to a user-definable 
mutation probability, which should be set fairly low (as low as 0.01). If this value is high, 
then the search will turn into a primitive random search. The mutation options investigated 
were: 

• The Uniform mutation which is a two-step process. In the first step, the design variables 
to be mutated are defined. In the second step, each one of these variables is replaced by 
a uniform random value selected between the user-specified upper and lower bounds 
corresponding to each variable. 

• The Gaussian mutation which adds a random number, taken from a Gaussian 
distribution centered on zero, to each design variable that will be mutated. This 
procedure is controlled with two parameters, the first being the Scale and the second 
being the Shrink. The former parameter determines the variance at the first generation, 
while the latter parameter controls how variance shrinks as generations go by.  

The parameter Migration Direction is combined with the ability of evolving several 
subpopulations at the same time. In more details, individuals are said to migrate if they move 
from one subpopulation to another. The migration aims at replacing the worst individuals of a 
subpopulation with the best individuals from another subpopulation. Migration can be either 
unidirectional (Forward), where the n -th subpopulation migrates into the ( )1n + -th 
subpopulation, or bidirectional (Both), where the n -th subpopulation migrates not only into 
the ( )1n + -th subpopulation but also into the ( )1n − -th subpopulation. 
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The parameter Stall Generation terminates the algorithm if for a user-defined number of 
generations the value of the objective function presents negligible improvement.  
 
2.5.3. Examples 

From a theoretical point of view, all the aforementioned parameters have a significant 
influence on the performance of a typical GA. However, such a theoretical and vague 
evaluation should be quantified. Towards this direction, the present work investigated the 
parameters mentioned in Section 2. More particularly, eight parameters were studied using 
four well-known benchmark mathematical functions retrieved from the literature. The 
benchmark functions implemented are presented in the following Tables. In more details, the 
definition of the functions is presented in Table 1. 
 
Table 2.2: Names, expression and domain of the examined benchmark functions 

Function Mathematical expression Domain 
3-variable 
(Rosenbrock) 1 2 3 1 2 3( , , )f x x x x x x= −  1 2 3, , [0, 42]x x x ∈  

4-variable ( ) ( )
4

4 2

1 2 3 4
1

, , , 0.5 16 5j j j
j

f x x x x x x x
=

= − +∑  [ ]1 2 3 4, , , 4.0,  0x x x x ∈ −  

Powell 2 2 4 4

1 2 3 4 2 3 1 4( ) ( 10 ) 5( ) ( 2 ) 10( )f x x x x x x x x x= + + − + − + −
r  , 1, .., 4jx j∈ =  

Suzuki 2 2 2 2

1 2 3 4 1 3 4 2( ) 2 5 21 7 5f x x x x x x x x x= + + + − − + −
r  , 1, .., 4jx j∈ =  

 
The imposed constraints, as well as the optimal solutions, are presented in Table 2. It is 

noted that for the 4-variable function, no constraints are imposed. 
 
Table 2.3: Constraints, optimal design vector and optimal objective function value 

Constraints Optimal design vector Minimum value 

1 2 30 2 2 72x x x≤ + + ≤  1 2 3( , , ) (24,12,12)x x x =  
min 3456f = −  

No constraints imposed ( )1 2 3 4( , , , ) 3, 3, 3, 3x x x x = − − − −  
min 156f = −  

2( ) 2 0,   1, 2j jg x x j+= − ≥ =
r , 1, .., 4jx j =  ( )1.275, 0.6348, 2, 2x =

r  
min 189.1f =  

2 2 2

1 1 2 3 1 2 4

2 2 2 2

2 1 2 3 4 1 2 3 4

2 2 2 2

3 1 2 3 4 1 4

( ) 2 2 5 0

( ) 8 0

( ) 2 2 10 0

g x x x x x x x

g x x x x x x x x x

g x x x x x x x

= − − − − + + + ≥

= − − − − − + − + + ≥

= − − − − + + + ≥

r

r

r

( )0,1, 2, 1x = −
r  

min 44f = −  

 
Due to the stochastic character of the GA method and in order to get reliable and 

representative results, for each benchmark function and for each one of the examined 
parameters, 100 analyses were performed initiating from randomly generated but feasible 
design vectors and each group of 100 results was distinguished in ‘successful’ and ‘failed’ 
runs, depending on whether the runs were terminated normally or not, respectively. In the 
sequel, the mean value of the ‘successful’ runs, normalized with respect to the corresponding 
optimum retrieved from the literature, as well as the corresponding standard deviation were 
estimated. In addition, a cumulative probability-based index was also estimated. For the 
aforementioned index, the interested reader may find details in [25]. 

The work plan of the present research was as follows: 
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Step #1:  for each examined option, perform 100 analyses, get the results derived and keep the 
analyses that were terminated normally (successful runs) 
Step #2:  for the successful runs, normalize the optimal values of the objective functions with 

respect to the minimum values referred in the literature for each examined function  
Step #3:  using the values from Step #2, for each examined case, estimate the cumulative 

probability index of 1st class, the normalized mean value and the normalized standard 
deviation 

Step #4:  create a bar chart where the middle of each bar corresponds to the normalized mean 
value, while, above and below this point, a length equal to the corresponding 
normalized standard deviation is added 

Step #5:  create a bar chart for the cumulative probability index showing only the first class 
Step #6:  for each option investigated, choose the best performance based on the plots; from 

the plots of Step #4, reject all the options with poor performance and keep only 
options with similarly good performance; for these options, use the plots from Step 
#5 to estimate the best option. 

It is clarified that when a parameter was investigated, the other controlling parameters were 
kept unchanged and equal to a default value. Finally, normalized mean values less than unity 
are due to the optimal values’ sign. 
 
2.5.4. Numerical results 

2.5.4.1. The Crossover parameter 

Seven functions were investigated, namely the scattered, the single point, the two-point, 
two variations of the intermediate ( 0.5ratio =  and 1.0ratio = ) and two variations of the 
heuristic ( 1.2ratio =  and 2.0ratio = ). The normalized sensitivities and the cumulative 
probability of 1st class derived are illustrated in Fig.2.1, respectively. In Fig.2.1a, the absence 
of bars for the 4-variable function is due to the fact that the normalized values were equal to 
0.999  and the corresponding bars are of zero height (degenerated bars) thus not visible. From 
Fig.2.1a, it yields that the heuristic crossover with 1.2ratio =  outperformed the other 
schemes. However, the heuristic crossover with 2.0ratio =  did not perform well at all. 
Therefore, the conclusion is that it was the combination of the heuristic type of the crossover 
with an appropriate value for ratio  that performed so well. Furthermore, again from Fig.2.1a, 
the crossover functions presented the poorest performance for the Powell function, while, in 
the majority, the normalized range of the results is within a zone of 1% around the optimal 
value. Fig.2.1b with Fig.2.1a also suggest that the heuristic crossover with 1.2ratio =  
performed best.  
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crossover functions 
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2.5.4.2. The Fitness scaling parameter 
For the Fitness scaling parameter, four functions were investigated, namely the rank, the 
proportional, the top and the shift linear. The normalized sensitivities and the cumulative 
probability of 1st class derived are illustrated in Fig.2.2, respectively. Again, an absence of 
bars is observed in Fig.2.2a for the 4-variable function due to the fact that the normalized 
values were equal to 0.999  and the corresponding bars are of zero height (degenerated bars) 
thus not visible. From Fig.2.2a, it yields that the rank function outperformed the other 
schemes. The same conclusion is derived from Fig.2.2b as well, since the top function must 
be excluded due to its very poor performance when applied to the Powell function (Fig.2.2a). 
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Figure 2.15: (a) normalized sensitivity and (b) cumulative probability of 1st class for the 
fitness scaling functions 

 
2.5.4.3. The Generations parameter 

Five options were investigated, namely with 200, 400, 600, 800 and 1000 maximum 
iterations, respectively. There seems to appear some kind of malfunction for the 600 
generations, thus the corresponding results are not considered reliable From Fig.2.3a, it results 
that for the 3-variable function, there was no improvement in the optimal objective function 
value as the number of generations increased. This observation was considered to be problem-
oriented, thus not taken into consideration. For the 4-variable function, apart from the value of 
600 generations, all the analyses converged to very near optimum values thus no bars are 
visible for evaluation. For the Powell and for the Suzuki functions, it is obvious that 
increasing the number of generations means improving the derived optimal values.  
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2.5.4.4. The Migration parameter 
Two options were investigated, namely the ‘Forward’ and ‘Both’ migration direction. For 

the 3-variable function, from Fig.2.4a it seems that both migration directions perform equally 
well, while from Fig.2.4b it yields that the ‘Forward’ option is better. For the 4-variable 
function, from Fig.2.4a it yields that all the results are negligible away from the optimum 
value while from Fig.2.4b it yields thus the ‘Both’ options is strongly better. From the 
reaming two functions, it is obvious that the ‘Both’ option has a better performance, a remark 
also in agreement with Fig.2.4b. 
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Figure 2.17: (a) normalized sensitivity and (b) cumulative probability of 1st class for the 
direction of migration 

 
2.5.4.5. The Mutation parameter 

Four options were investigated, namely ‘Gaussian #1’, ‘Gaussian #2’, ‘Uniform #1’ and 
‘Uniform #2’. For the first option, the controlling parameter ‘scale’ and ‘shrink’ were set 
equal to 0.5 and 0.75, respectively. For the second option, these parameters were set equal to 
1 and 1, respectively. For the third and forth option, the controlling parameter ‘rate’ was set 
equal to 0.01 and 0.10, respectively. From Fig.2.5a, the ‘Gaussian #1’ option performs best, 
although no information can be retrieved from the 4-variable function for the reason already 
mentioned in the previous paragraphs. Due to its poor performance with the Powell and the 
Suzuki functions, the ‘Uniform’ scheme is rejected. From Fig.2.5b, it is shown that ‘Gaussian 
#2’ outperforms ‘Gaussian #1’ only once (for the 3-variable function). Therefore, it is derived 
that ‘Gaussian #1’ should be the preferred option.  
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2.5.4.6. The Population size parameter 
Five options were investigated, with populations of 20, 40, 60, 80 and 100 individuals, 

respectively. As Fig.2.6a shows, increasing the population size resulted in improving the 
optimal objective function value.  
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Figure 2.19: (a) normalized sensitivity and (b) cumulative probability of 1st class for the 
population size 

 
2.5.4.7. The Selection parameter 

Five functions were investigated, namely the stochastic uniform, the remainder, the 
uniform, the roulette and the tournament. From Fig.2.7a, it is obvious that the ‘Uniform’ and 
the ‘Tournament’ functions performed worst for the Powell function, while the other 
functions performed in a quite similar way. From Fig.2.7b, it yields that, excluding the 3-
variable function, the ‘Roulette’ function outperforms the others. 
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Figure 2.20: (a) normalized sensitivity and (b) cumulative probability of 1st class for the 
selection function 

 
2.5.4.8. The Stall generations parameter 

Ten options were investigated, with stall generations equal to 50, 100, 200, 250, 300, 400, 
450, 500, 550, 600 and 700, respectively. From Fig.2.8a, it is clear that the higher the stall 
generation value is, the better the performance becomes. Practically, this means to let the GA 
explore and exploit the feasible domain the longer possible. In Fig.2.8b, only indicative cases 
are illustrated.  
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Figure 2.21: (a) normalized sensitivity and (b) cumulative probability of 1st class for the stall 
generations 

 
2.5.5. Conclusions 

The present work aimed at ranking the influence of each one of the investigated 
parameters in locating the global minimum. For this purpose, an extensive parametric 
investigation of eight parameters was carried out. The first and most important conclusion is 
that in all cases, it was possible to get optimum or very near optimum values by appropriately 
selecting (‘trimming’) the controlling parameters. Among the options examined, it was 
possible to distinguish some that outperformed the others. More particularly, for the 
crossover, the heuristic function with ratio equal to 1.2 was the best. For the fitness scaling, 
the rank function is a very good choice. For the decision over the number of generations, it 
should be kept in mind that increasing the number of generations means improving the 
derived optimal values. For the migration direction, ‘Both’ seems to be a good selection. For 
the mutation, a Gaussian scheme with the parameters ‘scale’ and ‘shrink’ set equal to 0.5 and 
0.75 is suggested. With respect to the population size, it should be taken into consideration 
that increasing the population size results in improving the optimal objective function value. 
For the selection, the roulette function seems to outperform the others. Finally, the higher the 
stall generation value is, the better the performance becomes. Last, but far from least, it is 
clarified that the aforementioned suggestions aim at providing a guide rather than a 
bulletproof set of rules-of-thumb for performing optimization with a typical GA. More 
general suggestions may be derived only if the presented investigation is repeated for a very 
large number of functions. 
 
2.6. The proposed hybrid optimization procedure 

Based on the experience obtained from the aforementioned investigations, a new hybrid 
optimization scheme was formulated and is presented in this Section. For its evaluation, an 
extended set of Mathematical Benchmark Functions, also briefly presented in this Section, 
was used. In the sequel, the implemented evaluation indices, as well as the analysis carried 
out, a brief discussion and the conclusions drawn are also stated. 

 
2.6.1. On hybrid optimization procedures 

Hybrid search techniques are widely used for structural optimization. An approach for 
hybrid optimization is to embed local search into the framework of evolutionary algorithms or 
the combinations of various techniques.  

Mahfoud and Goldberg presented the Parallel Recombinative Simulated Annealing. After 
initialization of a population and choice of a system temperature T, parents are selected. The 
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offsprings are produced by recombination and mutation, followed by a comparison between 
parents and their offsprings. Subsequently, the parents are replaced by the winners and T is 
reduced. This process is repeated for the complete population in every iteration (Mahfoud and 
Goldberg, 1994). Renders and Flasse examined the trade-off between accuracy, reliability and 
computing time in global optimization. In more details, first they examined the compromises 
provided by traditional methods (Quasi-Newton and Nelder-Mead's simplex methods) and 
then they referred to new hybrid methods, which combine principles from genetic algorithms 
and “hill-climbing” methods in order to find a better compromise to the trade-off. These 
hybrid methods are inspired by biology and involve two interwoven levels of optimization, 
namely evolution (genetic algorithms) and individual learning (Quasi-Newton), which 
cooperate in a global process of optimization. Renders and Flasse proposed a hybrid method 
that combines the reliability properties of the genetic algorithms with the accuracy of Quasi-
Newton method, while requiring a computation time only slightly higher than the latter 
(Renders and Flasse, 1996). Botello et al. combined the search-operators selection, crossover, 
mutation of genetic algorithms with the acceptance operator of the Simulated Annealing and 
calls this the General Stochastic Search Algorithm. The unmodified individuals of a 
population (before variation by recombination and mutation) are compared with the varied 
ones. The acceptance operator selects solutions to be carried over to the next generation 
(Botello et al, 1999). Galinier and Hao presented a Hybrid Evolutionary Algorithm which 
embeds local search into the framework of population-based Evolutionary Algorithms, 
leading to Hybrid Evolutionary Algorithms. The basic idea consists of using the crossover-
operator (Greedy Partition Crossover) to create new and potentially interesting configurations, 
which are then improved by the local search operator (Tabu Search) (Galinier and Hao, 1999). 
Burke and Smith incorporated a local search operator into a genetic algorithm. The resulting 
algorithm from this hybrid approach has been termed a Memetic Algorithm. The paper 
investigates the use of a memetic algorithm in solving a thermal generator maintenance 
scheduling problem. The main purpose is to discover whether a memetic approach can be 
advanced (Burke and Smith, 2000). Magoulas et al. introduced a new hybrid evolutionary 
approach for improving the performance of neural network classifiers in slowly varying 
environments. They investigated a combination of Differential Evolution Strategy and 
Stochastic Gradient Descent. The use of a Differential Evolution Strategy is based on the 
concept of evolution of a number of individuals from generation to generation, while the on-
line gradient descent refers to the concept of adaptation to the environment by learning 
(Magoulas et al., 2001). Schmidt and Thierauf examined the combination with the Threshold 
Accepting Algorithm (TA), which computes the functional in every cycle of the iteration and 
is essential for the increased performance. The Differential Evolution (DE) helps to avoid 
local optima. By application of penalty functions even inadmissible solutions are allowed, 
whereby the approximation of the global optimum is possible either from the admissible 
direction as well as from the inadmissible direction. Admissible results are stored and treated 
similar to the elite individual in the Genetic Algorithms (Schmidt and Thierauf, 2005).  

Within the frame defined by the aforementioned methods, a new hybrid method is 
proposed according to which the search direction is sough using Powell’s method, while the 
distance to be followed along this direction is sought using Simulated Annealing (SA). It is 
strongly emphasized that the selection of these two search procedures was based on two facts. 
The first fact is that, while being a very simple variation of the univariate optimization 
procedure, Powell’s method consists a tremendous improvement (Venkatamaran, 2002). The 
second fact is that (SA) seems to outperform the other optimizers as far as 1D optimization 
problems are concerned, and the distance to be followed along a search direction is exactly 
such an optimization problem. 
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2.6.2. Theoretical basis 
The basic components of the proposed procedure, namely the univariate optimization, the 

so-called ‘left-shifting’ of the search direction and the Simulated Annealing (SA), are 
discussed briefly in the following paragraphs.  

The univariate optimization is nothing else but solving, for each design variable and in a 
cyclic manner, the 1-D optimization problem: 
 

( )min i jf x dα+
% %

, low i upx x x≤ ≤
% % %

                                          (2.8) 
 
where ix

%
 is the design vector of the i − th iteration, the scalar quantity α  is the step size for 

the vector direction jd
%

 and jd
%

 is the j − th univariate search direction with var1,...,j N= , 
while varN  is the number of the design variables. It is possible to store these search directions 
in a vector SD  of dimension var varN N× . The lower and upper bounds of the design vector ix

%
 

are denoted as lowx
%

 and upx
%

, respectively. The 1-D optimization problem may be solved using 
various techniques (Golden Section, Fibonacci, polynomial-based methods, etc.). One 
complete cycle consists of solving problem (2.8) for var1,...,j N= .  

Let ,i beforex
%

 and ,i afterx
%

 be the design vectors before and after the application of a complete 
cycle. The pattern search direction is defined as: 
 

, ,ps i after i befored x x= −
% % %

                                                    (2.9) 
 
Therefore, it is possible to state another 1-D optimization problem of the following form: 
 

( ),min i after ps psf x dα+
% %

, low i upx x x≤ ≤
% % %

                                   (2.10) 
 
It is possible to store the pattern search direction in the vector SD  as the ( )var 1N + -th entry. 
The so-called ‘left shifting’ of the search directions is using the 1j +  search direction of the i  
iteration as the j  search direction of the 1i +  iteration. The 1j +  search direction of the 1i +  
iteration is created from Eq.2.(2).  

If a deterministic 1-D optimizer is used for solving the problem in Eq.(2.10), then tracing 
the global minimum is guaranteed if the function to be optimized is unimodal, that is the 
function has only one minimum, within the feasible domain of a . If unimodality is not 
present then a poor performance of the deterministic optimizer may occur, depending on the 
value ,ps inia  (initial value of a  in problem (2.10)). The reason for this is the fact that the 
deterministic procedures tend to bracket a minimum, thus if bracketing is miss driven then 
another but the global minimum is traced. Better results may be obtained when sweeping the 
domain of a  in small steps, which, of course, is computationally expensive. On the contrary, 
a stochastic 1-D optimizer is less prone to get trapped in local minima because it has the 
inherent ability of making random changes in the step size. In this way, the probability of 
‘getting out’ of local minima is higher, thus the element of randomness needs to be present in 
an optimization procedure. In addition, as shown in the previous sections of this chapter, the 
lower the number of the design variables gets the more effective the stochastic optimizers 
become. Therefore, problem (2.10), which involves one variable only, is the best possible 
case for a stochastic optimizer to be applied.  
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Based on these thoughts, it is obvious that solving problem (2.8) using a deterministic 
optimizer and solving problem (2.10) using a stochastic optimizer is a good theoretical 
compromise because not only is randomness introduced but also the computational cost 
remains low and the ability of getting out of local minima is maximized. On top of that, if 
solving problem (2.10) provides no improvement, then a local stochastic search, around the 
design vector found last, is performed as a means of continuing the search in case the 
aforementioned vector corresponded to a local minimum. The proposed procedure is as 
follows:  

Step 1: Create randomly a var 1N ×  design vector oX
%

 
Step 2: Create a ( )var var1N N+ ×  vector of univariate search directions SD . For the first 

iteration only, the first varN  entries are the unit vectors corresponding to each one 
for the coordinate axes, while the ( )var 1N + -th entry corresponds to the pattern 
search direction to be created in step 4. 

Step 3: Perform a univariate deterministic optimization to find a new optimal and feasible 
design vector 1X

%
.  

Step 4:  Define a pattern search direction as 1ps od X X= −
% %%

. 

Step 5:  For the objective function ( )1 psf X dα+
% %

, search stochastically along the pattern 
search direction (1D-optimization w.r.t. the step size a ) to find a new optimal and 
feasible design vector 2X

%
. 

Step 6: Check for convergence 
  IF 2 1X X tol− ≤

% %
, where tol  is a given tolerance, THEN 

 stochastically search a region around 2X
%

 to find a new optimal and feasible 
design vector 3X

%
 

   IF 3 2X X tol− ≤
% %

 THEN 
    Stop  

 ELSE  
 update SD  with the pattern direction ( )3 2X X−

% %
, set 3oX X=

% %
 and return to 

Step 3 
  ELSE 
   set 2oX X=

% %
, ‘left-shift’ the search directions and return to Step 3. 

The physical interpretation of Step 5 is the uniform scaling of a design vector until no 
further improvement is noted, where α  is the scaling parameter. There are two ways the 
domain of α  may be handled, either as an unconstrained domain or as a constrained domain. 
In the former case, first any value may be attributed to α  and then it is checked whether both 
the objective function decreases and the corresponding design vector is feasible. In the latter 
case, based on the search direction and the feasible domain of the design variables, first the 
feasible domain of α  is estimated and then the optimization procedure takes place within this 
domain. The feasible domain of α  may be estimated using a search scheme, such as the 
bisection method, while in the present work, the upper and lower values of α  are estimated 
explicitly, as shown, with a symbolic vector notation, in Eqs.(2.11):  
 

( ){ }min /upper l S psa X X d= −
% % %

                                           (2.11a) 

( ){ }min /lower u S psa X X d= −
% % %

                                          (2.11b) 
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As lX
%

 and uX
%

, the vectors for the minimum and the maximum values of the design 
variables are noted, respectively, while psd

%
 represents the pattern search direction. In this 

way, the feasible domain of α  is bracketed thus any 1-D deterministic optimizer may be 
applied. In the present paper, the Golden section technique and the Simulated Annealing (SA) 
were chosen as the deterministic and the stochastic optimizer, respectively. Alternatively, 
instead of the SA, a Genetic Algorithm, Tabu Search or even a powerful second-order 
method, such as the Sequential Quadratic Programming (SQP) technique, may be applied as 
well.  
 
2.6.3. Numerical analysis 

For the purposes of the present paper, four popular benchmark functions were selected, 
implementing one, two, four and eight variables, respectively. For each one of these 
functions, the domain, the optimal design vector and the global minimum are known. In order 
to investigate the performance of the proposed procedures, for each benchmark function, 
certain variations were introduced, as presented in the following paragraphs.  
 
2.6.3.1. (MBF1) with variations 

For this benchmark function (Eq.2.12a), the domain is [ ]2.7,7.5  while there are three 
minima, the global minimum being 1.886optif = −  at 5.145x = . The other two variations 
examined are presented in Eqs.(2.12b, 2.12c). 
 

( ) ( )sin sin 10
3
xf x x ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
                                          (2.12a) 

( ) ( )sin sin 20
3
xf x x ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
                                          (2.12b) 

( ) ( )sin 2sin 10
3
xf x x ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
                                         (2.12c) 

 
The function plots (Fig.2.1) show that, for the introduced variations, the difficulty in tracing 
the minimum is higher due to an increased number of local minima (Fig.2.1(b) or due to more 
steep valleys (increased gradients) that make trapping at local minima easier (fig.2.1(c)). 
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Figure 2.22: Plots for the examined one-variable function (a) basic expression, (b) and (c) 
variations introduced 
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2.6.3.2. (MBF2) with variations 

For this benchmark function (Eq.2.6a), the domain is [ ]1,1x∈ −
%

 and the global minimum is 
2.000optif = −  at 0x =

% %
. The variations examined are presented in Eqs.(2.13b, 2.13c). 

 

( ) ( )( )
2

2

1

cos 18j j
j

f x x x
=

= −∑
%

                                         (2.13a) 

( ) ( )( )
2

2

1

cos 25j j
j

f x x x
=

= −∑
%

                                         (2.13b) 

( ) ( )( )
2

2

1

3cos 18j j
j

f x x x
=

= −∑
%

                                        (2.13c) 

 
Generally speaking, it is possible to create a plot for a two-variable function. However, the 
mathematical expression of the examined function suggests that only the plot of one 
addendum is required for a good impression of the function to be obtained, since there are no 
terms in both 1x  and 2x  (Eqs.2.13). Therefore, it is sufficient to plot an addend in 1x  or in 2x  
only, as shown in Fig.2.2. 
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Figure 2.23: Plots for the examined two-variable function (a) basic expression, (b) and (c) 
variations introduced 

 
Again, an increase in the number of minima is clear in Fig.2.2b, while Fig.2.2c illustrates a 
function with strong peaks and valleys, thus the difficulty in tracing the minimum is increased 
as well. 
 
2.6.3.3. (MBF3) with variations 

For this benchmark function (Eq.2.14a), the domain is [ ]4,0x∈ −
%

, and the global minimum is 
156.66optif = −  at 2.9035,  1,..,4ix i= = . The variations examined are presented in 

Eqs.(2.14b, 2.14c). 
 

( ) ( )
4

4 2

1

0.5 16 5j j j
j

f x x x x
=

= − +∑
%

                                       (2.14a) 

( ) ( )( )
4

4 2

1

0.5 16 5 15cos 5j j j j
j

f x x x x x
=

= − + −∑
%

                            (2.14b) 

( ) ( )( )
4

4 2

1

0.5 16 5 25cos 5j j j j
j

f x x x x x
=

= − + −∑
%

                            (2.14c) 
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As in the previous case, the function has no terms in two or more different design 
variables, thus a good impression of the function can be obtained from the plot of only one 
addendum in an arbitrarily selected design variable, as shown in Fig.2.3. 
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Figure 2.24: Plot for the examined four-variable function (a) from literature, (b) and (c) the 
variations introduced 

 
2.6.3.4. (MBF4) with variations 

For this function (Eq.2.15a), the domain is [ ]5.12,5.12x∈ −
%

 and the global minimum is 
0optif =  at 0x =

% %
. The variations examined are presented in Eqs.(2.15b, 2.15c). 

 

( ) ( )( )
4

2

1

80 10cos 2j j
j

f x x xπ
=

= + −∑
%

                                 (2.15a) 

( ) ( )( )
4

2

1

80 10cos 4j j
j

f x x xπ
=

= + −∑
%

                                 (2.15b) 

( ) ( )( )
4

2

1

80 30cos 2j j
j

f x x xπ
=

= + −∑
%

                                  (2.15c) 

 
Once again, the plot of only one addendum in an arbitrarily selected design variable may 
provide a representative impression of the function, as shown in Fig.2.24. 
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Figure 2.25: Plot for the examined two-variable function (a) from literature, (b) and (c) 
variations introduced 

 
2.6.4. Numerical results 

In order to evaluate the performance of the proposed hybrid procedure (Hybrid), 
max 100N =  analyses were performed for each one of the examined functions. For an analysis 

k , the initial design vector ,ini kx
%

 was estimated as: 
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( ) ( ) ( ), min max min max1 / 1ini kx x k x x N= + − − −

% % % %
, 1,2,...,100k =                (2.16) 

 
where minx

%
 and maxx

%
 are vectors containing the lower and the upper bounds of the design 

variables, respectively. For reasons of comparison, the same work was repeated using other 
optimization procedures, namely the Powell method, the Nelder-Mead simplex method (N-
M), the Hooke and Jeeves pattern search method (H-J) and the Simulated Annealing (SA), 
which are indeed comparable since they all are zero-order methods thus belong to the same 
class of optimization procedures. Again, for each method and for each function, 100 
optimization analyses were performed, thus the present work was based on the results 
retrieved from 7200 runs. An analysis was characterized as successful if it resulted in a vector 

convergX
%

 in the neighborhood of the global minimum optX
%

: 
 

converg optX X tol− ≤
% %

                                                  (2.17) 
 
It was of interest to estimate the percentage of successful runs thus the following evaluation 
index was defined: 
 

( )1 /success totalEI N N=                                                 (2.18) 
 

Obviously, 1 1EI =  is the maximum value that this index may take and corresponds to the 
best possible performance. The values for the evaluation index 1EI  for the various objective 
functions and optimization methods were appropriately illustrated in bar charts. Furthermore, 
it was of interest to estimate the number of iterations required until convergence was 
achieved. To this end, for each set of 100  analyses, the mean value and the corresponding 
standard deviation concerning the recorded iterations were estimated and illustrated 
appropriately in diagrams, where a logarithmic scale was used for the vertical axis. 

 
2.6.4.1. Results for (MBF1) with variations 

For the one-variable functions, the Powell method outperformed the others since it was 
rated with 1 1EI =  (Fig.2.4a) and required the least number of iterations for such a 
performance (Fig.2.4b). The Hybrid method was rated the same with the Powell method and 
the SA, but it required more iterations than the SA.  
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Figure 2.26: Performance of the optimization procedures for the one-variable functions 
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2.6.4.2. Results for (MBF2) with variations 
For the two-variable functions, the Hybrid method outperformed the others since it was 

rated with 1 1EI =  and required slightly more iterations than the second best method which 
was the SA with 1 0.4EI < . All the others methods were trapped in local minima and 
presented a very poor performance (Fig.2.5a).  
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Figure 2.27: Performance of the optimization procedures for the two-variable functions 
 
 
2.6.4.3. Results for (MBF3) with variations 

For the four-variable functions, the picture is quite the same with that for the one-variable 
functions. The Powell method performed best because it was rated with 1 1EI =  (Fig.2.6a) and 
required the least number of iterations (Fig.2.6b). The Hybrid scheme performed equally 
excellently as the SA did but required more iterations. The other two methods, that is H-J and 
N-M, performed very well for the basic formulation of the objective function but had serious 
trouble with locating the global minimum for the second and the third proposed variations of 
the objective function.  
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Figure 2.28: Performance of the optimization procedures for the four-variable functions 
 
2.6.4.4. Results for (MBF4) with variations 

For the eight-variable functions, only the SA and the proposed Hybrid scheme managed to 
have a very near-excellent performance for all of the objective functions (Fig.2.7a), with the 
Hybrid scheme having a slight advantage in terms of the evaluation index 1EI  and a 
disadvantage in terms of iterations required until convergence was achieved (Fig.2.7b). The 
Powell method managed to locate the global minimum excellently only for one of the 
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examined objective functions, while in the other two cases it failed totally. The H-J method 
did not perform well, while the N-M technique performed most inadequately. 
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Figure 2.29: Performance of the optimization procedures for the eight-variable functions 
 
2.6.5. Discussion 

A new hybrid scheme for dealing with the minimization of unconstrained mathematical 
functions was proposed. The basic idea was to introduce some element of randomness in a 
powerful deterministic technique, when no further improvement from the deterministic steps 
is achieved. More particularly, a deterministic procedure will stop either when the global 
optimum has been found or when a local optimum is erroneously recognized as a global 
optimum. If the latter case occurs, then the introduction of some randomness increases the 
probability of ‘getting out’ of the local minimum, although not annihilating the chance of 
failing to do so. For the needs of the present study, Powell’s variation for the univariate 
optimization technique was selected as the deterministic procedure, while the element of 
randomness was introduced using the Simulated Annealing (SA) technique in two ways. First, 
a (SA) line search was activated along the last formed pattern search direction, when a 
complete deterministic iteration provided no improvement. Second, a (SA) local search in a 
hyper-sphere surrounding the location of no improvement was initiated, when no 
improvement from the SA line search was achieved. The radius of this hyper-sphere was a 
user-defined parameter and severely affected the efficiency of the entire procedure. If again 
no improvement was achieved, then the search was terminated and the location of no 
improvement was recognized as the global optimum. The proposed scheme was expected to 
combine the superior performance of a pure SA and the lower number of iterations 
characterizing Powell’s method. It was shown that in all of the examined cases, the global 
optimum was indeed located; however, the iterations required were more than those 
corresponding to a pure SA. The reason for this was the fact that convergence was checked at 
the end of a complete iteration, all of the deterministic and the stochastic steps being included. 
However, the number of function calls for such iterations may become very large since the 
same (SA) optimizer, with the same adjustments, may be called twice within the same step. 
This implies that a further improvement, concerning the total number of function calls, may 
be achieved if convergence is checked within a complete iteration and the adjustments for the 
(SA) are different for the line search and the local search. 

A point worth noting is the sensitivity with respect to the domain of the examined 
functions. It was observed that either a slight or a significant change in the upper bound or the 
lower bound or both, severely affected the values of the evaluation index 1EI  for the 
examined deterministic procedures. This is the reason why the performance in some cases, 
especially of the Powell method, was so poor. In addition, it was observed that, in some cases, 
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when the domain of an even function was changed from symmetric to asymmetric then the 
performance was better. On the contrary, the proposed hybrid scheme and the (SA) presented 
a very robust behavior, insensitive to changes in domain bounds.  
 
2.6.6. Conclusions 

The proposed hybrid scheme falls in the class of the non-zero optimization methods. It was 
tested in four triplets of objective functions, each triplet consisting of one function retrieved 
from the literature and two more variations introduced for the need of the present study. One 
variation concerned the introduction of more local minima only, while the other variation 
concerned the introduction of stronger peaks and valleys only. In this way, the difficulty in 
locating the global minimum was significantly increased. In all of the twelve examined 
objective functions, the proposed hybrid scheme presented an excellent or very near-excellent 
performance. Furthermore, the proposed scheme was compared to four other well-known 
optimization methods of the same class, namely the Powell variation for the univariate 
optimization, the Nelder-Mead simplex method (N-M), the Hooke and Jeeves pattern search 
method (H-J) and the Simulated Annealing (SA) technique. It was found out that none of the 
aforementioned methods outperformed the proposed hybrid scheme in terms of locating the 
minimum, while the cost for this was an increased number of iterations required until 
convergence was achieved. The promising performance of the proposed hybrid scheme, when 
applied to unconstrained mathematical functions, encourages for extending the examination to 
optimization problems not only of constrained mathematical functions but also of constrained 
structural layouts. However, it is anticipated to get a significantly high computational cost 
which denotes the necessity for examining other types of optimization schemes, such as 
indirect search procedures. 
 
2.7 Recapitulation 

Based on the analysis presented in the previous sections, it yields that: 
• The direct search stochastic optimization methods perform better as the number of the 

design variables decreases. 
• The direct search deterministic optimization methods perform better than the direct 

search stochastic optimization methods as the number of the design variables 
increases. 

• The penalty scheme implemented in an optimization procedure seriously affects its 
performance. 

• For 1D optimization problems, the Simulated Annealing (SA) optimization method 
seems to outperform the other optimization procedures. 

• It is possible to combine a deterministic search scheme with a stochastic search 
scheme in order to create a hybrid optimization procedure. For instance, it is possible 
to use a deterministic procedure for estimating a search direction and a stochastic 
procedure for estimating the step size or vice versa. Such combinations are numerous 
and involve some innovation since all they actually do is combining already known 
optimization procedures, or variations of them, in a different order. Nevertheless, they 
do contribute in the exploration of the potential that such optimization methods have. 

• The proposed hybrid optimization method outperforms the competition in terms of 
tracing the global optimum but its computational cost is very high. 

• The increased computational cost of direct search methods suggest that other types of 
optimization procedures, such as the indirect methods, be investigated. 

The direct search methods, either deterministic or stochastic, do not take into consideration 
intrinsic characteristics of the problem at hand. Therefore, a structural optimization problem, 
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at the eyes of a direct search optimization method, is the same as any other optimization 
problem, such as describing a diet of minimum calories or minimizing the idle time in typical 
queue problems. However, especially for the structures, there is one quantity that does have 
physical interpretation and its distribution over the structure is uniquely associated with the 
structural design, the material, the support and the loading. This quantity is the strain energy, 
while other energy derivatives, such as the virtual strain energy and the corresponding 
densities, may be used as well. A direct search method, used for the weight minimization of a 
structure, does not take into consideration this information. Generally speaking, it is best 
when all of the available information is exploited. For this to be applied in structural 
optimization problems, it is necessary that the optimization method includes energy 
formulations. Consequently, and since the direct search methods do not present an 
exceptionally good performance in solving mathematical optimization problems, it yields that 
another optimization scheme, embedding energy concepts, should be formulated. 
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THEORETICAL ASPECTS  

IN LAYOUT STRUCTURAL OPTIMIZATION 
 
 
 
 

 
Abstract 

In this chapter, theoretical aspects concerning the layout structural optimization problem are presented. In more 
details, various modes of material removal are theoretically examined, such as the removal of a single element at 
a time or the thickness reduction of elements. Since the aforementioned material removal is based on an energy 
approach, it can be used for any kind of constraints. In this chapter, the compliance constraint problem that has 
attracted the interest of the researchers, as well as the Fully Stressed Design that addresses to stress constrained 

structures, is discussed. 
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3.1. Introduction 
After the seminal work by Michell (Michell, 1904), the optimal design of structures have 

been considered as a material distribution problem, or equivalently as a layout optimization 
problem. This layout optimization is sought in various ways, all of which aim either at 
removing material that is characterized as redundant or at redistributing the available material 
more efficiently. For this material elimination or redistribution, it is possible to implement 
pure mathematically-oriented techniques Svanberg, 1987; 1995; Stolpe and Svanberg, 2001; 
Bruyneel et al, 2002). However, in this way, it is not possible to take advantage of the energy 
stored in a deformed body, which is a valuable inherent characteristic of structural 
optimization problems. Alternatively, it is possible to formulate energy-based techniques. In 
this chapter, such an approach is presented from a critical viewpoint. More particularly, the 
total material elimination, in the form of element removal, as well as the partial material 
elimination, in the form of thickness reduction, is examined. Furthermore, the single 
compliance constraint problem is discussed, and the very well-known concept of a fully-
stressed design is also presented. 

The partial or complete material elimination may be sought using the so-called 
Evolutionary Structural Optimization (ESO) method (Xie and Steven, 1993; 1996; 1997; Xie 
et al, 2005; Steven et al, 2000). According to this approach, it is possible to define sensitivity 
or performance indices, as a means to detecting material candidate for removal (Nha Chu et 
al, 1996; 1997). Based on the value of these indices, the available material is ranked and that 
part with the smaller sensitivity is removed, either partially or completely (Querin et al, 
2000a; 2000b; Yang et al, 1999; 2005). The concept of the ESO method is very simple, 
straightforward, and with a wide range of applications (Rong et al, 2000; Das et al, 2005; Ren 
et al, 2005; Zuo et al, 2005; Wei, 2005). However, for the time being, it is based more on the 
logical thought of removing redundant material in order to reduce the total structural weight 
and lacks a sound mathematical proof (Zhou and Rozvany, 2001; Edwards et al, 2007), even 
though such approaches have been published (Tanskanen, 2002). In the present Chapter, the 
theoretical approach of an ESO-type element elimination is first presented and then discussed. 
This presentation makes the current text self-contained, while it also serves as a means to 
denote, in a clear and well-defined manner, the differences between this approach, found in 
the literature, and that proposed in Section 3.3.  

The compliance constraint problem is another type of optimization problem for which a 
great many number of papers have been published (Bendsøe and Kikuchi, 1988; Bendsøe, 
1989; Haber et al, 1996; Kita and Tanie, 1999; Fujii and Kikuchi, 2000; Bendsøe and 
Sigmund, 2003; Burns and Tortorelli, 2003; Allaire et al, 2004; Burns, 2005). This problem 
may be found in the literature in two formulations, the former being seeking for the 
minimization of the compliance under a given material quantity (Bendsøe and Sigmund, 
2003; Sigmund, 2001a; 2001b; 2001c), let it be Problem CCA, and the latter being seeking for 
the minimization of the structural weight under a given compliance, let it be Problem CCB 
(Xie and Steven, 1993). However, it is true that none of the standards used for steel structures, 
or for any other kind of structure, imposes a constraint regarding the compliance. Therefore, 
the question at hand is why deal with this type of problem. The answer to this question is 
quite simple: it can be proved that the compliance constraint optimization problem is convex 
thus a local solution to this problem is a global solution at the same time (Svanberg, 1994). 
On top of that, the compliance constraint is the simplest type of constraint that may be 
imposed, while other types of constraints are more difficult to handle (Duysinx and Sigmund, 
1988; Duysinx and Bendsøe, 1998; Bendsøe and Sigmund, 2003). This is particularly true 
with the stress constraints. Furthermore, minimum compliance means maximum stiffness, and 
in this way it is possible to obtain a good impression of how to distribute available material in 
order to get maximum stiffness. By now, the compliance topology design problem is a well-
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studied class of problems, in particular if the underlying mechanical model represents a truss 
structure. Several convex formulations of minimum compliance problems exist. This class of 
problems can be reformulated as linear semi-definite programs (Ben-Tal and Nemirovski, 
1995; 1997; 2000), second order cone programs (Ben-Tal and Nemirovski, 1994), or non-
smooth problems (Achtziger et al., 1992; Ben-Tal and Bendsøe, 1993).  

For the compliance constraint problem, a new optimization procedure is proposed. The 
differences between this procedure and the ones existing in the literature are obvious. Since it 
addresses the aforementioned Problem CCA, it differs from all the methods that address 
Problem CCB. In addition, it differs from ESO-type approaches, because the proposed 
approach is based on the Lagrange multipliers method, which is a pure mathematical 
approach. Furthermore, while the ESO-type approaches required that the material elimination 
cause a small change in the stiffness of the remaining structure, there is no need to make such 
assumptions for the proposed procedure. These differences are more than clear and well-
defined if one compares the two approaches, as presented in Sections 3.2.1 and 3.3.1. 

Last, the Fully-Stressed Design (FSD) is briefly presented (Gallagher, 1973; Morris, 1982; 
Haftka et al, 1990). This presentation aims at stating the basis of the analysis and the proposed 
procedures, which are stated in the following Chapter. Furthermore, this presentation also 
serves as a means to denote the differences between this approach and the one introduced in 
Section 4.6. Even though there are counterexamples, which prove that FSD cannot be used for 
optimum design (Rozvany, 2001), the implementation of FSD is a good choice for a large 
number of engineering applications (Berke and Khot, 1987). 

 
3.2. Optimization of a 2D continuum using material removal 
3.2.1. Theoretical approach 

Let a 2D deformable body, discretized into a number of finite elements and loaded by a set 
of external forces. Independent from the selected reference coordinate system, the work of the 
external forces is stored in the deformable body as strain energy; that is: 
 

{ } [ ]{ }int 1
2

TextW W u K u⎛ ⎞= = ⎜ ⎟
⎝ ⎠

                                           (3.1) 

 
where { }u  is the nodal displacement vector and [ ]K  is the stiffness matrix of the discretized 
deformable body. From the force balance on the deformable body, it holds: 
 

{ } [ ]{ }extF K u=                                                        (3.2) 
 
If it is required to remove material from the aforementioned body, then the stiffness matrix of 
the body decreases by [ ]K∆ , while the nodal displacements are increased by { }uδ . That is: 
 

{ } [ ]{ } [ ]{ }extF K u K K u uδ= = −∆ +                                        (3.3) 
 
From basic manipulations, it yields: 
 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }K u K u K u K u K uδ δ= + − ∆ − ∆                            (3.4) 
 
Due to the material removal, the nodal displacement field changes, thus the work of the 
external forces become equal to: 
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{ } { }( ), 1
2

T extext newW u u Fδ⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                          (3.5) 

 
or, equivalently, equal to: 
 

{ } { } { } { }( ), 1
2

T ext T extext newW u F u Fδ⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                  (3.6) 

 
Therefore, the change of the work of the external forces becomes equal to: 
 

{ } { }1
2

T extextW u Fδ⎛ ⎞∆ = ⎜ ⎟
⎝ ⎠

                                               (3.7) 

 
or, equivalently, equal to: 
 

{ } [ ]{ }1
2

TextW u K uδ⎛ ⎞∆ = ⎜ ⎟
⎝ ⎠

                                              (3.8) 

 
Form Eq.(3.4), after simplifications, it yields:  
 

[ ]{ } [ ]{ } [ ]{ }K u K u K uδ δ= ∆ + ∆                                           (3.9) 
 
Taking into consideration the properties of the transpose matrix, it yields: 
 

{ } [ ] { } [ ] [ ]{ }( )TTT Tu K u K K uδ δ δ= =                                     (3.10) 
 
The combination of Eqs(3.9, 3.10) yields: 
 

[ ]{ }( ) [ ]{ } [ ]{ }( ) [ ]{ }( ) [ ]{ }( )
{ } [ ] { } [ ]

T T T T

T TT T

K u K u K u K u K u

u K u K

δ δ δ

δ

= ∆ + ∆ = ∆ + ∆

= ∆ + ∆
          (3.11) 

 
Introducing Eq.(3.10) and Eq.(3.11) into Eq.(3.8), the external work may be written as: 
 

{ } [ ] { } [ ]( ){ }1
2

T TT TextW u K u K uδ⎛ ⎞∆ = ∆ + ∆⎜ ⎟
⎝ ⎠

                              (3.12) 

 
Due to symmetry of the stiffness matrix, it yields: 
 

[ ] [ ]TK K∆ = ∆                                                       (3.13) 
 
The combination of Eqs.(3.12, 3.13) yields: 

 

{ } [ ] { } [ ]( ){ }1
2

T TextW u K u K uδ⎛ ⎞∆ = ∆ + ∆⎜ ⎟
⎝ ⎠

                                (3.14) 
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or, equivalently, it holds: 
 

{ } [ ]{ } { } [ ]{ }1 1
2 2

T TextW u K u u K uδ⎛ ⎞ ⎛ ⎞∆ = ∆ + ∆⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                           (3.15) 

 
In Eq.(3.15), two terms, of energy origin, appear: 
 

{ } [ ]{ }1
1
2

TextW u K u⎛ ⎞∆ = ∆⎜ ⎟
⎝ ⎠

 and { } [ ]{ }2
1
2

TextW u K uδ⎛ ⎞∆ = ∆⎜ ⎟
⎝ ⎠

                 (3.16) 

 
In each one of these terms, the quantity { } { }[ ]F K u∆ = ∆  is found; that is, a change in the 
stiffness matrix times the initial nodal displacement vector. Furthermore, the displacement of 
the application point of the force change { }F∆  also appears as { }u  in term 1W∆  and as { }uδ  
in term 2W∆ , respectively. The physical interpretation of these terms is as follows: 
 

{ } [ ]{ }1
2

Tu K uδ⎛ ⎞ ∆⎜ ⎟
⎝ ⎠

: work is done because the application point of the force { }F∆  is 

displaced by { }uδ  

{ } [ ]{ }1
2

Tu K u⎛ ⎞ ∆⎜ ⎟
⎝ ⎠

: work is done because the application point of the force { }F∆  is 

displaced by { }u  
 
In the special case where the changes are small, the term { } [ ]Tu Kδ ∆  may be considered as 
negligible, thus it yields: 
 

{ } [ ]{ }1
2

TextW u K u⎛ ⎞∆ ≈ ∆⎜ ⎟
⎝ ⎠

                                            (3.17) 

 
According to the Finite Element Method (FEM), the examined deformable body is substituted 
by a mesh of finite elements. Generally speaking, material removal means the removal of one 
or more finite elements from the mesh. This is achieved either by considering that the 
corresponding place in the mesh is empty (no material exists – void) or by attributing to the 
specific finite element a very small value of a characteristic quantity, such as the modulus of 
elasticity or the density; that is, the reality is simulated by a numerical intervention. The 
validity of Eqs.(3.15, 3.17), as shown from the aforementioned line of arguments, is not 
related to the number of the finite elements. Consequently, these equations are still valid 
whether one or more finite elements are eliminated.  

In the case where only one finite element is eliminated, let it be the j -element, the 
quantity [ ]K∆  expresses the stiffness matrix change of the deformable body, which is 
numerically equal to the stiffness matrix of the eliminated element: 
 

[ ] jK K⎡ ⎤∆ = ⎣ ⎦                                                        (3.18) 
 



D.T. Venetsanos ‐ PhD Thesis ‐ 2010 

P a g e  | 3.6 

The quantity { }u  is the nodal displacement vector, which is multiplied, in Eqs.(3.15, 3.17) by 

the change in the stiffness matrix [ ]K∆ . Therefore, it is possible to be substituted by the 

quantity { }ju ; that is: 
 

[ ]{ } { }j jK u K u⎡ ⎤∆ = ⎣ ⎦                                                  (3.19) 
 
The last equation is interpreted as follows: the matrix [ ]K∆  has dimensions DOF DOFN N× , 
where DOFN  represents the degrees of freedom of the examined body, while its non-zero 
entries are those corresponding to the degrees of freedom of the j -element. The vector { }u  
contains the nodal displacements corresponding to the degrees of freedom DOFN . However, 
since the vector { }u  is multiplied by [ ]K∆ , all the products that correspond to degrees of 
freedom different than those of j -element will be zero. Therefore, the result of the 
multiplications [ ]{ }K u∆  and { }j jK u⎡ ⎤⎣ ⎦  will be the same and it will hold: 
 

{ } { } { } { }1 1
2 2

T Text
j j j j j jW u K u u K uδ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤∆ = ∆ + ∆⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

                      (3.20) 

 
Under the assumption that the products between quantities representing changes may be 
considered as negligible, it holds: 
 

{ } { }1
2

Text
j j jW u K u⎛ ⎞ ⎡ ⎤∆ ≈ ∆⎜ ⎟ ⎣ ⎦⎝ ⎠

                                         (3.21) 

 
The last equation suggests that, under the aforementioned assumption and due to the 
elimination of one finite element, the change of the work done by the external forces is equal 
to the strain energy that had been stored in the eliminated element.  
From the above analysis, it yields that in a 2D deformable body it is possible to find elements 
that have very small (negligible) energy contribution to the total energy state of the body, thus 
their elimination is strongly suggested in a weight minimization problem. After this element 
elimination, the remaining elements (active elements) are upgraded from an energy viewpoint, 
thus their energy contribution must be re-evaluated. In other words, the element elimination 
must both take place progressively and be embodied in a more general iterative procedure. 
Two criteria, among the various ones to be used for estimating the number of elements to be 
eliminated, are the following:  
 
Criterion #1: Remove those elements for which ext extW Wα∆ ≤ , where ( )0,1α ∈ ; that is, the 

elements to be eliminated may cause a change in the work done at most equal 
to a proportion α  of the work done by the external forces. The value of the 
parameter α  is defined by the user. 

 
Criterion #2: Remove those elements for which ext

threshW W∆ ≤ , where threshW  is a user-
defined threshold.  
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It is possible to embed the aforementioned energy-based criteria in an optimization 
procedure for weight minimization, and more specifically in topology and shape optimization 
procedures. Imposing an upper threshold for the energy state of the examined body ensures 
the elimination of a different number of elements in each iteration. That is, during an 
optimization procedure, as the element elimination advances and the elimination of one 
element causes a higher change in the energy state of the deformable body, the number of the 
elements to be eliminated between two successive iterations decreases until no more elements 
may be eliminated. At that point, there are two options, the former concerning the interruption 
of the optimization procedure and the latter concerning the increase of the aforementioned 
upper threshold thus enabling the continuation of the procedure. Obviously, these steps may 
be repeated as many times as the user wishers thus ensuring an interactive communication 
between the user and the software used for the optimization. In addition, instead of the criteria 
previously presented, it is possible to introduce combined criteria as well. As far as the 
element elimination process is concerned, this may be achieved in many ways, four of which 
are presented in the next Sections. 
 
3.2.2. Uniform thickness scaling 

The Criterion #1 (see Section 3.1.1) may be used in order to reduce uniformly the 
thickness of the elements being candidate for elimination, and is described by the inequality: 
 

( ), 0,1ext extW Wα α∆ ≤ ∈                                                  (3.22) 
 
From the combination of Eqs.(3.1, 3.17, 3.22), it yields: 
 

{ } [ ]{ }( ) { } [ ]{ }1 1
2 2

T Tu K u u K uα⎛ ⎞ ⎛ ⎞∆ ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                    (3.23) 

 
or, equivalently, it yields: 
 

{ } [ ]{ }( ) { } [ ]{ }1 1
2 2

T Tu K u u K uα⎛ ⎞ ⎛ ⎞∆ ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                    (3.24) 

 
From the last inequality, it is obvious that it holds: 
 

[ ] [ ]K Kα∆ ≤                                                           (3.25) 
 
The interpretation of the last inequality is straight-forward: it is possible to increase the strain 
energy state of a structure by uniformly reducing the stiffness of part of the structure. For 
skeletal structures and for continua, one way to achieve this is by uniformly decreasing the 
size (cross-section or thickness) of the corresponding structural members. 
 
3.2.3. Total elimination of one finite element only 

The corresponding energy change is estimated using Eq.(3.20), according to which, in 
general, each element is characterized by a different amount of strain energy. Elements that 
comply with Criterion #1 are candidates for elimination. Among them, the one characterized 
by the lower amount of strain energy is the one that, once eliminated, causes the least possible 
change in the energy state of the structure. In this way, the optimum shape is sculptured 
following the path of the minimum rate of energy change. Alternatively, it is possible to select 
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for elimination one element that is near the threshold imposed by the user. In this way, the 
elimination procedure is accelerated because all the elements with lower strain energy than 
the eliminated one will be, from an energy viewpoint, downgraded faster. 
 
3.2.4. Simultaneous total elimination of more than one finite elements 

With respect to the total elimination of more than one finite elements at one step, there are 
several choices, such as: 

- Deterministic elimination. The remaining elements are sorted in an ascending order of 
strain energy and in the sequel the first n  elements of the sorted list are selected such 

that 
1

n
ext
j

j
W W

=

≤ ∆∑ , where W∆  is an upper energy-state threshold defined by the user. 

- Stochastic elimination. The remaining elements are first sorted in an ascending order 

of strain energy and then m  elements are randomly selected such that 
1

m
ext
j

j

W W
=

≤ ∆∑ , 

where W∆  is an upper energy-state threshold defined by the user. 
 
3.2.5. Simultaneous partial elimination of more than one finite elements 

It is possible to achieve a partial material elimination either in the form of thickness 
variation or in the form of area changing, as in the fixed-grid method. This means that special 
care should be given in the estimation of the quantity [ ]K∆ . 
 
3.2.6. Conclusions 

From the aforementioned line of arguments, it is clear that the material elimination may 
take place in various forms and is independent from the optimization problem to be solved. 
That is, the same procedure may be used for shape, topology and layout optimization 
problems. Furthermore, it is strongly emphasized that the material elimination, as described in 
the preceding Sections, is independent from the imposed constraints. This means that it is 
possible to use the same procedure for optimizing with respect to different constraints. 
Moreover, it is of essence to allow for the re-use of eliminated material; that is to implement a 
‘die and birth’ scheme in the optimization procedure. Finally, and of most significance, due to 
the definition of the strain energy and of the virtual strain energy, statements similar to the 
ones presented in the previous sections may be stated for the virtual strain energy as well.  
 
3.3. Optimization of a 2D continuum under a single compliance constraint 
3.3.1. Theoretical approach 

In this Section, the problem of optimizing a 2D continuum under a single compliance 
constraint is investigated; that is, the optimum layout is sought such that the minimum weight 
is acquired under the constraint that the work done by the externally applied forces must not 
exceed a maximum value. The mathematical statement of this problem is as follows: 
 

min i i iW At ρ=∑                                                    (3.26) 

where minit t≥  and { } { } max
1
2

Tu F C⎛ ⎞ ≤⎜ ⎟
⎝ ⎠

                                  (3.27) 

 
From Eq.(3.27) it is evident that a constraint is imposed on the minimum element thickness as 
well as on the compliance. The former constraint is used for numerical instabilities to be 
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avoided (complete element elimination from the mesh may result in the formation of an ill-
conditioned stiffness matrix, which cannot be inverted). The constraint with respect to the 
work done by the external forces may be written as: 
 

( ) 0g t ≤  where ( )
{ } { }

max

1
2 1

Tu F
g t

C

⎛ ⎞
⎜ ⎟
⎝ ⎠= −                                  (3.28) 

 
According to the method of Lagrange multipliers, the Lagrangian is equal to: 
 

( ) ( )1 1, i i iL At g tλ ρ λ= +∑t                                            (3.29) 
 
Letting t  be the design vector concerning the thickness of the finite elements, which the 2D 
continuum is discretized into, Eq.(3.4) may be written as: 
 

( )
{ } { }

1
max

1
2, 1

T

i i i

u F
L At

C
λ ρ λ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟= + −

⎜ ⎟
⎜ ⎟
⎝ ⎠

∑t                                 (3.30) 

 
According to the Karush-Kuhn-Tucker conditions, the vector t  corresponds to the minimum 
weight design when it holds:  
 

( ), 0t L λ∇ =t  and ( ), 0Lλ λ∇ =t                                        (3.31) 
 
The combination of Eqs.(3.30, 3.31), after basic manipulations, yields: 
 

( )( ) { } { }
1

max

1
, 20 1 0

T

i i i
i i

u FL
At

t t C
λ

ρ λ

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠⎜ ⎟⎜ ⎟= ⇒ + − =

∂ ∂ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
t

                 (3.32) 

 
With respect to Eq.(3.32), the partial derivative of the first term in the parenthesis is equal to:  
 

( )i i i i i
i

At A
t

ρ ρ∂
=

∂ ∑                                                  (3.33) 

 
Again, with respect to Eq.(3.32), the partial derivative of the second term in the parenthesis is 
equal to:  
 

{ } { }
{ } { }1

1
max max

1
12 1
2

T

T

i i

u F
u F

t C C t
λλ

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎛ ⎞∂ ∂ ⎛ ⎞⎛ ⎞⎝ ⎠⎜ ⎟⎜ ⎟− = ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                    (3.34) 
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In Eq.(3.34), the ratio 1

maxC
λ⎛ ⎞

⎜ ⎟
⎝ ⎠

 is constant, while the derivative { } { }1
2

T

i

u F
t
∂ ⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
 must be 

estimated. Towards this direction and after simplifications, it yields: 
 

{ } { }
{ }( )

{ } { } { }( )1 1 1
2 2 2

T

T T

i i i

u F
u F F u

t t t

∂ ∂∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
                   (3.35) 

 
The force vector is considered to be independent from the thickness of the 2D continuum: 
 

{ }( )
0

i

F
t

∂
=

∂
                                                        (3.36) 

 
This means that the second term in Eq.(3.35) becomes equal to zero: 
 

{ } { }( )1 0
2

T

i

F
u

t
∂⎛ ⎞ =⎜ ⎟ ∂⎝ ⎠

                                                 (3.37) 

 
The combination of Eqs.(3.35, 3.37) yields: 
 

{ } { }
{ }( )

{ }1 1
2 2

T

T

i i

u
u F F

t t

∂∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
                                  (3.38) 

 
The vector of the externally applied forces { }F  is initially defined, thus initially known. 

Consequently, the partial derivative { }( )( )/T
iu t∂ ∂  is the unknown to be estimated. From the 

Finite Element Method, it is known that: 
 

{ } [ ]{ }F K u=                                                       (3.39) 
 
The derivative of Eq.(3.39) with respect to the thickness it  is equal to: 
 

{ } [ ]{ }( ) [ ]( ) { } [ ] { }( )
i i i i

K uF
K u u K

t t t t
∂ ∂∂ ∂

= = +
∂ ∂ ∂ ∂

                           (3.40) 

 
The combination of Eqs.(3.36, 3.41) yields: 
 

[ ]( ) { } [ ] { }( )
0

i i

K u
u K

t t
∂ ∂

+ =
∂ ∂

                                          (3.41) 

 

Solving the last equation with respect to 
{ }( )

i

u
t

∂

∂
 gives: 
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{ }( ) [ ] [ ]( ) { }1

i i

Ku
K u

t t
− ∂∂

= −
∂ ∂

                                          (3.42) 

 
The stiffness matrix [ ]K  is symmetric thus has the following properties: 
 

[ ] [ ]TK K=  and [ ] [ ]( )1 1 T
K K− −=                                        (3.43) 

 

From the combination of the last two equations, the partial derivative { }( )( )/T
iu t∂ ∂  becomes 

equal to: 
 

{ }( )
[ ] [ ]( ) { } [ ]( ) { } [ ]( )

{ } [ ]( ) [ ]( ) { } [ ]( ) [ ]

1 1

1 1

T T T
T

i i i

T
TT T

i i

u K K
K u u K

t t t

K K
u K u K

t t

− −

− −

⎛ ⎞∂ ⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

             (3.44) 

 
The combination of Eqs.(3.38, 3.44) yields: 
 

{ } { } { } [ ]( ) [ ] { }11 1
2 2

T T

i i

K
u F u K F

t t
−

⎛ ⎞⎛ ⎞⎛ ⎞∂∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟= − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
                       (3.45) 

 
From Eq.(3.39) and solving with respect to { }u , it yields: 
 

{ } [ ] { }1u K F−=                                                      (3.46) 
 
The combination of Eqs.(3.45, 3.46), after basic manipulations, yields: 
 

{ } { } { } [ ]( ) { }1 1
2 2

T T

i i

K
u F u u

t t

⎛ ⎞∂∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
                            (3.47) 

 
After manipulations, Eq.(3.37) obtains the following form:  
 

{ } { }1

max

1 0
2

T
i i

i

A u F
C t
λρ

⎛ ⎞ ∂ ⎛ ⎞⎛ ⎞+ =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠⎝ ⎠
                                   (3.48) 

 
Introducing Eq.(3.48) in Eq.(3.47), it yields: 
 

{ } [ ]( ) { }1

max

1 0
2

T
i i

i

K
A u u

C t
λρ

⎛ ⎞∂⎛ ⎞⎛ ⎞− =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠⎝ ⎠ ⎝ ⎠
                                 (3.49) 



D.T. Venetsanos ‐ PhD Thesis ‐ 2010 

P a g e  | 3.12 

Re-ordering the terms in the last equation, it yields: 
 

{ } [ ]( ) { }1
max

1 1 11
2

T

i i i

K
u u

C A t
λ

ρ

⎛ ⎞∂⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
                              (3.50) 

 
Multiplication and division of the right-hand-side of Eq.(3.50) by it  gives: 
 

{ } [ ]( ) { }1
max

1 1 11
2

T i

i i i i

t K
u u

C At t
λ

ρ

⎛ ⎞∂⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
                            (3.51) 

 
It can be proved (see Appendix 3.A) that the following is true: 
 

{ } [ ]( ) { } { } [ ]( ) { }T Ti i i
i i

i i

t K t K
u u u u

t t

⎛ ⎞ ⎛ ⎞∂ ∂
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

                              (3.52) 

 
The stiffness matrix of the finite elements for plane elasticity is equal to: 
 

T
i iA

K t dA= ∫ B EB                                                    (3.53) 

 
where it  is the thickness of the finite element, E  is the elasticity matrix and B  the strain-
displacement matrix. Derivation with respect to the thickness it  yields: 
 

( ) T
i A

i

K dA
t
∂

=
∂ ∫ B EB                                                 (3.54) 

 
Multiplication of both sides of Eq.(3.54) by it  results in the following expression: 
 

( ) T T
i i i i iA A

i

t K t dA t dA K
t
∂

= = =
∂ ∫ ∫B EB B EB                               (3.55) 

 
The combination of Eqs.(3.51, 3.55) yields: 
 

{ } [ ] { }1
max

1 1 11
2

T
i ii

i i i

u K u
C At

λ
ρ

⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

                                 (3.56) 

 
Eq.(3.56) may be written as: 
 

{ } [ ] { }
1

max

1 1 11
2

T

i ii

i i i

u K u
C At

λ
ρ

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
                                 (3.57) 

 
Since 1 constλ =  and maxC const= , Eq.(3.57) suggests that: 



D.T. Venetsanos ‐ PhD Thesis ‐ 2010 

P a g e  | 3.13 

{ } [ ] { }1
T

i ii

i i i

u K u
const

Atρ

⎛ ⎞⎛ ⎞
⎜ ⎟ =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                         (3.58) 

 
Eq.(3.58) is the mathematical expression of an Optimality Criterion, according to which: 

 
When the minimum weight of a 2D continuum is sought under the single compliance 
constraint then, at the optimum, the strain energy density, normalized to the material 
density, is constant. 

 
Generally speaking, it is possible to estimate the thickness distribution it  through an 

iterative procedure during which the element thicknesses are re-estimated according to some 
re-design formula. A typical application of the Lagrange multipliers method suggests that first 
Eq.(3.57) be solved with respect to the Lagrange multiplier and then this multiplier be 
introduced into the equation that describes the corresponding constraint. However, for the 
specific case of the compliance constrained optimization problem, the constraint is expressed 
with respect to the design vector (3.28) and not with respect to a design variable (3.57), thus 
the elimination of the Lagrange multiplier is not a straight-forward procedure. As an 
alternative, the iterative procedure of the following Section is proposed.  
 
3.3.2. Proposed procedure 

Eq.(3.57) describes an energy state of the structure at the optimum. However, it does not 
describe a way to reach that state, thus various procedures may be formulated. Towards this 
direction and considering that the same material is used though the entire continuum, it is 
possible to introduce the following index: 
 

{ } [ ] { }
max

1
T

ii i
i

i i i

u K u
a

C Atρ

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                         (3.59) 

 
The physical interpretation of this index is that the strain energy density, normalized with 
respect to the maximum allowable compliance, must be constant over the entire structure. 
Taking into consideration the constraint for minimum thickness, as described in Eq.(3.27), it 
yields that the strain energy density must be constant over the active part of the structure, 
active denoting all elements with non-critical thickness. Consequently, the corresponding 
mean value a  from all of the active elements is equal to: 
 

1

activeN

i
i

active

a
a

N
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
                                                       (3.60) 

 
Therefore, at the optimum and for the active part of the structure, it holds: 
 

1iα
α

⎛ ⎞ →⎜ ⎟
⎝ ⎠

                                                          (3.61) 

 
Dividing Eqs.(3.59, 3.60) by parts and taking into consideration Eq.(3.61), it holds: 
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{ } [ ] { }1

max ,

1
activeN

Ti
ii i i

active i i i new

a u K u
N C Atρ
=

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎛ ⎞⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎜ ⎟
⎝ ⎠

∑
                                   (3.62) 

 
where ,i newt  is the re-designed thickness of the i − element. Solving Eq.(3.62) with respect to 

,i newt  a relation to be applied iteratively is reached: 
 

{ } [ ] { }
,

max

1

1
active

T

active ii i
i new N

i i
i

i

u K uNt
C Aa ρ

=

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟
⎝ ⎠
∑

                               (3.63) 

 
A more convenient form of Eq.(3.63) for programming is: 

{ } [ ] { },, ,
, 1

max
,

1

1
active

T

i ki k i kactive
i k N

i i
i k

i

u K uNt
C Aa ρ+

=

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟
⎝ ⎠
∑

                            (3.64) 

 
where k  denoted iteration number. Based on the preceded analysis, the following 
optimization procedure is proposed: 
 
Step 1: Select randomly a uniform thickness distribution it . 
Step 2: Estimate the indices iα , using Eq.(3.59). 

Step 3: Estimate the mean value iα , using Eq.(3.60). 
Step 4: Re-design the element thickness distribution it  using Eq.(3.64). 
Step 5: Check for convergence; possible convergence criteria are: 

Criterion #1: the maximum change in element thickness between two successive 
iterations is less than a predefined tolerance: 1

1max k k
i it t tol+− ≤  

Criterion #2: the Coefficient of Variation (%CV) for the distribution of the iα  

indices is less than a predefined tolerance: ( ) 2% iCV a tol≤  

Step 6: If convergence has not been achieved and a predefined maximum number of 
iterations has not been exceeded, then go back to Step 2. 

 
3.3.3. Conclusions 

The preceded analysis refers to a thorough theoretical investigation of the single 
compliance constraint problem. At this point it is strongly emphasized that the 
aforementioned approach differs from those found in the literature, where the minimum 
compliance constraint problem suggests that the minimum compliance is sought under the 
assumption of a given material volume. Therefore, the present analysis is worth mentioning 
from the viewpoint that it actually deals with a problem that has not been yet attacked, or, at 
least, has not been extensively investigated. It is also emphasized that compliance design and 
stress design are equivalent if the stress criterion is consistent with the elastic energy measure. 
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Considering the von Mises criterion, which is not consistent with the energy criterion, results 
in different stress and compliance topology designs, the exception being the case where the 
Poisson’s ratio is equal to 0.5  (Bendsøe and Sigmund, 2003). Consequently, the compliance 
constraint problem may be considered as mainly of academic interest, thus no further 
elaboration with it takes place in the present investigation. 
 
3.4. Fully Stressed Design  

The Fully Stressed Design (FSD) is well-known to be one of the simplest and most popular 
procedures for reaching an optimized design under stress constraints. For a truss, the 
statement of the corresponding problem is as follows: 
 

minimize ( )∑
=

=
NEL

k
kkk LAW

1
ρ                                            (3.65) 

such that 1 0i
i

allow

g σ
σ
⎛ ⎞

= − ≤⎜ ⎟
⎝ ⎠

 and min iA A≤                        (3.66) 

 
where A  is the cross-sectional area, L  is the length of a bar, ρ  is the material density, σ  is 
the member stress, while the indices i  and allow  denote the i − bar and the allowable value, 
respectively. Assuming that the number of constraints is equal to the number of elements, bars 
in case of a truss, the aforementioned statement suggests that all members take the limit stress 
value allowσ . Considering that the axial stress of a bar is defined as: 
 

i
i

i

F
A

σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                         (3.66) 

 
where F  is the member force, it yields that, according to the method of Lagrange multipliers, 
the Lagrangian function   corresponding to the aforementioned problem, if the constraint for 
the minimum cross-sectional area is dropped, may be stated as: 
 

( )
1 1

1
NEL NEL

i
i i i i

i i i allow

FA L
A

ρ λ
σ= =

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑ ∑                                    (3.67) 

 
Differentiating Eq.(3.67) with respect to the cross-sectional value iA , which is the design 
variable, and setting it equal to zero, as the Lagrange multipliers method suggests, yields: 
 

2
1

1 0
NEL

pi
i i i p

pi allow i allow i

FFL
A A A

ρ λ λ
σ σ =

∂⎛ ⎞
− + =⎜ ⎟∂⎝ ⎠

∑                               (3.68) 

 
In the last equation, the term ( )p iF A∂ ∂  represents the gradient of the member force in a bar. 
If the truss under examination is determinate then the member forces are independent from 
the cross-sectional areas and this term becomes equal to zero; consequently, the third term in 
Eq.(3.68) vanishes. Even though this is not the general case, if it is assumed that this specific 
term vanishes, then Eq.(3.68) turns into the following form: 
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2 0i
i i i

i allow

FL
A

ρ λ
σ

− =                                                 (3.69) 

 
Solving Eq.(3.69) with respect to the cross-sectional value iA  yields: 
 

i
i i

allow i i

FA
L

λ
σ ρ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                (3.70) 

 
Furthermore, if it is assumed that all of the stress constraints ig  are active (Fully Stressed 
Design - FSD) then it holds: 
 

i
allow

i

F
A

σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                        (3.71) 

 
Introducing Eq.(3.71) into Eq.(3.70) yields: 
 

i i i
i

allow

F Lρλ
σ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                                                  (3.72) 

 
Introducing Eq.(3.72) into Eq.(3.70) yields: 
 

i
i

allow

FA
σ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                       (3.73) 

 
The last equation is the famous stress-ratio redesign formula. From its derivation, it is obvious 
that only for a determinate truss does this approach result in the global minimum structural 
weight. For indeterminate trusses, Eq.(3.73) is only an approximation. As a matter of fact, the 
more the third term in Eq.(3.68) tends to zero the closer the derived optimum design is to the 
global optimum. Therefore, the (FSD) has the advantage of being very simple to apply and 
the disadvantage of being an approximation to the optimum design for the majority of the 
real-life problems. However, for good practical engineering purposes, it is interesting to 
examine its applicability and efficiency in skeletal structures and continua, which is the 
subject of the next Chapter. 
 
3.5. Recapitulation 

The layout optimization of a structure may be achieved by removing redundant material, 
either completely or partially. The criterion for determining which part of the structure to 
remove depends on the imposed constraint. One of the most common types of such problems 
is related to the compliance of the structure. In the literature, the corresponding problem has 
been solved when a volume constraint is also imposed. In the present chapter, a more general 
case was theoretically investigated, where the volume constraint is not present. However, 
since no standard for structures refers to a compliance constraint, no further effort was put on 
exploring this issue. On the other hand, the stress-ratio technique is an optimization procedure 
that tends to Fully Stressed Designs which, for the majority of real-life structures, results in 
near-optimum solutions and thus is acceptable and interesting to explore.  
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APPENDIX 3.Α: Work done by the externally applied forces 
 
It can be proved that the following equation is true: 
 

{ } [ ]( ) { } { } [ ]( ) { }T Ti i i
i i

i i

t K t K
u u u u

t t

⎛ ⎞ ⎛ ⎞∂ ∂
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

                             (3.Α1) 

 
It is obvious that both the left-hand-side and the right-hand-side of Eq.(3.A1) are scalar 
quantities. In order to prove that these scalars are equal, let a 2D continuum discretized using 
a mesh of NN  nodes and NEL  finite elements of plane elasticity and of constant thickness. 
Let [ ]iK  be the stiffness matrix of the i − element, whose thickness is it . For reasons of 
completeness, it is referred that it holds:  
 

[ ] T
i iA

K t dA= ∫ B EB                                                  (3.Α2) 

 
where E  is the elasticity matrix and B  is the strain-displacement matrix. The partial 
derivative of [ ]iK  with respect to the element thickness it , yields: 
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Multiplying Eq.(3.A3) by it , then, from Eq.(3.Α2), it yields: 
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In other words, the product of the thickness it  time the partial derivative of [ ]iK  with respect 

to the thickness it  is equal to the matrix [ ]iK  itself. Therefore, the right-hand-side of 
Eq.(3.Α1) becomes: 
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On the right-hand-side of Eq.(3.A5), it is recognized that: 
 

[ ]{ } { }i i iK u F=                                                      (3.Α6) 
 
From Eqs.(3.Α1, 3.Α5 and 3. Α6), the following conclusion may be drawn: 
 
Conclusion #1: The right-hand-side of Eq.(3.Α1) is numerically equal to the work done by 

the external forces applied at the nodes of the i − element. 
 
With respect to plane elasticity, each node of the mesh to be used has two translational 
degrees of freedom, thus in total 2 2NN NN×  degrees of freedom are involved. This means 



D.T. Venetsanos ‐ PhD Thesis ‐ 2010 

P a g e  | 3.20 

that the dimension of the stiffness matrix [ ]K  of the examined structure is equal to 

2 2NN NN× . The thickness it  of the i − element appears at those entries in [ ]K  that 

correspond to the degrees of freedom of matrix [ ]iK . Therefore, the partial derivative of 

matrix [ ]K  with respect to the thickness it  will be equal to a 2 2NN NN×  matrix, whose 

entries are all zero but those corresponding to the degrees of freedom of matrix [ ]iK . These 

non-zero entries come from the derivation of [ ]iK  with respect to it  (see Eq.(3.Α3)). 

Multiplying the 2 2NN NN×  matrix 
[ ]( )

i

K
t

∂

∂
 by the scalar quantity it  results in the matrix 

[ ]( )i

i

t K
t

∂

∂
, for which the following statements hold: 

 The dimension of the matrix is 2 2NN NN×  and the non-zero entries are the entries of 
[ ]iK , appropriately placed at the corresponding matrix locations. 

 The matrix is numerically equal to the stiffness matrix of the entire structure if the latter 
one has been updated using only the elements of matrix [ ]iK  of the i − element. 

 The matrix is equal to [ ]iK , when the latter matrix has been augmented with zero 
entries such that its dimension becomes equal to the dimension of the stiffness matrix of 
the entire structure under consideration. 

 From a qualitative viewpoint, the matrix expresses the stiffness of the i − element only. 
The vector { }u  contains all the nodal displacements of the structure under consideration and 

its dimension is 2 1NN × . When the vector { }u  is multiplied from the left-hand-side by 

[ ]( )i

i

t K
t

⎛ ⎞∂
⎜ ⎟⎜ ⎟∂⎝ ⎠

, which expresses the stiffness of the i − element, then the derived product 

describes the external forces applied at the i − element. A further multiplication of the left-
hand-side by { }Tu  gives the work done by those forces. Therefore, the following conclusion 
is drawn: 
 
Conclusion #2: The left-hand-side of Eq.(3.Α1) is numerically equal to the work done by 

the external forces applied at the nodes of the i − element. 
 
From Conclusion #1 and Conclusion #2, it yields that Eq.(3.A1) is true, because both sides of 
the equation describe the same scalar quantity (work done by the external forces applied at the 
nodes of the i − element). 
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APPENDIX 3.Β: Non-equivalence between displacement constraint and compliance 
constraint 

 
Imposing a constraint on the maximum value of the work done by the externally applied loads 
(compliance constraint, let it be constraint A) is not always equivalent to imposing a 
constraint on the maximum value of the nodal displacement (let it be constraint Β) because in 
constraint A the only nodes that participate are those carrying an external load; however, it is 
not necessary for these nodes to present the maximum displacement. As a typical example of 
such a case, let a horizontal simply supported beam loaded with a vertical force. In this case, 
it is clear that the work done by the externally applied loads is equal to: 
 

{ } { }T
i iu F u F=                                                     (3.Β1) 

 
while the constraint on this work may be written as: 
 

{ } { } max
Tu F C≤                                                     (3.Β2) 

 
where maxC  is an upper bound. The combination of Eqs.(3.B1, 3.B2), it yields: 
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thus the maximum displacement of the loaded node is equal to: 
 

max
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F

⎛ ⎞
= ⎜ ⎟
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                                                     (3.Β4) 

 
From Engineering Handbooks (e.g. Stahl im Hochbau, s.1110), it can be found that for a 
horizontal simply supported beam under a vertical load iF , the maximum deflection occurs at 
the load application point if and only if that point is at the mid-span of the beam, for which 
case it holds: 
 

max ,maxiy u=                                                         (3.Β5) 
 
However, in every other case, the maximum deflection occurs at a location different than that 
of the applied load and it holds: 
 

max ,maxiy u>                                                         (3.Β6) 
 
From Eq.(3.B6), it is clear that imposing constraint A results in a different situation than 
imposing constraint B, because, according to constraint A, a larger beam deflection is 
allowed. Therefore, the displacement constrained optimization problem and the compliance 
constrained optimization problem are two different problems being only conditionally 
coincident. 
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CHAPTER 4 
 
 

LAYOUT OPTIMIZATION  

UNDER STRESS CONSTRAINTS 
 
 
 
 

 
Abstract 

In this chapter, the layout optimization problem under stress constraints is discussed. First, the application of 
the well‐known Fully Stressed Design (FSD) in 2D skeletal structures is investigated. In the sequel, the same 

technique is examined for the optimization of 2D continua, for the optimization of 2D plates and for the 
optimization of 3D continua. Last, the single stress constrained problem is solved using the Lagrange 

multipliers method. 
 
 

Keywords 
layout optimization, stress constraint, skeletal structure, 2D continuum,  

2D plate, single stress constraint problem. 
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4.1. Introduction 
The stress constraint problem is one of the most important problems in structural 

optimization because it addresses to a real-life constraint of major significance for the 
structural safety. For this reason, one would expect this problem to have been thoroughly and 
exhaustively investigated. However, this is not the case because the stress-constraint problem 
presents a singularity (Bendsøe and Sigmund, 2003), thus makes it a difficult problem to deal 
with, while other types of problems, such as the compliance constraint problem or the single 
displacement constraint problem are easier to handle. Consequently, there is still room for 
further research not only in the area of re-formulating known techniques for solving the 
aforementioned problem but also in the area of solving variations of the initial problem 
statement that have not attracted much attention of the research community. Within this 
frame, the present chapter discusses the stress constraint problem.  

In more details, first the capabilities of the Fully Stressed Design (FSD) in layout 
optimization of 2D structures are examined. For this purpose, two approaches were 
investigated, the former being the substitution of a 2D continuum with a skeletal structure and 
the latter being the consideration of the 2D continuum as such. In both approaches, the 
redesign was based on changing either the cross-section of the skeletal structural members or 
the thickness of the continuum. To this end, four examples retrieved from the literature were 
examined. 

In the sequel, the concept of using finite elements of variable thickness for the stress 
constrained layout optimization of 2D continua is explored. For the thickness interpolation 
within each element an isoparametric consideration is used, meaning that the same shape 
functions used for the interpolation of the nodal displacements are also used for interpolating 
the element thickness. In this way, the nodes of the generated mesh serve as control points for 
the thickness distribution thus as control points for the optimum layout of the structure. For 
reasons of verification, four characteristic literature examples are optimized once using 
elements of constant thickness and once using elements of variable thickness. 

Next, the optimization of 2D plates is investigated. To this end, various typical test cases 
are optimized once using the stress-ratio technique, with which the (FSD) is achieved, and 
once using the Evolutionary Structural Optimization (ESO) approach. In this way, the concept 
of varying the element thickness is compared to the concept of completely removing 
elements, thus material, characterized as corresponding to redundant material.  

Last, the optimization of 3D continua is investigated. To this end, the continuum is 
discretized into finite elements of 3D elasticity, each one of which is examined with respect to 
its contribution to carrying the externally applied loads. The aforementioned contribution is 
quantified first in terms of the element von Mises equivalent stress and then in terms of the 
element strain energy density normalized with respect to the mean value of the strain energy 
density of the active part of the structure. 

In addition a variation of the stress constraint problem is analytically presented on a 
theoretical basis. According to this variation, no matter how many stress constraints are 
imposed, only one such constraint is active at the optimum, without knowing a priori the 
structural member with the critical stress. This problem statement is here termed as ‘extended 
single stress constraint problem’ and is dealt with the Lagrange multipliers method. The result 
of this analysis is the formulation of a new optimality criterion, free of any assumptions 
concerning the determinacy of the optimized structure. Based on this criterion, a new redesign 
formula is also developed. The main difference between the Fully Stressed Design and the 
proposed approach is the fact that the former tends to make all structural members obtain the 
critical stress value while the latter seeks for such a design where one structural member takes 
on the critical stress value, without necessarily preventing the other structural members from 
obtaining the imposed upper stress bound. 
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4.2. Stress constrained skeletal structures 
This section is a preliminary study that investigates the capabilities of the Fully Stressed 

Design (FSD) in shape and topology optimization of two-dimensional structures under stress 
constraints only. Furthermore, the efficiency of modeling a continuum as a skeletal structure 
is also examined. The structures studied were the short cantilever, the cantilever, the MBB 
and the L-shaped beam. These structures were modeled in two ways: as an assembly of 
quadrilateral bilinear elements of variable thickness (continuum) and as an assembly of truss 
elements (discrete body – skeletal structures). For each case study, seven different aspect 
ratios were used and three different mesh densities were chosen. The stress-ratio redesign 
formula was based on the von Mises equivalent stress and the axial stress, for the bilinear and 
the truss elements respectively. The purpose of modeling a continuum with truss elements is 
the fact that, in this simple way, anisotropy may be introduced into the structure, without 
using composite materials or other more complicated theories (ASE, ISEP, ISECP). The 
validity of this idea was examined by comparing the optimum designs obtained for the 
continuum and the skeletal structures, while the performance of the (FSD) was examined 
through a comparison with the Sequential Quadratic Programming (SQP), which is a 
powerful mathematical programming optimization method. 
 
4.2.1. In general 

Shape and topology optimization has always been an issue of major importance for 
engineering designers. For simple cases only, such as a cantilever beam, it is possible to 
derive optimized shapes in an analytical way. Nevertheless, for the majority of the 
engineering structures, the use of recursive algorithms involving Finite Element Analysis 
(FEA) is inevitable in order to get an optimized design. The main difficulties in developing 
efficient algorithms of that kind are the large number of design variables, the equal or even 
larger number of constraints and the non-linear nature of the problems. On top of that, in most 
cases, each FEA requires the solution of a large system of equations, which is of a high 
computational cost. Engineering ingenuity and experience has resulted in the development of 
several structural optimization methods. 

The Fully Stressed Design (FSD) is an optimality criterion very well known since the late 
50’s (Schmidt, 1958). Its popularity was mainly due to the fact that it results in a very simple 
recursive formula that converges fast in comparison with other techniques. Gallagher 
(Gallagher, 1973), Morris (Morris, 1982), Haftka (Haftka et al, 1990), Patnaik (Patnaik et al, 
1995), Rozvany (Rozvany, 2001a, Rozvany et al, 1995), Kirsch (Kirsch, 1989) and others 
have analyzed the efficiency of this method. These works revealed the major drawback of the 
method: only under certain circumstances does it provide the optimum design (minimum 
weight) for stress constrained problems. A common practice followed extensively was to use 
FSD as a first optimization step and then use the FSD result as a starting point for a powerful 
deterministic optimization algorithm (Schmidt, 1958).  

An interesting step forward was made when the Lagrange multipliers technique in 
combination with duality entered the area of optimization. Generally speaking, it was possible 
to encounter not only stress but displacement and other constraints (i.e. buckling loads) as 
well. The difficulty of dealing with such problems was focused on determining the Lagrange 
multipliers, a task that was not so easy to handle because the Lagrange multipliers should be 
calculated from solving non-linear systems of equations (Morris, 1982). Nevertheless, for 
specific cases of constraints, the Lagrange multipliers method led to very elegant 
propositions, called Optimality Criteria (OC) concerning the conditions that hold for an 
optimum design (Morris, 1982). Once again, what was good from an engineering point of 
view, was insufficient from a mathematical point of view: generally speaking, while the 
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Lagrange multiplier method could provide an improved design, it could not be proved that 
this design was optimum.  

An even more interesting step was made when purely Mathematical Programming (MP) 
techniques were developed, meaning that the minimum weight of a structure under any kind 
of constraints was sought without taking into consideration the mechanical nature of the 
problem; instead, derivative information was implemented. A plethora of such techniques 
were developed, like the Steepest Descent Method, Sequential Linear Programming, 
Sequential Quadratic Programming etc (Vanderplaats, 1984). The major drawback of these 
MP techniques was the fact that a systematic search of the feasible region required very high, 
frequently prohibitively high, computational cost, while the possibility of converging to a 
local minimum was high as well. 

Alternatively to the MP methods, probabilistic techniques, like the Genetic Algorithms 
(GAs), Simulated Annealing (SA) and Tabu search, were developed (Pham and Karaboga, 
2000). These methods are of zero order, meaning that they require no derivative information 
therefore it is less possible to converge to a local minimum. Nevertheless, “less possible” does 
not necessarily mean “impossible” to converge to local minima, thus it is required to solve the 
same problem many times beginning from different initial vectors in order to ensure 
optimality. On top of that, these methods are inefficient when the number of design variables 
is large, exactly due to the probabilistic nature of exploring and exploiting the feasible region.  
In the recent years, a great many structural optimization methods have appeared, such as 
swarm particles, methods of natural growth and meshless techniques. A major breakthrough 
was achieved by Suzuki and Kikuchi (Suzuki and Kikuchi, 1991) who introduced material 
anisotropy (homogenization method), while a monumental contribution is attributed to 
Bendsøe and his SIMP method (Bendsøe, 1995, Duysinx and Bendsøe, 1998). On the other 
hand, optimality criteria still appear in new forms. Makris and Provatidis (Makris and 
Provatidis, 2002), using a virtual energy-based approach, proposed the combination of a Fully 
Utilized Method (FUD) with Fully Stressed Design (FSD). Furthermore, Qing et al. (Qing et 
al, 2000), in their Evolutionary Structural Optimization (ESO) method, introduced an updated 
use of the good-old stress-ratio technique. 

Taking into consideration all the techniques mentioned above, it is evident that each one of 
them has certain advantages and certain disadvantages. A question that rises is whether it 
would be a good idea to combine certain features of different methods in order to get a better 
result. To this direction, the performance of the stress-ratio technique (FSD) is investigated, 
which engineering experience has shown to be a very simple and fast redesign technique, in 
combination with structural anisotropy; that is with the feature that scientists deal with lately 
(state-of-the-art). As a first step, the stress constrained shape and topology optimization 
problem of 2D continuum structures is examined using the FSD method (first group of 
results). Then the same structures are modeled as assemblies of discrete bodies (bars – 
skeletal structures), a substitution that introduces anisotropic behavior to the structure, and the 
minimum weight is sought again with the same method and the same stress constraints 
(second group of results). In the sequel, the two groups of results are compared in order to 
evaluate the efficiency of the aforementioned substitution. As a final step and in order to 
evaluate the performance of the FSD, the entire study is repeated using the powerful method 
of Sequential Quadratic Programming (SQP) as embedded in MatLab. 
 
4.2.2. Theoretical background 

The main idea is based on the fact that the stiffness matrices of the basic structural units 
that are used to assemble a structure depend on the dimensions of these units. To be more 
specific, a continuum can be considered as an assembly of Basic Continuum Units (BCUs). 
Introduction of material anisotropy changes the stiffness of a body along different directions 
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thus forces the body to behave differently along different directions. In Finite Element 
Analysis (FEA) and for 2D cases, a BCU can be modeled as a Bilinear Element (BE). The 
stiffness matrix of this element (Appendix 4A) suggests that a change in its dimensions 
changes its stiffness and as a consequence the stiffness of the BCU and the entire structure 
changes as well. Therefore, instead of introducing material anisotropy, a structural anisotropic 
behavior can be caused by changing the dimensions of the Basic Continuum Unit (BCU). It is 
strongly emphasized that the quantitative relationship between material anisotropy and 
anisotropic behavior due to changes in geometric dimensions is not examined in the present 
work. 

The same idea is valid for the discrete bodies as well. In more details (Fig. 4.1), the Basic 
Continuum Unit can be replaced by a 6-bar assembly (Basic Discrete Unit – BDU). Again, an 
anisotropic behavior can be caused either by introducing material anisotropy or by changing 
the dimensions of the BDU (Appendix 4A). In this case, a change in dimensions causes a 
change in the orientation of the diagonal elements of the BDU, which affects severely the 
stiffness of the unit. It is strongly emphasized that the replacement of a BCU by a BDU is 
qualitative and not quantitative, meaning that the stiffness matrices of the two units are not 
equal. 
 

 
(a) (b) 

Figure 4.1: Basic units for modeling (a) continuum (Basic Continuum Unit - BCU) and (b) 
discrete structures (Basic Discrete Unit - BDU) 

 
4.2.3. Analysis 

Four typical cases were examined; that is the short cantilever, the cantilever, the MBB and 
the L-shape beam (Fig. 4.2). For each case, two kinds of models were used: one with bilinear 
elements (continuum) and one with truss elements (skeletal structure – discrete body). 
Therefore, eight different models were developed at first. The basic mesh unit for the bilinear 
models was an ( )2 2a b×  orthogonal, while the basic mesh unit for the skeletal structures was 
formed by introducing the diagonals in this geometrical shape. Each complete mesh was an 
assembly of an integer number of basic units. For each one of the aforementioned eight 
models, a parametric investigation with respect to the aspect ratio ( )a bλ =  and the mesh 
density was conducted. In more details, for each model, seven different aspect ratio values 
were chosen, { }1 4,1 3,1 2,1,2,3,4λ ∈ , while for each one of them three different mesh sizes 
were used ( 7 3 21× =  runs). For the skeletal structures, the different aspect ratio values were 
used in order to examine the relationship between the optimum design and the variation in the 
structural stiffness due to the orientation of the trusses, while the different mesh sizes were 
used in order to ensure that the results were mesh-independent. For the bilinear models, both 
the different aspect ratio values and the different mesh sizes were used in order to examine 
mesh-independency. In total, 21 8 168× =  different models were examined. Each one of these 
models was analyzed twice: first by using the stress-ratio technique and then by using the 
SQP method. For the latter method, a variety of initial vectors was used, such as the output of 
the FSD or randomly formed vectors. It is clarified that for the skeletal structures the axial 
stresses were used in the recursive formula of the stress-ratio technique, while for the bilinear 
models the von Mises equivalent stress was used instead. It is also noted that the Matlab 
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Optimization Toolbox was selected for the implementation of the SQP method, while all 
analyses were run with an in-house code. 
 

  

 
P=1N

3/5 2/5

3/5

2/5

 
(a) (b) (c) (d) 

Figure 4.2: Geometry and loading of the examined cases (a) deep cantilever, (b) short 
cantilever, (c) MBB beam and (d) L-shaped beam 

 
In all cases, the material density was considered to be unity, thus each volume was equal to 

the corresponding weight. The Poisson ratio was selected to be 0.3v = , the modulus of 
elasticity was 1E MPa=  and the initial thickness (cross sections in the case of bar elements) 
equal to one. The maximum allowable stress was set to max 30MPaσ = . It is clarified that for 
the skeletal structures the maximum stress refers to the axial stresses, while for the bilinear 
models the maximum stress refers to the von Mises equivalent stress. The final volumes 
(168 2 336× =  values) were recorded and the best results are presented in Tables 4.1 and 4.2.  

 
Table 4.1: Best results for continuum structures 

 Deep cantilever Short cantilever MBB beam L-shaped beam 
Aspect ratio 
[Hor : Ver] 1:1 1:2 1:1 1:2 

Initial volume 
[m3] 3.0 160.0 6.0 0.64 

Final volume 
FSD [m3] 0.7863 19.24 1.3814 0.2096 

Final volume 
SQP [m3] 0.7863 19.24 1.3814 0.2096 

Vfinal/Vo [%] 26.21% 12.02% 23.02% 32.75% 
 
Table 4.2: Best results for skeletal structures 
 Short cantilever Cantilever MBB beam L-shaped beam 

Aspect ratio 
[Hor : Ver] 1:1 1:2 1:1 1:2 

Initial volume 
[m3] 3.0 160.0 6.0 0.64 

Final volume 
FSD [m3] 0.800 22.010 1.500 0.223 

Final volume 
SQP [m3] 0.800 22.010 1.500 0.223 

Vfinal/Vo [%] 26.67% 13.75% 25.00% 34.84% 
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The material distributions for the final designs (continuum and skeletal structures) as well as 
results from literature are presented in Figure 4.3. 
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Figure 4.3: Fully Stressed Designs for (a) continuum, (b) discrete structures, (c) after 
(Duysinx and Bendsøe, 1998) 

 
It is noted that the used skeletal structures have straight members only. This is a disadvantage 
in comparison with the continuum structures, which permit the appearance of ‘curved’ 
material distribution thus resulting in smaller volume (weight), as Table 4.3 shows. 
 
Table 4.3: Volume reductions for optimum designs. 

 Deep cantilever Short cantilever MBB beam L-shaped beam 
1-(Vfinal/Vo) [%] 

(Skeletal) 73.33% 86.25% 75.00% 65.16% 

1-(Vfinal/Vo) [%] 
(Bilinear) 73.79% 87.98% 76.98% 67.25% 

(Skeletal-Bilinear) -0.46% -1.73% -1.98% -2.09% 
 
It is evident that the % difference in weight between the skeletal and the continuum structures 
is negligible in the case of the short cantilever, while the maximum difference is 2.09% (L-
shaped beam). As far as the relationship between the aspect ratio and the optimum volume is 
concerned, Figure 4.4 provides the relevant information.  

For the skeletal structures and for the first three cases, the volume of the structure is a 
convex function of the aspect ratio. This is not the case for the L-shape beam but still the 
function is monotonous and has a minimum. While four cases were studied, the minimum 
volume appeared for two distinct aspect ratio values (1 and ½). In addition, a small deviation 
from the value of the aspect ratio that corresponds to the minimum volume (weight) results in 
a severe change in the volume (weight) of the structure.  
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For the continuum structures the behavior is entirely different. In more details, for the 
first two cases, the volume of the structure appears to be independent of the aspect ratio. 
Furthermore, for the MBB and the L-shape beam, the curve seems to have a “flat” part for 
aspect ratios greater than 1 but it diverges for low aspect ratio values. Therefore, the change in 
the dimensions of the elements causes a change in their stiffness but this does not changes 
dramatically the volume (weight) of the structure. The reason for this is explained in 
Appendix 4A. 
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Figure 4.4: Change in optimum volume with respect to the aspect ratio 
 
As it was previously mentioned, apart from the comparison between the skeletal structures 
and the continuum, the current work also encountered a comparison between FSD and SQP. 
The results of this comparison for the skeletal structures are presented in Table 4.4. Similar 
results are valid for the continuum as well. 
 
Table 4.4: Comparison between FSD and SQP results (skeletal structures). 

 FSD SQP  
Case 
study 

Optimum 
volume 

Elapsed time 
t1 

Optimum 
volume 

Elapsed time 
t2 

t1 / t2 

#1 0.8004 0.99 0.8003 58.500 59 
#2 21.3633 2.25 21.3613 120.010 53 
#3 1.5000 2.86 1.5002 225.420 78 
#4 0.2235 4.22 0.2235 1235.100 292 

 
It is obvious that, for the cases studied, there is no difference between the optimum values 
obtained by FSD and SQP. On the contrary, there is a significant difference in the time 
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required for the optimum value to be obtained. It is clarified that both FSD and SQP were 
programmed in Matlab and all runs took place on the same computer (P4, 2MHz, 512MB 
RAM), thus the elapsed times are comparable.  
 
4.2.4. Conclusions 

The goals of the present study were first to investigate the capabilities of the Fully Stressed 
Design (FSD) in shape and topology optimization of two-dimensional structures under stress 
constraints only and second to examine the efficiency of modeling a continuum as a skeletal 
structure. For this purpose, four typical examples were examined. The results of the study 
were the following: 
• The implementation of the stress-ratio technique for optimizing either a 2D continuum or 

a 2D skeletal structure was extremely easy and time-saving.  
• The final shapes and topologies obtained by the FSD were similar to those obtained by 

using more sophisticated optimization techniques (Fig. 4.3).  
• For the cases examined, the optimal results from the FSD and the SQP were identical. On 

the contrary, the solution time required for the former method was significantly lower. 
• For the cases examined, the optimal volume (weight) for the continuum was slightly 

lighter than that for the skeletal structure. The reason for this was the fact that in skeletal 
structures only straight members appear, thus it is possible to have material only along 
straight lines, whose directions are predefined by the mesh. On the contrary, in a 
continuum it is possible to have material distribution in a checkerboard pattern, which is 
a more versatile material allocation. 

• A change in the geometrical dimensions of a quadrilateral bilinear element in such a way 
that the aspect ratio remains the same, results in no change in the corresponding stiffness 
matrix. As a consequence, the stiffness of a structure assembled by such elements 
remains unchanged as well.  

• A change in the geometrical dimensions of a 6-bar assembly, independently of whether 
the aspect ratio changes or not, causes a change in the corresponding stiffness matrix. As 
a result, the stiffness of a structure of such assemblies changes as well. 

• The orientation of the trusses is of major importance both in the optimum layout and in 
the optimum volume (weight). Depending on this orientation, the FSD method may result 
in non-optimum designs. Nevertheless, in this way the optimum volume (weight) is 
bracketed by an upper bound, which is a very useful piece of information for structural 
optimization designers.  

• The optimum volume, using either bilinear elements or truss elements, is almost the 
same. Nevertheless, the cost of constructing an assembly of trusses with various section 
areas is lower than the cost of producing a continuum of variable thickness. Therefore, 
the idea of substituting the continuum by discrete elements is of practical value. 

In accordance to the aforementioned conclusions, the combination of discrete elements and 
the FSD method is a good investment in searching for the optimum layout of a continuum 
under stress constraints and is of practical value.  
 
4.3. Stress constrained 2D continua and variable thickness elements 

The fully stressed design of a structure is usually sought by changing the structural 
thickness according to the very well-known stress-ratio technique. In this approach, it is usual 
to implement an assembly of finite elements, each one of which has its own thickness that 
changes during the optimization procedure but remains constant throughout the element 
surface. For this reason, a severe thickness discontinuity among the elements appears thus 
resulting in shapes of low manufacturability. Alternatively, it is possible to develop finite 
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elements of variable thickness throughout their surface. Towards this direction, one choice is 
to use the same shape functions for both the thickness and the nodal displacement 
interpolation. In this way, it is possible to ensure thickness continuation among the elements, 
thus to get a smoother surface. Compared to the constant thickness elements, the final shape is 
smoother but the final weight is expected to be higher, since additional material is used in 
order to achieve the aforementioned smoothness. In this chapter, the influence of coupling the 
traditional stress-ratio technique with finite elements of variable thickness is investigated. 
Four typical cases of 2D continuum structures are examined, namely the deep cantilever, the 
short cantilever, the MBB beam and a Michell type structure. The quantified results revealed 
that, when elements of variable thickness are used, not only is the manufacturability 
significantly enforced but also the structural weight decreases as well.  
 
4.3.1. In general 

During the last decades, structural optimization has been one of the greatest challenges 
among the engineering community. In the beginning of the optimization era, the aim was to 
optimize either the size or the shape or the topology of a structure. In the recent years, a new 
concept, termed layout optimization, was introduced aiming at the simultaneous optimization 
of all three aforementioned characteristics (Rozvany, 2001). Towards this direction, a lot of 
research effort has been invested and the outcome was the development of a variety of 
different approaches. These approaches can be categorized in two large groups. The first 
group contains all those methods that introduce movable control points on the structural 
surface and try to find the optimum result by changing the co-ordinates of the control points. 
It is noted that during the optimization procedure, the material characteristics do not change. 
In this group, one can find not only deterministic approaches, such as the Sequential 
Quadratic Approach (SQP) (Belegundu and Chandrupatla, 1999) and the bubble method by 
Eschenauer et al. (Eschenauer et al, 1994), but also stochastic procedures (Giannakoglou et al, 
2002). A common characteristic in these approaches is that at each iterative step a new mesh 
must be created because the domain of the optimization problem (area or volume of the 
structure under optimization) changes. The second group contains all those methods that use 
the same mesh throughout the optimization procedure and try to locate the optimum geometry 
by properly changing a material characteristic, such as the Young’s modulus or the density. 
The ultimate goal is to reach such material distribution where either material exists or not (0-1 
patterns). In this category, one can find the COC approach by Rozvany (Rozvany, 1997), 
which is based on the optimality criteria concept, the method of Mljeniek (Mlejnek and 
Schirrmacher, 1993), where the value of the Young’s modulus depends on the material 
density, the SIMP method by Bendsøe (Bendsøe and Sigmund, 2003), where the material 
density is properly penalized, the homogenization method by Suzuki and Kikuchi (Suzuki and 
Kikuchi, 1991), where material of different ranks are used, the Evolutionary Structural 
Optimization (ESO) method by Xie and Steven (Xie et al, 1997), where underutilized material 
is gradually removed, and the method by Makris and Provatidis (Makris and Provatidis, 
2002), who proposed a virtual strain energy density optimization approach. In all these 
methods, the thickness of the used finite elements is considered to be constant. Alternatively, 
it is possible to use finite elements of variable thickness (Felippa, 2001), thus it is of interest 
to investigate the implementation of the aforementioned elements with well known 
optimization techniques. 

Towards this direction, the present paper examined the coupling of the stress-ratio 
technique, which is the simplest optimization scheme for single stress constrained problems, 
with elements whose variable thickness is described by the same shape functions used for the 
nodal displacement interpolation. More particularly, constant strain triangular (CST) finite 
elements were used. The main idea behind the examined concept is very simple. The 
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proposed scheme of thickness interpolation ensures thickness continuity along the structural 
surface, while at the same time the mesh nodes can be used as surface control points. Moving 
such control points according to a simple and efficient technique, such as the stress-ratio 
technique, it is possible to avoid severe thickness discontinuities, thus enforcing the 
manufacturability of the structure, and getting quickly the optimum layout.  
 
4.3.2. Theoretical approach 

The proposed approach is based on two theoretical aspects, the former being the stress-
ratio redesign equation and the latter being the formation of the stiffness matrix of a variable 
thickness finite element. In this chapter, two types of such elements have been implemented, 
namely the constant strain triangular finite element (CST) and the 4-node quadrilateral 
element of plane elasticity. This selection is justified in the corresponding paragraphs. 
However, it is noted that the concept of interpolating the thickness within an element is 
applicable to any type of finite element, either of the Lagrange or of the Serendipity family. In 
the next sections, the aforementioned stress-ratio redesign equation is presented, while the 
investigation of typical literature examples, for each one of the aforementioned finite 
elements, follows. 
 
4.3.3. The stress-ratio redesign equation 

According to the Lagrange multipliers method (Morris, 1982), for the case of a truss under 
stress constraints ig  only, the Lagrangian that describes the optimization problem of 
minimum weight is: 
 

( )
1

,
NEL

i i
i

x W gλ λ
=

= +∑                                                   (4.1) 

 
where W  is the weight of the entire structure, ix  is the cross-sectional area of the i-th bar, iλ  
is the Lagrange multiplier for the stress constraint of the i-th bar, ig  is the imposed stress 
constraint for the i-th bar. Basic manipulations of Eq.(4.1), under the assumption that the 
member forces do not depend on the member sizes, results in Eq.(4.2), which is well-known 
as the ‘stress-ratio formula’ (also see Section 3.3.1): 
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where k  denotes the iteration. For a determinate structure, the minimum weight is reached in 
one step. For an indeterminate structure, Eq.(4.2) can be used only as an acceptable 
approximation to a near-minimum design. However, experience has shown that for the 
majority of the engineering problems, Eq.(4.2) provides acceptably adequate results (Berke 
and Khot, 1987). Therefore, for stress constrained structures, the stress-ratio redesign formula 
is a good choice for seeking the layout of minimum weight 

Generalizing Eq.(4.2), ix  may represent element thickness for 2D continua (Morris, 1982). 
For the needs of the present paper, a further generalization was adopted, according to which 
the quantity ix  in Eq.(4.2) represented nodal thickness. At this point, it is strongly 
emphasized that a minimum thickness value must be imposed; a negative thickness has no 
physical meaning, while a zero thickness may cause severe numerical instabilities during the 
optimization procedure. 
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4.3.4. Implementation of a CST finite element of variable thickness 
A Constant Strain Triangle (CST) is a three-noded triangular finite element that has three 

nodes at the vertices of the triangle (Fig.4.1a). Its name is due to the fact that the strains are 
constant over the element. The displacement interpolation within the CST element is linear in 
x  and y : 
 

( ) 1, e e ex y C−= =u N a N a                                                 (4.3) 
 
More particularly, eN  refers to the interpolation scheme C  describes the nodal coordinates of 
the element e  and ea  denotes the corresponding nodal displacements. From the theory of the 
Finite Element Method (FEM), it is well known that for a (CST) of area A , the stiffness 
matrix equals to:  
 

   e T

A

t dA= ∫K B E B                                                    (4.4) 

 
where E  is the 3 3×  stress-strain matrix of elastic moduli ( 1E  for plane stress and 2E  for 
plane strain) and B  is the 3 6×  strain-displacement matrix. For a constant thickness CST 
element, Eq.(4.4) becomes 
 

   e Tt A=K B E B                                                       (4.5) 
 

 
(a) (b) 

Figure 4.5: CST element with (a) constant and (b) variable thickness 
 
For a variable thickness CST element (Fig.4.1b), it is evident that only the quantity inside the 
integral of Eq.(4.1) changes and requires a re-estimation. If the thickness is interpolated with 
the shape functions used for the interpolation of the displacements, then, after some basic 
integrations, the stiffness matrix becomes equal to: 
 

1 2 3    
3

e Tt t t A+ +⎛ ⎞= ⎜ ⎟
⎝ ⎠

K B E B                                             (4.6) 

 
where , 1,2,3it i =  is the nodal thickness. It is clarified that all the matrices involved in the 
aforementioned equations are omitted because they are very easily retrieved from textbooks 
concerning the Finite Element Method (FEM).  

At this point, it is noted that the implementation of the CST element has the important 
advantage that three nodes always define a plane, thus an assembly of such elements do 
define a 0C  surface, which will be a polygonal.  

t2 

t3 

t1 

Constant thickness CST element 
(t1 = t2 = t3) 

t2 

t3 
t1 

Variable thickness CST element 
(t1 ≠ t2 ≠ t3) 
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4.3.4.1. Procedure of Evaluation 
In order to evaluate the implementation of a CST finite element of variable thickness in 

searching for the optimum layout of stress constrained 2D continuum, five evaluation indices, 
two plots concerning the history of the iterative optimization procedure, as well as three plots 
and three 3-D graphs concerning the final optimization stage (optimal layout) were 
introduced. In more details, the evaluation indices used are presented in Table 4.1 For reasons 
of comparison, the proposed optimization procedure was applied first using finite elements of 
constant thickness (let it be ‘Approach #1’) and then using finite elements of variable 
thickness (let it be ‘Approach #2’). 
 
Table 4.5: Evaluation indices 

Name Definition Aim  

_1EI  100opti oud

oud

W W

W

−
×  

for each approach, to compare the weight of the final layout to 
the weight of the initial layout in order to estimate the (%) 
weight reduction 

_ 2EI  activeNodes

NN
 

for each approach, to estimate the surface coverage by 
comparing the number of nodes with thickness larger than the 
minimum (‘active’ nodes) to the total number of mesh nodes  

_ 3EI  ( )vonMisesCV σ  
for each approach, to find out how much ‘fully stressed’ the 
final layout is (estimate the Coefficient of Variation of the 
vonMises stress for the ‘active’ nodes of the final layout )  

_ 4EI  100surfer oud

oud

A A

A

−
×  

for each approach, to compare the area of the surface 
interpolating the mesh nodes of the final layout to the area of 
the initial layout 

_ 5EI  100surfer oud

oud

W W

W

−
×  

for each approach, to compare the weight of the volume, 
limited by the surface interpolating the mesh nodes of the final 
layout and the mid plane of the structure, to the weight of the 
initial layout 

 
It is clarified that, for a stress constrained structure, the so-called Optimum Uniform 

Design (OUD) is defined as the initial layout of constant thickness which is then uniformly 
scaled so that the stress constraint becomes active. Such designs are used as a reference for 
weight comparisons. The plots and the graphs introduced for the evaluation of the proposed 
approach are presented in Table 4.2. 
 
Table 4.6: Graphical means of evaluation 

Plot Aim  

Plot_a to evaluate the convergence of each approach with respect to the maximum von 
Mises stress appearing in every iterative step (intermediate layouts) 

Plot_b to evaluate the convergence of each approach with respect to the weight of every 
intermediate layout 

Plot_c to evaluate how much more or less ‘fully stressed’ the layout of Approach #2 is 
with respect to the layout of Approach #1  

Plot_d to evaluate how much lighter or heavier the layout of Approach #2 is with respect 
to the layout of Approach #1 

Graph_a to visualize the optimal layout 

Graph_b for each approach, to interpolate the mesh nodes of the final layout and estimate the 
material volume (weight) required for manufacturing the layout 
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At this point, it must be noted that Plot_c and Plot_d were created in two steps, the former 
being the use of the equations presented in Table 4.3 and the latter being the sorting of the 
results. From the first step, it is ensured that the thickness of a node from Approach #1 will be 
compared to the thickness of the same node from Approach #2, while from the second step a 
better visualization is achieved. In addition, Graph_a presents the final layout without any 
intervention (smoothening or other), while Graph_b is created using the commercial software 
SURFER by Golden Software and implementing the Krigging method of interpolation. A 
good visualization of Graph_a and Graph_b require an adequately large size of the graphs. 
For reasons of space economy, only the Graph_b for the Approach #1 is presented. 
 

Table 4.7: Equations used for the creation of Plot_3 and Plot_4 (reference: Approach #1) 

Plot Equation 

Plot_3 ( )
( ) ( )

( )
(%) 100vonMises vonMisest const t const

vonMises

vonMises t const

σ σ
σ

σ
≠ =

=

−
∆ = ×  

Plot_4 ( )
( ) ( )

( )
(%) 100nodal nodalt const t const

nodal

nodal t const

thickness thickness
thickness

thickness
≠ =

=

−
∆ = ×

 
4.3.4.2. Proposed optimization procedure 

The proposed optimization procedure may be divided into two phases: 
Phase A: History of the optimization procedure (initial design: Optimum Uniform Design) 
Step A1:  Estimate the (OUD) and record weight, thickness distribution and stress distribution 
Step A2:  From (OUD), initiate optimization procedure for adequate number of iterations  
Step A3:  For each iteration, update Plot_a (see Table 4.2) 
Step A4:  For each iteration, update Plot_b (see Table 4.2) 
Step A5:  From Plot_a, locate iteration with zero (or minimum) stress violation 
Phase B: Determination of the optimum layout (for the iteration taken from Step A5) 
Step B1:  Perform a uniform thickness scaling so that no stress violation occurs  
Step B2:  From Step A1 and Step B1, create Plot_c (see Tables 4.2, 4.3) 
Step B3:  From Step A1 and Step B1, create Plot_d (see Tables 4.2, 4.3) 
Step B4:  From Step A1 and Step B1, calculate EI_1 (see Table 4.1) 
Step B5:  Record number of ‘active’ nodes and calculate EI_2 (see Table 4.1) 
Step B6:  For the active nodes only, calculate the mean value, the standard deviation and the 

CV for the von Mises stress (EI_3 - see Table 4.1) 
Step B7:  Create Graph_a and Graph_b (see Table 4.2) 
Step B8:  From Step B5, record area and calculate EI_4 (see Table 4.1) 
Step B9:  From Step B5, record volume and calculate EI_5 (see Table 4.1) 
 
4.3.4.3. Investigated test cases 

The investigated test cases and their data are shown in Fig.4.2 and Table 4.4, respectively. 

        
(a) (b) (c) (d) 

Figure 4.6: The examined examples (a) deep cantilever, (b) short cantilever, (c) MBB beam, 
(d) Michell-type structure 

F  

F

FF  
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Table 4.8: Data for the examined examples 

Example xL  
[ ]m  

yL  
[ ]m   

E  
[ ]Pa  v  dens  F  

[ ]N  
Application 
point of F  

allowσ  
[ ]Pa   NN  NEL  

Deep 
cantilever 3 1 1 0.3 1 12 Right side – 

middle 30 641 1200

Short 
cantilever 16 10 1 0.3 1 12 Right side- 

middle 20 1333 2560

MBB beam 6 1 1 0.3 1 2 Top side- 
middle 20 1271 2400

Michell 
structure 10 5 100e06 0.3 1 1000 Bottom side 

– middle 35000 1661 3200

 
In Table 4.4, xL  denotes the horizontal dimension (width), yL  denotes the vertical dimension 
(height), E  denotes the modulus of elasticity, v  denotes Poisson’s ratio, dens  denotes the 
material density, F  denotes the applied load, allowσ  denotes the allowable stress, NN  denotes 
the Number of Nodes and NEL  stands for the Number of Elements. 
 
4.3.4.4. Results 

The Evaluation Indices for the examined applications are shown in Table 4.5 while all the 
plots are shown in Figs.4.3 and 4.4.  
 
Table 4.9: Evaluation Indices for the examined applications 

Volume 
(FSD 

Design)

Uniform 
scaling 
factor

EI_1 EI_2 mean 
Svonmises EI_3 EI_4 EI_5

t=const 0.8017 1.0071 -93.504 88.768 28.10 17.372 1.955 68.893
t<>const 0.8431 1.0017 -93.132 78.783 26.78 21.513 1.693 10.419

% difference 5.17% -0.54% -0.40% -11.25% -4.69% 23.84% -13.40% -84.88%

t=const 28.4073 1.0086 -85.098 97.900 19.56 8.323 1.117 84.964
t<>const 30.4316 1.0020 -83.931 94.149 18.93 11.944 1.037 1.670

% difference 7.13% -0.65% -1.37% -3.83% -3.19% 43.50% -7.15% -98.03%

t=const 1.3481 1.0154 -81.644 99.685 19.48 3.631 3.268 93.716
t<>const 1.5380 1.0002 -78.735 96.223 18.62 8.651 1.883 6.294

% difference 14.09% -1.50% -3.56% -3.47% -4.39% 138.23% -42.37% -93.28%

t=const 0.4259 1.0054 -93.609 96.869 34.58 2.388 16.688 76.727
t<>const 0.4652 1.0045 -93.018 92.655 33.09 7.481 16.674 1.957

% difference 9.24% -0.09% -0.63% -4.35% -4.33% 213.28% -0.08% -97.45%

Deep 
cantilever

Short 
cantilever

MBB beam

Michel 
structure

 
In more details, Fig.4.3 shows the optimum material distribution (optimum structural 

layout) for each examined example (see Table 4.2). Due to symmetry, only half of the 
structural thickness is shown (top half). For each example and for each pair of graphs (‘a’, 
’b’), the same axis scaling has been used so that a visual comparison between the 
corresponding material distributions can be made. The graphs denoted as ‘c’ have different 
scaling because they were created with different software, thus they can be compared to 
graphs ‘a’ and ‘b’ only qualitatively. It is noted that for the details to be better visualized, the 
maximum value for the x-axis and the y-axis (data aspect ratio) is not the same only for the 
graphs (a) and (b) concerning the MBB beam and the Michell-type structure, respectively. 
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(a) (b) (c) 

Deep cantilever 

   

(a) (b) (c) 
Short cantilever 

 

   
(a) (b) (c) 

MBB beam 
 

   
(a) (b) (c) 

Michell type structure 

Figure 4.7: Optimum structural layouts  
 

The plots in Fig.4.4 concern the history of the iterative optimization procedure as well as 
the performance of the final optimum layout (for more details for each plot type, see Table 
4.2). It is noted that all plots of type Plot_3 have the same scaling along the y-axis, so that a 
visual comparison may be performed easily. The same holds for all plots of type Plot_4. 
Obviously, it was not possible to do the same with the x-axis of the aforementioned plots 
because the number of nodes and elements is different for each examined example. Each plot 
has a small label, either at the top left corner or the bottom right corner, denoting the example 
it corresponds to. 
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4.3.4.5. Discussion  
The finite element selected in the present paper was the Constant Strain Triangle (CST). It 

is well known that the displacement interpolation within the CST element is linear in x and y, 
thus its behavior is inferior when compared to other finite elements, such as the 4-node plane 
element. Furthermore, a coarse mesh may affect significantly the results. In order to deal with 
this reality, it was decided to build a fine and fully symmetric mesh. This was achieved by 
dividing first the structural domain in a large number of rectangles (unitary aspect ratio) and 
then each rectangle into four equal triangles, which had a common node at the centre of the 
rectangle.  

With respect to the stress-ratio technique, it is a good practice to let the optimization 
procedure run for some iterations in order to get a near optimum result. In the present paper, it 
was considered that 100 iterations were adequately enough. As the Plot_1’s and the Plot_2’s 
suggest, convergence is practically achieved after a few iterations, accompanied by a small 
stress violation, which is easy to overcome with a uniform thickness scaling. As the ‘Uniform 
Scaling factor’ in Table 4.5 suggests, the cancellation of the appearing stress violation causes 
negligible increase of the structural weight.  

Another point worth mentioning concerns the estimation of the nodal stresses in a (CST) 
mesh. Such a nodal stress may be considered as equal, either to the average value of or to the 
maximum value, among the stresses of all elements connected to the specific node. In the 
present paper, the latter approach was selected. The same principle holds for estimating the 
nodal thickness in a CST mesh.  

The study of Table 4.5 reveals that the layout obtained with Appoach #2 (variable 
thickness elements) is more promising than the layout obtained with Appoach #1 (constant 
thickness elements). This conclusion is derived from the fact that, for the former layout and 
for all the examined examples, the Evaluation Indices EI_1, EI_2, EI_4 and EI_5 were lower. 
Furthermore, the lower value of both the mean von Mises stress and the EI_3, in combination 
with the Plot_3 and the Plot_4 suggest that there is still a margin for further improvement 
because the layout is less fully-stressed than that obtained with Approach #1. Furthermore, 
simple visual inspection of Fig.3 reveals that the Approach #2 results inherently and without 
any further interpolation in significantly smoother layouts thus enforces the manufacturability 
of the optimal layout.  
 
4.3.4.6. Conclusions  

In the present section, the use of the well known stress-ratio technique in combination with 
CST finite elements of variable thickness for the determination of the fully-stressed optimal 
layout of 2D continua was investigated. The element thickness description was based on the 
shape functions used for the nodal displacement interpolation. The proposed procedure was 
tested in four typical stress constrained examples retrieved from the literature, namely the 
deep cantilever, the short cantilever, the MBB beam and a Michell type structure. For the 
evaluation of the proposed approach, five performance indices, two plots concerning the 
history of the iterative optimization procedure, as well as two plots and three 3D graphs 
concerning the optimum material distribution were introduced. It was shown that, in all cases, 
the use of the variable element thickness concept resulted in layouts with improved 
characteristics, such as less weight and smoother material distribution, thus enforced 
manufacturability. In conclusion, the current investigation showed that the proposed approach 
contributes towards the location of the optimal structural layout and the encouraging results 
suggested that further investigation be carried out with other types of finite elements and 
thickness interpolation schemes. Within this frame, the 4-node quadrilateral isoparametric 
finite element is examined in the next section. 
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4.3.5. Implementation of a 4-node quadrilateral finite element of variable thickness 
The 4-node quadrilateral element is the simplest member of the quadrilateral family. The 

corresponding shape functions vary linearly on quadrilateral coordinate lines constξ =  and 
constη = , but are not linear polynomials. More particularly, the displacement interpolation 

within the element is given by: 
 

( )
( ) ( )

1,

0.25 1 1

e e e

e
i i i

x y C

N ξξ ηη

−= =

= − −

u N a N a
                                             (4.7) 

 
where eN  refers to the interpolation scheme, C  describes the nodal coordinates of the 
element e  and ea  denotes the corresponding nodal displacements. From the theory of the 
Finite Element Method (FEM), it is well known that the stiffness matrix eK  of the element e  
is given by the general equation: 
 

    e T

A

t dA= ∫K B E B                                                    (4.8) 

 
where E  is the 3 3×  stress-strain matrix of elastic moduli (let it be 1E  for plane stress and 2E  
for plane strain) and B  is the 3 8×  strain-displacement matrix. In order to estimate eK , the 
standard practice has been to use Gauss integration because such rules use a minimal number 
of sample points to achieve a desired level of accuracy. For plane elasticity problems, the two 
dimensional Gauss rules must be applied, according to which first the integrand must be 
reduced to a canonical form and then the following approximate formula must be applied: 
 

( ) ( )
1 21 1

1 11 1

, ,
p p

i j i j
i j

F d d w w Fξ η ξ η ξ η
+ +

= =− −

≈ ∑∑∫ ∫                                     (4.9) 

 
In Eq.(4.9), 1p  and 2p  are the number of Gauss points in the ξ  and η  directions, 

respectively. Usually the same number 1 2p p p= =  is chosen if the shape functions are taken 
to be the same in the ξ  and η  directions. The combination of Eqs.(4.8, 4.9) yields that it is 
possible to estimate eK  as long as the differential dA  is expressed in terms of the differentials 
dξ  and dη . This reduction is achieved using the following relation: 
 

detdA d dξ η= J                                                     (4.10) 
 
where J  is the Jacobian matrix that connects the differentials of { },x y  to those of { },ξ η .  

 
(a) (b) 

Figure 4.9: 4-node quadrilateral element with (a) constant and (b) variable thickness 

t4 
t3 

t1 

 (t1 = t2 = t3 = t4) 

t4 

t3 
t1

(t1≠ t2 ≠ t3≠ t4) 

t2 
t2 
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For a 4-node quadrilateral element with constant element-wise thickness (Fig.4.5a), it 
holds: 
 

A
    e Tt dA= ∫K B E B                                                 (4.11) 

 
For a 4-node quadrilateral element with variable element-wise thickness (Fig.4.5b), under 

the assumption of isoparametric thickness interpolation, it holds: 
 

( )
4

1
i i

i

t N t
=

= ∑                                                        (4.12) 

 
where it  is the thickness at the i th−  corner node of the element and iN  is the corresponding 
shape function. The combination of Eqs.(4.11, 4.12) yields: 
 

( )
4

1
A

i

e T
i iN t dA

=

= ΕΒ∑∫K B                                             (4.13) 

 
Introducing the Gauss rule stated in Eq.(4.9) into Eq.(4.13) yields: 
 

( )
4

1 1

1 1
1

det
i

e T
i iN t J d dξ η

−

− −
=

= ΕΒ∑∫ ∫K B                                 (4.14) 

 
The matrices E  and B  can very easily be retrieved from text books on (FEM). 
 
4.3.5.1. Procedure of Evaluation 

The performance of the 4-node quadrilateral isoparamteric element of plane elasticity was 
evaluated through the introduction of three Evaluation Indices (EI) defined as follows: 
• Evaluation Index 1EI , informing about the normalized relation between the weight of the 

optimum layout before the application of the global smoothing procedure and the weight 
of the (OUD) and defined as: 

 

1
opti

OUD

W
EI

W
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                      (4.15) 

 
• Evaluation Index 2EI , informing about the stress state of the structure before the 

application of the global smoothing procedure and defined as the average of the 
equivalent von Mises stress of the active structural part: 

 

( )2 ,vonMises activeEI σ=                                                   (4.16) 
 
• Evaluation Index 3EI , informing about how fully stressed the final layout itself is and 

defined as the Coefficient of Variation ( )CV  of the equivalent von Mises stress of the 
active structural part: 

( )3 ,vonMises activeEI CV σ=                                                (4.17) 
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Moreover, the convergence history, in terms of structural weight, was also recorded and 
presented as a plot. Obviously, similar indices may be defined for the state after the 
application of the global smoothing procedure. 
 
4.3.5.2. Proposed optimization procedure 

In the current section, an optimization procedure that uses elements of variable element-
wise thickness, let it be Approach #3, is proposed. For reasons of comparison, another 
optimization procedure, let it be Approach #4), using elements of constant element-wise 
thickness, was also developed. In both cases, the Optimum Uniform Design (OUD) was used 
as the optimum design of reference. For the completeness of the text, it is reminded that the 
(OUD) is the design obtained when the thickness distribution over the discretized domain is 
uniform and has the minimum possible value that does not cause any constraint violation.  
 
4.3.5.2.1. Proposed optimization procedure for 4-node variable thickness elements 

The proposed optimization procedure is as follows: 
Step 1: Estimate the (OUD) and record weight, thickness and stress distribution to be used 

as references 
Step 2: Carry out a Finite Element Analysis (FEA) and for each element estimate the 

equivalent von Mises stress at the Gauss points 
Step 3: Update the thickness distribution of the structure at the Gauss points with the stress-

ratio technique 
Step 4: Interpolate the thickness at the Gauss points and update the nodal thickness  
Step 5: Carry out a (FEA) with the nodal thicknesses from Step 4  
Step 6: Apply a uniform scaling so that no stress violations occur 
Step 7: Check for convergence; if convergence has not been achieved and the maximum 

number of iterations has not been exceeded, then go back to Step 2. 
Step 8: Apply a global smoothing procedure (e.g. Kriging technique). 
Step 9: Apply a uniform scaling to the smoothed layout so that no stress violations occur. 
Step 10: Evaluate the Performance Indices. 

The nodal thickness distribution may be derived from the thickness distribution at the 
Gauss points using a mixed scheme of global interpolation for the internal nodes and global 
extrapolation for the boundary nodes. The interpolation schemes used in the present paper are 
presented in Section 4.3.5.2.3. 
 
4.3.5.2.2. Proposed optimization procedure for 4-node constant thickness elements 

The corresponding optimization procedure for constant-thickness elements is as follows: 
Step 1: Estimate the (OUD) and record weight, thickness and stress distribution to be used 

as references 
Step 2: Carry out a Finite Element Analysis (FEA) and for each element estimate the 

equivalent von Mises stress at the Gauss points 
Step 3: For each element, interpolate the equivalent von Mises stress at the Gauss points 

and estimate a stress value for the element at its centroid 
Step 4: Update the element thickness using the stress-ratio technique 
Step 5: Carry out a (FEA) with the element thicknesses from Step 4  
Step 6: Apply a uniform scaling so that no stress violations occur 
Step 7: Check for convergence; if convergence has not been achieved and the maximum 

number of iterations has not been exceeded then go back to Step 2. 
Step 8: Apply a global smoothing procedure (e.g. Kriging technique). 
Step 9: Apply a uniform scaling to the smoothed layout so that no stress violations occur. 
Step 10: Evaluate the Performance Indices. 
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The stress estimation at an element centroid in Step 3 may be based on a global 
interpolation scheme. The interpolation schemes used in the present paper are presented in 
Section 4.3.5.2.2. 
 
4.3.5.2.3.  Estimation of the nodal stress values 

The main idea of the proposed procedure was first to evaluate the stresses at the gauss 
points and then to estimate the nodal stresses through an interpolation scheme over the 
stresses at the gauss points. In total, three Stress Interpolation Schemes (#1, #2, #3) were 
used. For the variable-thickness elements and according to the first scheme, the stress at a 
node was estimated as the maximum of the values corresponding to the stresses at the gauss 
points surrounding the specific node. For a 2 2×  integration rule and a mesh of 4-node 
quadrilateral elements, it is obvious that a node inside the mesh (design space) was 
surrounded by four gauss points, a node along the border of the mesh was surrounded by 2 
gauss points, while for a corner node of the mesh the stress was equal to the stress of the 
nearest gauss point. According to the second and the third scheme, the average value and the 
minimum value of the stresses at the aforementioned gauss points were to be estimated, 
respectively. For the constant-thickness elements, the gauss points belonging to each one of 
these elements were located and the three aforementioned ways of handling the stress values 
(estimation of the maximum, the average or the minimum value) was applied and a stress at 
the centroid of each element was estimated. 
 
4.3.5.3. Verification of the implemented finite elements 

The verification of the implemented finite element was carried out through a comparison 
with the element SHELL63 of the Finite Element Analysis (FEA) software Ansys (ver.10). 
For the verification, a rectangular 2D cantilever first under in-plane bending and then under 
unsymmetrical tension (compression) was examined for various mesh densities with unit 
aspect ratio. A coincidence in stresses at the gauss points between the in-house code and 
Ansys was achieved (keyoptions for SHEL63: extra displacement shape functions excluded, 
membrane element stiffness only).  

At this point, it is clarified that all the investigation mentioned above regarding the 
variable-thickness elements could had been carried out in Ansys or in another commercial 
software for structural analysis. However, such a choice has certain drawbacks. First, the user 
does not have complete control of the integration schemes implemented for the estimation of 
the stiffness matrix. For instance, it is not possible to select the type of the Gauss rule to be 
applied. Second, and most important, the access to the results data, in the form of raw data, is 
not that user-friendly. Instead, if an in-house code is developed in MatLab, or in an equivalent 
environment, then these disadvantages do not appear and the user has a much better control of 
what he/she is doing and how he/she can obtain the desired numerical information in the 
desired format. 

Finally, it is noted that in order to verify that the optimized layouts, after the smoothing 
procedure was applied, did not violate any of the imposed constraints, one last (FEA) was 
carried out and then a uniform scaling was applied. In this way, a slightly oversized design 
was uniformly shrunk and a slightly undersized design was uniformly enlarged. The uniform 
change of the layout is not a necessary optimality condition but for good practical engineering 
purposes is totally acceptable. 
 
4.3.5.4. Investigated test cases 

The investigated test cases are exactly the same with those examined in Section 4.3.4.3. In 
addition, it is clarified that all of the examined domains were discretized with rectangular 
elements of unit aspect ratio so that the effects from the element shape would be minimized. 
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4.3.5.5. Results 
The Evaluation Indices (EIs) for the examined applications are shown in Table 4.6 while 

selected plots concerning the optimal layouts and the corresponding convergence histories are 
shown in Fig.4.6. 

In Table 4.6, the symbols t const=  and t const≠  correspond to constant and variable 
thickness elements, respectively. The % difference is defined as the % relative difference with 
respect to the results obtained with the use of constant thickness elements. 
 
Table 4.10: Evaluation Indices for the examined applications 

EI1 EI2 ΕΙ3 EI1 EI2 ΕΙ3 EI1 EI2 ΕΙ3
t=const 0,2568 0,9912 1,2926 0,2458 0,9900 0,9188 0,2330 0,9917 1,1984
t≠const 0,2554 0,9898 0,9501 0,2445 0,9885 1,2616 0,2317 0,9865 1,6532
% difference -0,56% -0,13% -26,50% -0,51% -0,15% 37,31% -0,58% -0,53% 37,95%

t=const 0,2399 0,9962 0,1920 0,2252 0,9985 0,6435 0,2155 0,9997 0,2988
t≠const 0,2351 0,9860 0,5176 0,2218 0,9954 0,4290 0,2141 0,9936 0,4840
% difference -1,97% -1,03% 169,68% -1,52% -0,31% -33,33% -0,64% -0,60% 61,96%

t=const 0,1967 0,9997 0,1499 0,1806 0,9995 0,3194 0,1660 0,9990 0,1901
t≠const 0,1876 0,9816 0,2775 0,1734 0,9799 0,2910 0,1609 0,9755 0,3654
% difference -4,63% -1,81% 85,05% -4,00% -1,96% -8,89% -3,05% -2,34% 92,20%

t=const 0,2855 0,9930 0,2537 0,2633 0,9887 0,5086 0,2432 0,9838 1,0144
t≠const 0,2760 0,9552 0,3348 0,2571 0,9523 0,4399 0,2400 0,9461 0,3514
% difference -3,32% -3,80% 31,97% -2,35% -3,68% -13,52% -1,32% -3,83% -65,36%

Stress interpolation scheme #1 Stress interpolation scheme #2 Stress interpolation scheme #3

Deep 
cantilever

Short 
cantilever

MBB beam

Michell 
structure 
(bridge)  

 
From Table 4.6, it yields that, in all cases, the proposed procedure, implementing variable 

thickness elements, results in a structural weight reduction ( )1EI  ranging from 0.56%  to 
4.63%  with respect to the use of constant thickness elements. Furthermore, the corresponding 
optimal layouts are from 0.13%  to 3.83%  less fully stressed ( )2EI , while the stress 

distributions over the active part are significantly different ( )3EI . 
For each one of the examined examples, there are six possible solutions resulting from the 

combination of the two optimization procedures used (Approach #3 and Approach #4) and the 
three different stress interpolation schemes implemented. Therefore, for each example, six 
layouts and six convergence histories with respect to the structural weight were obtained. In 
the current section, for reasons of laconism, only two representative layouts are presented per 
example (one for each optimization procedure and for the ‘maximum’ stress interpolation 
scheme). More particularly, representative optimal layouts derived with variable thickness 
elements are shown in the first column of Fig.4.6, while corresponding layouts derived with 
constant thickness elements are shown in the second column of the same figure. The plots of 
the convergence histories per example are illustrated in the third column of Fig.4.6. It is 
clarified that, due to symmetry along the mid-plane of the structures, only half of the 
structural thickness distributions are shown (from the mid-plane and towards the upper 
surface). Furthermore, for reasons of visual inspection, the material distributions 
corresponding to the variable and to the constant thickness elements were plotted as colored 
unfilled meshes (Fig.4.6, 1st column) and as filled columns (Fig.4.6, 2nd column), respectively. 
In addition, for each one of the convergence history plots, the illustrated weights were 
normalized with respect to the minimum value among the six optimal weights obtained for 
each example.  
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Figure 4.10: Optimal layouts and convergence histories for the investigated examples 

 
The appropriate comparison between the plots in the first two columns of Fig.4.6 revealed 

several interesting details, among which the most interesting one was the fact that non-
skeletal layouts were obtained. On the contrary, there was a pattern that always appeared, 
according to which the optimal layout could be divided into three regions. The first region 
concerned a thicker material distribution, easily located with visual inspection, forming a kind 
of boundary. The second region concerned the part of the domain inside the aforementioned 
boundary; this region had an almost constant thickness but not equal to the lower thickness 
bound. The third region concerned the part of the domain outside the aforementioned 
boundary; the thickness of this region was equal to the lower thickness bound. This means 
that, in all cases, a redundant part of the domain (third region) was clearly formed; this part 
can be removed without causing any problems to the structural stability. Furthermore, the 
aforementioned inner region provides a very good way for carrying the shear and it is due to 
this reason that reinforcing ribs are not required thus not formed. Another significant 
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observation concerns the continuity of the thickness distributions. When variable thickness 
elements were used, the thickness distributions were continuous thus significantly smoother 
(of higher degree of manufacturability) layouts were obtained.  

With respect to the convergence, the corresponding history plots (Fig.4.6, 3rd column) 
revealed that, in almost all cases, the use of variable thickness elements resulted in a faster 
and smoother convergence (continuous lines in the plots) when compared to the converging 
behavior of constant thickness elements (denoted with markers only in the plots). Finally, 
among the applied stress interpolation schemes applied (Section 4.3.5.2.3), it was the 
consideration of the minimum stress value between the appropriately selected gauss points 
that gave the best results.  
 
4.3.5.6. Discussion 

It is well-known that the optimal layouts are usually dependent on the density of the 
domain discretization. The reason for this has a pure numerical analysis origin. In more 
details, load concentrations appear at the load application points. As a mesh becomes finer, 
the area, thus the stiffness, of the corresponding finite elements becomes lower and one 
simple way to equalize this reduction is to increase the element thickness. Therefore, as the 
number of elements increases so does the maximum structural thickness at the points where 
the external load is applied. Depending on the optimization procedure, the aforementioned 
sensitivity varies. In order to investigate its effect on the proposed procedure, a parametric 
investigation was carried out where the examined examples were optimized using different 
mesh densities (the case of the Deep cantilever is presented in Fig.4.7.  
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Figure 4.11: Optimized layout for the deep cantilever: (a) mesh 30x90, (b) mesh 40x120 and  
(c) normalized weight vs Number of Elements 

 
More particularly, Fig.4.7a and Fig.4.7b illustrate the optimal layouts when a 30 90×  and a 

40 120×  mesh is used, respectively. The corresponding result for a 20 60×  mesh is illustrated 
in Fig.4.6a. From visual inspection of the aforementioned plots, it is obvious that the 
maximum element thickness significantly varies for these meshes. However, such a strong 
sensitivity does not appear with respect to the structural weight. In more details, it is possible 
first to normalize all structural weights with respect to the weight corresponding to the finest 
mesh used and then to plot the normalized values with respect to the number of elements. For 
the case of the deep cantilever and for the Approach #4, such a plot is illustrated in Fig.4.7c, 
according to which the difference between a very coarse mesh ( )10 30×  and a mesh of 

fourfold density ( )40 120×  is only 2%. Therefore, for an adequately fine mesh density, the 
proposed procedure for constant-thickness elements provides acceptable insensitivity in terms 
of structural weight. Similar results, not presented here for reasons of space limitations, were 
obtained for the other three examined examples and for both of the proposed approaches 
(Section 4.3.4.3). 
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As already mentioned, one well-intentioned question would be why develop in-house 
codes and use commercial software (Ansys) for verification purposes only and not use that 
software for optimizing the design space at hand. The answer to this question lies in the fact 
that Ansys allows the attribution of thickness to a theoretically unlimited number of nodes but 
provides the user with no control neither on the integration rule applied nor on the method 
used for the thickness interpolation within an element. Thus, instead of developing models in 
Ansys that could be used only for part of the investigation, the strategic decision of investing 
time and effort in developing versatile in-house codes with no such restrictions was made. 

Another issue worth mentioning is the fact that four points do not necessarily lie on the 
same plane thus it is highly possible for variable-thickness elements to present element-wise 
warping distortions. In order to avoid such a situation, it is advisable to use an adequately 
large number of elements. Another go-around thought would be to degenerate the 4-node 
elements into 3-node ones since three nodes always define a plane. However, this is not 
advisable, because it is well-known that such a selection leads to significantly less accurate 
results. 

With respect to the convergence of the proposed optimization procedures, it was decided to 
let the procedures be carried out for an adequate number of iterations so that the procedure 
robustness could be evaluated (early convergence may hide a later diverging behavior). As 
Fig.4.6(3rd column) shows, convergence was practically achieved after a few iterations and no 
diverging or oscillating behavior in later stages was observed.  

The study of Table 4.6 revealed that the layouts obtained with Appoach #3 are more 
promising since they are of lower structural weight and less fully stressed, suggesting that 
there is still a margin for further improvement. Moreover, simple visual inspection of Fig.4.6 
reveals that the Approach #1 results, inherently and without any further interpolation, in 
significantly smoother layouts thus enforces the manufacturability of the optimal layout.  
 
4.3.5.7. Conclusions  

The current investigation, based on the examination of 24 models in total, showed that the 
proposed optimization scheme regarding the redesign of the nodal thickness, thus regarding 
finite elements of variable thickness, contributes towards the determination of the optimal 
structural layout, providing encouraging enough results. Therefore, a further investigation of 
other thickness interpolation schemes seems to be a good investment. 
 
4.4. Layout optimization of a stress-constrained plate  

The layout optimization of continuum structures has been, and still is, one of the most 
challenging structural optimization problems, which a stress-constrained plate under out-of-
plane loading belongs to. In such problems, it is of interest to investigate the influence that 
certain parameters, such as the initial geometry, the imposed boundary conditions and the 
externally applied loading have on the optimal layout. Towards this direction, four 
characteristic examples, retrieved from the literature, were investigated. The first example 
concerned a square plate, loaded with a single vertical nodal force at its middle and supported 
in two different ways (simple support and clamp). The second example concerned a cantilever 
plate under equal and unequal nodal loading at its free corners. The third example concerned a 
cantilever plate under uniform and triangular load distribution at its free end, while the forth 
example referred to a cantilever plate with opposite-directed equal and unequal nodal loads at 
its free corners. All of the examined examples were investigated for a variety of aspect ratios, 
while they were optimized using two conceptually similar optimizing methods, namely the 
Fully Stressed Design (FSD) and the Evolutionary Structural Optimization (ESO). The 
aforementioned investigation contributes in determining the directions that the optimal strain 
energy distribution followed in each case. 
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4.4.1. In general 
Plates form the building blocks of larger structures and they can be used as 

reinforcements on other constructions as well, thus contributing to the reduction of the 
structural weight. It is obvious that the engineering value of the optimal layout of plates is of 
utmost importance and due to this reason the layout optimization problem of a plate under 
transverse loading has been treated extensively in the literature. A typical formulation of the 
aforementioned problem is to seek for the optimal thickness distribution of a given plan-form 
of the plate for which the plate volume attains a minimum, provided that the supports and the 
load limit are prescribed. Another very popular version of the same optimization problem is, 
for a given volume reduction, to solve for the maximum stiffness, or equivalently for the 
minimum compliance. A great many number of papers in the literature handle this problem.  

Hopkins and Prager considered a simply supported circular plate and obtained the 
solution for the Tresca material (Hopkins and Prager, 1955), while Freiberger and Tekinalp 
obtained the solution for the Mises material and also derived the condition of analytical 
extremum, according to which the mean rate of energy dissipation per unit area of the middle 
surface is constant (Freiberger and Tekinalp, 1956). Drucker and Shield discussed general 
criteria of optimum design of plates (Drucker and Shield, 1957), while Mróz investigated the 
optimal design of solid annular plates, where it was shown that the criterion introduced by 
Freiberger and Tekinalp corresponds to a local minimum only for states represented by 
corners of the Tresca hexagon (Mróz, 1961). Megarefs dealt with the problem of optimizing 
axisymmetric plates (Megarefs, 1966), while Sheu and Prager handled the problem of 
optimizing annular sandwich plates assuming piecewise constant thickness (Sheu and Prager, 
1969). Huang dealt with the problem of optimal design of an elastic circular plate under 
uniform pressure for maximum stiffness (Huang, 1968) and Mróz investigated the optimal 
design of plates and shells (Mróz, 1973). Olhoff studied the optimal design of vibrating 
rectangular plates (Olhoff, 1970) while Armand and Lodier derived an optimality criterion for 
the design of bending elements (simply supported and clamped elastic plates for concentrated 
and distributed loading conditions under a single displacement constraint - Armand and 
Lodier, 1978). Prasad and Haftka have described a general resizing procedure applicable to 
structures modeled by plate (bending) finite elements, based on the implementation of 
triangular and quadrilateral elements and combining the Sequence of Unconstrained 
Minimization Technique (SUMT) with an extended interior cubic penalty function (Prasad 
and Haftka, 1979). Cheng and Olhoff (Cheng and Olhoff, 1981) considered the problem of 
maximizing the integral stiffness of solid elastic plates described by thin plate theory. Their 
work was based on a tensorial formulation of the problem; they derived the governing 
equations by variational analysis and they developed an efficient and quite general numerical 
algorithm for locating stationary solutions for rectangular and axisymmetric annular plates 
with various boundary conditions. By the early 80’s, it was well-understood that the optimum 
reinforcement of plates may include infinitely fine arrangements of ribs (Cheng and Olhoff, 
1981). This gave a strong motivation for the implementation of microscopically anisotropic 
plates using homogenization or other ‘smear-out’ techniques. Bendsøe have investigated the 
optimum plate topology based on Kirchhoff's theory (Bendsøe, 1986), while Bendsøe and 
Kikuchi (Bendsøe and Kikuchi, 1988), Soto and Diáz (Soto and Diáz, 1993) and Lipton and 
Diáz have used the Mindlin-Reissner plate theory in combination with the homogenization 
theory (Lipton and Diáz, 1997). Tenek and Hagiwara worked on the shape and topology 
optimization of isotropic, single-layered orthotropic and multilayered anisotropic plates 
(Tenek and Hagiwara, 1993). Lipton studied multiple load problems and random load 
problems (Lipton, 1994), while Olhoff compared the plate model and a 3D model (Olhoff, 
2000). For the stress constrained problem, Morris suggested the use of the stress-ratio 
redesign formula of the Fully Stressed Design (FSD) for optimizing structures under stress 
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constraints (Morris, 1982), while Xie and Steven (Xie and Steven, 1997) have introduced the 
Evolutionary Structural Optimization (ESO) method according to which inefficient material is 
gradually removed.  

The optimal layout of a plate is not determined only by the optimization procedure 
followed. Therefore, it is of major interest to investigate the influence that certain parameters, 
such as the initial geometry, the imposed boundary conditions and the externally applied 
loading have on the optimal layout of plates under stress constraints, which are of primary 
importance in real-life engineering applications. Towards this direction, the optimal layouts of 
four characteristic examples are investigated thoroughly in this section. As optimizers, the 
(FSD) and the (ESO) techniques were used. The aforementioned investigation contributes in 
determining the directions that the optimal strain energy distribution follows in each case. 
 
4.4.2. Theoretical background 

A plate is defined as a three-dimensional body endowed with special geometric features, 
prominent among them being its thinness, that is one of the plate dimensions, called its 
thickness, is much smaller than the other two, and its flatness, that is the midsurface of the 
plate, which is the locus of the points that halve the thickness ‘fibers’ or ‘filaments’, is a 
plane. There are three types of plates, one of them being the bending plates. For such a plate, 
the virtual work of the internal forces, the stress resultants and the external forces can be 
expressed as:  
 

int 0extW W Wδ δ δ= + =                                                (4.18) 
 
where 
 

( )int 2
A

x x xy xy y y x x y yW m k m k m k q q dAδ δ δ δ δγ δγ− = + + + +∫                    (4.19) 

 
and 
 

( )boundary terms
A

extW p w dAδ δ= +∫                                    (4.20) 

 
The internal work written in matrix notation and separated into bending and shear terms is: 
 

( ) ( ) ( )int
A A

T T
b SW dA w w dAδ δ δ= +− ∇ + ∇ +∫ ∫Lφ D Lφ φ D φ                    (4.21) 

 
where the unknowns are the displacement field ( ),w x y  as well as the rotation vector 

T

x yϕ ϕ⎡ ⎤= ⎣ ⎦φ . According to the Kirchhoff constraint for thin plates (negligible shear 
energy): 
 

w= ∇ + =γ φ 0                                                      (4.22) 
 
the above equation reduces to  
 

( )int
A

T
bW w wdAδ δ=− ∇ ∇∫ L D L                                         (4.23) 
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In Eq.4.23, only the displacement field is unknown. According to the trivial finite element 
technique for discretization using a set of discrete values and shape functions, it holds: 
 

ww = N v  and ϕ=φ N v                                                (4.24) 
 
where v  is the vector of nodal displacement and rotation values, while wN  and ϕN  are the 
matrices of shape functions, arranged for the interpolation of the approximated displacement 
and rotations respectively. According to the Kirchhoff theory for thin plates, only the bending 
term remains in the virtual work expression: 
 

( )int
A

TT
bW dAϕ ϕδ δ=− ∫ v LN D LN v% %                                       (4.25) 

 
where  
 

wwϕ= = −∇ = −∇φ N v N v% %                                              (4.26) 
 
The stiffness matrix is then equal to: 
 

T
b b b bA

dA= = ∫k k B D B                                                (4.27) 

 
where  
 

b ϕ=B LN%                                                           (4.28) 
 

In this way, the incompatible rectangular 12-degrees of freedom plate element, used in the 
present work, is formed. According to the thin plate theory, the plate bending rigidity is cubic 
with respect to the thickness: 
 

( )

1 0
1 0

0 0 0.5 1
b

v
K v

v

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

D                                             (4.29) 

 
where  
 

( )
3

212 1
EtK

v
=

−
                                                     (4.30) 

 
In the present paper, two optimization procedures were implemented, the former being the 
Fully Stressed Design (FSD) and the latter being the Evolutionary Structural Optimization 
(ESO) technique. These two methods aim at the same target; that is to end up with a layout of 
uniform stress field equal to the maximum allowable value. 

The redesign equation of the (FSD) is derived from the Lagrange multipliers method 
(Morris, 1982), according to which the Lagrangian for a structure of weight W , under stress 
constraints ig  only and modeled with plate elements, is: 
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( )
1

,
NEL

i

W gi iλ λ
=

= +∑t                                                (4.31) 

 
where t  is the thickness vector of the plate elements. If the minimum weight W  is sought, 
then the gradient of the Lagrangian (Eq.4.31) must be set equal to zero. After basic 
manipulation, and considering a fully stressed state for the elements with non-critical volume, 
the well-known stress-ratio recursive formula yields: 
 

(1/ )

1

max,

n

k k i
i i

i

t t σ
σ

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                                                 (4.32) 

 
where n  is a relaxation exponent for smoother convergence. In the present paper, it was 
considered 2n = . The redesign of the structure to be optimized with the (ESO) technique is 
based on the gradual removal of inefficient material. More particularly, at each iteration 
(ESO) removes a small fraction of the elements with the lowest von Misses stress. The 
elements to be removed satisfy the following inequality (Xie and Steven, 1999):  
 

, ,maxvonMises e vonMisesRRσ σ≤ ≤                                            (4.33) 
 
where ,vonMises eσ  is the Von Mises stress of an element, ,maxvonMisesσ  is the maximum von Mises 
stress occurring in the structure at that iteration and RR  is the Rejection Ratio that controls 
the element removal process and is controlled by:  
 

1 2 3 ...oRR a a SS a SS a SS= + × + × + × +                                  (4.34) 
 
The integer SS  is called the Steady State number that is incremented each time the 
application of Eq.(4.33) results in no element removals. The choice of when to cease 
removing elements depends on the designer’s judgment concerning the evaluation of the 
optimality of the evolving design. In the present paper, it was taken 10SS = . 
 
4.4.3. Investigated test cases 

In total, four different cases were studied, namely: 
Case #1: Analysis of a square plate (Fig.4.8, Fig.4.9), examined both as simply supported 

and as clamped. Due to symmetry, only one quarter of the plate was necessary to 
be modeled, introducing the appropriate boundary conditions of symmetry. 

Case #2: Analysis of a cantilever plate under two corner loads (Fig.4.10, Fig.4.11), once 

the loads being equal and once having a ratio ( )1 / 2  (unequal loads).  

Case #3: Analysis of a cantilever plate under load distribution (Fig.4.12, Fig.4.13), once 
the distribution being uniform and once being triangular.  

Case #4: Analysis of a cantilever plate under two opposite-directed nodal loads (Fig.4.14, 

Fig.4.15), once the loads being equal and once having a ratio ( )1 / 2  (unequal 

loads). 



D.T. Venetsanos ‐ PhD Thesis ‐ 2010 

P a g e  | 4.31 

In all cases, the Young’s modulus was considered equal to 70E GPa= , the Poisson’s ratio 

was taken equal to 0.3v = , while the density was considered to be 32707 /kg mρ = . The 

quantities F  and q  are of unit magnitude. For all the cases but the first, three ratios 

( ) { }/ 1,2,3a b ∈  were examined, each one of which represented a different aspect ratio of the 

plate. 
 
4.4.4. Results 
4.4.4.1. Case #1 

The type of the boundary conditions applied on the entire perimeter of the plate 
determines the orientation of the well-formed grid or, equivalently, it determines the optimum 
path through which the applied load is transferred to the supports. Fig.4.8 shows the initial 
and other characteristic stages of the optimization procedure. 

For a fully supported square plate, the optimal layout obtained using the FSD approach 
was a strongly grid-like structure (Fig.4.8a). It is well-known (Tenek and Hagiwara, 1993) 
that, for the specific case, material remains along the paths between the centre of the plate 
(application point of load) and the corner nodes, which are the most constrained boundary 
nodes. Furthermore, an elastic hinge, almost in the middle of the grid-like members of the 
optimal layout, appeared. The resulted layout (Fig.4.8a), although in accordance with the 
literature, presented an interesting detail: near the corners, the remaining material bifurcates, 
following directions normal to the plate sides, and never reaches the corner nodes. 
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Figure 4.12: Optimal layout of a simply supported square plate 
 

The optimal layout using the ESO procedure (Fig.4.8b) also tends to present the 
aforementioned elastic hinge (checkerboard area near the plate centre). Obviously, the fact 
that the thickness of the plate remains the same results in a different shape. 



D.T. Venetsanos ‐ PhD Thesis ‐ 2010 

P a g e  | 4.32 

For a clamped square plate, where all the boundary nodes are equally constrained, the 
optimal layout obtained using the FSD approach was again a strongly grid-like structure 
(Fig.4.9a). According to the literature (Tenek and Hagiwara, 1993), material remains along 
the paths between the centre of the plate (application point of load) and the mid-sides of the 
plates, which are the shortest paths connecting the centre of the plate with the most 
constrained nodes. Furthermore, as in the previous case, an elastic hinge appeared. As shown 
in Fig.4.9a, again the resulted layout, although in accordance with the literature, presented an 
interesting detail: the remaining material is distributed along a curved rather than on a straight 
path. The optimal layout using the ESO procedure (Fig. 4.9b) also tends to present the 
aforementioned elastic hinge (checkerboard area near the plate centre), while it results in a 
layout where the number of the remaining elements is higher than it was with FSD optimizer 
(higher coefficient of coverage).  
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Figure 4.13: Optimal layout of a clamped square plate 
 

For both types of boundary conditions, the optimal layout is a specific set of grid-like 
members servicing as reinforcements (stiffeners). 
 
4.4.4.2. Case #2 

In this case, the applied loads result in a pure bending of the plate. Fig.4.10 illustrates the 
problem domain as well as the optimal layouts, for three characteristic aspect ratios of the 
plate, obtained with the FSD (Fig.4.10a) and the ESO approach (Fig.4.10b). In both 
approaches, the optimal layout obtained is strongly determined by the distance between the 
applied nodal forces (plate width a  - Fig.4.10a). For the FSD approach, it yields that if the 
plate is adequately wide (Fig. 4.10iia), then the optimal solution is a set of two parallel 
cantilevers being completely independent of each other. If the applied corner-loads are equal 
then the formed cantilevers are similar, otherwise the thickness distribution of the cantilever 
corresponding to the lower load is lower as well  
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 (b) Evolutionary Structural Optimization 
(i) Problem definition (ii) ( ) ( )/ 1 /1a b =  (iii) ( ) ( )/ 1 / 2a b =  (iv) ( ) ( )/ 1 / 3a b =  

Figure 4.14: Optimal layout of a cantilever plate under two equal and same-directed corner 
loads 

 
However, as the width of the plate becomes smaller, the aforementioned cantilevers are 

again well-formed but they tend to join each other. If the applied nodal forces are equal, then 
this tendency appears near the cantilever bases (Fig.4.10ii and Fig.4.10iii), otherwise it 
appears at some point along the cantilever corresponding to the higher nodal force while the 
part of the other cantilever between the joint and its base is eliminated (Fig.4.11ii and 
Fig.4.11iii). In all cases, the optimum layout is a fork-like structure.  
 

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

-0.1

0

0.1

X-axisY-axis

Z-
ax

is

0.05

0.1

0.15

0.2

0.25

0
0.1

0.2
0.3

0.4

0

0.2

0.4

0.6

0.8

1

-0.1

0

0.1

X-axis

Y-axis

Z-
ax

is

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0
0.1

0.2
0.3

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

-0.1

0

0.1

X-axis

Y-axis

Z-
ax

is

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(a) Fully Stressed Design 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X-axis

Y
-a

xi
s

-0.2 0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X-axis

Y
-a

xi
s

-0.4 -0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X-axis

Y
-a

xi
s
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(i) Problem 
definition 

(ii) ( ) ( )/ 1 /1a b =  (iii) ( ) ( )/ 1 / 2a b =  (iv) ( ) ( )/ 1 / 3a b =  

Figure 4.15: Optimal layout of a cantilever plate under two unequal corner loads 
 

For the (ESO) approach and for an adequately wide plate, two independent cantilevers are 
also formed. Since they are of constant thickness and length, it is obvious that their width will 
be varying (Fig.4.10iib, Fig.4.11iib). As the plate width decreases, the aforementioned 
cantilevers are joined near their basis with the joint extending towards the free edge 
(Fig.4.10iiib, Fig.4.10ivb) and the remaining material tending to occupy the entire domain. 
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Ultimately, the optimal layout will be a continuum. If the applied loads are unequal 
(Fig.4.11), then the derived optimal layouts are asymmetric (Fig.4.11b) while the other 
comments mentioned above are still valid. 
 
4.4.4.3. Case #3 

In this case, a cantilever rectangle plate carries a load distributed along the free edge. Two 
different cases of load distribution were applied, the former being a uniform and the latter 
being a triangular distribution. It was observed that if all element thicknesses were left free to 
change, then a checkerboard-like free edge occurred, no two successive elements being 
eliminated however. In order to avoid such a pattern, which needs further investigation, it was 
decided to keep the elements at the free edge frozen, meaning that their thickness remained 
unchanged during the optimization procedure. Fig.4.13 illustrates the problem domain and the 
optimal layouts, for three characteristic aspect ratios of the plate, obtained with the FSD 
(Fig.4.12a) and the ESO approach (Fig.4.12b). 
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(i) Problem 
definition 

(ii) ( ) ( )/ 1 /1a b =  (iii) ( ) ( )/ 2 /1a b =  (iii) ( ) ( )/ 3 /1a b =  

Figure 4.16: Optimal layout of a cantilever plate under uniform load distribution  
 

For the uniform distribution, the FSD approach resulted in a horseshoe-like structure. If the 
width of the initial plate is adequately small, then a simple horseshoe with two similar 
cantilevers at the ends of the plate is formed (Fig.4.13iia). As the plate becomes wider, the 
presence of reinforcing cantilevers is required. Experimentation with various aspect ratio 
values revealed that the reinforcing cantilevers may be introduced in a two fold manner; either 
as a bifurcated cantilever (Fig.4.13iiia) or as a single cantilever (Fig.4.13iva). Another point 
of interest is that, depending on the aspect ratio of the plate, it is possible to have thicker 
reinforcing cantilevers and thinner initial cantilevers or vice versa. The ESO approach 
resulted in the formation of reinforcing cantilevers, symmetric with respect to the mid-axis of 
the plate and varying in number and shape, as shown in Fig.4.13b. 
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 (b) Evolutionary Structural Optimization 
(i) Problem definition (ii) ( ) ( )/ 1 /1a b =  (iii) ( ) ( )/ 2 /1a b =  (iii) ( ) ( )/ 3 /1a b =  

Figure 4.17: Optimal layout of a cantilever plate under triangular load distribution  
 

For a triangular load distribution, due to the fact that the load has a zero value at x a= , the 
aforementioned horseshoe optimal layout degenerates. For a square plate, the FSD approach 
resulted into an L-shape beam (Fig.4.13iia), while the ESO approach resulted in an 
asymmetric layout (Fig.4.13iib). If the plate is adequately wide, then cantilever-like 
reinforcements appear. It is noted that these reinforcements are of a curved shape and that the 
closer they are to the position x a=  the thinner they become.  
 
4.4.4.4. Case #4 

In this case, if the applied loads are equal, then they produce an out-of-plane (torsional) 
moment only, otherwise they produce an additional asymmetric bending of the plate. 
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 (b) Evolutionary Structural Optimization 
(i) Problem 
definition 

(ii) ( ) ( )/ 1 /1a b =  (iii) ( ) ( )/ 1 / 2a b =  (iv) ( ) ( )/ 1 / 3a b =  

Figure 4.18: Optimal layout of a cantilever plate under two opposite-directed equal nodal 
loads 
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Again, the distance between the applied nodal forces (plate width) determines the optimum 
layout (Fig.4.14). For the FSD approach, if the plate is adequately wide, then, as expected, the 
optimum solution is a couple of parallel cantilevers being completely independent of each 
other (Fig.4.14iia). Furthermore, if the applied loads are equal, then the formed cantilevers are 
equal as well, otherwise a horseshoe structure is formed. More precisely, two cantilevers of 
constant thickness are formed while a third beam of varying thickness joins their free ends. 
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 (b) Evolutionary Structural Optimization 
(i) Problem 
definition 

(ii) ( ) ( )/ 1 /1a b =  (iii) ( ) ( )/ 1 / 2a b =  (iv) ( ) ( )/ 1 / 3a b =  

Figure 4.19: Optimal layout of a cantilever plate under two opposite-directed unequal nodal 
loads 

 
However, if the applied loads are unequal, then the cantilever corresponding to the lower load 
is eliminated and the resulting structure is an L-shape beam (Fig.4.15a), both members of 
which are of varying thickness along their length. On the contrary, the optimal layout 
following the ESO approach tends to a continuum (Fig.4.14b, Fig.4.15b). 
 
4.4.5. Conclusions 

The parameters that define the optimal layout of plates obtained using the FSD and the 
ESO techniques were investigated in the current section. The investigation revealed that, 
although the two techniques are conceptually similar, they result in strongly different paths 
along which material is optimally distributed (directions of higher optimal strain energy 
distribution).  
 
4.5. Layout optimization of 3D continuum under stress constraints  

The weight minimization of 3D continuum structures under stress constraints is one of the 
most popular problems in structural optimization. Its popularity is due to the fact that for real-
life applications, stress constraints are of most vital importance while simplified 2D 
approximations of the 3D-reality are not always representative. In the quest of the minimum 
weight, various techniques have been proposed, the Evolutionary Structural Optimization 
(ESO) being among the state-of-the-art structural optimization techniques. According to its 
developers, the variation of ESO that addresses the stress constraint problem has the ability to 
provide an optimized structure by removing elements of low von Mises equivalent stress. 
Furthermore, the introduction of a normalized expression for the energy density of the entire 
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structure during the optimization procedure is beneficial. The current section investigates the 
coupling of the aforementioned version of ESO with the aforementioned normalization 
concept for the optimization of 3D-continua, where the values of the normalized strain energy 
density were derived from the non-vanishing elements (active elements) only. The specific 
coupling is tested in four typical examples of 3D continua, namely the deep cantilever, the 
long cantilever, the MBB beam and a block under compression.  
 
4.5.1. In general 

The methods used for topology optimization of continuum structures may be categorized 
roughly in two large categories, the former including the so-called Material or Micro-
approaches and the latter including the so-called Geometrical or Macro-approaches. 
According to the Material approaches, the aim is to find the structural topology that results in 
the optimum value of a given objective function provided that only a prescribed amount of 
structural material is used. The material density of each element is defined as a design 
variable whose domain is [0, 1], where 0 corresponds to void and 1 corresponds to solid 
material. The result of the optimization procedure is a set of solid materials and voids 
describing both the outer and the inner boundaries of the optimized structure. Further 
treatment of the jagged boundaries results in smooth shapes that can be manufactured. 
According to the Geometrical approaches, constitutive laws for usual solid, isotropic 
materials are implemented, while during the optimization procedure the finite element mesh 
must follow the changes of the design boundaries of the structure. Furthermore, the changes 
in the topology of the continuum under optimization are based on growing or degenerating 
material or by inserting holes. The present paper falls in the category of Geometrical 
approaches thus a brief reference is made to them.  

Rossow and Taylor introduced the variable thickness sheet model for topology prediction, 
where the admissible domain for topology optimization is divided into a large number of 
smaller sub-areas, the thicknesses of which are defined as design variables and are then 
optimized subject to minimum compliance (Rossow and Taylor, 1973). Atrek and Kodali 
developed the shape-method which is similar to the method of Rossow and Taylor, the 
difference being the implementation of the technique for removing those sub-areas of the 
structure for which the thicknesses ends up being equal to the prescribed lower limit value 
(Atrek and Kodali, 1989). Mattheck, based on the aforementioned idea, stated the CAO 
(Computer Aided Optimization)/SKO (Soft Kill Option) Method, where the Young’s 
Modulus is the controlling parameter and understressed elements are removed, thus resulting 
in a fully stressed design (Mattheck, 1992). Xie and Steven developed the Evolutionary 
Structural Optimization (ESO) method according to which inefficient material from an initial 
oversized design is gradually removed (Xie and Steven, 1993). Two variations of ESO are the 
Additive ESO (AESO) by Querin et al, where material is added to an initial undersize design 
(Querin et al, 2000), and the Bidirectional ESO (BESO) by Querin et al, where material may 
be removed from one location of the structure and then added to another location of the same 
structure (Querin et al, 1998). Liu et al at the Engineering Design Centre of the University of 
Cambridge developed a novel topology optimization method, called Metamorphic 
Development (MD), for both trusses and continuum structures and also for combined 
truss/continuum structures (Liu et al, 2000). Eschenauer et al introduced the bubble method 
which uses an iterative positioning and hierarchically structured shape optimization of new 
holes (bubbles). This method considers the boundaries of the structure to be variable thus 
shape optimization is carried out not only for the new bubbles but for the other variable 
structural boundaries as well (Eschenauer et al, 1994). Following this idea, Garreau et al 
proposed a similar yet modified approach, by using so-called topological gradients, which 
provides information on the possible advantage of the occurrence of a small hole in the body 



D.T. Venetsanos ‐ PhD Thesis ‐ 2010 

P a g e  | 4.38 

(Garreau et al, 1999). Cea and Malanowski developed a topological optimization algorithm 
based on a fixed point method using the topological gradient (Cea and Malanowski, 1970). 
Sokolowski and Zochowski gave some mathematical justifications to the topological gradient 
in the case of free boundary conditions on the hole and generalized it to various cost functions 
(Sokolowski and Zochowski, 1997). Makris and Provatidis introduced a virtual strain energy 
density method for structural optimization (Makris and Provatidis, 2002), while Provatidis 
and Venetsanos investigated the influence of normalizing the virtual strain energy density on 
the shape optimization of 2D continua (Provatidis and Venetsanos, 2005).  

The current section deals with a further investigation of the latter two aforementioned 
works in 3D continua. In more details, for stress constrained 3D continuum structures, it is 
proposed to gradually remove inefficient material until the stress constraints are marginally 
met. The material efficiency is quantified through ranking the elements with respect to their 
normalized strain energy density; the elements at the end of the ranked and sorted list are the 
most inefficient. The proposed procedure is coded in APDL, the script language of the 
commercial Finite Element Analysis software ANSYS, and tested in four typical cases, 
namely the Deep cantilever, the Short cantilever, the MBB beam and the Block under 
compression. Finally, the proposed method is compared to removing elements based on the 
von Mises stress only (Basic Removal Scheme). 
 
4.5.2. Theoretical background 

The weight minimization problem of a stressed constrained 3D continuum discretized in 
solid finite elements of the same density can be stated in terms of volume as follows:  
 

minimize 
,

1

NEL act

j
jV V

=

= ∑                                                               (4.35) 

subject to 
max

1 0i

allow

σ
σ

− ≤                                                     (4.36) 

 
where jV  is the volume of the j th−  remaining finite element of the final design, jσ  is the 
von Mises equivalent stress of the j th−  remaining finite element of the final design, allowσ  is 
the allowable von Mises equivalent stress (stress constraint) and ,NEL act  is the total number 
of the remaining (active) finite elements of the final design.  
It is clarified that, as Eq.4.36 suggests, the stress limit for both compression and tension has 
been considered to be the same. In order to find the optimum (final) design, three basic factors 
must be determined, the first being the material removal criterion (redesign scheme), the 
second being the convergence criterion and the third being the termination criterion of the 
iterative optimization procedure.  
 
4.5.2.1. The material removal criterion 

The redesign scheme is based on the gradual elimination of underutilized elements from 
the discretized design domain. The determination of the material utilization could be based on 
the strain energy of each element. However, if the elements are of different size, then the 
strain energy is not the best evaluation index for the material utilization. Instead, the more 
representative strain energy density ju  of each element must be used: 
 

T
ju d= ∫σ ε                                                         (4.37) 
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For the first iteration, where all the elements are considered, the mean strain energy density of 
the structure is: 

 

1

1 NEL

j j
j

u u
NEL =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑                                                     (4.38) 

 
Diving Eq.4.37 by Eq.4.38, the normalized strain energy density for each element yields: 
 

( )/j j jn u u=                                                        (4.39) 
 
The normalization takes place with respect to the mean strain energy density of the structure. 
In this way, it is possible to quantify the contribution of each element to the behavior of the 
entire structure. Evidently, elements with low contribution may be removed (passive 
elements) thus the structural weight decreases. As far as the number of elements eliminated 
each time is concerned, first the available finite elements are ranked with respect to their 
normalized strain energy density value and then either a constant number or a constant 
percentage of the elements is removed (Material Removal Step). Therefore, for the k th−  
iteration and for the subscript j  in Eqts.(4.37, 4.38, 4.39), it holds:  
 

, 11 act kj NEL −≤ ≤                                                     (4.40) 
 
At this point, it is strongly emphasized that in the following paragraphs the material removal 
is actual, meaning that the total number of elements decreases from one iteration to the next 
one. This approach is closer to the reality than other techniques where a very low value is 
attributed to some characteristic property of the passive elements as an attempt to make their 
contribution to the global stiffness matrix negligible.  
 
4.5.2.2. The convergence criterion 

For the convergence of the numerical procedure, it is possible to use either one of the 
following criteria:  
 

( )1k kV V tol− − <  or ( ) minkMRS MRS<                                    (4.41) 
 
where V  represents the remaining volume, MRS  stands for the Material Removal Step, while 
k  denotes the current iteration. The first inequality suggests that the iterative procedure be 
stopped when the change in volume between two consecutive iterations is less than a pre-
selected tolerance, while the second inequality suggests that convergence is considered to 
have been achieved when the Material Removal Step gets a smaller value than a pre-selected 
minimum one. More details concerning the MRS  are presented in the next paragraph. 
 
4.5.2.3. The termination criterion 

With respect to the termination criterion, it is only required to check whether the 
prescribed limit for the stress is exceeded: 
 

( )max / 1i allowσ σ >                                                  (4.42) 
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When this happens then the optimization procedure terminates and the design corresponding 
to the last-but-one iteration is assumed to be the optimized topology. However, this 
assumption is not completely true since there is still room for further improvement. In more 
details, if the design corresponding to the k -iteration violates the imposed stress constraint 
but the design corresponding to the ( )1k − -iteration does not then the latter design is the best 
that can be obtained with the initially defined Material Removal Step. If this ratio changes, 
and more particularly if it is reduced with respect to the initial one, then, for the transition 
from the k -iteration to the next one, it is possible to obtain another feasible design with less 
weight. The optimization procedure may be continued, until a new stress violation occurs. At 
that point, it will be possible either to use a new reduced removal ratio or to stop. The 
aforementioned reducing technique may be applied up to a point where the removal ratio gets 
a value less than a pre-defined tolerance, as Eq.7 suggests. In the present paper, a constant 
removal ratio was used throughout the investigations. This selection was based on a practicing 
engineering point of view, according to which reducing gradually the removal ratio is an 
additional means to refine an already optimized design, while getting an optimized design is 
of primary importance. Finally, as in all iterative procedures, a pre-defined maximum number 
of iterations was also introduced as a termination criterion: 
 

maxkN N>                                                          (4.43)  
 
where kN  represents the current number of iteration and maxN  is the maximum allowable 
number of iterations 
 
4.5.3. The proposed procedure 

The proposed procedure consists of the following steps: 
 

Step 1: Discretize the 3D-domain and define an initial value for the Material Removal Step 
(MRS) 

Step 2: Estimate the Strain Energy Density (SED) of each element 
Step 3: Estimate the Normalized Strain Energy Density (NSED) of the each element 
Step 4: Remove (MRS) elements with the lowest values of NSED 
Step 5: Estimate the (NSED) of the remaining elements (active elements) 
Step 6: Check for convergence; if convergence is achieved then stop 
Step 7: Check for stress violation; if stress violation occurs, then reduce the Material 

Removal Step (MRS)  
Step 8: Return to Step 4 
 

For the domain discretization, a good choice is to use 8-nodal brick while using the 
enhanced 20-nodal brick elements is a selection mainly aiming at handling the checkerboard 
problem that near optimum designs present. More details on this issue are referred in 
‘Discussion’ (Section 4.5.6). 
 
4.5.4. Investigated test cases  

The evaluation of the proposed procedure was based on the examination of the four 
examples shown in Fig.4.16 and was distinguished in two phases. In Phase #1, the effect of 
the main controlling parameter of the proposed procedure, which is the Material Removal 
Step, was quantified and illustrated in charts showing both the remained material volume 
(primary y-axis) and the number of iterations required until convergence was achieved 
(secondary y-axis). In Phase #2, the comparison between the proposed procedure and 
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removing elements based on the von Mises stress only (Basic Removal Scheme) was 
appropriately quantified and illustrated in charts. At this point, it is clarified that three out of 
the four examined examples, namely the deep cantilever, the short cantilever and the MBB 
beam, are described in details in Section 4.3.4.3. However, since a 3D mesh is used in the 
current investigation and for the completeness of the text, all of the investigated test cases are 
shown in Fig.4.16 and quantified in Table 4.7. 
 

        
(a) (b) (c) (d) 

Figure 4.20: The examined examples (a) deep cantilever, (b) short cantilever, (c) MBB beam 
and (d) block under compression 

 
All the necessary data for the corresponding problem descriptions are found in Table 4.7, 
where xL  denotes the horizontal dimension (width), yL  is the vertical dimension (height), E  
is the Modulus of elasticity, v  is the Poisson’s ratio, dens  is the material density, F  is the 
applied load, allowσ  is the allowable stress, NN  is the Number of Nodes and NEL  is the 
Number of Elements of the developed models. 
 
Table 4.11: Data for the examined examples 

Examined 
example 

xL  
[ ]m  

yL  
[ ]m  

E  
[ ]Pa  v  dens

Load 
F  

Application 
point of F  

allowσ  
[ ]Pa  NN  NEL  

Deep 
cantilever 3 1 1 0.3 1 12N Right side 

middle 30 10571 9000 

Long 
cantilever 16 10 1 0.3 1 12N Right side 

middle 20 2079 1300 

MBB beam 6 1 1 0.3 1 2N Top side 
middle 20 4092 3000 

Block under 
compression 1 0.4 1 0.3 1 0.1 

N/mm2
Top side 

distributed  16 3960 3200 

 
The initial thickness of the structure is another parameter that affects the optimum design. For 
this effect to be revealed, three out of the four examined examples were analyzed for two 
different thickness values. More particularly, a thickness of 3mm  and 4mm  was used for the 
Deep cantilever, a thickness of 1mm  and 2mm  was used for the Long cantilever and a 
thickness of 3mm  and 4mm  was used for the MBB beam, respectively. It is clarified that, for 
the aforementioned selected problems, the thickness, that is the dimension vertical to the 
plane of the paper, may change without altering the other two dimensions. For the forth 
example, this is not the case since the plane where the pressure is applied to is rectangular, 
thus only one geometry was analyzed. 
 
 
 

F

FF  

p  
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4.5.5. Results  
The results for the first Phase of the evaluation are illustrated in Fig.4.17. The horizontal 

axis represents the values of MRS that were used, the left vertical axis represents the 
normalized value of the remained material at the optimum over the material at the initial state 
and the right axis represents the number of iterations required until convergence was 
achieved. It is reminded that there are two series of charts for the two different thickness 
values implemented, the Block under compression being the exception to this 
implementation. 
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II. Second thickness value 

(a) (b) (c) (d) 

Figure 4.21: Performance of the proposed procedure for (a) the deep cantilever, (b) the short 
cantilever & (c) the MBB beam for two different thicknesses and (d) the Block under 

compression for one thickness 
 
In all cases, the larger the Material Removal Step was, the smaller the number of iterations 
required until convergence became. This behavior was logical to appear because small MRS 
causes small changes to the structure thus more steps are required, until a large structural 
change occurs. Evidently, the maximum MRS value corresponded to the minimum number of 
iterations and vice versa. Furthermore, for the Block under compression and for the examined 
domain of MRS, the curve MRS vs Iterations was quite linear. However, in all of the other 
cases, a strong non-linear behavior appeared. On top of that, it was not possible to establish a 
pattern concerning the change of the normalized Remained Volume with respect to the 
Material Removal Step. In more details, there were cases, such as the Block under 
compression and the MBB beam for thickness of 3mm , where a unimodal behavior was 
present, while there were cases, such as the Long cantilever, where a non-unimodal behavior 
was present. This strongly suggests that the presence of unimodality is case-dependent. The 
explanation for this lies in the fact that different MRS values result in different layouts, as 
Fig.4.18 illustrates. 

In more details, the optimal material layouts in Fig.4.18 are not similar in the sense that 
one layout does not result from the other by simply reducing the thickness of the material 
distribution paths. They are completely different layouts suggesting that the Material Removal 
Step (MRS) value affects both the number of iterations required until convergence is achieved 
and the optimization route. Therefore, it is not surprising to find a lighter structural layout for 
a MRS value other than the smallest between the ones implemented. Another significant 
remark that results from Fig.4.18 is the fact the smaller the MRS value used the stronger the 
checkerboard problem is. A comment on this is referred in the section ‘Discussion’.  
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Figure 4.22: Optimal designs for the Long Cantilever  

(Top row: von Mises stress distribution, Bottom row: Remained material) 
 
The results for the second Phase, that is the comparison between the proposed procedure and 
removing elements using only a von Mises-based ranking (Basic Removal Scheme - BRS), 
are illustrated in Fig.4.19. The comparison was based on three Performance Indices (PI’s), the 
first being the remained volume normalized with respect to the initial volume, the second 
being the maximum appearing von Mises stress normalized to the allowable one and the third 
being the number of iterations required until convergence was achieved: 
 

1
act

ini

NELPI
NEL

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

          ,max
2

,

vonMises

vonMises allow

PI
σ
σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

          3 iterPI N=                  (4.44) 

 
It is noted that the first index (PI1) may be expressed in many ways, such as in terms of 
volumes as well as in terms of number of elements. In the present work, it was expressed as 
the ratio of the active elements (elements of the optimal design) over the number of elements 
of the initial design. 
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Figure 4.23: Comparison between the proposed procedure and the Basic Removal Scheme in 
terms of (a) the normalized remained volume, (b) the normalized maximum stress and (c) the 

number of iterations 

The first PI, which is illustrated in Fig.4.19a, represents an absolute performance valuator. 
It is evident that, in all of the examined cases, the proposed procedure resulted in a lighter 
optimal structural layout, the difference being stronger for the MBB beam.  
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The second PI, which is illustrated in Fig.4.19b, represents the degree of material 
utilization. The higher the degree is the less redundant material exists in the layout. 
Obviously, the material is not fully utilized for the obtained optimal layouts; otherwise a unity 
normalized value would have been obtained. More particularly, both the examined procedures 
resulted in a larger than 90% material utilization, with the proposed procedure giving a 95% 
material utilization in three cases thus outperforming the Basic Removal Scheme. For the 
Long cantilever, the material utilization obtained with the proposed material is lower than that 
obtained with BRS. However, if this remark is evaluated in combination with Fig.4a, then it 
results that this optimal design is of least material utilization but, at the same time, is of least 
weight as well. This implies that a further feasible material removal is theoretically possible 
but a mesh of different element size is required.  

The third PI, which is illustrated in Fig.4.19c, informs on how fast the optimal design may 
be obtained. It is evident that, in all cases, the proposed procedure required more iterations 
until convergence was achieved. This behavior was due to the inherent characteristic that the 
material removal takes place in a slower rate. In more details, for the proposed procedure, the 
criterion for removing material combines the rank, the elements have when sorted according 
to their normalized strain energy density, with an underutilized material threshold, dictated by 
the Material Removal Step. This combination determines the number of elements to be 
removed. However, if an element ranking according to the von Mises equivalent stress takes 
place, then, for the same underutilized material threshold, a different number of elements 
may, though not necessarily, be removed. In addition, the aforementioned number will be 
lower. This can be easily justified from the fact that two elements differing 1% in their von 
Mises stress differ 2% in their strain energy values; that is, their relative distance has doubled. 
In this way, the optimization route is strongly affected and leads to a different layout. The 
most characteristic example is that of the Block under compression. After the first iteration, 
the proposed procedure suggests that only 7% of the elements be removed while the Basic 
Removal Scheme suggests that 40% of the elements should be removed, instead. This 
tremendous difference definitely affects the further route of the optimization procedure, as 
very vividly illustrated in Fig.4.20b. More particularly, Figs.4.20-4.22 illustrate the initial, the 
mid and the final state of the four examples studied in the present paper.  
 

  
initial mid final initial Mid final 

  
initial mid final initial Mid final 

 (a)   (b)  
Figure 4.24: Optimized designs for (a) the Deep cantilever and (b) the Block under pressure  

(Top row: Proposed procedure, Bottom row: Basic Removal Scheme) 
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It is evident that Fig.4.20 refers to the Deep cantilever and to the Block under compression. 
For the latter and due to double symmetry, only one-forth of the full model is shown. The 
comparison between the final outputs reveals that the proposed procedure and the Basic 
Removal Scheme provide different optimal solutions. The difference is stronger between the 
final skeletal structures corresponding to the Block under compression. 

Furthermore, Fig.4.21 refers to the Long cantilever. It is obvious that the proposed 
procedure results in a skeletal-like structure with larger void areas, which is of importance in 
practicing engineering applications. 
 

 
initial mid final 

 
initial mid final 

Figure 4.25: Optimized Long cantilever (Top row: Proposed procedure, Bottom row: Basic 
Removal Scheme) 

 
Finally, Fig.4.22 refers to the MMB beam, for which, due to symmetry, only half the model is 
shown. 

 
initial mid final 

 
initial mid final 

Figure 4.26: Optimized MBB beam (Top row: Proposed procedure, Bottom row: Basic 
Removal Scheme) 

 
4.5.6. Discussion 

The main idea of all weight minimization techniques is to eliminate underutilized 
elements. However, a question arises concerning the way the aforementioned underutilization 
may be quantified. The present paper suggests that the normalized strain energy density 
(NSED) of the elements of a fixed grid be used, the normalization being carried out for the 
active elements only. This approach has three advantages, the first being that a fixed grid may 
be applied, the second being that the underutilized elements are completely removed from the 
stiffness matrix of the structure and the third being that the NSED distribution makes 
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elements more distinct. More particularly, it is self-evident that the use of a fixed grid, that is 
of a grid that does not require re-meshing during the optimization procedure, is very 
convenient. Furthermore, in most optimization techniques, the element elimination is 
numerically simulated by attributing a very low value to some elemental characteristic. In this 
way, the problem is well-posed and the stiffness matrix has a non-zero determinant. However, 
in the present paper those elements recognized as passive are completely excluded from the 
formation of the stiffness matrix, whose rank thus becomes lower. In turn, this means that the 
finite element analysis is carried out in less time and due to this acceleration in the solution 
time during the optimization procedure it is possible to use thinner initial meshes thus 
increasing the reliability of the results. Finally, rating the elements with respect to their NSED 
value provides a tool that forbids the massive material elimination. As mentioned in Section 
4.5.5, the use of the NSED for rating the elements makes them more distinct in the sense that, 
in a sorted list, the difference between two successive values is larger than if the rating was 
based on another quantity, such as the von Mises stress. Therefore, if a threshold is imposed 
such that all elements below it be removed, then fewer elements will be eliminated, exactly 
because they are distributed in a wider manner. Another issue worth commenting is that the 
removal of underutilized material results in skeletal-like structures characterized by strong 
checkerboard patterns, which are unfavorable since they suggest that a mechanism is present. 
There have been many techniques proposed as a solution to this problem, such as the 
suggestion by Diaz and Sigmund of a p-enhancement implementation (Diaz and Sigmund, 
1995). Since the main goal of the present paper was to investigate the potentiality of using the 
strain energy density for structural optimization, the checkerboard problem was not examined. 
 
4.5.7. Conclusions  
In the current section, the weight minimization of 3D stress constrained continuum structures 
was investigated. According to the proposed procedure, underutilized material is gradually 
removed from the structure. For every iteration of the optimization procedure the elements are 
sorted with respect to their normalized strain energy density (NSED) and those elements with 
a NSED value lower than a threshold are eliminated. The normalization is based on the active 
elements, only while the threshold is initially defined and increases during the optimization 
procedure, which is stopped when the maximum appearing von Mises stress in the structure 
exceeds a pre-defined limit. Therefore, the last-but-one design corresponds to the optimal 
layout. The proposed procedure was tested on four well-known case studies retrieved from the 
literature and compared to removing elements using as a criterion the elemental von Mises 
stress. It was shown that the proposed procedure resulted in the lightest optimal designs in all 
cases. Furthermore, it was shown that the use of the NSED criterion affected the optimization 
route thus resulting in significantly different layouts of most importance for practicing 
engineering purposes. Therefore, it was shown that when the normalized strain energy density 
of the active elements is used as a criterion for removing inefficient material then significant 
improvements can be achieved both in terms of weight and layout. 
 
4.6.  A new OC for extended single stress constrained skeletal structures 
4.6.1. Theoretical background  

According to the description of the extended single stress constrained optimization 
problem of a 2D ground structure (truss), no matter how many stress constraints are imposed, 
only one is active at the optimum thus one structural member takes on a pre-determined 
maximum value. However, it is not known a priori which member is related to the 
aforementioned stress constraint. In this case, the optimization problem is stated as follows: 
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minimize ( )∑
=

=
NEL

k
kkk LAW

1

ρ                                            (4.45) 

such that allowσ σ≤  and AA ≤min                                       (4.46) 
 
where A  is the cross-sectional area, L  is the length, ρ  is the material density, σ  is the 
member stress, while the indices k  and allow  denote the −k bar and the allowable value, 
respectively. The total number of bars (elements) in the structure is declared as NEL , while 
the absolute sign denotes that the same limiting stress value is used for both tension and 
compression. Furthermore, the cross-sectional area is also constrained with a lower bound so 
that the formation of a positive definite stiffness matrix is ensured. According to the method 
of Lagrange multipliers, the Lagrangian function   corresponding to the aforementioned 
problem, if the constraint for the minimum cross-sectional area is dropped, may be stated as: 
 

( ) ( )1
1

NEL

i i i allow
i

A Lρ λ σ σ
=

= + −∑                                         (4.47) 

 
where 1λ  is the Lagrange multiplier for the stress constraint. From Mechanics, it is known 
that a member stress, based on the concept of virtual work, may be expressed as:  
 

1

P QNEL
ji i

j i
i i i j

EF F L
A E L

σ
=

⎛ ⎞
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⎝ ⎠
∑                                                (4.48) 

 
where, in addition to the symbols previously used, j  denotes the structural member under 
consideration, on which two opposing unit loads are applied to each end and in the direction 
of the member. Furthermore, E  stands for the modulus of elasticity, PF  is the member force 
due to the application of the actual loads, QF  denotes the member force due to the application 
of the two opposing unit loads, while the index i  is used to denote each one of the NEL  
structural elements. Introducing Eq.(4.47) in Eq.(4.48) yields: 
 

( ) 1
1 1

P QNEL NEL
ji i
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EF FA L L
A E L
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∑ ∑                           (4.49) 

 
The partial derivative of Eq.(4.49) with respect to the cross-sectional areas iA  equals to: 
 

1 12i

P Q P Q
j jQi i l l l

A i i i l l
li i j i i l l j

E EF F F F LL L F F
A E L A A A E L

ρ λ λ
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∇ = − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
∑    (4.50) 

 
However, the terms in the summation are identically zero because for determinate structures, 
the member forces are independent from the cross-sectional, while for indeterminate 
structures, Berke has shown that the derivative terms form a self-equilibrating internal load 
system (Berke and Khot, 1987). Consequently, Eq.(4.50) becomes: 
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                                         (4.51) 

 
According to the method of Lagrange multipliers, it must hold: 
 

0
iA∇ =                                                           (4.52) 

 
The combination of Eqs.(4.51, 4.52), after basic manipulations, yields: 
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The coefficient 1λ , being a single quantity, is constant, thus: 
 

const=1λ                                                          (4.54) 
 
Under the assumption that all bars are made of the same material, it holds: 
 

i constρ =                                                          (4.55) 
 
The combination of the last three equations, after basic manipulations, yields: 
 

{
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i j

P Q
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                                            (4.56) 

 
The first term on the left-hand-side of Eq.(4.56) represents the virtual strain energy density iw  
of the i -bar of the examined truss, while the second term, let it be jv , expresses the modulus 
of elasticity of the j − bar, that is the bar under consideration, normalized with respect to its 
length. Therefore, according to Eq.(4.56), for the design that corresponds to minimum weight 
under the extended consideration of the single stress constraint, it is the product of iw  times 

jv  that is constant over the active part of the optimized structure. This means that the length 
of the structural member does play a significant role in determining the energy state at which 
the optimum design may be achieved. However, even though Eq.(4.56) describes the energy 
state at the optimum, it does not define a way to reach that state, thus allows for new 
procedures to be developed. Within this frame, a new redesign procedure is stated which is of 
a closed-form character for determinate trusses and of a recursive-form character for 
indeterminate trusses. 
 
4.6.2. Proposed redesign procedure 

Let a set of NEL  bars with randomly selected cross-sectional areas be used as the initial 
design vector. A Finite Element Analysis (FEA) with the real loads provides both the member 
forces P

iF  and the displacement field, from which the structural member with the maximum 
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axial stress, let it be 
axm

Nσ , may be located. Another (FEA) with a pair of virtual unit loads 

applied at the ends of 
axm

Nσ  provides the member forces Q
iF . With these member forces at 

hand, it is possible to detect the non-zero-force members P Q
i iF F tol> , the tolerance tol  

being a small positive number, say 1E-06. For each one of these bars, it is possible to define 
the following quantity: 
 

i i jw v=                                                           (4.57) 
 
The corresponding mean value   of all the i  values is equal to: 
 

1

activeN

i
i

activeN
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ 

                                                       (4.58) 

 
Substituting i  in Eq.(4.57) with the mean value   from Eq.(4.58) yields: 
 

, ,

, ,

1P Q
ji new i new

i new i new i j

EF F
A A E L

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                              (4.59) 

 
where ,i newA  is the re-designed cross-sectional area of the i − bar. Dividing Eq.(4.57) by 
Eq.(4.59) yields: 
 

, ,

, ,

1

1

P Q
ji i

i i i ji
P Q

ji new i new

i new i new i j

EF F
A A E L

EF F
A A E L

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠




                                           (4.60) 

 
However, for a statically determinate truss, the member forces P

iF  and Q
iF  are independent 

from the cross-sectional values: 
 

0
P Q

i i

i i

F F
A A

⎛ ⎞ ⎛ ⎞∂ ∂
= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

                                                 (4.61) 

 
Consequently, Eq.(4.61) may be written, after basic manipulations, as: 
 

2
,

2
i newi

i

A
A

⎛ ⎞
= ⎜ ⎟
⎝ ⎠




                                                       (4.62) 

 
Solving the last equation with respect to the re-designed cross-sectional area of the −k bar 
yields: 
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,
i

i new iA A ⎛ ⎞= ⎜ ⎟
⎝ ⎠




                                                   (4.63) 

 
Although Eq.(4.63) was derived for a determinate truss, it may also be applied in cases of 
indeterminate trusses where the sensitivity of the axial forces to cross-sectional changes is 
low; that is, for cases where equilibrium governs rather than compatibility or for designs that 
are very near-optimum. For other indeterminate trusses, Eq.(4.63) must be used iteratively 
until convergence to a solution is achieved. In order to ensure that the redesigned cross-
sections do not violate the imposed stress constraint, a scaling of the cross-sections is 
required. 
 
4.6.3. Uniform scaling of the design vector 

For a statically determinate structure, the value of the quantity i  depends on the virtual 
member force Q

iF , the cross-sectional area iA  and the lengths iL  and jL . Therefore, for a 
structure of constant topology, where the bar lengths are well defined and remain unchanged, 
and assuming that all bars are made of the same material, thus iE  and jE  are also well 
defined and constant, it holds: 
 

( ),
P Q

j Qi i
i i i

i i j

EF F L f F A
A E L

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

                                         (4.64) 

 
If the structural member, which the opposing virtual unit loads are applied to, is known, then 
the virtual member forces Q

iF  are also known and well defined and Eq.(4.64) reduces to the 
following form: 
 

( )
P Q

ji i
i i

i i j

EF F L f A
A E L

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

                                            (4.65) 

 
where the cross-sectional area iA  is the only unknown. Therefore, each addend in Eq.(4.48), 
which is numerically equal to the contribution of each bar to the stress of the j − bar, may be 
scaled simply by changing the cross-sectional area iA . Furthermore, the combination of the 
aforementioned equations suggests that if the same scaling is applied to all of the cross-
sectional areas iA  (uniform scaling) then the stress of the j − bar is also scaled by the same 
amount; that is: 
 

_scaled before scalingaσσ σ=                                                (4.66) 
 
The constant aσ  denotes a scaling coefficient with respect to the maximum axial stress 
appearing in the examined structure. The subscripts of the other two terms adequately 
describe their physical interpretation. If the maximum allowable stress allowσ  is selected as 

scaledσ , then the scaling coefficient aσ  equals to the ratio of the allowable to the appearing 
axial stress (for convenience, the subscript before_scaling is dropped): 
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allowaσ
σ
σ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                       (4.67) 

 
The combination of Eqs.(4.48, 4.66) yields: 
 

1

P QNEL
ji i

allow i
i i i j

EF Fa L
A E Lσσ

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑                                          (4.68) 

 
Since the scaling coefficient is constant, Eq.(4.68) may be written as: 
 

1

P QNEL
ji i

allow i
i ji

i

EF F L
LA E

aσ

σ
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑                                             (4.69) 

 
The comparison of Eq.(4.69) with Eq.(4.48) provides the following re-design formula: 
 

,
,

i old
i new

A
A

aσ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                         (4.70) 

 
where the indices new  and old  denote the new and the old value of the cross-sectional area 
of the i − bar, respectively. Therefore, it is possible to uniformly scale the redesigned cross-
sections in Eq.(4.63) of all active bars simply dividing by the scaling coefficient aσ . The 
aforementioned analysis is based on the fact that a pair of opposite virtual unit loads is applied 
to the examined structural member, which was termed as the j − bar. It is essential that this 
bar is appropriately selected. The easiest thing to do is select this bar randomly. However, in 
an optimization procedure the initial design vector may decisively affect the optimization 
route thus local optima may be found. In order to maximize the probability of locating the 
global optimum, it is suggested that the optimization procedure be initiated from a design for 
which each structural member has unit stiffness. More details on this selection are presented 
in Section 5.2.4. 
 
4.6.4. Discussion 

Based on the above analysis, a theoretical solution to the problem of the extended single 
stress constrained optimization problem of a 2D ground structure (truss) has been stated. In 
this statement, there are certain issues that require investigation, such as the selection of the 
initial design vector and the way the structural members may be characterized as ‘active’ or 
‘passive’. These issues are extensively examined in the next Chapter, where the problem of 
the extended single displacement constraint problem is analyzed. The extended single stress 
constraint problem and the extended single displacement constraint problem may be dealt in 
the same way from a point on, this point being the formulation of the redesign equation. 
Therefore, for the extended single stress constraint problem, it is suggested that the iterative 
optimization procedure presented in the next Chapter be used as well, provided that the 
appropriate modifications are made (e.g. instead of a virtual unit load, a pair of opposing 
virtual unit loads is applied). 
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4.7. Recapitulation 
In the present chapter, the stress constraint problem was investigated. More particularly, 

the capabilities of the Fully Stressed Design (FSD) in layout optimization were examined first 
of 2D skeletal structures and then on 2D continua. In both approaches, the redesign was based 
on changing either the cross-section of the skeletal structural members or the thickness of the 
continuum. In the sequel, the concept of using finite elements of variable thickness for the 
stress constrained layout optimization of 2D continua was explored. To this end, the element 
thickness was interpolated within each element in an isoparametric way. Next, the 
optimization of 2D plates was investigated, where the (FSD) was examined along with the 
application of the Evolutionary Structural Optimization (ESO) approach. Last, the 
optimization of 3D continua was investigated, where material elimination was achieved 
through the element contribution to carrying the externally applied loads. Finally, a variation 
of the stress constraint problem, here termed as the extended single stress constraint problem, 
was analyzed. The result of this analysis was the formulation of a new optimality criterion 
which is free of any assumptions concerning the determinacy of the optimized structure and 
seeks for a design where one structural member takes on the critical stress value, without 
necessarily preventing the other structural members from obtaining the imposed upper stress 
bound. In this way, the aforementioned OC is significantly different in concept from the 
(FSD) approach. 
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Appendix 4A: Stiffness matrices for the Basic Continuum Unit (BCU) and the Basic 
Discrete Unit (BDU) 

 
The stiffness matrix for the quadrilateral bilinear element (Basic Continuum Unit - BCU) is 
given by: 
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where  
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It is obvious that the elements of 2DK  are linear combinations of ( )1 4,s s , or ( )2 5,s s , or 

( )3 6,s s . The elements of the last pair are independent of the dimensions ( ),a b  of the BCU, 
thus the corresponding elements of 2DK  do not change with respect to the aspect ratio 

( )a bλ = . Concerning the elements of the pair ( )1 4,s s , and the elements of the pair ( )2 5,s s , 
it holds that: 
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The appearing combinations in 2DK  are: 
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where  
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It is evident that the terms of the last two groups depend only on the aspect ratio (the quantity 
C is constant). The stiffness matrix for the 6-bar assembly (Basic Discrete Unit - BDU) is 
given by: 
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 (4.A7) 

 
where 
 

2bc
l

⎛ ⎞= ⎜ ⎟
⎝ ⎠

     2as
l

⎛ ⎞= ⎜ ⎟
⎝ ⎠

     ( ) ( )2 22 2l a b= +                            (4.A8) 

 
Consequently, some of the terms of this matrix depend on the aspect ratio ( )a bλ = , while 
some others also depend on individual values of the variables a  and/or b . As a consequence, 
if the geometrical dimensions of the BDU change, then the stiffness matrix TRUSSK  will 
change as well, even if the aspect ratio remains the same. Furthermore, TRUSSK  includes zero 
terms, while 2DK  does not. On top of that, all terms in 2DK  are linear functions of the element 
thickness (only one variable), while the non-zero terms in TRUSSK  depend on the cross section 
areas of the bars that form the 6-bar assembly (six variables). The three aforementioned 
differences, with emphasis on the last one, justify the great difference between the 
dependence of the (BCU) and the (BDU) on the aspect ratio.  
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Appendix 4B: Stiffness matrix for a variable thickness element of plane elasticity 
 
4B.1 In general 

Let a finite element of plane elasticity, for which the thickness is not element-wise 
constant. Furthermore, assume that the element thickness is interpolated using the thickness at 
the nodes of the element, while the interpolation functions are the same with those used for 
interpolating the displacement field; that is, an isoparametric interpolation is considered. For 
such a finite element, the stiffness matrix is formed if the thickness is properly expressed in a 
mathematical way. Towards this direction, from the theory of the Finite Element Method, it is 
known that the following holds:  
 

[ ] [ ] [ ][ ] [ ]
1 1

1 1
detT

ee
k t B D B J d dξ η

+ +

− −
= ∫ ∫                                 (4.B1) 

 
where et  is the thickness of the e -element, [ ]B  yields from the strain-displacement matrix, 
[ ]D  is the elasticity matrix and [ ]J  is the Jacobian. If this quantity is interpolated in an 
isoparametric way, then it holds: 
 

1 1 2 2 3 3 4 4et N t N t N t N t= + + +                                            (4.B2) 
 
where iN  and it  are the shape function and the thickness of the i − node. It is possible to 
write Eq.(4B.2) in a matrix form as follows: 
 

[ ]{ }et N t=                                                         (4.B3) 

where the matrix [ ]N  is of dimension 4 1×  and the matrix { }t  is of dimension 1 4× . The 
combination of Eqs.(4B.1, 4B.3) yields: 
 

[ ] [ ]{ } [ ] [ ][ ] [ ]
1 1

1 1
detT

e
k N t B D B J d dξ η

+ +

− −
= ∫ ∫                            (4.B4) 

 
According to the Gauss integration method, the value of the following integral: 
 

( )
1 1

1 1
,I f d dξ η ξ η

+ +

− −
= ∫ ∫                                              (4.B5) 

 
is approximated through the following expression: 
 

( )( )
1 1

,
n n

l m l m
l m

I w w f ξ η
= =

≈ ∑∑                                             (4.B6) 

 
where n  is the number of the Gauss points that will be used, the indices ,l m  denote the 
current Gauss point, while the quantities lw  and mw  represent the weights that correspond to 
the Gauss point ( ),l mξ η . Combining Eq.(4B.5) with Eq.(4B.6) yields: 
 

[ ] ( )( )
1 1

,
n n

l m i l me
l m

k w w f ξ η
= =

= ∑∑                                          (4.B7) 
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where the function within the sum is equal to: 
 

( ) [ ]{ }[ ] [ ][ ] [ ]( ), detT
l m

lm
f N t B D B Jξ η =                                (4.B8) 

 
Therefore, the stiffness matrix [ ]e

k  may be estimated according to the following procedure: 
Step 1: select the number of Gauss points to be used and for each Gauss point define the 

coordinates ( ),l mξ η  and the weights lw , mw  

Step 2: estimate the value iN  of the shape functions at each Gauss point ( ),l mξ η  

Step 3: estimate the matrices [ ]B  and [ ]J  at each Gauss point ( ),l mξ η  

Step 4: estimate the quantity ( ),i l mf ξ η  according to Eq.(4B.8) 
Step 5: estimate the stiffness matrix [ ]e

k  according to Eq.(4B.7) 
 
4B.2 Application: 4-node quadrilateral finite element of plane elasticity 

Let a 4-node quadrilateral finite element of plane elasticity. The displacements ( ),u v  of 
any point of this element are equal to: 
 

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

u N u N u N u N u
v N v N v N v N v
= + + +
= + + +

                                         (4.B9) 

 
For this specific finite element, the shape functions iN , expressed in the physical coordinate 
system, are equal to: 
 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1

2

3

4

0.25 1 1

0.25 1 1

0.25 1 1

0.25 1 1

N

N

N

N

ξ η

ξ η

ξ η

ξ η

= − −

= + −

= + +

= − +

                                            (4.B10) 

 
The strain vector is equal to: 
 

{ }
T

u v u v
x y y x

ε ⎧ ⎫∂ ∂ ∂ ∂
= +⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭

                                        (4.B11) 

 
For the estimation of the partial derivatives of the displacements u  and v  in the Cartesian 
coordinate system, the aforementioned displacements are considered as: 
 

( ) ( )
( ) ( )

( ) ( )( )
( ) ( )( )

, , ,, , , ,

, , , , , ,

u u x yu u x y v v x y

x x y y v v x y

ξ η ξ η

ξ η ξ η ξ η ξ η

⎧ ⎫== = ⎫⎪ ⎪ ⎪⇒⎬ ⎨ ⎬
= = =⎪ ⎪ ⎪⎭ ⎩ ⎭

                   (4.B12) 

 
Applying the chain rule, it yields: 
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,

u u x u y v v x v y
x y x y

u u x u y v v x v y
x y x y

ξ ξ ξ ξ ξ ξ

η η η η η η

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎧ ⎫ ⎧ ⎫= + = +⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪= + = +
⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭

                    (4.B13) 

 
or, equivalently: 
 

,

J J

u x y v x yu v
x x
u vu x y v x y
y y

ξ ξ ξ ξ ξ ξ

η η η η η η
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⎢ ⎥ ⎢ ⎥∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦14243 14243

                  (4.B14) 

 
For the formation of the 2 2×  matrix that appears in Eq.(4B.14) (Jacobian matrix J ), it is 
required to estimate the derivatives of the Cartesian coordinates ( ),x y  with respect to the 

physical coordinates ( ),ξ η . The Cartesian coordinates ( ),x y  of any point of a finite element 
of plane elasticity are described as follows: 
 

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

x N x N x N x N x
y N y N y N y N y
= + + +
= + + +

                                      (4.B15) 

 
The derivative of Eq.(4B.15) with respect to ξ  and η  is equal to: 
 

1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

1 2 3 4
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∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂

                               (4.B16) 

 
In matrix notation, it holds: 
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The partial derivatives of the shape functions iN  can be derived from Eq.(4B.10) and are 
equal to: 
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                       (4.B18) 

 
According to Eq.(4B.14), it holds: 
 

1 1,
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                              (4.B19) 

 
Therefore, all the necessary information for the estimation of the strain vector is now 
available. 
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Abstract 

In this chapter, the problem of minimizing the weight of skeletal structures under a single displacement 
constraint is revisited. The contribution to this most popular and most investigated structural optimization 

problem is the development of an optimization procedure implementing three new features. The first feature is 
the formulation of a new and efficient Optimality Criterion‐type redesign scheme where no Lagrange multipliers 

are required to be estimated. The second feature is the introduction of a new categorization of the structural 
elements according to which the elements, in opposition to the preponderant common practice, are characterized 
in a more detailed manner as force‐active or force‐passive and as area‐active/area‐passive. In this chapter, it is 
shown that it is for the force‐passive or area‐active elements that search methods are trapped at local minima. 
The third feature is the application of a typical line‐search optimization method on the structural elements 
diagnosed as force‐passive/area‐active so that their contribution to the structural weight is minimized and a 
better design is obtained. The validity of the proposed optimization procedure was successfully tested for 

determinate and indeterminate skeletal structures using a series of literature examples and newly introduced 
benchmarking examples with their variations, all of which were also optimized, for evaluating reasons, using the 

Sequential Quadratic Programming (SQP) routine found in Matlab. 
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5.1. Introduction 
The layout optimization of continua has always been a great challenge to the engineering 

community because the nature of the problem provides a plethora of most interesting 
theoretical aspects needing exploration and explanation while at the same time the problem 
itself is strongly related to everyday practicing engineering case studies. According to 
Rozvany (Rozvany 1995), the so-called classical approach to the layout optimization of 
continua is first to replace the continuum with a skeletal structure (structural universe or 
ground structure) and then to optimize the skeletal structure. However, even with this 
simplification, the generalized layout optimization of a skeletal structure remains quite 
difficult to deal with, thus its decomposition into a series of simpler sub-problems, in order to 
get a better insight, is advisable. Within this framework, the present chapter deals with the 
sub-problem of the weight minimization of determinate and indeterminate skeletal (pin-
joined) structures under a single displacement constraint. Generally speaking, the solution to 
this type of structural optimization problem may be sought through a direct technique (such as 
a Mathematical Programming (MP) method or a stochastic optimization method), or an 
indirect technique (such as an Optimality Criteria (OC) method). 

With respect to the (MP) methods, Schmit was the first to introduce the idea of coupling 
the Finite Element Method (FEM) with (MP) techniques to solve nonlinear inequality 
constrained problems concerning the design of elastic structures under a multiplicity of 
loading conditions (Schmit 1960). Since then, a great many number of mathematical methods 
have been developed (Belegundu and Chandrupatla 1999), all of which, however, suffer from 
the same disadvantage of very limited optimization capability with respect to the number of 
variables and the number of active constraints, respectively (Rozvany 1992). Among these 
techniques, the Sequential Quadratic Programming (SQP) has proven to be most powerful for 
detecting the global optimum and due to this characteristic the optimal designs obtained with 
it can be used as reference for comparisons in terms of minimum weight (Provatidis et al 
2004). With respect to the stochastic approaches (Goldberg 1989; Michalewicz 1999), it is 
true that they provide a better exploration and exploitation, while they have the ability not to 
get trapped so easily at local minima. However, their performance reduces rapidly as the size 
of the design space increases thus limits their applicability into optimization problems with a 
small number of design variables. 

On the other hand, the OC methods are capable of handling efficiently a large number of 
design variables and they do lead to the optimum design provided the problem at hand does 
not include constraints on sizes and multiple loading conditions (Venkayya 1971). The origin 
of the OC methods can be found in Michell’s work who investigated the minimum weight of 
a planar truss that transmits a given load to a given rigid foundation with the requirement that 
the axial stresses in the bars of the truss stay within an allowable range (Michell 1904). 
According to Michell, at the optimum, the axial strain has a constant absolute value, say k , in 
directions of non-zero axial forces, while in the directions of zero axial forces the absolute 
value of the strain must be at most equal to k  (Michell 1904). Half a century later Foulkes 
introduced another optimality condition according to which for a segment-wise prismatic 
frames the average absolute curvature for each segment must be the same (Foulkes 1954). 
Five years later, Heyman extended Foulkes’ optimality criterion to include plastic beams 
having a rectangular cross-section that could freely vary, while the depth was given but the 
width was variable (Heyman 1950). A general optimality criterion for the optimal plastic 
design of structures with freely varying cross-sectional dimensions was proposed by Shield 
and Prager (Shield and Prager 1970). This criterion was considerably extended by Rozvany 
who stated that in the optimal strain-stress relation, the adjoint strains must be kinematically 
admissible and are given by the gradient of a specific cost function, in which the stress vector 
must be statically admissible (Rozvany 1992). Prager also used extensively the concept of 
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structural universe (ground structure) for substituting a continuum with a skeletal structure 
(Rozvany 1992). In the 70’s, major contributions in OC methods took place. In the early 70’s, 
Venkayya stated that the optimum structure is the one in which the average strain energy 
density is the same in all its elements (Venkayya 1971). At the same time, Berke (Berke 
1990) attacked the single displacement constraint problem proving the validity of the 
separability concept and using it for the derivation of an optimality criterion based on which 
he formed various recursive redesign equations. Furthermore, Khot (Khot 1981), based on the 
Lagrange multipliers method, proved that the optimum design of a single displacement 
constrained truss has a uniform virtual strain energy density distribution over its active part. 
Gellatly and Berke proposed an optimality criteria approach for indeterminate trusses 
constrained both in stress and displacement, also valid for displacement-constrained statically 
determinate trusses (Gellatly and Berke 1973).  

In the last two decades, significant works on the subject have been carried out. Patnaik et 
al. dealt with displacement constrained problems and introduced a design update expressed in 
an exponential, a linearized, a reciprocal and a melange form (Patnaik et al 1995). In these 
forms, the estimation of the corresponding Lagrange multiplier was mandatory and for this 
purpose a linear, an exponential, an unrestricted and a diagonalized inverse approach were 
developed (Patnaik et al 1995). Rozvany and Zhou formulated the fundamental relations of 
optimal elastic design using a Continuum-based Optimality Criteria (COC) approach for 
freely varying cross-sections and one deflection constraint (Rozvany and Zhou 1991; 
Rozvany and Zhou 1991b). Bendsoe dealt with topology optimization of trusses in the form 
of grid-like continua. More specifically, he investigated various formulations of truss 
topology design, while he considered primarily the minimization of compliance 
(maximization of stiffness) for a given total mass of the structure (Bendsoe and Sigmund 
2001). Xie and Steven, the developers of the Evolutionary Structural Optimization (ESO) 
method, handled the single displacement constraint optimization problem of 2D continuum 
domains but from the viewpoint of plane elasticity only and not from the viewpoint of the 
ground structure approach. They have also developed an ESO variation suitable for 
optimizing truss weight but only when stress constraints are imposed (Xie and Steven 1997). 
Makris and Provatidis proposed an iterative procedure where the optimality criterion 
demanding a uniform virtual strain energy density distribution over the entire structure was 
introduced into their redesign formula as a normalized penalization factor (Makris and 
Provatidis 2002). Extending this work, Makris et al. introduced the concept of a dummy stress 
bound in order to deal with problems where only displacement limitations are imposed 
(Makris et al 2006).  

From the aforementioned literature review, it is evident that the single displacement 
constraint problem is one of the most popular and most investigated structural optimization 
problems. However, there are still some issues open for discussion which actually motivated 
the research presented in the current work. Stated briefly, the present chapter describes a new 
optimization procedure introducing three new features. The first feature is a new redesign 
equation which, although derived rigorously from the Lagrange multipliers method, has the 
advantage of not requiring the estimation of any Lagrange multiplier. The second feature is 
the characterization of the structural members in a more detailed manner both as force-active 
or force-passive and as area-active or area-passive (and not only as active or passive, 
according to the preponderant practice). The third feature is the application of a typical line-
search optimization to the elements diagnosed as force-passive/area-active, so that their 
contribution to the structural weight be minimized and a better design be obtained. The 
proposed optimization procedure was successfully applied for the optimization of both 
determinate and indeterminate skeletal structures. In total, 48 cases were successfully 
analyzed: from the literature, two variations for the 3-bar truss, two variations for the 5-bar, 
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two variations for the 56-bar truss and two variations for the MBB beam were retrieved, while 
newly introduced benchmarking examples were optimized as well (five variations of the 
MBB beam with three different mesh densities each and six variations of the 9-bar truss under 
four load cases each). In order to have a more representative evaluation, all of the investigated 
examples, apart from those for which an analytical solution was available, were also 
optimized using the Sequential Quadratic Programming (SQP) routine found in Matlab 
(routine fmincon). The results of the present research suggest that the aforementioned features 
do play a significant role in the structural layout optimization process and, when embedded in 
an optimization procedure, they form a simple and efficient optimization tool. 
 
5.2. Theoretical approach 
5.2.1. The Optimality Criterion statement 
According to the description of the single displacement constrained optimization problem of a 
2D ground structure (truss), one nodal displacement is considered. The generalization of this 
concept is to consider that, no matter how many displacement constraints are imposed, only 
one is active at the optimum, without knowing a priori the degree of freedom related to the 
aforementioned nodal displacement. The statement of this problem, which is the one studied 
in the present chapter, follows: 
 

minimize ( )∑
=

=
NEL

k
kkk LAW

1
ρ                                            (5.1a) 

such that allowuu ≤  and AA ≤min                                        (5.1b) 
 
where A  is the cross-sectional area, L  is the length, ρ  is the material density, u  is the nodal 
displacement, while the indices k  and allow  denote the −k bar and the allowable value, 
respectively. The total number of bars (elements) in the structure is declared as NEL . The 
imposed constraint on the displacement (1b) suggests that the nodal displacement may not be 
greater than allowu  either in the x  or the y  direction. Furthermore, a constraint with respect to 
the minimum cross-sectional area is imposed so that the formation of a positive definite 
stiffness matrix is ensured. According to the method of Lagrange multipliers, the Lagrangian 
function corresponding to the aforementioned problem, if the constraint for the minimum 
cross-sectional area is dropped, may be stated as: 
 

( ) ( )1
1

NEL

i i i allow
i

A L u uρ λ
=

= + −∑                                           (5.2) 

 
where 1λ  is the Lagrange multiplier for the displacement constraint. From Mechanics, it is 
well-known that a nodal displacement, based on the concept of virtual work, may be 
expressed as:  
 

1

P QNEL
i i

i
i i i

F Fu L
A E=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑                                                      (5.3) 

 
where, in addition to the symbols previously used, E  denotes the modulus of elasticity, P

iF  is 
the member force due to the application of the actual loads, Q

iF  denotes the member force due 
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to an appropriately applied unit virtual load, while i  denotes the structural member under 
consideration. Introducing Eq.(5.3) in Eq.(5.2) yields: 
 

( ) 1
1 1

P QNEL NEL
i i

i i i i allow
i i i i

F FA L L u
A E

ρ λ
= =

⎛ ⎞⎛ ⎞
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∑ ∑                                (5.4) 

 
The partial derivative of Eq.(5.4) with respect to the cross-sectional areas iA  equals to: 
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A E A A A E

ρ λ λ
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂

∇ = − + +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
∑          (5.5a) 

 
However, the terms in the summation are identically zero. For determinate structures, the 
member forces do not depend on the cross-sectional areas thus the partial derivatives are 
equal to zero. For indeterminate structures, Berke has shown that the derivative terms form a 
self-equilibrating internal load system. The virtual work of this system, represented by the 
summation, is zero, by the principle of virtual displacements. Therefore, Eq.(5.5a) becomes: 
 

1 2i

P Q
i i

A i i i
i i

F FL L
A E

ρ λ
⎛ ⎞

∇ = − ⎜ ⎟
⎝ ⎠

                                            (5.5b) 

 
According to the method of Lagrange multipliers, it must hold: 
 

0
iA∇ =                                                              (5.6) 

 
The combination of Eqs.(5.5b, 5.6), after basic manipulations, yields: 
 

1
1 11

P Q
i i

i i i i

F F
A A E

λ
ρ

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                                (5.7) 

 
The coefficient 1λ , being a single quantity, is constant: 
 

const=1λ                                                            (5.8) 
 
Under the assumption that all bars are made of the same material, it holds: 
 

i constρ =                                                            (5.9) 
 
The combination of Eqs(5.7, 5.8, 5.9) yields: 
 

1P Q
i i

i i i

F F const
A A E

⎛ ⎞
=⎜ ⎟

⎝ ⎠
                                                 (5.10) 

 
The left-hand-side of Eq.(5.10) represents the virtual strain energy density of the i -bar of the 
examined truss. According to the last equation, for the design that corresponds to minimum 
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weight under a single displacement constraint, the absolute value of the virtual strain energy 
density is the same over the active part of the optimized structure. This is an optimality 
criterion well-known since the early 70’s and provides a description of the optimal structure 
from an energy-state point of view. However, this criterion does not provide a method for 
reaching this energy state, thus allowing new procedures to be stated. Towards this direction, 
the present chapter proposes a redesign procedure which is of a closed-form character for 
determinate trusses and of a recursive-form character for indeterminate trusses. 
 
5.2.2. Proposed redesign based on the Optimality Criterion statement 

Let a set of NEL  bars with randomly selected cross-sectional areas be used as the initial 
design vector. A Finite Element Analysis (FEA) with the real loads provides both the member 
forces iF  and the displacement field, from which the node with the maximum displacement, 
let it be 

axmuN , may be located. Another (FEA) with a virtual unit load applied to 
axmuN  

provides the member forces Q
iF . With these member forces at hand, it is possible to detect the 

non-zero-force members P Q
i iF F tol> , the tolerance tol  being a small positive number, say 

1E-06. Each one of the these bars has its own virtual strain energy density iw : 
 

1P Q
i i

i
i i i

F Fw
A A E

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                    (5.11) 

 
The corresponding mean value w  of all the iw  values is equal to: 
 

1

activeN

i
i

active

w
w

N
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
                                                      (5.12) 

 
Substituting iw  on the r.h.s. of Eq.(5.11) with the mean value w  yields: 
 

, ,

, ,

1P Q
i new i new

i new i new i

F F
w

A A E
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                 (5.13) 

 
where ,i newA  is the re-designed cross-sectional area of the i − bar. Dividing Eq.(5.11) by 
(Eq.5.13) yields: 

, ,

, ,

1

1

P Q
i i

i i ii
P Q

i new i new

i new i new i

F F
A A Ew

w F F
A A E

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                 (5.14) 

 
However, for a statically determinate truss, the member forces P

iF  and Q
iF  are affected only 

by the structural topology (they are independent from the cross-sectional values).  
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0
P Q

i i

i i

F F
A A

⎛ ⎞ ⎛ ⎞∂ ∂
= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

                                                 (5.15) 

 
Consequently, Eq.(5.14) may be written after basic manipulations as: 
 

2
,

2
i newi

i

Aw
w A

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                       (5.16) 

 
Solving the last equation with respect to the re-designed cross-sectional area of the i − bar 
yields: 
 

,
i

i new i
wA A
w

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                    (5.17) 

 
The proposed redesign formula (Eq.(5.17)) expresses a ‘virtual-strain-energy-density-ratio 

technique’ similar to the famous ‘stress-ratio technique’ used for stress-constrained problems. 
Although it was derived for a determinate truss, it may also be applied in cases of 
indeterminate trusses where the sensitivity of the axial forces to cross-sectional changes is 
low; that is, for cases where equilibrium governs rather than compatibility or for designs that 
are very near-optimum. For other indeterminate trusses, Eq.(5.17) must be used iteratively 
until convergence to a solution is achieved. Even though the design vector newA  with the 
design variables ,i newA  formed with Eq.(5.17) fulfills the demand for uniform distribution of 
virtual strain energy density over the active structural elements, it is not ensured that the 
imposed constraint concerning the maximum allowable displacement is fulfilled as well. For 
this purpose, a uniform scaling of the design vector newA  is required. 
 
5.2.3. Uniform scaling of the design vector 

For a statically determinate structure, the value of the virtual strain energy of the active 
i − bar depends on both the virtual member force Q

iF  and the cross-sectional area iA . 
Therefore, for a structure of constant topology, where the bar lengths iL  are well defined and 
remain unchanged, and assuming that all bars are made of the same material, thus iE  is also 
well defined and constant, it holds: 
 

( ),
P Q

Qi i
i i i

i i

F F L f F A
A E

=                                                 (5.18) 

 
If the application point of the virtual unit load is known, then the virtual member forces Q

iF  
are also known and well defined and Eq.(5.18) reduces to the following form: 
 

( )
P Q

i i
i i

i i

F F L f A
A E

=                                                    (5.19) 
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where the cross-sectional area iA  is the only unknown. Therefore, the virtual strain energy of 
each bar, which is numerically equal to the contribution of each bar to the displacement of the 
application point of the virtual load, can be scaled simply by changing the cross-sectional area 

iA . Furthermore, the combination of Eqs(5.3, 5.19) suggests that if the same scaling is applied 
to all of the cross-sectional areas iA  (uniform scaling) then the displacement of the 
application point of the virtual load is also scaled by the same amount; that is: 
 

scalingbeforescaled uau _=                                                  (5.20) 
 
The constant a  denotes a scaling coefficient while the subscripts adequately describe the 
meaning of the other two terms. If the maximum allowable value for nodal displacement allowu  
is selected as scaledu , then the scaling coefficient a  equals to the ratio of the allowable to the 
appearing nodal displacement u  (for convenience, the subscript before_scaling is dropped): 
 

⎟
⎠
⎞

⎜
⎝
⎛=

u
ua allow                                                         (5.21) 

 
The combination of Eqs.(5.3, 5.20) yields: 
 

1

P QNEL
i i

allow i
i i i

F Fu a L
A E=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑                                              (5.22) 

 
Since the scaling coefficient is constant, Eq.(5.22) may be written as: 
 

1

P QNEL
i i

allow i
ii

i

F Fu L
A E
a

=

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑                                                (5.23) 

 
The comparison of Eq.(5.23) with Eq.(5.3) provides the following re-design formula: 
 

,
,

i old
i new

A
A

a
⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                      (5.24) 

 
where the indices new  and old  denote the new and the old value of the cross-sectional area 
of the i − bar, respectively. Therefore, for the uniform scaling to be applied, the re-designed 
cross-sections with Eq.(5.17) of all active bars must be divided by the scaling coefficient a . 
However, there is still one issue left: the selection of the degree of freedom that the virtual 
load must be applied to. A first thought would be to randomly select a design vector, find the 
degree of freedom corresponding to the maximum displacement and apply a virtual load to it. 
This is not a safe selection because, generally speaking, different initial design vectors 
provide different displacement fields thus different locations of maximum nodal 
displacements. In this way, local minima can be found, which may be adequate for practicing 
engineering problems; however, the global minimum can be located only by chance. 
Nevertheless, for the global optimum design to be obtained without violating the imposed 
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displacement constraint, it is imperative the degree of freedom, that the virtual load must be 
applied to, be appropriately selected. This subject is analyzed in the next section. 
 
5.2.4. Design of Unit Stiffness (Unit Stiffness Design) 

For a statically determinate truss, it is possible to estimate the member forces using the 
method of joints, according to which the value of each member force is related only to the 
externally applied loads and the spatial orientation of the members. On the other hand, the 
same goal may be achieved using the Finite Element Method (FEM), according to which the 
following equation must be solved: 
 

{ } [ ] { }UKF =                                                        (5.25) 
 
where { }F  is the externally applied force vector, [ ]K  is the global stiffness matrix of the 
structure and { }U  is the nodal displacement vector. The [ ]K  matrix is the assembly of the 
element stiffness matrices [ ]jK , where: 
 

[ ]

j

j
j

scsscs
csccsc
scsscs
csccsc

L
EAK

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−
−−

⎟
⎠
⎞

⎜
⎝
⎛=

22

22

22

22

                                 (5.26) 

 
The symbols s  and c , respectively, stand for the sine and the cosine of the orientation angle 
of each −j element (spatial orientation of the −j member). For the two aforementioned 
approaches (method of joints and FEM) to coincide, it is necessary that only the impact of the 
orientation angles be present in the latter approach. This means that the stiffness constants 
( ) jLEA /  must become equal to one, or, equivalently, that each cross-sectional area must be 
equal to: 
 

j
j E

LA ⎟
⎠
⎞

⎜
⎝
⎛=                                                          (5.27) 

 
Let the design with cross-sections as defined in Eq.(5.27) be the ‘Unit Stiffness Design’ or 
USD. As shown in Section 5, the numerical results implied that, for the determinate trusses, 
initiating the proposed optimization procedure from the USD made the global optimum more 
likely to be found, while if a random initial design vector was used then local minima could 
be located instead. Consequently and for the needs of the present investigation, the USD was 
preferred to be the initial design vector for all of the examined cases. 
 
5.2.5. Detecting active and passive elements 

The optimality criterion stated in Eq.(5.10) is based on two assumptions, the former being 
that only one nodal displacement constraint is active at the optimum and the latter being that 
all structural members can affect the displacement field of the structure (active elements). 
However, it is not possible to ensure in advance the validity of these assumptions thus 
appropriate procedures must be developed if one or both of them are violated.  
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The redesign procedure described in Sections 5.2.2 and 5.2.3 is initiated from a design 
vector, let it be iniA . According to Section 5.2.2, if only the force products are considered, 
then all terms with P Q

i iF F tol≤  (force-type criterion), with tol  being an adequately small 
value, have negligible contribution to Eq.(5.3), thus the corresponding i − bars may be 
characterized as passive and since this characterization is based on a force-type criterion the 
term force-passive elements is justified. Equivalently, all i − bars with P Q

i iF F tol>  are force-
active elements. On the other hand, if only the cross-sections are considered, then members 
with a cross-sectional area iA  less than an adequately small value minA  (area-type criterion) 
have negligible contribution to the global stiffness matrix thus the corresponding i − bars may 
be characterized as passive and since this characterization is based on an area -type criterion 
the term area-passive elements is justified. Equivalently, all i − bars with miniA A>  are area-
active elements. Using the aforementioned criteria, if both the force products and the cross-
sections are considered, a member may be: 
• force-active and area-active: such members participate in the redesign procedure 

described in sections 5.2.2 and 5.2.3 
• force-active and area-passive: such members participate in the redesign procedure, from 

which they obtain a cross-sectional area dA  smaller than minA ; however, due to the 
imposed lower bound minA , it then becomes mindA A= , which is acceptable since a larger 
than the necessary cross-section is attributed to the structural member 

• force-passive and area-active: this interesting case is discussed in the next paragraph 
• force-passive and area-passive: such members do not participate in the redesign 

procedure and the minimum cross-sectional area minA  is attributed to them 
The force-passive/area-active members actpass−A  have the following characteristics: 
C1) For the current iteration step, they cannot participate in the redesign procedure of 

Sections 5.2.2 and 5.2.3 (the numerator in Eq.(5.17) tends to zero), so they keep their 
cross-sectional value from the previous iteration step. 

C2) They have a cross-sectional area larger than the minimum value minA , therefore if minA  
is attributed to them the imposed displacement constraint will be violated. However, 
without loss of generality, it is possible to further reduce their cross-sectional value by 
using a line search scheme, such as the binary search (the reduction procedure may be 
continued as long as the imposed displacement constraint is not violated). 
Consequently, an optimization sub-problem is formulated. 

According to (C2) above, the new optimization problem formulated is as follows: 
 

Minimize actpass−A                                                  (5.28a) 
with minpass act A− >A                                                 (5.28b) 

such that allowUu =max                                             (5.28c) 
 
If _pass actN  is the number of force-passive/area-active elements, then the solution space of the 

aforementioned optimization problem described in Eqs.(5.28a-5.28c) is the _pass actNR set. 
Generally speaking, a line search is described as 1i iX X a d+ = +

rr r
, where X

r
 denotes the 

design vector, d
r

 represents the search direction, a  stands for the scalar step size and i  is the 
current iteration. If _ 1pass actN =  then the solution space is the −R set, the entire line search 
problem is scalar and a simple search along the line of the real positive numbers is adequate 



D.T. Venetsanos ‐ PhD thesis ‐ 2010 

P a g e  | 5.11 

to provide the optimum solution. However, if _ 1pass actN >  then the optimum solution lies in a 
vector space and there are two choices:  
1) Implement a Mathematical Programming (MP) method for solving the problem described 

in Eqs.(5.28a-5.28c). In this case, the initial optimization problem is divided into two 
parts, the first being solved with the proposed procedure and the second being handled by 
one of the many MP methods available in the literature. The advantages of this hybrid 
optimization scheme is that a final solution is indeed provided, while the computational 
time is generally less than that required when using the selected MP method for solving 
the entire problem (for the entire problem, the number of the design variables is NEL  
while for the problem in Eq.(5.28) there are only _pass actN NEL<<  unknowns).  

2) Perform a line search with constant search direction, that is a sort of uniform scaling 
applied to the force-passive/area-active elements, for solving the problem described in 
Eqs.(5.28a-5.28c). This approach is a compromise between using the design vector 
derived from the proposed procedure and using a MP method for solving the problem in 
Eqs.(5.28a-5.28c).  

Based on the line of thoughts expressed in (1) and (2) above, it is a good choice to append to 
the proposed procedure an extra step of low computational cost in order to get an improved 
but only near optimum design if it is detected that the weight minimization problem at hand is 
non-singular displacement constrained. The use of a constant search direction is explained 
more analytically in the next Section. 
 
5.2.6. Line search with a constant search direction 

In a typical line search, noted as 1i iX X a d+ = +
rr r

, the scalar step size a  and the search 

direction d
r

 are continuously updated until convergence is achieved. If the search direction d
r

 
is kept constant, then the −R set becomes the solution space (1D optimization problem), 
which is nothing else but a uniform scaling of the corresponding design variables X

r
. For the 

problem at hand, the ultimate goal is to find such a step size a  that reduces the vector 
actpass−A  without violating the imposed displacement constraint. To this end, any line search 

techniques can be used. In the present section the binary search was selected and the 
following procedure is proposed: 
Step 1: Set the lower bound as min,, AA jLowerBoundactpass =− , where j  counts all the force-

passive/area-active elements 
Step 2: Set the initial design vector as pass act−A  
Step 3: while convergence is not achieved and the maximum number of iterations has not 

been exceeded 
Step 3a: set ( ), ,0.5new pass act pass act LowerBound pass act− − −= +A A A  

Step 3b: calculate the 1-norm condition number of the global stiffness matrix ( )globcond K  
Step 3c: If ( ) [ ]UBLBcond glob ,∈K  then 

carry out a Finite Element Analysis (FEA) 
if allowUu >max  then  , ,pass act LowerBound new pass act− −=A A   

else ,pass act new pass act− −=A A  
Step 3d: increase the iteration counter 
Convergence is considered to have been achieved if 1_, tolactpassactpassnew ≤− −− AA , where 

1_tol  is a small positive number, say 1 06E − . The lower and upper bounds for the 1-norm 
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condition number of the global stiffness matrix are a small and a large quantity, respectively, 
say 31 −= eLB  and 201eUB = . The limitation of the condition number of the global stiffness 
matrix ensures that the inverse of this matrix can be obtained thus a Finite Element Analysis, 
required for checking the maximum nodal displacement, can be carried out. Otherwise, an ill-
conditioned matrix is formed and the entire procedure stalls. As in all iterative schemes, a 
counter is used to stop the procedure if a maximum number of iterations is exceeded. 
 
5.2.7.  Special case of a single load  

There is a special case when a single load is applied to the structure and, at the optimum, 
the maximum displacement appears at the load application point and along the direction of the 
applied load. In more details, if there is only one external point load P , then, from 
Castigliano’s second theorem (Appendix 5.A), it holds: 
 

1

NEL
i i i

i i i

c b Lu P
A E=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑                                                     (5.29) 

 
where ic  represents the weighted contribution of the real load P  to the axial force carried by 
the i − bar and ib  expresses the weighted contribution of the virtual unit load to the virtual 
axial force carried by the i − bar. If a virtual unit load is applied to the application point of 
load P , then, due to linearity, it holds: 

i
i

cb
P

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                           (5.30) 

 
The combination of the last two equations yields: 
 

2

1

NEL
i i

i i i

c Lu
A E=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑                                                       (5.31) 

 
Eq.(5.31) suggests that each i − bar with 0ic ≠  contributes increasingly to the displacement 
of the load application point. On the contrary, all bars with 0ic =  have a zero contribution. 
Obviously, this is a very convenient situation because one does not have to worry about 
members with 0i ic b <  simply because there are no such members. Therefore, cases with a 
single load, where the maximum displacement at the optimum appears at the load application 
point, consist a special (convenient) class of problems that can ‘hide’ possible inefficiencies 
of an optimization procedure under evaluation since the thorn of members with 0i ic b <  is 
eliminated. Consequently, a ‘fair-play’ evaluation of a new optimization procedure should 
also include examples not falling in the aforementioned class of problems. 
 
5.2.8. Sensitivity analysis 

For a given topology and loading and under the assumption that all members are made of 
the same material, it holds (for the symbols used in Eq.(5.31)): 
 

ilc const=    iL const=    iE const=    constPl =                           (5.32) 
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The quantities ib  depend on the application point of the virtual load, or, equivalently, on the 
position of the node for which the displacement is sought. Without loss of generality, it holds: 
 

( ),i iu f b A=                                                        (5.33) 
 
From Eq.(5.17) it is obvious that the nodal displacement u  is a continuous function in cross-
sectional areas and a discontinuous (discrete) function on the application points of the virtual 
load, since these points are discrete and depend on the topology of the truss. Therefore, for the 
location of an extremum in nodal displacement with respect to the continuous variables iA , it 
must hold: 
 

0
i

u
A
∂

=
∂

                                                           (5.34) 

 
or, equivalently, after basic manipulations of Eq.(5.29): 
 

2
1

0
m

i i
il l

li i i

u b L c P
A A E =

⎛ ⎞∂
= − =⎜ ⎟∂ ⎝ ⎠

∑                                             (5.35) 

 

It is obvious that Eq.(5.34) is true for any value of iA  if 0ib =  or 
1

0
m

il l
l

c P
=

=∑ ; that is when the 

contribution of the virtual load to the i − bar is zero or when the member force of the i − bar is 
zero.  
 
5.3. Numerical approach 
5.3.1. The proposed procedure 

The proposed procedure, that minimizes the weight of a 2D skeletal structure under a 
single displacement constraint, is as follows: 
Step 1: Estimate the Unit Stiffness Initial Design (U.S.I.D.) for the structure under 

examination. 
Step 2: Carry out a Finite Element Analysis (FEA) using the real loads. 
Step 3: Based on the results of Step 2, find the maximum nodal displacement uumax,  and 

trace the elements with iF tol>  (temporarily active elements). 
Step 4: Perform a uniform scaling of the temporarily active elements with a scaling 

coefficient ( )uallow uU max,/  and attribute the minimum cross-sectional value minA  to 
the other elements. 

Step 5: Apply Steps 6-14 iteratively until converge is achieved or the maximum iteration 
number is exceeded. 

Step 6: Carry out a (FEA) using a virtual unit load applied to the degree of freedom 
corresponding to the displacement uumax, . 

Step 7: Categorize the structural elements using the force-criterion and the area-criterion 
(Section 5.2.5) into force-active/area-active, force-active/area-passive, force-
passive/area-active and force-passive/area-passive. 

Step 8: For the force-active/area-active elements, apply the redesign procedure described 
in Section 5.2.2; that is: 
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Step 8a: For each such element, calculate the virtual strain energy density iw  using 
Eq.(5.11). 

Step 8b: For all such elements, estimate the mean value w  using Eq.(5.12). 
Step 8c: For each such element, redesign the cross-sectional areas using Eq.(5.17). 
Step 8d: Carry out a FEA and estimate the maximum nodal displacement. 
Step 8e: Perform a Uniform Scaling using Eqs.(5.21, 5.24) 
Step 9: For the force-passive/area-active elements, apply the redesign procedure 

described in Section 5.2.3; that is: 
Step 9a: For all such elements, test whether the lower bound minA  for the design variables 

may be attributed; if not proceed with Step 9b 
Step 9b: Using a binary search in combination with a FEA, find the shrinking factor that 

may be applied to the force-passive/area-active elements without causing any 
displacement violations  

Step 10: For the force-active/area-passive and the force-passive/area-passive elements, 
attribute the lower bound for the design variables 

Step 11: If a new cross-sectional area ,i newA  derived from Steps 9-10 is less than minA  then 
set , mini newA A=  

Step 14: Return to Step 6 unless convergence with respect to both the structural weight and 
the maximum change in any design variable has been achieved (see next Section 
5.3.2); if the maximum number of iterations has been exceeded, terminate the 
procedure with a corresponding message 

Step 15: Present results in a report form 
 
5.3.2. Convergence criteria 

Following Rozvany, for the convergence of the proposed optimization procedure two 
criteria were introduced. According to the first criterion, convergence is considered to have 
been achieved if the change in the total structural weight is less than a predefined tolerance 

1Ctol : 
 

1
new old

C
old

W W
tol

W
−

≤                                                   (5.36) 

 
According to the second criterion, convergence is considered to have been achieved if the 
maximum change in any of the design variables is less than a predefined tolerance 2Ctol : 
 

, ,
2

,

max i new i old
C

i old

A A
tol

A

⎧ ⎫−⎪ ⎪ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

                                           (5.37) 

 
Generally speaking, if a relatively high tolerance value is chosen then the iterative procedure 
is terminated quite soon thus not allowing for any convergence difficulties to be revealed. In 
order to avoid such a situation, in the present chapter it was set 1 2 1 15tol tol E= = − , unless 
differently stated. This is a very low tolerance value which guarantees that a normal 
termination of the optimization procedure corresponds to a true convergence.  
 



D.T. Venetsanos ‐ PhD thesis ‐ 2010 

P a g e  | 5.15 

5.3.3. Evaluation of results 

In order to evaluate the proposed procedure, an extended set of examples was investigated, 
each one of which was handled as follows: 
Step E1: Data retrieval from the literature. If an optimum design vector was available, its 

validity was tested by carrying out a FE analysis and by checking whether any 
displacement violations occurred. 

Step E2: Solution of the optimization problem using the Matlab SQP optimization routine 
(fmincon), initiating the procedure from 100 different and random design vectors 
and for each successful run recording the number of iterations, the number of 
objective function evaluations (thus equal number of FE analyses), the minimum 
structural weight and the optimum design vector. However, this step was skipped 
for those case studies where an exact analytical solution was available. 

Step E3: Solution of the optimization problem using the proposed optimization procedure, 
initiating the procedure from a design vector corresponding the Unit Stiffness 
Design and recording the number of iterations, the number of FE analyses, the 
minimum structural weight and the optimum design vector. Furthermore, the 
convergence history with respect to the convergence criteria described in 
Section5.3.2 was recorded and plotted in a semi-log diagram. 

Step E4: Solution of the optimization problem using the proposed optimization procedure, 
initiating the procedure from 100 different and random design vectors (not 
corresponding to the Unit Stiffness Design) and recording the number of 
iterations, the number of FE analyses, the minimum structural weight and the 
optimum design vector. 

At this point, it is clarified that the set of 100 runs mentioned in Step E2 aimed at 
increasing the probability of locating the global optimum design, while the set of 100 runs 
mentioned in Step E4 aimed at investigating the influence of the initial design vector on 
tracing the optimum.  
 
5.4. Examples 

For the evaluation of the proposed optimization procedure, various examples, both from 
the literature and newly introduced in the present chapter, were investigated. The examples 
were divided into two large groups. In the first group, four different indeterminate trusses, 
some of them with variations, were optimized, namely the 3-bar truss (three variations), the 5-
bar truss, the 56-bar truss (two variations) and a typical ground structure for the MBB beam 
(two different mesh densities); that is a subtotal of eight cases. In the second group, three 
different determinate trusses, some of them with variations, were optimized, namely the 5-bar 
truss, the MBB beam (five variations with three mesh densities each) and the 9-bar truss (six 
variations under four different load cases each); that is a subtotal of 40 cases.  

At this point, it is clarified that the five determinate aforementioned variations for the 
MMB beam are the well-known Pratt, Howe, Warren, Baltimore and K-truss designs (Beer 
and Johnston, 1988). In accordance to the ‘fair-play’ suggestion of Section 5.2.7, the 9-bar 
truss was created based on the well-known 10-bar truss.  

Taking into consideration all of the topological and loading variations, a grand total of 48 
cases was investigated, while all the results were properly arranged in Tables and Figures. 
 
5.4.1. Indeterminate truss topologies 

5.4.1.1. Case study: 3-bar truss (case Bar3_A) 
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This example was retrieved from (Morris, 1982). The truss consists of three bars having 
the topology shown in Fig.5.1a. It is assumed that all bars are made of the same material 
having Young’s modulus equal to 1 7E e psi=  and weight density equal to 30.1 /lb inρ = . 
Only node 4 is externally loaded with a vertical load component yP  and a horizontal load 
component xP  equal to 10000lbs  each, while the nodal displacement must not be greater than 
0.005in , along either the horizontal or the vertical direction. The lower bound for the cross-
sectional area was set equal to 2

min 0.1A in= . 
 

 
(a) (b) 

Figure 5.1: Topology for the case of (a) Bar3_A and (b) Bar3_B 

 
5.4.1.2. Case study: 3-bar truss (case Bar3_B) 

Another 3-bar indeterminate truss is found in (Rozvany and Zhou, 1991). The truss 
consists of three bars having the topology shown in Fig.5.1a. It is assumed that all bars are 
made of the same material having Young’s modulus equal to E  and weight density equal to 
ρ . Node 4 is externally loaded only with a vertical load component yP , while the vertical 
nodal displacement is constrained. For this problem, a non-dimensional approach is adopted 
(Rozvany and Zhou, 1991), according to which each design variable is denoted as: 
 

i allow
i

y y

z E Uz
P L

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

%                                                     (5.38) 

 
while the non-dimensional notation for the minimum weight is: 
 

2
s allow

s
y y

E U
P L

⎛ ⎞Φ
Φ = ⎜ ⎟⎜ ⎟

⎝ ⎠

%
%                                                   (5.39) 

 
In Eqs.(5.38, 5.39), additionally to the symbols used earlier in the text, allowU  is the imposed 
displacement constraint and yL  is the length of the middle bar. There are two variations for 
this problem, the former letting the design variables unconstrained and the latter imposing to 
them a lower non-dimensional bound equal to 0.06az =% . For both variations, apart from the 
numerical approximation of the optimal design, there exists an exact analytical estimation as 
well.  
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5.4.1.3. Case study: 5-bar truss (case Bar5_A) 
This problem is found in (Patnaik et al, 1995, Patnaik et al, 1998) in many variations. 

According to one of the indeterminate variations, the topology is the one shown in Fig.5.2a, 
only node 4 is externally loaded with a vertical load component 100yP kips= , while the 
vertical displacement along the y − direction must be at most equal to 2.0in . Since it is not 
referred in (Patnaik et al, 1995, Patnaik et al, 1998) whether a lower bound for the cross-
sectional areas exists, a challenging very low bound was set ( 2

min 1 12A e in= − ). It is also 
noted that a Young’s modulus equal to 10000E ksi=  and a weight density equal to 

30.1 /lb inρ =  were attributed to all bars. 
 

  
(a) (b) 

Figure 5.2: Topology of the 5-bar truss: (a) indeterminate and (b) determinate variation 
 
5.4.1.4. Case study: 56-bar truss (case Bar56) 

The parametric formulation of this optimization problem, along with its analytical solution, 
is found in (Rozvany and Zhou, 1991). 
 

 

(a) (b) 

Figure 5.3: (a) 56-bar truss (thick lines: remaining members, dashed lines: vanishing 
members) and (b) variation using a structural universe with 276 bars (thick lines: remaining 

members, thin lines: vanishing members) 
 
The main objective is to minimize the weight of a 56-bar structure such that a transverse load 
is transmitted to the given rigid foundation without violating the imposed displacement 
constraint. The initial topology of the truss and the exact optimal layout are presented in 
Fig.5.3a. A variation of this problem found in (Rozvany, 1992) concerns the implementation 
of a structural universe with 114 members, which results from the same grid of ( )3 8×  nodes 
as the one shown in Fig.5.3a. Instead of optimizing this case, as more challenging, the 
structural universe with 276 bars shown in Fig.5.3b was selected. This variation is presented 
in Section 5.1.4. 

A B 

C D 

E 



D.T. Venetsanos ‐ PhD thesis ‐ 2010 

P a g e  | 5.18 

5.4.1.5. Case study: The MBB beam 
The formulation of the weight minimization of the MBB beam can be found in (Nha Chu  

et al, 1997) and is illustrated in Fig.5.4a. The length L  and the height H  of the simply 
supported beam are mm2400  and mm400 , respectively. The beam is assumed to be made of 
a material with a Young’s modulus GPaE 200=  while the externally applied point load is 

kN20  acting at the middle of the top edge. The maximum allowable displacement is mm4.9 .  
 

(a) (b) 

Figure 5.4: (a) Design domain and (b) typical indeterminate design for the MBB beam 
 
An indeterminate ground structure for the domain of Fig.5.4a is shown in Fig.5.4b, where the 
ratio of the length of any vertical element over the length of any horizontal element is equal to 
one. The selection of this aspect ratio was based on (Provatidis and Venetsanos, 2003), 
according to which the discretization of the MBB domain, with ground structures of unit 
aspect ratio, leads to layouts of minimum weight. 
 
5.4.2. Determinate truss topologies 

5.4.2.1. Case study: 5-bar truss 

The determinate variation of this problem is found in (Patnaik et al, 1995), according to 
which only node 4 is externally loaded with a vertical load component 100yP kips= , while 
the vertical displacement along the y − direction must be at most equal to 2.0in . As far as the 
support is concerned, it is referred in (Patnaik et al, 1995) that node 3 obtains a roller 
restraining the horizontal displacement and node 2 is loaded with 100yP kips= . However, 
such a configuration results in optimal designs significantly different than those described in 
(Patnaik et al, 1995) (the application of the Matlab routine fmincon converges to a minimum 
weight equal to approximately 80lb  while according to (Patnaik et al, 1995), the optimum 
weight is approximately 45lb ). Nevertheless, if the load is applied to node 4 and not to node 
2 then weights similar to those found in (Patnaik et al, 1995) are obtained. Therefore, the 
second variation of the 5-bar truss examined in the present section is the one illustrated in 
Fig.5.2b. Since it is not referred in (Patnaik et al, 1995) whether a lower bound for the cross-
sectional areas exists, a challenging very low bound was set ( 2

min 1 12A e in= − ). It is also 
noted that, for both variations, the same material properties (Young’s modulus equal to 

10000E ksi=  and weight density equal to 30.1 /lb inρ = ) were attributed to all bars. 
 
5.4.2.2. Case study: The MBB beam 

In this case, the examined design domain was discretized using five typical determinate 
designs, namely the Baltimore, the Howe, the K-truss, the Pratt and the Warren design (Beer 
and Johnston, 1988), as shown in Fig.5.5b-5.5f.  
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(a) Design domain (b) Baltimore design 

(c) Howe design (d) K-truss design 

(e) Pratt design (f) Warren design 

Figure 5.5: Design domain and typical determinate truss designs for the MBB beam 
 

For each design, three different mesh densities, thus different number of elements and 
number of nodes, were used (Table 5.1). Apart from the discretization, all the other data 
concerning the problem formulation is the same with that of Section 4.1.5.  
 
Table 5.1: Data for the determinate designs of the MBB beam 

Baltimore Howe K-truss Pratt Warren
Elements 29 13 17 13 11
Nodes 16 8 10 8 7
Elements 45 21 29 21 19
Nodes 24 12 16 12 11
Elements 61 29 41 29 27
Nodes 32 16 22 16 15

#3

#1

#2

D E S I G N
Variation

 
 
5.4.2.3. Variations of the 9-bar determinate truss 

The 9-bar determinate truss is derived from the 10-bar truss (Fig.5.8a), where one hinge is 
replaced by a roller and one bar is removed (Fig.5.8b). This structure may be considered as a 
ground structure of a 2D cantilever domain.  

PP
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(a) (b) 

Figure 5.6: (a) Original description and (b) a determinate variation of the 10-bar truss 
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Ten bars taken in sets of nine give ten different trusses, as described in Table 5.2, where the 
original topology of the 10-bar truss (Fig.5.8a) has been used as a reference for numbering the 
bars. Four out of the ten aforementioned topologies are not rigid thus they give either an ill-
conditioned (Table 5.2, designs 9f and 9g) or a singular stiffness matrix (Table 5.2, designs 9i 
and 9j). Consequently, these designs were not examined. 
 
Table 5.2: Possible topologies of the 9-bar truss (reference: Fig.5.8a) 

Design

9a 1 2 3 4 5 6 7 8 9
9b 1 2 3 4 5 6 7 8 10
9c 1 2 3 4 5 6 7 9 10
9d 1 2 3 4 5 6 8 9 10
9e 1 2 3 4 5 7 8 9 10
9f 1 2 3 4 6 7 8 9 10
9g 1 2 3 5 6 7 8 9 10
9h 1 2 4 5 6 7 8 9 10
9i 1 3 4 5 6 7 8 9 10
9j 2 3 4 5 6 7 8 9 10

Remaining elements x i , i=1,2,…,9

 

In the present section, the four load cases described in Table 5.3 were examined.  

 
Table 5.3: Loads in kips used for the 9-bar determinate truss 

#1 #2 #3 #4
F2,y -100 -100 0 -150
F3,y -100 0 -100 -150
F5,y 0 0 0 50
F6,y 0 0 0 50

Load casesForce 
component

 
 
5.5. Results 
5.5.1. Indeterminate trusses 

5.5.1.1. Case study: 3-bar truss (case Bar3_A) 

The convergence history of the proposed optimization procedure is shown in Fig.5.9. The 
cost function (structural weight) is normalized with respect to the maximum cost function 
value and the convergence history of this normalized quantity is illustrated in Fig.5.9a.  
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Figure 5.7: Convergence history for the case Bar3_A with respect to (a) the normalized cost 
function ( 1 6tol E= − ) and (b) the relative errors ( 1 16tol E= − ) 
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From this figure, as the part of the plot after the change of scale suggests, after 10 iterations, 
an accuracy of the normalized cost function of four significant digits is achieved. For a 
termination tolerance on the function value equal to 1 6E − , 15 iterations are required for the 
optimum design to be found. Furthermore, the convergence history of the criteria mentioned 
in Section 5.2 are shown in Fig.9b, for 1 2 1 16tol tol E= = −  as defined in Eqs.(5.36, 5.37). 
From this figure, it is clear that within the first ten iterations, the proposed procedure achieves 
a relative error of 0.01%  between two successive optimal designs. Furthermore, for the next 
iterations, the relative error drops almost in the same rate, as the slope in the corresponding 
semi-log plot suggests, while a total of less than 50 iterations were required for a relative error 
of 1 16%E − , with respect to the structural weight, to be achieved.  

In (Morris, 1982) and from the tables presenting results per iteration for the specific 
problem, it can be found that, among various recursive equations for the cross-sectional 
redesign and the Lagrange multiplier estimation, the best converging performance requires 
five iterations but corresponds to an accuracy of 1 1E −  with respect to the structural weight. 
For such an accuracy, the proposed optimization procedure converges after three iterations 
only and provides the optimal design presented in Table 5.4 and in the column ‘Convergence 
accuracy similar to Reference’. This design is 0.1533%  heavier than the one referred in 
(Schmit, 1960) and it causes a per cent relative constraint violation of less than 2.2 3E − , 
while the design in (Morris, 1982) causes a per cent relative constraint violation of 2.6 2E −  
(that is of one order higher). 

Data corresponding to optimal designs are presented in Table 5.4. More particularly, in this 
Table, the values for the cross-sectional areas and for the minimum structural weight, shown 
in the column ‘Reference’ were retrieved from (Morris, 1982) with the appearing number of 
significant digits. The nodal displacements shown in italics were obtained from a FE analysis 
using the cross-sectional areas from the specific reference. For these areas, the imposed 
displacement constraint is violated by 0.026%, which is considered as negligible. 
Furthermore, with these areas the minimum structural weight is 113.6498lbs , which, when 
truncated upwards gives 113.7lbs ; that is, the value in (Morris, 1982). Consequently, this 
literature reference is reliable and can be used as a basis for comparison. The column ‘SQP’ 
corresponds to the optimal solution found with the SQP routine embedded in Matlab (routine 
fmincon). The next four columns correspond to results obtained using the proposed 
optimization procedure and for various situations, as the column titles describe.  
 
Table 5.4: Optimum design for the 3-bar truss (case: Bar3_A) 

Unit Stiffness 
Design 

(accuracy:1E‐15)

Random Initial 
Design 

(accuracy:1E‐15)

Convergence 
accuracy similar to 

'Reference'

Convergence 
accuracy similar to 

'SQP'

x1 [in
2] 15.07 1.50739210E+01 1.50739218E+01 1.80509258E+01 1.52563007E+01 1.50739148E+01

x2 [in
2] 0.1 1.00000000E‐01 1.00000000E‐01 3.41640786E+00 1.00000000E‐01 1.00000000E‐01

x3 [in
2] 0.9318 9.31786600E‐01 9.31786205E‐01 3.90879015E+00 7.77238782E‐01 9.31793251E‐01

U4x [in] 5.0013E‐03 5.00000014E‐03 5.00000001E‐03 5.00000000E‐03 5.00010978E‐03 4.99999999E‐03

U4y  [in] ‐4.3423E‐03 ‐4.34112802E‐03 ‐4.34112766E‐03 ‐2.23606798E‐03 ‐4.23037756E‐03 ‐4.34113197E‐03

min W [lbs] 113.7 113.67744382 113.67744668 172.36067977 113.87424499 113.67744718

Reference SQP

Present paper

 
 
With respect to the SQP procedure and in order to get a representative behavior, the fmincon 
routine was initiated from 100 random and different initial design vectors. Using a 
termination tolerance on the function value equal to 1 6E − and a termination tolerance on the 
constraint violation equal to 1 6E − , the fmincon routine converged in all cases to the same 
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design (column ‘SQP’ in Table 4). Depending on the initial design vector, it required from 8 
to 18 iterations (45 to 95 evaluations of the objective function thus equal number of FE 
analyses) until convergence was achieved. For a relative error, as defined in Eq.(5.36) and 
Eq.(5.37), equal to 1 6E − , the proposed procedure converged after 15 iterations (32 FE 
analyses) to a design agreeing with the SQP best design in 8 significant digits (Table 5.4, 
column ‘Convergence accuracy similar to SQP’). 

With respect to the selection of the initial design vector, the comparison between the 
columns ‘Unit Stiffness Design’ (USD) and ‘Random Initial Design’ (RID) in Table 5.4 
suggests that a vector corresponding to the former design should be used; otherwise, most 
probably a local minimum will be reached. To check the validity of this statement, the 
proposed procedure was initiated from 100 random and different design vectors, none of 
which corresponded to the (USD). In all cases, the procedure converged, after a different 
number of iterations, to the same design vector (the one presented in Table 4 in the column 
‘Random Initial Design’). Furthermore, if one estimates the virtual strain energy density 
(VSED) distribution for the USD-optimum design and the RID-optimum design, respectively, 
it will yield that in both cases a uniform distribution over the active structural part has been 
achieved (for the USD case, the mean value of (VSED) is 4.67e 6−  and the corresponding % 
Coefficient of Variation is 9.94e-4 , while for the RID case it is 3.63e 6 −  and 4.35e 4− , 
respectively). However, there is a difference concerning the active structural part. For the 
RID-optimum design, all of the structural elements have a non-minimum cross-sectional area, 
in opposition to the USD-optimum design where the cross-sectional area of one structural 
element is equal to the imposed lower bound. This difference is due to the fact that if an 
external load vector is applied to a USD structure then the structural response is entirely 
governed by the topology of the structure (insensitivity to the element size). It is in such a 
case that the element participation in the structural response should be determined as active or 
passive. Otherwise, the route of the optimization procedure may deviate, being affected 
significantly by the structural sensitivity to the element size, and may lead to suboptimal 
solutions. 
 
5.5.1.2. Case study: 3-bar truss (case Bar3_B) 

The results obtained using the proposed optimization procedure are presented in Table 5.5. 
It is clarified that for both cases (without and with lower bounds), it was set 

1 2 1 12tol tol E= = −  as defined in Eqs.(5.36, 5.37), while for the former case it was also set 

,min 2.0 15iz E= −% .  
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Figure 5.8: Convergence history for the case Bar3_B (with lower bounds) with respect to (a) 
the normalized cost function and (b) the relative errors 
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Furthermore, for the aforementioned tolerance adjustments, the proposed optimization 
procedure required 14 and 30 iterations for the cases with and without lower bounds, 
respectively, until convergence was achieved. However, for 1 2 1 6tol tol E= = − , which is still 
a very strict tolerance, it required 9 and 20 iterations, respectively. In (Rozvany amd Zhou, 
1991), it is not explicitly stated how many iterations were required for convergence; a relative 
plot shows tendency to convergence after 6 and 9 iterations, respectively. Concerning the 
convergence history, it is obvious that a smooth convergence is achieved for the case when 
lower bounds are imposed on the design variables (Fig.5.10), both with respect to the 
normalized cost function and the relative errors (as in the previous example, the cost function 
is normalized with respect to the maximum cost function value obtained during the 
optimization procedure). In more details, from Fig.5.10a, seven iterations are enough for an 
accuracy of the normalized cost function of four significant digits to be achieved, as the part 
of the plot after the change of scale suggests. Furthermore, from Fig.5.10b, it is clear that the 
relative errors follow approximately the same descending path. 
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Figure 5.9: Convergence history for the case Bar3_B (without lower bounds) with respect to 
(a) the normalized cost function and (b) the relative errors 

 
With respect to the case where the design variables are left unconstrained, the normalized 

cost function (Fig.5.11a) presents a smooth convergence, while an accuracy of four 
significant digits is achieved after 15 iterations. Furthermore, the relative error with respect to 
the structural weight presents an approximately constant rate as the semi-log plot in Fig.5.11b 
suggests. On the contrary, the relative error of the maximum changes in the design variables 
(Fig.5.11b) does not vary significantly during the largest part of the optimization procedure 
but it suddenly drops to the converging tolerance value. The same behavior, thus not shown, 
is recorded for 1 2 1 12tol tol E= = − . Results for the specific case are presented in Table 5.5.  
 
Table 5.5: Optimum design for the 3-bar truss (case: Bar3_B with two variations) 

No lower bound
With lower 
bound

Unit Stiffness Design 
(no lower bound)

Random Initial Design 
(no lower bound)

Unit Stiffness Design 
(with lower bound)

Random Initial Design 
(with lower bound)

z1  0.00 0.06 1.00000000E‐13 1.00000000E‐13 6.00000000E‐02 1.32936075E+00

z2 1.00 1.00 1.00000000E+00 1.00000000E+00 9.57573593E‐01 6.00000000E‐02

z3 0.00 0.06 1.00000000E‐13 1.00000000E‐13 6.00000000E‐02 1.32936076E+00

U4x 0.00 0.00 0.00000000E+00 0.00000000E+00 0.00000000E+00 4.38556657E‐09

U4y ‐1.00 ‐1.00 ‐1.00000000E+00 ‐1.00000000E+00 ‐9.999999999998E‐01 ‐9.999999953548E‐01

min W 1.0000000 1.1272792 1.0000000000003 1.0000000000003 1.127279221 3.820000019

Normalized 
variables

Present paperReference
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As easily seen, for the case with no lower bounds, the proposed optimization procedure 
does find the global minimum when the initial design vector corresponds to the USD 
(agreement with the exact solution of 13 significant digits). Furthermore, experimentation 
with 100 random and different initial design vectors did not result in any other but the global 
optimum solution. For the case where a lower bound for the design variables exists, the global 
minimum was also found in an agreement of 8 significant digits, when the proposed 
optimization procedure was initiated from a design vector corresponding to the USD. 
However, experimentation with random initial vectors revealed that it is possible to get 
trapped to a significantly suboptimal design, more than 3 times heavier than the optimal one 
(last column in Table 5.5). It is noted that, for the specific case study, the SQP approach was 
not applied since an exact analytical optimal solution was available in the literature. 
 
5.5.1.3. Case study: 5-bar truss indeterminate variation Bar5_var1) 

With respect to the evaluation of the literature data, the optimum design referred in 
(Patnaik et al, 1995) was used for a FE analysis, which showed that the displacement 
constraint is violated by 0.439% . This is considered to be a rather non-negligible violation 
thus the corresponding design vector may be accepted with reservation as an optimum one. 
With respect to the application of the Matlab routine, 100 analyses initiating from different 
design vectors converged to the same optimum design vector (the one described in Table 5.6, 
column ‘SQP’), requiring from 10 to 20 iterations (83 to 202 evaluations of the objective 
function thus equal number of FE analyses). For the optimization with the Matlab routine, the 
termination tolerance on the function value was set equal to 1 6E − and the termination 
tolerance on the constraint violation was set equal to 1 6E − . Based on these results, it is 
considered that the aforementioned optimum found with SQP is the global one.  
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Figure 5.10: Convergence history for the 5-bar indeterminate truss with respect to (a) the 
normalized cost function and (b) the relative errors  

 
With respect to the application of the proposed optimization procedure, initiating from the 

vector corresponding to the Unit Stiffness Design a convergence was achieved after 53 
iterations. It is noted that for this case, the tolerances defined in Eqs.(5.36, 5.37) were set 
equal to 1 2 1 12tol tol E= = − , while different tolerance values affect significantly the 
convergence behavior (e.g. for 1 2 1 6tol tol E= = − , 32 iterations (64 FE analyses) are 
required). The convergence history for 1 2 1 12tol tol E= = −  is illustrated in Fig.5.12, from 
which it is seen that the convergence with respect to either the normalized cost function or the 
relative error of the structural weight is smooth. On the contrary, convergence with respect to 
the maximum change in the design variables is achieved in an abrupt way. The optimum 
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design vector obtained with the proposed procedure (Table 5.6, column ‘USD’) results in a 
structural weight which differs from the one obtained with the Matlab routine (Table 6, 
column ‘SQP’) in the tenth decimal digit. Finally, extended experimentation on initiating the 
proposed optimization procedure from a random design vector (100 runs) did not give other 
than the aforementioned optimum design (last column in Table 5.6). 

 
Table 5.6: Optimum design for the 5-bar indeterminate truss 

Unit Stiffness Design 
(accuracy:1E‐12)

Random Initial Design 
(accuracy:1E‐12)

x1 [in
2] 0.001 9.999999995186E‐13 1.000000000000E‐12 1.000000000000E‐12

x2 [in
2] 1.475 1.500000008427E+00 1.499999999999E+00 1.499999999999E+00

x3 [in
2] 0.001 9.999999990372E‐13 1.000000000000E‐12 1.000000000000E‐12

x4 [in
2] 2.124 2.121320337564E+00 2.121320343559E+00 2.121320343559E+00

x5 [in
2] 0.001 9.999999998731E‐13 1.000000000000E‐12 1.000000000000E‐12

U4x [in] 0.677684 6.666666629209E‐01 6.666666666667E‐01 6.666666666667E‐01

U4y  [in] ‐2.008781 ‐2.000000000022E+00 ‐2.000000000000E+00 ‐2.000000000000E+00

min W [lbs] 44.817 44.9999999995132 45.0000000000155 45.0000000000155

Reference SQP

Present paper

 
 
5.5.1.4. Case study: 56--bar truss (case Bar56) 

Using the same nondimensionalization as in Bar3_B and letting the design variables 
unconstrained (theoretically assuming 0iz →%  and practically setting ,min 1 12iz E= −% ), the 

exact optimal structural weight is 16sΦ =%  (Rozvany and Zhou, 1991). According to 
(Rozvany and Zhou, 1991), the iterative COC optimization method yielded after 126 
iterations a weight of 16.000000000048sΦ =% , which agrees with the exact optimal solution 
in twelve significant digits. The exact optimal layout is a clear four-member structure 
(Fig.5.3b). Furthermore, in the COC optimal design all non-optimal members take on the 
prescribed minimum cross-section, apart from two members which take a value very close but 
not equal to the prescribed lower bound. However, according to (Rozvany and Zhou, 1991), 
since the ratio of the cross-sectional area of these members over the imposed lower bound 
does not depend on the value of the prescribed lower bound, it is indicated that these members 
also vanish as 0iz →% . For the specific problem, the Matlab routine had a hard time locating 
the global optimum. More particularly, persisting numerical instabilities led to adopting the 
less strict lower bound of ,min 1 8iz E= −% , while the termination tolerance on the function value 
and the constraint violation were kept equal to 1 6E − . Even with these adjustments, 
frequently enough an ill-conditioned matrix was formed forcing the termination of the 
optimization procedure. Consequently, the set of 100 runs was not applied in this case. 
Instead, several analyses took place, out of the successful ones the best design vector, 
presented in Table 5.7 (column ‘SQP’) in non-dimensional notation was derived after 85  
iterations and 5542  evaluations of the objective function (thus equal number of FE analyses). 
The corresponding nondimensional optimal weight agrees with the exact analytical one in six 
significant digits. However, it is strongly emphasized that apart from the group of these four 
non-vanishing members and the group of the members clearly taking on the minimum cross-
sectional area, there was another group whose members had a near-vanishing cross-section. In 
other words, the SQP did not result in a clear four-member optimum structure.  

Attacking the 56-bar problem with the proposed optimization procedure and using as initial 
design vector the one corresponding to the Unit Stiffness Design, an optimal layout was 
derived after 61  iterations. As Fig.5.13a indicates, the convergence history of the proposed 
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optimization procedure with respect to the cost function sΦ%  is very smooth and gets 
stabilized approximately after half the number of iterations required for normal termination of 
the procedure. Furthermore, the convergence history with respect to the relative error of the 
cost function (Fig.5.13b) presents a general decreasing trajectory, even though discontinuities 
do appear. In order to trace the cause of these discontinuities, the proposed optimization 
procedure was closely monitored. It was found out that the iterations for which valleys 
occurred corresponded to iterations for which Step 9a (Section 5.1; treatment of force-
passive/area-active elements) was activated. That is, when force-passive/area-active elements 
turned into force-passive/area-passive elements thus changing the number of the ‘fully 
passive’ elements. 
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Figure 5.11: Convergence history of the proposed optimization procedure for the 56-bar truss 
with respect to (a) the cost function and (b) the relative error 

 
With respect to the convergence history of the maximum change in the design variables 

(Fig.5.13b), it is evident that it does not follow a clear decreasing tendency but suddenly 
drops to the converging tolerance. With respect to the optimum layout, all but four members 
from the initial design were vanished having a nondimensional cross-section equal to 

,min 1 12iz E= −% . That is, a clear four-member layout was formed without the presence of any 
members being in ambiguity (Fig.5.3a). The non-vanishing members are presented in Table 
5.7 (column ‘Unit Stiffness Design’) and have the same cross-sectional area with an 
agreement of twelve significant digits.  
 
Table 5.7: Optimum design for the 56-bar indeterminate truss 

Unit Stiffness Design 
(accuracy:1E‐12)

Random Initial Design 
(accuracy:1E‐12)

z1 2.83642084582115E+00 2.82842712474591E+00 2.82842712474591E+00

z2 2.82931425525085E+00 2.82842712474601E+00 2.82842712474601E+00

z3 2.82403815657757E+00 2.82842712474600E+00 2.82842712474600E+00

z4 2.82397042932332E+00 2.82842712474596E+00 2.82842712474596E+00

min Φs 16.0000 16.0000684808730 16.0000000000049 16.0000000000049

Reference SQP
Nondimensional 

quantities

Present paper

 
 

The nondimensional minimum weight agrees with the exact analytical one in thirteen 
significant digits. Extended experimentations applying the proposed optimization procedure 
with random initial design vectors did not converge into another optimal layout (Table 5.7, 
column ‘Random Initial Design’).  
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As mentioned in Section 5.1.4, there is one variation of the same problem with 114 
members, for which it is reported that the COC program gave an optimal total cost of 

16.00000000016sΦ =%  after 231 iterations (Rozvany, 1992). Instead of optimizing this 
topology, a more challenging one was selected; that of connecting each node with all the other 
nodes (structural universe with 276 members, Fig.5.3b). The challenge in this situation lies in 
the fact that not only more members but also overlapping members are involved. Using the 
proposed optimization procedure, having set the tolerance for detecting both zero-force 
members and weight convergence equal to 1 13E −  and the minimum nondimensional cross-
section equal to ,min 1 14iz E= −% , a minimum structural weight of 16.0000000000076sΦ =%  
was achieved after 220  iteration (agreement with the analytical solution of thirteen digits). 
The convergence histories of the proposed optimization procedure with respect to the cost 
function sΦ%  and the relative errors are shown in Fig.5.14a and in Fig.5.14b, respectively.  
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Figure 5.12: Convergence history with respect to (a) the cost function and (b) the relative 
errors for a structural universe with 276 members 

 
It is clear that the smooth convergence in Fig.5.14a is disrupted by four peaks (for better 

visualization, the markers are dropped from the plot). Again, from monitoring the proposed 
procedure, it was found out that the peaks in Fig.5.14a and the peaks in Fig.5.14b appear at 
the same iterations and correspond to the activation of the line-search procedure (Section 5.1, 
Step9b). That is when the new design has force-passive/area-active elements that cannot take 
the minimum cross-sectional value. Furthermore, valleys also appear in Fig.5.14b, the 
explanation being the same as for Fig.5.13b. A more detailed analysis on this issue is 
presented in the following Section (‘Discussion’), where the role of Step 9 is fully 
commented. 

With respect to the optimal layout, the non-minimum non-dimensional cross-sections are 
shown in Table 5.8.  
 
Table 5.8: Optimum design for the 56-bar indeterminate truss 
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It is noted that, apart from the members mentioned in Table 5.8, all the other members had 
taken the imposed minimum cross-section (there were no members with non-minimum cross-
section for which it could be deducted that they actually were vanishing members, as in 
(Rozvany, 1992). Furthermore, the six non-vanishing members are the members ( )AC , 

( )CE , ( )AE  (the last member overlaps the previous ones), and their symmetric ones ( )BD , 

( )DE , ( )BE , as illustrated in Fig.5.3b. The symmetry can be checked as shown in Table 8 
(last column). It is also noted that the cross-sectional areas of the over-lapping members are 
those obtained with the proposed optimization procedure for the 56-bar topology (consistency 
of optimal designs). 
 
5.5.1.5. Case study: The MBB beam 

The skeletal version of this example was investigated for three different mesh densities, 
namely 12 2×  ( 1 110NEL =  elements), 24 4×  ( 2 412NEL =  elements) and 48 8×  
( 1 1592NEL =  elements); that is, in all cases a unit aspect ratio was selected. Furthermore, the 
tolerances defined in Eqs.(5.36, 5.37) were set equal to 1 2 1 12tol tol E= = − , while the 
minimum cross-sectional area was also set equal to min 1 12A E= − . For the aforementioned 
mesh densities, the proposed procedure initiating from the (USD) converged after 126, 218 
and 845 iterations, respectively (for the latter case, something less than 1700  FE analyses) to 
the same minimum volume of 3382978.723404mm . For the 12 2×  mesh density, the Matlab 
SQP routine, with the termination tolerance both on the function value and the constraint 
violation being equal to 1 6E −  (that is, less strict tolerances of six orders), required 44 
iterations and 5104 objective function evaluations, thus equal number of FE analyses, 
converging to the minimum volume of 3382978.7239120032mm  (agreement in 9 significant 
digits with the minimum weight derived from the application of the proposed optimization 
procedure). Therefore, the optimization using the SQP routine, for the first mesh density, 
required three times more FE analyses than the proposed procedure required for the third 
mesh density, for which it is ( )3 1 14NEL NEL > . Obviously, a further comparison with the 
SQP for higher mesh densities is meaningless.  
 

0.8043

0.8044

0.8045

0.8

0.9

1.0

1 21 41 61 81 101 121

N
or
m
al
iz
ed

 c
os
t f
un

ct
io
n

Iterations

Change of scale
1000x

1.0E‐16

1.0E‐12

1.0E‐08

1.0E‐04

1.0E+00

0 200 400 600 800

Re
la
tiv
e 
er
ro
r

Iterations

w.r.t. design variables

w.r.t. structural weight

(a) (b) 

Figure 5.13: Convergence history with respect to (a) the cost function (mesh: 12 2× ) and (b) 
the relative errors (mesh: 48 8× ) for the MBB beam  

 
As far as the convergence history of the proposed procedure is concerned, the normalized 

cost function converges smoothly to the optimum. This behavior is illustrated in Fig.5.15a for 
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a 12 2×  mesh but the same holds for the other meshes as well (not shown). The convergence 
history of the relative errors in Fig.5.15b corresponds to a 48 8×  mesh. However, similar 
histories appear for the other meshes as well (not shown). From Fig.5.15b, it is clear that for 
the relative error with respect to the structural weight, there is a clear decreasing mode even 
though discontinuities do appear. This situation is exactly the same with the one appearing in 
previous plots (Fig.5.13b and Fig.5.14b) and has the same reasoning. However, the 
convergence with respect to the maximum change in the design variables does not follow this 
decrease (a sudden drop to the converging tolerance value is recorded).  

The optimal layouts obtained with the proposed optimization procedure for the examined 
mesh densities are shown in Fig.5.16, where the light gray lines represent vanishing members 
and the continuous lines represent remaining members. The different line thicknesses 
correspond to different cross-sectional area groups. From Fig.5.16, it is obvious that there is a 
consistency between the optimal designs obtained with the proposed optimization procedure 
and for various meshes because not only was the same minimum structural weight found, as 
mentioned in the beginning of this subsection, but also the same layout was obtained. 

 
Figure 5.14: Optimal MBB layouts obtained with the proposed optimization procedure for a 

grid of (a) 12 2× , (b) 24 4×  and (c) 48 8× divisions 
 
In all three cases, the proposed optimization procedure resulted in a layout where only five 

different groups of cross-sectional areas were present, one of which containing the vanishing 
members. This categorization is illustrated in Fig.5.17, where the cross-sectional areas have 
been normalized with respect to the maximum appearing cross-sectional value (y-axis), while 
the x-axis represents the structural member index.  
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Figure 5.15: Grouping of non-vanishing members for the MBB beam using a grid of (a) 
48 8× , (b) 24 4×  and (c) 12 2×  divisions 
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Therefore, apart from the weight minimization, the commonality between the non-vanishing 
members seems to have been maximized as well. 
 
5.5.2. Determinate trusses 

5.5.2.1. Case study: 5-bar truss (variation Bar5_var2) 
With respect to the evaluation of the literature data, only the optimum weight was referred 

in (Patnaik et al, 1995), therefore no optimum design vector was available for testing. With 
respect to the application of the Matlab SQP routine, 100 analyses initiating from different 
design vectors converged to the same optimum design vector (the one described in Table 5.9, 
column ‘SQP’), requiring from 11 to 38 iterations (86 to 401 evaluations of the objective 
function thus equal number of FE analyses). For the optimization with the Matlab routine, the 
termination tolerance on the function value and the constraint violation, as well as the lower 
bound for the design variables were set equal to 1 6E −  (numerical instabilities were 
experienced if the lower bound lb  was set as 1 6lb E< − ). Based on these facts, it was 
considered that the design vector obtained with the Matlab SQP routine was the global 
optimum one. With respect to the application of the proposed optimization procedure, the 
global optimum was found after one iteration provided that the vector corresponding to the 
Unit Stiffness Design was used as the initial design vector (see corresponding column in 
Table 5.9). For a randomly chosen initial design vector, extended experimentation showed 
that the global optimum was reached after two iterations (see corresponding column of Table 
5.9). It is noted that in all the analyses with the proposed optimization procedure, the 
tolerances defined in Eqs.(5.36, 5.37) were set equal to 1 2 1 12tol tol E= = − . The fact that 
only one iteration was required with the proposed optimization procedure, when initiated 
from a design vector corresponding to the USD, is totally expected, because this procedure 
implements a redesign equation which if of ‘closed-form’ for determinate trusses.  
 
Table 5.9: Optimum design for the 5-bar determinate truss 

Unit Stiffness Design 
(accuracy:1E‐12)

Random Initial Design 
(accuracy:1E‐12)

x1 [in
2] 1.000000000000E‐12 1.000000000000E‐12 1.000000000000E‐12

x2 [in
2] 9.715414157277E‐01 1.500000000000E+00 1.500000000000E+00

x3 [in
2] 9.999999999948E‐13 1.000000000000E‐12 1.000000000000E‐12

x4 [in
2] 2.913778091812E+00 2.121320343560E+00 2.121320343560E+00

x5 [in
2] 2.867287369717E‐07 1.000000000000E‐12 1.000000000000E‐12

max(abs(Uy)) [in] 2.000000000000E+00 2.000000000000E+00 2.000000000000E+00

min W [lbs] 45.051 45.0000000227642 45.0000000000341 45.0000000000341

Reference SQP

Present paper

 
 

Furthermore, the minimum weight obtained with the proposed procedure agrees with the 
one obtained with the Matlab SQP routine in 9 significant digits. Finally, it is noted that the 
SQP approach converged to a design where members 2, 4 and 5 are present, even though 
member 5 tends to take a vanishing cross-section, while the proposed approach converged to 
a clear two-member design 
 
5.5.2.2. Case study: The MBB beam 

The performance with respect to the number of iterations is described in Table 5.10, while 
the normalized minimum weight with respect to the SQP results are presented in Table 5.11. 
From Table 5.10, it is obvious that the proposed procedure converges in either two or three 
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iterations when the (R.I.D.) is selected and in two iterations if the (U.S.I.D.) is used. 
Consequently, the estimation of the corresponding standard deviations and the Coefficients of 
Variation is meaningless, and so is the creation of convergence history diagrams. 

 
Table 5.10: Performance with respect to the number of iterations 

 
 

Furthermore, it is evident that the required computational cost for the SQP is significantly 
higher (Table 5.10, column ‘SQP’). In addition, Table 5.11 shows that if the (U.S.I.D.) is 
selected then the same minima with the SQP approach are located in all cases; however, this 
does happen when the (R.I.D.) is used (see columns for K-truss, Pratt and Warren designs in 
Table 5.11). For example, for the first (R.I.D.) variation of the Warren design, the final weight 
is almost 28% higher than the optimum one. This result proves that using a random initial 
design vector is not a safe selection, the theoretical explanation being analyzed in Section 5.6.  
 
Table 5.11: Normalized minimum weight with respect to the SQP results 

 
 
In order to compare the optimum design vectors obtained with the proposed procedure 

with those obtained with the SQP, the plots in Figs.5.18-5.22 present, in a sorted form, the 
normalized values of the components of the optimum design vector obtained with the 
proposed method over those obtained with the Matlab routine (fmincon). The red horizontal 
line in these figures denotes coincidence between the two compared methods. From these 
plots, it is obvious that the proposed approach and the SQP approach result to quite similar 
optimum design vectors, the difference between them ranging from negligible (e.g. Warren 
design, variation #1) up to 5%  (Howe Design, variation #3). 
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Figure 5.16: MBB – Baltimore design 
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Figure 5.17: MBB – Howe design 
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Figure 5.18: MBB – K-truss design 
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Figure 5.19: MBB – Pratt design 
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Figure 5.20: MBB – Warren design 

 
In order to find out which design among the examined ones was the best, the 

corresponding minimum structural weights were normalized with respect to the minimum of 
these values. The result of this normalization is shown in Table 5.12, according to which the 
first variation of the Warren design was, by far, the best. The second best design was the 
second variation of the K-truss with a minimum structural weight being higher by 6.9% . 
Another interesting remark derived from this Table is that for all but the K-truss variations, 
the minimum structural weight increases as the number of elements and nodes of the design 
increases. 
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Table 5.12: Normalized minimum weights for the MBB determinate truss 
Design Variation #1 Variation #2 Variation #3

Baltimore 1.218 1.294 1.492
Howe 1.211 1.285 1.481
K_truss 1.139 1.069 1.104
Pratt 1.212 1.287 1.482
Warren 1.000 1.110 1.328  

 
Finally, the interested reader, who wishes to verify the optimum design vectors obtained 

with the proposed procedure, may find connectivity data and the corresponding cross-
sectional values in Appendix 5B. 
 
5.5.2.3. Case study: 9-bar truss 

As mentioned in Section 5.2.3, six 9-bar truss topologies under four load cases were 
examined. In more details, these topologies were optimized first with the fmincon routine 
(MatLab) and then with the proposed procedure. Indicatively, the obtained results, with the 
SQP and with the proposed procedure (the tolerances defined in Eqs.(5.36, 5.37) were set 
equal to 1 2 1 6tol tol E= = − ), in terms of minimum structural weight and final design vector, 
for the first variation of the examined topologies, are presented in Table 5.13. It is clear that 
the two approaches provide results that appear an agreement of at least five significant digits 
in terms of design variables.  
 
Table 5.13: Results for the first variation of the 9-bar truss 

SQP Present paper SQP Present paper SQP Present paper SQP Present paper

Wopti 8867.234400 8867.234400 1287.228600 1287.228600 6488.691200 6488.691200 9470.672909 9470.672900
x1 21.045831 21.045835 0.100000 0.100000 18.000021 18.000000 21.750839 21.750841
x2 51.551611 51.551556 11.236751 11.236753 36.000001 36.000000 53.278522 53.278462
x3 29.763207 29.763305 7.945585 7.945584 18.000028 18.000000 34.391054 34.391099
x4 42.091664 42.091670 11.236754 11.236753 25.455901 25.455844 43.501691 43.501682
x5 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000
x6 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000
x7 21.045865 21.045835 0.100000 0.100000 17.999898 18.000000 21.750772 21.750841
x8 21.045884 21.045835 0.100000 0.100000 18.000017 18.000000 26.639117 26.639231
x9 29.763288 29.763305 0.100000 0.100000 25.455811 25.455844 30.760447 30.760334

Design 9a   Load Case 1 Design 9a   Load Case 2 Design 9a   Load Case 3 Design 9a   Load Case 4

 
 

Working in a similar manner, it is possible to form the tables corresponding to the other 
variations of the 9-bar truss (these Tables are presented in Appendix 5C). Indicatively, Table 
14 presents the results for all the variations of the 9-bar truss and for the third load case 
(truncation at the third decimal digit for the design variables). At this point, it is noted that the 
symbolic names used to describe the aforementioned variations are presented in Table 5.2.  

 
Table 5.14: Results for all variations of the 9-bar truss and for the third load case 

SQP Present 
paper SQP Present 

paper SQP Present 
paper SQP Present 

paper SQP Present 
paper SQP Present 

paper
Weight 6488,70 6488,70 4163,10 4163,10 4164,6 4164,6 4164,6 4164,6 6490,2 6490,2 4164,6 4164,6

x1 18,000 18,000 14,400 14,400 14,400 14,400 14,400 14,400 18,000 18,000 14,400 14,400
x2 36,000 36,000 28,800 28,800 28,800 28,800 28,800 28,800 36,000 36,000 28,800 28,800
x3 18,000 18,000 0,100 0,100 0,100 0,100 0,100 0,100 18,000 18,000 20,365 20,365
x4 25,456 25,456 20,365 20,365 20,365 20,365 20,365 20,365 25,456 25,456 0,100 0,100
x5 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 14,400 14,400
x6 0,100 0,100 14,400 14,400 14,400 14,400 14,400 14,400 18,000 18,000 0,100 0,100
x7 18,000 18,000 0,100 0,100 0,100 0,100 0,100 0,100 18,000 18,000 0,100 0,100
x8 18,000 18,000 0,100 0,100 0,100 0,100 0,100 0,100 25,456 25,456 0,100 0,100
x9 25,456 25,456 20,365 20,365 20,365 20,365 20,365 20,365 0,100 0,100 20,365 20,365

9e 9h9a 9b 9c 9d
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From Table 5.14, it is clear that the SQP and the proposed optimization procedure result in 
the same optimal designs. However, the computational cost of the SQP is significantly higher. 
More details on the performance of the SQP are presented separately in Table 5.15, where the 
mean value, the standard deviation and the coefficient of variation (CV) have been calculated 
as measures of the computational effort required until convergence was achieved. As Table 
5.15 shows, the SQP approach, on average, requires more than 34 iterations but mainly more 
than 476 evaluations of the objective function thus equal number of FEAs. On the contrary, 
the proposed procedure required only three FEAs. 
 
Table 5.15: Performance of the SQP approach 

Average Standard 
Deviation CV (%) Average Standard 

Deviation CV (%)

9a 39 8 21.70 517 116 22.40
9b 35 6 18.14 476 110 23.11
9c 35 6 16.38 483 99 20.49
9d 35 7 18.68 476 112 23.60
9e 39 8 20.91 522 114 21.83
9h 35 6 17.56 476 107 22.48

Design
Iterations Objective function evaluations

 
 
Finally, it is strongly emphasized that the results in Table 5.14 came from using as initial 

design vector the one corresponding to the USD. However, a few times trapping at local 
minima was recorded if random initials vectors were implemented. 
 
5.6. Discussion 

The problem of minimizing the structural weight under a single displacement constraint 
has been extensively analyzed since the early 70’s, as numerous references on the subject 
suggest. Therefore, a very logical question would be why revisit this, so much and for so long 
being investigated, problem. The answer to this question, which was the motivation of the 
present chapter, will become clear within the next paragraph.  

With respect to the investigated subject, among numerous references, one may distinguish 
three milestone contributions, namely by Berke (Berke, 1990), Khot (Khot, 1981) and 
Rozvany (Rozvany, 1992), all of which are rigorously and very rigidly stated. In these 
approaches there are three common characteristics. The first characteristic is the fact that even 
though the optimum is described in terms of a virtual strain energy density state, the path 
towards this state is not uniquely defined. This means that paths other than the already known 
in the literature (Berke, 1990, Khot, 1981 and Rozvany, 1992) may be followed. The second 
characteristic is the fact that, within the redesign procedure, a Lagrange multiplier is involved. 
This multiplier must be either numerically estimated (Berke, 1990 and Rozvany, 1992) or 
embedded in the redesign equation (Khot, 1981). The former approach requires the 
development of a recursive equation which is typical for numerical methods but also increases 
the computational cost not to mention convergence difficulties. The latter approach results in 
a cumbersome redesign equation. Therefore, it would be ideal if the Lagrange multiplier did 
not participate explicitly in the redesign procedure. The third characteristic has to do with the 
selection of the passive members, which are defined as members either obtaining a design 
value less than the imposed lower bound or having a force product , 0P Q

i iF F tol tol< ≤  (the 
components of the force product were presented in Section 5.2) (Berke, 1990, Khot, 1981 and 
Rozvany, 1992). This means that the cases where the negative force product was near zero 
and far away from it were handled similarly. However, a force product P Q

i iF F  significantly 
different than zero denotes that the corresponding i −member participates vividly in carrying 
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both the externally applied load and the unit virtual load, while a force product P Q
i iF F  near 

zero denotes exactly the opposite. Therefore, a question is posed with respect to the influence 
of separating the two cases over an optimization procedure. Having the aforementioned 
thoughts in mind, the present investigation, based on the Lagrange multipliers method, 
revisited the OC approach of the single displacement constraint problem and ended up with an 
optimization procedure that embeds three new features: 

• a new and simple redesign formula, requiring the estimation of no Lagrange multipliers,  
• a new and more detailed categorization of the structural elements and 
• a new and different handling of the structural elements with , 0P Q

i iF F tol tol< ≤ . 

The recursive formula for the cross-sectional redesign was derived entirely from a sound 
mathematical approach with no elements of intuition or numerical-analysis origin being 
embedded. This formula strongly resembles the stress-ratio technique used in fully stressed 
designs and can be considered as a virtual-strain-energy-density-ratio technique used in single 
displacement constrained designs. The investigated examples showed that, for determinate 
trusses, if the optimization problem at hand is truly single displacement constrained then the 
proposed procedure reaches the optimum design in two iterations. This is not surprising 
because the core of the procedure (redesign formula) is actually of closed-form, provided that 
the assumptions mentioned in Section 5.5 are valid. The fact that two iterations were required 
lies in the very small tolerances used in the convergence criteria. However, if the problem is 
actually a multiple displacement constrained one, then the proposed procedure may provide 
the global optimum as well, as the results in 5.4.2 suggest, without being claimed that the 
proposed procedure, as presented here, is completely suitable for such problems.  

Furthermore, the Lagrange multiplier 1λ  appearing in Eq.(5.8) is not equal to the scalar 
coefficient a  used for the uniform scaling in Eq.(5.20). The multiplier 1λ  is used for ensuring 
the existence of a uniform virtual strain energy density distribution over the active part of the 
structure, while the coefficient a  is used for matching a maximum value for nodal 
displacement.  

One of the most interesting points in the proposed procedure is the criterion for 
characterizing an element as active or passive. In the literature (Berke, 1990, Khot, 1981 and 
Rozvany, 1992), the inequality P Q

i iF F tol< , tol  being zero or a small positive number, 
serves as such a criterion, where P

iF  and Q
iF  are the member forces due to the real load and 

the virtual unit load, respectively. However, in the present chapter the inequality P Q
i iF F tol<  

was used instead, tol  being a small positive number. As shown in Section 5.3, this leads to a 
different than the usual member categorization, within which the force-passive/area-active 
elements are introduced. These elements have the following characteristic: although the 
corresponding member forces satisfy the inequality P Q

i iF F tol< , these members cannot take 
the lower bound imposed for the design variables; if they do so then a constraint violation 
occurs. At first, this sounds as a paradox but it is not, as Eq.(5.3) reveals. In more details, 
according to Eq.(5.3), each term within the sum represents a contribution to the nodal 
displacement. If this term is negligible then so is the corresponding contribution. However, 
for an i −member with P Q

i iF F tol< , it is possible to set miniA A=  and get a non-negligible 
contribution: 
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Consequently, it is obligatory to set miniA A> , which means that another than the minimum 

cross-sectional value must be attributed thus the member has to be area-active. Members 
presenting the aforementioned behavior are termed in the present chapter as force-
passive/area-active. Their presence in a determinate structure, where the member forces do 
not depend on the cross-sectional values, denote structural members that cannot be removed 
and, for them to provide a negligible contribution to the nodal displacement, they must take 
on a larger than the minimum cross-sectional area. Their presence in an indeterminate 
structure, where the member forces do depend on the cross-sectional values, denote structural 
members that can be removed but for this to happen a different virtual strain energy density 
distribution than the current must be obtained. In both cases, the cross-sectional areas that 
these members must take on may be found from the solution of an optimization problem, as 
mentioned in Section 5.5. The line-search procedure proposed in the present chapter is a 
substitute to implementing an MP method for solving the aforementioned optimization 
problem. If the solution from this substitute differs from the ideal one then peaks, as those in 
Fig.5.14a, appear. The reason for this is quite simple. Since the contribution of the force-
passive/area-active members does not vanish, as it should, the contribution of the other 
members, which is either positive due to the presence of the absolute sign in Eq.5.40 or zero, 
must be decreased for no displacement constraint violations to appear. As a result, the 
contribution of the other members is decreased ‘artificially’ through the redesign procedure 
by having the corresponding cross-sectional areas increased. In this ‘artificial’ state, the 
virtual strain energy density is redistributed. After this redistribution and since the structure is 
indeterminate, the member forces are re-estimated due to which the force-passive/area-active 
elements of the previous step change their status, become ‘fully’ passive elements and are 
‘removed’ from the structure by taking on the lower bound imposed for the design variables. 
In this way, after one or two iterations, the virtual strain energy density balance within the 
structure is re-obtained and the optimization procedure continues normally. Furthermore, the 
stronger the presence of this ‘artificial’ state is the higher the peaks, as those in Fig.5.14a, are. 
From a theoretical point of view, the proposed approach uses the absolute sign in the force 
product P Q

i iF F  and allows all of the structural members to be counted in Eq.(5.3); that is to 
include the influence of all members in the redesign procedure. This is an approach opposite 
to that by (Khot, 1981) who used the signed force products to detect passive elements (those 
with a negative force product), gather them in a separate set and exclude their influence from 
the redesign procedure. 

On the issue of the member characterization, it is further clarified that both the force 
product P Q

i iF F  and the cross-sections must be implemented. Using only the force product 
P Q

i iF F  as a criterion is not a bulletproof choice because it is possible to get a non-negligible 
contribution from a member with small P Q

i iF F  value if its cross-sectional area is small. 
Exactly in order to handle such cases, the present chapter suggests the use of a criterion, 
where a member is characterized twice, once with respect to its P Q

i iF F  value and once with 
respect to its cross-sectional area. Depending on the result of this “double” characterization, a 
member may belong to one of the four groups described in Section 2.5 and is handled 
accordingly, as also described in the same Section. Furthermore, it is strongly emphasized that 
the proposed categorization of the structural members aims only at selecting those members 
that will participate, at each iteration, in the redesign procedure. Those members that are not 
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selected remain unchanged only for that iteration (they are neither eliminated from the 
structure nor kept frozen for the rest of the optimization procedure). 

Continuing the train of thoughts of the previous paragraph, in the general case where for 
some i − element it holds 0i ic b <  (see Eq.29), or, equivalently, its force product P Q

i iF F  is 
negative, it is possible to get a displacement decrease if the cross-section of this i − element 
obtains a smaller cross-section than the current one. However, this case has been foreseen in 
the proposed procedure. In more details, once the vector pass act−A  with the force-passive/area-
active elements has been formed, a line search is initiated seeking for a structural weight 
reduction by further reducing the cross-sections of the aforementioned vector (it is of no 
interest to examine what happens when the cross-sections are increased because in this way 
the structural weight is increased, which is opposite to the aim of minimizing the structural 
weight). For this line search (optimization sub-problem) and for the corresponding design 
space, the upper bound is pass act−A  and the lower bound is , minpass act LowerBound− =A A . If reducing 

pass act−A  results in increasing the displacement, then the limiting case would be for the new 
‘optimized’ vector ,new pass act−A  to be equal to the vector pass act−A  (the new vector coincides 
with the upper bound). If reducing pass act−A  results in decreasing the displacement, then the 
limiting case would be for the new ‘optimized’ vector ,new pass act−A  to be equal to the vector 

minA  (the new vector coincides with the lower bound). Therefore, the proposed procedure can 
efficiently handle the case where a potential reduction of the cross-sections of the vector 

pass act−A  may cause either a displacement increase or a displacement decrease. 
Another important issue concerns the selection of the initial design vector. From the 

obtained results, it was shown than the use of random initial values for the cross-sectional 
areas could lead to local minima. An explanation for such a behavior follows. It is well-
known that the stiffness of a truss is nothing else but a combination of the stiffness of its 
structural members. According to Eq.(5.26), which is repeated here for convenience: 
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the stiffness [ ] jK  of the j −member is defined by two terms, the coefficient jc  and the 

matrix jm  shown in Eq.(5.41). For a given topology and a given material, the coefficient jc  
depends entirely on the cross-sectional area A . On the other hand, the matrix jm  depends 
entirely on the orientation of the j −member. Therefore, the elements within the matrix 
(matrix entries) vary, because of the orientation, thus of the topology, while the coefficient 
outside the matrix operates as a uniform scaling factor to the matrix entries. From this 
perspective, the stiffness [ ] jK  may be considered as a ‘vector’ whose direction is dictated by 

the matrix jm  and whose value is denoted by the coefficient jc . Expanding this approach, the 

set of the stiffness of all structural members form the basis [ ] [ ] [ ] [ ]{ }1 2
, ,..., ,...,

j NEL
K K K K  
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that spans the space which the stiffness of the entire structure belongs to. A symbolic 
representation of this approach is: 
 

[ ] 1 1 2 2 ... ...j j NEL NELTotalK c m c m c m c m= + + + + +                             (5.41) 
 
Therefore, the stiffness matrix of the entire structure is a linear combination of the linear 
independent ‘vectors’ jm  that form the aforementioned basis, the linear coefficients being the 
quantities jc . Setting 1jc =  results in  
 

[ ] 1 2, ... ...j NELTotal UnitStiffnessK m m m m= + + + + +                               (5.42) 
 
The Finite Element Analysis of a structure using the stiffness matrix of Eq.(5.42) provides the 
response of the structure under the influence of the topology only. However, the Finite 
Element Analysis of the same structure using the stiffness matrix of Eq.(5.41) provides the 
response of the structure under a weighted influence of the topology, the weights being the 
coefficients jc  which represent the size of the structure. In other words, in the latter approach, 
a mixed influence from size and topology appears. The line between the effect of these two 
approaches on an optimization scheme is quite indistinguishable but exists. As shown from 
the examined examples (e.g. 3-bar truss, 5-bar truss) initiating the optimization procedure 
using the mixed influence can be ‘misleading’ in the sense that another than the global 
optimum is traced. On the contrary, when a Unit Stiffness Design (USD) was selected to be 
the initial design vector, the global optimum was more likely to be traced. 

With respect to the USD and the RID approaches, among the examined examples, the 
Bar3-A test case was quite interesting because all of the 100 RID runs converged to local 
optima. The basic difference between the results coming from using USD and RID has to do 
with the categorization of the structural members that takes place during the optimization 
procedure. In more details, as presented in Section 2.4, the present chapter suggests that the 
structural members be categorized in four groups. From iteration history data that can be 
obtained for the Bar3-A example, it yields that initiating the procedure with the USD, the line 
search routine is activated for the first iteration only, while, from that point on and until 
convergence is achieved, two structural members (the inclined ones) are detected as force-
active/area-active and one structural member (the one in the middle) is detected as force-
active/area-passive element. On the other hand, initiating the procedure with the RID yields 
that the line search routine is never activated, while, at all iterations, three structural members 
are detected as force-active/area-active, until convergence is achieved. As a result, with the 
former approach a clear two-member layout is formed from the very beginning of the 
optimization procedure, while with the latter approach a three-member layout is formed, 
being characterized by a lower Virtual Strain Energy Density, in comparison with the layout 
yielding using USD. The explanation of this behavior is related to the topological symmetry 
of the specific structure. More particularly, using the USD approach initiates the optimization 
procedure from a design where the symmetrical structural members (the inclined bars in 
particular) have the same stiffness; that is a ‘symmetry’ in stiffness. However, using the RID 
approach, the aforementioned stiffness symmetry is never achieved because the random 
generator that creates the initial design vector does not provide two or more identical 
numbers; thus, with the RID approach, it is certain that the initial cross-section of the inclined 
bars will not be the same, thus their stiffness will be different as well. 

At this point, the concept of USD is based more on the thoughts presented in Section 2.4 
and on the obtained numerical results presented in Section 5, rather on a pure mathematical 
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proof. The concept of USD raises some very interesting questions among which the most 
crucial one is: why does it work? At this moment, the author is in position to contribute the 
statement of this concept, his thoughts as presented in Section 2.4 and in ‘Discussion’, and the 
numerical results from 48 case studies that support the use of this statement. However, the 
author knows very well that 'even though there is no adequate number of results to support 
the applicability of a concept, it takes only one result to vitiate it’. From this viewpoint, it 
seems that the examination of the USD concept could be a subject for further research. 

At this point, it must be noted that there are examples used as benchmarks for optimization 
under a single displacement constraint, presenting one particular characteristic: the load 
application point corresponds to the node with the maximum displacement. However, this 
characteristic is a necessary and sufficient condition for the design variables either to be 
active or to take a minimum allowable value (there are no passive elements with other than 
the minimum cross-section), as proven through Castigliano’s second theorem (Appendix 5I). 
These optimization problems form a separate class of problems and can be solved using the 
first two steps of the proposed procedure. However, they must not be used as the only 
evaluators of a newly introduced optimization method because they do not test the capabilities 
of the method for members with 0P Q

i iF F < . For this reason, the 9-bar truss was introduced. 
Another worth-mentioning point is the fact that, in all of the test cases, the proposed 

optimization procedure converged to a final design. For the examined indeterminate trusses, 
this is shown from the convergence history diagrams in Section 5.1. For the determinate 
trusses, this is shown in Table 10 (Section 5.2). Therefore, setting an adequately large, but 
finite, allowable number of iterations as the case may be, the termination criterion with 
respect to the maximum number of iterations (Section 3.1, Step 14) was never utilized. 

In brief, the advantages of the proposed optimization procedure are the following: 
• The recursive redesign equation is extremely simply 
• No Lagrange multipliers must be estimated implicitly or explicitly 
• It is the topology of the structure and not its size that determines the initial design vector, 

which is of crucial importance for tracing the path to the global optimum 
• The derived design vectors always belong to the feasible region, thus the optimization 

procedure may be terminated any time providing a design vector that does not violate the 
imposed displacement constraint 

• There is no step size parameter introduced in the recursive equation, thus a stable 
behavior is reported 

Last, but certainly not least, it is reminded that ‘layout optimization problems under a 
single displacement constraint, although not suitable for describing practical applications, 
are very useful in exploring basic algorithms’ (Rozvany and Zhou, 1991). 
 
5.7. Conclusions 

In the current chapter, a new Optimality Criteria-type optimization procedure for single 
displacement constraint problems was proposed and tested in over 46 cases. The conclusions 
drawn from this investigation are the following: 
• For the examples retrieved from the literature but having no analytical solution, the 

proposed procedure resulted in the referenced optimum weights after an approximately 
equal number of iterations such as the referenced ones. 

• For the examples retrieved from the literature having analytical solutions, the proposed 
procedure resulted in the referenced optimum weights with an agreement of at least 
twelve significant digits after less iterations than the referenced ones. 
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• For the examples newly introduced in the present chapter, the proposed procedure 
resulted in the same optimum weights (slightly different optimum design vectors) as 
those obtained when implementing the SQP routine found in Matlab (fmincon). 

• In all cases, initiating the proposed procedure from a design vector corresponding to a 
Unit Stiffness Design structure resulted in the, considered to be, global optimum. 
However, in some cases, initiation from a random design vector resulted in significant 
sub-optimal solutions. 

• The proposed categorization of the members as in Section 5.3 is more detailed than those 
referred in the literature and highlights the presence of the newly introduced force-
passive/area-active elements which play a significant role in the optimization procedure. 

• In general, the convergence history with respect to the structural weight is very smooth. 
Peaks appear only when force-passive/area-active elements change their status and 
become ‘fully’ passive elements. 

• In general, the convergence history with respect to the relative error of the structural 
weight is smooth and decreasing. As previously, peaks appear only when force-
passive/area-active elements change their status and become ‘fully’ passive elements, 
while valleys appear when the force-passive/area-active elements are allowed to take on 
the imposed lower bound for the design variables. 

• The convergence history, with respect to the relative error of the maximum change in the 
design variables structural weight, is either smooth and decreasing or quite steady and 
drops suddenly to the converging tolerance value. 

• The extension of the proposed procedure for optimizing 3D skeletal structures is trivial. 
Overall, the results of the present research suggest that the proposed optimization 

procedure form a simple and efficient optimization tool. 
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APPENDIX 5.A: Nodal displacements using Castigliano’s second theorem 

 
Based on the mathematical expression of Castigliano’s second theorem, it holds that: 
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The symbols are the same to those used in the main text, the only difference (generalization) 
being that as *

kF  any virtual load is denoted, not necessarily one of unit magnitude. It is 
clarified that in Eq.(5A.1) and for the implemented partial derivative to be estimated, first the 
analytical expression for the member forces, developed due to the application of both the real 
loads and the virtual load, must be formed and then the terms corresponding to the virtual 
load must be eliminated. For the case of a statically determinate truss under the application of 
the real loads mlPl ,...,2,1, = , the terms in Eq.(5A.1) may be written as follows: 
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In more details, the analysis of the structure using the method of joints results in describing 
each member force kF  as a linear combination of the applied real loads and of the virtual 
applied load as well. The quantity ilc  is a coefficient depending only on the truss topology 
and the application point of the real loads lP , while, qualitatively, it expresses the weighted 
contribution of the real load lP  to the axial force carried by the −i bar. Therefore, for a given 
truss topology and load set, the coefficients ilc  are constants. Respectively, the quantity kb  
depends on the truss topology and the application point of the virtual load *

kF , while 
qualitatively it expresses the weighted contribution of the virtual load to the virtual axial force 
carried by the −i bar. In Eq.(5A.4), a more compact description has been used where: 
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The combination of Eqs.(5A.1-5A.5) yields: 
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which, after some basic manipulations, gives: 
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where the subscript j  indicates the degree of freedom under consideration. Eq.(5.A7) 
describes the displacement u  of any node in terms of topology, size and stiffness under the 
application of any given load. For the case where only one external load is applied ( 1=l ), the 
nodal displacement ju  becomes: 
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APPENDIX 5.B: Data for the optimal designs of the MBB beam 

 
In this chapter, five determinate designs (Baltimore, Howe, Pratt, K-truss and Warren) 

for the MBB beam, each one for three different mesh densities, were examined. In this 
Appendix, the connectivity data and the corresponding cross-sectional areas are presented. It 
is noted that not all of the structural members are numbered but only an adequate numbering 
is illustrated.  
 

 

 

(a) (b) 

Figure 5.B1: Optimum Baltimore design (a) cross-sectional areas and (b) connectivity 

 

 

 
(a) (b) 

Figure 5.B2: Optimum Howe design (a) cross-sectional areas and (b) connectivity 
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(a) (b) 

Figure 5.B3: Optimum K-truss design (a) cross-sectional areas and (b) connectivity  
 

 

 

 
(a) (b) 

Figure 5.B4: Optimum Pratt design (a) cross-sectional areas and (b) connectivity 
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(a) (b) 

Figure 5.B5: Optimum Warren design (a) cross-sectional areas and (b) connectivity 
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APPENDIX 5.C: Results for the variations of the 9-bar truss 

 
In this Appendix, the results from the application of the proposed optimization 

procedure to six different topologies of the 9-bar truss, each under four loading conditions, are 
presented. For each design and for each load case, the minimum structural weight, the 
optimum design vector and the nodal displacements of the unrestrained degrees of freedom 
are recorded.  
 

Table 5.C1: Optimization results for the first Load Case 

 
 

Table 5.C2: Optimization results for the second Load Case 
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Table 5.C3: Optimization results for the third Load Case 

 
 

Table 5.C4: Optimization results for the forth Load Case 

 
 

At this point, it is noted that from Table 5.C2 it is evident that optimum solutions can be 
obtained with the proposed procedure for multiple displacement constraint problems as well. 
However, it is not claimed that the procedure, in its present form, is suitable for such 
problems as well. The optimal layouts, numerically described in the aforementioned Tables, 
are illustrated in Fig.5.C1. The vanishing members are denoted as broken lines while the 
remaining elements are shown as continuous thick lines. The nodes that present the maximum 
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displacements are denoted with a hatched circle while the externally applied loads are shown 
as arrowed lines. 

Design 9a 

 

Design 9b 

 

Design 9c 

 

Design 9d 

 

Design 9e 

 

Design 9h 

 
(a) (b) (c) (d) 

Figure 5.C1: Optimal layouts for the 9-bar variations and for (a) Load Case #1, 
(b) Load Case #2, (c) Load Case #3 and (a) Load Case #1. 

 
From Fig.5.C1 it is clear that the proposed 9-bar variations include cases where, at the 
optimum, the maximum nodal displacements do not always correspond to load application 
points in accordance to the ‘fair-play’ mentioned in Section 5.2.7. 
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CHAPTER 6 
 
 

LAYOUT OPTIMIZATION 

OF 

2D CONTINUA 

UNDER 

AN EXTENDED SINGLE DISPLACEMENT CONSTRAINT 
 
 
 
 

 
Abstract 

In this chapter, the layout optimization of 2D continua under an extended single displacement constraint is 
discussed, the concept of the ‘extended’ displacement constraint being introduced in Chapter 5. More 

particularly, the layout optimization is sought following two conceptually different approaches. According to the 
first approach, the thickness of the 2D continuum is kept constant, while material that has been detected as 

redundant is completely removed from it. To this end, a new efficient variation of an already existing 
methodology is proposed. According to the second approach, the thickness of the 2D continuum is 

isoparametrically interpolated, the nodes being the interpolation points. Furthermore, a variation of the 
methodology introduced in Chapter 5 is developed. Both approaches are examined through four typical literature 
benchmarking problems in structural optimization and the encouraging results suggest that these approaches be 

a useful and efficient tool in 2D layout optimization.  
 
 

Keywords 
Layout optimization, 2D continuum, single displacement constraint,  

material removal, thickness redesign. 
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6.1. Introduction 
The layout optimization of 2D continua under a single displacement constraint has always 

been a very attractive optimization problem and consists an ideal field for investigations 
because it attains two basic characteristics. First, 2D continua are the simplest continuum 
structures, thus convenient for testing new approaches, and second, 2D continua may be 
considered as quasi-3D bodies, thus every theory developed for them is potentially valid for 
3D bodies as well. For their layout optimization, removal of redundant material is required. 
Towards this direction, there are two questions that must be answered, the former being how a 
material is characterized as redundant and the second being how it is possible to remove 
excessive material from a 2D continuum. These two questions are not decoupled, meaning 
that the determination of the criterion for material removal is related to the manner on which 
material will be removed. In the present chapter, two basic approaches are examined, both 
concerning not only the single displacement constraint but also its extended definition, as 
presented in Chapter 5. 

The first approach concerns the total material removal from a constant thickness 2D 
continuum. The criterion for selecting the material to be removed is based on a simple 
consideration: useful (excessive) material has a high (low) energy contribution to the 
structure. Therefore, it is possible to iteratively detect the material with the lower 
aforementioned contribution and then attribute to it a very low modulus of elasticity. In this 
way, the excessive material is artificially removed from the stiffness matrix of the structure in 
the sense that its presence from that point on has a negligible effect on the structural behavior. 
The concept just described is already known in the literature as the Evolutionary Structural 
Optimization (ESO) method. Even though there has been a strong dispute concerning both the 
correctness of the name and the efficiency of this approach, publications on this method has 
shown a good performance in a wide range of applications. In the present chapter, a variation 
of this method is proposed, according to which both the computational cost and the final 
structural weight decrease, as the examined literature benchmarking problems show. 

The second approach concerns the extension in 2D continua of the novel consideration 
presented in Chapter 5. In more details, this extension considers that the thickness of a 2D 
continuum is varying, the control points being the nodes of the structure. The nodal thickness 
changes according to a redesign rule similar to the one proposed in Chapter 5. As a result, 
areas with excessive material become thinner while areas with utilized material become 
thicker. This approach is also evaluated through a series of literature benchmarking problems, 
while the final design presents a layout significantly different from the ones in the literature. 
 
6.2. Total removal of material from a constant thickness sheet 

One of the most popular problems in structural optimization is the single displacement 
constraint problem. Its popularity is due to the fact that the problem is convex, thus it attains a 
global minimum. Towards the trace of the optimum, various techniques have been proposed, 
the Evolutionary Structural Optimization (ESO) being one of them. According to its 
developers, the variation of ESO that addresses the single displacement constraint problem 
has the ability to provide an optimized structure by removing elements of low virtual strain 
energy density. Furthermore, it has been shown that the introduction of the normalized virtual 
strain energy density of the entire structure during the optimization procedure is beneficial. 
The current work investigates the coupling of the aforementioned version of ESO with the 
aforementioned normalization concept for the optimization of 2D-continua. On top of that, the 
values of the normalized virtual strain energy density are derived from the non-vanishing 
elements (active elements) only. The specific coupling is tested in four typical examples of 
2D continua, namely the deep cantilever, the short cantilever, the MBB beam and a Michell 
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type structure. The quantified results reveal the improvement that can be achieved when the 
normalized virtual strain energy density of the active elements is used as a criterion for 
removing inefficient material.  
 
6.2.1. In general 

Structural optimization has long been one of the most interesting challenges among the 
engineering community not only as a theoretical problem but mainly as an issue of major 
practical importance. During the last fifty years, numerous techniques have been proposed 
and tested. However, the estimation of the global optimum in the general optimization 
problem has not yet been solved. 

Among the published optimization techniques, one can find various deterministic or 
stochastic procedures. The deterministic procedures perform a systematic search of the 
feasible region, possibly using derivative information (i.e. Steepest Descent Method, 
Sequential Linear Programming (SLP), Sequential Quadratic Programming (SQP), etc). The 
stochastic procedures perform a thorough exploration and exploitation of the feasible region 
(i.e. Genetic Algorithms (GA), Simulated Annealing (SA), Tabu search, etc) ((Belegundu and 
Chandrupatla, 1999); Pham and Karaboga, 2000). Their common element and main advantage 
is that they are derivative-free (‘zero-order’ techniques), meaning that they use no derivative 
(gradient or Hessian) information. In addition to these techniques, other approaches have also 
appeared, such as the Lagrange multipliers approach and the SIMP method by Bendsøe 
(Bendsøe and Sigmund, 2003). Another category of optimization techniques include the well-
known optimality criteria, which appeared first in the late 50’s (Haftka et al, 1990; Morris, 
1982; Rozvany, 2001). The Evolutionary Structural Optimization (ESO) by Steven et al. is a 
novel zero-order technique (Xie and Steven, 1997; Chu Nha et al, 1996). Its origin is based on 
the simple principle that underutilized material should be gradually removed. In addition, new 
formulations of OC still appear, as by Makris and Provatidis who proposed a virtual strain 
energy density optimization approach (Makris and Provatidis, 2002). Apart from the 
individual development of techniques, it is possible to combine the advantageous 
characteristics of different methods. Towards this direction, in the present section the 
combination of the ESO method with the method of Makris and Provatidis is investigated and 
updated. The investigation is based on an in-house Finite Element Analysis (FEA) code and 
includes four well-known typical literature examples. 
 
6.2.2. Theoretical background 
In a shape optimization problem, the domain of the design model is the design variable and 
the goal is to find its optimum shape (Haftka et al, 1990). The simplest type of such problems 
is designing for minimum compliance, or, equivalently, for maximum stiffness, under simple 
resource constraints. These constraints are imposed as a somewhat arbitrarily chosen material 
volume fraction (Rozvany, 2001). A realistic optimization approach for this kind of problems 
is to use the structural weight as the objective function and the displacements as the 
constraints (Xie et al, 1997). Therefore, the simplest formulation for the weight minimization 
of 2D-continuum structures implements only one displacement constraint (single 
displacement constraint problem) and can be stated as follows: 
 

minimize ( )
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This approach suggests that the 2D-continuum design space be discretized in NEL  finite 
elements, each one of which has a thickness t . The weight of the j th−  finite element is 
denoted as ( )jw t , the total weight of the structure is W , the maximum nodal displacement of 

the examined structure is max iu , while the prescribed displacement limit is allowu . In order to 
find the optimum design, three basic factors must be determined; that is the material removal 
criterion (redesign scheme), the termination criterion of the recursive optimization procedure 
and the optimality criterion based on which the optimum shape is determined.  
 
6.2.2.1. The material removal criterion 

According to the Evolutionary Structural Optimization (ESO) method, the redesign is 
based on the gradual elimination of underutilized elements from the discretized design 
domain (Xie et al, 1997). The determination of the material utilization is based on the 
absolute value of the element virtual strain energy iu  derived from the application of a virtual 
unit load at the most critical degree of freedom: 
 

{ } { }, , ,i q i elem i p iu U K U= ⎡ ⎤⎣ ⎦                                               (6.3) 
where 

iu :  the virtual strain energy of the i th−  element 

{ },q iU :  the nodal displacement vector of the i th−  element due to the virtual unit load 

,elem iK⎡ ⎤⎣ ⎦ : the stiffness matrix of the i th−  element  

{ },p iU : the nodal displacement vector of the i th−  element due to the real load 
 

More specifically, all elements are ranked according to their virtual strain energy and a 
predefined percentage of elements with the lowest values is eliminated. The developers of 
ESO also make two important remarks, the first being that if the continuum structure is 
discretized using finite elements of different size then the virtual strain energy density must be 
used instead, and the second being that the averaged nodal strain energy densities of 
neighboring elements can be used as a means of dealing with the so-called checkerboard 
problem.  
 
6.2.2.2. The termination criterion 

With respect to the termination criterion, the developers of ESO had proposed to check 
whether the prescribed limit for the displacement was exceeded: 
 

max
1i

allow

u
u

>                                                            (6.4) 

 
If this was the case, then the design corresponding to the last-but-one iteration was used as 

the optimized topology. In the sequel, a uniform scaling was applied on the thickness of this 
topology so that the displacement constraint (Eq.6.2) was satisfied as an equality (active 
constraint).  
 
6.2.2.3. The optimal shape criterion 

In a later version of ESO, another criterion for selecting the optimal shape was introduced; 
that of the so-called Performance Index (PI). The PI is a means to compare a current design 
with the initial one, which is used as a design of reference:  
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u WPI
u W

=                                                       (6.5) 

 
where 

,maxou : the absolute value of the most critical displacement in the initial design 

,maxcuru : the absolute value of the most critical displacement in the current design 

oW :  the structural weight of the initial design  

iW :  the structural weight of the current design 
 
When a value of PI less than unity is reached, then from that point on the efficiency of any 

new design is less than that of the initial design, thus the optimization procedure can be 
terminated. On the contrary, the maximum PI denotes the best material distribution that can 
be achieved (optimal shape) with respect to the initial design. Obviously, the maximum PI 
value is not known a priori. This means that the maximum PI value cannot be located unless 
the optimization procedure is completed. Therefore, another termination criterion can be 
defined: 
 

1PI <                                                               (6.6) 
 
6.2.3. The proposed optimization procedure 

One of the main advantages of the ESO procedure described in Section 6.2.2 is the fact that 
it does not require a mesh re-generation at each iteration step. On the contrary, the material 
removal is approximated by setting the Young’s modulus of the removed elements equal to 
unity, thus the initial mesh can be used. At the same time, this is a drawback, because both 
removed and remaining elements contribute to the formation of the global stiffness matrix. In 
turn, the estimation of the element virtual strain energy is an approximation and not the 
outcome of an accurate calculation. In order to minimize the effect that the removed elements 
have on the evolutionary procedure, the present chapter suggests the introduction of the 
normalized virtual strain energy density as the material removal criterion, the normalization 
being with respect to the remaining (active) elements only:  
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                                               (6.7) 

 
where 

jn :  the normalized virtual strain energy density of the j th−  active element  

,VSED ju : the virtual strain energy density of the j th−  active element  
NAE : the total Number of the Active Elements 

 
This alteration is based on a previous paper by the first author of the present work, where it 

was shown that the integration of the normalized virtual strain energy density into the 
structural optimization procedure of trusses was beneficial (Makris and Provatidis, 2002). In 
that paper, the normalization was with respect to all elements, while in this chapter the 
normalization is with respect to the active elements only. It is evident that the effect of the 
active elements is stronger in Eq.(6.7) than in Eq.(6.3). 
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Taking all the above into consideration, the proposed version of the ESO method for 2D-
continua can be divided in two phases, described as follows: 
Phase #1:  
Step 1:  Discretize the design domain using a fine mesh of finite elements  
Step 2:  Analyze the structure for the applied loads 
Step 3:  If the termination criterion (Eq.6.4) is violated, then STOP 
Step 4:  Estimate the Performance Index (PI) for the current design (Eq.6.5) 
Step 5:  Apply the virtual unit load theorem for the most critical degree of freedom (dof) 
Step 6:  Estimate the normalized virtual strain energy density jn  of all active elements using 

Eq.(6.7) 
Step 7:  Rank the active elements in an ascending order based on their jn  values 
Step 8:  Eliminate a predefined small proportion of the material with the lower jn  

(underutilized material) 
Step 9: Go to Step 3 

 
Phase #2: 
Step 10: From the Phase #1 results, locate the design with the highest PI value (optimal 

shape) 
Step 11: On the design of the previous step, apply a uniform scaling on the element thickness 

so that the corresponding weight is minimized 
 
6.2.4. Evaluation indices 

In order to evaluate the proposed procedure, the iterations required until the termination of 
the optimization procedure, as well as four more indices, termed as _1PI , _ 2PI , _ 3PI  and 

_ 4PI  respectively, were used. All these quantities are discussed briefly in the following 
paragraphs.  
 
6.2.4.1. Number of iterations 

It is self-evident that the evaluation of an iterative procedure performance is based on the 
number of iterations required until convergence is achieved. This criterion is also applied for 
the proposed ESO iterative scheme. 
 
6.2.4.2. The weight of the structure with respect to the initial design 

One of the primal objectives is to minimize the structural weight. In order to determine the 
material reduction of a design, it is required to use another design as a reference. As such, it is 
possible to use the initial design. It is obvious that the larger the reduction is, the better the 
design is. In mathematical terms: 
 

_1 cur ini

ini

W WPI
W

⎛ ⎞−
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⎝ ⎠

                                                   (6.8) 

where 
curW : the weight of the current design and  

iniW : the weight of the initial design (design of reference) 
 
6.2.4.3. The weight of the structure with respect to the optimized uniform design 

The initial design may be scaled uniformly with respect to the element thickness so that the 
displacement constraint becomes active. The so formed design is called optimized uniform 
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design (OUD). Therefore, it is possible to use the (OUD) as reference for weight 
comparisons. In this case, the corresponding index is defined as:  
 

_ 2 cur OUD

OUD

W WPI
W

⎛ ⎞−
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⎝ ⎠

                                                 (6.9) 

 
where 

curW : the weight of the current design and  

OUDW : the weight of the optimized uniform design (design of reference) 
 
6.2.4.4. The total area of the topology 

For practical engineering purposes, the knowledge of the area that the optimal topology 
covers is important because it determines the practical value of the structure. The MBB beam 
is a very good example. As it is known, this beam carries the floor in the fuselage of the 
Airbus passenger carrier. Apart from stress and displacement constraints, it is of major 
importance to ensure the presence of adequate openings so that all the systems running under 
the floor can be installed; otherwise, although a minimum weight may be achieved, the 
practical value may be minimized as well. A simple index that can be used for ranking the 
topologies with respect to their surface coverage is defined as: 
 

_ 3 ActElemN

NEL

A
PI

A

⎛ ⎞
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                                                   (6.10) 

 
where  

,N ActElemA : the total area of the non-vanishing elements 

NELA :  the total area of the initial topology 
If the continuum structure is discretized using finite elements of the same size, then the 

aforementioned index can be further simplified as: 
 

_ 3 ActElemNPI
NEL

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                (6.11) 

where 
ActElemN :  the number of the non-vanishing elements 

NEL :  the total number of elements 
 
6.2.4.5. The performance index (PI) 

The optimal shape criterion defined through the ESO Performance Index (PI) (Eq.6.5) is 
another quantity that can be used in order to evaluate a design:  
 

_ 4PI PI=                                                         (6.12) 
 
6.2.5. Investigated test cases 

The proposed procedure was tested in four typical examples retrieved from the literature, 
namely the deep cantilever, the short cantilever, the MBB beam and a Michell type structure 
(Fig.6.1).  
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(a) (b) (c) (d) 

Figure 6.1: The domain of the examined examples (a) deep cantilever, (b) short cantilever, 
(c) MBB beam and (d) Michell-type structure 

 
6.2.5.1. Test case#1: Deep cantilever 

The deep cantilever is illustrated in Fig.6.1a. The dimensions x yL L×  (Length x Height) 
of the design domain (rectangular shape) are 200xL mm=  and 450yL mm=  while the initial 
uniform thickness of the beam is 1t mm= . The entire left side of the structure is fixed and the 
centre of the right side is the point of application of a concentrated load 200F N= . Only one 
constraint is imposed and it concerns the maximum allowable displacement ( )1mm  both 
along the horizontal and the vertical direction. The Young’s modulus is considered to be 

200E GPa= , the material density is set equal to unity, while the Poisson’s ratio is assumed to 
be 0.3v = . The design domain was divided into 36 16×  four node rectangular finite elements. 
For each iteration, the Element Elimination Ratio (EER) used was constant and equal to 2% , 
while it was applied only to the non-vanishing elements. 
 
6.2.5.2. Test case #2: Short cantilever 

The short cantilever is illustrated in Fig.6.1b. The dimensions x yL L×  of the design 
domain (rectangular shape) are 160xL mm=  and 100yL mm=  while the initial uniform 
thickness of the beam is 1t mm= . Once again, the entire left side of the structure is fixed and 
the centre of the right side is the point of application of a concentrated load 3F kN= . Only 
one constraint is imposed and it concerns the maximum allowable displacement ( )1mm  both 
along the horizontal and the vertical direction. It is noted that there are two other variations of 
the same problem with 0.50allowu mm=  and 0.75allowu mm= . The Young’s modulus is considered 
to be 207E GPa= , the material density is set equal to unity, while the Poisson’s ratio is 
assumed to be 0.3v = . The design domain was divided into 32 20×  four node rectangular 
finite elements. For each iteration, the Element Elimination Ratio (EER) used was constant 
and equal to 1% , while it was applied only to the non-vanishing elements. 
 
6.2.5.3. Test case #3: MBB beam 

The MBB beam is a simply supported beam illustrated in Fig.6.1c. The dimensions 
x yL L×  of the rectangular design domain are 2400xL mm=  and 400yL mm= , while the 

initial uniform thickness of the beam is 1t mm= . A concentrated load 20F kN=  is applied at 
the middle of the top side of the beam. There is only one imposed constraint concerning the 
deflection of the beam which is required to be less than 9.4mm . For this case, the Young’s 

F  

F

FF  
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modulus is considered to be 200E GPa= , the material density is set equal to unity, while the 
Poisson’s ratio is assumed to be 0.3v = . The design domain was divided into 66 11×  four node 
rectangular finite elements. Once again, for each iteration, the Element Elimination Ratio 
(EER) used was constant and equal to 1% , while it was applied only to the non-vanishing 
elements. It is noted that due to symmetry of the beam, only the right or left half can be used. 
 
6.2.5.4. Test case #4: Michell structure 

The examined Michell type structure is illustrated in Fig.6.1d. The design domain is the 
section of a rectangular region x yL L×  with a circle. The dimensions of the rectangle are 

550xL mm=  and 400yL mm= , while the radius of the circle is 100r mm= . The circle is 
tangent to the middle of the left side of the domain and is fixed along its entire perimeter. The 
initial uniform thickness of the structure is 1t mm= . A point load 50F kN= acts at the 
middle of the right side of the rectangular region. The imposed single displacement constraint 
concerns the deflection of the loaded point which must not move vertically more than 9mm . 
It is noted that there are two other variations of the same problem with 5allowu mm=  and 

7allowu mm= . A Young’s modulus of 205E GPa= , a unitary material density and a Poisson’s 
ratio 0.3v =  are also assumed. The design domain is divided into 33 24×  four node rectangular 
finite elements. For each iteration, the Element Elimination Ratio (EER) used was constant 
and equal to 0.5% , while it was applied only to the non-vanishing elements. Again, due to 
symmetry, only the top half can be used. 
 
6.2.6. Results 

The results of the examined examples are presented in the following Table (Table 6.1).  
 

Table 6.1: Results 
Example Scenario ERR (%) Iterations PI_1 PI_2 PI_3 PI_4

A 2 73 -99.80 -44.23 19.44 1.793

B 2 52 -99.80 -44.14 19.79 1.790

-28.77% 0.00% -0.22% 1.79% -0.17%

A 1 52 -72.70 -16.37 56.88 1.196

B 1 42 -73.16 -17.79 55.00 1.216

-19.23% 0.63% 8.64% -3.30% 1.71%

A 1 82 -99.98 -35.50 39.67 1.550

B 1 68 -99.98 -35.99 39.95 1.562

-17.07% 0.00% 1.39% 0.70% 0.77%

A 0.5 171 -77.28 -28.40 37.88 1.397

B 0.5 78 -76.84 -27.02 56.06 1.370

-54.39% -0.57% -4.85% 48.00% -1.89%

Deep cantilever

Michell structure

MBB beam

Short cantilever

 
 

The terms ‘Scenario A’ and ‘Scenario B’ correspond to the typical ESO procedure and the 
proposed ESO variation, respectively. The columns ‘Iterations’, _1PI , _ 2PI , _ 3PI  and 

_ 4PI  correspond to the evaluation indices. For each example in the Table, there are three 
rows, the first two containing the results of the performed investigation and the third row 
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representing the comparison between the two scenarios, ‘Scenario A’ being the reference. In 
mathematical terms, each third-row value is defined as:  
 

_ _

_

Scenario B Scenario A

Scenario A

Value Value
Value

Value
⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

                                  (6.13) 

 
At this point, it is strongly emphasized that, depending on the combination of the Element 
Elimination Ratio (EER) value and the mesh fineness, it is possible to get results in favor of 
the first or the second scenario. Towards this direction and for the needs of the current work, 
it was decided to present such combinations of ERR and mesh fineness that would pinpoint 
this characteristic. From Table 6.1 it is evident that, in all cases, the proposed procedure 
results in a significant reduction of the required number of iterations (from 17%  to 54% ), 
while the superiority with respect to the other evaluation indices depends on the evaluation 
index selected and the example examined, or, more accurately, on the selected combination of 
the ERR and the mesh.  

For each example, the optimal shape is illustrated in Fig.(6.2).  
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(a) Deep cantilever 

  
(b) Short cantilever 

 
(c) MBB beam 

 
(d) Michell type structure 

Literature Scenario A – ERR: 0.5%  Scenario B – ERR: 0.5%  

Figure 6.2: Optimal shapes 
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There is a variety of results. For example, the optimal shape for the deep cantilever is almost 
the same, independed from the scenario, while for the short cantilever, depending on the 
scenario, the optimal shape is completely different. 
 
6.2.7. Conclusions 

The present investigation concerned the use of the normalized virtual strain energy density, 
the normalization being with respect to the remaining (active) elements, as a criterion for 
material removal in the well-known Evolutionary Structural Optimization (ESO) method. The 
main idea behind this approach was that the remaining (active) elements must have a stronger 
influence on the optimization procedure than the removed elements. The investigation 
included four typical examples, namely the deep cantilever, the short cantilever, the MBB 
beam and a Michell type structure, and the evaluation of the results was based on five indices 
(‘Iterations’, _1PI , _ 2PI , _ 3PI  and _ 4PI ). It was shown that, in all cases, the optimum 
shape was reached in significantly less iterations when the proposed criterion was 
implemented. On top of that, it was also shown that a design better than that obtained by the 
application of the typical ESO procedure could be located. Therefore, the conclusion of the 
current investigation was that, apart from the Element Elimination Ratio (EER) and the mesh 
fineness, the proposed material removal criterion is of major importance in the quest of the 
optimal shape and must be considered as an optimization parameter.  
 
6.3. Variable thickness sheet under an extended single displacement 
constraint 

In the present section, the problem of seeking the optimum layout of a 2D continuum 
structure is sought under the assumption that an extended single active displacement 
constraint is imposed and elements of variable element-wise thickness are combined with the 
Finite Element Method (FEM). The specific optimization problem is of high importance 
because it is related to the serviceability limit state constraints imposed to a structure in real-
life engineering problems. The use of variable element-wise thickness elements aimed at 
deriving a continuous thickness distribution at the optimum, in contrast to the highly 
discontinuous distributions obtained, when elements of constant thickness are used. The 
element type introduced was a 4-node quadrilateral element with isoparametric thickness 
interpolation. The weight-minimization constraint-fulfilling redesign rule was the imposition 
of a uniform virtual strain energy density distribution over the active part of the structure 
under examination. For the evaluation of the proposed approach, four cases retrieved from the 
literature were examined, namely the deep cantilever, the short cantilever, the MBB beam and 
a Michell type structure (bridge), while appropriate performance indices were introduced. It 
was found out that getting superior layouts, when using elements with variable thickness, was 
possible thus suggesting that a further investigation should be carried out.  
 
6.3.1. In general 

The layout optimization problem of single displacement constrained 2D continua may be 
sought either with a direct technique, such as a Mathematical Programming (MP) technique, 
or with an indirect method, such as an Optimality Criteria (OC) method. Schmit (1960) 
introduced the idea of coupling Finite Element Analysis (FEA) with mathematical 
programming techniques to solve nonlinear inequality constrained problems concerning the 
design of elastic structures under a multiplicity of loading conditions (Schmit, 1960). Since 
then, a great many number of mathematical methods have been developed, all of which, 
however, suffer from the same disadvantage of very limited optimization capability with 
respect to the number of variables and number of active constraints, respectively (Rozvany, 
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1992). On the other hand, the origin of the OC methods can be found in Michell’s work 
(1904) who investigated the minimum weight of a planar truss that transmits a given load to a 
given rigid foundation with the requirement that the axial stresses in the bars of the truss stay 
within an allowable range (Ostola-Starzewski, 2001). According to Michell, at the optimum, 
the axial strain has a constant absolute value, say k , in directions of non-zero axial forces 
while in the directions of zero axial forces the absolute value of the strain must be at most 
equal to k  (Michell, 1904). Half a century later Foulkes (1954) introduced another optimality 
condition. More specifically, he examined the problem of assigning economical sections to 
frames that obtain their strength from a bending action, while he used both the theory of 
plastic collapse in order to determine the strength of a design and a virtual work approach in 
order to derive the equations governing the problem. He concluded that for a segment-wise 
prismatic frames the average absolute curvature for each segment must be the same (Foulkes, 
1954). Five years later, Heyman (1959) extended Foulkes’ optimality criterion to include 
plastic beams having a rectangular cross-section that could freely vary, while the depth was 
given but the width was variable (Heyman, 1950). A general optimality criterion for the 
optimal plastic design of structures with freely varying cross-sectional dimensions was 
proposed by (Shield and Prager, 1970). This criterion was considerable extended by Rozvany 
(1976) who stated that in the optimal strain-stress relation, the adjoint strains must be 
kinematically admissible and are given by the gradient of a specific cost function, in which 
the stress vector must be statically admissible (Rozvany, 1992). Prager also introduced the 
concept of structural universe (ground structure) for substituting a continuum with a skeletal 
structure (Rozvany, 1992). In the early 70’s, Venkayya showed that for the optimum design is 
the one in which the strain energy of each element bears a constant ratio to its energy capacity 
(Venkayya, 1971). At the same time, Gellatly and Berke proposed an optimality criteria 
approach for dealing with indeterminate trusses constrained both in stress and displacement 
(Gellatly and Berke, 1973). For the displacement constrained part of the problem, based on 
the method of Lagrange multipliers, they developed a recursive redesign formula utilizing 
both the aforementioned optimality condition and the imposed displacement constraint (for 
multiple displacement constraints, the recursive formula was used for each one of the 
displacement constraints and the largest resulting cross-sectional area was picked for the next 
iteration). The criterion for selecting the active elements was the signum of the product of the 
member stress due to the actual loads times the member stress due to the appropriately 
applied virtual load. The derivation of the optimality criterion for uniform virtual strain 
energy density distribution over the active part of a truss under single displacement constraint 
is very well presented in Morris (Morris, 1982), where the contribution of the passive and the 
active elements is discussed in detail. Patnaik et al. also dealt with displacement constrained 
problems and introduced a design update expressed in an exponential, a linearized, a 
reciprocal and a melange form (Patnaik et al, 1995). In these forms, the estimation of the 
corresponding Lagrange multiplier was mandatory and for this purpose a linear, an 
exponential, an unrestricted and a diagonalized inverse approach were developed (Rozvany, 
1989; Rozvany, 1997). Rozvany and Zou have formulated the fundamental relations of 
optimal elastic design using a Continuous-based Optimality Criteria (COC) approach for 
freely varying cross-sections and one deflection constraint (Rozvany and Zhou, 1991). Xie 
and Steven, the developers of the Evolutionary Structural Optimization (ESO) method, have 
handled the single displacement constraint optimization problem of 2D continuum (Xie and 
Steven, 1997; Querin et al, 2000). Within the frame of Optimality Criteria, Makris and 
Provatidis (2002) proposed an iterative procedure were the optimality criterion demanding a 
uniform virtual strain energy density distribution over the active part of the structure was 
introduced into their redesign formula as a normalized penalization factor (Makris and 
Provatidis, 2002). Extending this work, Makris et al. introduced the concept of a dummy 
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stress bound in order to deal with problems in which only displacement limitations are 
imposed (Makris et al, 2006). However, in all of the aforementioned papers, finite elements of 
constant geometrical characteristics were used, either in the form of a constant cross-section 
or in the form of a constant thickness. Therefore, it would be interesting to investigate the 
performance of finite element of variable geometrical characteristics. 

Towards this direction, the present chapter examined the performance of 4-node 
quadrilateral elements of element-wise variable thickness when used in the layout 
optimization of single displacement 2D continua. For the thickness interpolation within each 
element, the shape functions used for the nodal displacement interpolation (isoparametric 
thickness interpolation) were applied. For the optimization itself, a novel iterative procedure 
was tested according to which first the Virtual Strain Energy Density (VSED) was estimated 
for each element, then VSED was estimated for each node of the discretized domain and 
finally the nodal thickness was appropriately updated so that, ultimately, a uniform virtual 
strain energy density distribution over the active part of the structural domain was achieved. 
The nodal estimation of VSED from element VSED values was based on three simple 
interpolation schemes of local character, while a global interpolation scheme may be applied 
as well. For the purposes of the present investigation, first the calculation of the stiffness 
matrix for a 4-node quadrilateral element with variable isoparametric thickness was developed 
and then four typical literature cases of 2D continua under a single displacement constraint 
were examined, namely the deep cantilever, the short cantilever, the MBB beam and a 
Michell type structure (bridge). For the quantification of the obtained results, three Evaluation 
Indices (EIs) were introduced, while the convergence histories for each case were also 
recorded. The evaluation of the aforementioned indices provided useful insight concerning the 
use of quasi-3D analyses with variable thickness elements as a computationally economic but 
qualitatively and quantitatively trustworthy alternative to a full-scale 3D elasticity approach.  
 
6.3.2. Theoretical background 

The proposed approach is based on two theoretical aspects, the former being the 
Optimality Criterion for the single displacement constraint problem and the latter being the 
formation of the stiffness matrix for a 4-node quadrilateral finite element of variable 
thickness, whose thickness is interpolated by the shape functions used for the nodal 
displacement interpolation (isoparametric thickness interpolation). For reasons of completion, 
these aspects are briefly presented in the following paragraphs.  
 
6.3.3. The Optimality Criterion for the single displacement constraint problem 

The expression of the Optimality Criterion redesign technique suitable for 2D continua 
under a single displacement constraint may be formulated if first the corresponding formula 
for trusses is derived and then the derived formula is appropriately updated for use for a 2D 
continuum. 

According to the statement of the single displacement constrained optimization problem of 
a 2D ground structure (truss), a pre-determined value is imposed as the maximum allowable 
nodal displacement that may appear in the truss; however, the degree of freedom related to the 
aforementioned nodal displacement is not known a priori. The problem statement is as 
follows: 
 

( )
1
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min
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where A  is the cross-sectional area, L  is the length, ρ  is the material density, u  is the nodal 
displacement, while the indices k  and allow  denote the k − bar and the allowable value, 
respectively. The total number of bars (elements) in the structure is declared as NEL . The 
imposed constraint on the displacement suggests that the nodal displacement not be greater 
than allowu  in both x  and y  directions. Furthermore, the constraint with respect to the 
minimum cross-sectional area is imposed so that the formation of a positive definite stiffness 
matrix is ensured. Using the method of Lagrange multipliers, as presented in Section 5.2.1, an 
Optimality Criterion is formulated, according to which, at the optimum, the virtual strain 
energy density (VSED) is uniformly distributed over the active part of the optimized 
structure. Generalizing the aforementioned analysis for 2D continua (Venetsanos et al, 2008), 
at the optimum, the same condition for the VSED holds, while, instead of using the cross-
sectional area kA , the structural thickness is introduced as a design variable. At this point, it is 
clarified that, for severe numerical instabilities to be avoided during the optimization 
procedure due to zero thickness values, a lower positive bound on thickness was imposed. 

The aforementioned OC has two imperfections, the former being that it neither suggests a 
way to reach the optimum nor ensures that the imposed constraint will be active. Therefore, it 
is possible to develop a plethora of redesign formulas aiming at achieving a uniform VSED 
distribution. Extending the analysis of Section 5.2.1, in the present chapter, the nodal 
thickness redesign is based on the following formula: 
 

,
i

i new i
wt t
w

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                       (6.15) 

 
Furthermore, a uniform scaling applied to the design variables at each iteration ensured that 
the imposed displacement restriction was satisfied as an equality constraint. 
 
6.3.4. Stiffness matrix of a 4-node quadrilateral finite element with variable thickness 

The stiffness matrix of the 4-node quadrilateral element with isoparametric thickness 
interpolation is described analytically in Appendix 4B, according to which it holds:  
 

( )
41 1

1 1
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=

= ΕΒ∑∫ ∫K B                                   (6.16) 

 
where it  is the thickness at the i th−  corner node of the e − element, iN  is the corresponding 
shape function, B  is the 3 8×  strain-displacement matrix, E  is the 3 3×  stress-strain matrix 
of elastic moduli (different for plane stress and plane strain poblems) and J  is the Jacobian 
matrix that connects the differentials of the global variables { },x y  to the local ones { },ξ η . 
The 4-node quadrilateral element with constant and variable element-wise thickness is 
illustrated in Fig.6.3. 

 
(a) (b) 

Figure 6.3: 4-node quadrilateral element with (a) constant and (b) variable thickness 
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6.3.5. The proposed optimization procedure 
The present chapter proposes an optimization procedure that uses elements of variable 

element-wise thickness (Approach #1). For reasons of comparison, another optimization 
procedure, using elements of constant element-wise thickness, was also developed (Approach 
#2). In both cases, the so-called Optimum Uniform Design (OUD), that is the design obtained 
when the thickness distribution over the discretized domain is uniform and has the minimum 
possible value that does not cause any constraint violation, was used as reference.  
 
6.3.5.1. Optimization procedure with elements of variable element-wise thickness 

(Approach #1) 
The proposed optimization procedure is as follows: 

Step 1: Estimate the (OUD) and record weight, thickness and virtual strain energy density to 
be used as references 

Step 2: Apply the virtual unit load theorem to the most critical degree of freedom (dof)  
Step 3: Estimate the normalized virtual strain energy density for each active element 
Step 4: Estimate the normalized virtual strain energy density for each node of the active 

elements (active nodes) 
Step 5: Update the thicknesses of the active nodes with the proposed redesign formula 
Step 6: Apply a uniform thickness scaling so that no displacement violations occur 
Step 7: Check for convergence; if convergence has not been achieved and the maximum 

number of iterations has not been exceeded, then go back to Step 2. 
Step 8: Apply a global smoothing procedure to the nodal thickness distribution (e.g. Kriging 

technique). 
Step 9: Apply a uniform scaling to the smoothed layout of Step 7 so that no displacement 

violations occur 
Step 10: Evaluate the Performance Indices. 
 

The nodal estimation of the VSED was derived from the element VSED values with the 
application of an interpolation scheme. The interpolation schemes used in the present chapter 
are presented in Section 6.3.6.  
 
6.3.5.2. Optimization procedure with elements of constant element-wise thickness 

(Approach #2) 
The corresponding optimization procedure for constant-thickness elements is as follows: 

Step 1: Estimate the (OUD) and record weight, thickness and virtual strain energy density to 
be used as references 

Step 2: Apply the virtual unit load theorem to the most critical degree of freedom (dof)  
Step 3: Estimate the normalized virtual strain energy density for each active element 
Step 4: Update the thicknesses of the active element with the proposed redesign formula 
Step 5: Apply a uniform thickness scaling so that no displacement violations occur 
Step 6: Check for convergence; if convergence has not been achieved and the maximum 

number of iterations has not been exceeded, then go back to Step 2. 
Step 7: Apply a global smoothing procedure to the element thickness distribution (e.g. Kriging 

technique). 
Step 8: Apply a uniform scaling to the smoothed layout of Step 7 so that no displacement 

violations occur 
Step 9: Evaluate the Performance Indices. 

 
It is clarified that the nodal estimation of the VSED was derived from the element VSED 

values with the application of one of the interpolation schemes described in Section 6.3.6.  
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6.3.6. Estimation of the nodal values for the virtual strain energy density 
The main idea of the proposed procedure was first to evaluate the virtual strain energy 

density for each element and then to estimate the corresponding nodal values through an 
interpolation scheme. In total, three VSED Interpolation Schemes (#1, #2, #3) were used. For 
the variable-thickness elements and according to the first scheme, the VSED at a node was 
estimated as the maximum of the VSED values corresponding to the element surrounding the 
specific node. According to the second and the third scheme, the nodal VSED values were 
estimated from the average and the minimum VSED values, respectively, of the elements 
surrounding the specific node. For a structured mesh with 4-node rectangular elements, it is 
obvious that for a node inside the mesh (design space) four elements contributed to the 
aforementioned nodal VSED estimation, while for a node along the border of the mesh and 
for a corner node, two and one elements contributed, respectively. For the constant-thickness 
elements, only one VSED value corresponded to each element. 
 
6.3.7. Evaluation of the proposed optimization procedure 

The evaluation of the proposed approach was divided into two parts, the former being the 
verification of the in-house 4-node quadrilateral element with isoparametric thickness and the 
latter being the evaluation of the performance of the proposed procedures in terms of 
structural weight, virtual strain energy density distribution and convergence behavior. 
 
6.3.7.1. Verification of the introduced finite element 

The verification of the introduced finite element was carried out through a comparison 
with the element SHELL63 of the Finite Element Analysis (FEA) software Ansys (ver.10). 
For the verification, a rectangular 2D cantilever first under in-plane bending and then under 
unsymmetrical tension (compression) was examined for various mesh densities with unit 
aspect ratio. A coincidence in nodal displacements between the in-house code and Ansys was 
achieved (keyoptions for SHEL63: extra displacement shape functions excluded, membrane 
element stiffness only).  
 
6.3.7.2. Definition of the Evaluation Indices 

The evaluation of the performance of the proposed procedures was achieved through the 
introduction of three Evaluation Indices (EI) defined as follows: 
• Evaluation Index 1EI , informing about the normalized relation between the weight of the 

optimum layout before the application of the global smoothing procedure and the weight 
of the (OUD) and defined as: 

 

1
opti

OUD

W
EI

W
⎛ ⎞
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⎝ ⎠

                                                      (6.17) 

 
• Evaluation Index 2EI , informing about the virtual strain energy density distribution of the 

structure before the application of the global smoothing procedure and defined as the 
Coefficient of Variation ( )CV  of the VSED values corresponding to the active nodes: 

 
( )2 _active nodesEI CV VSED=                                              (6.18) 

• Evaluation Index 3EI , informing about the size of the active structural part and defined as 
(for the variable and the constant thickness elements, respectively, where NN  stands for 
Number of Nodes and NEL  for Number of Elements): 
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                                        (6.19) 

 
Moreover, the convergence history, in terms of structural weight, was also recorded and 

presented as a plot. Obviously, similar indices may be defined for the state after the 
application of the global smoothing procedure. At this point, it is clarified that the active part 
of a structure is defined as the one with size larger than the minimum imposed one. Therefore, 
for an active node and an active element, the corresponding thickness is higher than the 
imposed lower bound. 
 
6.3.7.3. Verification of the optimized smoothed layouts 

In order to verify that the optimized layouts, after the smoothing procedure was applied, 
did not violate any of the imposed constraints, one last (FEA) was carried out and then a 
uniform scaling was applied. In this way, a slightly oversized design was uniformly shrunk 
and a slightly undersized design was uniformly enlarged. The uniform change of the layout is 
not a necessary optimality condition but for good practical engineering purposes is totally 
acceptable. 
 
6.3.8. Investigated test cases 

A schematic illustration of the examined 2D continua is presented in Fig.6.4.  
 

 
(a) (b) (c) (d) 

Figure 6.4: The investigated structures (a) deep cantilever, (b) short cantilever, (c) MBB 
beam and (d) Michell bridge 

 
6.3.8.1. Test case #1: Deep cantilever 

The data for this test case may be found in Section 6.2.5.1. 
 
6.3.8.2. Test case #2: Short cantilever 

The data for this test case may be found in Section 6.2.5.2. 
 
6.3.8.3. Test case #3: MBB beam 

The data for this test case may be found in Section 6.2.5.3. 
 
6.3.8.4. Test case #4: Michell structure 

The examined Michell type structure is illustrated in Fig.6.4d. The dimensions of the 
rectangular design domain are 2400xL mm=  (width) and 400yL mm=  (height), while the 
initial uniform thickness of the beam is 1t mm= . A concentrated load 50F kN=  is applied at 
the middle of the top side of the beam. There is only one imposed constraint concerning the 
deflection of the beam which is required to be less than 9.4mm . For this case, the modulus of 
elasticity is considered to be 200E GPa= , the material density is set equal to unity, while the 
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Poisson’s ratio is assumed to be 0.3v = . The design domain was divided into 66 11×  4-node 
rectangular finite elements.  
 
6.3.9. Results 

The Evaluation Indices (EIs) for the examined applications are shown in Table 2 while 
selected plots concerning the optimal layouts and the corresponding convergence histories are 
shown in Fig.6.5. 
 
6.3.9.1. Evaluation Indices 

In Table 6.2, the symbols t const=  and t const≠  correspond to constant and variable 
thickness elements, respectively. The %  difference is defined as the %  relative difference 
with respect to the results obtained with the use of constant thickness elements. At this point it 
is clarified that the %  difference was not calculated for the evaluation index 2EI , while a 
qualitative interpretation was preferred instead. The reason for this choice is related to the 
physical interpretation of the Coefficient of Variation ( )CV . In more details, a small ( )CV  
for the 2EI  index denotes a very strong uniform VSED distribution, which was the case for 
both the constant and the variable thickness elements, as Table 2 suggests. However, a visual 
inspection reveals that the ( )CV  values for the two types of elements were significantly 
different in all cases. Since it is meaningless to quantify how much significantly different the 
corresponding values were, it was selected to proceed with the qualitative evaluation of the 

2EI  values. 
 
Table 6.2: Evaluation Indices for the examined applications 

EI1 EI2 ΕΙ3 EI1 EI2 ΕΙ3 EI1 EI2 ΕΙ3
t=const 0,5061 0,6420 0,9340 0,5061 0,6420 0,9340 0,5061 0,6420 0,9340
t≠const 0,5180 1,1399 0,9094 0,5025 3,1369 0,9030 0,5044 0,3627 0,9634
% difference 2,34% -2,64% -0,72% -3,32% -0,34% 3,15%

t=const 0,6220 1,5188 0,9906 0,6220 1,5188 0,9906 0,6220 1,5188 0,9906
t≠const 0,6356 2,9201 0,9740 0,6112 2,5655 0,9870 0,6116 0,0179 1,0000
% difference 2,20% -1,68% -1,73% -0,36% -1,67% 0,95%

t=const 0,5343 0,0078 1,0000 0,5343 0,0078 1,0000 0,5343 0,0078 1,0000
t≠const 0,5603 2,1304 0,9876 0,5094 1,9019 0,9988 0,5099 0,0025 1,0000
% difference 4,86% -1,24% -4,66% -0,12% -4,56% 0,00%

t=const 0,5343 0,0078 1,0000 0,5343 0,0078 1,0000 0,5343 0,0078 1,0000
t≠const 0,5603 2,2111 0,9888 0,5093 1,9877 1,0000 0,5098 0,0017 1,0000
% difference 4,87% -1,12% -4,68% 0,00% -4,58% 0,00%

VSED interpolation scheme #1 VSED interpolation scheme #2 VSED interpolation scheme #3

Deep 
cantilever

Short 
cantilever

MBB beam

Michell 
structure 
(bridge)  
 
From Table 6.2, it yields that for the second and the third interpolation schemes, the 

proposed procedure with the variable thickness elements, resulted in a structural weight 
reduction ( )1EI  ranging from 0.34%  to 4.68%  with respect to the use of constant thickness 
elements. Furthermore, the first two interpolation schemes resulted in a reduction of the size 
of the active structural part ( )3EI  up to 3.32% , while the third interpolation scheme resulted 
in an increase of the active structural part. 
 
6.3.9.2. Optimal layouts 

For each one of the examined examples, there were four possible solutions resulting from 
the three different VSED interpolation schemes for Approach #1 and one such scheme for 
Approach #2. Therefore, for each example, four layouts and four convergence histories with 
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respect to the structural weight were obtained. Due to space limitations, only two 
representative layouts are presented per example (the ‘average’ VSED interpolation scheme 
and the one for the constant thickness elements). More particularly, the optimal layouts 
derived with variable thickness elements and the ‘average’ VSED interpolation scheme are 
shown in the first column of Fig.6.5, while the optimal layouts derived with constant 
thickness elements are shown in the second column of the same figure. The plots of the 
convergence histories per example are illustrated in the third column of Fig.6.5  
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Figure 6.5: Optimal layouts and convergence histories for the investigated examples 

 

It is clarified that, due to symmetry along the mid-plane of the structures, only half of the 
structural thickness distributions are shown (from the mid-plane and towards the upper 
surface). Furthermore, for reasons of visual inspection, the material distributions 
corresponding to the variable and to the constant thickness elements were plotted as colored 
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unfilled meshes (Fig.6.5, 1st column) and as filled columns (Fig.6.5, 2nd column), respectively. 
In addition, for each one of the convergence history plots, the illustrated weights were 
normalized with respect to the minimum value among the four optimal weights obtained for 
each example. 

The appropriate comparison between the plots in the first two columns of Fig.6.5 revealed 
several interesting details, among which the most interesting one was the fact that non-
skeletal layouts were obtained. On the contrary, there was a pattern that always appeared, 
according to which the optimal layout could be divided clearly into three regions. The first 
region concerned a thicker material distribution, easily located with visual inspection, forming 
a kind of boundary. The second region concerned the part of the domain inside the 
aforementioned boundary; this region had a varying thickness close to the lower thickness 
bound. The third region concerned the part of the domain outside the aforementioned 
boundary; the thickness of this region was equal to the lower thickness bound, denoting the 
existence of a part of the domain which is redundant and can be removed without causing any 
problems to the structural stability. The clear absence of reinforcing ribs is due to the 
existence of the aforementioned inner region which provides a very good way for carrying the 
shear. On top of that, the use of variable thickness elements results in much smoother 
thickness distributions. This means that the result of the proposed optimization procedure is 
characterized by a high degree of manufacturability, while a further global smoothing 
procedure actually serves for a better smear-off of the distributed material. 

From the convergence history plots (Fig.6.5, 3rd column) it is clear that in all cases a very 
smooth and fast convergence is achieved. Furthermore, if the second or the third VSED 
interpolation schemes are used, then the structural weight of the optimal layout is lower when 
compared to the corresponding one obtained using constant thickness elements (denoted with 
markers only in the plots). In addition, the slower convergence is achieved with the ‘average’ 
VSED interpolation scheme. Finally, in order to ensure that an early convergence did not hide 
a later diverging behavior, the iterative procedure was forced to be carried out 100 times. As 
Fig.3(3rd column) shows, convergence was practically achieved after a few iterations and no 
diverging behavior in later stages appeared.  
 
6.3.10. Discussion 

The topic presented in this section concerned a newly introduced procedure, which is 
suitable for minimizing the weight of 2D continua under an extended single displacement 
constraint only. For its study in-house codes were developed for both constant and variable 
thickness elements, 16 models were analyzed, while the approach introduced in the previous 
chapter was the basis of the current investigation. At this point it is clarified that the 
development of in-house codes was more a strategic decision, as explained in Section 4.3.5.6.  

Furthermore, in order to avoid element-wise warping distortions due to the fact that four 
points do not necessarily lie on the same plane, the use of an adequate large number of 
elements is required. The go-around way of degenerating the 4-node elements into 3-node 
ones (three nodes always define a plane), is not advisable, because such a degeneration results 
in significantly less accurate results.  

The use of elements with element-wise variable thickness seems to be a very good 
compromise between 2D and full 3D analyses, since the computational cost is sufficiently low 
and the ability to get continuous thickness distributions is ensured. Furthermore, since the 
optimization procedure is based on nodal thickness redesign, it is obvious that all of the nodes 
serve as control points that can move vertically to the mid-surface of the structure. In this 
way, the thickness envelope is highly parameterized, thus enabling the formation of a fine 
thickness distribution. Further steps towards this direction are the implementation of various 
schemes of, local or global, thickness interpolation and the implementation of CAD features, 
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such as the NURBS and the related mathematical functions that permit shifting and cavity 
creation, the ultimate goal being the development of a variable thickness super-element. 
 
6.3.11. Conclusions 

The current investigation showed that the novel approach introduced in Chapter 5 for 
skeletal structures is possible to be adjusted for solving the layout optimization of 2D 
continua under the extended single displacement constraint. The central idea in this 
adjustment is to implement elements of variable thickness in combination with certain 
interpolation schemes, concerning the appearance of a uniform virtual strain energy 
distribution at the optimum. The encouraging results suggested that further investigation be 
carried out with other types of thickness description and thickness interpolation schemes. 
 
6.4. Recapitulation 

In this chapter, the layout optimization of 2D continua under an extended single 
displacement constraint was discussed, the concept of the ‘extended’ displacement constraint 
being introduced in Chapter 5. The current chapter contributes in three ways, the first being 
the redesign of the structure using nodal-based, and not element-based, information, the 
second being the introduction of a variation of an already existing material-removing 
methodology and the third being the extension to 2D continua of the new procedure, which 
was proposed in Chapter 5. More particularly,  

More particularly, the use of nodal-based information for the redesign of a 2D continuum 
is nothing else than controlling its thickness using a nodal-wise thickness distribution within 
each finite element, which are used for the discretization of the continuum. To this end, the 
current chapter proposes the implementation of an isoparametric interpolation scheme. That 
is, to implement the same interpolation functions for the interpolation of geometry, thickness 
and displacements, the nodes being the interpolation points. 

In addition, the introduced variation of an already existing material-removing methodology 
concerned the criterion based on which material is detected as redundant. In opposition to the 
existing literature, for this detection it is proposed to use the normalized virtual strain energy 
density, the normalization taking place with respect to the active part of the structure. To this 
end, the examined examples showed that the aforementioned variation is more efficient than 
the initial version of the existing methodology.  

Last, the concept of interpolating nodal-based information was combined with the redesign 
methodology, which was introduced in Chapter 5, and extends its application in 2D continua. 
The encouraging results from this investigation suggest that the aforementioned approaches 
be useful and efficient tools for 2D layout optimization problems when an extended singe 
displacement constraint is imposed. 
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CHAPTER 7 
 
 

ON THE MINIMIZATION  

OF THE STRUCTURAL COST 
 
 
 
 

 
Abstract 

In this chapter, the minimization of the structural cost is investigated. It is well known that, in real‐life 
engineering problems, minimum weight does not necessarily mean minimum cost, thus it is of practical value to 
simultaneously achieve both structural optimization and cost minimization of a structure. However, it is not 
possible to establish a generalized procedure applicable in all cases, because for the cost minimization to be 

achieved special design characteristics of each case must be exploited. Within this concept, the present chapter 
presents two optimization procedures, one suitable for skeletal structures under stress constraints only and one 
suitable for welded steel tanks for oil‐storage. For the former case, a post‐optimization procedure is formulated, 
according to which the optimized structural members of equal or near‐equal cross‐sections are appropriately 

grouped and finally all optimized structural members of the imposed critical minimum or near minimum cross‐
section are eliminated. Both grouping and elimination procedures are based on a statistical approach. The 

proposed procedure was applied to four test cases, namely the short and long cantilever, the MBB beam and the 
L‐shaped beam. The conclusion was that the proposed procedure provided the means for both layout optimization 
and structural cost minimization. The extension of the proposed procedure to 3D skeletal structures, as well as 

to other types of constraints, is trivial. For the latter case, a design optimization procedure is formulated, 
according to which the minimum structural cost is sought in terms of volume of material used, scrap material 
and cost for welding. The proposed procedure was applied in a series of designs, thus resulting in nomograms 
that can be used for selecting explicitly decisive design dimensions for minimum structural cost. From the 

aforementioned investigation it becomes obvious that, instead of pass‐par‐tous methods, the development of case‐
oriented optimization procedures may be most beneficial. 
 
 

Keywords 
layout optimization, skeletal structures, 

welded tank, oil‐storage, cost minimization. 
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7.1. Introduction 
It is well known that, in real-life engineering problems, minimum weight does not 

necessarily mean minimum cost, the reason for this being that the estimation of the structural 
cost takes into account various parameters, not explicitly apparent, three of which, perhaps the 
most important ones, being the lack of commonality, the cost of the welding and the quantity 
of the remaining material (scrap).  

The term ‘commonality’ describes how similar or different the profiles of a structure are. 
For instance, a truss consists of a number of bar elements, each one of which, theoretically 
speaking, may have a different profile. However, while this may be good from the viewpoint 
of the total structural weight, it is not good from the viewpoint of the total structural cost, 
because it is almost always cheaper to buy larger amounts of the same profile than to purchase 
smaller amounts of different profiles. Therefore, it is of interest to increase the commonality 
of a structure, so that fewer different profiles can be ordered.  

The cost of the welding is another parameter that may significantly affect the design of a 
structure. For instance, in order to minimize the weight of a closed cross-section, as is the 
case of a box girder, it is possible to come out with a design with longitudinal reinforcements. 
However, these reinforcements must be welded to the cross-section, thus the structural cost 
increases due to the welding, which is expensive. Instead, it would be possible to increase the 
thickness of the cross-section plates such that no longitudinal reinforcement is required. In the 
latter case, while the structural weight is higher, the structural cost may be lower, because 
there is a break-even-point where the increase of the structural cost due to purchasing plates is 
less than the increase of the structural cost due to welding. As a result, it is possible to adopt a 
whole new design trend which, although heavier than the one proposed by weight 
minimization procedures, is preferable in terms of structural cost. 

Another parameter that determines the structural cost is the scrap material; that is the 
material that remains after the construction is completed. Having zero scrap is the ideal case 
and for this to occur the optimization procedure to be applied must be case-oriented; in this 
way, the design characteristics and particularities of the structure under examination can be 
exploited as much as possible. According to the ideal case of ‘zero-scrap design’, the structure 
consists of an integer number of commercially available structural members, such as sheet 
plates or beams.  

In the remaining of this chapter, the concept of commonality will be investigated through 
the examination of skeletal structures. Such structures may be used as substitutes to 
continuum structures, as well. On top of that, an optimization procedure embedding the cost 
of welding and the concept of scrap material is also presented through the case of welded 
tanks for oil-storage. 

 
7.2. Cost minimization through increasing commonality 
7.2.1. In general 

The motivation of cost optimization is to exploit the available limited resources in a 
manner that maximizes utility (Kirsch, 1993). Therefore, the objective of an optimal design is 
to achieve the best feasible result with respect to a pre-selected measure of effectiveness. In 
other words, the optimal design must have certain characteristics that distinguishes it among 
and makes it superior to other designs. There are many difficulties in getting a structural 
design of minimum cost, such as the handling of a large number of design variables, the 
imposition of multiple constraints and the non-linear nature of the problem. In all cases, the 
application of the Finite Element Method (FEM) of the studied structure is required. As Bruce 
Irons, one of the pioneers of finite element methods, said: ‘If there is an opportunity for 
improving the design, then somebody, somewhere is attempting to do so using Finite 
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Elements’ (Xie and Steven, 1997). Concerning the optimization algorithms one can apply, 
there are numerous.  

For the solution of the cost minimization problem, it is possible to apply various 
optimization techniques. For instance, it would be possible to use a deterministic procedure 
that takes into consideration no derivative information, or the first derivative or both the first 
and the second derivatives (Belegundu and Chandrupatla, 1999 ). However, the computational 
cost for such a systematic search is high, even prohibitively high depending on the size of the 
problem, while the possibility of converging to a local minimum is high as well. Alternatively 
it is possible to use stochastic techniques such as the Genetic Algorithms (GAs), Simulated 
Annealing (SA), Swarm Particles, Natural Growth and Tabu search (Pham and Karaboga, 
2000). Many of these techniques, as their name suggests, attempt to mimic some kind of 
natural procedure. The common element in all stochastic methods is that they are derivative-
free (‘zero-order’ techniques), meaning that they use no derivative (gradient or Hessian) 
information. This is advantageous, because the calculation of the derivatives has a significant 
computational cost, may cause numerical instabilities and, most probably, will converge to a 
local rather than to a global minimum. Instead, the stochastic techniques perform a thorough 
exploration and exploitation of the feasible region, which is achieved by testing a large 
number of design vectors. However, this results in a cumulated high computational cost.  

Another option in minimizing the structural cost is to use the Lagrange multipliers method 
(Morris, 1982). According to this method, the imposed equality or inequality constraints are 
introduced into the objective function, which is the quantity to be minimized, in a weighted 
manner. The weighted coefficients used are known as Lagrange multipliers and are calculated 
by solving a non-linear system of equations, which is not always an easy task to accomplish. 
Furthermore, since the final solution of a non-linear system definitely depends on the initial 
point of the solution procedure, the Lagrange multipliers method results in a design, which is 
improved compared to the initial design but cannot be algorithmically proved to be the 
optimal design. However, for particular cases of constraints, the specific method leads to very 
elegant statements, called Optimality Criteria (OC), concerning the conditions that hold at the 
optimum (Morris, 1982). Among the (OC) methods, the Fully Stressed Design (FSD) is 
perhaps the most popular one. Its popularity is mainly due to the fact that it uses a very simple 
stress-ratio recursive formula that converges fast in comparison to other techniques. 
Gallagher, Morris, Haftka et al., Patnaik et al., Rozvany, Kirsch and others have analyzed the 
efficiency of this method (Gallagher, 1973, Morris, 1982, Haftka et al, 1990, Patnaik et al, 
1995, Rozvany, 2001, Kirsch, 1989). 

These works revealed the major drawback of the method: only under certain circumstances 
does it provide the optimum design (minimum weight) for stress-constrained problems. A 
common practice followed extensively was to use FSD as a first optimization step and then 
use the FSD result as a starting point for a powerful deterministic optimization algorithm 
(Schmit, 1995). In recent years, a great many optimization algorithms have been developed 
for the solution of the layout optimization problem, thus, implicitly attacking the cost 
minimization problem. Suzuki and Kikuchi achieved a major breakthrough by introducing 
material anisotropy (homogenization method) (Suzuki and Kikuchi, 1991), while a 
monumental contribution is attributed to Bendsøe and his SIMP method (Rozvany, 2001b, 
Bendsøe, 1995). Nevertheless, optimality criteria still appear in new forms. Makris and 
Provatidis proposed a virtual strain energy density optimization approach (Makris and 
Provatidis, 2002), while Qing et al. proposed an iterative use of the stress-ratio technique in 
their Evolutionary Structural Optimization (ESO) method(Qing et al, 2000). It is evident that 
each one of the aforementioned techniques has certain advantages and certain disadvantages. 
In all cases, the goal is to achieve a design with minimum weight. However, minimum weight 
does not necessarily mean minimum cost. Therefore, not only minimum weight but also 
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minimum cost must be sought. The latter task may be achieved if the optimized structure is 
characterized by a high commonality between its members and at the same time critical 
members are eliminated. Towards this direction and for 2D continuum structures under stress 
constraints only, the present investigation is based on a previous work on layout optimization 
(Provatidis and Venetsanos, 2003), extending it into the area of post-optimization processing.  

More particularly, the cost minimization of skeletal structures may be achieved in two 
ways, the former being the high commonality between the members of the optimized design 
and the latter being the elimination of members with critical cross-section. Therefore, it is 
possible to introduce a post-optimization processing, in which grouping and elimination of 
structural members may take place. For the optimization phase, it is possible to use any 
optimizer; in the current chapter the function ‘fmincon’ found in the Optimization Toolbox in 
MatLab was implemented. The two post-optimization procedures introduced are a simple 
statistical-based routine for grouping members with equal or near-equal cross-sections and the 
second being a routine for eliminating critical or near-critical members. In total, four typical 
test cases were studied and the results showed that the proposed procedure does provide the 
means for both weight and structural cost minimization. In the present chapter, 2D skeletal 
structures and stress constraints were selected. However, any type of skeletal structures, both 
in 2D and in 3D, with any type of constraints may be selected as well, because the proposed 
procedure for increasing commonality is a post-optimization procedure, thus requiring no 
further structural analysis. 
 
7.2.2. Theoretical approach 

The proposed procedure consists of four steps. The first two steps, that is the formulation 
of the skeletal structure as well as its layout optimization, have been adequately analyzed in 
previous chapters. For the completeness of the text, the optimization problem will be stated. 
The last two steps, that is grouping and elimination, consist the novel features of the current 
work, thus they will be analyzed extensively. Grouping is closely related to the principle of 
commonality introduced by Papalambros (Papalambros, 1995, Fellini et al, 2003), which 
states that the fewer components a structure has and the more similar these components are 
between them, the lower the cost becomes. Elimination is closely related to the fact that 
members with critical cross-sections should actually be removed, because they increase the 
structural weight without any beneficial contribution to the structural stiffness. Therefore, the 
overall optimization problem can be divided into three sub-problems, namely the layout 
optimization, the grouping of structural elements and the elimination of critical structural 
elements. It is possible to deal with these sub-problems in the aforementioned order (layout 
optimization, grouping, elimination) either iteratively or sequentially. According to the former 
scheme, a recursive procedure is established, such that every recursion consists of performing 
one iteration step for each sub-problem. According to the latter scheme, each sub-problem is 
dealt with only if the previous one is completed. For the purposes of the present chapter the 
sequential scheme was selected mainly for reasons of simplicity, since the iterative scheme 
requires ‘hard kill’ and ‘rebirth’ of structural members to be allowed, a task that is neither 
simple nor easy to accomplish. With respect to its interpretation, grouping is a twofold 
concept related both to cross-sectional grouping and to member grouping. Concerning the 
cross-sectional grouping, suppose that a structure has N  structural elements. In the most 
general case, in the optimized structure N  cross-sections will appear, cN  of which will be 
critical and nc cN N N= −  will be non-critical. Although not necessary, it is possible that these 

ncN  cross-sections can be divided into gN  groups, where elements of each group will have 
almost the same cross-section. In such a case and from a constructional point of view, it 
would be desirable to attribute to all members of a group the same cross-section, such as the 
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mean value of the cross-sections of the elements belonging to the corresponding group, thus 
ending up with gN  different profiles and not with gN N> . From a purely theoretical point of 
view, this is not a good choice, because even a small modification in any cross-section of an 
optimized structure results in a violation, thus into an infeasible design. Nevertheless, from a 
real-life engineering approach, this is a very good idea, because, if the grouping is performed 
in an appropriate way, then not only will the constructional cost be significantly lower, but 
also the increase in the total structural weight and the occurred violations will be negligible 
for practical engineering purposes. Therefore, it is shelf-evident that the cross-sectional 
grouping is desirable for and beneficial to real-life optimized applications, as long as such a 
grouping is possible. At this point, it is strongly emphasized that cross-sectional grouping 
must not be dealt as an end in itself. On the contrary, it is on the engineer’s judgment to 
decide whether the initially optimized design allows for such a grouping or not. Concerning 
the member grouping, let it be that the members of a structure have already been grouped 
with respect to their cross-sections, according to the aforementioned procedure, and some of 
them happen to be collinear as well. In this case, it is possible to ‘merge’ them, meaning to 
substitute two or more collinear elements of the same cross-section with one element that has 
the same cross-section and length equal to the total length of the members to be substituted. 
From a purely theoretical point of view, this choice may result in an ill-posed stiffness matrix, 
because merging practically means removal of nodes from the mesh, thus other members 
attached to nodes that must be removed may become inadequately supported. However, from 
a real life engineering approach, member grouping is a very good idea, because, every time 
two structural members are substituted by one of equal length, the total number of fastenings 
over the construction is reduced by one. In turn, this means lower manufacturing cost, lower 
assembling cost and lower maintenance cost. On top of that, since the fastening areas are 
areas of potential corrosion, the minimization of their number results in the minimization of 
the corresponding danger against potential corrosion as well. 

 
7.2.3. The problem statement 

A 2D skeletal structure, which may also be considered as a bar-type skeletal equivalent of 
a continuum structure under in-plane loading, is nothing else but an assembly of bars whose 
weight W equals to: 
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= ∑                                                         (7.1) 

 
The axial stress of the i-th bar equals to:  
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                                                          (7.2) 

 
and the stress constraint concerning the i-th bar is expressed as follows: 
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                                                   (7.3) 

 
If the minimum weight W  is sought, then the SQP statement of the problem, with respect to 
the cross-sectional areas is: 
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min ( ) ( ) ( ) ( )21
2

TW x W x W x x x W x x⎛ ⎞∆ = +∇ ∆ + ∆ ∇ ∆⎜ ⎟
⎝ ⎠% % % % % % %

                       (7.4) 

subject to ( ) ( ) 0, 1,2,...,T
i ig x g x x i N+∇ ∆ ≤ =
% % %

                            (7.5) 
 
If the bars are considered to be of circular cross section, then the structural weight, instead of 
a linear form with respect to the cross-section, is expressed in a quadratic form with respect to 
the cross-sectional radius iR :  
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The axial stress of the i-th bar then becomes equal to: 
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                                                          (7.7) 

 
With respect to the cross-sectional radius iR , the SQP statement of the problem is: 
 

min ( ) ( ) ( ) ( )21
2

TW R W R W R R R W R R⎛ ⎞∆ = +∇ ∆ + ∆ ∇ ∆⎜ ⎟
⎝ ⎠% % % % % % %

                     (7.8) 

subject to ( ) ( ) 0, 1,2,...,T
i ig R g R R i N+∇ ∆ ≤ =
% % %

                           (7.9) 
 
The latter statement is preferred, because the objective function is a quadratic expression of 
the design variables, thus the Hessian ( )2W R∇

%
 is a well-defined diagonal matrix. 

 
7.2.4. The grouping procedure 

Cross-sectional grouping (Fig.7.1) concerns structural elements of equal or near-equal 
cross-sections. In this case, it is possible to attribute the same cross-section to all of these 
members, which, in turn, form one group, thus the final number of discrete cross sections 
used for achieving the optimal layout is decreased. Member grouping (Fig.7.2), on the other 
hand, concerns skeletal structural members which not only have equal cross-sections but also 
are collinear and placed one after another forming a line of length L . In this case, such 
members are replaced by only one member of the same cross-section and of length L . In this 
way, the number of structural members within each group is decreased as well. 

 
Figure 7.1: Cross-sectional area grouping 
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Figure 7.2: Member grouping. 

 

7.2.5. Cross-sectional area grouping 

The proposed post-optimization cross-sectional grouping procedure is based on the simple 
statistical rule that a group of values xi may be replaced by their mean value x  if the 
corresponding standard deviation s , or equivalently the corresponding coefficient of variation 
CV , is adequately small. In more details, the grouping procedure is as follows: 

 
Step 1: sort in a descending order all the optimized cross-sectional values , 1,2,...,ix i N=  
Step 2:  set group number ( )gn  and current element ( )ce  equal to 1 ( )1gn ce= =  
Step 3:  attribute value 1x  to group 1gn =  
Step 4:  set current element ce  equal to 2 
Step 5:  attribute value cex  to group gn  
Step 6:  for group gn , calculate the mean value gnx  and the standard deviation gns  (or the 

coefficient of variation gnCV ) 
Step 7:  if gns tol≤  (or gnCV tol≤ ) then increase ce  by 1 and go to Step 5 
Step 8:  if gns tol>  (or gnCV tol> ) then  

remove ce  from group gn  
increase group number gn  by 1 
attribute ce  to (the new group) gn  
increase current element ce  by 1 

Step 9: if ce N<  then go to Step 5 else stop  
 

It is noted that tol  refers to a user-defined tolerance (small positive number). It is evident 
that significantly different values for tol  may result to significantly different outputs. The 
aforementioned procedure is a systematic statistical allocation of element values into groups. 
The next step is to eliminate unnecessary groups; that is to minimize gn . 
 
7.2.6. The elimination process 

From a statistical viewpoint, group elimination has the meaning of group merging, a 
procedure that obeys to certain statistical rules (Petruccelli, 1999). From an engineering 
perspective, group elimination has the meaning of removing all members with minimum or 
near minimum cross-sectional areas, because such members do not actually contribute to the 
strength of the structure (their elimination during the optimization process is avoided due to 
reasons of numerical stability). It is possible to achieve this task in a two step procedure; that 
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is, based on a cross-sectional area distribution histogram, to decide which groups are 
unnecessary and, based on the mesh used, to check whether this elimination endangers the 
stability of the structure. In the present work, the engineering oriented elimination process 
was applied after the completion of the layout optimization. 
 
7.2.7. Possible additional manipulation 

In engineering terms, the elimination process is nothing else but removing material from 
the structure, thus the quantity of the remaining material is decreased. In turn, this means that 
the weight of the remaining material decreases as well, while the developed stresses increase, 
slightly violating the imposed stress constraints. For practical engineering purposes, this 
situation is acceptable and if the resulting structure is indeterminate, no further process is 
possible. However, if the resulting structure is determinate, then an additional application of 
the SQP procedure to the resulting structure will eliminate any stress violations. Furthermore, 
if the resulting structure is under-determinate, then the addition of structural members by the 
designer is required in order to get a determinate structure and an additional SQP analysis will 
again result in the satisfaction of all the imposed stress constraints. 
 
7.2.8. Numerical examples 

In the present work, four examples, namely the short cantilever, the long cantilever, the 
MMB (Messerschmitt-Bölkow-Blohm) beam and the L-shaped beam, were studied in the 
following way: 
 
Phase 1: Optimization of the structure using SQP (see Sect. 8.2.3) 
Phase 2: Grouping of the structural members (see Sect. 8.2.4) 
Phase 3: Elimination of unnecessary groups (see Sect. 8.2.5) 
Phase 4: If applicable, post-grouping process (see Sect. 8.2.6) 
 

The volume and the maximum axial stress after Phase 1, after Phase 3 and after Phase 4 
were recorded and compared. The entire work was repeated using an SQP optimizer for non-
linear constrained problems found in Matlab ver.6. As a last step and for reasons of cross-
checking, the final layouts were analyzed using ALGOR v.12, which is a commercial Finite 
Element Analysis (FEA) software.  
 
Table 7.1: Comparison in terms of structural simplicity (cross-sectional area groups and 
number of bars)  

 
 

In the following sections, the results for each case-study are presented. Each example is 
accompanied by two figures. The first figure has four plots. Plot (a) illustrates the 2D 
continuum structure (dimensions in meters), plot (b) shows the mesh of its skeletal equivalent, 
plot (c) illustrates the result of Phase 1 and plot (d) illustrates the result of Phase 4. The 
second figure hosts a plot that presents the cross-sectional area distribution for the examined 
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structure after the completion of Phase 1, and a table with statistical data concerning cross-
sectional area grouping. A comparison between Phases 1, 3 and 4, in terms of structural 
volume and of maximum developed axial stress is presented in Table 7.1, while a comparison 
between these phases in terms of cross-sectional area groups and of structural members 
involved is shown in Table 7.2. 
 
Table 7.2: Comparison in terms of structural volume 

 
 
7.2.8.1. The sort cantilever 

The short-cantilever beam as a 2D skeletal structure is illustrated in Fig. 8.3a. The entire 
left side ( )0x =  is fixed and a negative vertical load 12F N=  is externally applied at 

( ) ( ), 1, 1.5x y = . The maximum allowable axial stress is max 30Paσ = , while the modulus of 
elasticity is 1E Pa= . For the short cantilever it is known that the optimal layout of its skeletal 
equivalent is achieved when a mesh with aspect ratio 1λ =  is used (Provatidis and 
Venetsanos, 2003). Based on this information, the mesh illustrated in Fig. 8.3b was generated 
consisting of 456  bars.  

 
Figure 7.3: The short cantilever beam 

 
The result of Phase 1 is illustrated in Fig.7.3c and the final layout of Phase 4 is shown in 
Fig.7.3d. The cross-sectional area distribution after Phase 1 is shown in Fig.7.4a, while 
statistical details concerning the outcome of Phase 4 is presented in Fig.7.4b. 

 
Figure 7.4: Statistical data for the short cantilever beam 
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7.2.8.2. The long cantilever 

The long-cantilever beam is illustrated in Fig.7.5a. The entire left side ( )0x =  is fixed and 

a negative vertical load 12F N=  is externally applied at ( ) ( ), 16, 5x y = . The maximum 
allowable axial stress is max 30Paσ = , while the modulus of elasticity is 1E Pa= . For the 
long cantilever it is known that the optimal layout of its skeletal equivalent is achieved when a 
mesh with aspect ratio ( )5 8λ =  is used (Provatidis and Venetsanos, 2003). Based on this 
information, the mesh illustrated in Fig.7.5b was generated consisting of 420  bars. The result 
of Phase 1 is illustrated in Fig.7.5c and the final layout of Phase 4 is shown in Fig.7.5d. The 
cross-sectional area distribution after Phase 1 is shown in Fig.7.6a, while statistical details 
concerning the outcome of Phase 4 is presented in Fig.7.6b.  

 

 
Figure 7.5: The long cantilever beam 

 

 
Figure 7.6: Statistical data for the long cantilever beam 

 
7.2.8.3. The MBB beam 

The MBB beam is illustrated in Fig.7.7a. The lower left edge ( ) ( ), 0,0x y = is fixed while 

the vertical displacement of the lower right edge ( ) ( ), 6,0x y =  is restrained. A negative 

vertical load 2F N=  is externally applied at ( ) ( ), 3,1x y = . The maximum allowable axial 
stress is max 20Paσ = , while the modulus of elasticity is 1E Pa= . For the MBB beam, it is 
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known that the optimal layout of its skeletal equivalent is achieved when a mesh with aspect 
ratio 1λ =  is used (Provatidis and Venetsanos, 2003). Based on this information, the mesh 
illustrated in Fig.7.7a was generated consisting of 412  bars. 

 
Figure 7.7: The MBB beam 

 

 
Figure 7.8: Statistical data for the MBB beam 

 
The result of Phase 1 is illustrated in Fig.7.7c and the final layout of Phase 4 is shown in 
Fig.7.7d. The cross-sectional area distribution after Phase 1 is shown in Fig.7.8a, while 
statistical details concerning the outcome of Phase 4 is presented in Fig.7.8b.  
 
7.2.8.4. The L-shaped beam 

The L-shaped beam is illustrated in Fig.7.10a. The upper edge ( )0y =  is fixed, while a 

negative vertical load 1F N=  is externally applied at ( ) ( ), 1,0.2x y = . The maximum 
allowable axial stress is max 30Paσ =  and the modulus of elasticity is 1E Pa= . For the L-
shaped beam, it is known that, if a uniform aspect ratio λ  is used throughout the mesh, the 
optimal layout of its skeletal equivalent is achieved when a mesh with ( )1 2λ =  is used 
(Provatidis and Venetsanos, 2003). However, if constλ =  then the optimization procedure 
results in a highly dispersed cross-sectional area distribution (Fig.7.9b), thus makes grouping 
inefficient. Therefore, it was inevitable to use a non-uniform aspect ratio (Fig.7.10b). For 

1 1λ = , ( )2 1 2λ =  and ( )3 1 3λ = , a mesh consisting of 825 bars was generated. The result of 
Phase 1 is illustrated in Fig.7.10c and the final layout of Phase 4 is shown in Fig.7.10d 
(continuous lines). The cross-sectional area distribution after Phase 1 is shown in Fig.7.11a, 
while statistical details concerning the outcome of Phase 4 is presented in Fig.7.11b. At this 
point it must be emphasized that the layout of Phase 4 is under-determinate. Therefore, the 
designer must introduce an additional member in order to turn the structure into a determinate 
form. For this purpose, a bar between nodes A and C (dashed line) was added. 
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Figure 7.9: The L-shape beam with aspect ratio of mesh λ = ct 

 

 
Figure 7.10: The L-shape beam with aspect ratio of mesh λ≠ ct 

 
7.2.9. Evaluation 

The present work suggests the application of a four-phase procedure. In order to evaluate 
its efficiency, it is necessary to compare the results derived from the proposed procedure to 
those obtained by the application of an optimization routine such as SQP. Towards this 
direction, Table 1 and Table 2 were formed. The output of Phase 1 is denoted as [P1], while 
the output of Phase 4 is denoted as [P4]. Table 1 presents a comparison between states [P1] 
and [P4] in terms of structural members involved and of cross-sectional area groups formed; 
that is in terms of structural simplicity. In more details, a triplet of columns corresponds to 
each one of the four investigated examples. Columns headed as [P1] and [P4] show data 
concerning state [P1] and [P4] respectively. Columns headed as [%] present a comparison 
between states [P1] and [P4] in a percentage notation and with respect to state [P1]. Row 

minix x=  refers to those bars whose cross-sectional area ix  is equal to the minimum imposed 
value minx . Row i minx x≈  refers to those bars whose cross-sectional area ix  is very close to 
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the minimum imposed value minx . Row i minx x≠  and i minx x≈/  refers to those bars whose 
cross-sectional area ix  is neither equal nor very close to the minimum imposed value minx . 
Row headed as ‘Total’ refers to the total number of the structural members involved, while 
row headed as ‘Groups’ refers to the number of the appearing different cross-sectional areas. 
It is clarified that for simplicity reasons, the % differences are rounded to the nearest integer. 
 

 
Figure 7.11: Statistical data for the L-shape beam with aspect ratio of mesh λ≠ ct 

 
From Table 5.1, it is obvious that the design of state [P4] is superior to that of stage [P1]. 

In more details, for the short cantilever, the former design required 2 structural elements of 
the same cross-sectional area (one group), while the latter design required 456  structural 
elements and 20  different profiles (groups). Therefore, the application of the proposed 
procedure resulted in 99%  reduction of the number of the required structural members and in 
a 95%  reduction of the number of the required cross-section profiles. Taking into 
consideration all the studied cases, it emerged that a reduction of 97%  to 99%  in the number 
of the required structural members was achieved, while a reduction of 87%  to 95%  in the 
number of the required cross-section profiles was possible. It is self-evident that such a 
reduction is of high importance in practical engineering purposes. Table 2 presents a 
comparison between states [P1] and [P4] in terms of the structural volume. Rows headed as 
Volume [1] and as Volume [4] refer to the structural volume in state [P1] and [P4] 
respectively. Their difference with respect to state [P1] is shown in the last row of Table 2 and 
in percentage notation. From Table 2, it is obvious that, compared to the design of stage [P1], 
the design of state [P4] is of less volume, thus weight. In more details, the volume reduction is 
between 0.13%  and 1.79% . Definitely, this reduction is not as impressive as the previous 
one. However, the combination of both reductions is of importance. 
 
7.2.10. Discussion 

Layout optimization of 2D continuum structures has long been among the engineers’ 
priorities due to its practical value, while cost minimization is a lasting engineering desire for 
all structures. One way of obtaining the optimal layout of a 2D continuum structure is by 
optimizing its skeletal equivalent (2D skeletal structure), which is formed when an 
appropriate assembly of bars substitutes the continuum. For this specific case, structural cost 
minimization may be achieved by introducing cross-section grouping, meaning that only a 
small number of discrete cross-sectional values can be used for the optimal layout. In 
addition, a further cost minimization is possible by introducing member grouping, meaning 
that a group of structural members, which have the same cross-sectional area and happen to 
be placed one after another forming a line of length L, is replaced by only one member of the 
same cross-section and of length L. The two aforementioned types of grouping aim at 
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increasing the commonality among the members of a structure. However, for reasons of 
numerical stability, a minimum cross-section value must be imposed when the optimum 
layout is sought; otherwise, the stiffness matrix may become ill-posed during the optimization 
stage. In turn, this means that the optimized structure has members with minimum or near 
minimum cross-sectional area. In other words, members that should be eliminated are present, 
which in turn increases the total volume, and consequently, the weight of the structure. It is 
evident that a further improvement is possible by implementing an appropriate elimination 
procedure. Therefore, the simultaneous layout optimization and cost minimization of a 
structure may be achieved if an optimization procedure, a cross-section grouping routine, a 
member grouping routine, and a group elimination procedure are appropriately combined 
together. Towards this direction and for the case of 2D skeletal structures under stress 
constraints only, the present work investigated the capabilities of applying a four-stage 
procedure, namely the substitution of the structure by a skeletal equivalent, the layout 
optimization, the grouping stage and finally the elimination stage. With respect to the first 
stage of the proposed procedure, the formation of the skeletal equivalent of a 2D continuum 
must be analyzed. A skeletal structure may have various forms, one of which is the well-
known ground structure. The advantage of a ground structure is that the orientation of the 
appearing members has a very wide domain. The disadvantage of this approach is that it is 
highly possible to get overlapping effects, meaning that members with the same orientation 
but of different length and cross-section happen to appear one on top of the other in the 
optimized structure. This is a difficult situation to deal with during the grouping process, 
because, in this case, the best approach would be the introduction of a member of variable 
cross-section, which, however, increases the cost significantly. Therefore, for keeping the cost 
as low as possible, it was preferred to introduce complexes of six bars as in (Provatidis and 
Venetsanos, 2003). The second stage of the proposed procedure was the layout optimization 
of the structure. Obviously, this is a classical structural optimization problem, thus any 
optimizer may be used. This subject was partially investigated in (Provatidis and Venetsanos, 
2003), where it was shown that the, well-known and very simple to apply, stress-ratio 
recursive formula, emerging from the Fully Stressed Design (FSD) technique, and the 
powerful Sequential Quadratic Programming (SQP) method, suitable for solving non-linear 
constrained optimization problems, provided the same optimized layouts. At this point, it is 
noted that the Fully Stressed Design of a structure is one of the oldest approaches concerning 
structural optimization. It is very well known that only under certain circumstances does it 
provide the minimum weight. Generally speaking, this is not the case. However, experience 
obtained during the last decades from the study of a great many practicing engineering 
problems, clearly suggests that FSD be used for engineering purposes (Berke and Khot, 
1987). Therefore, although FSD is not today the state-of-the-art, it can provide very good near 
optimum results, which is more than adequate for the practicing engineer who needs to find a 
practical solution and not to invest time in hunting chimeras like a bulletproof, drawback free 
and solid mathematically-based black box procedure. The third and the forth phases are 
extensively analyzed in Sects. 2.3 and 2.4. In total, four examples (short cantilever, long 
cantilever, MBB beam, L-shape beam) were studied. In all cases, the developed stresses were 
estimated using an in-house code for Finite Element Analysis (FEA), which did not allow for 
elements to be ‘killed’ and/or ‘reborn’. Instead, all vanishing members could obtain a 
minimum cross-sectional area value of min 0.0001x = , thus ensuring that neither any 
numerical stability problems (ill-positioned stiffness matrix) would occur nor the structural 
volume would be aggravated. Concerning the performed statistical analysis, built-in routines 
found in Matlab were implemented.  

In all cases, the output of the first phase was a structure with a large number of bars 
with minimum or near minimum cross-sectional area, while the non-vanishing members (bars 
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with minimum or near-minimum cross-sectional areas) appeared a distribution highly 
recommending grouping. For the first three examples, the outcome from the final phase was a 
determinate fully-stressed structure of lower weight, when compared to that obtained after the 
application of the optimization procedure only. For the last example, the results showed that 
the aforementioned outcome was achievable only if the aspect ratio of the mesh was properly 
selected; otherwise, the resulting cross-sectional area distribution was wide enough to 
instigate grouping.  

The dependency of the final skeletal layout on the initially chosen truss structure is worth 
commenting. The present chapter uses the concept of the ground structure as an initial design; 
a concept widely accepted, since it is referred in a great many number of papers and textbooks 
concerning structural optimization. In most examples, a ground structure consists of all 
possible connections or of only connections to the neighboring points (Bendsøe, 1995). One 
of its inherent characteristics is the strong dependence of the topology of the optimal solution 
on the suitable choice of the ground structure. Apart from that, there is a strong influence of 
the ground structure geometry on the optimal topology (Bendsøe, 1995). Due to the 
aforementioned influences, depending on the initial ground structure, it is possible to get 
different optimal designs, among which, one or more will be better than the others in terms of 
weight or structural simplicity or both. The most common type of ground structure topology 
is a grid of nodes, which are placed equidistantly from each other but not necessarily 
equidistantly along the x and y directions. Therefore, it is apparent that a simple parametric 
investigation is required with respect to the nodal aspect ratio, defined as the ratio of the 
equidistance along the x-direction over the equidistance along the y-direction. Towards this 
direction, the present chapter was based on the results of (Provatidis and Venetsanos, 2003), 
which investigated the aforementioned influences. Without loss of generality, such a 
parametric investigation is not that time consuming, while it can be considered as an 
optimization problem itself. Therefore, the inherent dependency of the final skeletal layout on 
the ground structure may be considered as a drawback. It is as much a drawback as is the 
mesh dependency of the power laws of SIMP models on the stress constrained minimum 
weight problem, which was shown clearly in (Duysinx and Bendsøe, 1998). In other words, 
even the use of state-of-the-art topology optimization techniques, such as the SIMP method, 
does not avoid mesh dependency. Last, but not least, the following statement, concerning 
mesh dependency, is referred: ‘It is questionable enough to force the solution away from the 
exact optimal topology by arbitrary constraints, and even worse to prevent these topologies 
from improving their resolution at finer mesh levels’ (Rozvany et al, 2005). Another point that 
requires commenting concerns the fact that not in all cases is the final skeletal layout 
statically determinate and hence builds a mechanism. It is well known that truss topology 
compliance optimization under a single condition leads to statically determinate solutions, but 
the resultant structures are more than not mechanisms, which are stable under the applied load 
(Bendsøe, 1995). With respect to the present chapter, this is the case for the L-shape beam, 
thus the obtained layout falls within this statement and is not a drawback of the proposed 
procedure. Furthermore, designing the structure for multiple load cases, either in the weighted 
average formulation or in min-max formulations, is a way to avoid the aforementioned 
feature, though at the expense of much more complicated topologies (Bendsøe, 1995). As an 
alternative, the proposed procedure allows for the use of engineering experience and judgment 
by letting the designer introduce a structural element, thus gaining a lot both in time and in 
structural simplicity. The fact that the interaction with the user is allowed up to a point, such 
as selecting the aspect ratio of the mesh or adding members, is actually an advantage that in 
the hands of an experienced engineer can prove to be a valuable asset but in the hands of a 
novice user seems to be a drawback. 
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An alternative way of dealing with the simultaneous weight and cost minimization is by 
considering the problem as a multi-objective optimization problem, where not only the weight 
but also the number of group members and the size of each group have to be minimized as 
well. Obviously, this is a more complex optimization problem and its solution is definitely of 
a significant higher computational cost. On the contrary, the proposed procedure is much 
simpler due to the fact that neither the number of group members nor the size of each group is 
dealt as a design variable. Finally, reliability analysis is another issue that can be combined 
with the proposed procedure. As it was mentioned in Sect. 2, the proposed procedure has a 
practical engineering orientation. Therefore, it would be interesting to investigate the 
sensitivity of the behavior of the final design in slight changes either of the optimized and 
grouped structural members, or of the externally applied forces. The latter is equivalent to 
optimizing the structure for more than one load cases. 

The main and strong advantage of the proposed procedure is that it depends neither on the 
optimization scheme to be applied nor to the dimension of the design space. In this way, it is 
possible to apply the same procedure to optimization problems of 3D skeletal structures, as 
well as to optimization problems of other types of constraints. 
 
7.2.11. Conclusions 

The goal of the present work was to investigate the efficiency of the proposed procedure 
for the simultaneous layout optimization and cost minimization of 2D continuum structures. 
For the needs of the investigation, stress constraints were imposed. The structures were 
substituted by equivalent skeletal assemblies, the layout optimization was achieved through 
the use of a very powerful optimizer (SQP), while the cost minimization was sought through a 
statistical procedure that aimed at increasing the commonality between the structural 
members. In total, four typical examples (short cantilever, long cantilever, MBB and L-shape 
beam) were examined. The results of the present work were the following: The 
implementation of the SQP method for the layout optimization of the 2D skeletal structures 
was straightforward but time consuming. Furthermore, the additional statistical process 
(grouping), of the optimized cross-sectional areas, resulted in near optimum designs of 
minimal cost. The aforementioned statistical process was implemented after the completion of 
the optimization procedure, thus it did not affect the required for the optimization CPU time. 
Therefore, the total CPU time depended mainly on the selected optimization procedure. The 
orientation of the diagonal truss elements is of major importance in obtaining the optimal 
layout, thus in obtaining the optimal grouping as well. Depending on this orientation (mesh 
topology), non-optimum designs may be obtained. However, a good engineering judgment 
concerning the mesh analysis may lead to a near optimum design, as is clearly shown in the 
case of the L-shaped beam. For the examined examples, the grouping procedure resulted in a 
reduction of 97%  to 99%  in the number of the required structural members and in a 
reduction of 87%  to 95%  in the number of the required cross-section profiles. In addition, 
the volume reduction was between 0.13%  and 1.79% .  

Based on the aforementioned conclusions, as well as on the fact that the proposed 
procedure is independent from both the optimization procedure and the imposed constraints, it 
yields that the proposed procedure is a good investment in searching for the minimum cost of 
skeletal structures and is of major practical value. 
 
7.3. Cost minimization considering welding cost and scrap material 
7.3.1. In general 

As mentioned in the first section of this chapter, cost minimization may be achieved, when 
the cost of welding and the cost of scrap material are taken into consideration. However, there 
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is no generalized procedure embedding the two aforementioned costs, thus only case-oriented 
procedures are possible to be stated. Towards this direction, welded steel tanks for oil storage 
were selected as a case-study. Welded steel tanks are one of the most common types of 
structures used for oil storage. They are assembled from courses; each one of them has its 
own height and thickness and may be formed from two or more parts welded together. As 
structures, their manufacturing must be in accordance with certain specifications, such as the 
API standards, and their cost must be minimized. For the cost minimization, it is essential to 
take into consideration the number of the courses used, the volume of each course, the parts 
that each course is divided into, the length of the welding between the assembled parts and the 
assembled courses, as well as the wastage of the purchased material. Furthermore, the sketch 
plates and the bottom plates must be dealt with a similar concept. Towards this direction, the 
present work was focused on embedding the API standards with in-house developed 
optimization procedures in an integrated environment, where all of the aforementioned factors 
were considered. On top of that, other types of constraints were also implemented, such as the 
maximum size of a part that can be transported on a truck along the national roads of the 
Hellenic Republic and the standard dimensions of the steel plates sold in the Hellenic market. 
The contribution of the present work is the formation of diagrams that can be used for 
selecting explicitly decisive dimensions for the optimum oil tank design. 

 
7.3.2. Problem statement 

The most common type of tank for storing oil and oil products is a vertically oriented steel 
cylinder at atmospheric or at low pressure. The diameter of a cylindrical tank ranges from 3m 
up to about 100m, while the height may reach up to 25m. The main parts, a cylindrical tank 
consists of, are the bottom, the cylindrical wall or shell and the roof. The steel-plated bottom 
is flat or with a very small slope and sits on an properly prepared foundation. The shell is 
made up of a series of rectangular plates welded together, restrains the hydrostatic pressure by 
hoop tension forces and is largely unstiffened. The roof is usually fixed to the top of the shell 
and may be self supporting or partially supported through membrane action. In general, the 
roof plate is supported on radial beams or trusses and is of conical or domed shape. The 
standards applied most widely for the design of oil storage tanks are the British Standard BS 
2654 (1984) and the American Petroleum Institute Standard API 650 (1988), while actions on 
tanks are also covered by the Eurocode (prEN 1991-4). Apart from the welded type, bolted 
‘smoothwall’ tanks are an alternative for capacities ranging up to 2 million cubic feet of 
storage, while standards for bolted tanks also exist (API 12B, 1995).  
The numerous papers found in the literature about oil-tanks mainly deal with special issues. 
More particularly, Perelmuter et. al investigated a cylindrical oil tank in which a part of its 
wall had been repaired by placing reinforcing patches on and around the area of defect. Due to 
this intervention, a mismatch in thickness appeared which was studied first with a linear 
analysis and then with an approach allowing for geometrical non-linearity (Perelmuter et al, 
2003 ). Dawson and Gibson studied the behavior of compliant-cored cylindrical tank shells 
with linear-elastic buckling theory coupled with basic plasticity theory. They showed that 
thin-walled cylindrical structures having walls reinforced by a core, such as a honeycomb or a 
foam-like cellular core, provide an increased buckling resistance in comparison with a hollow 
cylinder of the same weight. Furthermore, they examined the feasibility of implementing 
compliant cores in thin-walled engineering structures, where the weight to load bearing ratio 
is a critical element of design (Dawson and Gibson, 2006). Hagihara and Miyazaki 
investigated, with the finite element method, the dynamic bifurcation buckling load appearing 
in cylindrical tanks with conical roof shells during accident conditions simulated by a step 
pressure loading, a ramp pressure loading and a pulse pressure loading and they concluded 
that the minimum bifurcation buckling pressure is a linear function of radius-to-thickness 
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ratio of the shell in a linear fashion on a logarithmic scale (Hagihara and Miyazaki, 2003). 
Yoshida investigated the so-called ‘frangible roof joint’ introduced in API Standard 650 and, 
through an elastic and elastic-plastic axisymmetric shell finite element analysis involving 
large deformation in the pre-buckling state, he concluded that the aforementioned standard 
does not evaluate the frangible roof joint conservatively in small diameter tanks (Yoshida, 
2001). Furthermore, optimization in combination with oil storage tanks may be found in 
works handling the scheduling problem of refinery processes (Song et al, 2002). Surprisingly 
enough, in contradiction to the numerous published theoretical works, the market of 
commercial software for oil tank design is extremely limited. To the best knowledge of the 
authors of the present chapter, only one software solution is available (Tank version 2.5, 
©1994-2003, COADE, USA). However, this solution does not include aspects of structural 
optimization concerning the oil tank itself, an area that the present chapter contributes to. In 
more details, the cost minimization of oil storage tanks was analyzed and solved with 
optimization procedures especially developed for this goal. In this way, the present work 
resulted in the formation of diagrams in accordance with the API Standard 650 that can be 
used for selecting explicitly decisive dimensions for an optimal oil tank design. 
 
7.3.3. Definition of parameters 

The most important parameters to consider, when specifying storage tanks, are their 
capacity and dimensions. The capacity of the tank is the internal volume available for the 
storage of materials, while the most commonly used orientation of an oil storage tank is 
vertical (Fig.7.12).  
 

 
Figure 7.12: Typical oil storage tanks of different radius to height ratios 

 
As mentioned in the introduction, a tank has three main components, namely the roof, the 

shell and a steel-plated bottom placed on a properly prepared foundation. The roof and the 
foundation are mainly responsibility of a civil engineer, while the shell and the plated bottom 
are mainly responsibility of a mechanical engineer. For this reason, only the latter are 
examined in the present chapter. Therefore, from the mechanical engineering viewpoint, the 
design optimization of a storage tank is decomposed into three optimization sub-problems, 
namely the optimization of the shell, the optimization of the annular bottom plates (sketch 
plates) and the optimization of the bottom plates. In turn, each sub-problem may be further 
decomposed into a layout and a size optimization problem, concerning the thickness of the 
plates. These aspects are covered in the following sections. 
 
7.3.4. Optimization of the shell-wall 
7.3.4.1. Layout optimization 

For practical reasons, it is necessary to build up the shell of a tank using a number of plates 
having rectangular shape. After special treatment, each plate obtains a cylindrical curvature 
and several such plates butt welded together form a ring (or course). The shell is formed, 
when rings are put and welded one on top of the other. For the shell of oil storage tanks, it is 
mandatory to use plates of certified quality in terms of both material properties and 
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geometrical accuracy. From the optimization viewpoint, the best shell design is the one which 
requires an integer number of plates for its building because in this case all of the purchased 
material is used, or, equivalently, the material waste is zero. As a first approach, the 
optimization of the shell may be stated as: 
 

Minimize ( )specifV V−  

with ( ), , , ,, , , , 1,2,3,...circ j circ j vert j vert jV f N L N W j= =  

under , ,specif low specif highD D D≤ ≤ , , ,specif low specif highH H H≤ ≤ ,                       (7.10) 

( ) ( ) ( ), ,
/ / /

specif low specif high
H D H D H D≤ ≤  

 
where  
V    is the volume of the optimized tank,  

specifV   is the volume defined by the technical specification imposed by the tank purchaser, 

,circ jL   is the plate length of the plates along the circumferential direction, 

,circ jN   is the number of plates of length ,circ jL  along the circumferential direction, 

,vert jW   is the plate width of the plates along the vertical direction of the tank, 

,vert jN   is the number of plates of width ,vert jW  along the vertical direction of the tank, 
D   is the diameter of the tank, 

specifD  is the constraint on the tank diameter (technical specification imposed by the tank 
purchaser), 
H   is the height of the tank and 

specifH  is the constraint on the tank height (technical specification imposed by the tank 
purchaser). 
 

The constraint concerning the ratio of the tank height over the tank diameter is also 
required; otherwise extreme designs of no engineering value will occur. It is noted that, for 
each imposed constraint, both a lower and an upper limit exist, as the corresponding 
subscripted indices inform. Furthermore, the subscript j denotes that it is possible to use 
certified plates of different rectangular shapes. In the Hellenic market, there is availability of 
certified plates of dimensions 2 6m m×  and 2.5 6m m× , respectively. Therefore, the 
optimization problem may be stated as (only the objective function is restated since the 
constraints are the same as previously (Eq.1)): 
 

Minimize ( )specifV V−  

with ( ),1 ,1 ,2 ,2, 6, , 2, , 2.5circ circ vert vert vert vertV f N L N W N W= = = =                 (7.11) 
 
Apart from the volume, which is the predominant specification in an oil-tank design, there are 
other issues that do matter and may play an important role in the final design. In more details, 
the cost for the necessary welding as well as the time required for the sand-blasting and 
painting of the shell are parameters that must be taken into consideration, because the 
building of an oil-tank is a practicing engineering problem thus all practical parameters must 
be recorded and evaluated. Therefore, the optimization problem in a more detailed statement 
becomes a complicated multi-objective problem (again, only the objective function is 
restated): 
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Minimize ( )specifV V− , shellA , ,weld circL , ,weld vertL  

with ( ),1 ,1 ,2 ,2, 6, , 2, , 2.5circ circ vert vert vert vertV f N L N W N W= = = =                 (7.12) 
 
where shellA  denotes the area of the shell, ,weld circL  represents the welding length along the 
circumferential direction and ,weld vertL  represents the welding length along the vertical 
direction. It is clarified that the aforementioned lengths of welding are accounted for 
separately, because it is possible to apply a different technique for each welding direction, 
thus the cost per meter becomes different as well. With respect to the optimization problem 
itself, it is obvious that it falls into the area of combinatorial optimization, since the design 
variables are discrete. The main characteristic and, at the same time, drawback, of this 
approach is that, the optimized volume may be far away from the specified volume specifV . In 
this way, the best numerical solution to the problem may have minimal practical value and 
for this reason may be rejected. Another approach of the same philosophy is to let the volume 
be optimized around an acceptable area of interest: 
 

Minimize ( )( )specifV V V− ± ∆ , shellA , ,weld circL , ,weld vertL  

with ( ),1 ,1 ,2 ,2, 6, , 2, , 2.5circ circ vert vert vert vertV f N L N W N W= = = =                 (7.13) 
 
where V∆  stands for an acceptable deviation from the initial volume specification. 
Obviously, this is an element that may be proposed by the engineer but must definitely be 
approved by the tank purchaser.  
 
7.3.4.2. Size Optimization 
The shell carries its weight, the weight of all components attached to it and the weight of the 
roof which it supports. Additionally, a load uniformly distributed over the horizontal 
projected area of the roof is also applied, simulating the nominal snow load and any other 
loads applied to the roof, such as the loads from maintenance equipment. These loads result in 
an axial stress. Furthermore, wind loading on the tank contributes tensile axial stress on one 
side of the tank and compressive stress on the other. The maximum wind speed taken into 
consideration in the calculations depends on the land where the tank is to be built on. In 
addition, the stored oil, up to the full capacity of the tank, applies an easily calculated 
hydrostatic pressure to the shell (Young, 1989). In particular, this pressure is carried by 
simple hoop tension, thus no circumferential stiffening is needed, while the circumferential 
tension in the shell varies linearly, in a vertical direction, with the fluid level. Finally, 
depending on the seismic activity of the area where the tank is to be built, resistance to 
seismic loads must also be accounted for. All of the aforementioned loads must be included 
for sizing the shell of a tank. The regulations, such as the API Standard 650, impose equations 
for the estimation of the shell thickness through an iterative procedure. Therefore, the 
optimization problem with respect to the thickness distribution of the shell along the vertical 
direction may be stated as follows: 
 

Minimize ,
1

cN

shell shell j
j

V V
=

= ∑  with ( ), 1, , , , , , ,shell j d tV f H D t S S E G CA=  

under , ,shell j shell allowτ τ≤                                                 (7.14) 
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where  
D   is the diameter of the tank, 
H   is the height of the tank, 
1t   is the thickness of the first course, 

dS   is the allowable stress for the design condition, 

tS   is the allowable stress for the hydrostatic test condition, 
E   is the joint efficiency, 
G   is the specific gravity of the oil product to be stored, 
CA   is the corrosion allowance, specified by the tank purchaser and  
τ   denotes the stress. 
The subscripts j  and allow  denote the course number and the allowable stress, respectively, 
while cN  denotes the total number of courses of the tank. 
 
7.3.5. Optimization of the sketch plates 
7.3.5.1. Layout of the shell-wall 

The annular bottom plates (sketch plates) are equally cut and welded in such a way that 
they form a ring around the steel-plated bottom of the tank. The assembly of the sketch plates 
form a ring, thus each sketch plate, being cut from commercially available rectangular-shaped 
plates, will have the form of an arc. Obviously, cutting sketch plates from rectangular plates 
results in a material waste. From the layout optimization viewpoint, the best sketch plate 
design is the one characterized by the least material waste. In other words, the problem at 
hand it to optimize the fitting of the sketch plates on the area of the commercially available 
plates used for this purpose. Since no requirement for sketch plate certification is imposed, 
any commercially available steel plate may be used. The availability of the Hellenic market is 
illustrated in Table 5.3, where the length is not referred since, practically speaking, any length 
is orderable.  
 
Table 7.3: Data for the commercially available sheet plates used for cutting the sketch plates 

3 4 5 6 7 8 9 10 11 12 14 15 16 18 20 22 25 30 35 40 45 50
1000
1250
1500
1800
2000
2300
2500

Available thicknesses [mm]
Width [mm]

 
 

Taking into consideration all of the above, the layout optimization of the sketch plates 
becomes a problem of fitting the sketch plates in an area of pre-defined width. A 
characteristic example is illustrated in Fig.7.13, where an annular ring of four parts is 
considered and different configurations result in different material exploitation, although the 
width of the plate being cut into sketch plates was the same in all cases. In more details, 
Fig.7.13a shows a typical fitting where the rectangles prescribing the sketch plates are placed 
one on top of the other (horizontal orientation); for this fitting let the required area be 1A . 
This fitting gives two kinds of material waste. The first concerns the area marked with the 
dashed line, which is unexploited for the specific design but, due to its shape, may be kept in 
stock for future use, thus becoming potentially exploitable. 
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(a) (b) (c) (d) 

Figure 7.13: Different fitting of the sketch plates results in different material exploitation 
 

The second concerns the areas resulting from the subtraction of the sketch plates from the 
corresponding prescribing plates; these areas are considered as non- exploitable material 
(scrap). A more compact configuration is shown in Fig.7.13b; for this fitting let the required 
area be 2A . Since 2 1A A< , the second configuration is superior but requires suitable 
equipment for such cuttings to be performed, thus, from a manufacturing viewpoint, it is more 
demanding. Two other configurations of required area 2A  are shown in Figs.5.13c,5.13d, 
where the orientation of the fitted plates has changed (vertical orientation). Of course, 
depending on the radii of the sketch plates, it is possible to combine horizontal with vertical 
fittings for even better results. Therefore, the layout optimization problem of the sketch plates 
may be stated as follows: 
 

Minimize unexploitableA  or scrapA  

under *N ∈                                                       (7.15) 
 
where N  is the total number of the sketch plates. It is clarified that after the optimization of 
the shell, the diameter of the tank, thus the inner and outer radius of the sketch plates, is well 
defined and the variable N  becomes the only unknown.  
 
7.3.5.2. Size optimization 

According to the API Standard 650, the minimum thickness of the sketch plates is 
explicitly related to the tank diameter, which is estimated, when the optimization of the shell 
is performed (API 650/Section 3.5.3) Therefore, there is no need for solving an optimization 
problem.  
 
7.3.6. Optimization of the bottom plates 
7.3.6.1. Layout optimization of the shell-wall 

The bottom of an oil storage tank must be steel-plated with plates of certified quality in 
terms of both material properties and geometrical accuracy. As already mentioned, such 
certified plates of dimensions 2 6m m×  and 2.5 6m m×  are available in the Hellenic market. 
Therefore, once again the problem at hand is a fitting problem, where rectangular plates must 
be fitted in a circle such that the non-exploitable material is minimized, as Fig.7.14 shows. 
More particularly, due to symmetry, only one-half of the layout is illustrated.  
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(a) 10 14m D m< <  (b) 14 18m D m< <  (c) 18 22m D m< <  

Figure 7.14: Bottom plates for various tank diameters 
 

The main idea is to use an odd number of plates distributed along the horizontal direction 
and to fit the steel plates along the transverse direction such that either an entire plate or a 
well-defined fraction of it is used. In Fig.7.14, the case of a tank of diameter D  between minD  
and maxD , as noted in the caption, is illustrated. The inner circle corresponds to minD  and the 
outer circle corresponds to maxD . The subdivisions of the steel plate required for the 
distributions presented in Fig.7.16 are denoted with a different color (blue border for the 
entire plate, red border for one-half of a plate, green border for one-third of a plate, brown 
border for two-thirds of a plate and oil-green for five-sixths of a plate and another color for 
one-sixth of a plate). The shaded areas represent the material to be removed. Once again, 
material corresponding to rectangular areas is potentially exploitable while the other material 
left is non-exploitable material (scrap). In order to estimate the material S  to be removed, it is 
sufficient to subtract the area of the outer circle of radius R  from the total area of the columns 
( ),j jx y∆ ∆ :  
 

( )
11 1

2 2j j
j

j

N N
x

j j j x
j j

S S x y R x dx
−= =

⎛ ⎞
= = ∆ ∆ − −⎜ ⎟

⎝ ⎠
∑ ∑ ∫                              (7.16) 

 
Therefore, the layout optimization problem of the bottom plates may be stated as follows: 
 

Minimize S  with { }( )6, 2.0,2.5jS f L W= ≤ ∈                             (7.17) 
 
where L  and W  correspond to the length and the width of the steel plates used to cover the 
bottom of the tank. 
 
7.3.6.2. Size Optimization 

The thickness of the bottom plates is also specified (API 650 / Section 3.4.1) thus no 
optimization problem needs to be solved. 
 
7.3.7. Calculations 

The calculations required for the solutions of the aforementioned optimization problems 
are most extensive. Indicatively, the procedure for estimating the scrap from cutting the 
sketch plates (horizontal orientation, Fig.7.13a) is referred. 
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Step 0: Use the tank diameter D  and the tank height H  resulted from the optimization of 
the shell 

Step 1: Determine the quantities 1d  and 2d  from standards (for API650: 1 2 ''d = , 2 24 ''d = ) 
Step 2: Estimate the thickness 

1ct  of the first course  
Step 3: Estimate the inner radius of the sketch plate 10.5inR D d= −   
Step 4: Estimate the outer radius of the sketch plate 

1 20.5out cR D t d= + +  
Step 5: For various 2,N N≥ ∈  
Step 6: Estimate the polar angle θ  corresponding to the each sketch plate 
Step 7: Estimate the width of the plate that the sketch plate will be cut from 

( )2 sin 0.5j outW R θ=  
Step 8: Find the standardized width stW  just greater than W  (see Table 1) 
Step 9: If 2300stW mm>  then N  is rejected; set 1N N= +  and return to Step 5 
Step 10: Estimate the length of the plate that the sketch plate will be cut from j out inL R R= −  
Step 11: Estimate area of the prescribing rectangle ,pp j j jA W L=  

Step 12: Estimate area of the sketch plate ( )2 2
,sp j j out inA R Rθ= −  

Step 13: Estimate the scrap area per sketch plate , , ,scrap j pp j sp jA A A= −  

Step 14: Estimate the total scrap area , ,
1

spj N

scrap sp scrap j
j

A A
=

=

= ∑  

Step 15: Estimate the total length toth N h=  
Step 16: Estimate the length for welding #1 (sketch plates one welded next to the other), 

( ),1w out inL N R R= −  
Step 17: Estimate length for welding #2 (sketch plates welded to the bottom plates), 

,2w inL Dπ=  
Step 18: Record N , totE∆ , ,1wL , ,2wL , toth  
The subscripts pp  and sp  stand for ‘prescribing plate’ and ‘sketch plate’, respectively. 
 
7.3.8. Results 

The optimization problems stated in the previous sections are all mixed-integer multi-
objective optimization problems. It is possible either to embed all of them in a large 
optimization statement or to deal with each sub-problem separately. In the present chapter, the 
latter approach was selected, because it provides a better insight. For the solution of the sub-
problems the brunch-and-bound technique was implemented. It is noted that if the solution of 
a particular problem was sought, then a Paretto front should be estimated. However, since the 
ultimate goal was to investigate the effect that various parameters had on the optimal solution, 
the estimation of the Paretto front was deactivated from the in-house code developed for the 
purposes of the present work. The overall results of the aforementioned investigation are 
presented in the next figures.  

In more details, Fig.7.15 shows the tank diameters of the optimal designs versus the 
imposed constraint concerning the ratio of the tank diameter over the tank height (D/H). It is 
obvious that there is a plethora of optimal designs, depending on the diameter and the volume 
of the tank. For the charts in Fig.7.15a, only plates of dimensions 2x6 were used, for the 
charts in Fig.7.15b, only plates of dimensions 2.5x6 were used, while for the charts in 
Fig.7.15c combinations of both types of plates were used. In these diagrams, each point 
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represents an optimal design. Therefore, from Fig.7.15, it is possible to determine the 
diameter of the tank. 
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Figure 7.15: Tank diameters for optimal shell designs using certified plates from the 
Hellenic market: (a) plates 2m× 6m only, (b) plates 2.5m× 6m only and (c) plates 2m× 6m / 

2.5m× 6m. 
 

In Fig.7.16, the tank volume versus the ratio (D/H) is illustrated for various cases of plates. 
Knowing the value (D/H) from the previous figure, it is possible to determine the volume of 
the tank. 
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Figure 7.16: Tank volumes of optimal shell designs using certified plates from the 
Hellenic market: (a) plates 2m× 6m only, (b) plates 2.5m× 6m only and (c) plates 2m× 6m / 

2.5m× 6m. 
 

In Fig.7.17, the shell area versus the ratio (D/H) is illustrated, thus it is possible to estimate 
the area of the tank that will be sandblasted and painted. This is very useful to know basically 
for reasons of scheduling. 
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Figure 7.17: Areas of optimal shell designs using certified plates from the Hellenic market 
 

Finally, the total length of the welding required for the tank to be built is illustrated in 
Fig.7.18. This information is very crucial not only in terms of cost, which is significantly high 
for the work itself, but also in terms of time. 
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Figure 7.18: Welding length of optimal shell designs using certified plates from the Hellenic 
market: (a) plates 2m× 6m only, (b) plates 2.5m× 6m only and (c) plates 2m× 6m / 2.5m× 6m. 
 
7.3.9. Conclusion 

The present work dealt with the problem of minimizing the cost of a structure taking into 
consideration both the cost of the welding and the cost of the scrap material. As an example, 
the case of an oil storage tank was investigated. In more details, the problem was decomposed 
into the design of the tank bottom, the annular bottom plates and the shell. The ultimate goal 
was to result in designs of both minimal weight and minimal scrap. The illustrated results 
provide an explicit way to select an optimal design. However, the current analysis suggests 
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that the most economically efficient solution be choosing one among the designs obtained in 
the present investigation. In other words, standardization in optimal oil storage tank design is 
strongly proposed. 
 
7.4. Recapitulation 

In this chapter, the minimization of the structural cost was investigated. Since the structural 
cost is a very complicated quantity to estimate, the investigation was focused on two subjects, 
the first being the commonality of the structural members within the structure and the second 
being the effect of the welding cost and the scrap material cost. For the needs of this 
investigation, two newly introduced optimization procedures, which consist the contribution 
of the current chapter, were developed and successfully tested. The former concerned the 
grouping of similar members and the elimination of critical members; this procedure is 
applicable to any skeletal structure and it was successfully tested in four literature problems. 
The latter concerned the solution of a complex optimization problem, involving design 
control for minimum scrap and minimum welding; it was successfully applied in welded 
tanks for oil-storage. The main outcome of the aforementioned investigation is that it is not 
possible to establish a generalized procedure for minimum structural cost applicable in all 
cases, because for the cost minimization to be achieved special design characteristics of each 
case must be exploited. However, it is possible to introduce optimization procedures, like the 
proposed ones, suitable for certain subclasses of the generalized optimization problem. 
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CHAPTER 8 
 
 

PERFORMANCE‐BASED LAYOUT OPTIMIZATION 

OF DISCRETE STRUCTURES 
 
 
 
 

 
Abstract 

In this chapter, the performance‐based layout optimization of large structures is investigated. In real‐life, many 
engineering structures are assemblies of commercially available structural members, such as beams and plates. 

For these structures, optimization means to seek for such a layout that may be constructed using the 
aforementioned members, while, at the same time, certain standards concerning their performance are met. 

Practically, this means to search among the commercially available members and find that combination for which 
a large group of imposed constraints is fulfilled. The problem just described is of a combinatorial nature and for 
its solution it is possible to use either a full‐factorial approach or a partial‐factorial approach, which is of a lower 

computational cost. Within this concept, two new heuristic partial‐factorial optimization procedures are 
proposed in the present chapter, while their applicability is examined through the optimization of discrete 

structures, such as crane bridges, crane runway beams and a hangar, taking into consideration the EuroCode 
standards. On top of that, a performance comparison with a commercial software for structural analysis also 

takes place. 
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Combinatorial optimization, partial‐factorial,  
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8.1. Introduction 
Combinatorial optimization problems are characterized by their well-structured problem 

definition as well as by their huge number of solution spaces in practical application areas. In 
structural optimization problems, a combinatorial approach is rather related to the fact that 
structures are often assemblies of commercially available plates and beams, thus the 
corresponding minimum weight problem is of a discrete nature. Theoretically speaking, the 
optimum structural design in such a case may be located if all of the possible combinations 
are explored and the one with the lowest structural weight, without violating any of the 
imposed constraints, is chosen. However, this is not a recommended approach due to the 
exponential growth of the computational cost as the number of the design variables, or the 
number of their discrete values, is increased. On top of that there are cases where a mixed-
integer problem occurs, as is the case of welded crane girders or welded crane runway beams. 
This type of problem is even more difficult to solve, because some design variables take on 
discrete, thus finite number of, values, while some other design variables take on continuous, 
thus infinite number of, values. Consequently, in practice, heuristics are commonly used even 
thought it is not possible to prove that they result in the global optimal solution.  

In the present chapter three types of combinatorial optimization problems are discussed, 
the first two having to do with the selection between standard rolled beam profiles and the 
third being the selection between standard plates for the formation of welded cross-sections, 
both in order to minimize the weight of a given structure. The main difference between the 
aforementioned problems is that in the first two cases the problem at hand is purely discrete, 
while in the third case it is of a mixed-integer type. In order to deal with them, three new 
heuristic optimization procedures are proposed in the present chapter, all supported 
extensively with characteristic examples of optimizing real-life full-scaled structures.  
 
8.2. Discrete Optimization of structures with one design variable 
8.2.1. In general 

The specific type of problem is met in real-life, when the structure of interest is nothing 
else but one beam, e.g. single or double girder crane bridges and crane runway beams. Such 
problems are not that difficult to solve. A simple procedure would be to breakdown the initial 
list with the candidate profiles into a number of sublists, each one containing profiles of the 
same type, such as HEA, HEB, HEM etc., solve the weight minimization problem separately 
for each sublist and finally keep the best solution among the best solutions derived for each 
sublist. As far as the solution of the optimization problem for each sublist is concerned, it is 
possible to use simple line search procedures, such as the binary search method, the bisection 
method, the dichotomous search and the interval halving method. The key points in this type 
of optimization problem are first to use a sorted list of the available standard profiles and 
second to carry out the search using the list index of each profile. 

More particularly, suppose that a rolled beam profile must be selected such that the 
structural weight is minimized and a set of constraints is fulfilled. The first and most 
important thing to do is separate the available beams in categories, as mentioned in the 
previous paragraph. Then for each category, a sorted list is formulated such that the profiles 
are listed in an ascending order with respect to their weight per unit length. Doing so, locating 
the beam profile that suits best the examined case is nothing else than a simple search within a 
1D list. The heuristic proposed optimization procedure for such cases, implementing the 
binary search method, is described in more details in the next paragraph, while the application 
of this procedure in large-scale structures is discussed in Section 8.2.3. 
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8.2.2. Proposed optimization procedure 

Let LL  be the length of a profile beam list to be searched, lx  be the index corresponding 
to the first profile of the list, ux  be the index corresponding to the last profile of the list and 

mx  be the index corresponding to profile at the middle of the list. If a structural analysis with 
the profile for ux  is carried out and even one of the imposed constraints is violated, then the 
entire profile list is rejected. In the opposite case, a structural analysis with the profile for lx  
is carried out and if none of the imposed constraints is violated, then the profile for lx  is 
considered to be the best solution for the specific profile list; otherwise, a binary search is 
initiated. The index mx  is estimated as ( ){ }int 0.5m l ux x x= +  and a structural analysis carried 

out for the profile corresponding to the index mx . If even one constraint violation occurs, then 
the specific profile is rejected, the index lx  is set equal to mx  and a new iteration begins. If all 
of the imposed constraints are fulfilled, then the specific profile is accepted as the current 
optimum solution, the index ux  is set equal to mx  and a new iteration begins. The iterative 
procedure ends, when the difference between the indices ux  and lx  becomes equal to one and 
the then current optimum design is the optimum design for the examined profile list. The 
same procedure is then applied to each one of the other available profile lists. In this way, a 
pool of ‘best solutions’ is formed. The ‘best of the best’ solution from this pool is considered 
to be the global optimum solution. Algorithmically speaking, the optimization procedure may 
be described as follows: 

 
Step 1: Separate available beams in categories and for each category create a sorted list with 

respect to the beam weight per unit length 
Step 2: For each list, apply the following procedure: 
Step 2a:  Estimate the length of the list LL  
Step 2b: Select the profile that corresponds to the last index in the list and carry out a 

structural analysis 
IF even one of the imposed constraints is violated THEN  

Reject the list 
ELSE  

Accept the profile as the current optimum 
Select the profile that corresponds to the first index  
Carry out a structural analysis 
IF even one of the imposed constraints is violated THEN 

Reject the profile 
Initiate a binary search 

ELSE  
Accept the profile as the optimum of the current list 

 
This approach has also the advantage of versatility, meaning that instead of a binary search 

it is possible to initiate another 1D search procedure by simply changing only one subroutine. 
With respect to the structural analysis, it is possible either to use classical mechanics or the 
Finite Element Method (FEM). Again, this selection refers to only a specific subroutine thus 
the rest of the procedure remains untouched. In this way, it is possible to implement various 
search procedures with various types of structural analysis (e.g. linear static, non-linear static, 
etc), depending on the specifications of the problem at hand. For instance, suppose that a 
crane runway beam is to be optimized. If the Engineer selects beam profiles which are 
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characterized as Class-1 according to the Eurocode 3 standards, then a simple linear static 
analysis is adequate because EC3 states that such profiles do not suffer from buckling, thus no 
non-linear analysis needs to be carried out. However, this is not the case if the selected beam 
profiles are of Class-4, where buckling must be taken into consideration, thus a snap-through 
buckling check (non-linear analysis) is mandatory. The applicability of the proposed 
optimization procedure is examined through two examples, namely the selection of a rolled 
beam to be used as the main girder of a single girder crane and the selection of the structural 
members for a hangar. 
 
8.2.3. Application: Optimum selection of rolled beams for single girder cranes 

In a typical single-girder overhead traveling crane with one hoist block, the lifted weight 
causes the loading of the girder at the areas of contact between the lower flange of the girder 
and the wheels of the trolley, which the hoist is attached to. A typical approach to the stress 
analysis of the girder is to consider it as a simply supported beam and to use analytical 
expressions from basic mechanics. However, in this way two important assumptions are 
made, the first being that the value of the normal stresses due to bending along the transverse 
direction of the flanges is constant, thus no shear lag effects are considered, and the second 
being that the load is applied at the web and not at the flanges as is the real case. Therefore, 
another approach is required for the influence of the aforementioned assumptions to be taken 
into consideration within an optimization procedure. Towards this direction, in this section the 
modeling of the girder with plate elements is proposed. In more details, for a typical case of 
lifted load and hook path and taking the dead weight of the girder into account as well, six 
different girder lengths were examined. For each modeled girder, six different standard beam 
profiles from four categories (HEA-IPBL, HEB-IPB, INP, IPE) were used. For each case, the 
corresponding minimum weight problem was solved using the procedure desdcribed in 
Section 8.2.2. For each optimum design, the maximum deflection, the maximum normal 
stress due to bending, the maximum shear stress and the maximum von Mises stress are 
recorded. In addition, these results are illustrated in four plots respectively, because having 
such nomographs at hand makes the selection of the standard profile of minimum weight with 
respect to the constraints imposed by the regulations, such as EC3, very easy. Therefore, the 
suggested approach is of significant value for practical engineering purposes. 
 
8.2.3.1. In general 

An overhead traveling crane is a machine for lifting and moving loads that moves on 
wheels along overhead crane runway beams, also called a bridge crane, and incorporates one 
or more hoists mounted on crabs or underslung trolleys (EC-3 PrENV 1993-6). Single girder 
cranes can be a very cost effective purchase for capacities up to 10tons and 60ft. girder 
lengths (spans), when the reduced wheel loads are combined with very low headroom 
standard hoists (Weaver, 1979). The main advantages of single girder traveling cranes are the 
low dead weight, the more available headroom by using a low headroom monorail hoist, 
which is the most economical solution in buildings with a span over 90ft, and the lower 
production cost, thus lower price, than a double girder model. Bridge cranes are available in 
top and under running designs. The under running design offers two additional advantages, 
the first being the maximum utilization of the building’s width and height due to the very 
small trolley approach dimensions and the second being the possibility of using the existing 
ceiling girder for securing the crane track (Salmon and Johnson, 1997). Therefore, it is 
evident, that the overhead traveling crane is of high practical value. In its simplest version, the 
crane includes one trolley and a doubly symmetrical rolled beam as a girder. The choice of the 
girder beam profile may be stated as an optimization problem, where the objective function is 
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the cost of the beam and the constraints are the stress, displacement and buckling restrictions 
imposed by technical structural rules, such as DIN or Eurocode3. The description of the cost 
is a quite complicated issue, since the quantities involved, such as rates, purchase cost and 
transportation cost, are not constant. For this reason, the structural weight is used as the 
objective function instead. It is emphasized that minimum weight does not mean minimum 
cost (Vinnakota, 2005); it is only an indication of the goodness of a feasible design. The 
minimum weight girder that can undertake the applied loads without violating any structural 
rules may be sought either analytically or numerically.  

The analytical approach suggests that the relationships from the mechanics of the 
deformable body for a simply supported beam be used. For the estimation of certain 
quantities, such as the deflection, this approach is simple and straightforward. However, for 
the estimation of the resistance against yielding or buckling, this approach becomes more 
complicated and cumbersome the reason being that the application of the actual loads causes 
local effects that can be neither ignored nor easily calculated (Ambrose, 1997). As an 
alternative, it is possible to implement the numerical approach which suggests that the Finite 
Element Method (FEM) be used. The girder is appropriately modeled and the results from the 
model analysis can be used explicitly for the validation of the design, a time saving and easy 
to apply procedure. However, since for each candidate girder design a separate model 
development and analysis is required, the aforementioned procedure obtains a cumulative 
time consuming character. Therefore, it would be of great convenience if there was a handy 
and simple way to foretell the behavior of a girder design without having to perform any 
calculations at all.  

Towards this direction, the present work suggests the creation of appropriate nomographs 
based on the FEM parametric investigation of various girder profiles. In more details, for a 
typical hoist/trolley assembly and a typical lifted load, an extensive parametric investigation 
was performed with respect to the girder span (six different values), the profile category (four 
different categories) and the profile size (four different sizes). The quantities recorded were 
the maximum deflection, the maximum shear stress, the maximum normal stress due to 
bending and the maximum equivalent von Mises stress. For each quantity, a nomograph was 
created, so that the value of the corresponding quantity could be determined by simply 
selecting the span, as well as the profile category and size. In this way, it was possible to 
compare each one of the aforementioned quantities to the allowable values. Having such 
nomographs at hand, the practicing engineer can seek the optimum girder design at minimum 
time cost. 
 
8.2.3.2. Theoretical backgroung 

A typical single-girder overhead traveling crane is shown in Fig.8.1a.  
 

 
(a) (b) 

Figure 8.1: Sketch of (a) a single-girder overhead traveling crane and (b) a hoist unit with its 
trolley 
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The main parts are the hoist, the trolley, the girder and the girder runway. For the selection 
of the girder beam profile, among other quantities such as the span and the lifted load, it is 
necessary to describe sufficiently the hoist and the trolley to be used. For the present paper, a 
commercially available hoist, with rope reeving 4/2, along with its trolley was selected 
(Fig.8.1b). 

The hoists with rope reeving /2 have two characteristics, the former being that the lifted 
load is uniformly distributed among the trolley wheels and the latter being that there is no 
horizontal hook travel, thus the hook approach from the girder end is constant during the 
lifting procedure and so are the forces at the points of contact between the trolley wheels and 
the girder flange. In mathematical terms: 
 

( )11 12 0.5 0.5R R Q aW= = +                                              (8.1) 

( )( )21 22 0.5 0.5 1R R Q a W= = + −                                          (8.2) 
where  
 

11 12,R R : forces from the wheels of the axle #1 (Fig.8.1b) 

21 22,R R : forces from the two wheels of the axle #2 (Fig.8.1b) 
Q :  total lifted load 
W :  dead load 
a :  % of the dead load carried by the axle #1  
 

From Eqs.(8.1, 8.2) it is obvious that the load distribution among the trolley wheels is 
constant as well. The characteristics of the hoist-trolley assembly selected for the needs of the 
present paper are shown in Table 8.1. 
 
Table 8.1: Data for the selected hoist – trolley assembly 

W  575kg   1d  498mm
a   50%   3e  900mm
Q  3200kg  e  50mm  

 
With respect to the girder, it is possible either to select a standard rolled beam or to 

construct a welded one. In the current work, the former possibility was followed and the 
profiles examined were retrieved from catalogues available in the Hellenic market (Fig.8.2).  
 

  
(a) (b) (c) (d) 

Figure 8.2: The examined profiles (a) HEA-IPBL (wide flange bearing pile), (b) HEB-IPB 
(wide flange column), (c) INP and (d) IPE joist 

 
For the single-girder overhead traveling crane examined, an underslung trolley was 

selected. As a consequence, each trolley wheel is in contact with the upper surface of the 
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bottom flange (Fig.8.3a) and exerts to it a concentrated load which is eccentric with respect to 
the center line of the web (Fig.8.3b). On top of that, each trolley cannot be mounted to any 
beam profile due to restrictions having to do with the geometry of the trolley and concern the 
flange thickness and width (Fig.8.3b). 
 

         
                                             (a)                           (b) 

Figure 8.3: The trolley wheels 
 
A rolled beam profile may be considered as a feasible solution if and only if it can provide 

adequate resistance to the applied loading. The quantities that mainly define the 
aforementioned resistance are (a) the maximum deflection, (b) the maximum shear stress, (c) 
the maximum normal stress due to bending and (d) the maximum stress due to the combined 
action of these stresses (Stahl im Hochbau, 1967). In order to estimate (a)-(c), it is necessary 
to examine three different positions of the trolley (Fig.8.4):  
 

Position #1: maximum deflection, where 1 2 2
L ax = −  (Fig.8.4a) 

Position #2: maximum shear stress, where 1 1
2 3min ,

2 2
d dx e e⎧ ⎫= + +⎨ ⎬

⎩ ⎭
 (Fig 4.b) 

Position #3: maximum bending moment, where 3 2 4
L ax = −  (Fig.8.4c) 

 
 

 
 
 
 
 

(a) (b) (c) 
Figure 8.4: Trolley position for maximum (a) deflection, (b) shear and (c) bending 

 
It is clarified that L  is the girder span, while the dimensions 1d  (distance between trolley 

axles), 3e  and e  are defined in Fig.8.1b and Table 8.1. It is also noted that the orientation of 
the hoist is related only to the end towards the maximum shear appears and not to the 
maximum value of the shear force. In more details, if the hoist is mounted to the trolley as in 
Fig.8.1b, then 3e e<  which means that the hook can approach more the ‘left’ girder end than 
the ‘right’ girder end, thus the maximum shear appears towards the ‘left’ girder end. If the 
orientation of the hoist is reversed, then the maximum shear appears towards the ‘right’ girder 

1R  

L

1x  
1d  

2R

L

2x  
1R 2R

1d

L

3x 1R  2R  

1d  
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end. However, in both cases the maximum value is the same, because the minimum approach 
2x  does not change. 

 
8.2.3.3. Numerical approach 

As mentioned in the Introduction, the numerical approach requires that the girder beam be 
modeled. For this task, the first and most simple choice is to use the beam element, where the 
loads are assumed to act along the center line of the web thus neither any effect from the 
application of local loads (Fig.8.3b) nor any shear lag effect (Cook, 1995), can be counted for 
(Fig.8.5a). A second choice for the aforementioned modeling is to use the brick element 
(Fig.8.5b). In this case, the numerical results are reliable under two important assumptions, 
the former being that the mesh has at least two elements along the thickness of both the web 
and the flanges and the latter being that the aspect ratio of the elements has an acceptable 
value. These two restrictions, in combination with the large girder span, result in a fine mesh 
consisting of a large number of elements, which in turn requires a time consuming analysis; 
this is not a good choice when a parametric investigation is to be performed. A third choice 
for the aforementioned modeling is to use the plate elements (Fig.8.5c). In this case, a very 
good compromise between the model accuracy and the time required for the repetitive model 
analysis is achieved. The present paper is based on an extensive parametric examination, thus 
a low computational cost is of importance.  
 

 
(a) (b) (c) 

Figure 8.5: (a) Shear lag effect, (b) Brick model and (c) Plate model  

 
8.2.3.4. Constraints 

A structural design is accepted if and only if it satisfies a certain set of technical rules. 
Different Committees have stated different approaches for calculating the strength of a 
structure. As a result there is a plethora of regulations, such as DIN (Germany), BS (Great 
Britain), ASD - LRFD - AASHTO (USA), JIS (Japan), CAE (Canada) etc. During the past 
years, the Commission of the European Communities has worked on the establishment of 
harmonized technical design rules known as ‘Structural Eurocodes’ (EC-3 PrENV 1993-6). 
The common point in all technical rules is that the design value of member cross-section 
magnitudes (i.e. tensile force, compression force etc), as well as their combined action, must 
be at most equal to the corresponding resistance. The estimation of both the cross-section 
magnitudes and the corresponding resistances differs depending on the technical rules. 
Without loss of generality, it can be stated that the constraints are:  
 

600y
LU ≤         ,max ,x x allowσ σ≤         max allowτ τ≤         ,vonMises vm allowσ σ≤             (8.3) 

 
where yU  is the maximum deflection, while the subscripts ‘ x ’ and ‘ allow ’ define the 
direction of the girder and the allowable values respectively. The allowable values can be 

xσ
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found either from tables, as is the case with the DIN rules, or analytically, as is the case with 
EC3, where the following elastic verification must be satisfied:  
 

2 2 2

, , , , 3 1
/ / / / /

o o o o o

x Ed z Ed x Ed z Ed Ed

y M y M y M y M y Mf f f f f
σ σ σ σ τ

γ γ γ γ γ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

+ − + ≤⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

            (8.4) 

 
where 

,x Edσ : design value of the local longitudinal stress at the point of consideration 

,z Edσ : design value of the local transverse stress at the point of consideration 

Edτ :  design value of the local shear stress at the point of consideration 

yf :  yield stress for the selected material 

oMγ : partial safety factor ( )1.1
oMγ =  

In the general case, there are two more constraints that concern the buckling and the shear 
buckling of the profile due to the applied loads. However, the examined beam profiles belong 
to the Class 1 cross-sections, thus yield occurs before buckling, while they also provide 
adequate resistance against shear buckling (Falke, 1996). 
 
8.2.3.5. Applied optimization procedure 

The optimization procedure to apply is as follows: 
Phase A: Acquire the required data 
For each examined profile category (HEA-IPBL, HEB-IPB, INP, IPE)  

For each examined girder span (from 5m  to 30m  with a step of 1m ) 
Step 1: Model the girder with plate elements 
Step 2: Solve the optimization problem using the procedure described in Section 

8.2.2 and for the following load cases: 
i) Trolley at position #1 (see Figure 8.4a) 
ii) Trolley at position #2 (see Figure 8.4b) 
iii) Trolley at position #3 (see Figure 8.4c) 

Step 3: For the optimum design from Step 2, repeat Steps 2i, 2ii and 2iii and 
record maximum deflection, maximum shear stress, maximum bending 
stress and maximum von mises stress. 

Phase B: Plot the data acquired from Phase #1 
For each examined profile category  

For all examined girder lengths 
• Create Plot #1: maximum deflection vs girder span (Fig.8.6a) 
• Create Plot #2: maximum shear stress vs girder span (Fig.8.6b) 
• Create Plot #3: maximum bending stress vs girder span (Fig.8.6c) 
• Create Plot #4: maximum von mises stress vs girder span (Fig.8.6d) 

Especially for Plot#1, an additional line is drawn corresponding to the deflection constraint 
(Eq.8.3). Finally, it is emphasized that for every steel grade, another set of nomographs must 
be prepared. In addition, it is clarified that apart from the trolley wheel forces, the self-weight 
of the girder is also taken into account as a uniformly distributed load along the girder span.  
 
8.2.3.6. Nomographs 

The nomographs, created applying the procedure in Section 8.2.3.5, are shown in Fig.8.6.  
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The profiles examined are shown in Table 8.2. The geometry of the profiles was retrieved 
from (Stahl im Hochbau, 1967). 

 
Table 8.2: The examined profiles 

Category Size 
HEA-IPBL 200 220 240 260 280 300 
HEB-IPB 200 220 240 260 280 300 

INP 280 300 320 340 360 400 
IPE 330 360 400 450 500 550 

 
For each plot, the x-axis refers to the girder span while the y-axis axis refers to a response 

(maximum deflection, maximum shear stress, maximum bending stress or maximum 
equivalent von Mises stress for plots #1, #2, #3 and #4 respectively). Furthermore, each plot 
presents a family of six curves corresponding to the different sizes of a certain profile 
category (HEA-IPBL, HEB-IPB, INP, IPE). For reasons of illustration, a legend is added only 
to the first and the last curve of each family, while Table 8.2 can be used in order to 
correspond the other lines to profile sizes. In addition, each plot has a two-fold interpretation: 
Interpretation (A): for a given profile category, find the response of a specific profile 
size 

Step 1:  From the x-axis and for the given girder span, draw a vertical line (VL) 
Step 2: From the point of intersection between the (VL) and one of the aforementioned 

six curves, draw a horizontal line (HL) towards the y-axis  
Step 3: Read the indication at the intersection point of the (HL) with the y-axis 

Interpretation (B):  for a given profile category, find the profile size whose response is 
conservatively closer to a given one 

Step 1:  From the x-axis and for the given girder span, draw a vertical line (VL) 
Step 2:  From the y-axis and for a given value of the quantity of interest, draw a 

horizontal line (HL) 
Step 3: Trace the intersection point of the (VL) with the (HL) 
Step 4: Select the closest curve that is below the intersection point; the profile size 

corresponding to this curve is the size sought 
At this point it is clarified that, with respect to the nomographs (Fig.8.6), the scaling of the 

x-axis is based on the violation of the deflection constraint (Plot #1). In more details, the 
results obtained from the parametric investigation referred to spans up to 30m . Obviously, it 
is of interest to present results for spans that violate no constraints. For the cases examined, it 
appeared that the deflection constraint was the predominant constraint. Therefore, it is 
meaningful to present results that correspond only to spans not violating the aforementioned 
constraint.  
 
8.2.3.7. Use of nomographs 

The nomographs of Section 8.2.2.6 are used as follows:  
Step 1: Select a steel grade and a profile category and use the corresponding set of 

nomographs 
Step 2: For a given span, use Plot#1 and Interpretation (B) (see Section 8.2.3.6) in order to 

find the profile size that gives a deflection closer to the maximum allowable one. 
Step 3: For the profile size from Step#2, check for shear stress violation using plot #2 and 

Interpretation (A) (see Section 8.2.3.6). If a violation occurs, go to Step #2 and 
choose the next larger profile size; if not available, then stop (the current profile 
category is inadequate). 
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Step 4:  For the profile size of Step#2, check for bending stress violation using plot #3 and 
Interpretation (A). If a violation occurs, go to Step #2 and choose the next larger 
profile size; if not available, then stop (the current profile category is inadequate). 

Step 5:  For the profile size of Step#2, check for violation due to combined action using plot 
#4 and Interpretation (A). If a violation occurs, go to Step #2 and choose the next 
larger profile size; if not available, then stop (the current profile category is 
inadequate). 

Step 6: Since no violations occur, the profile at hand is the best choice for the examined 
profile category. 

It is evident that the aforementioned procedure is very easy and quick to apply, while it 
requires only a very few repetitions for the optimum design to be located.  
 
8.2.3.8. Discussion 

It is possible to use commercial software, such as Statik2000 by DEMAG, Fastrak, F+L 
Statik etc., in order to select the optimum rolled beam girder for a single-girder traveling 
crane. If this approach is selected, then the practicing engineer must first purchase the 
software and then perform an entirely new study for each new project. Apart from a detailed 
study, which is definitely required, most of the times the practicing engineer needs to get very 
quickly a good approximation of the final design in order to take further decisions, mainly of 
logistic nature, concerning the specific project. For such cases, a common practice is to create 
charts which provide an easy and quick means for graphical estimation of the quantity of 
interest. Towards this direction, the present paper suggests an alternative handy and simple 
way to foretell the behavior of a girder design. In more details, given a typical hoist/trolley 
assembly, a typical lifted load and a specific steel grade (S235), a parametric FEM 
investigation was performed, the parameters being the girder span, the profile category and 
the profile size. The recorded results were appropriately plotted as nomographs ready to be 
used for the selection of the optimal girder beam profile. Such nomographs can be created for 
other combinations of hoist/trolley assemblies, lifted loads and steel grades. In this way, it is 
possible to perform an extensive parametric investigation only once and get an integrated 
series of plots that can be used any time and explicitly with no additional calculations 
required. Obviously, this is an approach of most importance for the practicing engineer who 
seeks the optimal girder design at minimum time cost. 

In the present section, the FEM investigation was achieved using the ANSYS software. 
More particularly, the parametric investigation was coded using APDL, which is the built-in 
programming language of ANSYS. One of the difficulties met was to ensure that mesh nodes 
would exist at the points where the wheel loads are applied. There are various ways to deal 
with this requirement, one of which is first to create a uniform mesh and then to introduce 
hard points at the locations of the applied load. The models of the present work were based on 
this concept. 

Furthermore, it is well known that all cranes are calculated for both static and dynamic 
loadings, while the nomographs presented in Section 8.2.2.6 were created for static loads 
only. Generally speaking, the technical rules, such as DIN15018 and EC1, consider the 
dynamic loading as static loadings appropriately amplified. Therefore, is possible to apply the 
procedure described in Section 5 using the appropriately amplified static loads. This was not 
done in the present work because the main goal was more to demonstrate the proposed 
approach rather than to result to bulletproof charts ready for professional use.  

Another issue of high importance is the order of the applied Finite Element Analysis. If a 
first order approach is used, then buckling as well as other local effects must be examined 
separately. However, if a second order (non-linear) analysis is used, then there is no need for 
any further calculation. In the present work, a first order analysis was adequate, because the 
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selected rolled beams were of Class-1 and also provided adequate resistance against shear 
buckling. 

Last but far from least, it is clarified that instead of the FEM approach, it would be possible 
to use analytical formulae provided by technical rules and textbooks of mechanics. However, 
in this case there are two important prerequisites, the first being the profound understanding 
and knowledge of the technical rules and the second being the careful planning of the 
calculations to be followed. If either prerequisite is not fulfilled, then the reliability of the 
corresponding nomographs is highly questionable. 
 
8.2.3.9. Conclusions 

The optimum selection of a rolled beam for a typical single-girder overhead traveling crane 
is a discrete optimization problem and as such, it requires the implementation of appropriate 
techniques. The proposed optimization procedure suggests a handy and simple way to achieve 
this goal. In more details, given a typical hoist/trolley assembly, a typical lifted load and a 
steel grade, it is possible to state the weight minimization optimization problem as a 1D 
optimization problem, where the design parameter is a standard profile within a 
predetermined sorted list. The structural analysis may be carried out using either classical 
mechanics or a numerical method, such as the Finite Element Method (FEM). In addition, 
solving this problem for various combinations of design parameters, such as the span of the 
girder, it is possible to create an integrated series of plots in a form of a handbook that can be 
used any time and explicitly in order to locate the optimum or a near-optimum design. 
Obviously, this is an approach of high applicability for practical engineering purposes, such 
as the quest of the optimal girder design at minimum time cost. 
 
8.3. Discrete optimization of structures with many design variables 
8.3.1. In general 

The cases where the entire structure is a single beam are not that much. In a more general 
case, an engineering structure is an assembly of groups of structural members, each group 
containing different number of members but of the same cross-section. For such a structure, if 
the minimum weight is sought, then the procedure presented in Section 8.2.2 is not suitable 
because it can handle only one group of structural members. Therefore, a different approach is 
required. Towards this direction, the procedure in Section 8.2.2 is extended, so that an 
unlimited number of groups may be implemented. Obviously, the characterization ‘unlimited’ 
denotes that, from a theoretical viewpoint and for the procedure to be presented, there is no 
limitation with respect to the number of groups, even though, in practice, this number will 
always be limited to some tens due to the computational cost, which becomes prohibitively 
high. The aforementioned general optimization problem may be stated as trying to find the 
design vector X  such that the scalar quantity ( )f X  is minimized under the restriction that 
the imposed equality ( ) 0jh =X  and/or inequality constraints ( ) 0jg ≤X  are not violated:  
 

( )min f X                                                            (8.5) 

( ) 0,    1,2,...,jh j m= =X                                              (8.6) 

( ) 0,    1, 2,...,jg j m m p≤ = + +X                                       (8.7) 
 
where 

[ ]1 2 ... T
nx x x=X                                                 (8.8) 
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In Eq.(8.8), ix  is the cross-section of a group of structural members, their domain being 
the set: 
 

[ ]1 2 ... T
i nx A A A∈                                                  (8.9) 

 
where the index i  represent a group and , 1,...,kA k n=  are commercially available profiles. 
 
8.3.2. Proposed heuristic optimization procedure  

Suppose that a structure has N  profile groups and for each group there are M  candidate 
profiles. A full-factorial approach would require MN  combinations, which may be a 
prohibitively high number of combinations. The proposed heuristic optimization procedure 
uses N  groups and M  candidate profiles but in such a way that it is not necessary to perform 
a full-factorial scheme. On the contrary, the design vector is progressively sliding towards 
what seems to be the global optimum design vector. The proposed procedure is as follows: 

 
Step 1: The tables (lists) containing the standard profiles that consist the domain for each 

design variable are defined. The optimum weight is initially defined as a very large 
number. It is clarified that the profiles in the aforementioned tables must be sorted in 
ascending order. 

Step 2: The user may either define the initial design vector or ask for a randomly created 
design vector.  

Step 3: The step size (search width) regarding the tables in Step 1 is defined. The design 
vector in combination with the step size defines a sub-domain which will be 
exhaustively explored. In case this sub-domain is outside the design space, it is re-
defined, so that it always lies inside the design space. 

Step 4: For each design variable, a new value is retrieved from the corresponding table (see 
Step 1). In this way, a new design vector is formed.  

Step 5: A structural analysis is carried out (it is possible to use either an in-house code or a 
commercial software as a solver). 

Step 6: The analysis results from Step 5 are evaluated. If none of the imposed constraints is 
violated and the structural weight is less than the current optimum weight, then the 
current design vector is considered to be the new current optimum. 

Step 7: If a new optimum design vector yields from Step 6, then this vector becomes the initial 
design vector for the next search cycle. 

Step 8: If a new optimum design vector does not yield from Step 6, then the initial design 
vector for the next search cycle is the one of the previous search cycle shifted upwards 
according to a pre-defined step.  

Step 9: The procedure is terminated when all the design variables reach their maximum cross-
section, as defined in the tables of Step 1. 

 
In the aforementioned iterative procedure, it is possible to embed four rules which 
significantly enhance the exploration performance. These rules are: 
 
Rule #1: If a structural analysis, with cross-sections equal to their upper bound, fails, meaning 

that at least one of the imposed constraints is violated, then the available design 
space is infeasible, thus no optimization procedure initiates. 

Rule #2: If a structural analysis, with cross-sections equal to their lower bound, does not fail, 
meaning that no imposed constraint is violated, then the corresponding design vector 
is considered to be the optimum one for the specific design space. 
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Rule #3: Any design vector having all of its design variables larger than the current optimum 
design vector results in a heavier structural weight thus no structural analysis using 
it takes place; anything different is just a waste of computational resources.  

Rule #4: Assume that a design vector X  is found to violate some constraints. This design 
vector is renamed as violX  and any design vector having all of its design variables 
smaller than those of violX  will also violate some constraints thus no structural 
analysis using it takes place. The violX  design vector is updated each time another 
design vector is found, having all of its design variables larger than the current violX .  

 
The implementation of the aforementioned rules in an optimization code is a 

straightforward task. 
 
8.3.3. Application: Optimal design of a steel hangar 

Steel hangars are one of the most common types of aircraft maintenance facilities, 
assembled from structural members of different profiles. In the present section, a 4-pole steel 
hangar suitable for hosting two B747 aircrafts and carrying a 5t  crane bridge is examined. 
More particularly, a typical hangar is designed taking into consideration the space occupied 
by two B737-700 and then it is optimized twice: once using a typical engineering-oriented 
trial-and-error design procedure (reference) and once using the in-house heuristic 
optimization procedure presented in Section 8.3.2. In both cases, the structural analysis was 
carried out in accordance to the Eurocode standards and using the commercial software 
SAP2000. The in-house optimizer was developed in MatLab and its main idea is to perform a 
search around a design vector by exhaustively searching the design space around each design 
variable and within a predefined width. The proposed iterative procedure is continued, until 
no further improvement on the structural weight can be achieved. The application of the 
aforementioned procedure to the aforementioned hangar, initiating from various random 
design vectors, resulted in a total weight reduction of 12.3% , with respect to the design used 
as a reference. This result is of most significance for steel structures, thus suggesting that the 
proposed procedure be a promising tool for practical engineering purposes. 
 
8.3.3.1. In general 

In modern days, air transportation is the safest and the less time consuming way of 
transportation; this is the reason why all airlines try to renew their fleets with more, new and 
modern airplanes. As a result, the demands for airplane maintenance facilities, such as 
hangars, continuously grow. Hangars are steel structures for which standards profiles are 
used, while they must comply with certain specifications regarding their safety and their 
serviceability. At the same time, it is desirable to keep their cost as low as possible. 
Consequently, the design of hangars consists a typical problem of structural optimization, 
where the total cost is the objective function, the commercially available standard profiles 
form the discrete design domain, while the national standards describe the constraints that 
must be imposed. In the most general case, the particular optimization problem is highly 
complicated, because, from a structural viewpoint, it refers to the shape, the topology and the 
dimensions of the structure, while, from a financial viewpoint, it refers to a situation where 
costs may severely change over the construction period. In a simpler form, the 
aforementioned problem may be formulated as a minimum weight design problem of a 
specific topology, which is determined using typical design rules for steel structures and for 
which commercially available standard profiles are used. The simplest way to deal with this 
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problem would be to apply a full combinatorial procedure. However, such a task is 
prohibitively time-consuming, thus other optimization methods must be used.  

Schmit and Fleury, with respect to the aforementioned discrete optimization problem, 
suggested not to attack the discrete variable design optimization problem by employing 
discrete or integer variable algorithms to treat the problem directly in the primal variable 
space (Schmit and Fleury, 1980). Instead, they showed that approximation concepts and dual 
methods for continuous sizing type design variables can be extended to structural synthesis 
problems, involving a mix of discrete and continuous sizing type design variables. Hua 
suggested a simple procedure according to which the optimum design vector is sought near 
the limits of the feasible region (Hua, 1983). In more details, he suggested that in the case of 
discrete design variables, as in the case of continuous ones, at least one constraint be active at 
the optimum. He also considered that if a feasible design vector was detected, then any design 
vector with larger cross-sections would result in a heavier design, thus there was no reason to 
examine such design vectors. Furthermore, if a design vector violates a constraint, then any 
design vector with smaller cross-sections would also violate the same constraint, thus such 
design vectors should not be examined, either. With respect to the redesign procedure, Hua 
suggested to use a variation of the well-known stress-ratio technique (Fully Stressed Design) 
in the case of a stress constraint violation. For displacement violations, he suggested that an 
analogous technique should be used. As test cases, he solved two 2D trusses and on 3D truss. 
Grierson and Lee formulated a computer-based method for optimally sizing members of 
planar steel frameworks using commercially available standard sections (Grierson and Lee, 
1984). For first-order behavior and static loads, they find a minimum-weight structure, while 
simultaneously ensuring stress and displacement performance conditions under applied 
service loads. They impose architectural conditions on section sizes to satisfy fabrication 
requirements related to member continuity and structure symmetry. They claimed that their, 
iterative in nature, design method was remarkably efficient, because the number of iterations 
was generally quite small and almost totally independent of the structural complexity. They 
optimized two steel frameworks that are typical of those encountered in professional practice. 
Bremicker et al developed a method that combined continuous and discrete variables in order 
to deal with the corresponding optimization problems (Bremicker et al, 1990). They stated 
that in practical structural optimization problems, it is often desirable to obtain solutions 
where all or some of the design variables take their values from a given set of discrete values. 
In more details, as structural optimization problems typically include large models that are 
expensive to compute, one of the major demands for optimization algorithms is that the 
number of structural evaluations (i.e. calculations of deformations and stresses) that are 
needed during the iterative optimization process is as small as possible. In their work, 
Bremicker et al developed an algorithm with respect to this requirement, while finding global 
solutions for the mixed-discrete problem. Their method was based on a combination of the 
well established branch and bound method with a sequential linearization procedure; branch 
and bound was applied within a sub-problem that was based on a linearization of the original 
problem. Wu and Chow presented the applications of steady-state genetic algorithms to 
discrete optimization of trusses (Wu and Chow, 1995). Their mathematical formulation was 
that of a constrained nonlinear optimization problem with discrete design variables. Discrete 
design variables were treated by a two-stage mapping process, which was constructed by the 
mapping relationships between unsigned decimal integers and discrete values. With small 
generation gap and careful modification, Wu and Chow suggested that steady-state genetic 
algorithms can significantly reduce the computational effort and promote the computational 
efficiency. The effectiveness, robustness and fast convergence of their approach was 
demonstrated through several examples, while the performance of four crossover operators 
was also examined. Erbatur et al also developed a computer-based systematic approach for 



D.T. Venetsanos ‐ PhD thesis ‐ 2010 

P a g e  | 8.17 

discrete optimal design of planar and space structures composed of one-dimensional elements 
(Erbatur et al, 2000). The main characteristic of their solution methodology was the use of a 
genetic algorithm (GA) as the optimizer, while applications and experience on steel frame and 
truss structures was also discussed. In order to show the efficiency of their approach, Erbatur 
et al also reported results from comparing their GA approach with other various discrete and 
continuous optimization algorithms for a class of representative structural design problems. 
They concluded that a GA often finds the region of the design domain containing the global 
optimum, but not the true optimum itself and in order to overcome this shortcoming they 
proposed a multilevel optimization approach. Guerlement et al presented a practical method 
for the discrete minimum weight design of steel structures based on a concept of removing 
redundant material by successively diminishing the size of the least stressed member 
(Guerlement et al, 2001). Assuming that the member sizes were available from the European 
Steel Profiles Catalogues, and the design constraints were given by the rules of the code EC3 
for nonsway buildings, Guerlement et al examined two numerical examples, the former being 
the classical benchmark problem of a ten-bar truss made of circular hollow sections (24 
element catalogue, buckling taken into account) and the latter being a portal frame made of 
HEB sections with broad parallel flanges (11 element catalogue). They concluded that, 
according to their method, a very good approach to the exact optimum solution was achieved 
after a reasonable computational time.  

From the aforementioned papers, as well as from other published works (Tsompanakis and 
Papadrakakis, 2004; Hernández et al, 2005; Lagaros and Papadrakakis, 2007), it yields that 
there is still ground for other approaches with respect to the solution of discrete structural 
optimization problems. Within this frame, the present investigation concerns the application 
of a new heuristic optimization method to the weight minimization of a hangar capable of 
hosting two Boeing 737-700 aircrafts. According to the official website of the vendor, the 
specific airplane is 33.6m  long, the wing span is 35.8m  and the maximum height is 12.5m . 
Based on this information, the hangar was decided to be 80m  long, 44m  wide and 16m  tall 
(inside height), while the highest object to enter the hangar would be 9.55m . The total floor 
plan was 280 44 3520m× = , while a 5t  underslung crane bridge was also mounted to the 
hangar. Using the proposed procedure, the derived optimum design was approximately 
12.3%  lighter than that obtained using a commercially available software for steel structures. 
 

 
(a) (b) (c) 

Figure 8.7: The optimized hangar (a) 3D iso-view of the entire structure, (b) typical section 
of the hangar and (c) view of the crane bridge. 

 
8.3.3.2. Theoretical background 

For the steel structure under examination, all the loads (self-weight, wind and snow) 
defined in EuroCode 1 were applied. On top of that, the effect of an earthquake was also taken 
into consideration by introducing a spectrum for the excitation force at the foundation of the 
hangar. With respect to the ultimate limit state as well as to the serviceability limit state, all of 
the corresponding constraints found in Eurocode 3 were applied. 
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8.3.3.3. MatLab/SAP2000 interface  
The proposed heuristic optimization procedure was developed in MatLab, while the 

commercial software SAP2000 was used for the structural analysis. In order to achieve the 
collaboration between them, a specific procedure must be followed: 
Step 1: The steel structure to be optimized is modeled in SAP2000. The structural topology, as 

well as the boundary conditions (supports and any number of load cases), are 
adequately defined. 

Step 2: Useful results from the structural analysis are defined to be exported in a txt file. More 
particularly, using the option Define Named Sets Tables, the following tables were 
selected to be automatically stored after a structural analysis: 

a. Material List 1 - By Obj Type: from this table, the structural weight is retrieved). 
b. Steel Sum - EUROCODE 3-1993: from this table, the results regarding the limit state 

constraints imposed according to the Eurocode 3 are retrieved) 
c. Program Control: from this table, the standards, according to which the structure is 

checked, are referred (EC3 is only one option, not the only one the software 
provides) 

d. Material List 2 - By Sect Prop: from this table, it is possible to find out the cross-
sections that were used for the analysis. 

Using the option Analyze Set Analysis Option, it is possible to define the name of the 
file where the results will be written into as well as the file type (Access or Excel). 
Step 3: Once the model is ready, from the option File  Export  Sap2000.s2k Text file and 

choosing to export the so-called MODEL DEFINITION (that is, all the data that 
SAP2000 needs as input for developing the model), a file name *.s2k is created as 
defined (name and path). 

Step 4: It is possible to open the file from Step 3 and manipulate it as a simple text file. This 
file is opened and divided in three parts, let them be Part1.txt, Part2.txt and Part3.txt 
(this step takes place only once for each examined structure). 

a. Part1 contains the first segment of the *.s2k file, up to the title TABLE:  "FRAME 
SECTION ASSIGNMENTS" 

b. Part2 is the file segment that defines the cross-section attributed to each member. It 
contains the TABLE: "FRAME SECTION ASSIGNMENTS", without the title 
which is the last line of Part1. Part2 is a temporary file to be manipulated later. 

c. Part3 contains the rest of the *.s2k file; that is, from TABLE: "FRAME OUTPUT 
STATION ASSIGNMENTS" to the end of the file. 

In the sequel, the Part2 file segment is processed such that each the desired cross-section is 
attributed to each structural member. Exactly due to the way the Part2 file is created, it is 
possible to change the attributed cross-sections any time during the optimization procedure. 
 
8.3.3.4. Data for the hangar  

The steel structure that was optimized using the proposed heuristic procedure is the hangar 
described in Section 8.3.3.1. In total, the structural members were categorized in 19 groups. 
However, there were some members highly impossible not to fail for smaller cross-sections 
than the ones initially attributed to them (e.g. the poles of the hangar), thus the number of 
groups was reduced to 16. For each one of these groups, the corresponding design space is 
described in Table 8.1. 
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Table 8.3: Design space for the hangar 

Group1 Group5 Group9 Group13 
HEA200 HEA360 TUBO-D193.7X4.5 HEM180 
HEB200 HEA400 TUBO-D219.1X5 HEM200 

 HEA450 TUBO-D244.5X5.4 HEM220 
Group2 Group6 Group10 Group14 

TUBO-D323.9X5.9 TUBO-D193.7X4.5 HEA120 TUBO-D139.7X4 
TUBO-D323.9X5.9 TUBO-D219.1X5 HEB140 TUBO-D152.4X4 

 TUBO-D244.5X5.4 HEA160 TUBO-D168.3X4 
Group3 Group7 Group11 Group15 

TUBO-D298.5X5.9 HEA180 HEA240 HEA140 
TUBO-D323.9X5.9 HEA200 HEA260 HEA160 

 HEB220 HEB280 HEA180 
Group4 Group8 Group12 Group16 
HEB800 HEA140 TUBO-D193.7X4.5 HEB200 
HEB1000 HEA160 TUBO-D219.1X5 HEB220 

 HEA180 TUBO-D244.5X5.4 HEB240 
 

The hangar was optimized twice, first using the optimization capability of SAP2000 and 
then using the proposed heuristic procedure. The derived optimum design vectors, as well as 
the corresponding total structural weight, are presented in Table 8.4. 
 
Table 8.4: Optimum designs for the hangar 

Structural members Optimum design vector using 
the commercial s/w 

Optimum design vector 
using the proposed 

method 
Group #1 ΗΕB220 HEA200 
Group #2 TUBO-D323,9X5,9 TUBO-D323,9X5,9 
Group #3 TUBO-D355,6X6,3 TUBO-D298,5X5,9 
Group #4 ΗΕB800  ΗΕB800 
Group #5 HEB400 HEA400 
Group #6 TUBO-D219,1X5 TUBO-D219,1X5 
Group #7 ΗΕB220 HEA180 
Group #8 ΗΕB200 HEA160 
Group #9 TUBO-D244,5x5,4 TUBO-D193,7X4,5 
Group #10 HEA160 HEB140 
Group #11 ΗΕB280 HEA240 
Group #12 TUBO-D273x5,6 TUBO-D219,1X5 
Group #13 ΗΕM200 HEM180 
Group #14 TUBO-D168,3x4 TUBO-D152,4X4 
Group #15 ΗΕA180 HEA140 
Group #16 ΗΕB240 HEB220 

Total Structural Weight [t] 62.7  55 
 

It is obvious that the proposed procedure resulted in a design 12.3% lighter than that 
obtained with the commercial software. Especially for the serviceability limit state, it holds: 
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• Along the x-axis, the maximum displacements are ( )19L m= : 
 

,min 51.046 / 300 63xu mm L mm= − < =  and ,max 56.105 / 300 63xu L mm= < =      (8.10) 
 
• Along the y-axis, the maximum displacements are ( )80L m= : 
 

,min 143.851 / 300 267yu mm L mm= − < =  and ,min 81.621 / 300 267yu L mm= < =      (8.11) 
 
• Along the z-axis, the maximum displacement is ( )44L m= : 
 

,max 211.325 / 200 220zu L mm= < =                                     (8.12) 
 

From the above checks, it yields that the optimum design vector derived with the proposed 
heuristic optimization procedure results in no violation with respect to the structural 
displacements. In comparison with the displacements that correspond to the optimum vector 
derived with the commercial software, it yields that only the vertical displacement is 
significantly different, as shown in Table 8.5. 
 
Table 8.5: Comparison between optimum designs w.r.t. the structural displacements 

  Displacement [mm] 

  Optimum design using the 
commercial s/w 

Optimum design using the 
proposed method 

Horizontal 
along the x-axis 57 56,105 

-51 -51,046 

along the y-axis 143 143,851 
-81 -81,621 

Vertical along the z-axis 145 211,325 
 

8.3.3.5. Data for the crane bridge  
As mentioned before, there was a crane bridge mounted to the hangar. Due to the limited 

height inside the hangar, an underslung crane bridge was chosen with limited lifting capacity, 
since the heaviest part to be lifted is the, relatively light, aircraft engine. For the examined 
case, the span was 70m  and the bridge was a triangular-shaped truss of 3m  height. It carried 
two upper flanges 2m  apart from each other and 3m  apart from the lower flange. It was 
assumed that the crane bridge could slide on the lower flanges of the corresponding runway 
beams.  

The vertical loads on the runway beams come from the lifted weight, the self-weight of the 
crane bridge and the self-weight of the trolley. For the needs of the present work, a 5t  lifting 
capacity was considered, while the self-weight of the crane bridge was 15.2t , approximately. 
From the analysis, it yielded that the reactions at the crane bridge supports and for the worst 
case scenario were 87kN  and 53kN . 

The horizontal forces on the runway beam are due to the crane bridge 
acceleration/deceleration during its operation. According to the Eurocode standards, it is 
assumed that the vertical loads and the horizontal loads are applied simultaneously. For the 
needs of the present study, it was considered that the horizontal forces were 15%  of the 
vertical loads; that is, the horizontal forces were 10kN , approximately. 
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The design space for the crane bridge is presented in Table 8.6, where the profiles derived 
with the proposed optimization procedure are noted in boldface. 

 
Table 8.6: Design space for the mounted crane bridge 

Group 1 Group 2 Group 3 Group 4 Group 5 
2L150X100X14/25/ 2L150X100X14/25/ L90X8 L65X6 L65X6 
2L150X100X14/30/ 2L150X100X14/30/ L90X10 L65X7 L65X7 
2L150X100X14/40/ 2L150X100X14/40/ L90X12 L70X10 L70X10 

 
It is noted that, for the crane bridge, the optimum design vector derived using the 

commercial software and the proposed procedure was the same. This means that a weight 
reduction of the crane bridge may be possible if the topology or the shape, and not the size, of 
the crane bridge is changed.  
 
8.3.3.6. Computational cost breakdown 

In order to evaluate the proposed optimization procedure, it is imperative that the 
computational cost is analyzed. Towards this direction, the CPU time breakdown shown in 
Fig.8.8 is discussed. 
 
R1: open files 
R2: read data from SAP file 
R3: new design vector (NDV) 
R4: store (NDV) 
R5: open auxiliary files 
R6: create new SAP file 
R7: call SAP 
R8: check constraints 
R9: delete old SAP file, check for new 
optimal design vector 
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Figure 8.8: CPU time breakdown (a) operations and (b) percentage with respect to the total 
CPU time 

 
The main operations performed during the execution of the proposed procedure are 

recorded in Fig.8.8a. From the chart in Fig.8.8b it yields that four operations, out of a total of 
nine, do consume a significant part of the CPU time. The most time-consuming task ( )58.4%  
is to call the commercial software from the command line and perform a structural analysis. 
A significant part of this task is literally a waste because the commercial software must 
initiate and terminate each time a new design vector must be analyzed. The CPU time would 
be severely reduced if it were possible to keep the commercial software running and just 
carry out the analysis whenever it is needed. However, this is not possible, when a command 
line call is used.  

Two other tasks that are time-consuming are related to the creation, manipulation and 
deletion of the txt files that serve for the communication between the in-house code 
developed in MatLab and the commercial software. The use of txt files is not the best choice, 
when it is possible to use database files. However, this selection was based on the concept of 
‘making things happen’, while the use of db files may be a future enhancement.  
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Finally, it is noted that, for the examined hangar and for the selected design space, the total 
number of combinations was 8.503.056 , while the proposed heuristic optimization procedure 
located the optimum design vector approximately after examining 0.01%  of these 
combinations. 
 
8.3.3.7. Discussion  

The present paper dealt with the weight minimization of a hangar. For the structural 
analysis the commercially available software SAP2000 was used. This software embeds an 
optimization capability according to which, based on the initial structural analysis, smaller 
profiles are suggested to the user. However, this approach is of limited practical value in 
large-scale structures, because one of the basic design parameters (the structural weight) is not 
taken into consideration. On the contrary, the proposed heuristic optimization procedure, 
which uses SAP2000 as an external solver only, did not suffer from such a shortcoming. 
Using the proposed procedure, the optimum structure was 12.3%  lighter than that obtained 
using SAP2000 and its optimization capability. For such structures, the aforementioned 
weight decrease is of most importance. The basic conclusions drawn from the present 
investigation were the following: 
• The application of the proposed optimization procedure, which is of a partial-factorial 

character, provided very satisfying results and with an acceptable computational cost.  
• For the weight minimization of a structure, it is required to handle certain structural 

members with a specific manner. More particularly, in steel structures, where the number 
of structural members with standard profiles is large, structural member grouping may 
benefit commonality but may severely affect the total weight. This may occur, when a 
few members of the group are loaded significantly more than the other members of the 
same group, thus their adequate dimensioning results in significant over-dimensioning of 
the other members of the same group. In the present paper, this problem was handled by 
tracing such members and imposing an individual redesign of their cross-section. 

• It is possible to reduce the computational cost of a combinatorial procedure, when logical 
rules are used. More particularly, if a feasible design vector is detected, then any design 
vector with larger cross-sections results in a heavier design. Furthermore, if a design 
vector violates a constraint, then any design vector with smaller cross-sections also 
violates the same constraint. These two rules significantly reduce the total number of 
design vectors that a combinatorial procedure may examine.  

• Using a commercial software as solver, even if the call takes place from the command 
line, is time consuming, because every time the objective function must be evaluated the 
commercial software initiates, analyses and terminates; this cycle is unavoidable.  

In addition, based on the obtained experience, the following are proposed: 
• For large-scale structures containing sub-structures (in the present paper, the crane bridge 

was a sub-structure), it may be beneficial to solve a small-scaled topology and shape 
optimization problem for the substructure.  

• Use data base structures instead of simple txt files. In this way, the time required for 
accessing and manipulating the data files will be reduced. 

• Apply a soft-kill penalization scheme instead of a hard-kill one (the latter was used in the 
present work). 

• Apply a varying step size, while sweeping the design space for achieving a better 
exploration.  

• Apply the proposed procedure as an operator in a stochastic optimization method such 
that the combinatorial exploration may take place about a stochastically located design 
vector. 
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8.3.3.8. Conclusions 
A new heuristic discrete optimization procedure regarding real-life large-scale engineering 

structures was presented. The main idea of this procedure was to carry out a limited full-
combinatorial exploration about a design vector. In this way, the feasible design vector 
progressively slides towards the optimum. As a case study, a hangar with an underslung crane 
bridge was examined. For reasons of comparison, a commercially available software for 
analysis of steel structures was used. It yielded that the proposed procedure resulted in a 
design approximately 12%  lighter than that obtained with the optimization capability 
embedded in the aforementioned software, while the analyses required were approximately 
0.01%  of the total number of all combinations formed for the selected design space. Similar 
encouraging results were also derived from two other case studies (1-storey 2D frame and a 6-
storey 2D frame), which were not presented here. In conclusion, the proposed procedure may 
be a promising tool for optimizing real-life large-scale engineering structures. 
 
8.4. Mixed-type optimization of structures with many design variables 
8.4.1. In general 

Assume a structure which is an assembly of commercially available plates, e.g. the box 
girder of a gantry crane. The commercially available plates have specific dimensions. Even 
though cutting and welding allows for forming an area of any dimensions, the thicknesses of 
the plates are standard. If the minimum weight of a box girder is sought, then there are design 
variables of discrete nature (e.g. thickness of webs and flanges) and design variables of 
continuous nature (e.g. width of flanges and height of webs). The latter ones are related to the 
dimensions that the plates are cut into. Such a problem that implements design variables of 
different nature is termed as a ‘mixed-type’ problem. However, for a plated structure the 
dimensions of the plates are rounded with respect to a specific tolerance, both for 
manufacturing and cost reasons. From this perspective, the design variables of continuous 
nature may be considered as quasi-discrete variables, meaning that they take on discrete 
values, which, however, are numbered in hundreds. Consequently, the ‘mixed-type’ problem 
may be considered as a discete one. In turn, the heuristic procedure presented in Section 8.3.2 
may be used, after the modifications presented in the next paragraphs. 
 
8.4.2. Proposed optimization procedure 

Suppose that a structure has N  design variables, out of which DN  are of discrete nature 
and qDN  are of quasi-discrete nature. For the former set of variables, each variable may take 
on , 1,...,iM i D=  discrete values and for the latter set of variables, each variable may take on 

, 1,...,jM i qD=  discrete values, where j iM M . A full-factorial approach requires a 
prohibitively high number of combinations that should be examined, thus this approach is 
rejected. Instead, a partial-factorial approach is proposed, where the user is allowed to 
intervene during the optimization process so that the optimization route may be altered 
depending on the intermediate results. In this way, the design vector is progressively sliding 
towards what seems to be the global optimum design vector. The proposed procedure is as 
follows: 

 
Step 1: Form the lists that contain the domain values for each design variable. These lists are 

sorted in an ascending order. 
Step 2: Define an initial design vector or ask for a random initial design vector.  
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Step 3: For each design variable, define the upper bound, the lower bound and the step size of 
the subregion to be explored. The exploration will be exhaustive and embeds logical 
rules (see Section 8.3.2) that exclude design vectors that definitely violate some 
constraint. 

Step 4: Initiate an exploration cycle. If there are feasible design vectors, then keep the one 
corresponding to the lower weight. Otherwise, the user must change the bounds or/and 
the step size of the design space and Step 4 must be carried out again, until a 
successful cycle is carried out. 

Step 5: Based on the design vector obtained after a successful execution of Step 4, an 
exhaustive exploration of the region, around the design variables and within a 
predefined width, is carried out. 

Step 6: Repeat Step 5 until no further imporovent on the structural weight is recorded. 
 

At this point, it is noted that after an exploration cycle, the user is allowed to change or 
freeze bounds and step sizes. In this way, it is possible to embed experience and personal 
judgment in the optimization procedure. Even though it cannot be proved that the final 
outcome is the global optimum design vector, the user has the ability to initiate the 
optimization procedure from different design vectors, thus obtaining a good feeling about 
how optimimum the final design is. As a matter of fact, this is a typical way of judging things: 
form a personal opinion after having obtained a vast number of numerical results using a 
versatile optimization procedure. Furthermore, the logical rules stated in Section 8.3.2 are 
applicable in the aforementioned algorithm as well. These rules accelerate the entire 
procedure, because they do not allow for the structural analysis, when it is detected that the 
current design vector will definitely violate some constraint. 
 
8.4.3. Application: Optimal design of a double girder crane box cross-section 

Double girder bridge cranes are the most favorable design solution for capacities over 
10tons and/or spans of 60 ft , since they can be utilized at any capacity where extremely high 
hook lift or high speeds and heavy service are required. As steel structures, the bridge cranes 
must be optimized, so that they both meet the principals described in technical standards, such 
as the Structural Eurocodes, and be cost efficient. Towards this direction, a typical welded 
box cross section of a double girder crane, with respect to the principals imposed by the EC1 
and EC3 standards, was extensively investigated in the present work. In more details, the 
sensitivities of the optimal girder beam weight per unit length with respect to the design 
variables were recorded, while a thorough parametric investigation with respect to the crane 
bridge span, the lifting weight and the wheel base of the trolley was also conducted. The 
recorded results were appropriately illustrated in plots that reveal the dependency of the 
optimal design on the girder cross-sectional properties and serve as nomographs for making 
the selection of the optimal profile a trivial task. Therefore, the present work is of significance 
both for research and for practicing engineering purposes. 
 
8.4.3.1. In general 

An overhead traveling crane, also called a bridge crane, is a machine that moves on wheels 
along overhead crane runway beams, used for lifting and moving loads and incorporates one 
or more hoists mounted on crabs or underslung trolleys (EC-3 PrENV 1993-6). Single girder 
cranes can be a very cost effective purchase for capacities up to 10t  and 60 ft  girder lengths 
(spans), when the reduced wheel loads are combined with very low headroom standard hoists. 
However, for larger capacities a double box girder crane is recommended (Weaver, 1979). 
The main advantages of double girder traveling cranes are two, the former being the increased 
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stiffness, when compared to single girder cranes and the latter being that they are the most 
economical solution in cases with a span over 90t . Bridge cranes are available in top and 
under running designs. The under running design offers two additional advantages, the first 
being the maximum utilization of the building’s width and height due to the very small trolley 
approach dimensions and the second being the possibility of using the existing ceiling girder 
for securing the crane track (Salmon and Johnson, 1997). Evidently, the overhead traveling 
crane is of high practical value. In its simplest version, a double box girder crane includes one 
trolley and two box beams, which serve as girders and are symmetric with each other. The 
choice of the box beam profile may be stated as an optimization problem, where the objective 
function is the cost of the beam and the constraints are the stress, displacement and buckling 
restrictions imposed by technical structural rules, such as DIN or Eurocode3. Since the 
description of the cost involves many non-constant quantities, such as rates, purchase cost and 
transportation cost, the structural weight is used as the objective function instead. It is 
strongly emphasized that minimum weight does not mean minimum cost (Vinnakota, 2005). 
On the contrary, it is only an indication of how good a feasible design is. The girder of 
minimum weight that can carry the applied loads without violating any structural rules may be 
sought either numerically or analytically.  
According to the numerical approach, first a model of the girder under investigation is 
developed and then this model is analyzed with the Finite Element Method (FEM). The 
results of the analysis can be used explicitly for the validation of the design, which is a time 
saving and easily applied procedure. The main advantage of this approach is that a most 
accurate description of the developed stress and the strain field is obtained, assuming that a 
mesh of good quality has been used. In this way, it is possible to get easily results concerning 
the more complicated and cumbersome estimation of the resistance against yielding or 
buckling due to local effects caused by the application of the actual loads (Ambrose, 1997). 
The main disadvantage of the same approach is that a Finite Element Analysis (FEA) must be 
included inside the optimization loop. This means that not only is it necessary to use a code 
for FEA but also the computational cost increases. On the other hand, the analytical approach 
suggests that the theory from the mechanics of the deformable body for a simply supported 
beam be used. The main advantage of this approach is that calculations are performed in a 
simple and straight forward manner. The main disadvantage of this approach is that it does 
not provide a detailed description of the developed stress and strain field, as a FEA does. 
However, for both practicing and research engineering purposes, the analytical approach is 
more than adequate. On top of that, analytical approaches have been significantly enhanced 
with elements of uncertainty concerning the applied loads and elements of reliability analysis 
involving statistical models for crane loads (Köppe, 1981; Pasternak et al, 1996). 
Furthermore, the results of the various analyses confirmed that the local stresses produced by 
the passage of concentrated wheel loads, as it occurs when a trolley is moving along a crane 
girder, were sufficient to cause fatigue cracks (Demo, 1976). From all the above, it becomes 
apparent that the estimation of the sensitivities of representative quantities, like the optimal 
structural weight and other normalized values of cross-sectional properties, with respect to 
independent design variables, such as the geometrical dimensions of a cross-section, is most 
useful in stating reliable and cost effective design trends concerning the box girder cranes. 
Towards this direction, the present investigation contributes with a thorough examination 
concerning the welded closed cross-section beams used in double girder overhead travelling 
cranes. For this purpose, first an in-house code was developed in MatLab© and in accordance 
with the Eurocodes (EC1 & EC3) (Stahl im Hochbau, 1967; Falke, 1996; prEN 1993-1-1; 
prEN 1991-3; prENV 1993-6) and then this code was appropriately linked to another in-house 
code implementing the optimization procedure described in Section 8.4.2. For a variety of 
controlling parameters (girder span, hoisting capacity and trolley wheel base), the 
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optimization problem of minimizing the structural weight was solved; the minimum weights 
found, as well as the design vectors corresponding to those weights, were recorded. Based on 
these results, appropriately defined normalized indices were introduced, illustrated and 
evaluated, thus providing insight for both research and practicing engineering purposes. 
 
8.4.3.2. Theoretical background 

It is a fact that the dead load of the girder in combination with the lifting capacity of the 
crane and the other live loads such as rain, snow, wind, earthquakes, lateral loads due to 
pressure of soil and water, as well as due to temperature effects, determine the design of the 
structural elements involved in a box girder. One of the most decisive parameters in the 
evaluation of a design is its behavior against fatigue. Generally speaking, designers consider 
first the ultimate limit states of strength and stability that are likely to occur and then check 
for the fatigue and serviceability limit states. For the ultimate limit states, it is possible to 
allow a limited yielding over portions of the cross section depending on the class of the cross-
section so that the resistance of the cross-section is increased but not in expense of its weight. 
The fatigue limit state is considered at the specified load level, which represents the load that 
is most likely to be applied repeatedly. The fatigue resistance depends very much on 
particular details, e.g. the type of weld in a welded cross-section. However, the details can be 
modified, relocated or even avoided such that fatigue does not control. Serviceability criteria 
such as deflections are also satisfied at the specified load level.  

 

 
(a) (b) (c) (d) 

Figure 8.9: Typical cases of double girder cranes: (a) gantry, (b) overhead box, (c) 
underslung and (d) tri girder. 

 
The loads involved in checking the adequacy of a design have many characteristics that 

lead to important considerations some of which are the following: 
(i) An impact factor must be applied to vertical wheel loads, so that the dynamic effects, as 

the trolley moves, and other effects, such as snatching of the load from the floor and from 
braking of the hoist mechanism, are taken into consideration. 

(ii) For double girder cranes, the improbability of some loads (nominal or accidental) acting 
simultaneously but for a short duration, is considered. 

(iii) For multiple double girder cranes in one aisle or double girder cranes in several aisles, the 
load combinations examined are restricted to those that appear to have a reasonable 
probability to occur. 

A double girder crane, as a structure, must not violate certain specifications concerning its 
ability to carry the nominal load with safety. Except for special designs, the crane girders are 
symmetric, as assumed in the present paper. The actions on the crane girder were estimated 
according to EC1, while all of the verifications were in accordance with EC-3. At this point, it 
is reminded that the Eurocodes (ECs) are standards which, when applied, provide designs 
with adequate resistance against the ultimate limit state, the serviceability limit state and 
fatigue. For this goal to be achieved, an extended group of inequalities is stated and adequacy 
against the aforementioned limit states is guaranteed if none of these inequalities is violated, 
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that is, if the design values of particular effects of actions are less than the design capacity for 
those effects of actions. For example, the design value of an internal force or moment must be 
less than the corresponding design resistance. The exact number of the verifications to be 
examined, as well as the selection of which of them are appropriate to be examined in each 
case, depends on the structure under investigation. In this section, it is assumed that the girder 
has a welded closed cross-section, thus the appropriate set of verifications must be formed.  
 
8.4.3.3. Ultimate Limit State requirements 

According to EC3, the adequacy of a design is examined in terms of both Ultimate and 
Serviceability Limit States, while fatigue must also be examined. Towards this direction, the 
box girder is designed, so that it can provide adequate resistance to the applied loads and 
results in such deformations that cannot cancel the utility of the crane. In the following 
paragraphs, the corresponding verifications are very briefly presented. 
 
8.4.3.3.1.  Axial force 

The design value of an axial force Ned at each cross section of the box girder shall satisfy 
the following inequality: 
 

1.0
/

o

Ed

eff y M

N
A f γ

≤                                                    (8.13) 

 
where Aeff is the effective cross section area, which is calculated under uniform compression, 
fy is the yield strength of the material and γΜ0 is a partial safety factor. 
 
8.4.3.3.2.  Bending moment 

The design value of the bending moment Med at each cross section of the girder shall 
satisfy the inequality: 
 

1

1.0Ed

eff y M

M
W f γ

≤                                                     (8.14) 

 
where effW  is the effective elastic section modulus corresponding to the maximum elastic 
stress and γΜ1 is a partial safety factor. 
 
8.4.3.3.3.  Transverse force 

The design value of a transverse force EdF  at each cross section of the girder shall satisfy 
the inequality: 
 

1

1.0Ed

y eff w M

F
f L t γ

≤                                                   (8.15) 

 
where wt  is the web thickness, effL  is the effective length for resistance against transverse 
forces, given by: 
 

eff f yL lχ=                                                          (8.16) 
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with yl  being the effective loaded length and fχ  being the reduction factor due to local 
buckling. 
 
8.4.3.3.4.  Shear 

The design value of a shear force EdV  at each cross section of the girder shall satisfy the 
following inequality: 
 

1

1.0
3

Ed

V w y M

V
d t fχ γ

≤                                                (8.17) 

 
where wt  is the web thickness, d is the web height and Vχ  is a factor for shear resistance. 
 
8.4.3.3.5.  Biaxial bending and axial force 

Normal stresses from compression and biaxial bending shall satisfy the following 
inequality: 
 

, , , ,

, ,

1.0
o o o

y Ed Ed y N z Ed Ed z NEd

y eff M y eff y M y eff z M

M N e M N eN
f A f W f Wγ γ γ

+ +
+ + ≤                       (8.18) 

 
where ,y Ne  and ,z Ne  are the shifts in the position of the neutral axis with respect to the neutral 
y y−  and the z z−  axes of the gross section, respectively, due to the effective part of the 

cross-section, while 
bMγ  is the introduced partial factor of safety. 

 
8.4.3.3.6.  Bending moment and shear force 

Where the design shear force EdV  exceeds 50% of ,pl RdV , the design resistance of the cross 
section against the combined action of bending moment and shear force should be calculated 
using a reduced yield strength ( )1 yfρ− : 
 

1

1.0
(1 ) /

Ed

eff y M

M
W fρ γ

≤
−

                                              (8.19) 

 
where ( )2

,2 1Ed pl RdV Vρ = − and ,pl RdV  is the design plastic shear resistance, given by: 
 

, 3
o

V y
pl Rd

M

A f
V

γ
=                                                      (8.20) 

 
In Eq.8.8, VA  is the shear area, the estimation of which depends on whether the load force is 
parallel either to the depth (Eq.8.9a) or to the width of the cross-section (Eq.8.9b): 
 

V
AhA

b h
=

+
    V

AbA
b h

=
+

                                  (8.21) 
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8.4.3.3.7.  Bending moment and shear and axial force 

Where the design shear force EdV  exceeds 50% of ,pl RdV , the design resistance of the cross 
section against combined action of bending moment and shear force should be calculated 
using a reduced yield strength ( )1 yfρ− : 
 

( )2,
1 3

,

1 2 1 1.0f Rd

pl Rd

M
n n

M
⎛ ⎞

+ − − ≤⎜ ⎟⎜ ⎟
⎝ ⎠

                                       (8.22) 

 
where 1n  is the result of the verification against biaxial bending and axial force, 3n  is the 
result of the verification against shear, ,f RdM  is the design plastic moment of a section 
consisting only of the effective flanges and ,pl RdM  is the plastic resistance of the cross 
section.  
 
8.4.3.3.8.  Bending moment and transverse and axial force 

Where the design shear force EdV  exceeds 50% of ,pl RdV , the design resistance of the cross 
section against the combined action of bending moment and shear force should be verified 
with the following inequality: 
 

2 10.8 1.4n n+ ≤                                                      (8.23) 
 
using a reduced yield strength and the result of the verification against transverse (normalized 
index 2n ) 
 
8.4.3.3.9.  Buckling resistance of members (uniform member in compression) 

A compression member shall be verified against buckling using the following inequality: 
 

1

1.0Ed

eff y M

N
A fχ γ

≤                                                    (8.24) 

 
where χ  is the reduction factor from the corresponding buckling curve. At this stage, two 
points must be clarified, the former being that the verifications presented in the previous 
paragraphs concern the ultimate limit state of plated structural elements (prEN 1993-1-5) and 
the latter being that no longitudinal stiffeners are present, as the latest design trend suggests so 
that the total structural cost is minimized. 
 
8.4.3.4. Serviceability Limit State requirements 

8.4.3.4.1.  Vertical deflection 
The design value of a vertical deflection wz shall satisfy the following inequality: 

 

min 0.25,
600z
Lw ⎧ ⎫≤ ⎨ ⎬

⎩ ⎭
                                                (8.25) 

 
where L  is the span of the double girder bridge crane 
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8.4.3.4.2.  Horizontal deflection 
The design value of a horizontal wy shall satisfy the following inequality: 

 

min 0.25,
600y
Lw ⎧ ⎫≤ ⎨ ⎬

⎩ ⎭
                                                (8.26) 

 
8.4.3.4.3.  Oscillation of the bottom flange 

The bottom flange of the cross section shall satisfy the following inequality:  
 

250L
i
<                                                            (8.27) 

 
where i  is the radius of gyration with respect to the vertical axis. In this calculation, the 
moment of inertia about the vertical axis, as well as the area of the examined cross-section, is 
involved. 
 
8.4.3.5. Fillet weld Limit State requirements 

8.4.3.5.1.  Resultant stress 

The resultant design resistance of the fillet weld, σEd shall satisfy the following inequality: 
 

σ   
3

w

u
Ed

w M

f
β γ

<                                                   (8.28) 

 
where σEd  is given by  
 

( )2 2 2 1/2
, 1 2[( ) 3 ]Ed w w Edσ σ σ τ τ= + + +                                      (8.29) 

 
where σw  is the normal stress due to the force applied to the wheel (perpendicular to the 
throat section of the weld), ,σw Ed  is the normal stress due to bending of the top flange 
(perpendicular to the throat section of the weld), 1τ  is the shear stress due to bending 
(perpendicular to the axis of the weld), 2τ  is the shear stress due to the force applied to the the 

wheel (parallel to the axis of the weld), 
wMγ  is the weld factor ( )1.25

wMγ =  uf  is the nominal 

ultimate tensile strength of the material and wβ  with 0.8 1.0wβ≤ ≤ , is the appropriate 
correlation factor defined by the steel grade. 
 
8.4.3.5.2.  Fatigue due to normal stress 

The fatigue check due to normal stress shall satisfy the following inequality: 
 

2f

f

c
F E

M

σγ σ
γ
∆

∆ <                                                      (8.30) 

where 
2Eσ∆  is the range of the normal stress values given by 

2 ,E w w Edσ σ σ∆ = + , cσ∆  is the 
resistance against fatigue defined by the detail category of the weld used for the double girder 



D.T. Venetsanos ‐ PhD thesis ‐ 2010 

P a g e  | 8.31 

bridge crane, Ffγ  is the partial factor for equivalent constant amplitude stress ranges and Mfγ  
is the partial factor for fatigue strength. 
 
8.4.3.5.3.  Fatigue due to shear stress 

The fatigue check due to shear stress shall satisfy the following inequality: 
 

2

f

c
Ff E

M

τγ τ
γ
∆

∆ ≤                                                      (8.31) 

 
where 

2Eτ∆  is the range of the shear stress given by 
2 1 22Eτ τ τ∆ = +  and cτ∆  is the resistance 

against fatigue given by the detail category of the weld used for the double girder bridge 
crane. 
 
8.4.3.5.4.  Fatigue due to interaction between direct and shear stress 

The verification against fatigue due to the interaction between direct and shear stress shall 
satisfy the following inequality: 
 

2 2

3 5
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f f

f f

F E F E

c M c M

γ σ γ τ

σ γ τ γ

⎡ ⎤ ⎡ ⎤∆ ∆
+ ≤⎢ ⎥ ⎢ ⎥

∆ ∆⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
                                        (8.32) 

 
Where wσ  is the direct stress due to the force applied to the wheel (perpendicular to the throat 
section of the weld), ,w Edσ  is the direct stress due to bending of the top flange (perpendicular 
to the throat section of the weld), 1τ  is the shear stress due to bending (parallel to the axis of 
the weld), 2τ  is the shear stress due to the force applied to the wheel (perpendicular to the 
axis of the weld).  
 
8.4.3.6. Numerical approach 

The problem of minimizing the weight of a crane girder belongs to the category of 
constrained optimization, the constraints being all the verifications stated earlier. 
Furthermore, the welded cross-sections are manufactured by cutting and welding together 
commercially available metal plates which have standard thicknesses. As far as the other 
dimensions (width and height) of these plates are concerned, the standard design procedure is 
to round off their values to the nearest higher integer, the dimensions being expressed in 
[mm]. Consequently, the actual optimization problem at hand is not a continuous but a 
discrete one and a combinatorial approach would be the best choice. However, using the 
continuous variable approach may lead to results that could cause major changes concerning 
the decision for the final design due to the fact that negligible violation of one or more 
constraints, which definitely do not endanger the structural integrity, may lead to a design 
with major savings in terms of scrap material. Within this frame, the investigation in the 
present paper was carried out using the MatLab routine fmincon, which is a very powerful 
build-in optimizer for solving non-linear constrained problems. More particularly, 75 different 
cases were analyzed and the minimum weight, along with the corresponding design vector, 
was recorded. The aforementioned cases were created from combining three design 
parameters as shown in Table 8.7. 



D.T. Venetsanos ‐ PhD thesis ‐ 2010 

P a g e  | 8.32 

Table 8.7: Parametric variables and their values 

Index Variable Value Units 

1 Crane Bridge Span { }10,15,20,25,30CBS∈  [m] 

2 Total Hoisting Mass { }10,15,20,25,30THM ∈  [tn] 

3 Trolley Wheel Base { }1000,1250,1500TWB∈  [mm] 
 

It is obvious that increasing the number of the independent variables as well as the values 
attributed to each one of them results in a significant increase of the combinations to be 
examined. However, the 75 cases studied consist a good sample, according to the central limit 
theorem of statistics.  
 
8.4.3.7. Evaluation Indices and Plots 

In order to evaluate the results of the investigation, three groups of normalized indices 
were introduced and illustrated in plots. The first group consisted of the following indices 
(Fig.8.2a): 
 

( )1 2 i
t t    ( )2 3 i

t t    ( )2 i
t b    ( )w i

b h    ( )4 w i
t h    ( )3 w i

t h                      (8.33) 
 
where 1 1,b t  are the width and thickness of the lower flange, 2 2,b t  are the width and thickness 
of the upper flange, 3 4, ,wh t t  are the height of the webs, the thickness of the left web and the 
thickness of the right web, respectively. The subscript [ ]1,2,...,75i∈  defines the index of the 
analysis that was carried out. The second group of indices consisted of the quantities: 
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where A  represents areas and the subscripts 1,2,3,4, tot  stand for the lower flange, the upper 
flange, the left web, the right web and the gross section, respectively, all quantities referring 
to a box cross-section. The subscript i  is used as in Eq.(8.21). The indices in Eq.(8.21) reveal 
the relationship between of the structural elements involved in the box cross-section in terms 
of dimensions while the indices in Eq.(8.22) reveal their relationship in terms of areas. The 
third group of evaluation normalized indices consisted of the ratios: 
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where I  represents moment of inertia, the subscripts , ,uf lf w  represent the upper flange, the 
lower flange and the webs, while the subscript y  stands the horizontal axis, respectively. In 
this case, a second normalization took place so that an even more representative impression 
could be obtained. 
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Figure 8.10: Illustrations of the evaluation indices for (a) the geometric dimensions, (b) the 
areas and (c) the moments of inertia of the examined cross-sections 
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8.4.3.8. Results 
The designs mentioned in the previous section were analyzed with an in-house code 

developed especially for this research area and the results are illustrated in Fig.8.8. In more 
details, the ordinate represents the normalized index shown along the y-axis of each plot, 
while the values of this index corresponding to optimal designs are presented along the x-axis 
and in an increasing sorted order. On these plots, a polynomial regression was performed 
aiming at revealing any relationship (sensitivity) among the examined variables. As Fig.8.8 
shows, all distributions were characterized by a very high correlation factor, clearly declaring 
that the introduced normalized quantities obey to low up to medium degree polynomial 
expressions. The main conclusions derived from the performed investigation were that among 
designs with increasing minimum weight: 
• the aspect ratio ( )3 wt h  increases in a highly nonlinear and concave manner (Fig.8.8a), 

• the normalized index ( )4 totA A  presents a very slow increase in an almost constant rate, 

while the normalized index ( )1 4A A  increases very fast (Fig.8.8b), 
• the contribution of the webs to the moment of inertia about the horizontal axis is stronger 

than the contribution of the flanges (Fig.8.8c), 
• the contribution of the upper flange to the moment of inertia about the horizontal axis is 

very high (Fig.8.8c). 
 
8.4.3.9. Conclusions 

The requirements for the design of crane girders are such that deterioration will not impair 
their durability and performance. For this purpose, the optimal design of a welded closed 
cross section, used in the design of a typical single-trolley overhead traveling double girder 
crane and with respect to the constraints described in EC1 and EC3 standards, was 
extensively investigated. The sensitivities of the optimal beam weight per unit length with 
respect to appropriately introduced normalized indices were recorded, while a thorough 
investigation with respect to the bridge span, the lifting weight and the trolley wheel base was 
also conducted. The recorded results were illustrated in plots, which reveal the dependency of 
the optimal design on the beam dimensions and its cross-sectional properties. The overall 
conclusion of the present paper was that the proposed optimization procedure (see Section 
8.4.2) is of high value and may be used for the creation of handy nomographs.  
 
8.4.4. Application: Optimal design of a runway beam 

The design of crane runway beams must be such that deterioration will not impair their 
durability and performance. For this purpose, the design must meet certain standards, such as 
the Structural Eurocodes, which comprise a group of standards for engineering structures. At 
the same time, the design must be optimized, so that no material waste takes place. Towards 
this direction, the optimal design of a typical welded open cross section crane runway beam, 
for single-girder overhead traveling cranes and with respect to the principals imposed by the 
EC1 and EC3 standards, was extensively investigated in the present work. In more details, the 
sensitivities of the optimal beam weight per unit length with respect to the design variables 
were recorded, while a thorough parametric investigation with respect to the crane bridge 
span, the runaway beam span, the lifting weight and the wheel base of the end carriage was 
also conducted. The recorded results were appropriately illustrated in plots. Not only do these 
plots reveal the dependency of the optimal design on the beam cross-sectional properties but 
also serve as nomographs, thus making the selection of the optimal profile a trivial task. The 
present work is of significance both for research and for practicing engineering purposes. 
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8.4.4.1. In general 
Overhead travelling cranes are used in industrial applications for moving loads without 

causing disruption to activities on the ground. They can be described as machines for lifting 
and moving loads, consisting of a crane bridge which travels on wheels along overhead crane 
runway beams, a crab which travels across the bridge and a hoist for lifting the loads (EC-3 
PrENV 1993-6). Top running (overhead) double girder cranes have up to 150-ton in capacity 
and up to 150in on the span while utilizing a Box Girder in lieu of a standard I-Beam 
minimizes the wheel loads (Weaver, 1979). The overhead travelling cranes rest on a crane 
support structure, which must comply with specific design requirements, so that the applying 
loads are carried with safety during the operational life time of the structure (Salmon and 
Johnson, 1997). At the same time, it is most desirable to minimize the total cost of the support 
structure. Therefore, the selection of the beam profile may be stated as an optimization 
problem where the cost of the beam would be the objective function and the stress, 
displacement and buckling restrictions would be the constraints. The estimation of the cost of 
the crane runway beam is a very complicated problem, because it depends on various 
parameters such as beam manufacture, transportation and type of material. Therefore, the 
weight of the structure could be considered as an objective function, the minimization of it 
being the ultimate goal. It is important to know that a minimum weight structural design is not 
always the design of minimum cost (Vinnakota, 2005). For instance, a welded runway beam 
may be of less weight, when compared to a rolled beam; however, the former requires 
welding processes, which cost both in time and in money. Consequently, the minimum weight 
is only an indication of a feasible design. Furthermore, the estimation of the resistance against 
yielding or buckling becomes more complicated and cumbersome, the reason being that the 
application of the actual loads causes local effects that can be neither ignored nor easily 
calculated (Ambrose, 1997). On top of that, there is an uncertainty concerning the applied 
loads and studies have been reported in reliability analysis involving statistical models for 
crane loads, such as those by Köppe and Pasternak et al. (Köppe, 1981; Pasternak et al, 1996). 
In addition, various problems have been encountered in practice with crane support structures, 
mainly due to excessive deflections. In a typical case, an overhead crane moves loads by 
travelling along the crane runway beams, thus imposing on the support structure a cyclic 
loading that may lead to fatigue, which is the most common type of failure in practice. The 
results of the various analyses confirmed that the local stresses produced by the passage of 
concentrated wheel loads were sufficient to cause fatigue cracks (Demo, 1976). From all the 
above, it is evident that for both research and practicing engineering reasons, it is of interest to 
reveal the sensitivities of representative quantities, such as the minimum structural weight and 
normalized values of cross-sectional properties, with respect to independent design variables, 
such as the geometrical dimensions of a cross-section. Information of this kind is most useful 
in determining reliable and most cost effective trends concerning the design of crane runways. 
Towards this direction, the present paper contributes with a thorough investigation concerning 
the welded open cross-section runway beam of a single overhead travelling crane. More 
particularly, a full in-house code was developed in MatLab© and in accordance with the 
Eurocodes (EC1 & EC3) (prEN 1993-1-1; prEN 1991-3; EC-3 PrENV 1993-6); in the sequel, 
this code was appropriately linked to another in-house code implementing the optimization 
procedure presented in Section 8.4.2. For a variety of controlling parameters (runway beam 
spans, crane bridges loads, end-carriage base wheel and crane bridge spans), the optimization 
problem of minimizing the structural weight was solved and the minimum beam weights, as 
well as the design vectors corresponding to minimum weights, were recorded. Based on these 
results, appropriately defined normalized indices were introduced, illustrated and evaluated. 
Consequently, the present investigation is of significance not only from a research viewpoint 
but also for practicing engineering purposes. 
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8.4.4.2. Theoretical background 
It is a fact that crane loads dominate the design of many structural elements in crane-

supporting structures. These loads are considered to be separate loads from the other live 
loads due to use and occupancy and environmental effects such as rain, snow, wind, 
earthquakes, lateral loads due to pressure of soil and water, and temperature effects, because 
they are independent from them. Of all considerations, fatigue is the most important for 
structures supporting cranes. Designers generally design first for the ultimate limit states of 
strength and stability that are likely to control and then check for the fatigue and serviceability 
limit states. For the ultimate limit states, the factored resistance may allow yielding over 
portions of the cross section depending on the class of the cross-section. The fatigue limit 
state is considered at the specified load level-the load that is likely to be applied repeatedly. 
The fatigue resistance very much depends on particular details, e.g. the type of weld in a 
welded cross-section. However, the details can be modified, relocated or even avoided so that 
fatigue does not control. Serviceability criteria are also satisfied for the specified load.  
 

 
(a) (b) (c) (d) 

Figure 8.11: Typical cases of overhead travelling crane supporting structures: (a) gantries, (b) 
support, (c) knee and (d) typical crane runway cross-section 

 
Crane loads have many unique characteristics that lead to the following considerations: 

(i) An impact factor must be applied to vertical wheel loads, so that the dynamic effects, 
as the crane moves, and other effects, such as snatching of the load from the floor 
and from braking of the hoist mechanism, are taken into consideration. 

(ii) For single cranes, the improbability of some loads acting simultaneously but for a 
short duration is considered. 

(iii) For multiple cranes in one aisle or cranes in several aisles, the load combinations 
examined are restricted to those that appear to have a reasonable probability to occur. 

(iv) For effects, such as acceleration and braking forces of the trolley and lifted load, 
skewing of the travelling crane, rail misalignment and not-vertical picking up of the 
load, to be taken into consideration, lateral forces acting on the crane rail are 
introduced. 

(v) Acceleration and braking of the crane bridge, as well as not picking the load up 
vertically, result in longitudinal forces that must be accounted for. 

(vi) Although general rules are applicable to all cranes, special consideration is 
appropriate and mandatory for various specialized classes of cranes such as magnet 
cranes, clamshell bucket cranes and cranes with rigid masts. 

Apart from the above, there are various issues that the designer must decide upon, such as 
the selection of the rail, the type of mounting the rail to the crane runway beam and the design 
of the end stops. For the latter, it is clarified that, although cut-off PLC systems are available 
for decelerating a crane bridge, when it reaches a runway end stop, these end stops are 
designed for providing adequate resistance to accidental impact at full crane bridge speed. 

Finally, it must be clarified that a crane runway beam may be considered either as a simply 
supported beam or as a continuous beam. In the present paper, an investigation based on the 
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former consideration is presented. Based on all the above, it is evident that a crane runway 
beam, as a steel structure, must comply with certain design specifications. In the present 
paper, the crane actions on the runway beam were estimated according to EC1 and 
verifications were applied according to EC-3. More particularly, various limit states are 
considered, when a structure is designed, such as the ultimate limit state, the serviceability 
limit state and fatigue. In general, a structure fulfills the design requirements described by the 
Eurocodes, when the design values of particular effects of actions are less than the design 
capacity for those effects of actions. Furthermore, the design value of an internal force or 
moment must be less than the corresponding design resistance. Therefore, each structural 
design must fulfill a set of verifications that describe various action effects and resistances. 
The number of the aforementioned verifications, as well as the determination of which of 
them will be examined, depends on the structure under investigation. 

 

    
(a) (b) (c) (d) 

Figure 8.12: Accessory components for a typical crane runway beam: (a) crane end stop, (b) 
single hole clamp and holder, (c) double clamp and (d) hook bolts. 

 
In the present chapter, a welded crane runway beam was examined, thus a specific set of 

verifications was formed.  
 
8.4.4.3. Design Specifications 

For the Ultimate Limit State, the Serviceability Limit State and the fatigue, the design 
specifications are those described in Sections 8.4.2.3-8.4.2.5. 
 
8.4.4.4. Numerical approach 

The problem of finding the minimum weight of a welded crane runway beam belongs to 
the category of constrained optimization, the constraints being all the verifications stated 
earlier. On top of that, all the commercially available metal plates, which, when appropriately 
cut and welded together, form the runway beam, have standard integer values of thickness. As 
far as the other dimensions (width and height) of these plates are concerned, the standard 
design procedure is to round off their values to the nearest higher integer, the dimensions 
being expressed in [mm]. Consequently, the actual optimization problem at hand is of a 
discrete combinatorial nature. However, solving the same problem as a continuous variable 
problem results in a continuous solution, which, when compared to the optimal discrete one, 
provides the designer with information that may prove to be of crucial importance. Such cases 
occur, when a negligible violation of the active constraints results in having zero scrap 
material, which is the best possible scenario for a manufacturer. Within this frame, the 
investigation in the present investigation was carried out using the proposed optimization 
procedure (see Section 8.4.2). In total, 300 different cases were analyzed and the minimum 
weight, along with the corresponding design vector, was recorded. These cases were created 
from combining four design parameters as shown in Table 8.8. 
 



D.T. Venetsanos ‐ PhD thesis ‐ 2010 

P a g e  | 8.38 

Table 8.8: Parametric variables and their values 
Index Variable Value Units 

1 Crane Runway Beam Span { }6,8,10,12CRBS ∈  [m] 
2 Crane Bridge Span { }10,12,14,16,18CBS ∈  [m] 
3 Total Hoisting Mass { }3, 5, 6.3,10,12THM ∈  [tn] 
4 End-carriage Wheel Base { }1500, 2000, 2500EWB∈  [mm] 

 
Increasing the number of the independent variables, as well as the values attributed to each 
one of them, results in a significant increase of the combinations to be examined. According 
to the central limit theorem of statistics, the 300 cases studied is a good sample.  
 
8.4.4.5. Evaluation Indices and Plots 

In order to evaluate the results of the investigation, three groups of normalized indices 
were introduced and illustrated in plots. The first group consisted of the following indices: 
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where 1 1,b t  are the width and thickness of the lower flange, 2 2,b t  are the width and thickness 
of the upper flange and ,w wh t  are the height and thickness of the web, respectively. These 
numerators of the aforementioned indices express the relationship between the geometrical 
dimensions of the plated elements used for manufacturing the welded open cross-section of 
the examined runway beams. The subscript [ ]1,2,...,300i∈  defines the index of the analysis 
that was carried out. The denominators of the indices in Eq.(8.36) represent the maximum 
value recorded concerning the corresponding numerator among the 300 optimizations. This 
second normalization was introduced so that an even more representative impression could be 
obtained. The second group of indices consisted of the quantities: 
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where A  represents areas, subscripts 1,2, ,w tot  stand for the lower flange, the upper flange, 
the web and the gross section, respectively, while wC  is the warping constant. In this case, a 
second normalization did not take place, so that an explicit comparison between the quantities 
involved in the normalized indices could be performed. The third group of evaluation 
normalized indices consisted of the ratios: 
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where I  is the moment of inertia, ,y z  denote the horizontal and the vertical centroidal axis, 
while the subscripts 1,2, w  stand for the lower flange, the upper flange and the web. 
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8.4.4.6. Results 
The results from the analysis of the aforementioned designs are illustrated in Fig.8.13.  
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Figure 8.13: Illustrations of the evaluation indices for (a) the geometric dimensions, (b) the 
areas and the warping constant and (c) the moments of inertia of the examined cross-sections 
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In more details, the ordinate represents the normalized index shown along the y-axis of 
each plot, while the values of this index corresponding to optimal designs are presented along 
the x-axis and in an increasing sorted order. On these plots, a polynomial regression was 
performed aiming at revealing any relationship (sensitivity) among the examined variables. 
As Fig.8.13 shows, all distributions were characterized by a very high correlation factor, 
clearly declaring that the introduced normalized quantities obey to low up to medium degree 
polynomial expressions. The main conclusions derived from the performed investigation were 
that among designs with increasing minimum weight: 
• the aspect ratio ( )1 1b t  increases in an approximately linear way, while the aspect ratio 

( )2 2b t  is highly concave (non-linear) (Fig.8.13a), 
• the area wA  increases in an almost constant rate, while the area 2A  increases in a non-

linear way and always having the smallest portion of the gross cross-section (Fig.8.13b), 
• the warping constant increases exponentially due to the need for resisting the warping 

effect caused by torsion in open cross-sections, 
• the moment of inertia about the horizontal axis becomes significantly higher (much 

higher than 50% ) than that about the vertical axis (Fig.8.13c). This is due to the fact that 
the vertical loading dominates over the transverse loading, which, from a point on, has a 
small contribution. 

 
8.4.4.7. Conclusions 

The requirements for the design of crane runway beams are such that deterioration will not 
impair their durability and performance. For this purpose, the optimal design of a welded 
open cross section of a typical crane runway beam, for single-girder overhead traveling cranes 
and with respect to the principals imposed by the EC1 and EC3 standards, was extensively 
investigated. The sensitivities of the optimal beam weight per unit length with respect to 
appropriately introduced normalized indices were recorded, while a thorough parametric 
investigation with respect to the crane bridge span, the runaway beam span, the lifting weight 
and the wheel base of the end carriage was also conducted. The recorded results were 
illustrated in plots. These plots reveal the dependency of the optimal design on the beam 
cross-sectional properties. Therefore, the present work is of significance both for research and 
practicing engineering purposes. 
 
8.5. Recapitulation 

In this chapter, the performance-based layout optimization of large structures was 
investigated. In total, three different cases were examined. The first case referred to structures 
which consist of one standard beam. The second case referred to structures which are 
assemblies of commercially available standard beams, while the third case referred to 
structures that are made of standard plates. For all three cases, the minimum weight problem 
may be stated in terms of a discrete optimization problem. For each case, a specific 
optimization procedure was proposed. More particularly, for the latter two cases, two new 
heuristic optimization procedures were introduced. These newly introduced procedures 
consist the main contribution of the current chapter. All of the proposed procedures were 
evaluated through the optimization of real-life structures, which consists another contribution 
of the present chapter. The encouranging results suggest that these procedures be an efficient 
tool that can be used for solving performance-based layout optimization problems. 
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9.1. Thesis recapitulation 
In the current Thesis, a wide range of issues concerning the layout optimization of 

structures were examined.  
With respect to the deterministic and the stochastic optimization methods, the investigation 

of the current Thesis yielded that: 
• The direct search stochastic optimization methods perform better, as the number of the 

design variables decreases. 
• The direct search deterministic optimization methods perform better than the direct 

search stochastic optimization methods, as the number of the design variables increases. 
• The penalty scheme implemented in an optimization procedure seriously affects its 

performance. 
• For 1D optimization problems, the Simulated Annealing (SA) optimization method 

seems to outperform the other optimization procedures. 
• It is possible to combine a deterministic search scheme with a stochastic search scheme in 

order to create a hybrid optimization procedure. For instance, it is possible to use a 
deterministic procedure for estimating a search direction and a stochastic procedure for 
estimating the step size or vice versa. Such combinations are numerous and involve some 
innovation, since all they actually do is combining already known optimization 
procedures, or variations of them, in a different order. Nevertheless, they do contribute in 
the exploration of the potential that such optimization methods have.  

• The increased computational cost of direct search methods suggest that other types of 
optimization procedures, such as the indirect methods, be investigated. 

In addition, a novel hybrid optimization method was proposed, combining a deterministic 
search direction (Powell’s method) with a stochastic step size search (SA). This hybrid 
optimization method outperformed the competition in terms of tracing the global optimum but 
its computational cost was very high. Due to this reason, in combination with the fact that the 
direct search methods, either deterministic or stochastic, do not take into consideration 
intrinsic characteristics of the problem at hand, it was decided to turn the investigation more 
towards the indirect search methods.  

Doing so, the first thing to do is find a way to remove, either completely or partially, 
redundant material from a structure. The criterion for determining which part of the structure 
to remove depends on the imposed constraint. One of the most common types of such 
problems is related to the compliance of the structure. In the literature, the corresponding 
problem has been solved, when a volume constraint is also imposed. In the present Thesis, a 
more general case was theoretically investigated, where the volume constraint is not present. 
However, since no standard for structures refers to a compliance constraint, no further effort 
was put on exploring this issue. On the other hand, the stress-ratio technique is an 
optimization procedure that tends to Fully Stressed Designs which, for the majority of real-
life structures, results in near-optimum solutions and, thus, is acceptable and interesting to 
explore. 

Consequently, the stress constraint problem was investigated. More particularly, the 
capabilities of the Fully Stressed Design (FSD) in layout optimization were examined first of 
2D skeletal structures and then on 2D continua. In both approaches, the redesign was based 
on changing either the cross-section of the skeletal structural members or the thickness of the 
continuum. In the sequel, the concept of using finite elements of variable thickness for the 
stress constrained layout optimization of 2D continua was explored. To this end, the element 
thickness was interpolated within each element in an isoparametric way. Next, the 
optimization of 2D plates was investigated, where the (FSD) was examined along with the 
application of the Evolutionary Structural Optimization (ESO) approach. Last, the 
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optimization of 3D continua was investigated, where material elimination was achieved 
through the element contribution to carrying the externally applied loads. Finally, a variation 
of the stress constraint problem, here termed as the extended single stress constraint problem, 
was analyzed. The result of this analysis was the formulation of a new optimality criterion, 
which is free of any assumptions concerning the determinacy of the optimized structure and 
seeks for a design where one structural member takes on the critical stress value, without 
necessarily preventing the other structural members from obtaining the imposed upper stress 
bound. In this way, the aforementioned OC is significantly different in concept from the 
(FSD) approach. 

Furthermore, in the current Thesis, a new Optimality Criteria-type optimization procedure 
for single displacement constraint problems was proposed and tested in over 46 cases. The 
conclusions drawn from this investigation are the following:  
• For the examples retrieved from the literature but having no analytical solution, the 

proposed procedure resulted in the referenced optimum weights after approximately 
equal number of iterations as the referenced ones. 

• For the examples retrieved from the literature having analytical solutions, the proposed 
procedure resulted in the referenced optimum weights with an agreement of at least 
twelve significant digits after less iterations than the referenced ones. 

• For the examples newly introduced in the present paper, the proposed procedure resulted 
in the same optimum weights (slightly different optimum design vectors) with those 
obtained when implementing the SQP routine found in Matlab (fmincon). 

• In all cases, initiating the proposed procedure from a design vector corresponding to a 
Unit Stiffness Design structure resulted in the, considered to be, global optimum. 
However, in some cases, initiation from a random design vector resulted in significant 
sub-optimal solutions. 

• The proposed categorization of the members as in Section 5.3 is more detailed than those 
referred in the literature and highlights the presence of the newly introduced force 
passive/area-active elements, which play a significant role in the optimization procedure. 

• In general, the convergence history with respect to the structural weight is very smooth. 
Peaks appear only when force-passive/area-active elements change their status and 
become ‘fully’ passive elements 

• In general, the convergence history with respect to the relative error of the structural 
weight is smooth and decreasing. As previously, peaks appear only when force 
passive/area-active elements change their status and become ‘fully’ passive elements, 
while valleys appear when the force-passive/area-active elements are allowed to take on 
the imposed lower bound for the design variables. 

• The convergence history with respect to the relative error of the maximum change in the 
design variables structural weight is either smooth and decreasing or quite steady and 
drops suddenly to the converging tolerance value. 

• The extension of the proposed procedure for optimizing 3D skeletal structures is trivial.  
Overall, the results of the present research suggest that the proposed optimization 

procedure form a simple and efficient optimization tool. 
In addition, the layout optimization of 2D continua under an extended single displacement 

constraint was discussed, where the concept of the ‘extended’ displacement constraint was 
introduced in Chapter 5. More particularly, the layout optimization was sought following two 
conceptually different approaches. According to the first approach, the thickness of the 2D 
continuum is kept constant, while material that has been detected as redundant is completely 
removed from it. To this end, a new efficient variation of an already existing methodology 
was proposed, examined and found to be more efficient than the initial version of the existing 
methodology. According to the second approach, the thickness of the 2D continuum is 
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isoparametrically interpolated, the nodes being the interpolation points. To this end, a 
variation of the methodology introduced in Chapter 5 was developed and found to provide 
encouraging results. Consequently, both of the proposed approaches are useful and efficient 
tools for 2D layout optimization problems, when an extended singe displacement constraint is 
imposed. 

Furthermore, the minimization of the structural cost was investigated. Since the structural 
cost is a very complicated quantity to estimate, the investigation was focused on two subjects, 
the first being the commonality of the structural members within the structure and the second 
being the effect of the welding cost and the scrap material cost. For the needs of this 
investigation, two optimization procedures were developed and successfully tested. The 
former concerned the grouping of similar members and the elimination of critical members; 
this procedure is applicable to any skeletal structure and it was successfully tested in four 
literature problems. The latter concerned the solution of a complex optimization problem 
involving design control for minimum scrap and minimum welding; it was successfully 
applied in welded tanks for oil-storage. The main outcome of the aforementioned 
investigation is that it is not possible to establish a generalized procedure for minimum 
structural cost applicable in all cases, because for the cost minimization to be achieved special 
design characteristics of each case must be exploited. However, it is possible to introduce 
optimization procedures, like the proposed ones, suitable for certain subclasses of the 
generalized optimization problem 

Finally, the performance-based layout optimization of large structures was investigated. In 
total, three different cases were examined. The first case referred to structures which consist 
of one standard beam. The second case referred to structures which are assemblies of 
commercially available standard beams, while the third case referred to structures that are 
made of standard plates. For all three cases, the minimum weight problem may be stated in 
terms of a discrete optimization problem. For each case, a specific optimization procedure 
was proposed. More particularly, for the latter two cases, two new heuristic optimization 
procedures were introduced. All of the proposed procedures were evaluated through the 
optimization of real-life structures and the encouraging results suggest that these procedures 
be an efficient tool that can be used for solving performance-based layout optimization 
problems. 

Apart from all the above, a thorough investigation of an optimization method, retrieved 
from the literature, was carried out. More particularly, an extension of this method was 
applied to four tubular trusses and four medium/large scale trusses, the results indicating a 
good performance in terms of convergence, but not that good of a performance in terms of 
locating the global minimum. These results suggests that a further research on the concept of 
this method be carried out, such as implementing the categorization of the structural members 
as force active/passive and area active/passive, which was introduced in Chapter 5. 

Last, an issue of high practical importance was examined, that of getting quickly a design, 
which may be improved with respect to an initial one, but is not necessarily the optimum. For 
such cases, it is recommended to use simple optimization tools, such as the sensitivity 
analysis, in the form of a parametric investigation with respect to the most important design 
variables, and simple optimization procedures of zero-order or of first-order. Towards this 
direction, four typical applications were examined, namely the design of a car suspension, the 
optimum single-sided and double-sided bolted reinforcement of a plate under uniaxial tension, 
the optimum design of a racking system and the layout optimization of a solar tracker. The 
first three applications were handled using a simple sensitivity analysis as described above, 
while the last example was dealt with using the Subproblem approximation method and a first 
order method, both found in Ansys, which is a commercial software for structural analysis. 



D.T. Venetsanos ‐ PhD thesis ‐ 2010 

P a g e  | 9.5 

With respect to ideas for further research, the immediately next step is to apply to 3D 
continua the newly introduced optimality criterion for the extended single displacement 
constraint problem. Next follows the implementation in various 2D and 3D structures of the 
newly introduced optimality criterion for the extended single stress constraint problem. In the 
sequel, coupling the aforementioned newly introduced optimality criteria would be 
appropiate. This coupling would aim at solving the optimization problem under an extended 
single displacement and/or an extended single stress constraint. Furthermore, the investigation 
of other constraints, such as frequency or thermal constraints, in the form of single constraint 
problems would be interesting. Obviously, the integration of displacement, stress, frequency 
and buckling constraints would be the ultimate goal. In addition, sculpturing the surface of a 
continuum using concepts borrowed from CAD would also provide useful insight concerning 
the optimum layout that may be achieved if the nodes are treated as control points of a well-
defined surface and the thickness interpolation is achieved using different types of 
isoparametric interpolation schemes. Finally, another completely different route would be the 
implementation of such ideas, as the aforementioned ones, in different numerical methods, 
such as the boundary element method and the meshless method, or in different materials, such 
as the composites. 
 
9.2. Thesis contribution 

In brief, the main innovative elements, which this Thesis contributes to, are the following: 
• Introduction of new normalized indices for evaluating the performance of an optimization 

method. 
• Development of a new hybrid method for solving the optimization problem of 

minimizing the weight of skeletal structures under any number of displacement and/or 
stress constraints. The extension of this method to continua is straightforward.  

• Statement of a new Optimality Criterion for solving the optimization problem of 
minimizing the structural weight of 2D continua under a single compliance constraint. 

• Development of a new optimization method for solving the optimization problem of 
minimizing the structural weight of 2D continua under stress constraints, implementing 
the concept of element-wise variable thickness and the use of nodes as control points for 
sculpturing the structural surface. 

• Investigation and comparison of applying the ESO and the FSD method in solving the 
optimization problem of minimizing the structural weight of 2D plates under stress 
constraints. 

• Development of a new optimization procedure for solving the optimization problem of 
minimizing the weight of 3D continua under stress constraints. 

• Statement of a new Optimality Criterion for solving the optimization problem of 
minimizing the weight of skeletal structures under an extended single stress constraint. 

• Statement of a new redesign procedure for solving the optimization problem of 
minimizing the weight of skeletal structures under an extended single stress constraint. 

• Statement of a new Optimality Criterion for solving the optimization problem of 
minimizing the weight of skeletal structures under an extended single displacement 
constraint. 

• Development of a new optimization method for solving the optimization problem of 
minimizing the weight of skeletal structures under an extended single displacement 
constraint. 

• Development of a variation of the ESO method for solving the optimization problem of 
minimizing the weight of 2D continua under a single displacement constraint. 
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• Development of a new optimization method for solving the optimization problem of 
minimizing the weight of 2D continua under an extended single displacement constraint, 
implementing the concept of element-wise variable thickness and the use of nodes as 
control points for sculpturing the structural surface. 

• Development of a new optimization method for solving the optimization problem of 
minimizing the cost of skeletal structures, implementing a concept of grouping and 
elimination that aims at increasing the commonality of the active members of the 
structure.  

• Development of a new optimization procedure for solving the optimization problem of 
minimizing the cost of oil storage tanks, using commercially available plates, taking into 
consideration the cost for the welds, and aiming at minimizing the scrap material. 

• Development of an optimization procedure for solving the discrete optimization problem 
of minimizing the weight of structures, which may be considered as a single beam of 
standard profile, while the case of a single girder crane was solved.  

• Development of a new heuristic optimization method for solving the optimization 
problem of minimizing the weight of discrete structures, consisting of standard beams. 

• Development of a new ‘mixed-type’ heuristic optimization method for solving the 
problem of minimizing the weight of structures, consisting of standard plates, whose 
thickness is discrete but whose width and length may be considered as continuous 
variables.  

• Solution of the weight minimization problem for a series of full-scale, real-life structures, 
using sensitivity analysis and commercially available optimizers. 
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STRUCTURAL OPTIMIZATION USING  

SENSITIVITY ANALYSIS  

AND 

COMMERCIALLY AVAILABLE OPTIMIZERS 
 
 
 
 

 
Abstract 

In this Appendix, four typical applications in structural optimization are presented, for which either a 
sensitivity analysis or a commercially available optimizer was used. More particularly, the design of a car 

suspension, the optimum single‐sided and double‐sided bolted reinforcement of a plate under uniaxial tension 
and the optimum design of a racking system are examined through a sensitivity analysis of the main geometric 
characteristics. In addition, the layout optimization of a solar tracker is examined using two optimizers found in 
Ansys, which is a commercial software for Finite Element Analysis of structures. These optimizers concern the 
Subproblem approximation method and a first order method. The results of the aforementioned cases denote that 
sometimes in structural optimization it is adequate to get an improved design, which may be achieved using 
simple means of optimization such as a typical sensitivity analysis or a zero‐order or a first‐order search of the 

design domain. 
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I.1. Introduction 
The global optimum solution of a structural optimization problem may be hard to be located and for this 

reason there are cases where improved designs with respect to an initial one are considered to be adequate. For 
such improved designs to be traced, it is possible to use either an optimizer embedded in some commercial 
software for structural analysis or a sensitivity analysis with respect to some characteristic geometric 
dimensions. Towards this direction, four typical applications are presented, namely the design of a car 
suspension, the optimum single-sided and double-sided bolted reinforcement of a plate under uniaxial tension, 
the optimum design of a racking system and the layout optimization of a solar tracker. The first two applications 
were handled using a simple sensitivity analysis in the form of a thorough parametric investigation of the main 
geometric characteristics of the examined structure, while the other two examples were dealt using the 
Subproblem approximation method and a first order method, both found in the Ansys software. 
 
I.2. Case study: Car suspension design 
I.2.1. Introduction 

The suspensions for advanced automotive applications aiming at improving the ride comfort and handling 
properties of vehicles has been a topic of vigorous research during the past two or three decades (Zaremba et al., 
1997). The majority of the research work has been focused on the estimation and optimization of suspension 
characteristics, such as damping. In most cases, quarter-car or half-car models are used, while various types of 
suspension mechanisms have been examined. Chen and Beale modeled the MacPherson suspension mechanism 
as a two-degrees-of-freedom spatial mechanism and simulated its dynamic response under two excitement forces 
(Chen and Beale, 2003). Thompson and Davis developed matrix expressions for the direct computation of RMS 
values for the optimal control forces, front and rear suspension strokes and dynamic tyre deflections in a half-car 
model on a random road of given roughness (Thompson and Davis, 2003). Quaglia and Sorli presented a 
dimensionless model and the design considerations of a pneumatic suspension with auxiliary reservoir (Quaglia 
and Sorli, 2001). Their dimensionless model made it possible to fully understand the effect of the parameters 
which define the suspension and to select the spring type correctly. Without this selection, the suspension 
generates transmissibility curves with excessive amplification in the vicinity of the resonance, even after 
optimum definition of auxiliary volume and resistance. Bolzern et al discussed the application to real data of an 
identification procedure based on an Extended Kalman Filter, for estimating the equivalent non-linear 
suspension tyre cornering forces of a road vehicle from a single standard manoeuvre, where both the steady-state 
and the dynamic handling characteristics can be evaluated (Bolzern et al., 1999). The Finite Element Method 
(FEM) has also been used in structural vibration analysis of vehicles. Kuti applied the finite element method in 
order to determinate more accurately both the local (structural vibrations) and global (overall motions) dynamic 
behaviour of vehicles using pre-determinate time variable external forces and kinematic excitations (Kuti, 2001). 
He presented results about the effects of the elastic deformation of the chassis on the overall motions of vehicles, 
using a simple truck finite element model of 1874 degrees of freedom. Dukkipati and Dong used a Finite 
Element (FE) model of a vehicle-track system in order to duplicate the experiments carried out by British Rail 
and CP Rail System (Dukkipati and Dong, 1999). Their theoretical results of the wheel/rail contact forces, rail-
pad forces and strains in the rail showed very good correlation to the experimental data. Optimization methods 
have been extensively used in order to determine the elastic and damping characteristics of a vehicle suspension 
that optimize the ride properties of a car. Demič applied a modified version of the Nelder-Mead algorithm to a 
four-degree-of-freedom model (Demič, 1989) and a modified version of the Hooke-Jeeves algorithm to a seven-
degree-of-freedom model (Demič, 1992), while Spentzas applied Box’s method to a seven-degree-of-freedom 
model (Spentzas, 1993). 

Within the frame of the aforementioned works, the present paper aimed at revealing the way geometric 
characteristics affect the stress field of a typical car suspension dome under typical loads. The interest was 
focused on the area of the strut mount of a front wheel. A front wheel was selected because almost in all cases 
the vehicle weight is distributed in such a way that the front axle, thus the domes of the front wheels, undertakes 
the larger part of the sprung mass. Towards this direction, an extensive parametric investigation was performed, 
where three dome shapes, three design parameters and two load cases were implemented. In more details a 
cylindrical, a spherical and a conical dome shape were studied while the design parameters were the dome height 
(six cases), the diameter of the strut mount hole (six cases) and the edge height of the strut mount hole (six 
cases). The two load cases concerned the application of vertical forces and tangential forces. In total, 108 models 
were examined, providing useful insight concerning the optimal shape of a car suspension dome. 

 
I.2.2. Theoretical calculation of loads 

In order to estimate the external loads applied at the area of interest, Pawlowski’s approach was used for a 
first but on-the-safe-side approximation, as shown in the paragraphs that follow. The main idea of Pawlowski’s 
theory is that any service load may be satisfactorily estimated through the multiplication of the corresponding 
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static load by a suitable coefficient (Pawlowski, 1969). The static loads can be analytically calculated, while the 
aforementioned coefficients have been derived from an extended series of experiments and measurements. 
According to Pawlowksi’s approach, five loading cases must be examined, namely the steady state loading, the 
symmetric vertical loading, the asymmetric vertical loading, the longitudinal loading and the side loading. 
 
I.2.2.1. Steady State Loading 

In a steady state loading condition, the vehicle is moving forward, on a horizontal plane, in a constant 
velocity and without encountering any obstacles. In turn, all wheels are in contact with the road, the sprung mass 
of the vehicle is distributed between the front and the rear axle according to the designed distribution ratio, 
while the sprung mass suspended by each axle is equally divided to the two wheels of the corresponding axle. 
Therefore, the vertical load on a front wheel is given by:  
 

{ },1

1
,    ,

2st i spP maM g i l r= ∈⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                          (I.1) 

 
where ,1st iP  is the vertical load on a front wheel in N , m  is the dimensionless dynamic coefficient (for the 

specific case: 1m = ), a  is the dimensionless weight distribution ratio between front and rear axle, spM  is the 

sprung mass in kg , g  is the acceleration of gravity in 2/ secm  and { },l r  is the index denoting the left and the 
right wheel, respectively. 
 
I.2.2.2. Symmetric Vertical Loading 

In a symmetric vertical loading condition, the vehicle is moving forward in a constant velocity and on a 
horizontal plane, where a uniform lateral obstacle exists. At some instant, both front wheels encounter 
simultaneously the aforementioned obstacle and afterwards the rear wheels do the same. When the wheels of an 
axle reach the obstacle, then the corresponding suspensions are further compressed, thus causing an alteration of 
the weight distribution of the vehicle between the front and the rear axle. In the extreme case, the wheels of the 
axle not encountering the obstacle will loose contact with the ground (horizontal plane), thus the sprung mass 
will be suspended completely by the two wheels that do encounter the obstacle. For such a case, the vertical load 
on a front wheel is given by: 

{ },1

1
,     ,

2zs i zs spP m M g i l r= ∈⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                          (I.2) 

 
where ,1zs iP  is the vertical load on a front wheel in N  and zsm  is the dimensionless dynamic coefficient (for 

typical passenger vehicles: 2.5zsm = ). The other symbols have already been explained in the previous section. 
From (Eq.I.2), it is obvious that the height of the obstacle does not play any role in the appearing loads. 
However, it is reminded that (Eq.I.2) describes an extreme case, where the wheels of one axle have lost contact 
with the ground. In most cases, designers select such suspension characteristics that prevent this situation to 
occur for common obstacles. Maximum heights for obstacles, which are categorized as common, with respect to 
the vehicle type are shown in Table II.1 (the minus sign denotes puddles).  
 
Table I.1: Maximum heights for common obstacles 

Obstacle height Passenger vehicle Bus Truck Special Vehicle 

rh  [mm] ±200 ±250 ±300 ± (>400) 
 
I.2.2.3. Asymmetric Vertical Loading 

In an asymmetric vertical loading condition, the vehicle is moving forward in a constant velocity and on a 
horizontal plane, where a lateral obstacle, less wide than the lateral distance between the wheels of an axle, 
exists. At some instant, only one of the front wheels encounters the obstacle (the other wheels are in contact 
with the ground). In this way, the suspension of the aforementioned wheel is further compressed, thus causing 
an alteration of the weight distribution of the vehicle between the two front wheels but not between the front and 
the rear axle. In the extreme case (worst case scenario), the front wheel not encountering the obstacle will loose 
contact with the ground (horizontal plane), thus the sprung mass of the front axle will be suspended completely 
by the front wheel that does encounter the obstacle, for which the corresponding vertical load is given by: 

,1zns zns spP m aM g=                                                                    (I.3) 
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where ,1znsP  is the vertical load on the front wheel that encounters the obstacle in N  and znsm  is the 

dimensionless dynamic coefficient (for typical passenger vehicles: 1.3znsm = ). The other symbols have already 
been explained in the previous section. Once again, it is noted that (Eq.I.3), does not include the height of the 
obstacle. This is due to the fact that (Eq.I.3) corresponds to an extreme case, that of one wheel loosing contact 
with the ground, which is preferred for on-the-safe-side estimations. However, it is noted that in most cases, 
designers try to avoid such situations by appropriately selecting the suspension characteristics. The maximum 
heights for obstacles categorized as ‘common’ have already been presented in Table II.1. 
 
I.2.2.4. Longitudinal Loading 

There are two cases longitudinal loads may appear, the former being the acceleration or deceleration of the 
vehicle (the deceleration due to crash excluded) and the latter being the striking of an obstacle, such as a curb. 
For the first case, it holds that: 

1

2x x spP m aM g= ± ⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                                (I.4a) 

 
where xP  is the vehicle front wheel longitudinal load in N , a  is the dimensionless weight distribution ratio 

between front and rear axle, xm  is the dimensionless dynamic coefficient (for typical passenger vehicles: 

[ ]0.7,  1xm ∈ ), while the sign ,+ −  denotes acceleration and deceleration, respectively. For the second case, it 
holds that: 
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P m
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=                                           (I.4b) 

 
where xP  is the vehicle front wheel longitudinal load in N , zm  is the dimensionless dynamic coefficient (for 

typical passenger vehicles: 2.5zm = ), yP  is the vertical load on the wheel that encounters the obstacle (see 2.2 

and 2.3) in N , rh  is the obstacle height in cm  and dr  is the dynamic wheel radius in cm . It is evident, that the 
maximum longitudinal load is defined by the largest value between (Eq.I.4a) and (Eq.I.4b). For the height of the 
obstacle, Table II.1 should be used. 
 
I.2.2.5. Side Loading 

There are two cases side loads may appear, the former being during driving along a curved path and the 
latter being the side striking of an obstacle, such as a curb. For the first case, it holds that: 
 

,1

2t
x i zs sp
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r
R m a M g

z
=

⎛ ⎞
⎜ ⎟
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                                                             (I.5a) 

 
where ,1x iP  is the vehicle front wheel side load in N , zsm  is the dimensionless dynamic coefficient (for typical 

passenger vehicles: 2.5zm = ), a  is the dimensionless weight distribution ratio between front and rear axle, tr  

is the distance between the wheels of the front axle, and scz s  is the vertical distance of the vehicle centre of 
mass from the ground. For the second case, it holds that: 

,1x i y spR m aM g=                                                                    (I.5b) 
 
where ym  is the dimensionless dynamic coefficient (for typical passenger vehicles: [ ]0.7,  1ym ∈ ). The other 
symbols have already been explained. It is evident, that the maximum side load is defined by the largest value 
between (Eq.I.5a) and (Eq.I.5b).  
 
I.2.2.6. Combined Loading 

From all the above equations, it results that the combined loading at the strut mount may be described by a 
force vector: 

[ ]T

x y zR R R=R                                                                  (I.6a) 
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and a moment vector 

x y z

x y z

i j k

r r r

R R R

=M

rr r

                                                                 (I.6b) 

 
where xr  is the longitudinal distance between the strut mount and the wheel, yr  is the lateral distance between 

the strut mount and the wheel and zr  is the vertical distance between the strut mount and the wheel. 
 
I.2.3. Numerical application 

The equations derived in the previous sections were used in order to calculate the loads that a typical front 
wheel suspension dome experiences. As a reference, a 1970’s passenger car suspension dome was used. The 
corresponding front wheel suspension dome was measured and a first model was build in order to estimate the 
stress and the displacement field. In the sequel, this study was extended to a parametric investigation, which 
aimed not only at revealing the way important geometric characteristics affect the stress and the displacement 
field but also at proposing an improved design without enlarging the volume that the specific structural 
component initially occupied. Therefore, the minimum and maximum parameter values were limited by the 
initial design, while the intermediate values came from a logical division of the corresponding domains. 
 
I.2.3.1. Investigated parameters 

In the present work, four parameters were investigated, namely the dome shape, the dome height, as well as 
the diameter and the edge height of the strut mount hole. The examined dome shapes are illustrated in Fig.I.1. 
 

 
(a) (b) (c) 

Figure I.1: Car suspension dome shapes: (a) cylindrical, (b) spherical and (c) conical 
 
Geometrical details of a typical dome, as well as a typical coordinate system, are shown in Fig.I.2. As Fig.I.2 
suggests, it may be assumed that the external loads are uniformly applied only to a part of the dome roof (Part5). 
 

 
 

1: side dome wall  
2: strut mount hole 
3: edge of the strut mount hole 
4: bolt holes for fastening purposes 
5: part of the dome roof where all loads are 
applied to  
 
Notes 
- The side dome wall may have a cylindrical 
or a spherical or a conical shape. 
- The number of the bolt holes, as well as 
their distribution, may differ. 
- The height of the side dome wall, the height 
of the edge of the strut mount hole, as well as 
its diameter, may differ. 

Figure I.2: Details of a typical car suspension dome 
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The values used for the other examined parameters (see Fig.I.3) were the following: 
Dome height:     { }21.5, 26.8, 32.1, 37.4, 42.7, 48h mm∈ , thus { } { }min max, 21.5, 48h h =  

Strut mount hole diameter:  { }70, 72, 74, 76, 78,80D mm∈ , thus { } { }max min, 70,80D D =  

Strut mount hole edge height: { }0, 2, 4, 6,8,10holeh mm∈ , thus { } { },max ,min, 0,10hole holeh h =  
 

 
 

 

 

(a) side view (b) top view 

Figure I.3: Definition of basic geometrical dimensions 
 
Two other important dimensions for the model development were the diameter of the dome at its base 

158baseD mm=  and the diameter of the plane part of the dome roof 126roofD mm=  (Fig. I.3). However, it is 
clarified that these last dimensions were not used as parameters in the current investigation. 
 
I.2.3.2. External loads 

In the present work, the following values were used: 
 

990spM kg=      0.55a =      300dr cm=      1290r mm=      541scZ mm=                        (I.7) 
 
Typical distances (in mm ) between the strut mount and the wheel were considered to be: 
 

[ ]300 350 860 T
=r                                                                  (I.8) 

 
Substituting the above values in (Eq.I.1-Eq.I.6) and keeping the maximum loads for each direction, the force 
vector and the corresponding moment vector were formed, due to which a displacement field, thus a stress field, 
is developed. A complete analysis requires the application of each one of the aforementioned force and moment 
components. In the current work, the examination is limited to the force components only. Although there are 
three force components, it is adequate to examine only two of them, namely the z-component (vertical forces) 
and, due to the symmetry of the dome (Fig.I.2), either the x-component or the y-component. In the present 
investigation, the y-component was chosen. 
 
I.2.3.3. Boundary conditions 

The car suspension dome is usually attached to another structural component, which is mounted to the 
chassis. Without loss of generality, it is possible to examine the dome as a separate part considering that all 
degrees of freedom of its lower part (base) are restrained. In the current work, this approach, which significantly 
simplifies the model development, was selected. 
 
I.2.4. Results 

In the current study, a cylindrical, a spherical and a conical dome shape were investigated while the 
implemented parameters were three, namely the dome height (six cases), the diameter of the strut mount hole 
(six cases) and the edge height of strut mount hole (six cases). Furthermore, two load cases were applied 
(vertical forces and tangential forces, respectively). In total, 108 models were built and analyzed. The 
corresponding results were grouped with respect to the examined parameter, thus three groups of results were 
formed. Each group included eight plots divided in two subgroups of four plots each. The first subgroup 

h

holeh

/ 2baseD  

/ 2D  

roofD
D
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concerned a comparison of results between the dome shapes, while the second subgroup concerned a 
comparison of results within each dome shape. From the four plots of each subgroup, two concerned the 
maximum appearing von Mises stress (stress plots) and the other two concerned the maximum appearing 
displacement (displacement plots). In the current work, it is the relative changes and not the absolute values that 
were of interest, thus reduced quantities were used. It is noted that for the subgroup of results between the dome 
shapes, the cylindrical dome shape was selected as the reference.  
 
I.2.4.1. Investigation with respect to the dome height 

The results from the investigation with respect to the dome height are illustrated in Figs.I.4-I.5.  
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Figure I.4: Results “between” the dome shapes for (a) stress and (b) displacement 
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Figure I.5: Results “within” the dome shapes for (a) stress and (b) displacement 
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In all plots, the horizontal axis is max/h h , where h  denotes one of the examined dome heights and maxh  
denotes the maximum dome height used in the present work. For the stress and the displacement plots 
concerning the results between the dome shapes, the vertical axis is / cylindricalσ σ  and / cylindricalu u , respectively. 
For either the spherical or the conical dome of height h , the von Mises stress is denoted as σ , and the 
displacement is denoted as u . For the corresponding cylindrical dome, which was used as a reference, the von 
Mises stress and the displacement are denoted as cylindricalσ  and cylindricalu , respectively. For the stress and the 

displacement plots concerning the results within the dome shapes, the vertical axis is max/σ σ  and max/u u , 
respectively. For a dome of height h , the corresponding von Mises stress and the displacement are denoted as 
σ  and u , respectively. The maximum stress and displacement values are denoted as maxσ  and maxu , 
respectively. At this point, it is strongly emphasized that the maximum appearing stress and displacement values 
do not necessarily corresponding to maxh . Observation of Figs.I.4-I.5 reveals that the dome height affects the 
displacement field more than the stress field and it is preferable to have a short dome either of spherical or of 
conical shape. However, the height must not be very short otherwise problems occur (Fig.I.4a, Load: yF ). 
 
I.2.4.2. Investigation with respect to the diameter of the strut mount hole 

The results from the investigation with respect to the dome height are illustrated in Figs.I.6-I.7. 
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Figure I.6: Results “between” the dome shapes for (a) stress and (b) displacement  

 
In all plots, the horizontal axis is max/D D , where D  denotes one of the examined diameters and maxD  

denotes the maximum strut mount hole diameter used in the present work. For the stress and the displacement, 
the symbols presented in the previous paragraph are used once again. From Fig.I.7, it is obvious that for vertical 
loads it is better to have a large strut mount hole while from tangential loads a small strut mount hole is 
preferable. However, it can be shown (Eqs.I.1-I.8) that the vertical loads predominate, thus a large strut mount 
hole is recommended. Furthermore, from a stress-point-of-view, the spherical shape is preferable (up to 8% 
reduction) while from a displacement-point-of-view it is better to have a conical shaped dome (up to 41% 
reduction). It is reminded that the cylindrical dome is used as a reference. Observation of Fig.I.7 reveals that, 
with respect to the diameter of the strut mount hole of a spherical dome where vertical loads are applied to, the 
stress and the displacement field may be reduced up to 10% and 30%, respectively. For tangential loads, the 
corresponding reduction is significantly smaller. 
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Figure I.7: Results “within” the dome shapes for (a) stress and (b) displacement 
 
At this point, it is worth mentioning that the conical shaped dome behaves very similar to the spherical 

shaped dome and both of them present a linear behaviour with respect to the strut mount hole diameter, if 
vertical loads are applied (Fig.I.7a-Load: zF , I.7b-Load: zF ). Therefore, if one of these shapes is selected, it 
should bear a large strut mount hole. On the contrary, the cylindrical dome experienced the largest stress 
reduction for an intermediate hole diameter value (Fig.I.7a-Load: zF ). 
 
I.2.4.3. Investigation with respect to the edge height of the strut mount hole 

The investigation with respect to the edge height of the strut mount hole is illustrated in Figs.I.8-I.9.  
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Figure I.8: Results “between” the dome shapes for (a) stress and (b) displacement 
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In all plots, the horizontal axis is ,max/edge edgeh h , where edgeh  denotes one of the examined edge heights and 

,maxedgeh  denotes the maximum edge height of the strut mount hole used in the present work. For the stress and 
the displacement, the symbols presented in the previous paragraph are used once again. From Fig.I.8, it is 
obvious that for vertical loads it is better to have a tall strut mount hole edge while for tangential loads a short 
strut mount hole edge is preferable. As previously mentioned, it can be shown that the vertical loads 
predominate, therefore a tall strut mount hole edge is recommended. In addition, the conical dome shape is 
preferable from both a stress-point-of-view and a displacement-point-of-view (reduction of almost 33% and 
46%, respectively). As previously, the cylindrical dome is used as a reference. 
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Figure I.9: Results “within” the dome shapes for (a) stress and (b) displacement 

 
Observation of Fig.I.9 reveals that, with respect to the edge height of the strut mount hole of a cylindrical 

dome where vertical loads are applied to, the stress and the displacement field may be reduced up to 45% and 
almost 60%, respectively. For tangential loads, the corresponding reduction is quite smaller. At this point, it is 
worth mentioning that all three dome shapes behave very similar from a displacement-point-of-view (Fig.I.9b). 
However, their behaviour differs from a stress-point-of-view, where the cylindrical dome outperforms the others 
(Fig.I.9a). Furthermore, from Fig.I.9 it is evident the increase of the edge height is beneficial only up to a point; 
afterwards, both the stress and the displacement field remain almost unaltered.  

 
I.2.4.4. Typical stress and displacement fields 

A typical stress and displacement field developed due to the application of vertical and tangential forces 
respectively is shown in Fig.I.10.  

  

 

Stress field Displacement field Stress field Displacement field 
(a) (b) 

Figure I.10: Typical stress and displacement field for (a) vertical and (b) tangential loads 
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For reasons of visual clarity, the edge of the strut mount hole has been removed, while arrows point at some 
indicative areas of high stress and/or displacement values.It is obvious that in both load cases the areas where 
the largest stress and displacement values appear are the bolt holes and the edge of the strut mount hole. It is 
worth noting that the vertical part of the side wall suffers significantly less than the top part of the dome, thus it 
is possible to remove material from the side wall. This is in accordance to the remark that the dome height does 
not significantly affect the stress and the displacement field (see section II.2.4.1). Furthermore, Fig.I.10 shows 
that attention should be paid at the intersection between the top part of the dome and the side wall, because 
along that intersection and near the bolt holes, the stress field is strong. Finally, as Fig.I.10b illustrates, in the 
case of tangential loads neither the stress nor the displacement field is symmetric, thus the orientation of the bolt 
hole distribution with respect to the direction of the load is important 
 
I.2.5. Conclusions 

The present study aimed at revealing the way a sensitivity analysis in the form of a parametric investigation 
may be used for structural optimization purposes. The case studied referred on the strut mount of a front wheel. 
This selection was based on the fact that in almost all cases the vehicle weight is distributed in such a way that 
the front axle, thus the domes of the front wheels, undertakes the larger part of the sprung mass. An extensive 
parametric investigation took place, where three dome shapes (cylindrical, conical and spherical), six different 
dome heights, six different strut mount hole diameters, six different strut mount hole edge height and two load 
cases were implemented. In total, 108 cases were studied. The results were plotted in a reduced format thus 
providing a visual representation of the effect that each parameter had on the stress and the displacement field. 
From the plotted diagrams, it was revealed that the edge height of the strut mount hole mostly affected the 
developed stress and displacement fields, the diameter of the same hole had a weaker effect, while the dome 
height presented the smaller effect. Furthermore, it was found out that a tall strut mount hole edge, a large strut 
mount hole and a small dome height is a preferable combination. With respect to the dome shape, depending on 
the view point (stress or displacement), a different design is recommended. However, a cylindrical dome seemed 
to be a good compromise. Concluding, the present investigation provided useful insight concerning the optimal 
shape of a car suspension dome using a simple parametric study as a means for a sensitivity analysis.  
 
I.3. Case study: Bolted reinforcement of a plate under uniaxial tension 
I.3.1. Introduction 

All structures during their service life may experience local failures due to various reasons, such as corrosion, 
unpredicted accidental action, overloading or poor maintenance. For the structure to be restored into its initial 
state, it is required to reinforce the area that presents the problem (area of interest), so that the maximum 
developed stress will be reduced (stress-relief of the area of interest). For plate structures, such as the box-girder 
of a gantry crane or of an overhead traveling crane, one typical way of achieving this goal is appropriately 
placing reinforcing plates, also called doublers, at the area of interest. More than frequently, the area of interest 
is under non-negligible stress due to dead loads thus for the aforementioned placing not all means of fastening 
may be used. The most common solution is the use of High Strength Friction Grip (HSFG) bolts. The 
dimensions of the doublers, the number of bolts to be used, their grade and their distribution over the fastening is 
a crucial issue to be dealt with. In all cases, the interest is focused on the stress relief that bolted doublers may 
provide, which may be estimated using theoretical but simplified approaches. As a result, a confirmation using a 
numerical approach, such as the Finite Element Method (FEM), is required.  

Towards this direction, many works have been published. Bursi and Jaspart investigated bolted steel 
connections using FEM and evaluated the results introducing benchmark indices (Bursi and Jaspart, 1997). 
Hwang and Stallings, based on Finite Element Analysis (FEA), analyzed bolted flange connections (Hwang and 
Stallings, 1994). Furthermore, Stallings and Hwang investigated the way pretension may be introduced in bolted 
connections (Stallings and Hwang, 1992). Chung and Ip used FEA in order to investigate bolted connections 
between cold-formed steel strips and hot rolled steel plates under static shear loading (Chung and Ip, 2000). 
Sherbourne and Bahaari (Sherbourne and Bahaari, 1996) developed full 3-D models and studied the bolted 
connections introduced in unstiffened columns. Rothert et al. examined bolted connections in steel frames and 
for this purpose they developed a 3-D model and performed a non-linear contact analysis (Rothert et al, 1992). 
Citipitioglu et al. dealt with the problem of partially-restrained connections and to this end a refined 3D finite 
element model was developed so that slip could be included (Citipitioglu et al, 2002). Furthermore, Zerres 
compared the mechanical behavior of bolted joints as predicted by the FEM and as described by the European 
approach (PR EN 1591) (Zerres, 1998). Ju et al. used the 3-D elasto-plastic FEM to study the structural behavior 
of the butt-type steel bolted joint and compared their numerical results with AISC specification data (Ju et al, 
2004). Olsen investigated, in a revised manner, typical bolted endplate connections (Olsen, 2002). Puthli and 
Fleischer performed a series of tests on 25 bolted connections and confirmed that the minimum bolt spacing and 
edge distance specified in Eurocode 3 can also be used for steel grade S460 (Puthli and Fleischer, 2001). Maggi 
et al. performed a series of parametric analyses on the behavior of bolted extended end plate connections using 
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Finite Element (FE) modeling tools and calibrated their results to experimental ones (Maggi et al, 2005). Kasai et 
al. conducted tests of full size beam-column subassemblies employing new types of bolted connections in order 
to evaluate the use of bolted connections for rigid moment frame connections in high seismic zones (Kasai et al, 
1998). Furthermore, the symmetric reinforcement of plates under tension has also been investigated with a 3D 
nonlinear finite element contact analysis on a structural strip (Venetsanos et al, 2004 ). 

Extending the latter work, the ideal case would be the 3D modeling of the entire bolted joint reinforcement 
using brick elements and its analysis implementing nonlinear contact theory. However, the computational cost 
for such a numerical approach is prohibitively high. Another alternative would be the development of 3D models 
using plate elements. This approach is indeed adequately accurate but suffers from the drawback that every time 
a new model must be built, analyzed and evaluated. Another alternative would be the development of a 
mechanical equivalent based on a parallel spring configuration. This is a theoretical approach very easy and 
quick to apply but of questionable reliability due to the introduced simplifications. In the present paper, a 
compromise between the two latter alternatives is proposed. In more details, it is proposed that the results of an 
extensive parametric numerical investigation be used for correcting the predictions of the simplified theoretical 
approach. The numerical investigation is carried out only once and the derived results not only inform about the 
sensitivity of the stress relief at the area of interest with respect to the controlling parameters but also can be 
illustrated in diagrams ready to be used for the design of the optimum bolted reinforcement. 

Towards this direction and within the frame of this paper, a versatile environment was developed in 
ANSYS/APDL. The main characteristics of this environment were the use of plate elements for all of the 
structural components, the implementation of rigid links for the modeling of the bolts and the selection of a 
linear static solver. In addition, each model was highly parameterized. The dimensions of the doublers (length, 
width and thickness), the dimensions of the reinforced plate (length, width and thickness), the grade and size of 
the bolts, the bolt edge and end distances as well as the bolt spacing were the controlling parameters. 
Furthermore, two types of bolted reinforcement, a single-sided and a double-sided, were applicable. Using this 
environment it was possible to perform an extensive parametric investigation using combinations of all of the 
aforementioned parameters. The derived results, when normalized with respect to the corresponding values 
obtained using the theoretical approach mentioned in the previous paragraph, show how well the simple 
theoretical approach resembles the more accurate numerical approach. The appropriate illustration of these 
normalized values provides ready-to-use diagrams. It is strongly emphasized that, in the aforementioned 
environment, the bolt end and edge distances as well as the bolt spacing and the capacity of the bolted joint, were 
estimated according to Eurocode3, while only plates commercially available in the Hellenic market were used as 
doublers. 
 
I.3.2. Theoretical aspects 

In a High Strength Friction Grip (HSFG) bolted joint under in-plane loads, the fastened parts are strongly 
pressed against each other, due to the pretension, thus resulting in the appearance of high shear that resists to 
their separation.  

 
Figure I.11: A double-sided symmetric reinforcement (a) section and (b) equivalent spring model 

 
Consequently, at a wider area around a bolt, the cross-section that carries the load is the sum of the cross-

sections of the fastened parts, or, equivalently, not only one but all of the parts participate in carrying the load. 
This is very useful in cases where a plate needs to be reinforced. For a single-sided reinforcement only one 
doubler is placed on the reinforced plate, while for a double-sided reinforcement one doubler is placed on each 
side (top and bottom) of the reinforced plate (base), as illustrated in Fig.I.11a. Furthermore, a double-sided 
reinforcement is characterized as symmetric if the top and bottom doublers are the same; otherwise, it is called 
asymmetric. In practice, a double-sided reinforcement is preferred, because no eccentricity phenomena appear; 
this is desirable from an engineering perspective. Furthermore, if two doublers are to be manufactured then it is 
time-saving and cheaper to manufacture two similar than two different pieces. Therefore, a symmetric double-
sided reinforcement is preferable. In such a case, it is possible to establish a simple mechanical equivalent of the 
fastened parts using linear springs, as illustrated in Fig.I.11b.This simplified theoretical approach is based on the 

top doubler base 

bottom doubler 
(a) (b) 
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assumption that the doublers are of infinite width, thus no 3D effects are taken into account; only the axial stress 
components are considered, instead. After basic manipulations, the following equation may be derived: 
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where , ,o red theorσ  is the reduced axial stress component on the base, ,o appσ  is the axial stress component on the 

base due to the initially applied load and ob , 1b  are the thickness of the base and of the doublers, respectively. 
Therefore, it is possible to define a theoretical stress relief index as: 
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From a computational mechanics perspective, it is possible to model a symmetric double-sided 

reinforcement using plate elements for both the base and the doublers, while the bolts may be considered as 
rigid links. Obviously, the modeled base and doublers are so placed that the distance between the mid surface of 
the base and the mid surface of each doubler is equal to half the sum of the thickness of the base and the 
thickness of one doubler. In this way, a 3D model is developed thus, when analyzing it with the Finite Element 
Method (FEM), 3D effects may appear. The aforementioned modeling does not take into account the pretension 
of the bolts. The rigid links, which are used instead, ensure that the degrees of freedom of appropriately selected 
nodes on the base and on the doublers will be coupled. For this approach, it is possible to define a stress relief 
index as: 
 

,

,

1 100x fin

FEM

x app

SR
σ

σ
= − ×
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                                          (I.11) 

 

where ,x finσ  is the axial stress component on the base and at the area of interest after the reinforcement and ,x iniσ  
is the axial stress component on the base and at the area of interest before the reinforcement. 

For the single-sided reinforcement, the simplified theoretical approach, neglecting eccentricity, yields:  
 

, ,

, 1

o red theor o

o app o

b

b b

σ

σ
=

+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

                                                              (I.12) 

 
However, the FE approach is based on a 3D model consisting of the base and one doubler and allows for 

eccentricity effects to appear.  
As Eqs.(II.9, II.10 and II.12) suggest, the evaluation of the approximating thSR  index is extremely easy and 

controlled only by the thicknesses 1b  and ob . As Eq.(II.11) suggests, the estimation of the FEMSR  index is based 
on the results of a 3D Finite Element Analysis (FEA), thus not only is it more accurate but also its value is 
affected by the controlling parameters involved in the modeling. In general, the values of the two indices thSR  

and FEMSR  are different. Therefore, it would be of interest, for various values of the controlling parameters, to 

quantify this difference and use it as a correcting factor applied to the theoretical index thSR .  
 
I.3.3. Modeling aspects 

For the needs of the present paper, ANSYS, a very well-known commercial Finite Element Analysis (FEA) 
software, was used. For an extensive parametric investigation to be performed, a large number of models must 
be created and analyzed, thus writing a code for this iterative task is mandatory. To this end, a code was written 
in APDL, the scripting language of ANSYS. At a first glance, it seems that the model may be developed in three 
simple steps, the first being the creation of three areas (one for the base and two for the doublers), the second 
being their meshing with the mesh generator provided by the software and the third being the introduction of 
rigid links. Furthermore, assuming that the examined topology is of double symmetry, only one quarter of the 
topology was required to be modeled. Although the first two steps were extremely easy to apply, a significant 
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difficulty was met with the third step. In more details, in order to substitute a bolt with a rigid link, a node must 
exist on the base and on the doublers at the position where the bolt is supposed to be placed. If these nodes 
happen to exist on the mesh already created at step 2, then it is possible either to join them with very stiff beams 
or to couple their degrees of freedom (CERIG command in ANSYS). Otherwise, which is almost always the 
case, it is necessary to create such nodes. The difficulty met was to make these nodes part of an already existing 
mesh. Various efforts with ‘fill between nodes’, ‘merge’ nodes or first ‘introduce key-points’ and then ‘create 
nodes on key-points’ did not bring any result thus no kinematic connectivity between the base and the doublers 
could be established. As a solution, it was decided to code a mapped-mesh generator in APDL such that the 
nodes would be distributed according to the requirements of EC3 for the positioning of the bolt holes (Fig.I.12). 
In this way, it was ensured that the positioning of the nodes, both on the base and on the doublers, was 
completely controllable and the aforementioned kinematic connectivity achievable.  

 
Figure I.12: Mapped mesh for the base 

 
For the developed model, the dimensions of the base (length ,x pL  and width ,y pL ) were related to those of 

the doublers (length ,x dL  and width ,y dL ) as follows: 
 

, , , 1x p x dL L aα= >      , , , 1y p y dL bL b= >                                           (I.13) 
 

Other characteristic geometric dimensions were the end distance 1e , the edge distance 2e , the spacing in the 

direction of load transfer 1p  and the spacing measured perpendicular to the direction of load transfer 2p  
(Fig.I.12). As mentioned before, it was assumed that the actual structure is doubly symmetric. In Fig.II.12, only 
one quarter of the structure is modeled, assuming that the lines OA  and AB  are lines of symmetry, on which 
appropriate boundary conditions of symmetry are imposed. Furthermore, the nodes along the line CB  were 
assumed to have restrained the translations along the directions vertical to the specific line. The external load 
was a uniform reference tensional pressure of 100MPa  applied along the line OC . The mesh generator 
required the dimensions of the doublers, the constants ,a b  and the bolt size as input, while it was possible to 
select either the most extended or the most condensed distribution of bolts (black circles in Fig.II.12) by 
applying the CERIG command appropriately. It is noted, that in all cases, there were uncoupled nodes between 
two consecutive bolts (white circles between the black circles in Fig.I.12) for the stress field to be developed in 
a more unrestricted, thus more representative way. It is also clarified that the SHELL63 element was used. The 
total number of elements was dependent on the initial selections (dimensions of the doublers, constants ,a b , 
bolt diameter). It is noted that the doublers were created with an appropriate offset of the EAGH  meshed area. 
 
I.3.4. Eurocode aspects 

According to EC3, a HSFG bolted connection loaded in shear belongs to Category C and is slip-resistant at 
the ultimate limit state. Therefore, the constraints implemented are summarized as follows: 
 

( ), , 1/v Sd s RdF F ≤       ( ), , 1/v Sd b RdF F ≤       ( ), , 1/v Sd net RdF N ≤                                   (I.14) 
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where ,v SdF  is  the design ultimate shear load, ,s RdF  is the design slip resistance, ,b RdF  is the design bearing 

resistance and ,net RdN  is the design plastic resistance of the net cross-section. Furthermore, according to EC3, the 
positioning of the bolt holes should be such as to prevent corrosion and local buckling, thus the minimum and 
maximum edge and end distances, as well as the spacing between the bolt holes, were determined according to 
the following constraints: 
 

{ }0 11.2 min 12 150 mm,od e b≤ ≤    and   { }0 21.5 min 12 ,150 mmod e b≤ ≤                      (I.15) 

{ }0 12.2 min 14 , 200 mmod p b≤ ≤    and   { }0 22.4 min 14 , 200 mmod p b≤ ≤                      (I.16) 
 
where od  is the diameter of the bolt holes, while the other symbols have already been defined in Section 3. The 
design slip resistance of an individual HSFG bolt is given by: 
 

, , /s Rd s sp cdF k n Fµ γΜ=                                                               (I.17) 
 
where sk is a constant related to the clearance of the bolt holes (for standard nominal clearances, 1sk = ), n  is 

the number of friction interfaces, µ is the coefficient of friction, ,p cdF  is the design preloading force and sγ Μ  is 
the partial safety factor for the slip resistance. The bearing resistance of an individual bolt is:  
 

, 1 2/b Rd b u oF k a f d b γ Μ=                                                                 (I.18) 
 

where { }1 0 1 0min 3 , 3 0.25, ,1/ / /b ub ua e d p d f f= − , 1 1k =  for standard clearances, d  is the bolt diameter, od  

is the bolt hole diameter and 2γ Μ  is the partial safety factor for the resistance of bolted connections. A bolt 
subject to both shear and tensile force should conform with the following additional constraints: 
 

( ), , 1/t Sd t RdF F ≤    and   ( ) ( )( ), , , ,/ / 1.4 1v Sd v Rd t Sd t RdF F F F+ ≤                                  (I.19) 

 
where ,t SdF  is the tension resistance of a bolt. More details concerning the Eurocode3 may be found in the 
existing literature (e.g. Falke, 1996). 
 
I.3.5. Numerical analysis 

As mentioned in Introduction, the parameters of the developed environment were the doublers’ dimensions 
(length, width and thickness), the dimensions of the reinforced plate (length, width and thickness), the grade and 
size of the bolts, the bolt edge and end distances as well as the bolt spacing. It is obvious that the exhaustive 
combination of all of these parameters gives a huge bulk of results impossible to fit in a few diagrams; thus only 
indicative cases will be presented. To this end, three typical HSFG bolts, namely 16M , 20M  and 24M  of 
grade 10.9 , were selected in combination with a 14mm  thick base and doublers of dimensions 

, 1250 10 mmx dL × ×  (typical dimension in the Hellenic market), with three different values for the length of the 

doublers { }, 2000,1600,1200x dL ∈  being investigated since quite rarely are commercially available plates used 
with their initial length. The most extreme bolt distributions are the ones were the bolts are positioned in the 
most condensed and in the most extended way; appropriate values for the parameters 1e , 2e , 1p  and 2p  were 

determined using Eqs.(7,8). Furthermore, it was considered that [ ]1, 6b∈  with a step of 0.5 . In total, 423 
analyses were carried out. The examination of the extreme bolt distributions provided a range covering all the 
other distributions in between. For the difference between the theoretical and the numerical index to be 
estimated, the following Normalized Stress Relief Index ( NSRI ) was introduced: 
 

FEM

th

SR
NSRI

SR
=                                                                      (I.20) 

 
In order to examine the adequacy of the bolt connection, the maximum normalized boltF  was defined as: 
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( ) ( ){ }, , , ,max // ,bolt v Sd s Rd v Sd b RdF F F F F=                                                  (I.21) 

 
The values for the design force components were retrieved from the FE analysis (loads for CERIG noads) and 
for the most loaded location (point D in Fig.I.12), while two values for the slip coefficient were used, namely 

0.4µ =  and 0.5µ = .  
 
I.3.6. Results 

In this Section, results from the performed investigation are illustrated in Figs.(I.13-I.20). The stress relief is 
measured at point A  (Fig.I.12); that is at the 50% of the doubler width. The influence on the NSRI  for a 
double-sided reinforcement is illustrated in Figs.(I.13, I.14). For the condensed bolt distribution (Fig.I.13), it is 
obvious that as the parameter b  increases the NSRI  decreases approaching asymptotically a limiting value. 
Practically, for 4b ≥  the NSRI  is constant. Furthermore, the aforementioned limiting value decreases, as the 
length of the doublers increases. The type of the bolts has little effect on the NSRI . It is obvious that the lower 
the parameter b  is and the shorter the doublers are, the higher the normalized stress relief is, thus the more the 
theoretical model approaches the numerical model. 
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Figure I.13: Normalized stress relief for double-sided reinforcement (condensed bolt distribution) 
 

For the expanded bolt distribution (Fig.I.14), the asymptotic behavior is also observed but is achieved for a 
definitely higher value of b . Again, this limiting value decreases as the length of the doublers increases, while 
this time the influence of the bolt size is absolutely negligible. It is strongly emphasized that in all cases the 
NSRI  is less than unity meaning that the theoretical model predicts a higher stress relief than that estimated by 
the FE approach. This is very important because a design based on the theoretical model and without being 
corrected using the reciprocal of the NSRI  is not on the safe side.  
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Figure I.14: Normalized stress relief for double-sided reinforcement (expanded bolt distribution) 
 

The influence on the NSRI  for a single-sided reinforcement is illustrated in Figs.(I.15, I.16).  
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Figure I.15: Normalized stress relief for single-sided reinforcement (condensed bolt distribution) 
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In this case also, the asymptotic behavior of the NSRI  with respect to the parameter b  is present. 
However, the limiting value is reached quite early for the condensed bolt distribution, while for the expanded 
bolt distribution the NSRI  becomes constant for a significantly higher value of b . Furthermore, the 
aforementioned limiting value decreases as the length of the doublers increases. In addition, the bolt type has 
little effect on the NSRI . Finally, it is observed that not always is the NSRI  less than unity. This means, that 
for the cases where the NSRI  is greater than unity, the theoretical approach may be used for a safe estimation of 
the stress relief. However, for the other cases, the reciprocal of the NSRI  must be used as a correcting factor on 
the theoretical estimation. 
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Figure I.16: Normalized stress relief for single-sided reinforcement (expanded bolt distribution) 
 

The influence on the adequacy of the bolted joint for a double-sided reinforcement is illustrated in 
Figs.(I.17, I.18). It is obvious that in all cases, the bolt size not only is a significant controlling parameter but 
also affects the maximum normalized boltF  in a clearly nonlinear manner. 
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Figure I.17: Normalized bolt adequacy for double-sided reinforcement (condensed bolt distribution) 
 

The parameter b  has little (strong) influence on boltF  for the condensed (expanded) bolt distribution. The 
length of the doubler also does not change the adequacy of the bolted joint. However, it is strongly emphasized 
that while for the condensed bolt distribution the maximum normalized boltF  is at most slightly greater than 
unity, signifying the compliance with the EC-3 constraints, this is not the case for the expanded bolt distribution 
where heavy violations occur.  
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Figure I.18: Normalized bolt adequacy for double-sided reinforcement (expanded bolt distribution) 
 

The adequacy of the bolted joint for a single-sided reinforcement is illustrated in Figs.(I.19, I.20). The 
remarks are more or less the same with those for Figs.(I.17, I.18). One point worth noting is that the imposed 
constraints are violated less when compared to those of the double-sided reinforcement. However, this is 
expected, because in a single-sided reinforcement less shear force will appear at the joint force since less force 
will be carried by the single doubler, which in turn results in a lower stress relief at the area of interest.  
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Figure I.19: Normalized bolt adequacy for single-sided reinforcement (condensed bolt distribution)  
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Figure I.20: Normalized bolt adequacy for single-sided reinforcement (expanded bolt distribution) 
 

It is also noted that both for the single and the double sided reinforcement, the constraints stated in Eq.(11) 
were very far from being violated thus no diagrams were necessary to be created. At this point it is clarified that 
the NSRI  index, apart from indicating how far the theoretical approach is from the numerical approach, also 
informs about the sensitivity of the numerical approach with respect to the controlling parameters used in the 
present paper. This results from the fact that the theoretical approach is independent from the aforementioned 
parameters thus the FEMSR  index is proportional to the NSRI  index, the constant being the thSR  index. 
Therefore, the comments mentioned in this Section hold, from a qualitative viewpoint, for the numerical 
approach as well. 
 
I.3.7. Conclusions 

The present study is another typical characteristic example of using a sensitivity analysis in the form of a 
parametric investigation for structural optimization purposes. More particularly, the use of bolted doublers for 
the reinforcement of a longitudinally loaded plate was investigated. An extremely simple to apply theoretical 
approach and a more accurate numerical approach were investigated. The parameters examined were the bolt 
distribution, the bolt size, the length of the doublers, the ratio of the base width over the doublers’ width 
(parameter b ) and the single or double sided type of reinforcement. In addition, the constraints imposed by the 
EC-3 concerning the adequacy of a bolted joint were also taken into consideration. It was shown that the 
simplified theoretical approach may be used as far as correcting factors derived from the constructed diagrams 
shown in Section II.3.6 (Results) are introduced. This correction is weaker for the condensed bolt distribution 
when combined with a small doubler length and a small ratio of the base width over the doubler width. 
Furthermore, the stress relief at the area of interest, as the parameter b  increases, tends asymptotically to a 
limiting finite value which decreases as the doubler length increases. Finally, the bolt size negligibly affected the 
stress relief, while small values for the parameter b  and for the doublers’ length are advantageous to the bolt 
adequacy, the bolt size affecting it nonlinearly. Concluding, the present investigation provided useful insight 
concerning the optimal single and double sided reinforcement of shape of a car suspension dome using a simple 
parametric study as a means for a sensitivity analysis. 
 
I.4. Case study: Racking systems 
I.4.1. Introduction 

Racking systems are open shelving structures found in storage areas and made of anything from low-tech 
wood to high-tech metal and plastic. There are many types of racking, the most common of which are the 
boltless selective pallet rack, the standard configuration of selective pallet rack, the push-back racking, the 
gravity flow rack, the drive-in/drive-thru racking, the cantilever racking and the wire decking. The efficiency of 
the beam-end connectors is among the most important factors that determine the performance of a racking 
system. This efficiency, in combination with the column bases, provides stiffness for down-aisle stability. The 
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practical importance of racking systems was the motive for an extensive series of works. Hancock described a 
distortional mode of buckling for cold-formed lipped channel columns that have additional flanges attached to 
the flange stiffening lips, the so called ‘rear flanges’, which permit bolting of braces to the channel section so as 
to form upright frames of steel storage racks (Hancock, 1985). Godley investigated pallets racks using semi-
continuous sway frames and concluded that the performance of base-plate connections depends significantly on 
the level of the axial load (Godley, 1991). In 1993, the Australian Standard for steel storage racking was issued 
by the Standards Australia Committee on Steel Storage Racking in response to several requests from the 
Australian racking industry, to improve uniformity of racking performance and enhance public safety (AS4084, 
1993). This Standard aimed at setting out minimum requirements for adjustable static pallet racking made of 
cold-formed or hot-rolled steel. Leach and Davies compared the critical buckling predictions of Generalized 
Beam Theory (GBT) with the results obtained in two series of tests carried out on lipped and unlipped channels 
subject to a major axis bending moment and concluded that the GBT is a powerful and effective analysis tool for 
the solution of interactive buckling problems where both local and overall buckling can occur (Leach and 
Davies, 1996). Markazi et al. investigated boltless semi-rigid connections that are used in the storage rack 
industry and described a method which can be adopted to improve the torsional and also distortional strength of 
thin-walled cold-formed steel columns used in pallet racking systems (Markazi et al, 1997). Davies et al 
considered the problem of analytically designing the uprights which, in a typical pallet rack, are singly-
symmetrical cold formed sections subject to axial load together with bending about both axes (Davies et al, 
1997). They concluded that ‘Generalized Beam Theory’ (GBT) incorporating systematic imperfections can be 
modified to take account of perforations so that the lower bound results give a sufficiently accurate column 
design curve, which takes account of local, distortional and global buckling, thus making extensive testing 
unnecessary. In 1997, the Rack Manufacturers Institute (RMI), which is an independent incorporated trade 
association affiliated with the Material Handling Industry, issued a specification for the design, testing and 
utilization of industrial steel storage racks. The 1997 edition was expanded to include complete treatment of 
seismic design considerations more easily allowing its incorporation by reference into various code documents. 
Davies and Jiang handled the problem of distortional buckling and they concluded that ‘Generalized Beam 
Theory’ offers by far the best vehicle for a fundamental understanding of the subject of distortional buckling 
(Davies and Jiang, 1998). Baldassino and Bernuzzi presented results of a numerical study on the response of 
pallet racks commonly used in Europe (Baldassino and Bernuzzi, 2000). Bernuzzi and Castiglioni developed 
simplified rules for the design of steel storage pallet rack systems in seismic zones and more particularly they 
carried out an experimental analysis for investigating the behaviour of beam-to-column joints (Bernuzzi and 
Castiglioni, 2001). Kameshki and Saka developed a genetic-algorithm based optimum design method for 
nonlinear multistorey steel frames with semi-rigid connections, where the design algorithm resulted in a frame 
with the least weight by selecting appropriate sections from standard sets of steel sections (Kameshki and Saka, 
2001). Papadrakakis et al examined large-scale structural optimization of skeletal structures, such as space 
frames and trusses, under static and/or seismic loading conditions using combinatorial optimization methods 
(Papadrakakis et al, 2002). Tian et al carried out a combined experimental and theoretical study on the racking 
strength and stiffness of cold-formed steel wall frames (Tian et al, 2004). Talikoti and Bajoria developed a 
method for improving the torsional and also distortional strength of thin-walled cold-formed steel columns used 
in pallet racking systems by adding simple spacers (Talikoti and Bajoria, 2005). Bajoria and Talikoti tested the 
flexibility of a connector using both the conventional cantilever method and a newly proposed double cantilever 
method, while a full scale frame test and a non-linear finite element analysis was also carried out (Bajoria and 
Talikoti, 2006). 

Based on the aforementioned references, it is obvious that the behavior of a steel frame used for racking 
purposes is strongly dependent on the behavior of the structural elements involved. To this end, the sensitivity of 
such a frame with respect to characteristics of the posts, of the beams and of the bracing is of importance. Since 
the estimation of this sensitivity requires a very wide parametric investigation, for the needs of the present paper 
the interest was focused on the beams only, thus two common cross-sections of racking beams found in the 
Hellenic market were studied, with their length being a parameter, and the capacity of the corresponding steel 
frames was estimated. The imposed constraints were in accordance with the EuroCode3 and the parametric 
investigation carried out, combined with a simple line search technique, was illustrated in ready-to-use diagrams 
for the maximum capacity of a specific frame or for the length of a known-capacity frame to be estimated. 
 
I.4.2. Theoretical approach 

For the steel frame investigated, the constraints imposed were in accordance to EuroCode3 and are very 
briefly presented in the next paragraphs. More details about the symbols used and the quantities involved may 
be found in the literature (e.g. Falke, 1996). Furthermore, the actions were calculated in accordance to 
EuroCode1, while the seismic forces were introduced in a simple manner, as described in the ‘Numerical 
Analysis’ section. 
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I.4.2.1. Tension 
At each cross-section of a member under axial tension, the ratio of the design value of the tensile force over 

the corresponding design tension resistance of the cross-section must be at most equal to unity: 
 

( ), 1/Sd t RdN N ≤                                                                      (I.21) 
 
Since no holes for fasteners are present, the design tension resistance is set equal to the design plastic resistance.  
 
I.4.2.2. Compression 

At each cross-section of a member under axial compression, the ratio of the design value of the compressive 
force over the corresponding design compression resistance of the cross-section must be at most equal to unity: 
 

( ), 1/Sd c RdN N ≤                                                                     (I.22) 
 
The design compression resistance is estimated differently for Class 1,2,3 and Class 4 cross-sections. 
 
I.4.2.3. Bending ( yM  or zM ) 

At each cross-section of a member under bending, shear force being not present, the ratio of the design value 
of the bending moment over the corresponding design bending resistance of the cross-section must be at most 
equal to unity: 
 

( ) 1/Sd RdM M ≤                                                                     (I.23) 
 
For uniaxial bending, the resistance is estimated according to the Class of the cross-section. 
 
I.4.2.4. Shear ( yV  or zV ) 

At each cross-section of a member under shear, the ratio of the design value of the shear force over the 
corresponding design shear resistance of the cross-section must be at most equal to unity: 
 

( ) 1/Sd RdV V ≤                                                                       (I.24) 
 
The design shear resistance is equal to the corresponding design plastic shear resistance. 
 
I.4.2.5. Bending and shear ( zM , yV  or yM , zV ) 

The theoretical plastic resistance moment of a cross-section is reduced by the presence of shear. For small 
values of the shear force, this reduction is so small that it is counter-balanced by strain hardening and may be 
neglected. However, when the shear force exceeds half the plastic shear resistance, allowance is made for its 
effect on the plastic resistance moment. In the present paper, the beam profiles examined were of equal flanges, 
thus the bending about the major axis, if necessary, was appropriately estimated.  
 
I.4.2.6. Biaxial bending and axial force 

Depending on the Class of the cross-section, the following constraints with respect to the biaxial bending and 
the axial force must hold: 
• For cross sections of Class-1 or 2:  
 

, ,

, , , , ,

1y Sd z SdSd

pl Rd pl y Rd pl z Rd

M MN

N M M
+ + ≤                                                          (I.25) 

 
• For cross sections of Class-3:  
 

, ,

, ,

1y Sd z SdSd

yd ydyd el y el z

M MN

Af W f W f
+ + ≤                                                          (I.26) 
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• For cross sections of Class-4:  
 

, ,

, ,

1y Sd Sd z Sd SdSd

yd yd

Ny Nz

eff yd eff y eff z

M N M NN

A f W f W f

e e+ +
+ + ≤                                            (I.27) 

 
It is noted that for the Class-3 and Class-4 cross-sections, it is assumed that no holes for fasteners exist.  
 
I.4.2.7. Flexural buckling 

For each compression member, the ratio of the design value of the compressive force over the design 
buckling resistance must be at most equal to unity: 
 

( ), 1/Sd b RdN N ≤                                                                     (I.28) 
 
The design buckling resistance of a compression member is equal to: 
 

, 1/b Rd A y MN A fχ β γ=                                                                (I.29) 
 
where the reduction factor χ  determined by the relevant buckling mode is of major importance since it takes 
into account imperfections that are always met in practice. The beam profiles examined in the present paper 
were of constant cross-section thus χ  could be analytically determined, using values from a buckling curve 
appropriately selected based on the shape of the cross-section and whether the beam is assumed to be hot rolled 
or cold formed. It is reminded that lateral buckling and lateral-torsional buckling are not included, because their 
influence on closed cross-sections is weak. The interested reader may find more details in (Falke, 1996). 
 
I.4.3. Numerical analysis 

The behavior of the steel frame illustrated in Fig.I.21a was examined. The modeled frame consisted of four 
similar posts (or upright columns), six similar beams and a lateral bracing. Each post was of constant cross-
section and of 3000 mm  height. The beams were positioned in such a way that the vertical and lateral distance 

between them was 1200 mm  and 600 mm , respectively. The longitudinal distance xL  between the posts was 

variable and six different values { }920,1220,1520,1830, 2130, 2440xL ∈  were investigated. Two different 
beam profiles made of S235, found in the Hellenic market for racking beams, were examined (Fig.I.21b). The 
frame was fixed to the ground and the beam-to-post connections were considered to be fixed as well. For the 
analysis of the frame, the Finite Element Analysis (FEA) commercial software ANSYS was used. The posts and 
the beams were modeled with BEAM4 elements, while the bracing was modeled with LINK8 elements. It is 
noted that BEAM4 is a uniaxial element with tension, compression, torsion, and bending capabilities. This 
element has six degrees of freedom at each node, namely three translations in the nodal x, y, and z directions and 
three rotations about the nodal x, y, and z axes. Furthermore, LINK8 is a spar which may be used in a variety of 
engineering applications, such as to model trusses, sagging cables, links, springs, etc. The 3-D spar element is a 
uniaxial tension-compression element with three degrees of freedom at each node; the translations in the nodal 
x, y, and z directions. Each beam was divided in ten segments and the corresponding quantities (displacements, 
forces and moments) were estimated at each node. The frame carried a uniform load distribution q  over the 
beams of each storey (vertical red arrows in Fig.I.21a). The maximum value of this load was sought so that no 
constraints according to EuroCode3 were violated. More particularly, constraints concerning compression, 
tension, bending, shear, shear and bending, biaxial bending and flexural buckling were imposed. Constraints 
concerning lateral-torsional buckling, as well as lateral buckling and bending due to compression were not 
imposed since closed cross-sections were used, for which the aforementioned constraints are not critical. In 
addition, the activation of the gravitational acceleration provided the means for the self-weight to be included as 
well. Furthermore, imperfections were also taken into consideration. For this purpose, horizontal forces 
(horizontal red arrows in Fig.I.21a) were estimated based on the number of the storeys, the number of the posts 
and the load distribution q . Two different cases were examined, namely with and without the contemporaneous 
presence of earthquake. In more details, the seismic coefficient is estimated according to the new Hellenic 
regulations for seismic design and with respect to significance of the structure, the ground, the foundation, the 
type of the structure, etc. For each storey, the corresponding equivalent horizontal seismic forces were applied as 
a static load, the permanent loads being taken into account. For the application of the earthquake, the 
combination 0.3X Y+  was used, which is the worst combination since the frame is laterally restrained along 
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the Y -direction (the coordinate system used is also illustrated in Fig.I.21a). For the application of the load 
distribution q , the coefficient for the permanent loading has not been introduced.  

 

X

Y

Z

 

 
 
 

(a) (b) 

Figure I.21: Frame examined (a) developed model and (b) beam cross-sections used 
 

Finally, it is clarified that for the needs of the performed investigation, it was required to analyze a large 
number of frames, thus a code in ANSYS/APDL, the script language of ANSYS, was developed, including the 
entire procedure of the parametric modeling, the analysis and the check against constraint violations. 
 
I.4.4. Results 

The maximum uniformly distributed load maxq  that a beam, of the specific frame shown in Fig.I.22, can 
carry was estimated through the solution of a 1D constrained optimization problem, implementing a simple line 
search technique and a hard-kill penalization scheme for the violation of any imposed constraint. 
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Figure I.22: Maximum allowable load for (a) Beam Cross-Section #1 and (b) Beam Cross-Section #2 
 

It is obvious that for different beam lengths and for different beam profiles, maxq  is different. Fig.I.22a and 

Fig.I.22b illustrate the variation of maxq  with respect to the beam length xL  (continuous line) for the first and the 

second beam profiles examined, respectively. It yields that as the length increases, maxq  decreases tending 
asymptotically to a limiting and finite value, this decrease being very steep for short beams. For example, from 
Fig.I.22a, comparing two beams of lengths 1000 mm  and 2000 mm , respectively (increase of 100% ), the 

corresponding values of maxq  are 50 N/mm  and approximately 10 N/mm  (decrease of almost 80% ). This 

means that, for short beams, the beam length is definitely of major importance in determining maxq . 

Furthermore, maxq  is larger in Fig.I.22b than in Fig.I.22a, meaning that the second beam profile with thicker 
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webs and thinner flanges generally provides larger resistance, thus the corresponding frame capacity is larger as 
well. In addition, Fig.I.22 illustrates the variation of maxq  under the presence of earthquake (dashed line). It 
yields that taking earthquake resistance into account significantly decreases the maximum load that can be 
carried. This decrease is stronger for short beams, while as the beam length increases, maxq  decreases 
asymptotically to a limiting and finite value. The diagrams in Fig.I.22a have a two-fold interpretation, the direct 
and the reverse. According to the direct interpretation, if the beam profile and beam length are known then it is 
possible to estimate the capacity of the beam, thus the capacity of the frame. According to the inverse 
interpretation, for a given capacity of the frame, thus for a given capacity of the beam, it is possible to estimate 
the maximum length a beam of a specific profile may have, with no constraints being violated. From this point 
of view, Fig.I.22a illustrates ready-to-use diagrams for practical engineering purposes. The maximum allowable 
load, that is the capacity of each beam, was based on using the absolute maximum values for the axial force, the 
shear force and the bending moments estimated at the nodes of the beams. For the structural-member adequacy, 
all of the nodes of each structural member were checked. For each check, the ratio of the design force S  over 
the resistance R  was estimated. The normalized quantity ( )/S R  should be less than or at most equal to unity, 
for no constraints according to EC3 to be violated.  
 
Table I.2: Description of the constraints 

Compression : C1 Buckling : C2 Tension : C3 
Bending yM  : C4 Bending zM  : C5 Shear yV  : C6 

Shear zV  : C7 Bending zM  and shear yV  : C8 Bending yM  and shear zV  : C9 
Biaxial bending : C10 Flexular buckling : C11   

 
The EC3 constraints imposed in the present study are shown in Table II.2. The corresponding coded names 

are used in Figs.(I.23, I.24).  
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Figure I.23: Adequacy of the frame for beam cross-section #1 and various beam lengths 
 

These figures illustrate the aforementioned normalized ratios and describe vividly not only which constraints 
are dominating but also how much the constraints differ from each other. Having such information at hand 
makes improving the beam profile design and increasing the capacity of the frame possible. Fig.(I.23) illustrates 
the adequacy of the examined frame, for the first of the two beam profiles used, for various beam lengths, with 
and without the presence of earthquake.  

It yields that, out of the eleven checks, four seem to be more ‘active’, namely the bending zM , the bending 

zM  and shear yV , the biaxial bending and the flexural buckling. However, the most dominating one was the 

constraint for the flexural buckling. When the value of the normalized ratio ( )/S R  was near unity, the 
corresponding values for the other three were approximately 0.7 . Practically, this means that it is possible to 
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ignore all the constraints but the one for flexural buckling. As shown in Fig.(I.23), the effect of the earthquake 
on the normalized ratios is negligible for all the constraints but the shear yV . However, it is strongly emphasized 
that this negligible effect concerns only the adequacy against failure of the structure and not its capacity, which 
is severely affected as illustrated in Fig.(I.22) and commented in the previous paragraph. Furthermore, the 
buckling resistance may be increased in various ways, such as appropriately increasing the area of the beam 
profile, decreasing the slenderness of the beam and changing the beam profile, so that it becomes a Class-1 to 
Class-3 cross-section. In addition, it yields that, for all the examined lengths, the constraints for tension, bending 

yM , shear zV , as well as bending yM  and shear zV , have practically no effect on the resistance of the beam. 
The remarks for the plots of Fig.(I.23) also hold for the plots of Fig.(I.24), which were obtained for a closed 
beam profile with thicker webs and thinner flanges than the profile used for Fig.( I.23).  
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Figure I.24: Adequacy of the frame for beam cross-section #2 and various beam lengths 
 

It yields that for each examined beam length, the normalized values ( )/S R  do not practically change. 
 
I.4.5. Discussion 

The complete study of a racking system is a very interesting and complicated issue, both from a structural 
and an economical point of view. The main goal is to maximize the capacity of the system, keeping the size of 
the structural elements involved as low as possible. To this end, the posts, the beams and the bracing must be 
thoroughly examined both individually and as an assembly. The parameters to be examined are mainly the 
profiles of the posts and the beams, as well as the dimensions of the racking system. The constraints that must be 
satisfied concern both ultimate limit and serviceability limit states, while the presence of earthquake must also 
be taken into account. Estimating the sensitivity of the racking system capacity with respect to all of the factors 
mentioned above requires an extensive parametric investigation, which may be divided in three parts, namely 
the investigation of the posts, of the beams and of the bracing. In the present paper, the beams are studied only.  

The study of a racking beam should be such that its capacity is estimated for various determining 
characteristics, such as the beam profile, the beam length, the presence of earthquake and the beam-to-column 
connection. The beam profiles examined were two of the most common cross-sections found in the Hellenic 
market. Both of them were of closed type, doubly symmetric, they had the same width and height but differed in 
the flange and web thickness; the first had thicker flanges and the second had thicker webs, as shown in 
Fig.(I.21b). The beam lengths examined were also retrieved from the Hellenic market and concerned typical 
standard dimensions. The same holds for the lateral and the vertical distance between the beams. The presence 
of the earthquake was introduced in a simple but valid manner, often used in practicing engineering offices. 
Furthermore, it was assumed that the beam-to-column connection was fixed. This is a valid assumption since, in 
most practical cases, the beams have specially formed end-hooks which clasp in the posts and provide a rigid 
connection. Such a connection is desirable, because it ensures that the deflection of the beam (sagging) will be 
the least possible which in turn ensures that not only the bottom of the racked pieces will be in full contact with 
the beam but also the effective vertical space between two storeys is maintained. It is obvious that if a hinge was 
used instead, the sagging of the beam would severely reduce the serviceability of the racking system. 
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The entire investigation was coded in ANSYS/APDL. It is noted that this script language does not offer 
subroutines or functions, which other programming language have as a standard tool for obvious programming 
reasons. As an alternative, parts of the lengthy developed code, that in another programming language would 
have been written in subroutines or functions, were saved in different files, all of which were called from a main 
file. On the other hand, ANSYS software offers build-in optimizers which may be used for the optimum design 
of the entire racking system, which is the subject of an undergoing investigation by the authors. 

The results of the parametric investigation were illustrated in diagrams which can be used in a two-fold 
manner, the former being the estimation of the capacity for a given beam and the latter being the estimation of 
the beam for a given capacity. For the former case, a vertical line is drawn for the respective value of the x-axis 
until the curves of Fig.(I.22) are met and then horizontal lines are drawn towards and up to the y-axis, the 
corresponding values being recorded. Each time, two values are recorded, with and without the presence of 
earthquake. For the latter case, the procedure is reversed, beginning from the y-axis and ending at the x-axis. 
Additionally, in both cases, information concerning the adequacy of the beams can be retrieved from Figs.(I.23, 
I.24). 
 
I.4.6. Conclusions 

The present study aimed at revealing the way a sensitivity analysis combined with a simple line search 
technique may be used for structural optimization purposes. More particularly, the beams in a steel frame used 
for racking purposes were examined through the investigation of 3D frames using the Finite Element Method. 
The actions were applied according to the EuroCode1, the constraints imposed were in accordance to the 
EuroCode3, while both the self-weight of the beams and their earthquake resistance were taken into account. It 
was found that for short beams, a small change in the beam length results in a severe change in the beam 
capacity. The same result occurs when earthquake is present. On the contrary, for lengthy beams these changes 
are less intense and asymptotically tend to become constant. Furthermore, it was found out that from the beams 
examined, the one with the thicker webs and thinner flanges had a higher load capacity. In addition, from the 
constraints imposed, flexural bending was the predominating one, the others being quite far from being violated. 
The results of the present study are illustrated in ready-to-use diagrams for either estimating the maximum 
capacity of the beams of a specific racking system or determining the beams for a racking system of known 
capacity. Therefore, the creative implementation of a typical sensitivity analysis in combination with a simple 
line search technique may be used for structural optimization practicing purposes. 
 
I.5. Case study: Solar tracker 
I.5.1. Introduction 

A solar tracker is a device for orienting a day-lighting reflector, solar photovoltaic panel or concentrating 
solar reflector or lens toward the sun. The sun's position in the sky varies both with the seasons and time of day 
as the sun moves across the sky. Solar powered equipment works best when pointed at or near the sun, so a solar 
tracker can increase the effectiveness of such equipment over any fixed position, at the cost of additional system 
complexity. There are many types of solar trackers, of varying costs, sophistication, and performance. One well-
known type of solar tracker is the two-axis mount, according to which one axis is a vertical pivot shaft, or 
horizontal ring mount, that allows the device to be swung to a compass point, while the second axis is a 
horizontal elevation pivot mounted upon the azimuth platform. By using combinations of the two axes, any 
location in the upward hemisphere may be pointed. The references with respect to the solar trackers may be 
categorized in three groups. The first group refers to publications regarding the photovoltaic cell technology, the 
second group refers to publications regarding the control systems that ensure the solar tracking, while the third 
group refers to steel structures used for supporting photovoltaic panels.  

The present paper refers to the subject of the aforementioned third group. It is noted that the published works 
in this field are not as many as anticipated. The reason for this might be the fact that solar trackers are a 
relatively new technological product (in Greece, the first international exhibition was organized in November 
2008) utilized for earning money, thus relative information is not widely spread. Another evidence for enforcing 
this opinion is the large number of patents issued for solar tracker drawings (e.g. US Patent nos: 3917942-1975, 
4215410-1980, 6239353–2001, 200501330-2005, 4175391, 20040112373, 20070100557, 20080245402). Some 
of the most interesting publications on the subject are briefly presented in the following paragraphs. Helwa et al 
completed an experimental study, with four systems, the layout of which were a fixed system facing south, a 
vertical-axis tracker, a tilted-axis tracker and a two-axis tracker (Helwa et al, 2000). The purpose of the study 
was the comparison between the four systems and with respect to the collected solar energy. The measurements 
lasted one year and concerned the solar radiation input to the systems and the electric power output from them. 
The main conclusion was that the dual-axis solar tracker presented a higher capability of solar energy collection 
and electric power production. 

Lorenzo et al dealt with the investigation of those parameters that define the formulation of the design of a 
single-axis solar tracker and they ended up with the best solar-tracker distribution for the photovoltaic park in 
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Tudela (Spain) (Lorenzo et al, 2002). For the optimization problem they solved, they considered that, 
approximately, the cost per unit of produced energy is a linear function of the ratio of the total investment over 
the yearly produced energy. They also considered that it is possible to apportion the total investment in two 
parts, the former being related to costs of land, such as purchase of land, fencing, wiring, infrastructure, etc), and 
the latter being related to solar tracker costs. In this study it is worth noting that, as the authors state, the 
optimum design of the park was based more on aesthetics rather than the optimum solution derived from their 
analysis, while the fact that the cost of dual-axes solar trackers continuously decreases, thus changes the 
parameters taken into account. 

Abdallah carried out an experimental study in order to find out the differentiation in the current 
characteristics produced by static and rotating solar trackers. In this study, he used four solar trackers: one dual-
axis tracker, one vertical axis tracker, one single-axis tracker oriented along the E-W direction and one single-
axis tracker oriented along the N-S direction; he also used a heliostat. According to the results of this study, the 
characteristic properties of the current (nominal voltage, nominal amperage and nominal power) were much 
better for the rotating trackers than for the heliostat (Abdallah, 2004). 

Luque-Heredia et al studied a dual-axis solar tracker using the Finite Element Method. In more details, they 
analyzed their designs using the commercial software Ansys ver.7, while they developed a certain concept 
regarding the design rules that should be followed (Luque-Heredia et al, 2007). According to their approach, the 
design of the steel structure of the solar tracker must be based on operational characteristics, such as the easy 
transportation to the location of installation and the simplicity in assembling the tracker. Once the design is 
determined, the dimensioning follows in such a way that the structural weight is minimized without violating 
any ultimate limit state or serviceability limit state constraints; for this purpose, the use of standard profiles is 
highly recommended. It is noted that Luque-Heredia et al consider the bending of the structure carrying the 
photovoltaic cells as of primary importance, because, due to this bending, the normal vector to the photovoltaic 
panel may decline from the direction of the solar beams thus reduce the efficiency of the solar device. 

Mavromatakis and Franghiadakis suggested a new type of single–axis solar tracker, on which they adjusted a 
prototype mechanism which allows for the rotation of the photovoltaic panel about two axes (OBI, patent No. 
1005380/2006). In this way, their tracker behaves as if it was a dual-axis tracker and at the same time it has a 
better performance on an annual basis (Mavromatakis and Franghiadakis, 2008). The latter conclusion was 
drawn from a study that Mavromatakis and Franghiadakis carried out comparing the efficiency of their tracker 
to that of two other trackers (one heliostat and one dual-axis tracker). 
 

(a) (b) (c) 

Figure I.25. Commercial solar trackers by (a) Poulek Solar, (b) ELBITYL and (c) Inspira. 
 
Apart from interesting references on the subject (Geiger et al, 2002, Hay and Davies, 1978), various 

companies provide, through their websites, information with respect to specifications and designs. However, 
although almost all companies promote their products as of high efficiency, no comment is on the layout 
optimization of the trackers. Therefore, the challenge and the purpose of the present work were to investigate the 
layout optimization of solar trackers. Towards this direction, a fully-parameterized dual-axis solar tracker of a 
specific design concept (design type), having a total panel surface of 150m2, was designed and optimized using 
the Finite Element Method and in accordance to the EuroCode 3 standard. For the structural analysis, the 
commercial software Ansys ver.10 was used, while the optimization was carried out based on the sub-problem 
approximation and the first-order method implemented in the aforementioned software. In total, the parametric 
design included 40 design parameters, as well as the corresponding geometric constraints ensuring the feasibility 
of the design. In this way, a high-level layout optimization was carried out. For each optimization step, a fully-
scaled 3D plate model was developed, while for the analysis a large-displacement non-linear solver was used. 
The main contribution of the present work was the development of a procedure for getting the layout 
optimization of a solar tracker of a specific design type but of any total panel surface. 
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I.5.2. Theoretical approach 
I.5.2.1. Parametric design of the solar tracker 

The main aim of the present work was to optimize a parametric design of a typical dual-axis solar tracker. 
Towards this direction, first a typical design was selected and then the design variables serving as design 
parameters were defined. More particularly, the solar tracker consisted of: 
• Two slew drives for the rotation about the horizontal and the vertical axis. 
• Two vertical cylindrical members, the lower rigidly connected to the ground and the upper being able to 

rotate about the vertical axis. 
• Four flanges. 
• One RHS cross beam for supporting the entire upper part of the tracker. 
• One CHS beam serving as the driving shaft of the tracker for the horizontal rotation. 
• Two RHS beams forming a frame (frame beams) for supporting the panel with the photovoltaic cells. 
• Plates for supporting the driving shaft on the cross beam. 
• C-channels, where the photovoltaic cells are mounted on. These channels are placed in pairs, the only 

exception being the channels at the edge of the panel.  
• Angles (in pairs) for mounting the C-channels on the aforementioned frame. 
• Photovoltaic cells. 

In total, 40 design variables were implemented, as shown in Table 1. In the same Table, 13 variables are 
shown in bold and italic font. These are the variables that affect more the structural weight and the ones finally 
used in the present investigation. 
 
Table I.3: Parametric design variables 
ID Variable ID Variable 
1 Number of photovoltaic cells (x-direction) 21 Height of cross beam 
2 Number of photovoltaic cells (y-direction) 22 Thickness of cross beam 
3 Length of photovoltaic cell  23 Length of driving shaft 
4 Width of photovoltaic cell 24 Radius of driving shaft 
5 Thickness of photovoltaic cell 25 Thickness of driving shaft 
6 Maximum angle of horizontal rotation 26 Length of frame beam 
7 Radius of lower cylindrical base 27 Width of frame beam 
8 Height of lower cylindrical base 28 Height of frame beam 
9 Thickness of lower cylindrical base 29 Thickness of frame beam 
10 Radius of upper cylindrical body 30 Radius of support for driving shaft 
11 Height of upper cylindrical body 31 Height of support for driving shaft 
12 Thickness of upper cylindrical body 32 Thickness of support for driving shaft 
13 Radius of lower flange 33 Length of C-channels 
14 Thickness of lower flange 34 Width of C-channels 
15 Flange radius for joint with slew drive 35 Height of C-channels 
16 Flange thickness for joint with slew drive 36 Length of reinforcements for C-channels 
17 Radius of upper flange 37 Thickness of C-channels 
18 Thickness of upper flange 38 Length of angles for C-channel mounting 
19 Length of cross beam 39 Width of angles for C-channel mounting 
20 Width of cross beam 40 Thickness of angles for C-channel mounting 
 

The dimensions, in meters, of each photovoltaic cell were 0.820 1.650 0.050× × . The photovoltaic panel 
was chosen to carry 112  photovoltaic cells, corresponding to a total surface of 2151m and a total weight of 
2023kg . In addition, the material used for the structure was plain structural steel (modulus of elasticity 

210GPa , Poisson’s ratio 0.3  and density equal to 37850 /kg m ).  
 
I.5.2.2. Modeling 

A full 3D surface model was created using the mean surfaces of the 3D solid parts consisting the solar 
tracker. Indicative modeled parts are shown in Fig.I.26.  
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(a) (b) (c) 

  
(d) (e) (f) 

 

(g) (h) (i) 

Figure I.26: Parts of the solar tracker model: (a) cylindrical base, (b) slew drive, (c) RHS cross beam, (d) CHS 
driving shaft, (e) pairs of C-channels, (f) driving-shaft supporting plates, (g) pairs for C-channel mounting, (h) 

photovoltaic panel and (i) assembly. 

 
The ability of the parametric design is demonstrated in Fig.I.27, where two characteristically different 

designs are shown.  
 

(a) (b) 

Figure I.27: Designs for a panel of 265m  and for different number of photovoltaic cells (a) 4 12×  and (b) 
7 7× cell array. 

 
Apart from the parametric design itself, it is of primary importance to ensure that a high-quality mesh may 

be created. For this purpose, creating a mapped mesh is a good choice. However, this may be achieved only if 
special care is taken with respect to the areas around member joints. More particularly, it is required to 
additionally divide the surfaces in such a way that always four-sided sub-areas are created, as illustrated 
Fig.I.28.  
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(d) (e) (f) 

Figure I.28: Surface division necessary for creating a mapped mesh: (a) cylindrical base, (b) cylindrical body, 
(c) assembly of the cross beam, (d) detail of the driving shaft mounting, (e) driving shaft-RHS beam joint, and 

(f) beam with pairs for C-channel mounting plates. 
 
I.5.2.3. Boundary conditions 

It was assumed that the solar tracker was rigidly supported along the lower flange of its cylindrical base. In 
addition, a wind pressure of 1000Pa  was assumed. This pressure corresponds either to a wind velocity of 
30 / secm with a pressure coefficient 1.78  or to a wind velocity of 36 / secm with a pressure coefficient equal to 
1.23 . It is noted that the aforementioned wind velocities are specified for Greece according to EuroCode1. 
Furthermore, the self weight was taken into account. With respect to the collaborating surfaces, they were all 
assumed to be in an ‘always-bonded’ contact mode.  
 
I.5.2.4. Constraints 

For the ultimate limit state, it was assumed that the maximum von Mises stress should be at most equal to 
140MPa . For the serviceability limit state, it was assumed that the maximum deflection should be at most equal 
to 0.04m . The stability of the structure was examined by carrying out a non-linear analysis; if no snap-through 
buckling was present along the compression zone of the structure then the structure was considered to be stable, 
as Eurocode 3 (Annex C) describes. The dynamic effects due to the wind loads were examined by carrying out 
an eigen-frequency and checking whether the fundamental frequency was higher than 1 .Hz  
 
I.5.2.5. Selection of Slew-Drives 

Two slew drives (IMO) were responsible for the rotational motion of the solar tracker. The size of the slew 
drives must be taken into consideration since certain geometric characteristics, such as the radius of the 
cylindrical base and the radius of the driving shaft. Therefore, the procedure for selecting a slew drives must be 
embedded in the optimization scheme. This procedure is as follows: 
Step 1: Estimate the equivalent axial load axDF : 
 

axD ax aF F f=                                                                         (I.30) 
 

where axF  is the axial load and af  is a safety coefficient. 

Step 2:  Estimate the equivalent bending load kDM : 
 

1.73
1000

L
kD k rad a

D
M M F f= +⎛ ⎛ ⎞⎞

⎜ ⎜ ⎟⎟
⎝ ⎝ ⎠⎠

                                                     (I.31) 

where radF  is the radial load, kM  is the bending moment and LD  is the raceway diameter. 
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Step 3: Check for radial load (in case of violation, a special design is necessary): 
 

220 0.5
1000

k
rad ax

M
F F≤ +⎛ ⎛ ⎞ ⎞

⎜ ⎜ ⎟ ⎟
⎝ ⎝ ⎠ ⎠

                                                          (I.32) 

 
Step 4: Check with respect to the axial and bending load. For this purpose, appropriate diagrams of 

equivalent axial load and equivalent bending moments must be used (Fig.I.29). On this diagram, the 
point ( ),axD kDF M  estimated from the previous steps is marked. All curves lying above this point 
correspond to systems that can safely carry the applied loads, under the assumption that these loads 
are static. In case of dynamic loads, the system endurance must be also checked. 

 

Figure I.29: Useful diagrams for selecting slew drive (Steps 4 and 5)  
 
Step 5: Static reliability verification against operating torque. The operating torque must be in compliance 

with diagrams, such as the one shown in Fig.I.29. That is, all slew drives that can provide a 
maximum torque larger than the estimated one may be used. 

Step 6: Estimate the maximum permissible duty per minute. First the following ratio is estimated: 
 

,

,max

d B

MD

d

M
f

M
=
⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                                     (I.33) 

 
where ,d BM  is the operating torque and ,maxdM  is the maximum operating torque of the system. In 
the sequel, diagrams, such as the one shown in Fig.I.30, are used so that the maximum permissible 
duty per minute maxED  (in %) is estimated. Obviously, for a slew drive it must hold maxBED ED≤ . 
 

 
Figure I.30: Useful diagrams for selecting slew drive (Steps 6 and 7) 

 
Step 7: Verify wear characteristics of worm gear. With respect to the operation time hB  and the specification 

BED , the following limit value is estimated:  

, 100
B

w oper h

ED
G B= ⎛ ⎞

⎜ ⎟
⎝ ⎠

                                                                  (I.34) 

Based on the operational moment ,d BM  and diagrams such as the ones shown in Fig.I.30, the 

allowable value ,w allowG  is estimated. Obviously, a slew drive is adequate when , ,w allow w operG G≥ . 
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I.5.2.6. Optimization procedure 
The optimization procedure applied in the present work was as follows: 

Step 1:  Definition of design parameters and selection of initial design vector  
Step 2:  Check geometric constraints; in case of violation, select another initial design vector 
Step 3:  Design of mean surfaces 
Step 4:  Boolean operations on surfaces (division and union) for a mapped mesh to be created 
Step 5:  Generate mapped mesh using shell elements 
Step 6:  Connect external surfaces of plates using contact elements 
Step 7:  Apply boundary conditions 
Step 8:  Analyze the structure  
Step 9:  Estimate the structural weight and quantify the mechanical behavior 
Step 10:  In case of convergence, or if the maximum number of iterations has been exceeded, then STOP 
Step 11:  Redesign the shell thicknesses and go to Step 8 

For the redesign, first the subproblem approximation method was applied sequentially three times and then 
the first order method was implemented (both optimizers are embedded in Ansys). The sub-problem 
approximation method required 10 iterations (approximately 4 hours) to converge, while the first order method 
converged in two iterations only (approximately 12 hours).  
 
I.5.3. Results 

After the application of the procedure described in Section 2.6, an optimized design was derived, weighting 
5965kg  (the steel structure only). The imposed stress and displacement constraints were not violated, while the 
stability was examined through a non-linear analysis, characteristic results of which are shown in Fig.I.31.  
 

 
(a)  (b) (c) 

 
(d) (e) (f)  

Figure I.31: Verification against stability for (a) the cylindrical base, (b) the cylindrical rotating body, (c) the 
frame beam, (d) the C-channels, (e) the cross-beam and (f) for wind pressure of 4.5kPa . 

 
From Fig.I.31, it is obvious that the optimized structure is stable, while instability problems occur for a wind 

pressure of approximately 0.8 4.5 3.6kPa× =  (Fig.I.31f). For the sensitivity of the structure with respect to 
dynamic effects, the eigenfrequencies were estimated using the PCG Lanczos method. The fundamental 
frequency was estimated to be approximately equal to 3.06Hz , which is higher enough from the lower limit of 
1Hz . Therefore, the optimized structure may carry with safety the applied loads. 
 
I.5.4. Discussion 

Solar energy is everywhere and for free. Therefore, it is essential that, for environmental reasons, this 
reservoir be exploited. Towards this direction various types of solar trackers have been designed and 
manufactured. However, for the optimum solution to be found in terms of energy efficiency, and not only, the 
corresponding layout optimization problem must be solved. The present work contributes to this direction by 
proposing the creation of a fully parametric design, which in the sequel may be optimized using the Finite 
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Element Method and in accordance to the EuroCode standards. The derived optimum design is comparable to 
the commercially available ones, even though this was not the explicit aim of the investigation. From a 
constructional viewpoint, it is worth mentioning that the final design consists of standard profiles only, which 
facilitates the manufacturing and helps in keeping a low cost since no special structural treatments are required. 
Furthermore, since the design is fully parametric, the proposed procedure may be applied for the design of a 
solar tracker with any number of photovoltaic cells. Another important issue is that the verification procedure 
was based entirely on modern techniques (3D CAD design and computational mechanics), which means that not 
only no analytical calculations are needed to be carried out but also the entire procedure is easy to be 
programmed. As further improvements, it is possible to develop an automated procedure for verifying the joints 
(bolts and welds), while the ultimate goal would be the minimization of the cost of an entire solar park. Finally, 
an interesting problem to be solved is the way the photovoltaic cells may be kept free of dust and humidity for 
their efficiency to be kept as closer to the nominal efficiency as possible.  
 
I.5.5. Conclusions 

The present study aimed at revealing the way a zero-order and a first-order optimization method may be used 
for structural optimization purposes. More particularly, the present work dealt with the problem of the layout 
optimization of a dual-axis solar tracker. The proposed approach was based on the optimization of a fully 
parametric structural design, using the Finite Element Method and imposing the constraints dictated by the 
EuroCode standards. In total, 40 design parameters were handled while for good practical purposes it is possible 
first to define the design, thus fix a number of design parameters. As a result, the optimum layout of a solar 
tracker of any panel surface may be found. 
 
I.6. Recapitulation 

For good practical engineering purposes, there are times, when it is required to get quickly a design which is 
improved with respect to an initial one, but not necessarily the optimum. For such cases, it is recommended to 
use simple optimization tools, such as the sensitivity analysis, in the form of a parametric investigation with 
respect to the most important design variables, and simple optimization procedures of zero-order or of first-
order. Towards this direction, four typical applications were examined, namely the design of a car suspension, 
the optimum single-sided and double-sided bolted reinforcement of a plate under uniaxial tension, the optimum 
design of a racking system and the layout optimization of a solar tracker. The first three applications were 
handled using a simple sensitivity analysis as described above, while the last example was dealt with using the 
Subproblem approximation method and a first order method, both found in Ansys, which is a commercial 
software for structural analysis. 
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1.1. Εισαγωγή 
Ο όρος ‘βελτιστοποίηση’ ανέκαθεν αποτελούσε έναν από τους πλέον δηµοφιλείς όρους, 

δεδοµένου ότι αυτός αντανακλά τον πόθο για την επίτευξη ενός συγκεκριµένου στόχου 
καταναλώνοντας τους λιγότερους δυνατόν πόρους. Συνεπώς, αυτός ο όρος εµφανίζεται ως 
διαχρονικός και µε βαρύνουσα σηµασία σε πολλές εκφάνσεις της ζωής, από την απαρχή του 
σύµπαντος και τον καθηµερινό αγώνα για επιβίωση µέχρι τα πλέον µοναδικά ανθρώπινα 
επιτεύγµατα. 

Ανατρέχοντας στο απώτατο παρελθόν της γένεσης του σύµπαντος και σύµφωνα µε τις πιο 
µοντέρνες θεωρίες κοσµογονίας, µετά την µεγάλη έκρηξη (Big Bang), ύλη ΄διασκορπίστηκε 
στο σύµπαν και στη συνέχεια, αργά αλλά προοδευτικά, δηµιουργήθηκαν τα ουράνια σώµατα. 
Ωστόσο, αυτά τα σώµατα δεν είναι τίποτε άλλο από ύλη, η οποία συγκρατείται µε τη µορ΄φη 
σταθερών δοµών, δηλαδή δοµών χαµηλής ενεργειακής στάθµης. Συνεπώς, τα ουράνια 
σώµατα έχουν προκύψει µέσα από ένα είδος διαδικασίας βελτιστοποίησης, η οποία 
αποσκοπούσε στην ελαχιστοποίηση της ενεργειακής στάθµης τους. Ένα ιδιαίτερα µεγάλο 
πλήθος παραδειγµάτων βελτιστοποίησης είναι δυνατόν να εντοπισθεί στο άµεσο περιβάλλον 
του ανθρώπου. Οι κορµοί των δέντρων είναι µεγαλύτερης διατοµής κοντά στο έδαφος και 
µικρότερης κοντά στην κορυφή, διαµόρφωση η οποία διευκολύνει τόσο την ανάπτυξη ενός 
πιο αποδοτικού συστήµατος µεταφοράς θρεπτικών συστατικών όσο και την ασφαλέστερη 
παραλαβή ισχυρών φορτίων ανέµου. Τα ψάρια και άλλα θαλάσσια όντα διαθέτουν 
υδροδυναµικά σχήµατα, έτσι ώστε η υποθαλάσσια κίνησή τους να χαρακτηρίζεται από 
χαµηλές απώλειες λόγω τριβών, επιτυγχάνοντας, µε αυτόν τον τρόπο, την βέλτιστη 
προσαρµογή στο φυσικό τους περιβάλλον. Επιπροσθέτως, η ελαφρά κατασκευή των πτηνών, 
σε συνδυασµό µε τις εύκαµπτες επιφάνειες ελέγχου που διαθέτουν (φτερά), αποτελεί µία 
πτητική µηχανή µε βελτιωµένα χαρακτηριστικά. Ο κατάλογος µε παρόµοια παραδείγµατα 
είναι πολύ µακρύς, δεδοµένου ότι η εξελικτική διαδικασία, η οποία παρατηρείται στη φύση, 
δεν είναι τίποτε άλλο από τη διατήρηση και βελτίωση εκείνων των χαρακτηριστικών, τα 
οποία εξασφαλίζουν υψηλότερη πιθανότητα επιβίωσης, όπως άλλωστε ορίζει και η ∆αρβίνεια 
θεωρία. Με άλλα λόγια, πρόκειται για µία διαδικασία βελτιστοποίησης, στην οποία 
επιδιώκεται η µεγιστοποίηση της πιθανότητας επιβίωσης. Προφανώς, σε όλες αυτές τις 
περιπτώσεις, το τελικό αποτέλεσµα δεν είναι απαραίτητα το απόλυτο (καθολικό) βέλτιστο, 
ωστόσο είναι σηµαντικά βελτιωµένο συγκριτικά µε το αρχικό αποτέλεσµα, κάτι που, σε 
πολλές περιπτώσεις, είναι επαρκές.  

Εκτός από την φύση, η έννοια της βελτιστοποίησης ενσωµατώθηκε στη ζωή του 
ανθρώπου από το πρώιµο ακόµα στάδιο της εµφανίσεώς του. Αρχικά προκειµένου να 
εξασφαλίσει την επιβίωσή του και στη συνέχεια προκειµένου να βελτιώσει το βιοτικό του 
επίπεδο, ο άνθρωπος ήταν υποχρεωµένος να αξιοποιήσει πόρους διαθέσιµους στο άµεσο 
περιβάλλον του. Το πρώτο και κύριο µέληµά του ήταν η χρήση εργαλείων και όπλων αφ’ 
ενός µεν για την εξασφάλιση της τροφής τους και αφ’ ετέρου δε για την προστασία του από 
ο,τιδήποτε θεωρούσε ως απειλή. Προς αυτήν την κατεύθυνση, ο άνθρωπος άρχισε να 
χρησιµοποιεί αιχµηρά αντικείµενα, όπως αιχµηρές πέτρες και κλαδιά. Αξιοποιώντας την 
εφευρετικότητα και τη φαντασία του, ο άνθρωπος άρχισε να αναπτύσσει τεχνικές 
προκειµένου να καταστήσει τα εν λόγω µέσα πιο αποτελεσµατικά. Με άλλα λόγια, ο στόχος 
του ήταν η επίτευξη του καλύτερου δυνατού αποτελέσµατος καταβάλλοντας τη µικρότερη 
δυνατή προσπάθεια. 

Τα ίδια στοιχεία εφευρετικότητας και φαντασίας εµφανίζονται και σε κατασκευές πιο 
ειρηνικού χαρακτήρα, όπως είναι ο τροχός (βέλτιστο σχήµα για κύλιση), τα ρούχα (βέλτιστη 
αξιοποίηση των φυσικών ινών προκειµένου να εξασφαλισθεί προστασία έναντι του κρύου, το 
χειµώνα, και έναντι της ζέστης, το καλοκαίρι), οι κατοικίες (βέλτιστη προστασία έναντι των 
στοιχείων της φύσεως) και τα πλοία (βέλτιστος τρόπος µεταφοράς αγαθών δια θαλάσσης). 
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Ωστόσο, εκτός από την αναζήτηση βέλτιστων λύσεων σχετικά µε θέµατα επιβίωσης, ο 
άνθρωπος άρχισε να ενσωµατώνει την έννοια της βελτιστοποίησης και σε άλλες 
δραστηριότητες της ζωής του, όπως ο αθλητισµός, η τέχνη, ο στρατός και η θρησκεία. Στον 
αρχαίο ελληνικό πολιτισµό, υπάρχει πλήθος τέτοιων παραδειγµάτων. Πιο συγκεκριµένα, 
κατά τη διάρκεια αθλητικών αγώνων, ένας αθλητής έπρεπε να βελτιστοποιήσει την τεχνική 
του προκειµένου να επιτύχει την καλύτερη επίδοση και να νικήσει. Τα αρχαία ελληνικά 
θέατρα είναι ξακουστά για την εξαιρετική τους ακουστική, δηλαδή για τη βέλτιστη διάδοση 
του ήχου στο χώρο του θεάτρου. Κατά τη διάρκεια των συµποσίων, οι γαστρονοµικές 
λιχουδιές προσφέρονταν µε τέτοια σειρά και τα ανάκλινδρα ήταν τέτοιου σχήµατος, έτσι 
ώστε οι καλεσµένοι να έµεναν ιδιαίτερα ευχαριστηµένοι (βελτιστοποίηση της απόλαυσης). Οι 
ναυτικοί στόλοι διέθεταν σκάφη µε εµβολοφόρο πλώρη, όχι µόνον για την ελαχιστοποίηση 
της υδροδυναµικής αντίστασης (βελτιστοποίηση της πλεύσης) αλλά και για τον εµβολισµό 
εχθρικών σκαφών (βελτιστοποίηση της πολεµικής ικανότητας του σκάφους). Οι κολώνες 
στους αρχαίους Ελληνικούς ναούς φέρουν, οµοιόµορφη και περιµετρική, κατανοµή 
ενισχύσεων. Αυτές οι ενισχύσεις, καθώς διαχέεται το φως, παρέχουν µία ιδιαίτερη 
καλαισθησία, όπως άλλωστε αρµόζει σε χώρους θρησκευτικής λατρείας, αλλά ταυτόχρονα 
εξασφαλίζουν τη βέλτιστη αντοχή τόσο έναντι καµπτικών φορτίων όσο και έναντι σεισµού. 
Επιπροσθέτως, ήταν γνωστό στους αρχαίους Έλληνες αρχιτέκτονες ότι σε µία κοίλη διατοµή, 
συγκριτικά µε µία συµπαγή διατοµή, εξασφαλίζεται υψηλότερη αντοχή σε συνδυασµό µε 
µικρότερο βάρος. Χαρακτηριστικό παράδειγµα αποτελεί ο ναός του Επικουρείου Απόλλωνος 
στις Βάσσες Μεσσηνίας. Εξ αιτίας της υποχρεωτικής µεταφοράς των µαρµάρινων δοκών 
στην εν λόγω ορεινή περιοχή, ο αρχιτέκτονας αποφάσισε να αφαιρέσει υλικό από ορισµένες 
δοκούς, προκειµένου να µειωθεί το βάρος τους. Όπως µπορεί να αποδειχθεί, ενώ το βάρος 
τους µειώθηκε κατά 50%, η µέγιστη, σε αυτές, αναπτυσσόµενη καµπτική τάση παραµένει 
µικρότερη από εκείνην που αναπτύσσεται εάν χρησιµοποιηθούν πλήρεις διατοµές. 

Παρόµοια παραδείγµατα εντοπίζονται σε όλους τους πολιτισµούς και σε όλες τις εποχές. 
Το κοινό χαρακτηριστικό σε όλες αυτές τις περιπτώσεις είναι ότι το βέλτιστο αποτέλεσµα 
αναζητείται κυρίως µέσα από µία διαδικασία δοκιµής-σφάλµατος. Ωστόσο, κατά τη διάρκεια 
των δύο τελευταίων αιώνων, η ανάπτυξη των µαθηµατικών επέτρεψε τόσο τη διατύπωση 
προβληµάτων βελτιστοποίησης όσο και την ανάπτυξη συστηµατικών µεθοδολογιών 
αναζήτησης της βέλτιστης λύσης. Ειδικότερα στο πεδίο της Μηχανικής, µία τιτάνια 
προσπάθεια ανάπτυξης, εξερεύνησης και αξιοποίησης αποτελεσµατικών µεθόδων 
βελτιστοποίησης λαµβάνει χώρα τα τελευταία εξήντα χρόνια, δηλαδή από γεννήσεως της 
Υπολογιστικής Μηχανικής. Τα πλέον εντυπωσιακά επιτεύγµατα, τα οποία προέκυψαν από 
αυτήν την προσπάθεια, έχουν καταγραφεί ως µνηµειώδεις στιγµές κατάκτησης των ωκεανών, 
του ουρανού και του διαστήµατος. Αυτά τα επιτεύγµατα σηµειώθηκαν κατά τη διάρκεια της 
αναζήτησης της µορφής µίας κατασκευής, στην οποία η κατανοµή της ελάχιστης δυνατής 
ύλης είναι τέτοια ώστε τα εξωτερικώς επιβαλλόµενα φορτία να παραλαµβάνονται µε 
ασφάλεια, ενώ ταυτόχρονα να ικανοποιούνται όλοι οι περιορισµοί σχετικά µε την αντοχή, την 
ευστάθεια και τη λειτουργικότητα της κατασκευής. Με άλλα λόγια, αυτά τα επιτεύγµατα 
σηµειώθηκαν κατά την προσπάθεια επίλυσης του γενικευµένου προβλήµατος της 
ελαχιστοποίησης του βάρους µίας κατασκευής. 
 
1.2. Ορισµός του γενικευµένου προβλήµατος ελαχιστοποίησης βάρους 
κατασκευών 

Στη διατύπωση του γενικευµένου προβλήµατος ελαχιστοποίησης του βάρους µίας 
κατασκευής, αναζητείται ένα διάνυσµα σχεδίασης X  τέτοιο ώστε να ελαχιστοποιείται η 
βαθµωτή ποσότητα ( )f X  υπό την προϋπόθεση ότι ικανοποιούνται  τόσο οι ισοτικοί 
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περιορισµοί ( ) 0jh =X , όσο και οι ανισοτικοί περιορισµοί ( ) 0jg ≤X . Η µαθηµατική 
διατύπωση αυτού του προβλήµατος είναι:  
 

( ) [ ] , ,min , ,i i lower i i upperf x x x x= ≤ ≤X X                                        (1.1) 
έτσι ώστε:  
 

( )
( )

0,    1,2,...,

0,    1, 2,...,
j

j

h j m

g j m m p

= =

≤ = + +

X

X                                             (1.2) 

όπου: 
 

[ ]1 2 ... T
nx x x=X                                                     (1.3) 

 
Η ποσότητα f  καλείται αντικειµενική συνάρτηση ή συνάρτηση κόστους, το διάνυσµα X  
περιλαµβάνει όλες τις ανεξάρτητες µεταβλητές σχεδίασης του προβλήµατος, ενώ όλες οι 
συνιστώσες ix  του X  καλούνται µεταβλητές σχεδίασης. Κάθε µία από τις µεταβλητές 
σχεδίασης διαθέτει το δικό της πεδίο ορισµού. Για τις µηχανολογικές κατασκευές, το εν λόγω 
πεδίο ορισµού πρέπει να είναι επαρκώς ευρύ. ∆εδοµένου ότι οι µηχανολογικές κατασκευές 
διαθέτουν φυσική υπόσταση, και δεν αποτελούν θεωρητικές ή αφηρηµένες έννοιες, τόσο το 
κάτω όριο ,i lowerx  όσο και το άνω όριο ,i upperx  του προαναφερθέντος πεδίου ορισµού πρέπει να 
χαρακτηρίζεται από λογικές τιµές µε φυσική σηµασία. Το πλήθος n  των µεταβλητών 
σχεδίασης δηλοί και τη διάσταση του χώρου λύσης nR  του αντιστοίχου προβλήµατος 
βελτιστοποίησης. Στην περίπτωσης µεγιστοποίησης της τιµής της αντικειµενικής 
συνάρτησης, τότε χρησιµοποιείται η ακόλουθη διατύπωση:  
 

( ) ( )( )max minf f= −X X                                                   (1.4) 
 
Το πλήθος n  των µεταβλητών σχεδίασης είναι ανεξάρτητο τόσο του πλήθους m των 
ισοτικών περιορισµών όσο και του πλήθους p  των ισοτικών περιορισµών. Στην περίπτωση 
κατά την οποία 0m p= = , τότε το πρόβληµα βελτιστοποίησης χαρακτηρίζεται ως ‘άνευ 
περιορισµών’, ενώ στην αντίθετη περίπτωση, δηλαδή όταν 0m ≠  και/ή 0p ≠ , τότε το 
πρόβληµα βελτιστοποίησης χαρακτηρίζεται ως ‘µετά περιορισµών’. 

Σχετικά µε τους περιορισµούς, ένας περιορισµός καλείται γραµµικός όταν εκφράζεται ως 
γραµµικός συνδυασµός των µεταβλητών σχεδίασης, ενώ καλείται µη-γραµµικός σε 
οποιαδήποτε άλλη περίπτωση. Επιπροσθέτως, η αντικειµενική συνάρτηση χαρακτηρίζεται ως 
γραµµική, όταν εκφράζεται ως γραµµικός συνδυασµός των µεταβλητών σχεδίασης, ενώ µη-
γραµµική σε οποιαδήποτε άλλη περίπτωση. Στην ειδική περίπτωση κατά την οποία και η 
αντικειµενική συνάρτηση είναι γραµµική και όλοι οι περιορισµοί (γραµµικοί και µη-
γραµµικοί) είναι γραµµικοί, το πρόβληµα βελτιστοποίησης καλείται γραµµικό, ενώ σε 
οποιαδήποτε άλλη περίπτωση καλείται µη-γραµµικό. 

Με κριτήριο την ύπαρξη ελαχίστου, εν γένει, το πεδίο τιµών µίας συνάρτησης f  στο 
χώρο λύσης nR  ενδεχοµένως να έχει κανένα, ένα ή και πολλά τοπικά ελάχιστα. Στην πρώτη 
περίπτωση, η συνάρτηση είναι σταθερή, άρα ανεξάρτητη από το διάνυσµα σχεδίασης: 
 

( ) ,   nf ct R= ∀ ∈X X                                                     (1.5) 
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Στη δεύτερη περίπτωση, υπάρχει ένα διάνυσµα σχεδίασης optiX  για το οποίο ισχύει:  
 

( ) ( ) ,   ,  n
opti optif f R< ∀ ∈ ≠X X X X X                                        (1.6) 

 
Στην τρίτη περίπτωση, υπάρχουν πολλά διανύσµατα σχεδίασης _ , ,   1,2,..,local opti k k l=X  για τα 
οποία ισχύει:  
 

( ) ( )_ , _ ,local opti k local opti kf f ε< ±X X                                            (1.7) 
 
όπου ε  είναι µια µικρή θετική ποσότητα. Ανάµεσα στα διανύσµατα σχεδίασης _ ,local opti kX , 

είναι δυνατόν να υπάρχει ένα διάνυσµα σχεδίασης _ ,local opti gX  τέτοιο ώστε: 
 

( ) ( ){ }_ , _ ,min , 1,2,.., 1, 1,..,local opti g local opti kf f k g g l< = − +X X                      (1.8) 

 
Σε αυτήν την περίπτωση, το διάνυσµα _ ,local opti gX  αντιστοιχεί στο καθολικό ελάχιστο 
(ελάχιστο µεταξύ ελαχίστων τιµών της συνάρτησης). ∆ιευκρινίζεται ότι σε µία συνάρτηση f  
είναι δυνατόν να υπάρχουν περισσότερα από ένα διανύσµατα σχεδίασης, τα οποία να 
αντιστοιχούν στην ελάχιστη τιµή (πολλαπλές λύσεις). 

Το πρόβληµα βελτιστοποίησης, όπως αυτό διατυπώθηκε στις Εξ. (1.1-1.3), είναι γενικής 
ισχύος και εφαρµόσιµο σε κάθε περίπτωση αναζήτησης του ελαχίστου βάρους µίας 
κατασκευής. Όπως αναφέρθηκε στην Εισαγωγή, στην υπάρχουσα βιβλιογραφία αναφέρονται 
πολλές µεθοδολογίες βελτιστοποίησης, οι οποίες χωρίζονται σε τρεις οµάδες: σε 
µεθοδολογίες βελτιστοποίησης της διατοµής (πάχους), σε µεθοδολογίες βελτιστοποίησης της 
τοπολογίας και σε µεθοδολογίες βελτιστοποίησης του σχήµατος µίας κατασκευής. Η πρώτη 
οµάδα αφορά σε µεθοδολογίες αναζήτησης εκείνης της διατοµής των δοµικών στοιχείων έτσι 
ώστε το ολικό βάρος της κατασκευής να ελαχιστοποιείται και ταυτόχρονα να ικανοποιούνται 
όλοι οι περιορισµοί. Η δεύτερη οµάδα αφορά σε µεθοδολογίες δηµιουργίας οπών εντός του 
πεδίου σχεδίασης µε µετακίνηση εσωτερικών κόµβων, έτσι ώστε να αποµακρυνθεί πλεονάζον 
υλικό και  να ελαχιστοποιηθεί το βάρος της κατασκευής, χωρίς να παραβιασθεί κάποιος από 
τους επιβαλλοµένους περιορισµούς. Η τρίτη οµάδα αφορά σε µεθοδολογίες σύµφωνα µε τις 
οποίες συνοριακοί κόµβοι του πεδίου σχεδίασης µετακινούνται, προκειµένου να βρεθεί 
εκείνη η µορφή του πεδίου σχεδίασης η οποία αντιστοιχεί στο ελάχιστο βάρος και δεν 
προκαλεί παραβίαση κάποιου περιορισµού. Εν γένει, τα προαναφερθέντα προβλήµατα 
βελτιστοποίησης, δηλαδή το πρόβληµα βελτιστοποίησης της διατοµής, της τοπολογίας και 
του σχήµατος, είναι συζευγµένα. Γι’ αυτόν το λόγο, το ενδιαφέρον της επιστηµονικής 
κοινότητας εστιάζεται σε µεθοδολογίες, οι οποίες αντιµετωπίζουν ταυτόχρονα και τα τρία 
αυτά προβλήµατα. Με άλλα λόγια, το ενδιαφέρον είναι εστιασµένο σε µεθοδολογίες, οι 
οποίες ασχολούνται µε την κατανοµή της ύλης έτσι ώστε να επιλύονται ταυτόχρονα και τα 
τρία προαναφερθέντα προβλήµατα. 

Χωρίς βλάβη της γενικότητας, η βελτιστοποίηση µίας κατασκευής, ή, ακριβέστερα, η 
βελτιστοποίηση της σχεδίασης µίας κατασκευής, αποτελεί µία συστηµατική διαδικασία 
αναζήτησης εκείνης της σχεδίασης, µεταξύ πολλών εφικτών σχεδιάσεων, η οποία ικανοποιεί, 
µε τον καλύτερο δυνατό τρόπο, έναν ή και περισσότερους στόχους, ενώ ταυτόχρονα πληροί 
όλους τους, καλώς ορισµένους, περιορισµούς σχετικά τόσο µε τις µεταβλητές σχεδίασης όσο 
και µε την απόκριση της κατασκευής. Στις περισσότερες περιπτώσεις, η βελτιστοποίηση µίας 
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κατασκευής επιτυγχάνεται µέσω µίας επαναληπτικής διαδικασίας, η πορεία της οποίας, όπως 
άλλωστε και η κατάληξή της, επηρεάζεται από πολλούς παράγοντες, όπως είναι το µέγεθος 
του χώρου σχεδίασης, η µορφή της αντικειµενικής συνάρτησης, οι επιβαλλόµενοι 
περιορισµοί καθώς και η ακρίβεια µε την οποία πρέπει να ικανοποιηθεί το κριτήριο 
τερµατισµού της αναζήτησης. Αν και η επιστηµονική κοινότητα έχει επιδείξει συστηµατική 
και έντονη δραστηριότητα στο πεδίο της βελτιστοποίησης, ειδικά κατά τις τελευταίες 
δεκαετίες, µέχρι στιγµής δεν έχει διατυπωθεί κάποια διαδικασία, η οποία να αποδεικνύεται ότι 
επιλύει επιτυχώς το γενικευµένο πρόβληµα της βελτιστοποίησης. Αυτό σηµαίνει ότι το 
καθολικό ελάχιστο για τη γενικευµένη διατύπωση του προβλήµατος της βελτιστοποίησης 
παραµένει ως το Άγιο ∆ισκοπότηρο για την επιστηµονική κοινότητα. 
 
1.3. Σύντοµη ιστορική αναδροµή 

Η βελτιστοποίηση, όπως αναφέρθηκε στην Ενότητα 1.1, χρονολογείται από κτήσεως 
κόσµου. Ωστόσο, τα πρώτα προβλήµατα βελτιστοποίησης, τα οποία διατυπώθηκαν στην 
αυστηρή γλώσσα των µαθηµατικών χρονολογούνται από µερικούς αιώνες προ Χριστού. Πιο 
συγκεκριµένα, ο Ευκλείδης (300 π.Χ.) ασχολήθηκε µε διάφορα προβλήµατα 
βελτιστοποίησης, όπως η αναζήτηση της συντοµότερης διαδροµής µεταξύ ενός σηµείου και 
µίας δοθείσης γραµµής και η αναζήτηση του παραλληλογράµµου µε το µεγαλύτερο εµβαδόν, 
όταν δίδεται η περίµετρος αυτού. Επίσης, ο Ήρων ο Αλεξανδρεύς (100 π.Χ.), ασχολήθηκε µε 
το πρόβληµα της συντοµότερης διαδροµής την οποία διανύει µία ακτίνα φωτός µεταξύ δύο 
σηµείων στο χώρο (Russo, 2004).  

Αρκετούς αιώνες αργότερα, ο Fermat (1657) διατύπωσε την γενική αρχή ότι το φως 
απαιτεί τον ελάχιστο χρόνο όταν ταξιδεύει µεταξύ δύο σηµείων (Veselago, 2002), ενώ ο 
Cauchy (1847) παρουσίασε για πρώτη φορά µια, µαθηµατικής φύσεως, διαδικασία 
βελτιστοποίησης (Μέθοδος Μεγίστης Κλίσεως), στην οποία χρησιµοποιήθηκαν οι πρώτες 
παράγωγοι της αντικειµενικής συνάρτησης (Cauchy, 1847). Η ανάπτυξη της αριθµητικής 
ανάλυσης οδήγησε στη διατύπωση της µαθηµατικής θεωρίας της βελτιστοποίησης καθώς και 
στη διαµόρφωση µαθηµατικών µεθόδων βελτιστοποίησης. Η απαρχή έγινε µε τις πρωτοπόρες 
εργασίες του Courant επί των συναρτήσεων ποινής (Courant, 1943), του Dantzig επί του 
γραµµικού προγραµµατισµού (Dantzig, 1951), των Karush και Kuhn & Tucker επί των 
αναγκαίων και ικανών συνθηκών σχετικά µε την ύπαρξη ακροτάτου (Karush, 1939; Kuhn 
and Tucker, 1951).  

Κατά τη δεκαετία του 60, δηµοσιεύθηκε µεγάλο πλήθος µαθηµατικών µεθόδων επίλυσης 
µη-γραµµικών προβληµάτων βελτιστοποίησης. Ειδικότερα, ο Rosenbrock παρουσίασε τη 
µέθοδο των ορθογωνίων διευθύνσεων (Method of Orthogonal Directions, Rosenbrock, 1960), 
ο Rosen πρότεινε τη µέθοδο προβολής κλίσης (Gradient Projection Method, Rosen, 1960), ο 
Zoutendijk εισήγαγε τη µέθοδο των δυνατών κατευθύνσεων (Method of Feasible Directions, 
Zoutendijk, 1960), οι Hooke και Jeeves ανέπτυξαν την οµώνυµη µέθοδο (Hooke and Jeeves, 
1961), οι Davidon, Fletcher και Powell παρουσίασαν τη µέθοδο της µεταβλητής µετρικής 
(Variable Metric Method, Fletcher and Powell, 1963), ο Powell πρότεινε τη µέθοδο των 
συζυγών διευθύνσεων (Conjugate Direction Method, Powell, 1964), οι Fletcher και Reeves 
δηµοσίευσαν τη µέθοδο των συζυγών κλίσεων (Method of Conjugate Gradients, Fletcher and 
Reeves, 1964), οι Nelder και Mead ανέπτυξαν µια παραλλαγή της µεθόδου Simplex (Nelder 
and Mead, 1965), ο Box πρότεινε την οµώνυµη µέθοδό του (Box, 1965), ενώ οι Fiacco και 
McCormick διαµόρφωσαν την αποκαλούµενη τεχνική της διαδοχικής βελτιστοποίησης άνευ 
περιορισµών (Sequential Unconstrained Minimization Technique (SUMT), Fiacco and 
McCormick, 1966).  

Από την προηγηθείσα σύντοµη ιστορική αναδροµή, στην οποία αναφέρθηκαν λίγες από τις 
εκατοντάδες των δηµοσιευµένων εργασιών επί της βελτιστοποίησης, προκύπτει ότι, κατά τη 
δεκαετία του 60, δηµοσιεύονταν µε πολύ υψηλό ρυθµό τόσο µεθοδολογίες βελτιστοποίησης 
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όσο και παραλλαγές αυτών. Το µεγαλύτερο ποσοστό αυτών των µεθοδολογιών ήταν 
µαθηµατικής φύσεως και αιτιοκρατικού χαρακτήρα, δηλαδή αφορούσαν σε διαδικασίες οι 
οποίες όσες φορές και εάν εκκινούσαν από ένα, αλλά το ίδιο, αρχικό διάνυσµα σχεδίασης 

iniX  πάντοτε κατέληγαν στο ίδιο τελικό διάνυσµα σχεδίασης finX . ∆εδοµένου ότι οι 
µεθοδολογίες αυτού του τύπου αφορούν στο γενικευµένο πρόβληµα βελτιστοποίησης, είναι 
δυνατόν να χρησιµοποιηθούν για την επίλυση οποιουδήποτε προβλήµατος βελτιστοποίησης, 
ανεξαρτήτως των ιδιαιτέρων χαρακτηριστικών της εκάστοτε εξεταζοµένης περίπτωσης, αρκεί 
να χρησιµοποιείται η διατύπωση των Εξ.(1.1, 1.2). Εξ αιτίας της γενικότερης ισχύος των εν 
λόγω µεθοδολογιών, αρχικά είχε θεωρηθεί ότι αυτές θα ήταν δυνατόν να χρησιµοποιηθούν 
και για την επίλυση προβληµάτων βελτιστοποίησης κατασκευών. Παράλληλα, δε, 
σηµειώνονταν σηµαντικά βήµατα στον τοµέα των υπολογιστικών συστηµάτων, τα οποία 
εµφανίζονταν ολοένα συχνότερα και ισχυρότερα. Λογικό επόµενο ήταν να αρχίσει να 
διαµορφώνεται η ισχυρή πεποίθηση ότι ήταν καθαρά θέµα χρόνου η χρήση των 
αιτιοκρατικών µεθόδων βελτιστοποίησης για την επίλυση προβληµάτων βελτιστοποίησης 
στις κατασκευές. Ωστόσο, ο αρχικός ενθουσιασµός δεν διήρκησε πολύ. Στην πράξη 
αποδείχθηκε ότι οι εν λόγω µεθοδολογίες υπέφεραν από δύο σηµαντικά µειονεκτήµατα: κατά 
πρώτον ήταν ευπαθείς στον εγκλωβισµό σε τοπικά ακρότατα και κατά δεύτερον το 
υπολογιστικό κόστος αυξανόταν πολύ, έως και απαγορευτικά πολύ, καθώς αύξανε το πλήθος 
των µεταβλητών σχεδίασης. Αυτά τα δύο θέµατα αποτέλεσαν το µήλον της έριδος µεταξύ 
των µελών της επιστηµονικής κοινότητας, η οποία, αρκετά σύντοµα, διαιρέθηκε σε δύο 
στρατόπεδα: των υπερµάχων των αποκαλουµένων Μαθηµατικών Μεθόδων Βελτιστοποίησης 
(ΜΜΒ) και των υποστηρικτών των µεθόδων εκείνων, οι οποίες διακρίνονταν για ένα πιο 
‘µηχανολογικό προσανατολισµό’. 

Όσοι υποστήριζαν τις (ΜΜΒ) ισχυρίζονταν ότι ο ακρογωνιαίος λίθος για τη διατύπωση 
οποιασδήποτε µεθόδου βελτιστοποίησης ήταν η διαµόρφωση ενός στιβαρού µαθηµατικού 
υποβάθρου. Συνεπώς, σύµφωνα µε την άποψή τους, ο ορθός τρόπος διεξαγωγής έρευνας επί 
θεµάτων βελτιστοποίησης ήταν η επένδυση χρόνου και προσπάθειας είτε στην ενδελεχή 
µελέτη και επέκταση ήδη διατυπωµένων θεωρήσεων είτε στην ανάπτυξη νέων θεωρήσεων, 
χωρίς, ωστόσο, κανέναν συµβιβασµό σχετικά µε τη διαµόρφωση του προαναφερθέντος 
υποβάθρου. Σε αυτό το πλαίσιο, ένα σηµαντικό βήµα προόδου σηµειώθηκε µε τη διατύπωση 
των διαδοχικών τεχνικών προγραµµατισµού, όπως είναι ο ∆ιαδοχικός Γραµµικός 
Προγραµµατισµός (Sequential Linear Programming - SLP) και ο ∆ιαδοχικός Τετραγωνικός 
Προγραµµατισµός (Sequential Quadratic Programming - SQP) (Venkatamaran, 2002). 
Ωστόσο, το νέο και επαναστατικό στοιχείο στη διαδικασία βελτιστοποίησης ήταν η εισαγωγή 
της τυχαιότητας, η οποία αύξανε την πιθανότητα µη-εγκλωβισµού σε τοπικά ακρότατα. 
Ανάµεσα στους πλέον σηµαντικούς αντιπροσώπους αυτής της τάσης, διακρίνονται οι 
Στρατηγικές Εξέλιξης (Rechenberg, 1989), οι Γενετικοί Αλγόριθµοι (Goldberg, 1989) και η 
Προσοµοιούµενη Ανόπτηση (Kirkpatrick, 1984). 

Στον αντίποδα, όσοι υποστήριζαν τη χρήση µιας πιο µηχανολογικής προσέγγισης, ήταν 
υπέρµαχοι της ανάπτυξης µεθοδολογιών, οι οποίες ενδεχοµένως να στερούνταν το αυστηρό 
µαθηµατικό υπόβαθρο, ωστόσο επέτρεπαν τη χρήση της κρίσης και της διαίσθησης του 
Μηχανικού. Σε αυτό το πλαίσιο, ανήκουν µεθοδολογίες, οι οποίες αποδεικνύεται, µε αυστηρά 
µαθηµατικό τρόπο, ότι ισχύουν µόνο υπό συγκεκριµένες περιπτώσεις, ενώ η γενίκευση τους 
είναι αποδεκτή µόνον ως µία επαρκής προσέγγιση. Σε αυτήν την κατηγορία ανήκουν τα 
φηµισµένα Βέλτιστα Κριτήρια (Optimality Criteria - OC), δηλαδή προτάσεις οι οποίες 
περιγράφουν, άµεσα ή έµµεσα, κάποια ενεργειακής φύσεως κατάσταση, η οποία ισχύει για τη 
βέλτιστη σχεδίαση. Τα Βέλτιστα Κριτήρια συνδυάστηκαν µε στοιχεία αριθµητικής 
αναλύσεως, όπως είναι η κλίση µίας διανυσµατικής συνάρτησης και το διωνυµικό 
ανάπτυγµα, οδηγώντας στη διαµόρφωση ισχυρών µεθοδολογιών βελτιστοποίησης. Ωστόσο, 
αυτές οι µεθοδολογίες ήταν κατάλληλες µόνον για την επίλυση προβληµάτων 
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βελτιστοποίησης κατασκευών διότι ήταν διατυπωµένες βάσει εγγενών χαρακτηριστικών των 
προς επίλυση προβληµάτων, όπως είναι η ενέργεια παραµόρφωσης και παράγωγα αυτής. Η 
χρυσή εποχή των Βελτίστων Κριτηρίων, όπως αυτό υπαγορεύεται από το τεράστιο πλήθος 
των δηµοσιεύσεων, ήταν η δεκαετία του 70. Ενδεικτικά, αναφέρεται ότι οι δηµοσιεύσεις επί 
Βελτίστων Κριτηρίων το έτος 1979 ήταν περίπου 200 ανά µήνα σε περισσότερα από 30 
επιστηµονικά περιοδικά, χωρίς να περιλαµβάνονται ούτε πρακτικά συνεδρίων ούτε τεύχη-
αφιερώµατα (Sargent, 1980). Η αιχµή του δόρατος των Βελτίστων Κριτηρίων ήταν το 
γεγονός ότι χρησιµοποιούσαν τον ίδιο αναδροµικό τύπο για όλες τις µεταβλητές σχεδίασης, 
συνεπώς ήταν σε θέση να διαχειρισθούν αποτελεσµατικά ένα πολύ µεγάλο πλήθος από αυτές. 

Μεταξύ των προαναφερθέντων ‘στρατοπέδων’, η πλέον σηµαντική διαφορά έγκειται στην 
αντίληψη σχετικά µε την περιγραφή του αντικειµενικού σκοπού. Από την πλευρά του 
Μηχανικού, ο αντικειµενικός σκοπός είναι η διαµόρφωση µίας σχεδίασης, η οποία είναι 
επαρκώς βελτιωµένη (βελτιστοποιηµένη) υπό την αυστηρή προϋπόθεση ότι οι επιβαλλόµενοι 
περιορισµοί είτε δεν παραβιάζονται είτε παραβιάζονται µε τέτοιον τρόπο ώστε η 
συµπεριφορά της κατασκευής να επηρεάζεται αµελητέα. Με άλλα λόγια, σύµφωνα µε την 
αντίληψη του Μηχανικού, ο αντικειµενικός σκοπός είναι η εύρεση µίας δυνατής σχεδίασης, η 
οποία συµβιβάζει µε ικανοποιητικό τρόπο την απαίτηση για υψηλού επιπέδου ασφάλεια και 
την επιθυµία για µειωµένο κόστος. Αντιθέτως, η µαθηµατική προσέγγιση αποτελεί µία άκρως 
θεωρητική προσέγγιση, χωρίς να συνυπολογίζει τη φυσική ερµηνεία των εµπλεκοµένων 
ποσοτήτων. Ως εκ τούτου, απορρίπτει λύσεις οι οποίες είναι υψηλής πρακτικής αξίας αλλά 
είτε δεν αποδεικνύεται ότι αντιστοιχούν στο καθολικά βέλτιστο αποτέλεσµα είτε προκύπτει 
ότι αντιστοιχούν σε κάποιο τοπικό ακρότατο. Όπως συµβαίνει στις πλείστες των 
περιπτώσεων, η βέλτιστη προσέγγιση αντιστοιχεί σε έναν ενδιάµεσο συµβιβασµό. Στην 
προκειµένη περίπτωση, αυτός ο συµβιβασµός πρέπει να επιτευχθεί µεταξύ διαµόρφωσης µίας 
αυστηρής µαθηµατικής προσέγγισης και αξιοποίησης της κρίσης και διαίσθησης του 
Μηχανικού. Στην πραγµατικότητα, ο συνδυασµός αυτών των δύο στοιχείων οδηγεί στο 
βέλτιστο δυνατό αποτέλεσµα, όσον αφορά, τουλάχιστον, τη βελτιστοποίηση κατασκευών.  

Από την προαναφερθείσα σύντοµη ιστορική αναδροµή, προκύπτει ότι πλήθος 
µεθοδολογιών και ακόµα µεγαλύτερο πλήθος εργασιών, έχουν δηµοσιευθεί στην περιοχή της 
βέλτιστης κατανοµής υλικού στις κατασκευές. Στη διεθνή βιβλιογραφία υπάρχουν άρθρα 
ανασκόπησης, καθένα εκ των οποίων παραπέµπει σε εκατοντάδες άλλα άρθρα, ενώ υπάρχει 
και ένας πολύ µεγάλος αριθµός βιβλίων, στα οποία είναι δυνατόν να ανατρέξει κάποιος 
προκειµένου να βρει λεπτοµερείς πληροφορίες επί ενός συγκεκριµένου θέµατος στην περιοχή 
της βελτιστοποίησης. Συνεπώς, στην παρούσα ∆ιδακτορική ∆ιατριβή, δεν συντρέχει λόγος 
αναφοράς σε στοιχεία, τα οποία είναι δυνατόν να ανακτηθούν µέσα από µία βιβλιογραφική 
ανασκόπηση. Για λόγους πληρότητας, στην επόµενη ενότητα περιγράφονται συνοπτικά οι 
πλέον σηµαντικές κατηγορίες προβληµάτων και µεθοδολογιών βελτιστοποίησης στις 
κατασκευές, ενώ για κάθε µία από τις εν λόγω κατηγορίες παρατίθεται µία λεπτοµερής 
βιβλιογραφία. 
 
1.4. Αντιπροσωπευτικές µέθοδοι βελτιστοποίησης κατασκευών 

Μία πρώτη κατηγοριοποίηση των υπαρχόντων µεθόδων βελτιστοποίησης κατασκευών 
επιτυγχάνεται µε κριτήριο τον άµεσο ή έµµεσο τρόπο αναζήτησης του βελτίστου. Ειδικότερα, 
υπάρχουν µέθοδοι στις οποίες το βάρος της κατασκευής αποτελεί την αντικειµενική 
συνάρτηση του προβλήµατος βελτιστοποίησης (άµεση αναζήτηση), ενώ υπάρχουν και 
µέθοδοι στις οποίες η µείωση του βάρους µίας κατασκευής επιδιώκεται µέσω της 
ικανοποίησης ενός ενεργειακού κριτηρίου, ισχύοντος για την κατασκευή ελαχίστου βάρους 
(έµµεση αναζήτηση). Επιπροσθέτως, οι µέθοδοι άµεσης αναζήτησης είναι δυνατόν να 
διακριθούν περαιτέρω σε εκείνες αιτιοκρατικού χαρακτήρα και σε εκείνες στοχαστικού 
χαρακτήρα. 
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Στην υποκατηγορία των άµεσων και αιτιοκρατικών µεθόδων ανήκουν η µέθοδος των 
Hooke & Jeeves, η µέθοδος Simplex, η µέθοδος Complex (Box), η µέθοδος του Powell, η 
µέθοδος της Μεγίστης Κλίσεως, η µέθοδος των Συζυγών Κλίσεων, η µέθοδος των Συζυγών 
∆ιευθύνσεων, ο ∆ιαδοχικός Γραµµικός Προγραµµατισµός (SLP) και ο ∆ιαδοχικός 
Τετραγωνικός Προγραµµατισµός (SQP).  

Στην υποκατηγορία των άµεσων και στοχαστικών µεθόδων, οι πλέον χαρακτηριστικοί 
αντιπρόσωποι είναι οι Στρατηγικές Εξέλιξης (ES) και οι παραλλαγές αυτών, οι Γενετικοί 
Αλγόριθµοι (GA) µαζί µε όλες τις παραλλαγές αυτών, η Προσοµοιούµενη Ανόπτηση (SA), η 
µέθοδος Tabu, η τεχνική Σµήνους Σωµατιδίων (Swarm Particles Technique) και η µέθοδος 
της Αρµονίας (Harmony method). Ακολουθεί µια συνοπτική περιγραφή για κάθε µία από τις 
µεθόδους αυτές 

Οι Στρατηγικές Εξέλιξης (Evolution Strategies - ES) αποτελούν µία τεχνική 
βελτιστοποίησης, η οποία στηρίζεται στην ιδέα της προσαρµοστικότητας και της εξέλιξης. 
∆ιατυπώθηκε στις αρχές της δεκαετίας του 60 και αναπτύχθηκε περαιτέρω στη δεκαετία του 
70. Θεµελιωτές αυτής της προσέγγισης ήταν οι Rechenberg και Schwefel. Οι Στρατηγικές 
Εξέλιξης ανήκουν στην ευρύτερη τάξη της τεχνητής εξέλιξης, χρησιµοποιούν αντιστοιχίες 
από τον φυσικό κόσµο και διαθέτουν ως κύριους τελεστές τη µετάλλαξη και την επιλογή, 
τους οποίους χρησιµοποιούν επαναληπτικά µέχρι να ικανοποιηθεί κάποιο κριτήριο 
τερµατισµού. Στην περίπτωση διανυσµάτων σχεδίασης µε πραγµατικούς αριθµούς, η 
µετάλλαξη συνήθως πραγµατοποιείται προσθέτοντας έναν αριθµό από κανονική κατανοµή σε 
κάθε µεταβλητή σχεδίασης. Η επιλογή στις Στρατηγικές Εξέλιξης είναι αιτιοκρατική και 
στηρίζεται στην κατάταξη των διανυσµάτων σχεδίασης βάσει της τιµής της αντικειµενικής 
συνάρτησης. Η πλέον απλή εκδοχή των Στρατηγικών Εξέλιξης περιλαµβάνει ένα πληθυσµό 
µε δύο άτοµα, έναν γονέα και το αποτέλεσµα της επιβολής σε αυτόν του τελεστή µετάλλαξης. 
Εάν το µεταλλαγµένο άτοµο είναι τουλάχιστον εξίσου κατάλληλο µε τον γονέα, τότε τον 
αντικαθιστά στην επόµενη επανάληψη (γενεά). Αυτός ο τύπος Στρατηγικής Εξέλιξης καλείται 
(1+1)-ES. Γενικεύοντας, λ µεταλλαγµένα άτοµα είναι δυνατόν να δηµιουργηθούν από ένα 
γονέα και να συγκριθούν µαζί του, διαµορφώνοντας τον αποκαλούµενο τύπο (1+λ)-ES. Σε 
αυτόν τον τύπο, το καλύτερο εκ των µεταλλαγµένων ατόµων ανάγεται σε γονέα στην 
επόµενη επανάληψη, ενώ ο εκάστοτε τρέχων γονέας εξαιρείται σε όλες τις επόµενες 
επαναλήψεις (Beyer, 2001; Beyer and Schwefel, 2002; Rechenberg, 1971; Schwefel, 1995; 
Schwefel, 2002). 

Οι Γενετικοί Αλγόριθµοι (Genetic Algorithms - GA) κατατάσσονται ως ευριστικές 
µέθοδοι καθολικής αναζήτησης. Αποτελούν µία ειδική κλάση των Στρατηγικών Εξέλιξης και 
χρησιµοποιούν στοιχεία της ∆αρβίνειας θεωρίας, όπως η κληρονοµικότητα, η µετάλλαξη, η 
επιλογή και η διασταύρωση. Σε έναν τυπικό Γενετικό Αλγόριθµο, αρχικά δηµιουργείται 
τυχαία ένας πληθυσµός από διανύσµατα σχεδίασης (χρωµοσώµατα), ο οποίος σταδιακά 
τροποποιείται, µέσω διαδικασιών εξέλιξης, κατευθυνόµενες προς διανύσµατα σχεδίασης µε 
καλύτερη τιµή αντικειµενικής συνάρτησης (καλύτερη συµπεριφορά). Για την κωδικοποίηση 
των διανυσµάτων σχεδίασης συνήθως χρησιµοποιείται είτε το δυαδικό σύστηµα είτε ο 
κώδικας Gray, χωρίς, ωστόσο, να αποκλείεται κάποια άλλη κωδικοποίηση. Η διαδικασία της 
εξέλιξης εκκινεί από τον αρχικό πληθυσµό και λαµβάνει χώρα επαναληπτικά. Σε κάθε 
επανάληψη (γενεά), εκτιµάται η επίδοση κάθε µέλους του πληθυσµού, µέσω της τιµής της 
αντικειµενικής του συνάρτησης, ξεχωρίζονται τα µέλη µε την καλύτερη επίδοση, τα οποία 
στη συνέχεια διασταυρώνονται και µεταλλάσσονται, δηµιουργώντας έναν νέο πληθυσµό. 
Αυτός, µε τη σειρά του, χρησιµοποιείται στην επόµενη επανάληψη και η όλη διαδικασία 
συνεχίζεται έως ότου ικανοποιηθεί κάποιο κριτήριο τερµατισµού. Συνήθως, ως τέτοιο 
χρησιµοποιείται είτε ένα µέγιστο πλήθος επαναλήψεων είτε µία τιµή επίδοσης (τιµή 
αντικειµενικής συνάρτησης) για όλο τον πληθυσµό. Ωστόσο, εάν ο τερµατισµός της 
επαναληπτικής διαδικασίας επέλθει λόγω εκτέλεσης του µεγίστου πλήθους επαναλήψεων, 
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τότε δεν είναι βέβαιο ότι ο πληθυσµός θα χαρακτηρίζεται από ικανοποιητικές επιδόσεις. Ένα 
ιδιαίτερο χαρακτηριστικό των Γενετικών Αλγορίθµων είναι το γεγονός ότι η κωδικοποίηση 
κάθε διανύσµατος σχεδίασης ως µονοδιάστατο πίνακα διευκολύνει τη διαδικασία της 
διασταύρωσης (Goldberg, 1989; Goldberg, 2002; Fogel, 2006; Holland, 1975; Koza, 1992; 
Michalewicz, 1999). 

Η Προσοµοιούµενη Ανόπτηση (Simulated Annealing - SA) αποτελεί µία στοχαστική 
µεθοδολογία βελτιστοποίησης καθολικού χαρακτήρα, υπό την έννοια ότι σε κάθε επανάληψη 
δεν συµµετέχει µόνο κάποιο υποσύνολο του πεδίου σχεδίασης, το οποίο προοδευτικά 
συρρικνώνεται έως ότου τελικά καταλήξει σε ένα σηµείο (βέλτιστο διάνυσµα σχεδίασης), 
αλλά είναι δυνατόν να χρησιµοποιείται ολόκληρο το πεδίο σχεδίασης. Το ιδιαίτερο 
χαρακτηριστικό αυτής της µεθοδολογίας είναι η αποδοχή όχι µόνον εκείνου του διανύσµατος 
σχεδίασης, το οποίο είναι καλύτερο από το τρέχον βέλτιστο, αλλά και η στατιστική αποδοχή 
διανύσµατος σχεδίασης µε επίδοση χειρότερη από αυτήν του τρέχοντος βελτίστου 
διανύσµατος. Για την στατιστική αποδοχή χρησιµοποιείται το κριτήριο του Metropolis. Η 
Προσοµοιούµενη Ανόπτηση είναι δυνατόν να συνδυαστεί µε έναν τυπικό Γενετικό 
Αλγόριθµο, στον οποίο, κατά τη διαδικασία της βελτιστοποίησης, το αρχικώς υψηλό ποσοστό 
µετάλλαξης προοδευτικά µειώνεται σύµφωνα µε κάποιο σχήµα απόψυξης (Kirkpatrick et al, 
1983; Cerny, 1985; Metropolis et al, 1953).  

Η µέθοδος Tabu (Tabu Search - TS) είναι παρόµοια µε την Προσοµοιούµενη Ανόπτηση 
υπό την έννοια ότι και οι δύο διατρέχουν το πεδίο σχεδίασης και δοκιµάζουν αλλαγές επί 
µεµονωµένων λύσεων. Ωστόσο, ενώ η Προσοµοιούµενη Ανόπτηση σε κάθε επανάληψη 
παράγει ένα νέο διάνυσµα σχεδίασης, η µέθοδος Tabu δηµιουργεί πολλά νέα διανύσµατα και 
αναζητεί, µεταξύ αυτών, εκείνο το διάνυσµα µε τη χαµηλότερη ενέργεια. Προς ενίσχυση της 
διερεύνησης µεγαλύτερου µέρους του πεδίου σχεδίασης και προς αποφυγή επανεξέτασης ήδη 
εξετασθέντων και απορριφθέντων διανυσµάτων σχεδίασης, δηµιουργείται µία λίστα µε τα εν 
λόγω διανύσµατα, η οποία ανανεώνεται διαρκώς σε κάθε επανάληψη. Απαγορεύεται, δε, να 
χρησιµοποιηθούν τα διανύσµατα της λίστας αυτής. Η µέθοδος Tabu χαρακτηρίζεται ως ένας 
µετα-ευριστικός αλγόριθµος, κατάλληλος για την επίλυση προβληµάτων βελτιστοποίησης 
συνδυαστικού τύπου (Glover and Laguna, 1997; Glover, 1989; Glover, 1990; Cvijovic et al, 
1995). 

Η µέθοδος της Αρµονίας (Harmony Search - HS) αποτελεί µία µετα-ευριστική διαδικασία 
βελτιστοποίησης, η οποία µιµείται τη διαδικασία µε την οποία αυτοσχεδιάζουν οι µουσικοί. 
Πιο συγκεκριµένα, δηµιουργείται ένας πίνακας (Harmony Memory - HM) διάστασης N M× , 
όπου N  είναι το πλήθος των διανυσµάτων σχεδίασης (ανεξάρτητη µεταβλητή) και M  το 
πλήθος των µεταβλητών σχεδίασης. Αρχικά, αποδίδονται τυχαίες τιµές σε όλες τις 
µεταβλητές σχεδίασης του εν λόγω πίνακα, υπολογίζεται η αντικειµενική συνάρτηση για 
κάθε διάνυσµα σχεδίασης και εντοπίζεται το διάνυσµα σχεδίασης µε τη χειρότερη επίδοση 
(έστω worstX ). Στη συνέχεια δηµιουργείται ένα νέο διάνυσµα σχεδίασης. Για την απόδοση 
µίας νέας τιµής σε κάθε µεταβλητή σχεδίασης, λαµβάνονται υπόψη, µε τρόπο πιθανοτικό, όχι 
µόνον όλες οι τιµές του προαναφερθέντος πίνακα για κάθε µεταβλητή σχεδίασης αλλά και το 
πεδίο ορισµού της κάθε µεταβλητής σχεδίασης. Κατόπιν, το νεοδηµιουργηθέν διάνυσµα 
σχεδίασης υποβάλλεται σε µία διαδικασία διαµόρφωσης, στην οποία οι µεταβλητές 
σχεδίασης προσαυξάνονται κατά µια τυχαία ποσότητα. Τέλος, αξιολογείται η επίδοση του 
νέου διανύσµατος σχεδίασης και εάν αυτή είναι καλύτερη από εκείνη του worstX , τότε το 
αντικαθιστά στον πίνακα (ΗΜ), ενώ το worstX  εξαιρείται από όλες τις επόµενες αναζητήσεις. 
Η µέθοδος (HS) είναι κατάλληλη κυρίως για τον εντοπισµό περιοχών του πεδίου σχεδίασης 
υψηλών επιδόσεων (Saka and Kameshki, 1998; Erdal and Saka, 2006; Geem et al, 2001; 
Geem et al, 2002; Saka, 2003). 
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Η µέθοδος βελτιστοποίησης µε Σµήνη Σωµατιδίων (Particle Swarm Optimization - PSO) 
αποτελεί µία µέθοδο άµεσης αναζήτησης, διαχειρίζεται έναν πληθυσµό από διανύσµατα 
σχεδίασης και είναι στοχαστικού χαρακτήρα. Η κεντρική ιδέα της µεθόδου στηρίζεται σε 
αρχές της κοινωνιολογίας και της ψυχολογίας, σχετικά µε τον τρόπο συµπεριφοράς των 
µελών µίας οµάδας υπό την επίδραση διαφόρων και διαφορετικών ερεθισµάτων. Είναι 
γεγονός ότι ένας τρόπος, τον οποίο χρησιµοποιεί ο άνθρωπος για την επίλυση των 
προβληµάτων του, είναι η επικοινωνία µε άλλους ανθρώπους και επί του συγκεκριµένου 
προβλήµατος. Μέσω αυτής της επικοινωνίας, ο άνθρωπος αλληλεπιδρά και µεταβάλλεται. 
Μέσα από αυτήν την αλληλεπίδραση, επιτυγχάνεται µία προσέγγιση των ατόµων µεταξύ 
τους, η οποία οδηγεί στην τελική επικράτηση απόψεων και θέσεων, τις οποίες υιοθετούν τα 
αλληλεπιδρώντα άτοµα, σχετικά µε τη βέλτιστη αντιµετώπιση ενός προβλήµατος. Η µέθοδος 
(PSO) προσοµοιάζει αυτήν την κοινωνική συµπεριφορά. Κατά πρώτον, πρέπει να διατυπωθεί 
µε πληρότητα το πρόβληµα βελτιστοποίησης και να ορισθεί µε σαφήνεια η αντικειµενική 
συνάρτηση για την εκτίµηση της επίδοσης µία προτεινόµενης λύσης. Επίσης, πρέπει να 
δηµιουργηθεί ένα πρωτόκολλο επικοινωνίας, έτσι ώστε να είναι δυνατή η επικοινωνία κάθε 
µέλους της οµάδος µε τους γείτονές του. Στη συνέχεια δηµιουργείται, µε εντελώς τυχαίο 
τρόπο, ένας πληθυσµός από διανύσµατα σχεδίασης, επονοµαζόµενο και ως σµήνος 
σωµατιδίων ή σµήνος µεµονωµένων ατόµων, ο οποίος βελτιώνεται συνεχώς µέσα από µια 
επαναληπτική διαδικασία. Σε αυτήν τη διαδικασία, εκτιµάται η επίδοση κάθε ατόµου και 
επιτρέπεται η ανταλλαγή πληροφορίας µεταξύ ατόµων και γειτόνων, σε επίπεδο τιµών 
µεταβλητών σχεδίασης και βάσει του προαναφερθέντος πρωτοκόλλου επικοινωνίας, έτσι 
ώστε το σµήνος προοδευτικά να κατευθύνεται προς καλύτερες επιδόσεις (Kennedy and 
Eberhart, 1995; Eberhart and Kennedy, 1995; Eberhart and Shi, 1998; Shi and Eberhart, 
1998a; Shi and Eberhart, 1998b; Eberhart and Shi, 2001). 

Η µέθοδος βελτιστοποίησης της Αποικίας Μυρµηγκιών (Ant Colony Optimization) είναι 
µία µετα-ευριστική τεχνική βελτιστοποίησης, στοχαστικής φύσεως, κατάλληλη για την 
επίλυση προβληµάτων, τα οποία ανάγονται στην εύρεση του καλύτερου δρόµου µέσω 
γράφων. Η κεντρική ιδέα της µεθόδου προέρχεται από τον τρόπο συµπεριφοράς των 
µυρµηγκιών, όταν αυτά αναζητούν την τροφή τους. Ειδικότερα, τα µυρµήγκια περιφέρονται 
µε τυχαίο τρόπο προς αναζήτηση τροφής και όταν εντοπίσουν κάτι τότε αποκόπτουν ένα 
τµήµα της τροφής και το µεταφέρουν πίσω στην αποικία τους. Κατά την επιστροφή τους, 
αφήνουν πίσω τους ίχνη από τη χηµική ουσία φεροµόνη, προκειµένου να µεταβιβάσουν στα 
υπόλοιπα µέλη της αποικίας το γεγονός ότι έχει εντοπισθεί τροφή. Όταν άλλα περιπλανόµενα 
µυρµήγκια εντοπίσουν αυτά τα ίχνη, τότε κατευθύνονται προς την τροφή, αποκόπτουν και 
αυτά ένα τµήµα της και το µεταφέρουν πίσω στην αποικία τους. Κατά την επιστροφή τους, 
δε, αποθέτουν και αυτά µε τη σειρά τους ίχνη φεροµόνης, µε αποτέλεσµα σχετικά σύντοµα να 
σχηµατισθεί ένα µονοπάτι µε ισχυρά ίχνη φεροµόνης. Ωστόσο, η φεροµόνη έχει την τάση να 
εξατµίζεται, οπότε ίχνη σε µονοπάτια µεγαλύτερου µήκους εξαφανίζονται γρηγορότερα από 
τα αντίστοιχα ίχνη ενός µονοπατιού µε µικρότερο µήκος. Με αυτόν τον τρόπο, προοδευτικά, 
ενισχύεται µε ίχνη φεροµόνης, και τελικά αποµένει, η συντοµότερη διαδροµή προς την τροφή 
(Dorigo, 1992; Deneubourg et al, 1990; Di Caro and Dorigo, 1998; Dorigo and Blum, 2005; 
Dorigo and Gambardella, 1997; Dorigo et al, 1996; Dorigo and Stützle, 2004; Gutjahr, 2000; 
Stützle and Hoos, 2000; Serra and Venini, 2006). 

Στην κατηγορία των έµµεσων µεθοδολογιών βελτιστοποίησης ανήκουν τα λεγόµενα 
Βέλτιστα Κριτήρια καθώς και οι σηµαντικότατες εργασίες των Michell, Venkayya, Gelatly, 
Khot, Berke, Allwood και Patnaik. Στο αυτό µήκος κύµατος, οι µέθοδοι COC και DCOC, τις 
οποίες ανέπτυξε ο Rozvany και οι συνεργάτες του, παραµένουν µεταξύ των κορυφαίων 
µεθόδων της εν λόγω κατηγορίας. ∆εδοµένου ότι οι πλέον πρόσφατες από αυτές τις εργασίες 
χρονολογούνται πλέον των είκοσι ετών, δεν είναι δυνατόν να θεωρηθούν ως ανήκουσες στην 
τεχνολογική στάθµη της εποχής και για το λόγο αυτό παρατίθεται ενδεικτική βιβλιογραφία 
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(Michell, 1904; Venkayya, 1971; Allwood and Chung, 1984; Patnaik et al, 1993; Zhou and 
Rozvany, 1992/93; Rozvany and Zhou, 1989/90; Rozvany and Zhou, 1990). 

Εκτός των προαναφεροµένων µεθοδολογιών, ειδική µνεία αρµόζει σε σύγχρονες 
µεθόδους, οι οποίες θεωρούνται ως το σύγχρονο µέτωπο της επιστήµης. Από αυτήν την 
οπτική γωνία, αναφέρονται η Μέθοδος της Οµογενοποίησης (Homogenization Method), η 
µέθοδος SIMP (Solid Isotropic Material with Penalization), η Μέθοδος των Κινουµένων 
Ασυµπτώτων (Method of Moving Asymptotes), η Μέθοδος των Φυσαλίδων (Bubble Method) 
και η Μέθοδος ESO (Evolutionary Structural Optimization). 

Σε ένα πρόβληµα βελτιστοποίησης σχήµατος µίας κατασκευής, εν γένει είναι δυνατόν να 
µεταβάλλονται τα σύνορα, τόσο τα εξωτερικά όσο και τα εσωτερικά, του χώρου σχεδίασης 
µέχρι να εντοπισθεί το βέλτιστο σχήµα. Προς τούτο, συνήθως απαιτείται η πλεγµατοποίηση 
του εκάστοτε νέου σχήµατος. Αντιθέτως, µε την µέθοδο της οµογενοποίησης κάτι τέτοιο δεν 
είναι αναγκαίο. Πιο συγκεκριµένα, σύµφωνα µε την εν λόγω µέθοδο, ο χώρος σχεδίασης 
αρχικά πλεγµατοποιείται και σε αυτόν αποδίδονται ιδιότητες οµογενούς και ισοτροπικού 
υλικού. Στη συνέχεια, και χρησιµοποιώντας πάντοτε το ίδιο πλέγµα, επιλύεται το πρόβληµα 
της αναζήτησης της βέλτιστης χωρικής περιοδικής κατανοµής ενός πλήθους οπών 
µικροσκοπικών διαστάσεων, εξ αιτίας του οποίου το αρχικώς ισοτροπικό υλικό αποκτά 
ανισοτροπικές ιδιότητες. Προφανώς, στο ανωτέρω πρόβληµα βελτιστοποίησης επιβάλλεται η 
βασική προϋπόθεση ότι η τελική κατανοµή δύναται να παραλάβει µε ασφάλεια τα 
ονοµαστικά φορτία και ικανοποιεί οποιονδήποτε άλλο σχεδιαστικό περιορισµό (Bendsøe and 
Kikuchi, 1988). 

Μία ακόµα προσέγγιση σχετικά µε το πρόβληµα βελτιστοποίησης σχήµατος είναι η 
θεώρησή του ως πρόβληµα βέλτιστης κατανοµής υλικού υπό δεδοµένα φορτία και συνθήκες 
στήριξης (µέθοδος SIMP). Με αυτόν τον τρόπο, κάθε σηµείο στο χώρο θεωρείται είτε ως 
πλήρες υλικού είτε ως κενό υλικού και το πρόβληµα βελτιστοποίησης ανάγεται σε πρόβληµα 
διακριτών µεταβλητών. Με βάση αυτή τη θεώρηση, είναι δυνατή η άρση της εν λόγω 
διακριτότητας µέσω της εισαγωγής µίας συνάρτησης πυκνότητας, η οποία είναι συνεχής στο 
χώρο σχεδίασης. Το σύνολο των θέσεων του χώρου σχεδίασης µε υψηλή πυκνότητα 
οριοθετούν και το σχήµα της βέλτιστης κατανοµής. Για ενδιάµεσες τιµές πυκνότητας είναι 
δυνατή η χρήση µίας συνάρτησης ποινής. Εναλλακτικά, είναι δυνατή η εισαγωγή, 
µικροσκοπικών διαστάσεων και περιοδικών, κενώ, έτσι ώστε οι φαινόµενες ιδιότητες του 
υλικού να υπολογίζονται µέσω διαδικασίας οµογενοποίησης (Bendsøe, 1989). 

Η Μέθοδος των Κινουµένων Ασυµπτώτων (Method of Moving Asymptotes - MMA) 
αναπτύχθηκε από τον Svanberg και αφορά σε µία επαναληπτική διαδικασία, σε κάθε βήµα 
της οποίας δηµιουργείται και επιλύεται ένα αυστηρώς κυρτό πρόβληµα προσέγγισης. Η 
δηµιουργία αυτών των προσεγγίσεων ελέγχεται από τις αποκαλούµενες ‘κινούµενες 
ασύµπτωτες’, οι οποίες δύνανται να σταθεροποιήσουν και να επιταχύνουν την όλη 
διαδικασία. Αυτή η µέθοδος είναι ικανή να διαχειρίζεται όλα τα είδη των περιορισµών, µε 
µοναδική προϋπόθεση τον υπολογισµό, είτε αριθµητικό είτε αναλυτικό, των παραγώγων των 
συναρτήσεων περιορισµού or analytically (Svanberg, 1987).  

Η µέθοδος των φυσαλίδων (Bubble Method) αναπτύχθηκε από τον Eschenauer και 
στηρίζεται στην εισαγωγή οπών (φυσαλίδες) σε µία σχεδίαση. Η επαναληπτική εισαγωγή 
φυσαλίδων επιτυγχάνεται µέσω διαφόρων µεθόδων, µία εκ των οποίων είναι και η επίλυση 
ενός προβλήµατος µεταβολών. Η εισαγωγή µίας φυσαλίδας έχει ως αποτέλεσµα να αλλάζει η 
τοπολογία της εξεταζόµενης κατασκευής. Για τις προκύπτουσες διαφορετικές τοπολογίες, 
εφαρµόζεται µία, ιεραρχικού τύπου, διαδικασία βελτιστοποίησης σχήµατος, προκειµένου να 
εντοπισθεί το βέλτιστο σχήµα των φυσαλίδων (Eschenauer, 1994).  

Η µέθοδος ESO, προταθείσα από τους Xie και Steven, αφορά σε µία εξαιρετικά απλή 
τεχνική βελτιστοποίησης, εν αντιθέσει µε τις περισσότερες υπάρχουσες. Η κεντρική ιδέα 
είναι η εύρεση µίας βέλτιστης σχεδίασης οµοιόµορφου πάχους (Optimum Uniform Design - 
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OUD), για την οποία να ικανοποιείται ο εκάστοτε επιβαλλόµενος περιορισµός. Στη συνέχεια, 
από αυτήν τη σχεδίαση, αποµακρύνεται πλεονάζον υλικό, το οποίο χαρακτηρίζεται από τη 
χαµηλότερη ενεργειακή συµµετοχή. Οι δύο βασικές παραλλαγές της µεθόδου είναι η 
Προσθετική ESO (Additive ESO - ΑESO) και η Αµφίδροµη ESO (Bidirectional ESO - 
BESO). Σύµφωνα µε την πρώτη παραλλαγή, η διαδικασία εκκινεί από µία 
υποδιαστασιολογηµένη σχεδίαση, στην οποία διαρκώς προστίθεται υλικό στις περιοχές µε τη 
µεγαλύτερη ενεργειακή συµµετοχή, ενώ, σύµφωνα µε τη δεύτερη παραλλαγή, επιτρέπεται 
τόσο η προσθήκη όσο και η αφαίρεση υλικού, ανάλογα, πάντοτε µε ένα κριτήριο ενεργειακής 
συµµετοχής. Ωστόσο, σε όλες τις διατυπώσεις της, αυτή η προσέγγιση λαµβάνει χώρα µε 
τρόπο διακριτό και όχι συνεχή (είτε η προσθήκη είτε η αφαίρεση υλικού γίνεται βάσει 
προκαθορισµένου βήµατος). 

Μία ακόµα πολύ ενδιαφέρουσα κατηγορία µεθόδων βελτιστοποίησης αφορά σε 
συνδυαστικού τύπου τεχνικές, οι οποίες είναι κατάλληλες όταν αναζητείται η ελαχιστοποίηση 
του βάρους µίας κατασκευής χρησιµοποιώντας µόνον τυποποιηµένες διατοµές. Σε αυτές τις 
περιπτώσεις, οι µεταβλητές σχεδίασης είναι τα εµπορικώς διαθέσιµα τυποποιηµένα δοµικά 
στοιχεία, ενώ η αναζήτηση λαµβάνει χώρα υποχρεωτικά µέσα από ένα πλήθος διακριτών 
µεταβλητών. Σε αυτήν την κατηγορία ανήκει η µέθοδος branch-and-bound καθώς και η 
µέθοδος Gomory (Neumaier 1990, Hansen 1992, Ratschek and Rokne 1995, Kearfott 1996, 
Horst and Tuy 1996, Pintér 1996). 

Τέλος, εκτός της αντιµετώπισης ενός στόχου, είναι δυνατόν να αναζητείται ο βέλτιστος 
συµβιβασµός µεταξύ δύο ή περισσοτέρων στόχων, οι οποίοι, επιπροσθέτως, ενδεχοµένως να 
είναι και αντικρουόµενοι. Ένα τυπικό παράδειγµα αποτελεί η επιθυµία σχεδίασης ενός 
αυτοκινήτου υψηλών επιδόσεων αλλά χαµηλής κατανάλωσης. Η τεχνική Pareto και ο 
σχηµατισµός του λεγοµένου µετώπου Pareto παραµένει µία από τους πλέον δηµοφιλείς 
τρόπους επίλυσης προβληµάτων πολλαπλών στόχων. Στην ίδια κατηγορία ανήκουν και 
προβλήµατα βελτιστοποίησης τα οποία συνδυάζουν δύο ή και περισσότερα γνωστικά 
αντικείµενα (MultiDisciplinary Optimization problems – MDO). Τελευταία, αλλά όχι έσχατα, 
αναφέρονται η τεχνική Design of Experiments (DOE), η χρήση νευρωνικών δικτύων 
(Artificial Neural Networks - ANN), καθώς και οι αποκαλούµενες µέθοδοι άνευ πλέγµατος 
(meshless methods), ως µέσα χρήσιµα στις διαδικασίες βελτιστοποίησης.  

Στο τέλος της παρούσης περίληψης κεφαλαίου παρατίθεται ενδεικτική βιβλιογραφία. 
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ΑΜΕΣΗ ΑΝΑΖΗΤΗΣΗ  

ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΑΙ 

ΔΙΑΤΥΠΩΣΗ ΜΙΑΣ ΝΕΑΣ  

ΥΒΡΙΔΙΚΗΣ ΜΕΘΟΔΟΥ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 
 
 
 
 

Από την επιμέρους μελέτη διαφόρων βιβλιογραφικών μεθοδολογιών βελτιστοποίησης και στο 
πλαίσιο της παρούσης Διδακτορικής Διατριβής, προέκυψε ότι, για προβλήματα βελτιστοποίησης με 
μικρό αριθμό μεταβλητών σχεδίασης, η μέθοδος της Προσομοιούμενης Ανόπτησης (SA) εμφανίζει 
μία από τις καλύτερες επιδόσεις, ενώ για προβλήματα βελτιστοποίησης με μεγαλύτερο πλήθος 

μεταβλητών σχεδίασης είναι προτιμητέα η χρήση μίας αιτιοκρατικής διαδικασίας βελτιστοποίησης. 
Λαμβάνοντας αυτά τα ευρήματα υπόψη, προτείνεται μία νέα, υβριδικού χαρακτήρα, διαδικασία 

βελτιστοποίησης, τα βασικά χαρακτηριστικά της οποίας είναι η χρήση της αιτιοκρατικής μεθόδου 
Powell για την επιλογή της κατεύθυνσης αναζήτησης, η χρήση της στοχαστικής μεθόδου (SA) για 

την διερεύνηση κατά μήκος μίας κατεύθυνσης αναζήτησης και η εκκίνηση μίας, τοπικού χαρακτήρα, 
αναζήτησης με τη μέθοδο (SA), όταν διαγιγνώσκεται μη‐περαιτέρω βελτίωση του διανύσματος 

σχεδίασης. Για την αξιολόγηση της προτεινομένης διαδικασίας χρησιμοποιήθηκαν δώδεκα 
μαθηματικές συναρτήσεις επίδοσης και προέκυψε ότι η προτεινόμενη διαδικασία εμφανίζει άριστα 

αποτελέσματα ως προς τον εντοπισμό του καθολικού ελαχίστου, αλλά με υψηλό υπολογιστικό 
κόστος. Ως εκ τούτου, αναδείχθηκε η ανάγκη για διερεύνηση και άλλων σχημάτων 

βελτιστοποίησης, όπως οι έμμεσες μέθοδοι αναζήτησης. Στην παρούσα περίληψη, παρουσιάζεται, εν 
συντομία, η πραγματοποιηθείσα βιβλιογραφική διερεύνηση, η προτεινόμενη διαδικασία 

βελτιστοποίησης, η αξιολόγησή της καθώς και τα προκύπτοντα συμπεράσματα. 
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2.1. Εισαγωγή 
Ως βελτιστοποίηση ορίζεται η διαδικασία µεγιστοποίησης ή ελαχιστοποίησης της τιµής 

µίας αντικειµενικής συνάρτησης µε ταυτόχρονη ικανοποίηση των επιβαλλοµένων 
περιορισµών. Προς τούτο, είναι δυνατή η χρήση πληθώρας τεχνικών, των αποκαλουµένων 
‘µεθόδων βελτιστοποίησης’, οι οποίες κατατάσσονται σε δύο µεγάλες οµάδες: τις µεθόδους 
άµεσης αναζήτησης και τις µεθόδους έµµεσης αναζήτησης. Σχετικά µε τις µεθόδους της 
πρώτης οµάδας, ο αντικειµενικός σκοπός είναι η διατύπωση µίας αντικειµενικής συνάρτησης 
και η επιδίωξη ελαχιστοποίησης ή µεγιστοποίησης της τιµής της. Σχετικά µε τις µεθόδους της 
δεύτερης οµάδας, ο αντικειµενικός σκοπός είναι η διατύπωση µίας συνθήκης ακροτάτου, η 
οποία αντιστοιχεί στη βέλτιστη κατάσταση, οπότε, επιδιώκοντας την ικανοποίηση της εν 
λόγω συνθήκης, ουσιαστικά επιτυγχάνεται και η ελαχιστοποίηση ή µεγιστοποίηση του 
µεγέθους ενδιαφέροντος. Στη βιβλιογραφία υπάρχει πλήθος µεθόδων και των δύο οµάδων, 
µερικές εκ των οποίων είναι πιο δηµοφιλείς εξ αιτίας µίας πολύ καλής συµπεριφοράς, η οποία 
εµφανίζεται υπό συνθήκες και οφείλεται σε κάποιο ιδιαίτερο χαρακτηριστικού τους. Ένα 
επίµαχο ερώτηµα είναι κατά πόσον οι υπάρχουσες µεθοδολογίες βελτιστοποίησης επαρκούν 
και για την αντιµετώπιση των προβληµάτων βελτιστοποίησης στις κατασκευές, ενώ ένα άλλο 
ενδιαφέρον ερώτηµα είναι κατά πόσον ο συνδυασµός ήδη γνωστών µεθοδολογιών µπορεί να 
οδηγήσει στην ανάδειξη των επί µέρους πλεονεκτηµάτων των µεθοδολογιών αυτών, µε 
ταυτόχρονη συρρίκνωση των επί µέρους µειονεκτηµάτων τους. Ο σκοπός του παρόντος 
κεφαλαίου είναι η απάντηση και η εµβάθυνση σε αυτά τα ερωτήµατα. Προς αυτήν την 
κατεύθυνση, πραγµατοποιήθηκε η ακόλουθη διαδικασία τεσσάρων βηµάτων: 
Βήµα 1: Εντοπισµός µερικών εκ των πλέον δηµοφιλών βιβλιογραφικών µεθοδολογιών και 

αξιολόγηση αυτών µέσα από Μαθηµατικές Συναρτήσεις Επίδοσης. 
Βήµα 2: Χρήση των µεθόδων αυτών σε προβλήµατα βελτιστοποίησης κατασκευών. 
Βήµα 3: Ενδελεχής διερεύνηση των Γενετικών Αλγορίθµων (GA), οι οποίοι αποτελούν έναν 

διαφορετικό και ιδιαίτερο τρόπο προσέγγισης σε προβλήµατα βελτιστοποίησης. 
Βήµα 4: Βάσει της αποκτηθείσας γνώσης και εµπειρίας από τα ανωτέρω βήµατα, διατύπωση 

µίας νέας διαδικασίας βελτιστοποίησης και αξιολόγηση αυτής. 
Στις επόµενες ενότητες της παρούσης περίληψης κεφαλαίου, περιγράφονται εν συντοµία 

τα Βήµατα 1 έως και 3, ενώ το Βήµα 4 παρουσιάζεται πιο αναλυτικά. 
 
2.2. Θεωρητική ανάλυση 

Οι µέθοδοι άµεσης αναζήτησης εξερευνούν το χώρο σχεδίασης και αναζητούν το 
καθολικό ακρότατο µέσα από τον υπολογισµό της τιµής της αντικειµενικής συνάρτησης, η 
οποία είναι επιθυµητό να ελαχιστοποιηθεί ή να µεγιστοποιηθεί. Η αναζήτηση είναι δυνατόν 
να πραγµατοποιηθεί είτε µε αιτιοκρατικό είτε µε στοχαστικό τρόπο. Με τον πρώτο τρόπο, εάν 
η διαδικασία βελτιστοποίησης ξεκινήσει N  φορές από το ίδιο αρχικό διάνυσµα σχεδίασης 

iniX
%

, τότε και τις N  φορές θα καταλήξει στο ίδιο τελικό διάνυσµα σχεδίασης finX
%

, κάτι το 
οποίο, µε τον δεύτερο τρόπο, είναι πιθανό αλλά όχι σίγουρο. 

Οι αιτιοκρατικές µέθοδοι βελτιστοποίησης διακρίνονται σε µηδενικής, πρώτης και 
δευτέρας τάξεως, ανάλογα µε τον τρόπο αξιοποίησης της αντικειµενικής συνάρτησης 
(αντίστοιχα, χρήση της αντικειµενικής συνάρτηση, της πρώτης παραγώγου και της δευτέρας 
παραγώγου αυτής). Η βασική διαφορά µεταξύ των προσεγγίσεων χωρίς και µε πληροφορία 
από παραγώγους έγκειται στην ευστάθεια και στο υπολογιστικό κόστος. Για λόγους 
αριθµητικής φύσεως (λάθη αποκοπής και στρογγυλοποίησης), η χρήση παραγώγων είναι 
δυνατόν να προκαλέσει προβλήµατα αριθµητικής ευστάθειας, ενώ το υπολογιστικό κόστος 
για τον υπολογισµό είτε του πίνακα Jacobian είτε (και κυρίως) του πίνακα Hessian, είναι 
υψηλό. Επίσης, ακριβώς λόγω της αξιοποίησης πληροφορίας σχετικά µε το ρυθµό µεταβολής 
της τιµής της αντικειµενικής συνάρτησης, είναι δυνατόν να διαγνωσθεί ψευδώς ένα τοπικό 
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ακρότατο ως καθολικό (τάση εγκλωβισµού σε τοπικά ακρότατα). Από την άλλη πλευρά, οι 
στοχαστικές µέθοδοι, τουλάχιστον στις βασικές διατυπώσεις τους, είναι απαλλαγµένες από 
πληροφορίες σχετικά µε παραγώγους, άρα είναι πιο εύκολα υλοποιήσιµες και εµφανίζουν 
µικρότερη τάση εγκλωβισµού σε τοπικά ακρότατα, ωστόσο απαιτούν λεπτοµερέστερη 
διερεύνηση µεγαλύτερου τµήµατος του πεδίου σχεδίασης, κάτι το οποίο καταλήγει σε υψηλό 
υπολογιστικό κόστος. Προφανώς, τόσο οι αιτιοκρατικές όσο και οι στοχαστικές µέθοδοι 
διακρίνονται για ορισµένα πλεονεκτήµατα και υποφέρουν από κάποια µειονεκτήµατα. 
Συνεπώς, µία λογική σκέψη θα ήταν να συνδυασθεί µία αιτιοκρατική µε µία στοχαστική 
µέθοδο, για παράδειγµα εισάγοντας αιτιοκρατικούς τελεστές σε µία στοχαστική µέθοδο ή το 
αντίθετο, έτσι ώστε η παρουσία των πλεονεκτηµάτων της µίας µεθόδου να αντισταθµίσει τα 
µειονεκτήµατα της άλλης. Με αυτό το σκεπτικό, µελετήθηκε ένα πλήθος βιβλιογραφικών 
µεθόδων βελτιστοποίησης και επιδιώχθηκε η ανάδειξη της καλύτερης αιτιοκρατικής και της 
καλύτερης στοχαστικής µεθοδολογίας. Γι’ αυτόν το σκοπό, χρησιµοποιήθηκαν δύο οµάδες 
προβληµάτων αξιολόγησης 

Η πρώτη οµάδα προβληµάτων αξιολόγησης αφορούσε σε βιβλιογραφικές Μαθηµατικές 
Συναρτήσεις Επίδοσης (Benchmark Mathematical Functions - BMF) µε µία µεταβλητή (έστω 
συνάρτηση BMF-1), µε δύο µεταβλητές (έστω BMF-2), µε τρεις µεταβλητές (έστω BMF-3), 
µε τέσσερεις µεταβλητές (έστω BMF-4) και µε οκτώ µεταβλητές (έστω BMF-5). Συνολικά, 
χρησιµοποιήθηκαν πέντε Μαθηµατικές Συναρτήσεις Επίδοσης, για τις οποίες είναι γνωστό το 
καθολικό ελάχιστο. Για τον εντοπισµό αυτού, χρησιµοποιήθηκαν συνολικά έξι δηµοφιλείς 
µεθοδολογίες της βιβλιογραφίας: η στοχαστική µέθοδος της Προσοµοιούµενης Ανόπτησης 
(Simulated Annealing - SA), οι αιτιοκρατικές µέθοδοι Downhill Simplex (παραλλαγή της 
µεθόδου Simplex διατυπωθείσα από τους Nelder και Mead), Box (ή µέθοδος Complex), 
∆ιαδοχικός Τετραγωνικός Προγραµµατισµός (Sequantial Quadratic Programming - SQP), 
Hooke και Jeeves, καθώς και η µέθοδος EASY (Evolutionary Algorithm SYstem v.1.3.4). Η 
τελευταία µέθοδος, στοχαστικής φύσεως και αφορούσα στην ενσωµάτωση Νευρωνικών 
∆ικτύων (Artificial Neural Networks - ANN) σε µετά-µοντέλα, έχει αναπτυχθεί από την 
ερευνητική οµάδα του Εργαστηρίου Θερµικών Στροβιλοµηχανών της Σχολής Μηχανολόγων 
Μηχανικών του Εθνικού Μετσοβίου Πολυτεχνείου. Η ποσοτικοποίηση της συµπεριφοράς 
των εξεταζοµένων µεθόδων βασίσθηκε στη χρήση τεσσάρων ∆εικτών Επίδοσης και στα 
αποτελέσµατα από 2500 διαφορετικές αναλύσεις. 

Η δεύτερη οµάδα προβληµάτων αξιολόγησης αφορούσε στην ελαχιστοποίηση του 
βάρους τυπικών δικτυωµάτων υπό την επιβολή µίας ποικιλίας περιορισµών, τόσο ως προς το 
πλήθος τους όσο και ως προς τον τύπο τους. Ειδικότερα, χρησιµοποιήθηκαν οι διαδικασίες 
βελτιστοποίησης, οι οποίες είχαν χρησιµοποιηθεί και στην πρώτη οµάδα προβληµάτων 
αξιολόγησης, εξαιρουµένης της µεθόδου EASY. Επίσης, επιλέχθηκαν τέσσερα ευρέως 
γνωστά και χρησιµοποιούµενα βιβλιογραφικά παραδείγµατα δικτυωµάτων (Skeletal 
Structural Benchmarks - SSB), ήτοι ένα δικτύωµα τριών ράβδων (έστω SSB-1), δύο 
παραλλαγές ενός δικτυώµατος δέκα ράβδων (έστω SSB-2 και SSB-3) και ένα δικτύωµα 25 
ράβδων (έστω SSB-4). Η ποσοτικοποίηση της συµπεριφοράς των εξεταζοµένων µεθόδων 
βασίσθηκε στα αποτελέσµατα από 2000 διαφορετικές αναλύσεις καθώς και στους τέσσερεις 
∆είκτες Επίδοσης της πρώτης οµάδας προβληµάτων αξιολόγησης. 

Εκτός από τα προαναφερθέντα προβλήµατα αξιολόγησης, πραγµατοποιήθηκε µία 
περαιτέρω διερεύνηση σχετικά µε τους Γενετικούς Αλγορίθµους (GA). Είναι αληθές ότι οι 
(GA) αποτελούν µία ξεχωριστή τάξη διαδικασιών βελτιστοποίησης διότι στηρίζονται στη 
∆αρβίνεια θεωρία της εξέλιξης, δηλαδή στηρίζονται σε ένα φυσικό φαινόµενο το οποίο 
λαµβάνει χώρα εδώ και δισεκατοµµύρια χρόνια. Το βασικό χαρακτηριστικό των (GΑ) είναι η 
δυνατότητά τους να διαχειρίζονται ταυτόχρονα και να βελτιώνουν σε κάθε επανάληψη ένα 
σύνολο διανυσµάτων σχεδίασης και όχι ένα διάνυσµα σχεδίασης. Για τη διερεύνηση των 
(GA) χρησιµοποιήθηκε το αντίστοιχο περιβάλλον βελτιστοποίησης της MatLab (GADS 
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optimization toolbox) και εξετάστηκαν διεξοδικά τέσσερεις Μαθηµατικές Συναρτήσεις 
Επίδοσης (δύο συναρτήσεις της πρώτης οµάδας αξιολόγησης, η λεγόµενη συνάρτηση Powell 
και η αποκαλούµενη συνάρτηση Suzuki). Συνολικά, εξετάσθηκε η επίδραση έντεκα 
παραµέτρων ελέγχου, ενώ για την ποσοτικοποίηση της συµπεριφοράς των (GA) 
χρησιµοποιήθηκαν τα αποτελέσµατα από 1,120,000 διαφορετικές αναλύσεις. 

Τα συµπεράσµατα, τα οποία προέκυψαν µέσα από τη προαναφερθείσα διερεύνηση, ήταν 
αρκετά αποκαλυπτικά. Μία από τις βασικές παρατηρήσεις ήταν ότι οι στοχαστικές µέθοδοι 
άµεσης αναζήτησης υπερτερούσαν σηµαντικά των αιτιοκρατικών, όταν το πλήθος των 
µεταβλητών σχεδίασης ήταν µικρό. Αντιθέτως, όσο αυξανόταν η διάσταση του χώρου 
σχεδίασης, τόσο καταλληλότερες καθίσταντο οι αιτιοκρατικές µέθοδοι βελτιστοποίησης. 
Συνεπώς, µία καλή ιδέα θα ήταν η χρήση στοχαστικής προσέγγισης για την επίλυση ενός 
προβλήµατος µε µικρό πλήθος µεταβλητών σχεδίασης και η χρήση αιτιοκρατικής 
προσέγγισης στην αντίθετη περίπτωση. Με γνώµονα αυτήν την παρατήρηση, διαµορφώθηκε 
η προτεινόµενη υβριδική διαδικασία βελτιστοποίησης. Ειδικότερα, µία τυπική αιτιοκρατική 
διαδικασία βελτιστοποίησης αποτελείται από δύο τελεστές: ο πρώτος καθορίζει την 
διεύθυνση κατά την οποία θα πραγµατοποιηθεί η αναζήτηση και ο δεύτερος καθορίζει το 
βήµα της αναζήτησης. Η διεύθυνση αναζήτησης περιγράφεται από ένα διάνυσµα, η διάσταση 
του οποίου, προφανώς, ισούται µε τη διάσταση του χώρου σχεδίασης. Ως εκ τούτου, όσο 
µεγαλύτερη είναι αυτή η διάσταση τόσο µεγαλύτερο είναι και το πλήθος των µεταβλητών 
σχεδίασης, άρα τόσο καταλληλότερη είναι η επιλογή ενός αιτιοκρατικού αλγορίθµου. Στην 
παρούσα µελέτη, επελέγη η µέθοδος Powell για τον προσδιορισµό της διεύθυνσης 
αναζήτησης. Η επιλογή αυτή στηρίχθηκε στο γεγονός ότι η µέθοδος Powell είναι απλή στον 
προγραµµατισµό της αλλά διαθέτει την αποκαλούµενη ‘προς-τα-αριστερά ολίσθηση’ (left 
shifting) της διεύθυνσης αναζήτησης, εξ αιτίας της οποίας η εν λόγω µέθοδος εµφανίζει πολύ 
καλύτερη συµπεριφορά από άλλες όµοιές της. Από την άλλη πλευρά, το βήµα αναζήτησης 
αποτελεί ένα βαθµωτό µέγεθος, συνεπώς ο προσδιορισµός του είναι δυνατόν να εκφρασθεί 
ως ένα µονοδιάστατο πρόβληµα βελτιστοποίησης. Για τέτοιου είδους προβλήµατα, είναι πιο 
δόκιµη η επιλογή µίας στοχαστικής µεθόδου βελτιστοποίησης. Στην παρούσα µελέτη, 
επελέγη η µέθοδος της Προσοµοιούµενης Ανόπτησης (SA) διότι, από τη σχετική ανάλυση 
που πραγµατοποιήθηκε, η εν λόγω µέθοδος εµφάνισε σηµαντικώς υπέρτερη συµπεριφορά 
συγκριτικά µε τις άλλες µεθόδους. Εκτός από τους δύο προαναφερθέντες τελεστές, στην 
προτεινόµενη διαδικασία βελτιστοποίησης εισήχθη ακόµα ένας τελεστής, η παρουσία του 
οποίου αποσκοπούσε στην αύξηση της πιθανότητας απεγκλωβισµού από τοπικά ακρότατα. 
Πρόκειται για έναν τελεστή τοπικής αναζήτησης, ο οποίος χρησιµοποιεί τη µέθοδο (SA) αλλά 
για αναζήτηση µόνον εντός µίας υπερ-σφαίρας γύρω από το τρέχον βέλτιστο διάνυσµα 
σχεδίασης. Η επαναληπτική εφαρµογή αυτών των τριών τελεστών αποτελεί, ουσιαστικά, την 
προτεινόµενη διαδικασία βελτιστοποίησης. Για την αξιολόγησή της, χρησιµοποιήθηκαν οι 
Μαθηµατικές Συναρτήσεις Επίδοσης (BMF1), (BMF2), (BMF4) και (BMF5), ενώ για κάθε 
µία από αυτές τις συναρτήσεις διαµορφώθηκαν δύο επιπλέον παραλλαγές (συνολικά, δώδεκα 
µαθηµατικές συναρτήσεις). Επίσης, χρησιµοποιήθηκαν τρεις ∆είκτες Αξιολόγησης, ενώ 
πραγµατοποιήθηκε και σύγκριση µε τις µεθόδους (SA), Hooke και Jeeves, Nelder-Mead και 
Powell. Συνολικά πραγµατοποιήθηκαν 7200 αναλύσεις.  

Ένα σηµαντικό σηµείο στην αξιολόγηση µίας διαδικασίας βελτιστοποίησης αποτελεί ο 
χειρισµός των επιβαλλοµένων περιορισµών, κάτι το οποίο είναι δυνατόν να επιτευχθεί µε 
πολλούς τρόπους. Για παράδειγµα, είναι δυνατόν να χρησιµοποιηθούν συναρτήσεις ποινής, 
µε τις οποίες το αρχικό πρόβληµα βελτιστοποίησης µε περιορισµούς µετατρέπεται σε µία 
ακολουθία προβληµάτων χωρίς περιορισµούς. Ανάλογα, δε, µε το σχήµα ποινικοποίησης 
είναι δυνατόν να ληφθούν διαφορετικά βέλτιστα διανύσµατα σχεδίασης και µετά από 
διαφορετικό πλήθος επαναλήψεων. Συνεπώς, για την αντικειµενική αξιολόγηση της καθαυτής 
διαδικασίας βελτιστοποίησης, θα πρέπει η επίδραση του σχήµατος ποινικοποίησης στην 
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τελικώς µετρηθείσα απόδοση να είναι αµελητέα. Ένας τρόπος για να επιτευχθεί αυτό είναι η 
απόδοση στην αντικειµενική συνάρτηση µίας πολύ µεγάλης τιµής, όταν παρατηρείται 
παραβίαση, ανεξαρτήτως του πλήθους των παραβιασθέντων περιορισµών και του ποσοστού 
παραβίασης (σχήµα ποινικοποίησης τύπου ‘βίαιης θανάτωσης’ - ‘hard kill’). Πρόκειται για 
έναν πολύ αυστηρό τρόπο ποινικοποίησης, ο οποίος εξωθεί τη διαδικασία βελτιστοποίησης 
στα όριά της, δεδοµένου ότι δεν υπάρχει διάκριση µεταξύ διανυσµάτων σχεδίασης τα οποία 
προκαλούν µικρή ή µεγάλη παραβίαση περιορισµών.  

Βασικό παράγοντα αξιολόγησης µίας διαδικασίας βελτιστοποίησης αποτελεί και η 
ευαισθησία της σε διάφορες παραµέτρους. Προκειµένου να εξετασθεί αυτή η ευαισθησία, 
ενδείκνυται η πραγµατοποίηση µίας σειράς αναλύσεων, στην οποία µεταβάλλεται µόνον η 
προς διερεύνηση παράµετρος. Σε αυτό το πλαίσιο, προκειµένου να εξετασθεί η ευαισθησία 
(εξάρτηση) µίας διαδικασίας βελτιστοποίησης από το αρχικό διάνυσµα σχεδίασης, είναι 
δυνατόν να επιλυθεί ένα πρόβληµα βελτιστοποίησης χρησιµοποιώντας πολλά και 
διαφορετικά σηµεία εκκίνησης. Εν προκειµένω, για κάθε µία από τις διερευνηθείσες 
µεθοδολογίες και για κάθε ένα από τα εξετασθέντα παραδείγµατα, χρησιµοποιήθηκαν 100 
διαφορετικά αρχικά διανύσµατα σχεδίασης.  
 
2.3. Η προτεινόµενη υβριδική διαδικασία βελτιστοποίησης 

Με βάση την αποκτηθείσα εµπειρία από τη διερεύνηση διαφόρων βιβλιογραφικών 
µεθόδων βελτιστοποίησης, διαµορφώθηκε µία νέα, υβριδικού χαρακτήρα, διαδικασία 
βελτιστοποίησης, ενώ για την αξιολόγησή της χρησιµοποιήθηκε ένα εκτεταµένο σύνολο 
Μαθηµατικών Συναρτήσεων Επίδοσης. Στις ενότητες που ακολουθούν παρουσιάζεται 
αναλυτικά η προτεινόµενη διαδικασία, παρατίθεται η αξιολόγησή της και διατυπώνονται 
κριτικά σχόλια σχετικά µε αυτήν. 

 
2.3.1. Επί των υβριδικών διαδικασιών βελτιστοποίησης 

Τα υβριδικά σχήµατα αναζήτησης χρησιµοποιούνται εκτενώς στη βελτιστοποίηση 
κατασκευών. Μία προσέγγιση για υβριδικού τύπου βελτιστοποίηση είναι η ενσωµάτωση ενός 
αιτιοκρατικού τρόπου τοπικής αναζήτησης σε µία εξελικτική διαδικασία βελτιστοποίησης 
στοχαστικού χαρακτήρα.  

Οι Mahfoud και Goldberg παρουσίασαν τη µέθοδο της Παράλληλης Επασυνδυαστικής 
Προσοµοιούµενης Ανόπτησης (Parallel Recombinative Simulated Annealing). Ειδικότερα, 
σύµφωνα µε αυτή τη µέθοδο, µετά τη διαµόρφωση του αρχικού πληθυσµού και την επιλογή 
µίας θερµοκρασιακής στάθµης Τ, επιλέγονται οι γονείς, από τους οποίους προκύπτουν οι 
απόγονοι µε επανασυνδυασµό και µετάλλαξη. Στη συνέχεια, γονείς και απόγονοι 
συγκρίνονται ως προς την επίδοσή τους, γονείς αντικαθίστανται από απογόνους µε καλύτερη 
επίδοση και η θερµοκρασιακή στάθµη µειώνεται. Η διαδικασία επαναλαµβάνεται µέχρι 
συγκλίσεως (Mahfoud και Goldberg, 1994). Οι Renders και Flasse ασχολήθηκαν µε το θέµα 
της ακρίβειας, της αξιοπιστίας και υπολογιστικού χρόνου σε µία διαδικασία βελτιστοποίησης. 
Πιο συγκεκριµένα, πρώτα εξέτασαν παραδοσιακές µεθόδους βελτιστοποίησης, όπως είναι η 
µέθοδος Quasi-Newton και η µέθοδος Simplex των Nelder-Mead, και στη συνέχεια 
ασχολήθηκαν µε νέες υβριδικές µεθόδους, συνδυάζουσες χαρακτηριστικά από γενετικούς 
αλγορίθµους και µεθόδους αναρρίχησης, προκειµένου να διαµορφώσουν µία διαδικασία στην 
οποία συνδυάζονται καλύτερα τα επιµέρους πλεονεκτήµατα και µειονεκτηµάτων των 
συµµετεχόντων µεθόδων. Τέτοιες υβριδικές µέθοδοι είναι εµπνευσµένες από τη βιολογία και 
εµπλέκουν δύο βασικά χαρακτηριστικά, την εξέλιξη, όπως αυτή εµφανίζεται στους 
Γενετικούς Αλγορίθµους, και την εκµάθηση, όπως αυτή είναι δυνατόν να επιτευχθεί µε ένα 
σχήµα Quasi-Newton. Οι Renders και Flasse κατέληξαν στην πρόταση µίας υβριδικής 
µεθόδου, η οποία συνδυάζει την αξιοπιστία των Γενετικών Αλγορίθµων µε την ακρίβεια της 



Δ.Τ. Βενετσάνος – Διδακτορική Διατριβή ‐ 2010 

Σ ε λ ί δ α  | ΕΛ.2.6 

µεθόδου Quasi-Newton, ενώ ταυτόχρονα το υπολογιστικό κόστος είναι ελαφρώς µεγαλύτερο 
από αυτόν που απαιτεί η χρήση µόνον της µεθόδου Quasi-Newton (Renders and Flasse, 
1996). Οι Botello και συνεργάτες συνδύασαν τους τελεστές των Γενετικών Αλγορίθµων, 
σχετικά µε την επιλογή, τη διασταύρωση και τη µετάλλαξη, µε τον τελεστή αποδοχής της 
Προσοµοιούµενης Ανόπτησης (κριτήριο Metropolis), διαµορφώνοντας τον αποκαλούµενο 
Αλγόριθµο Γενικής Στοχαστικής Αναζήτησης (General Stochastic Search Algorithm). Η 
µέθοδος εµφανίζει δύο βασικά σηµεία. Το πρώτο σηµείο είναι η σύγκριση των µελών ενός 
πληθυσµού πριν και µετά την επιβολή τελεστών συνδυασµού και µετάλλαξης. Το δεύτερο 
σηµείο είναι η εφαρµογή του προαναφερθέντος τελεστού αποδοχής επί των γονέων και των 
απογόνων, προκειµένου να επιλεχθούν τα άτοµα για την επόµενη επανάληψη (γενεά) (Botello 
et al, 1999). Οι Galinier και Hao παρουσίασαν έναν Υβριδικό Εξελικτικό Αλγόριθµο (Hybrid 
Evolutionary Algorithm), ο οποίος ενσωµατώνει µία διαδικασία τοπικής αναζήτησης στο 
πλαίσιο ενός Εξελικτικού Αλγορίθµου. Η βασική ιδέα της µεθόδου τους είναι η δηµιουργία 
νέων διανυσµάτων σχεδίαση µέσα από έναν τελεστή διασταύρωσης (Greedy Partition 
Crossover), τα οποία στη συνέχεια βελτιώνονται µέσω της χρήσης ενός τελεστή τοπικής 
αναζήτησης (Galinier and Hao, 1999). Οι Burke και Smith ενσωµάτωσαν έναν τελεστή 
τοπικής αναζήτησης σε έναν Γενετικό Αλγόριθµο, διαµορφώνοντας τον αποκαλούµενο 
Μιµητικό Αλγόριθµο (Memetic Algorithm), τον οποίο χρησιµοποίησαν για την επίλυση ενός 
προβλήµατος διαµόρφωσης πλάνου συντήρησης θερµικών εγκαταστάσεων (Burke and Smith, 
2000). Οι Magoulas και συνεργάτες εισήγαγαν µία νέα, υβριδική, εξελικτική διαδικασία 
προκειµένου να βελτιώσουν την απόδοση της χρήσης νευρωνικών δικτύων σε βραδέως 
µεταβαλλόµενα περιβάλλοντα. Ειδικότερα, εξέτασαν το συνδυασµό µίας ∆ιαφορικής 
Στρατηγικής Εξέλιξης (Differential Evolution Strategy - DES) µε µία Στοχαστική 
Καταρρίχηση (Stochastic Gradient Descent - SGD). Η ∆ιαφορική Στρατηγική Εξέλιξης 
στηρίζεται στην ιδέα της εξέλιξης ενός πλήθους ατόµων από γενιά σε γενιά, ενώ η 
Στοχαστική Καταρρίχηση αφορά στην περιβαλλοντική προσαρµογή µέσω διαδικασίας 
εκµάθησης (Magoulas et al., 2001). Οι Schmidt και Thierauf εξέτασαν τον συνδυασµό της εν 
λόγω µεθόδου µε τον λεγόµενο Αλγόριθµο Αποδοχής Κατωφλίου (Threshold Accepting 
Algorithm - TΑA), ο οποίος υπολογίζει το αντίστοιχο συναρτησιακό σε κάθε επανάληψη, 
συµβάλλοντας σηµαντικά στην προσπάθεια µείωσης του υπολογιστικού κόστους. Η µέθοδος 
της ∆ιαφορικής Εξέλιξης (Differential Evolution - DE) βοηθά στην αποφυγή τοπικών 
ελαχίστων. Μέσω της χρήσης συναρτήσεων ποινής, επιτρέπεται η αξιοποίηση ακόµα και µη-
αποδεκτών διανυσµάτων σχεδίασης, οπότε είναι δυνατή η προσέγγιση του καθολικού 
ελαχίστου όχι µόνον µέσα από δυνατές διευθύνσεις αλλά και µέσα από µη-δυνατές 
διευθύνσεις. Οι, δε, αποδεκτές λύσεις αποθηκεύονται και αξιοποιούνται, όπως ακριβώς 
συµβαίνει και µε τα καλύτερα διανύσµατα σχεδίασης (elite) σε έναν Γενετικό Αλγόριθµο 
(Schmidt and Thierauf, 2005).  

Μέσα στο γενικότερο πλαίσιο, όπως αυτό περιγράφεται από τις προαναφερθείσες 
εργασίες, στην παρούσα ∆ιδακτορική ∆ιατριβή προτείνεται µία νέα, υβριδικού χαρακτήρα, 
διαδικασία βελτιστοποίησης, σύµφωνα µε την οποία συνδυάζεται µία αιτιοκρατική και µία 
στοχαστική διαδικασία. Ειδικότερα, η επιλογή της διεύθυνσης αναζήτησης επιτυγχάνεται µε 
την αιτιοκρατική µέθοδο Powell, ενώ η διερεύνηση κατά µήκος µίας διεύθυνσης αναζήτησης 
επιτυγχάνεται µε τη στοχαστική µέθοδο της Προσοµοιούµενης Ανόπτησης. Τονίζεται 
ιδιαιτέρως ότι αυτές οι δύο επιλογές δεν ήταν τυχαίες. Η µέθοδος Powell, αν και αποτελεί µία 
απλή παραλλαγή της διαδικασίας βελτιστοποίησης κατά διεύθυνση βάσης (univariate 
optimization), εµφανίζει εξαιρετικά καλύτερη συµπεριφορά (Venkatamaran, 2002). Επίσης, η 
µέθοδος της Προσοµοιούµενης Ανόπτησης, όπως κατέδειξε η διερεύνηση, η οποία 
πραγµατοποιήθηκε στο πλαίσιο της παρούσης ∆ιδακτορικής ∆ιατριβής, εµφανίζει την 
καλύτερη συµπεριφορά, συγκριτικά µε όλες τις υπόλοιπες εξετασθείσες µεθόδους, στην 
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επίλυση µονοδιάστατων προβληµάτων. Υπενθυµίζεται, δε, ότι η διερεύνηση κατά µήκος µίας 
διεύθυνσης αναζήτησης είναι ακριβώς ένα τέτοιου είδους πρόβληµα.  
 
2.3.2. Θεωρητικό υπόβαθρο 

Τα βασικά συστατικά στοιχεία της προτεινοµένης διαδικασίας, δηλαδή η διαδικασία 
βελτιστοποίησης κατά διεύθυνση βάσης (univariate optimization), η ‘προς-τα-αριστερά-
ολίσθηση’ (left-shifting) της διεύθυνσης αναζήτησης καθώς και η Προσοµοιούµενη 
Ανόπτηση, περιγράφονται συνοπτικά στις επόµενες παραγράφους.  

Η διαδικασία βελτιστοποίησης κατά διεύθυνση βάσης (univariate optimization) δεν είναι 
τίποτε άλλο παρά η επίλυση, για κάθε µία µεταβλητή σχεδίασης και µε τρόπο κυκλικό, του 
ακόλουθου 1-∆ προβλήµατος βελτιστοίησης: 
 

( )min i jf x dα+
% %

, low i upx x x≤ ≤
% % %

                                         (2.1) 
 
όπου ix

%
 είναι το διάνυσµα σχεδίασης στην i − επανάληψη, το βαθµωτό µέγεθος α  είναι το 

βήµα αναζήτησης για τη διεύθυνση αναζήτησης jd
%

 και jd
%

 είναι η j − διεύθυνση βάσης, 
όπου var1,...,j N=  και varN  είναι το πλήθος των µεταβλητών σχεδίασης. Είναι δυνατή η 
αποθήκευση των διευθύνσεων αναζήτησης σε έναν πίνακα SD  διάστασης var varN N× . Τα 
άνω και κάτω όρια του διανύσµατος σχεδίασης ix

%
 δηλώνονται ως lowx

%
 και upx

%
, αντίστοιχα. 

Το 1-∆ πρόβληµα βελτιστοποίησης είναι δυνατόν να επιλυθεί µε διάφορους τρόπους 
(Μέθοδος Χρυσής Τοµής, Μέθοδος Fibonacci, Πολυωνυµικές µέθοδοι, κ.λ.π). Ένας πλήρης 
κύκλος (επανάληψη) αποτελείται από την επίλυση του προβλήµατος (2.1) για var1,...,j N= .  

Έστω ,i beforex
%

 και ,i afterx
%

 τα διανύσµατα σχεδίασης πριν και µετά την εφαρµογή ενός 
πλήρους κύκλου. Είναι δυνατόν να ορισθεί η ακόλουθη διεύθυνση αναζήτησης (pattern 
search direction): 
 

, ,ps i after i befored x x= −
% % %

                                                    (2.2) 
 
Συνεπώς, είναι δυνατόν να διατυπωθεί ένα ακόµα 1-∆ πρόβληµα βελτιστοποίησης, της 
ακόλουθης µορφής: 
 

( ),min i after ps psf x dα+
% %

, low i upx x x≤ ≤
% % %

                                   (2.3) 
 
Η προαναφερθείσα διεύθυνσης αναζήτησης (pattern search direction) είναι δυνατόν να 
αποθηκευθεί στον πίνακα SD  ως η ( )var 1N +  εγγραφή. Η αποκαλούµενη ‘προς-τα-αριστερά-
ολίσθηση’ (left-shifting) των διευθύνσεων αναζήτησης επιτυγχάνεται χρησιµοποιώντας τη 

1j +  διεύθυνση αναζήτησης για την i  επανάληψη και τη j  διεύθυνση αναζήτησης για την 
1i +  επανάληψη. Η 1j +  διεύθυνση αναζήτησης της 1i +  επανάληψης δηµιουργείται µε τη 

βοήθεια της (Εξ.2.2).  
Εάν χρησιµοποιηθεί µίας αιτιοκρατική διαδικασία βελτιστοποίησης για την επίλυση του 

προβλήµατος (2.3), τότε ο εντοπισµός του καθολικού ελαχίστου είναι εγγυηµένος, εάν και 
µόνον εάν υπάρχει ένα ελάχιστο στο εξεταζόµενο πεδίο ορισµού. Με άλλα λόγια, σε αυτήν 
την περίπτωση υπάρχει µόνον µία τιµή της παραµέτρου a , για την οποία το πρόβληµα (2.3) 
εµφανίζει καθολικό ελάχιστο. Ωστόσο, εάν στο εξεταζόµενο πεδίο ορισµού υπάρχουν πολλά 
τοπικά ελάχιστα, τότε η τελική έκβαση µίας αιτιοκρατικής αναζήτησης εξαρτάται από την 
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αρχική τιµή ,ps inia  της εν λόγω παραµέτρου. Ο λόγος αυτής της συµπεριφοράς έγκειται στο 
γεγονός ότι η αιτιοκρατικότητα τείνει να εγκλωβίσει το ακρότατο µέσα σε ένα διάστηµα, το 
οποίο διαρκώς συρρικνώνεται, έως ότου καταλήξει να είναι σηµείο ή οιονεί σηµείο. Συνεπώς, 
εάν αυτός ο εγκλωβισµός δεν καθοδηγηθεί σωστά, τότε εντοπίζεται κάποιο τοπικό ακρότατο 
και όχι το καθολικό ακρότατο. Καλύτερα αποτελέσµατα προκύπτουν εάν το πεδίο ορισµού 
σαρωθεί µε µικρά βήµατα αναζήτησης, κάτι το οποίο είναι υπολογιστικά ακριβό, έως και 
απαγορευτικά ακριβό. Αντιθέτως, µία στοχαστική διαδικασία βελτιστοποίησης είναι λιγότερο 
επιρρεπής στον εγκλωβισµό σε τοπικό ακρότατο, διότι διαθέτει την εγγενή δυνατότητα της 
αλλαγής του βήµατος αναζήτησης. Με αυτόν τον τρόπο, η πιθανότητα ‘απεγκλωβισµού’ από 
τοπικά ακρότατα είναι υψηλότερη. Επιπροσθέτως, όπως προέκυψε και από αντίστοιχη 
διερεύνηση στο πλαίσιο της παρούσας ∆ιδακτορικής ∆ιατριβής, όσο µικρότερο είναι το 
πλήθος των µεταβλητών σχεδίασης τόσο πιο αποδοτική είναι µία µέθοδος αναζήτησης 
στοχαστικού χαρακτήρα. Ιδανική, δε, περίπτωση αποτελεί το πρόβληµα (2.3), το οποίο 
εµπλέκει µόνον µία µεταβλητή σχεδίασης. 

Με αφετηρία αυτές τις σκέψεις, είναι φανερό ότι η επίλυση του προβλήµατος (2.1) µε µία 
αιτιοκρατική διαδικασία και η επίλυση του προβλήµατος (2.3) µε µία στοχαστική διαδικασία 
αποτελεί έναν καλό θεωρητικό συµβιβασµό διότι εισάγεται η τυχαιότητα στη διαδικασία, το 
υπολογιστικό κόστος παραµένει σε χαµηλά επίπεδα, ενώ ενισχύεται και η ικανότητα 
απεγκλωβισµού. Η, δε, προταθείσα διαδικασία είναι η εξής: 

Βήµα 1: Τυχαία δηµιουργία ενός διανύσµατος σχεδίασης oX
%

 διάστασης var 1N ×  
Βήµα 2: ∆ηµιουργία ενός ( )var var1N N+ ×  πίνακα SD  διανυσµάτων βάσης. Για την πρώτη 

επανάληψη, οι πρώτες varN  εγγραφές αποτελούν τα µοναδιαία διανύσµατα της 
ορθοκανονικής βάσης που περιγράφει το χώρο σχεδίασης, ενώ η ( )var 1N +  
εγγραφή αντιστοιχεί στην αποκαλούµενη διεύθυνση ‘pattern search’, η οποία 
δηµιουργείται στο Βήµα 4. 

Βήµα 3: ∆ιεξαγωγή µία µονοδιάστατης αιτιοκρατικής διαδικασίας βελτιστοποίησης προς 
εύρεση ενός νέου βέλτιστου και δυνατού διανύσµατος σχεδίασης 1X

%
.  

Βήµα 4: Ορισµός της διεύθυνσης ‘pattern search’ ως 1ps od X X= −
% %%

. 

Βήµα 5: Για την αντικειµενική συνάρτηση ( )1 psf X dα+
% %

, διεξαγωγή µίας στοχαστικής 

αναζήτησης κατά µήκος της διεύθυνσης psd
%

 (µονοδιάστατο πρόβληµα 
βελτιστοποίησης ως προς το βήµα αναζήτησης a ) προς εύρεση ενός νέου 
βέλτιστου και δυνατού διανύσµατος σχεδίασης 2X

%
. 

Βήµα 6: Έλεγχος για σύγκλιση 
  Εάν 2 1X X tol− ≤

% %
, όπου tol  µία µικρή, θετική ποσότητα, Tότε  

  διεξαγωγή µίας στοχαστικής αναζήτησης σε µία σφαίρα γύρω από το διάνυσµα 
2X
%

 προς εύρεση ενός νέου βέλτιστου και δυνατού διανύσµατος σχεδίασης 3X
%

 
   Εάν 3 2X X tol− ≤

% %
 Τότε Stop  

   ∆ιαφορετικά  
 ενηµέρωση του πίνακα SD  µε την διεύθυνση ( )3 2X X−

% %
, ορισµός 

3oX X=
% %

 και επιστροφή στο Βήµα 3 
  ∆ιαφορετικά 

 ορισµός 2oX X=
% %

, ‘προς-τα-αριστερά ολίσθηση’ των διευθύνσεων αναζήτησης 
και επιστροφή στο Βήµα 3. 
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Η φυσική ερµηνεία του Βήµατος 5 είναι η οµοιόµορφη διακλιµάκωση ενός διανύσµατος 
σχεδίασης µέχρι να είναι αδύνατη οποιαδήποτε περαιτέρω βελτίωση. Η παράµετρος α  
αποτελεί τον παράγοντα της διακλιµάκωσης. Ένας τρόπος χειρισµού της παραµέτρου α  είναι 
πρώτα να της αποδοθεί οποιαδήποτε τιµή και στη συνέχεια να ελεγχθεί κατά πόσο η τιµή της 
αντικειµενικής συνάρτησης µειώνεται και το προκύπτον διάνυσµα σχεδίασης είναι δυνατό. 
Ένας άλλος τρόπος χειρισµού αυτής της παραµέτρου είναι πρώτα να βρεθεί το αποδεκτό 
πεδίο ορισµού της, βάσει της διεύθυνσης αναζήτησης και του επιτρεπτού πεδίου ορισµού των 
µεταβλητών σχεδίασης, και στη συνέχεια να εφαρµοσθεί µία διαδικασία βελτιστοποίησης. 
Στην παρούσα, τα άνω και κάτω όρια της εν λόγω παραµέτρου καθορίζονται άµεσα, όπως 
φαίνεται στις κάτωθι Εξ.(2.4): 

 
( ){ }min /upper l S psa X X d= −
% % %

                                           (2.4a) 

( ){ }min /lower u S psa X X d= −
% % %

                                          (2.4b) 
 
∆ιευκρινίζεται ότι στο διάνυσµα lX

%
 κάθε µεταβλητή σχεδίασης φέρει τις ελάχιστες τιµές της 

(κάτω όριο του πεδίου ορισµού της), ενώ στο διάνυσµα uX
%

 κάθε µεταβλητή σχεδίασης φέρει 
τις µέγιστες τιµές της (άνω όριο του πεδίου ορισµού της). Το , δε, διάνυσµα psd

%
 περιγράφει 

την αποκαλούµενη διεύθυνση αναζήτησης ‘pattern search’. Με τις Εξ.(2.4), το δυνατό πεδίο 
ορισµού της παραµέτρου α  περιορίζεται εντός ενός διαστήµατος πεπερασµένου εύρους.  

Επίσης, διευκρινίζεται ότι η φυσική ερµηνεία του Βήµατος 6 είναι ότι εάν η επίλυση του 
προβλήµατος (2.3) δεν οδηγήσει σε βελτίωση του τρέχοντος διανύσµατος σχεδίασης τότε 
ενεργοποιείται µία τοπικού χαρακτήρα αναζήτηση γύρω από το τελευταία σχηµατισθέν 
διάνυσµα σχεδίασης, ως προσπάθεια διατήρησης της διαδικασίας αναζήτησης σε περίπτωση 
όπου το προαναφερθέν διάνυσµα αντιστοιχεί σε τοπικό ακρότατο. 
 
2.3.3. Αριθµητική προσέγγιση 

Για την αξιολόγηση της προτεινοµένης µεθόδου, χρησιµοποιήθηκαν τέσσερεις 
Μαθηµατικές Συναρτήσεις Επίδοσης, για κάθε µία εκ των οποίων είναι βιβλιογραφικά 
γνωστό το πεδίο ορισµού, το καθολικό ελάχιστο σε αυτό το πεδίο καθώς και το αντίστοιχο 
βέλτιστο διάνυσµα σχεδίασης. Προκειµένου να αυξηθεί η δυσκολία εντοπισµού του 
καθολικού ελαχίστου των εν λόγω συναρτήσεων, για κάθε µία από αυτές προτείνονται δύο 
παραλλαγές, όπως φαίνεται στις επόµενες παραγράφους.  
 
2.3.3.1. Η συνάρτηση (MBF1) και παραλλαγές αυτής 

Η µαθηµατική έκφραση αυτής της συνάρτησης φαίνεται στην Εξ.(2.5a), το πεδίο ορισµού 
της είναι [ ]2.7,7.5  και υπάρχουν τρία ελάχιστα, εκ των οποίων το καθολικό ελάχιστο 
βρίσκεται στη θέση 5.145x =  και αντιστοιχεί στην τιµή 1.886optif = − . Οι άλλες δύο 
εξετασθείσες παραλλαγές περιγράφονται στις Εξ.(2.5b, 2.5c). 
 

( ) ( )sin sin 10
3
xf x x ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
                                             (2.5a) 

( ) ( )sin sin 20
3
xf x x ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
                                             (2.5b) 

( ) ( )sin 2sin 10
3
xf x x ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
                                            (2.5c) 
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Οι γραφικές παραστάσεις των εν λόγω συναρτήσεων φαίνονται στο Σχήµα 2.1, από το οποίο 
προκύπτει ότι οι παραλλαγές αυτές εισάγουν µεγαλύτερη δυσκολία στον εντοπισµό του 
ελαχίστου, είτε λόγω αυξηµένου πλήθους τοπικών ακροτάτων (Σχήµα 2.1(b)) είτε λόγω 
µεγαλύτερης κλίσης πλησίον των ακροτάτων (Σχήµα 2.1(c)), καθιστώντας, µε αυτόν τον 
τρόπο, πιο εύκολο τον εγκλωβισµό σε τοπικά ακρότατα. 
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(a) (b) (c)  
Σχήµα 2.1: ∆ιαγράµµατα για τη συνάρτηση MBF-1: (a) βασική διατύπωση, (b) αυξηµένο 

πλήθος ακροτάτων και (c) µεγάλες κλίσεις πλησίον των ακροτάτων 
 
2.3.3.2. Η συνάρτηση (MBF2) και παραλλαγές αυτής 

Η µαθηµατική έκφραση αυτής της συνάρτησης φαίνεται στην Εξ.(2.6a), το πεδίο ορισµού 
της είναι [ ]1,1x∈ −

%
, ενώ το καθολικό ελάχιστο βρίσκεται στη θέση 0x =

% %
 και αντιστοιχεί 

στην τιµή 2.000optif = − . Οι εξετασθείσες παραλλαγές περιγράφονται στις Eξ.(2.6b, 2.6c). 
 

( ) ( )( )
2

2

1

cos 18j j
j

f x x x
=

= −∑
%

                                           (2.6a) 

( ) ( )( )
2

2

1

cos 25j j
j

f x x x
=

= −∑
%

                                           (2.6b) 

( ) ( )( )
2

2

1

3cos 18j j
j

f x x x
=

= −∑
%

                                          (2.6c) 

 
Εν γένει, είναι δυνατόν να κατασκευασθεί η γραφική παράσταση µίας συνάρτησης δύο 
µεταβλητών. Ωστόσο, η µαθηµατική έκφραση των εξετασθέντων συναρτήσεων υποδεικνύει 
ότι η γραφική παράσταση ενός µόνον όρου του αθροίσµατος επαρκεί για µία ικανοποιητική 
οπτικοποίηση των εν λόγω συναρτήσεων, δεδοµένου ότι στις Εξ.(2.6) δεν υπάρχουν µη-
γραµµικοί όροι περιέχοντες ταυτόχρονα τις µεταβλητές 1x  και 2x . Συνεπώς, είναι επαρκής η 
απεικόνιση ενός µόνον προσθετέου ως προς 1x  ή ως προς 2x , όπως φαίνεται στο Σχήµα 2.2. 
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Σχήµα 2.2: ∆ιαγράµµατα για τη συνάρτηση MBF-2: (a) βασική διατύπωση, (b) αυξηµένο 

πλήθος ακροτάτων και (c) µεγάλες κλίσεις πλησίον των ακροτάτων 
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Στο Σχήµα 2.2b είναι εµφανής η αύξηση του πλήθους των ακροτάτων, ενώ στο Σχήµα 2.2c 
είναι εµφανής η αύξηση της κλίσης της συνάρτησης πλησίον των ακροτάτων. 
 
2.3.3.3. Η συνάρτηση (MBF4) και παραλλαγές αυτής 

Η µαθηµατική έκφραση αυτής της συνάρτησης φαίνεται στην Εξ.(2.7a), το πεδίο ορισµού 
της είναι [ ]4,0x∈ −

%
, ενώ το καθολικό ελάχιστο βρίσκεται στη θέση 2.9035,  1,..,4ix i= =  µε 

τιµή 156.66optif = − . Οι εξετασθείσες παραλλαγές περιγράφονται στις Eξ.(2.7b, 2.7c). 
 

( ) ( )
4

4 2

1

0.5 16 5j j j
j

f x x x x
=

= − +∑
%

                                       (2.7a) 

( ) ( )( )
4

4 2

1

0.5 16 5 15cos 5j j j j
j

f x x x x x
=

= − + −∑
%

                            (2.7b) 

( ) ( )( )
4

4 2

1

0.5 16 5 25cos 5j j j j
j

f x x x x x
=

= − + −∑
%

                            (2.7c) 

 
Στις Εξ.(2.7) δεν υπάρχουν µη-γραµµικοί όροι περιέχοντες ταυτόχρονα δύο διαφορετικές 

µεταβλητές, συνεπώς η γραφική παράσταση ενός µόνον όρου του αθροίσµατος επαρκεί για 
µία ικανοποιητική οπτικοποίηση της εν λόγω συνάρτησης, όπως φαίνεται στο Σχήµα 2.3. 
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Σχήµα 2.3: ∆ιαγράµµατα για τη συνάρτηση MBF-4: (a) βασική διατύπωση, (b) αυξηµένο 

πλήθος ακροτάτων και (c) µεγάλες κλίσεις πλησίον των ακροτάτων 
 
Στο Σχήµα 2.3b είναι εµφανής η αύξηση του πλήθους των ακροτάτων, ενώ στο Σχήµα 2.3c 
είναι εµφανής η αύξηση της κλίσης της συνάρτησης πλησίον των ακροτάτων. 
 
2.3.3.4. Η συνάρτηση (MBF5) και παραλλαγές αυτής 

Η µαθηµατική έκφραση αυτής της συνάρτησης φαίνεται στην Εξ.(2.8a), το πεδίο ορισµού 
της είναι [ ]5.12,5.12x∈ −

%
, ενώ το καθολικό ελάχιστο βρίσκεται στη θέση 0x =

% %
 µε τιµή 

0optif = . Οι εξετασθείσες παραλλαγές περιγράφονται στις Eξ.(2.8b, 2.8c). 
 

( ) ( )( )
8

2

1
80 10cos 2j j

j
f x x xπ

=

= + −∑
%

                                 (2.8a) 

( ) ( )( )
8

2

1
80 10cos 4j j

j
f x x xπ

=

= + −∑
%

                                 (2.8b) 

( ) ( )( )
8

2

1
80 30cos 2j j

j
f x x xπ

=

= + −∑
%

                                  (2.8c) 
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Όπως προηγουµένως, η γραφική παράσταση ενός µόνον όρου του αθροίσµατος επαρκεί 
για µία ικανοποιητική οπτικοποίηση της εν λόγω συνάρτησης, όπως φαίνεται στο Σχήµα 2.4. 
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Σχήµα 2.4: ∆ιαγράµµατα για τη συνάρτηση MBF-5: (a) βασική διατύπωση, (b) αυξηµένο 

πλήθος ακροτάτων και (c) µεγάλες κλίσεις πλησίον των ακροτάτων 

 
 
2.4. ∆είκτες Επίδοσης 

Για την αξιολόγηση της προτεινοµένης υβριδικής διαδικασίας βελτιστοποίησης 
(ονοµαζόµενης ως ‘Hybrid’ εφεξής), πραγµατοποιήθηκαν max 100N =  αναλύσεις για κάθε µία 
από τις εξεταζόµενες συναρτήσεις. Για την k -ιοστή ανάλυση, το αρχικό διάνυσµα σχεδίασης 

,ini kx
%

 οριζόταν ως φαίνεται στην Εξ.(2.9): 
 

( ) ( ) ( ), min max min max1 / 1ini kx x k x x N= + − − −
% % % %

, 1,2,...,100k =                (2.9) 
 
όπου minx

%
 και maxx

%
 είναι τα διανύσµατα σχεδίασης, τα οποία περιέχουν τα κάτω και άνω όρια 

των µεταβλητών σχεδίασης, αντίστοιχα. Για λόγους σύγκρισης, η ίδια διαδικασία των 100 
αναλύσεων εφαρµόσθηκε και στις άλλες χρησιµοποιηθείσες διαδικασίες βελτιτοποίησης, ήτοι 
στη µέθοδο Powell, στη διατύπωση των Nelder-Mead (N-M) σχετικά µε τη µέθοδο Simplex, 
στη µέθοδο των Hooke και Jeeves (H-J), καθώς και στη µέθοδο της Προσοµοιούµενης 
Ανόπτησης (SA). ∆ιευκρινίζεται ότι αυτές οι µέθοδοι είναι πράγµατι συγκρίσιµες, διότι όλες 
ανήκουν στην ίδια κατηγορία (µέθοδοι µηδενικής τάξης). ∆εδοµένου, δε, ότι για κάθε µία 
µέθοδο και για κάθε µία Μαθηµατική Συνάρτηση Επίδοσης, πραγµατοποιήθηκαν 100 
αναλύσεις βελτιστοποίησης, προκύπτει ότι η παρούσα διερεύνηση στηρίχθηκε σε 
αποτελέσµατα από 7200 αναλύσεις. Μία ανάλυση χαρακτηριζόταν ως ‘επιτυχής’ εάν το 
διάνυσµα σχεδίασης convergX

%
, στο οποίο κατέληγε, ανήκε στην άµεση γειτονιά του καθολικά 

βελτίστου διανύσµατος σχεδίασης optX
%

: 
 

converg optX X tol− ≤
% %

                                                  (2.10) 
 
Προκειµένου να ποσοτικοποιηθεί η συµπεριφορά των εξεταζοµένων µεθοδολογιών, ορίσθηκε 
ο ∆είκτης Επίδοσης 1EI , ο οποίος ερµηνεύεται ως ‘ποσοστό επιτυχών αναλύσεων’ και 
ορίζεται ως φαίνεται στην Εξ.(2.11): 
 

( )1 /success totalEI N N=                                                 (2.11) 
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Προφανώς, όταν 1 1EI =  τότε όλες οι αναλύσεις είναι επιτυχείς. Με βάση τα προκύπτοντα 
αποτελέσµατα, υπολογίσθηκαν οι δείκτες 1EI  και αποτυπώθηκαν σε ραβδογράµµατα.  

Επίσης, για την αξιολόγηση χρησιµοποιήθηκε η έννοια του µέσου όρου και της τυπικής 
απόκλισης του πλήθους των επαναλήψεων που απαιτήθηκαν µέχρι συγκλίσεως. Ειδικότερα, 
αυτά τα δύο µεγέθη υπολογίστηκαν για κάθε οµάδα των 100 αναλύσεων και αποτυπώθηκαν 
σε λογαριθµικά ραβδογράµµατα.  
 
2.4.1. Αριθµητικά αποτελέσµατα 

2.4.1.1. Αποτελέσµατα για τη συνάρτηση (MBF-1) και τις παραλλαγές της 

Για τη συνάρτηση MBF-1, η µέθοδος Powell αξιολογήθηκε µε ∆είκτη Επίδοσης 1 1EI =  
(Σχήµα 2.5a) και χρειάστηκε το µικρότερο πλήθος επαναλήψεων (Σχήµα 2.5b). Η 
προτεινόµενη µέθοδος εµφάνισε την ίδια ικανότητα εντοπισµού του καθολικού ακροτάτου µε 
τη µέθοδο Powell και τη µέθοδο (SA) αλλά χρειάστηκε περισσότερες επαναλήψεις.  
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Σχήµα 2.5: Αξιολόγηση της συνάρτησης MBF-1: (a) ∆είκτης Επίδοσης και (b) πλήθος 
επαναλήψεων 

 
2.4.1.2. Αποτελέσµατα για τη συνάρτηση (MBF-2) και τις παραλλαγές της 

Για τη συνάρτηση MBF-2, η προτεινόµενη, υβριδική µέθοδος µέθοδος ξεπέρασε τις 
υπόλοιπες διότι εµφάνισε τον απόλυτα καλύτερο ∆είκτη Επίδοσης 1 1EI = . Ωστόσο, 
χρειάστηκε λίγες επαναλήψεις περισσότερες από τη µέθοδο (SA), η οποία κατετάγη δεύτερη 
µε ∆είκτη Επίδοσης 1 0.4EI < . Όλες οι υπόλοιπες µέθοδοι εγκλωβίζονταν σε τοπικά 
ακρότατα και εµφάνισαν πολύ χαµηλή απόδοση (Σχήµα2.6a).  
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Σχήµα 2.6: Αξιολόγηση της συνάρτησης BMF-2: (a) ∆είκτης Επίδοσης και (b) πλήθος 
επαναλήψεων 
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2.4.1.3. Αποτελέσµατα για τη συνάρτηση (MBF-4) και τις παραλλαγές της 
Για τη συνάρτηση MBF-4, η εικόνα των αποτελεσµάτων είναι αρκετά παρεµφερής µε 

εκείνην της συνάρτησης MBF-1. Πιο συγκεκριµένα, η µέθοδος Powell εµφάνισε την 
καλύτερη συµπεριφορά δεδοµένου ότι είχε ∆είκτη Επίδοσης 1 1EI =  (Σχήµα 2.7a) και 
χρειάστηκε το µικρότερο πλήθος επαναλήψεων µέχρι συγκλίσεως (Σχήµα 2.6b). Το 
προτεινόµενο, υβριδικό σχήµα εµφάνισε την ίδια άριστη συµπεριφορά, ως προς τον 
εντοπισµό του καθολικού ελαχίστου, ωστόσο χρειάστηκε περισσότερες επαναλήψεις απ’ 
αυτήν. Οι άλλες δύο µέθοδοι, δηλαδή η µέθοδος H-J και η µέθοδος N-M, είχαν πολύ καλή 
επίδοση για τη βασική διατύπωση των συναρτήσεων επίδοσης αλλά δυσκολεύθηκαν πολύ µε 
τις παραλλαγές αυτών.  
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Σχήµα 2.7: Αξιολόγηση της συνάρτησης BMF-4: (a) ∆είκτης Επίδοσης και (b) πλήθος 
επαναλήψεων 

 
2.4.1.4. Αποτελέσµατα για τη συνάρτηση (MBF-5) και τις παραλλαγές της 

Για τη συνάρτηση MBF-5, µόνον η µέθοδος (SA) και η προτεινόµενη, υβριδική 
διαδικασία κατάφεραν να έχουν έναν σχεδόν άριστο ∆είκτη Επίδοσης για όλες τις 
εξετασθείσες περιπτώσεις (Σχήµα 2.8a), µε την υβριδική µέθοδο να υπερτερεί ελαφρώς ως 
προς την τιµή του ∆είκτη Επίδοσης 1EI  αλλά να υστερεί ως προς το απαιτούµενο πλήθος 
επαναλήψεων µέχρι συγκλίσεως (Σχήµα 2.8b). Η µέθοδος Powell επέδειξε άριστη 
συµπεριφορά αλλά µόνο για την πρώτη παραλλαγή της εξετασθείσας συνάρτησης επίδοσης, 
ενώ για τις άλλες δύο εκφράσεις απέτυχε πλήρως. Η µέθοδος H-J δεν επέδειξε καλή επίδοση, 
ενώ η µέθοδος N-M παρουσίασε τη χειρότερη συµπεριφορά. 
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Σχήµα 2.8: Αξιολόγηση της συνάρτησης BMF-5: (a) ∆είκτης Επίδοσης και (b) πλήθος 
επαναλήψεων 
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2.4.2. Σχολιασµός 
Μέσα από τις προηγούµενες ενότητες, παρουσιάσθηκε µία νέα, υβριδική µεθοδολογία 

κατάλληλη για την αντιµετώπιση προβληµάτων ελαχιστοποίησης µαθηµατικών συναρτήσεων 
χωρίς περιορισµούς. Η βασική ιδέα ήταν η εισαγωγή του στοιχείου της τυχαιότητας σε µία 
ισχυρή αιτιοκρατική διαδικασία, όταν δεν είναι δυνατή η επίτευξη περαιτέρω βελτίωσης µέσα 
από την αιτιοκρατική αναζήτηση. Πιο συγκεκριµένα, µία αιτιοκρατική διαδικασία 
βελτιστοποίησης τερµατίζεται είτε όταν έχει εντοπισθεί το καθολικό ακρότατο είτε όταν ένα 
τοπικό ακρότατο έχει ψευδώς αναγνωρισθεί ως καθολικό ακρότατο. Στη δεύτερη περίπτωση, 
ο κίνδυνος εγκλωβισµού σε τοπικό ακρότατο µειώνεται, χωρίς, ωστόσο, να απαλείφεται, όταν 
εισάγεται κάποια τυχαιότητα διότι µε αυτόν τον τρόπο παρέχεται ένα µέσον για πιθανό 
απεγκλωβισµό. Για τις ανάγκες της παρούσας µελέτης, διαµορφώθηκε ένα υβριδικό σχήµα 
από µία αιτιοκρατική (µέθοδος Powell) και µία στοχαστική διαδικασία (µέθοδος 
Προσοµοιούµενης Ανόπτησης - SA). Η µέθοδος Powell επιλέχθηκε λόγω της υψηλής της 
απόδοση σε συνδυασµό µε την απλότητά της, ενώ η µέθοδος (SA) επιλέχθηκε λόγω της 
εξαιρετικής της απόδοσης σε 1-∆ προβλήµατα βελτιστοποίησης. Στο προτεινόµενο υβρικό 
σχήµα, το στοιχείο της τυχαιότητας εµφανίζεται µε δύο τρόπους. Κατά πρώτον, 
πραγµατοποιείται αναζήτηση γραµµής µε τη µέθοδο (SA) κατά τη διεύθυνση την οποία 
ορίζουν το πρώτο και το τελευταίο διάνυσµα σχεδίασης µίας επανάληψης (pattern search 
direction). Κατά δεύτερον, όταν διαπιστώνεται ότι το βέλτιστο διάνυσµα σχεδίασης δεν 
βελτιώνεται, εκκινείται µία διαδικασία τοπικής αναζήτησης µε τη µέθοδο (SA), στην υπερ-
σφαίρα γύρω από τη θέση του φαινοµένου ως καθολικού ελαχίστου. Η διάµετρος αυτής της 
σφαίρας αποτελεί παράµετρο της διαδικασίας και διαπιστώθηκε ότι διαδραµατίζει σηµαντικό 
ρόλο στην τελική σύγκλιση. Εάν εκ νέου διαπιστώνεται ότι το βέλτιστο διάνυσµα σχεδίασης 
δεν βελτιώνεται, τότε η διαδικασία τερµατίζεται. 

Η προτεινόµενη διαδικασία βελτιστοποίησης αναµένεται να συνδυάζει την ανώτερη 
επίδοση της µεθόδου (SA), ως προς την επίλυση 1-∆ προβληµάτων βελτιστοποίησης, µε το 
µικρό πλήθος επαναλήψεων, το οποίο απαιτεί η µέθοδος Powell. Προέκυψε ότι, σε όλα τα 
εξετασθέντα παραδείγµατα, η προτεινόµενη διαδικασία όντως εντόπισε το καθολικό 
ακρότατο, απαιτώντας, ωστόσο, περισσότερες επαναλήψεις από τη µέθοδο (SA). Η 
αιτιολογία γι’ αυτό είναι αρκετά απλή: η σύγκλιση εξετάζεται στο τέλος µίας πλήρους 
επανάληψης, δηλαδή όταν όλα τα αιτιοκρατικά και στοχαστικά βήµατα έχουν ολοκληρωθεί. 
Ωστόσο, το αντίστοιχο πλήθος κλήσεων της αντικειµενικής συνάρτησης ενδεχοµένως να 
καταστεί πολύ µεγάλο διότι η ίδια ρουτίνα (SA)-αναζήτησης, µε της ίδιες ρυθµίσεις, είναι 
δυνατόν να κληθεί δύο φορές εντός της ίδιας επανάληψης. Αυτό σηµαίνει ότι µία περαιτέρω 
βελτίωση, σχετικά µε τη µείωση του πλήθους των κλήσεων της αντικειµενικής συνάρτησης, 
είναι εφικτή, εάν ο έλεγχος σύγκλισης υλοποιείται µεν εντός µίας πλήρους επανάληψης αλλά 
οι ρυθµίσεις της (SA)-αναζήτησης είναι διαφορετικές για την αναζήτηση γραµµής και για την 
αναζήτηση τοπικού χαρακτήρα στην προαναφερθείσα υπερ-σφάιρα. 

Τέλος, ένα σηµείο άξιο επισήµανσης αφορά στην ευαισθησία εντοπισµού του ελαχίστου 
ως προς τα όρια του πεδίου ορισµού. Όπως προέκυψε, ακόµα και µία µικρή µεταβολή σε 
αυτά τα όρια επηρέασε σηµαντικά τον ∆είκτη Επίδοσης 1EI  των αιτιοκρατικών 
µεθοδολογιών βελτιστοποίησης. Αυτός είναι και ο λόγος για τον οποίο ορισµένες 
µεθοδολογίες, ιδίως η µέθοδος Powell, εµφάνισαν χαµηλή απόδοση. Επιπροσθέτως, 
παρατηρήθηκε ότι, όταν το πεδίο ορισµού µίας άρτιας συνάρτησης µεταβαλλόταν από 
συµµετρικό σε µη-συµµετρικό, το καθολικό ελάχιστο εντοπιζόταν µε µεγαλύτερη ευκολία. 
Στον αντίποδα, τόσο η µέθοδος της Προσοµοιούµενης Ανόπτησης (SA) όσο και η 
προτεινόµενη διαδικασία βελτιστοποίησης, εµφάνισαν µία πολύ στιβαρή συµπεριφορά, µη-
επηρεαζόµενη από µεταβολές στα όρια του πεδίου ορισµού.  
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2.5. Συµπεράσµατα 
Η προτεινόµενη υβρική διαδικασία βελτιστοποίησης ανήκει στην κατηγορία των µεθόδων 

µηδενικής τάξης. Για την αξιολόγησή της, χρησιµοποιήθηκαν, συνολικά, δώδεκα 
Μαθηµατικές Συναρτήσεις Επίδοσης, χωρισµένες σε τέσσερεις τριάδες. Κάθε τριάδα περιείχε 
µια βιβλιογραφική Μαθηµατική Συνάρτηση Επίδοσης και δύο παραλλαγές αυτής, οι οποίες 
διαµορφώθηκαν στο πλαίσιο της παρούσης ∆ιδακτορικής ∆ιατριβής µε σκοπό την αύξηση 
της δυσκολίας εντοπισµού του καθολικού ελαχίστου. Ειδικότερα, η µία παραλλαγή εµφάνιζε 
µεγαλύτερο πλήθος τοπικών ελαχίστων ενώ η άλλη παραλλαγή εµφάνιζε µεγαλύτερες κλίσεις 
πλησίον των ακροτάτων. Τα αποτελέσµατα, τα οποία προέκυψαν χρησιµοποιώντας την 
προτεινόµενη διαδικασία στις προαναφερθείσες συναρτήσεις, συγκρίθηκαν µε τα αντίστοιχα 
αποτελέσµατα, τα οποία ελήφθησαν χρησιµοποιώντας άλλες βιβλιογραφικές µεθοδολογίες 
µηδενικής τάξης. Ειδικότερα, πραγµατοποιήθηκε σύγκριση µε τη µέθοδο Powell, τη µέθοδο 
της Προσοµοιούµενης Ανόπτησης, τη διατύπωση της µεθόδου Simplex κατά Nelder και 
Mead καθώς και τη µέθοδο των Hooke και Jeeves. Προέκυψε ότι η προτεινόµενη διαδικασία 
βελτιστοποίησης υπερτερούσε έναντι όλων των εν λόγω µεθοδολογιών ως προς τον 
εντοπισµό του καθολικού ελαχίστου, ωστόσο εµφάνισε υψηλό υπολογιστικό κόστος. Ως εκ 
τούτου, εξ ίσου υψηλό υπολογιστικό κόστος αναµένεται να εµφανισθεί και κατά την 
εφαρµογή της σε προβλήµατα βελτιστοποίησης κατασκευών, κάτι το οποίο υποδεικνύει την 
ανάγκη για εξέταση µεθόδων, στις οποίες αξιοποιούνται εγγενή χαρακτηριστικά του προς 
επίλυση προβλήµατος, κάτι το οποίο αναµένεται να συνοδευθεί από µείωση του 
υπολογιστικού κόστους.  
 
 
Βιβλιογραφία 
Barricelli, N.A. (1962a), “Numerical testing of evolution theories: I. Theoretical introduction and basic tests”, 

Acta Biotheoretica, Vol. 16:1-2, pp.69-98. 
Barricelli, N.A. (1962b), “Numerical testing of evolution theories: II. Preliminary tests of performance 

symbiogenesis and terrestrial life”, Acta Biotheoretica, Vol. 16:1-2, pp.69-98. 
Begley, S. (1995), “Software au Naturel”, Newsweek, May 8. 
Belegundu, A.D., Chandrupatla, T.R. (1999), Optimization concepts and applications in engineering, Prentice 

Hall. 
Bendsøe, M.P., Sigmund O. (2003), Topology Optimization, Theory, Methods and Applications, Springer-

Verlag, Berlin. 
Bledsoe, W.W. (1962), An Analysis of Genetic Populations, Technical Report, Panoramic Research Inc., Palo 

Alto, California. 
Bledsoe, W.W. (1962), The Evolutionary Method in Hill Climbing: Convergence Rates, Technical Report, 

Panoramic Research, Inc., Palo Alto, California. 
Botello S, Marraquin J.L, Onãte E, Van Horebeek J (1999), “Solving structural optimization problems with 

genetic algorithms and simulated annealing”, Int J Numer Methods Eng, Vol.45, pp.1069–1084. 
Box, G.E.P. (1957), “Evolutionary operation: A method for increasing industrial productivity”, Appl. Statistics, 

vol. VI (2), pp.81-101. 
Box, M.J. (1965), “A New Method of Constrained Optimization and a Comparison with Other Methods”, 

Computer J, Vol.8, pp.42-52. 
Bremermann, H.J. (1962), “Optimization through Evolution and Recombination”, In Self-Organizing Systems, 

eds. M. T. Yovits, Jacobi, and Goldstein. Washington, D. C.: Spartan, pp.93-106. 
Burke E.K., Smith A.J. (2000), “Hybrid evolutionary techniques for the maintenance scheduling problem”, 

IEEE Trans Power Syst , Vol.15(1), pp.122–128.  
Cannon, W.D. (1932), The Wisdom of the Body, W.W. Norton, New York. 
Cauchy, A. (1847), “Methode generale pour la resolution des systemes d’equations simultanes”, Compt. Rend., 

Vol.25, pp.536-538. 
Conrad, M. (1969), Computer experiments on the evolution of coadaptation in a primitive ecosystem, Ph.D. 

Diss., Biophysics Program, Stanford, CA.  
Conrad, M., Pattee, H.H. (1970), “Evolution experiments with an artificial ecosystem”, J. Theoret. Biol., Vol. 

28, pp.393-409.  



Δ.Τ. Βενετσάνος – Διδακτορική Διατριβή ‐ 2010 

Σ ε λ ί δ α  | ΕΛ.2.17 

Courant, R. (1943)"Variational methods for the solution of problems of equilibrium and vibrations", 
BullAmerMathSoc.,Vol.49,pp.1–23. 

Dantzig, G. B., (1951)) “Maximization of a linear function of variables subject to linear inequalities”, Activity 
Analysis of Production and Allocation, Koopman (Ed.), Cowles Commission Monograph, 13, John Wiley 
and Sons, New York. 

De Jong, K. (1975), An analysis of the behaviour of a class of genetic adaptive systems, PhD thesis, University 
of Michigan. 

Fiacco, A.V., McCormick, G.P. (1966), “Extension of SUMT for nonlinear programming: equality constraints 
and extrapolation”, Management Science, Vol. 12, pp.816-828. 

Fletcher, R., Powell, M.J.D. (1963), “A rapidly convergent descent method for minimization”, Computer J., 
Vol.6(2), pp.163-168. 

Fletcher, R., Reeves, C.M (1964), “Function Minimization by Conjugate Gradients”, Computer J., Vol.7, 
pp.149-154. 

Fogel, D.B. (2006), Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 3rd  ed., 
IEEE Press, New York.  

Fogel, L. J., Owens, A.J., Walsh, M.J. (1966). Artificial Intelligence through Simulated Evolution. John Wiley & 
Sons, New York. 

Friedberg, R.M. (1958), “A Learning Machine: Part I”," IBM J. Research and Development, Vol. 2, pp.2-13.  
Friedberg, R.M., Dunham B., North,J.H. (1959),“A Learning Machine: Part II", IBM J. Research and 

Development, Vol. 3, pp.183-191.  
Galinier P, Hao J.K. (1999), “Hybrid evolutionary algorithms for graph coloring”, J Comb Optim, Vol. 3(4), 

pp.379–397. 
Giotis A., Giannakoglou K. (2004), Evolutionary Algorithm SYstem version 1.3.4, manual, Laboratory of 

Thermal Turbomachines, National Technical University of Athens. 
Goldberg, D. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley. 
Haftka, R.T., Gurdal, Z., Kamat, M. (1990), Elements of Structural Optimization, Kluwer. 
Haupt, R., Haupt S.E. (1998), Practical Genetic Algorithms, John Wiley & Sons, New York. 
Holland, J.H. (1973), “Genetic Algorithms and the Optimal Allocation of Trials”, SIAM J. Comput. Vol.2(2), 

pp.88-105. 
Holland, J.H. (1975), Adaptation in natural artificial systems, University of Michigan Press, Ann Arbor, MI. 
Hooke, R., Jeeves, T.A. (1961), “Direct Search Solution of Numerical and Statistical Problems”, J of the ACM, 

Vol.8, pp.212-229. 
Karush, W. (1939), Minima of Functions of Several Variables with Inequalities as Side Conditions, MS Thesis, 

Dept. of Mathematics, University of Chicago, Chicago, IL. 
Kirkpatrick, S. (1984), “Optimization by simulated annealing: quantitative studies”, J Statist Phys, Vol. 34, pp. 

975-986. 
Kirsch, U. (1993), Structural Optimization, Springer-Verlag. 
Kuhn, H.W., Tucker A.W. (1951) “Non-linear Programming”, in J.Neyman (Ed.), Proceedings of the Second 

Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 
Berkeley, CA , pp.481-493. 

Magoulas G.D., Plagianakos V.P., Vrahatis M.N. (2001), “Hybrid methods using evolutionary algorithms for 
on-line training”, In: Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, 
Washington DC; 14–19 July 2001, USA. 

Mahfoud W.S., Goldberg D.E. (1994), “Parallel recombinative simulated annealing: a genetic algorithm”, 
IlliGAL Report No. 93006, Department of Computer Science, University of Illinois. 

Makris, P., Provatidis, C. (2002), “Weight minimisation of displacement-constrained truss structures using a 
strain energy criterion”, Computer Methods Appl. Mech. Engrg., Vol. 191, pp. 2159-2177. 

Michalewicz, Z. (1996), Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed., Springer Verlag, 
Berlin. 

Morris, A.J. (1982), Foundations of Structural Optimization: A Unified Approach, John Wiley & Sons. 
Nagendra, S. (1997), Catalogue of test problems for Optimization Algorithms verification, GE Research & 

Development Center. 
Nelder, J.A., Mead, R. (1965), “A Simplex Method for Function Minimization”, Computer Journal, Vol.7, pp. 

308-313. 
Pham, D.T., Karaboga D. (2000), Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search, 

Similated Annealing and Neural Netwroks, Springer-Verlag. 
Powell, M.J.D. (1964), “An efficient Method for finding the minimum of a function of several variables without 

calculating derivatives”, Computer Journal, Vol.7 (4), pp.303-307. 
Rechenberg, I. (1965), Cybernetic solution path of an experimental problem. Royal Aircraft Establishment, 

Farnborough, page Library Translation 1122. 



Δ.Τ. Βενετσάνος – Διδακτορική Διατριβή ‐ 2010 

Σ ε λ ί δ α  | ΕΛ.2.18 

Renders, J.M., Flasse, S.P. (1996), “Hybrid methods using genetic algorithms for global optimization”, IEEE 
Transactions on Systems, Man, and Cybernetics, Part B. 

Rosen, J. (1960), “The Gradient Projection Method for Nonlinear Programming, I. Linear Constraints”, Journal 
of the Society for Industrial and Applied Mathematics, Vol.8, pp.181–217. 

Rosenbrock, H.H. (1960), “An Automatic Method for finding the Greatest or Least Value of a Function”, Comp 
J, Vol.3, pp.175-184. 

Rozvany, G.I.N. (2001), “Aims, scope, methods, history and unified terminology of computer-aided topology 
optimization in structural mechanics”, Struct. Multidisc Optim, Vol. 21, pp. 90-108. 

Russo, L. (2004), The forgotten revolution: How science was born in 300BC and why it had to be reborn. 
Springer, Berlin. 

Schmidt, H., Thierauf G. (2005), “A combined heuristic optimization technique”, Advances in Engineering 
Software, Vol.36, pp. 11–19. 

Suzuki, K., Kikuchi, N. (1991), “A Homogenization Method for Shape and Topology Optimization”, Computer 
Methods Appl. Mech. Engrg., Vol. 93, pp. 291-318. 

Turing, A.M. (1950), “Computing machinery and intelligence”, Mind, Vol. 59, pp.433-460. 
Venkatamaran, P. (2002), Applied Optimization with Matlab Programming, Wiley. 
Veselago, V.G. (2002), “Formulating Fermat's principle for light traveling in negative refraction materials”, 

PHYS-USP, Vol. 45(10), pp. 1097-1099. 
Xie, Y.M., Steven, G.P. (1997), Evolutionary Structural Optimization, Springer-Verlag. 
Zoutendijk, G. (1960), Methods of Feasible Directions, Elsevier. 
 
 
Εργασίες  
[1] Provatidis, C.G., Vossou C.G., Venetsanos D.T., “Verification of popular deterministic and stochastic 

optimization methods using benchmark mathematical functions”, In: D.Tsahalis (ed.), CD Proc. 1st 
International Conference “From Specific Computing to Computational Engineering”, 8-10 September, 
2004, Athens, Greece. 

[2] Provatidis C.G., Venetsanos D.T., Vossou C.G., “A comparative study on deterministic and stochastic 
optimization algorithms applied to truss design”, In: D.Tsahalis (ed.), CD Proc. 1st International 
Conference “From Specific Computing to Computational Engineering”, 8-10 September, 2004, Athens, 
Greece. 

[3] Provatidis C.G., Venetsanos D.T., Markos P.A., “Investigation Of Hybrid Optimization Schemes With A 
Deterministic Search Direction And A Stochastic Step Size”, 2nd International Conference “From 
Scientific Computing to Computational Engineering”, 5-8 July, 2006, Athens, Greece. 

[4] Papageorgiou A.A., Venetsanos D.T., Provatidis C.G., “Investigating The Influence Of Typical Genetic 
Algorithm Parameters On The Optimization Of Benchmark Mathematical Functions”, 2nd International 
Conference “From Scientific Computing to Computational Engineering”, 5-8 July, 2006, Athens, Greece. 

 
 



 
 

ΚΕΦΑΛΑΙΟ 3 
(ΠΕΡΙΛΗΨΗ) 

 
 

ΘΕΩΡΗΤΙΚΑ ΣΤΟΙΧΕΙΑ  

ΕΠΙ ΤΗΣ ΑΠΟΜΑΚΡΥΝΣΗΣ ΥΛΙΚΟΥ 

ΑΠΟ ΜΙΑ ΚΑΤΑΣΚΕΥΗ 
 
 
 
 

Στην παρούσα περίληψη κεφαλαίου, παρατίθεται μία ενεργειακή προσέγγιση σχετικά με την 
απομάκρυνση υλικού από μία κατασκευή. Ειδικότερα, μετά από μία σύντομη βιβλιογραφική 

εισαγωγή, εξετάζονται διάφορα σχήματα απομάκρυνσης υλικού, διατυπώνεται ένα νέο Βέλτιστο 
Κριτήριο για την περίπτωση επιβολής ενός περιορισμού ανάπαλσης, διαμορφώνεται μια αντίστοιχη, 

νέα διαδικασία βελτιστοποίησης, ενώ καταδεικνύεται η διαφορά μεταξύ επιβολής περιορισμού 
ανάπαλσης και περιορισμού μετατόπισης. 
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3.1. Εισαγωγή 
Μετά από την εργασία-ορόσηµο του Michell (Michell, 1904), το πρόβληµα της βέλτιστης 

σχεδίασης µίας κατασκευής θεωρήθηκε πλέον ως πρόβληµα βέλτιστης κατανοµής υλικού. 
Για την επίλυση του εν λόγω προβλήµατος διατυπώθηκε πληθώρα µεθοδολογιών, οι οποίες 
είτε αναζητούσαν υλικό µικρής ενεργειακής συµµετοχής στην κατασκευή, προκειµένου να το 
αποµακρύνουν, είτε επεδίωκαν την ανακατανοµή του διαθεσίµου υλικού, προκειµένου να 
ενισχυθούν οι περισσότερο φορτιζόµενες περιοχές. Προς αυτήν την κατεύθυνση, έχουν 
διατυπωθεί αµιγώς µαθηµατικές µεθοδολογίες (Svanberg, 1987; 1995; Stolpe και Svanberg, 
2001; Bruyneel και συνεργάτες, 2002). Ωστόσο, τέτοιου είδους προσεγγίσεις δεν αξιοποιούν 
την έννοια της ενέργειας παραµόρφωσης, η οποία αποτελεί ένα εγγενές χαρακτηριστικό των 
κατασκευών, άρα και της βελτιστοποίησής τους. Μία τέτοια αξιοποίηση είναι δυνατόν να 
επιτευχθεί µέσω της διατύπωσης ενεργειακών προσεγγίσεων, κάτι που αποτελεί και το κύριο 
αντικείµενο της παρούσης περίληψης κεφαλαίου. Πιο συγκεκριµένα, εξετάζεται η ιδέα της 
ολικής και της µερικής αποµάκρυνσης υλικού από µία κατασκευή, ενώ προσεγγίζεται το 
πρόβληµα βελτιστοποίησης κατασκευών υπό την επιβολή ενός περιορισµού ανάπαλσης. 

Η µερική ή και η ολική αφαίρεση υλικού είναι δυνατόν να επιτευχθεί χρησιµοποιώντας τη 
µέθοδο Evolutionary Structural Optimization (ESO) (Xie και Steven, 1993; 1996; 1997; Xie 
και συνεργάτες, 2005; Steven και συνεργάτες, 2000). Η κεντρική ιδέα αυτής της µεθόδου 
είναι η διατύπωση δεικτών ευαισθησίας, ως µέσο εντοπισµού υλικού υποψηφίου προς 
αποµάκρυνση (Nha Chu και συνεργάτες, 1996; 1997). Βάσει αυτών των δεικτών, το 
διαθέσιµο υλικό αξιολογείται και εκείνο µε τους χαµηλότερους δείκτες αποµακρύνεται, είτε 
µερικώς είτε ολικώς (Querin και συνεργάτες, 2000a; 2000b; Yang και συνεργάτες, 1999; 
2005). Η µέθοδος ESO είναι πολύ απλή στην εφαρµογή της και καλύπτει ένα ευρύ φάσµα 
εφαρµογών (Rong και συνεργάτες, 2000; Das και συνεργάτες, 2005; Ren και συνεργάτες, 
2005; Zuo και συνεργάτες, 2005; Wei, 2005). Ωστόσο, µέχρι στιγµής, στηρίζεται 
περισσότερο στη λογική σκέψη της αποµάκρυνσης πλεονάζοντος υλικού προς µείωση του 
βάρους µίας κατασκευής παρά σε ένα στιβαρό µαθηµατικό υπόβαθρο (Zhou και Rozvany, 
2001; Edwards και συνεργάτες, 2007), αν και έχουν δηµοσιευθεί προσπάθειες προς αυτήν την 
κατεύθυνση (Tanskanen, 2002). Στην παρούσα περίληψη κεφαλαίου, διατυπώνεται και 
σχολιάζεται η θεωρητική προσέγγιση της αποµάκρυνσης υλικού βάσει σχηµάτων τύπου ESO, 
προκειµένου να αναδειχθούν πτυχές αυτού του τρόπου µείωσης του βάρους µίας κατασκευής. 

Το πρόβληµα της ελαχιστοποίησης του βάρους µίας κατασκευής υπό την επιβολή ενός 
περιορισµού ανάπαλσης αποτελεί µία ακόµα πολυσυζητηµένη κατηγορία προβληµάτων 
βελτιστοποίησης (Bendsøe και Kikuchi, 1988; Bendsøe, 1989; Haber και συνεργάτες, 1996; 
Kita και Tanie, 1999; Fujii και Kikuchi, 2000; Bendsøe και Sigmund, 2003; Burns και 
Tortorelli, 2003; Allaire και συνεργάτες, 2004; Burns, 2005). Το εν λόγω πρόβληµα 
εµφανίζεται στη διεθνή βιβλιογραφία µε δύο διατυπώσεις. Σύµφωνα µε την πρώτη 
διατύπωση, αναζητείται η ελαχιστοποίηση της ανάπαλσης όταν δίδεται συγκεκριµένη 
ποσότητα διαθεσίµου υλικού (Bendsøe και Sigmund, 2003; Sigmund, 2001a; 2001b; 2001c), 
έστω πρόβληµα CCA (Complicance Constraint problem A), ενώ, σύµφωνα, µε τη δεύτερη 
διατύπωση, αναζητείται η ελαχιστοποίηση του βάρους µίας κατασκευής όταν δίδεται 
συγκεκριµένη τιµή για την ανάπαλση (Xie και Steven, 1993), έστω πρόβληµα CCB 
(Complicance Constraint problem B). Ωστόσο, είναι αληθές ότι κανένα πρότυπο σχετικά µε 
σιδηρές κατασκευές (Ευρωκώδικες, κανονισµοί DIN, κανονισµοί LRFD, κλπ) δεν 
περιλαµβάνει περιορισµό ως προς την ανάπαλση. Συνεπώς, είναι λογικό να αναρωτηθεί 
κανείς προς τι η ενασχόληση µε αυτό το πρόβληµα. Η απάντηση σε αυτό το ερώτηµα είναι 
σχετικά απλή: αποδεικνύεται ότι το πρόβληµα βελτιστοποίησης µε περιορισµό ανάπαλσης 
είναι κυρτό πρόβληµα, οπότε ένα τοπικό ακρότατο αποτελεί ταυτόχρονα και ολικό ακρότατο 
(Svanberg, 1994). Επιπροσθέτως, το συγκεκριµένο πρόβληµα αποτελεί την απλούστερη 
δυνατή διατύπωση σχετικά µε τη βελτιστοποίηση κατασκευών. Η διαχείριση άλλου είδους 
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περιορισµών είναι πολύ πιο δύσκολη (Duysinx και Sigmund, 1988; Duysinx και Bendsøe, 
1998; Bendsøe και Sigmund, 2003), κάτι ιδιαιτέρως αληθές όταν πρόκειται για περιορισµούς 
τάσης. Ελαχιστοποίηση της ανάπαλσης, δε, σηµαίνει µεγιστοποίηση της δυσκαµψίας, οπότε, 
υπό αυτήν την έννοια, είναι δυνατή η διαµόρφωση µίας καλής εκτίµησης σχετικά µε τον 
τρόπο κατανοµής του υλικού προκειµένου να εξασφαλισθεί η µέγιστη δυνατή δυσκαµψία. Το 
συγκεκριµένο πρόβληµα βελτιστοποίησης έχει µελετηθεί εκτενώς (Ben-Tal και Nemirovski, 
1994; 1995; 1997; 2000; Achtziger και συνεργάτες, 1992; Ben-Tal και Bendsøe, 1993).  

Στο πλαίσιο της παρούσας ∆ιδακτορικής ∆ιατριβής και σχετικά µε το προαναφερθέν 
πρόβληµα CCA, προτείνεται µία νέα διαδικασία βελτιστοποίησης. Αυτή διαφοροποιείται από 
τις ήδη υπάρχουσες και αφορούσες στο πρόβληµα CCB. Επίσης, διαφοροποιείται από τις 
µεθόδους τύπου ESO αφορούσες στο πρόβληµα CCA διότι, σε αντίθεση µε αυτές, διαθέτει 
ένα αµιγώς µαθηµατικό υπόβαθρο, τη µέθοδο πολλαπλασιαστών Lagrange εν προκειµένω, εξ 
αιτίας του οποίου είναι δυνατή η αποβολή υλικού ανεξαρτήτως της επίδρασης που αυτό έχει 
στη δυσκαµψία της κατασκευής. Πρόκειται για µία σηµαντική διαφοροποίηση, δεδοµένου ότι 
οι µεθόδοι τύπου ESO προϋποθέτουν και απαιτούν την αποβολή υλικού µόνον εάν θα 
προκληθεί µικρή µεταβολή στη δυσκαµψία της κατασκευής. 
 
3.2. Βελτιστοποίηση 2∆ συνεχούς µέσου µε αποβολή υλικού 
3.2.1. Θεωρητική προσέγγιση 

Έστω ένα 2∆ παραµορφώσιµο σώµα, διακριτοποιηµένο σε ένα πλήθος πεπερασµένων 
στοιχείων και φορτιζόµενο από ένα σύνολο εξωτερικών δυνάµεων. Ανεξαρτήτως συστήµατος 
αναφοράς, το έργο που παράγουν οι εξωτερικές δυνάµεις αποθηκεύεται στο εν λόγω σώµα µε 
τη µορφή ενέργειας παραµόρφωσης: 
 

{ } [ ]{ }int 1
2

TextW W u K u⎛ ⎞= = ⎜ ⎟
⎝ ⎠

                                           (3.1) 

 
όπου { }u  είναι το διάνυσµα των κοµβικών µετατοπίσεων και [ ]K  είναι το µητρώο 
δυσκαµψίας του σώµατος. Από την ισορροπία δυνάµεων του σώµατος, ισχύει: 
 

{ } [ ]{ }extF K u=                                                        (3.2) 
 
Εάν πρέπει να αφαιρεθεί υλικό από το εν λόγω σώµα, τότε το µητρώο δυσκαµψίας του 
µειώνεται κατά [ ]K∆ , ενώ οι κοµβικές µετατοπίσεις αυξάνονται κατά { }uδ : 
 

{ } [ ]{ } [ ]{ }extF K u K K u uδ= = −∆ +                                        (3.3) 
 
Εκτελώντας πράξεις, προκύπτει: 
 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }K u K u K u K u K uδ δ= + − ∆ − ∆                            (3.4) 
 
Εξ αιτίας της αποβολής υλικού, το πεδίο των κοµβικών µετατοπίσεων µεταβάλλεται, άρα 
µεταβάλλεται και το έργο των εξωτερικά ασκουµένων δυνάµεων: 

 

{ } { }( ), 1
2

T extext newW u u Fδ⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                          (3.5) 



Δ.T. Βενετσάνος – Διδακτορική Διατριβή ‐ 2010 

Σ ε λ ί δ α  | ΕΛ.3.4 

Ισοδύναµα, ισχύει: 
 

{ } { } { } { }( ), 1
2

T ext T extext newW u F u Fδ⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                  (3.6) 

 
Συνεπώς, η µεταβολή του έργου των εξωτερικών δυνάµεων καθίσταται ίση προς: 
 

{ } { }1
2

T extextW u Fδ⎛ ⎞∆ = ⎜ ⎟
⎝ ⎠

                                               (3.7) 

 
Ισοδύναµα, ισχύει: 
 

{ } [ ]{ }1
2

TextW u K uδ⎛ ⎞∆ = ⎜ ⎟
⎝ ⎠

                                              (3.8) 

 
Από την Εξ.(3.4), µετά από απλοποιήσεις, προκύπτει:  
 

[ ]{ } [ ]{ } [ ]{ }K u K u K uδ δ= ∆ + ∆                                           (3.9) 
 
Λαµβάνοντας υπόψη τις ιδιότητες ενός αναστρόφου πίνακα, ισχύει: 
 

{ } [ ] { } [ ] [ ]{ }( )TTT Tu K u K K uδ δ δ= =                                     (3.10) 
 
Ο συνδυασµός των Εξ. (3.9, 3.10) δίδει: 
 

[ ]{ }( ) [ ]{ } [ ]{ }( ) [ ]{ }( ) [ ]{ }( )
{ } [ ] { } [ ]

T T T T

T TT T

K u K u K u K u K u

u K u K

δ δ δ

δ

= ∆ + ∆ = ∆ + ∆

= ∆ + ∆
          (3.11) 

 
Εισάγοντας την Eξ.(3.10) και την Εξ.(3.11) στην Εξ.(3.8), το έργο των εξωτερικών δυνάµεων 
γράφεται ως: 
 

{ } [ ] { } [ ]( ){ }1
2

T TT TextW u K u K uδ⎛ ⎞∆ = ∆ + ∆⎜ ⎟
⎝ ⎠

                              (3.12) 

 
Λόγω συµµετρίας του µητρώου δυσκαµψίας, προκύπτει: 
 

[ ] [ ]TK K∆ = ∆                                                       (3.13) 
 
Ο συνδυασµός των Εξ.(3.12, 3.13) δίδει: 

 

{ } [ ] { } [ ]( ){ }1
2

T TextW u K u K uδ⎛ ⎞∆ = ∆ + ∆⎜ ⎟
⎝ ⎠

                                (3.14) 

 
Ισοδύναµα, είναι δυνατόν να γραφεί: 
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{ } [ ]{ } { } [ ]{ }1 1
2 2

T TextW u K u u K uδ⎛ ⎞ ⎛ ⎞∆ = ∆ + ∆⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                           (3.15) 

 
Στην Εξ.(3.15), εµφανίζονται δύο όροι ενεργειακής προέλευσης: 
 

{ } [ ]{ }1
1
2

TextW u K u⎛ ⎞∆ = ∆⎜ ⎟
⎝ ⎠

                                          (3.16) 

και  

{ } [ ]{ }2
1
2

TextW u K uδ⎛ ⎞∆ = ∆⎜ ⎟
⎝ ⎠

                                          (3.17) 

 
Σε καθένα από τους παραπάνω όρους εµφανίζεται η ποσότητα { } { }[ ]F K u∆ = ∆ , δηλαδή το 
γινόµενο της µεταβολής του µητρώου δυσκαµψίας επί το διάνυσµα των αρχικών κοµβικών 
µετατοπίσεων. Επίσης, στον όρο 1W∆ , το φορτίο { }F∆  µετατοπίζει το σηµείο εφαρµογής του 

κατά { }u , ενώ στον όρο 2W∆  το µετατοπίζει κατά { }uδ , αντίστοιχα. Η φυσική ερµηνεία των 
όρων αυτών έχει ως ακολούθως: 
 

{ } [ ]{ }1
2

Tu K uδ⎛ ⎞ ∆⎜ ⎟
⎝ ⎠

: παράγεται έργο διότι το σηµείο εφαρµογής της δύναµης { }F∆  

µετατοπίζεται κατά { }uδ  

{ } [ ]{ }1
2

Tu K u⎛ ⎞ ∆⎜ ⎟
⎝ ⎠

: παράγεται έργο διότι το σηµείο εφαρµογής της δύναµης { }F∆  

µετατοπίζεται κατά { }u  
 
Στην ειδική περίπτωση, κατά την οποία οι µεταβολές είναι µικρές, ο όρος { } [ ]Tu Kδ ∆  είναι 
δυνατόν να θεωρηθεί ως αµελητέος, οπότε προκύπτει: 
 

{ } [ ]{ }1
2

TextW u K u⎛ ⎞∆ ≈ ∆⎜ ⎟
⎝ ⎠

                                            (3.18) 

 
Σύµφωνα µε τη Μέθοδο των Πεπερασµένων Στοιχείων (ΜΠΣ), το εξεταζόµενο σώµα 
αντικαθίσταται από ένα πλέγµα πεπερασµένων στοιχείων. Εν γένει, αποβολή υλικού ή, 
ισοδύναµα, αποµάκρυνση υλικού σηµαίνει ότι ένα ή περισσότερα πεπερασµένα στοιχεία θα 
αποµακρυνθούν από το πλέγµα. Αυτό επιτυγχάνεται µε δύο τρόπους, είτε θεωρώντας ότι ο 
χώρος που καταλαµβάνει το στοιχείο µένει κενός (απουσία υλικού) είτε αποδίδοντας σε 
αυτόν το χώρο µία πολύ µικρή ενός χαρακτηριστικού µεγέθους, όπως είναι το µέτρο 
ελαστικότητας ή η πυκνότητα. Η ισχύς των Εξ.(3.15, 3.17), όπως προκύπτει από τα 
προαναφερθέντα, δεν εξαρτάται από το πλήθος των πεπερασµένων στοιχείων, συνεπώς αυτές 
είναι δυνατόν να χρησιµοποιηθούν είτε αποµακρυνθεί ένα είτε αποµακρυνθούν περισσότερα 
πεπερασµένα στοιχεία. 

Η ποσότητα { }u  αποτελεί το διάνυσµα των κοµβικών µετατοπίσεων, το οποίο 

πολλαπλασιάζεται, στις Εξ.(3.15, 3.17), επί τη µεταβολή του µητρώου δυσκαµψίας [ ]K∆ . 

Συνεπώς, είναι δυνατόν να αντικατασταθεί µε την ποσότητα { }ju : 
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[ ]{ } { }j jK u K u⎡ ⎤∆ = ⎣ ⎦                                                  (3.19) 

 
Η τελευταία εξίσωση µεταφράζεται ως εξής: το µητρώο [ ]K∆  έχει διαστάσεις DOF DOFN N× , 
όπου DOFN  εκφράζει το πλήθος των βαθµών ελευθερίας του εξεταζοµένου σώµατος, και τα 
µη-µηδενικά στοιχεία του αντιστοιχούν στους βαθµούς ελευθερίας του j -στοιχείου. Το 
διάνυσµα { }u  περιέχει τις, αντιστοιχούσες στους DOFN  βαθµούς ελευθερίας, κοµβικές 

µετατοπίσεις. Επειδή, δε, το διάνυσµα { }u  πολλαπλασιάζεται επί το µητρώο[ ]K∆ , όλα τα 
γινόµενα, τα οποία αντιστοιχούν σε βαθµούς ελευθερίας διαφορετικούς από εκείνους του j -
στοιχείου, θα είναι µηδενικά. Συνεπώς, το αποτέλεσµα των πολλαπλασιασµών [ ]{ }K u∆  και 

{ }j jK u⎡ ⎤⎣ ⎦  θα είναι το ίδιο και θα ισχύει: 
 

{ } { } { } { }1 1
2 2

T Text
j j j j j jW u K u u K uδ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤∆ = ∆ + ∆⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

                      (3.20) 

 
Θεωρώντας ότι τα γινόµενα µεταξύ ποσοτήτων, οι οποίες εκφράζουν µεταβολές, είναι 
αµελητέα, ισχύει: 
 

{ } { }1
2

Text
j j jW u K u⎛ ⎞ ⎡ ⎤∆ ≈ ∆⎜ ⎟ ⎣ ⎦⎝ ⎠

                                         (3.21) 

 
Η τελευταία εξίσωση υποδηλοί ότι, υπό την προαναφερθείσα θεώρηση και εξ αιτίας της 
αποβολής ενός πεπερασµένου στοιχείου, η µεταβολή του έργου των εξωτερικών δυνάµεων 
ισούται αριθµητικά µε την, αποθηκευµένη σε αυτό το στοιχείο, ενέργεια παραµόρφωσης. 
Από την ανωτέρω ανάλυση προκύπτει ότι, σε ένα 2∆ παραµορφώσιµο σώµα, είναι δυνατή η 
εύρεση πεπερασµένων στοιχείων πολύ µικρής (αµελητέας) συµµετοχής στην συνολική 
ενεργειακή κατάσταση του σώµατος, η αποβολή των οποίων ενδείκνυται προς µείωση του 
βάρους της κατασκευής. Μετά την εν λόγω αποβολή, τα εναποµείναντα πεπερασµένα 
στοιχεία (ενεργά στοιχεία) αναβαθµίζονται ενεργειακά και η ενεργειακή τους συνεισφορά 
πρέπει να εκτιµηθεί εκ νέου. Με άλλα λόγια, η αποβολή πεπερασµένων στοιχείων πρέπει να 
λαµβάνει χώρα προοδευτικά και να είναι ενσωµατωµένη σε µία ευρύτερη επαναληπτική 
διαδικασία. ∆ύο κριτήρια, µεταξύ αρκετών, για την επιλογή των προς αποβολή στοιχείων 
είναι τα ακόλουθα: 
 
Κριτήριο #1: Αποµάκρυνση πεπερασµένων στοιχείων για τα οποία ισχύει ext extW Wα∆ ≤ , 

όπου ( )0,1α ∈ . Με άλλα λόγια, τα προς αποβολή στοιχεία είναι δυνατόν να 
προκαλέσουν µία µεταβολή στο έργο των εξωτερικών δυνάµεων το πολύ ίση 
µε ένα κλάσµα α  του έργου των εξωτερικών δυνάµεων (η τιµή της 
παραµέτρου α  αποτελεί, ελεύθερη µεν αλλά λογική, επιλογή). 

 
Κριτήριο #2: Αποµάκρυνση πεπερασµένων στοιχείων για τα οποία ισχύει ext

threshW W∆ ≤ , 
όπου threshW  είναι µία ποσότητα ελεύθερα, αλλά λογικά, οριζόµενη και 
εκφράζει ποιοτικά ένα ενεργειακό κατώφλι.  
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3.2.2. Οµοιόµορφη διακλιµάκωση πάχους 
Το Κριτήριο #1 (βλ. Ενότητα 3.2.1) δύναται να χρησιµοποιηθεί για την οµοιόµορφη 

µείωση του πάχους των, υποψηφίων προς αποβολή, στοιχείων και περιγράφεται από την 
κάτωθι ανισότητα: 
 

( ), 0,1ext extW Wα α∆ ≤ ∈                                                  (3.22) 
 
Ο συνδυασµός των Εξ. (3.1, 3.17, 3.22) δίδει: 
 

{ } [ ]{ }( ) { } [ ]{ }1 1
2 2

T Tu K u u K uα⎛ ⎞ ⎛ ⎞∆ ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                    (3.23) 

 
Ισοδύναµα, ισχύει: 
 

{ } [ ]{ }( ) { } [ ]{ }1 1
2 2

T Tu K u u K uα⎛ ⎞ ⎛ ⎞∆ ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                    (3.24) 

 
Από την τελευταία ανισότητα, είναι προφανές ότι ισχύει: 
 

[ ] [ ]K Kα∆ ≤                                                           (3.25) 
 
Η φυσική σηµασία της τελευταίας ανισότητας είναι άµεση: η ενέργεια παραµόρφωσης µίας 
κατασκευής είναι δυνατόν να αυξηθεί µέσω της οµοιόµορφης µείωσης της δυσκαµψίας 
µέρους της κατασκευής. Για σκελετικές κατασκευές και για συνεχή µέσα, αυτό επιτυγχάνεται 
µε τη µείωση του µεγέθους (εµβαδόν διατοµής ή πάχος) των αντιστοίχων δοµικών στοιχείων. 
 
3.2.3. Ολική αποβολή ενός πεπερασµένου στοιχείου  

Η αντίστοιχη ενεργειακή µεταβολή εκτιµάται χρησιµοποιώντας την Εξ.(3.20), σύµφωνα 
µε την οποία, εν γένει, κάθε στοιχείο χαρακτηρίζεται από µία διαφορετική στάθµη ενέργειας 
παραµόρφωσης. Στοιχεία, τα οποία εντοπίζονται βάσει του Κριτηρίου #1, είναι υποψήφια 
προς αποβολή. Μεταξύ αυτών, το στοιχείο µε τη χαµηλότερη τιµή ενέργειας παραµόρφωσης 
είναι εκείνο το στοιχείο, η αποβολή του οποίου προκαλεί τη µικρότερη δυνατή µεταβολή 
στην ενεργειακή κατάσταση της κατασκευής. Με αυτόν τον τρόπο, σµιλεύεται το βέλτιστο 
σχήµα µέσα από ένα µονοπάτι ελάχιστου ρυθµού µεταβολής ενέργειας. Εναλλακτικά, είναι 
δυνατή η αποβολή ενός µόνον στοιχείου, το οποίο είναι κοντά στο οριζόµενο ενεργειακό 
κατώφλι. Με αυτόν τον τρόπο, η διαδικασία αποβολής υλικού επιταχύνεται διότι όλα τα 
στοιχεία, τα οποία είναι ενεργειακώς υποδεέστερα από το αποβληθέν στοιχείο, 
υποβαθµίζονται ενεργειακά µε πιο γρήγορο ρυθµό. 
 
3.2.4. Ολική αποβολή περισσοτέρων πεπερασµένων στοιχείων 

Ως προς την ολική αποβολή, σε ένα βήµα, περισσοτέρων του ενός πεπερασµένων 
στοιχείων, υπάρχουν αρκετές επιλογές, όπως: 

- Αιτιοκρατική αποβολή. Τα εναποµείναντα στοιχεία ταξινοµούνται κατά αύξουσα 
σειρά µε κριτήριο την ενέργεια παραµόρφωσης και στη συνέχεια αποβάλλονται τα 

πρώτα n  στοιχεία της σειράς, για τα οποία ισχύει 
1

n
ext
j

j

W W
=

≤ ∆∑ , όπου W∆  είναι ένα 

άνω ενεργειακό όριο, ελεύθερα, αλλά λογικά, οριζόµενο. 
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- Στοχαστική αποβολή. Τα εναποµείναντα στοιχεία ταξινοµούνται κατά αύξουσα σειρά 
µε κριτήριο την ενέργεια παραµόρφωσης και στη συνέχεια αποβάλλονται m  στοιχεία, 

τα οποία επιλέγονται τυχαία αλλά ικανοποιούν τον περιορισµό 
1

m
ext
j

j
W W

=

≤ ∆∑ , όπου 

W∆  είναι ένα άνω ενεργειακό όριο, ελεύθερα, αλλά λογικά, οριζόµενο. 
 
3.2.5. Μερική αποβολή περισσοτέρων πεπερασµένων στοιχείων 

Είναι δυνατή η µερική αποβολή υλικού είτε µε τη µορφή µεταβολής του πάχους στοιχείων 
είτε µε τη µορφή µεταβολής του εµβαδού στοιχείων, όπως συµβαίνει στις µεθόδους σταθερού 
πλέγµατος (fixed-grid method). Αυτό σηµαίνει ότι η ποσότητα [ ]K∆  χρήζει ιδιαίτερης 
προσοχής. 
 
3.2.6. Συµπεράσµατα 

Από όλα τα προαναφερθέντα, προκύπτει ότι υπάρχουν διάφοροι τρόποι µε τους οποίους 
είναι δυνατή η αποβολή υλικού. Επίσης, η ιδέα της αποβολής υλικού εφαρµόζεται σε 
προβλήµατα ελαχιστοποίησης του βάρους µίας κατασκευής, ανεξάρτητα εάν πρόκειται για 
βελτιστοποίηση σχήµατος, τοπολογίας ή κατανοµής υλικού, και ανεξάρτητα από το είδος του 
επιβαλλοµένου περιορισµού (περιορισµός ανάπαλσης, µετατόπισης, τάσης, κλπ). Επίσης, 
είναι θεµελιώδους σηµασίας η δυνατότητα της επαναχρησιµοποίησης υλικού, το οποίο έχει 
αποβληθεί. Με άλλα λόγια, είναι σηµαντική η ενσωµάτωση στη διαδικασία βελτιστοποίησης 
ενός σχήµατος ‘θανάτου και γένεσης’ (‘die and birth’) του διαθεσίµου υλικού. Τέλος, βάσει 
του ορισµού της ενέργειας παραµόρφωσης και του ορισµού της συµπληρωµατικής ενέργειας 
παραµόρφωσης, είναι δυνατή η διατύπωση ενεργειακών προτάσεων, παρεµφερών µε αυτές 
που παρουσιάσθηκαν στις προηγούµενες ενότητες, αλλά εκπεφρασµένων ως προς τη 
συµπληρωµατική ενέργεια παραµόρφωσης. 
 
3.3. Βελτιστοποίηση 2∆ συνεχούς µέσου υπό περιορισµό ανάπαλσης 
3.3.1. Θεωρητική προσέγγιση 

Σε αυτήν την ενότητα, εξετάζεται το πρόβληµα της βελτιστοποίησης ενός 2∆ συνεχούς 
µέσου υπό την επιβολή ενός περιορισµού ανάπαλσης. Πιο συγκεκριµένα αναζητείται το 
ελάχιστο βάρος του εν λόγω σώµατος υπό τον περιορισµό ότι το έργο των εξωτερικά 
ασκουµένων δυνάµεων δεν πρέπει να ξεπερνά µία µέγιστη τιµή. Η µαθηµατική διατύπωση 
του αντίστοιχου προβλήµατος είναι η ακόλουθη: 
 

min i i iW At ρ=∑                                                    (3.26) 

όπου minit t≥  και { } { } max
1
2

Tu F C⎛ ⎞ ≤⎜ ⎟
⎝ ⎠

                                  (3.27) 

 
Από την Εξ.(3.27) προκύπτει ότι τίθεται ένας περιορισµός σχετικά µε το ελάχιστο πάχος της 
κατασκευής και ένας περιορισµός σχετικά µε την ανάπαλση. Ο πρώτος εκ των περιορισµών 
αυτών επιβάλλεται προς αποφυγή αριθµητικών ασταθειών, οι οποίες είναι δυνατόν να 
εµφανισθούν από τη µη-χρησιµοποίηση ενός πεπερασµένου στοιχείου σε ένα υπάρχον 
πλέγµα (υπάρχει κίνδυνος σχηµατισµού κακώς ορισµένου µητρώου δυσκαµψίας, το οποίο 
δεν είναι δυνατόν να αντιστραφεί). Ο περιορισµός ανάπαλσης είναι δυνατόν να γραφεί ως 
εξής: 



Δ.T. Βενετσάνος – Διδακτορική Διατριβή ‐ 2010 

Σ ε λ ί δ α  | ΕΛ.3.9 

 

( ) 0g t ≤  όπου ( )
{ } { }

max

1
2 1

Tu F
g t

C

⎛ ⎞
⎜ ⎟
⎝ ⎠= −                                  (3.28) 

 
Σύµφωνα µε την µέθοδο πολλαπλασιαστών Lagrange, η συνάρτηση Lagrange ισούται µε: 
 

( ) ( )1 1, i i iL At g tλ ρ λ= +∑t                                            (3.29) 
 
Ως t  δηλώνεται το διάνυσµα σχεδίασης και περιέχει το πάχος των πεπερασµένων στοιχείων 
στα οποία έχει διακριτοποιηθεί το 2∆ συνεχές µέσο. Ο συνδυασµός των Εξ.(3.28, 3.29) δίδει: 
 

( )
{ } { }

1
max

1
2, 1

T

i i i

u F
L At

C
λ ρ λ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟= + −

⎜ ⎟
⎜ ⎟
⎝ ⎠

∑t                                 (3.30) 

 
Σύµφωνα µε τις συνθήκες Karush-Kuhn-Tucker, όταν το διάνυσµα σχεδίασης, το διάνυσµα t  
εν προκειµένω, αντιστοιχεί στο ακρότατο της αντικειµενικής συνάρτησης, στην Εξ.(3.26) εν 
προκειµένω, τότε ισχύει:  
 

( ), 0t L λ∇ =t  και ( ), 0Lλ λ∇ =t                                        (3.31) 
 
Ο συνδυασµός των Εξ. (3.30, 3.31), µετά από εκτέλεση πράξεων, δίδει: 
 

( )( ) { } { }
1

max

1
, 20 1 0

T

i i i
i i

u FL
At

t t C
λ

ρ λ

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠⎜ ⎟⎜ ⎟= ⇒ + − =

∂ ∂ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
t

                 (3.32) 

 
Στην Εξ. (3.32), η µερική παράγωγος του πρώτου όρου της παρένθεσης ισούται µε:  
 

( )i i i i i
i

At A
t

ρ ρ∂
=

∂ ∑                                                  (3.33) 

 
Στην ίδια εξίσωση, η µερική παράγωγος του δεύτερου όρου της παρένθεσης ισούται µε:  
 

{ } { }
{ } { }1

1
max max

1
12 1
2

T

T

i i

u F
u F

t C C t
λλ

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎛ ⎞∂ ∂ ⎛ ⎞⎛ ⎞⎝ ⎠⎜ ⎟⎜ ⎟− = ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                    (3.34) 
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Στην Εξ.(3.34) ο λόγος 1

maxC
λ⎛ ⎞

⎜ ⎟
⎝ ⎠

 είναι σταθερός, ενώ η παράγωγος { } { }1
2

T

i

u F
t
∂ ⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
 πρέπει 

να υπολογισθεί. Προς αυτήν την κατεύθυνση και µετά από µερικές απλοποιήσεις, προκύπτει: 
 

{ } { }
{ }( )

{ } { } { }( )1 1 1
2 2 2

T

T T

i i i

u F
u F F u

t t t

∂ ∂∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
                   (3.35) 

 
Το διάνυσµα της δύναµης θεωρείται ότι είναι ανεξάρτητο του πάχους του 2∆ σώµατος: 
 

{ }( )
0

i

F
t

∂
=

∂
                                                        (3.36) 

 
Αυτό σηµαίνει ότι ο δεύτερος όρος στο δεξί µέλος της Εξ. (3.35) µηδενίζεται: 
 

{ } { }( )1 0
2

T

i

F
u

t
∂⎛ ⎞ =⎜ ⎟ ∂⎝ ⎠

                                                 (3.37) 

 
Ο συνδυασµός των Εξ.(3.35, 3.37) δίδει: 
 

{ } { }
{ }( )

{ }1 1
2 2

T

T

i i

u
u F F

t t

∂∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
                                  (3.38) 

 
Το διάνυσµα { }F  των εξωτερικώς ασκουµένων δυνάµεων είναι αρχικά γνωστό. Συνεπώς, η 

µερική παράγωγος { }( )( )/T
iu t∂ ∂  αποτελεί τον, προς υπολογισµό, άγνωστο. Από τη Μέθοδο 

των Πεπερασµένων Στοιχείων, είναι γνωστό ότι: 
 

{ } [ ]{ }F K u=                                                       (3.39) 
 
Η παράγωγος της Εξ. (3.39) ως προς το πάχος it  ισούται µε: 
 

{ } [ ]{ }( ) [ ]( ) { } [ ] { }( )
i i i i

K uF
K u u K

t t t t
∂ ∂∂ ∂

= = +
∂ ∂ ∂ ∂

                           (3.40) 

 
Ο συνδυασµός των Εξ. (3.36, 3.41) δίδει: 
 

[ ]( ) { } [ ] { }( )
0

i i

K u
u K

t t
∂ ∂

+ =
∂ ∂

                                          (3.41) 

 

Επιλύοντας την τελευταία εξίσωση ως προς 
{ }( )

i

u
t

∂

∂
, προκύπτει: 
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{ }( ) [ ] [ ]( ) { }1

i i

Ku
K u

t t
− ∂∂

= −
∂ ∂

                                          (3.42) 

 
Το µητρώο δυσκαµψίας [ ]K  είναι συµµετρικό, οπότε ισχύει: 
 

[ ] [ ]TK K=  και [ ] [ ]( )1 1 T
K K− −=                                        (3.43) 

 
Από τον συνδυασµό των δύο τελευταίων εξισώσεων, προκύπτει ότι η µερική παράγωγος 

{ }( )( )/T
iu t∂ ∂  ισούται µε: 

 

{ }( )
[ ] [ ]( ) { } [ ]( ) { } [ ]( )

{ } [ ]( ) [ ]( ) { } [ ]( ) [ ]

1 1

1 1

T T T
T

i i i

T
TT T

i i

u K K
K u u K

t t t

K K
u K u K

t t

− −

− −

⎛ ⎞∂ ⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

             (3.44) 

 
Συνδυάζοντας τις Εξ. (3.38, 3.44) προκύπτει: 
 

{ } { } { } [ ]( ) [ ] { }11 1
2 2

T T

i i

K
u F u K F

t t
−

⎛ ⎞⎛ ⎞⎛ ⎞∂∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟= − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
                       (3.45) 

 
Από την Εξ. (3.39) και επιλύοντας ως προς { }u , προκύπτει: 
 

{ } [ ] { }1u K F−=                                                      (3.46) 
 
Μετά από πράξεις, ο συνδυασµός των Εξ.(3.45, 3.46) δίδει: 
 

{ } { } { } [ ]( ) { }1 1
2 2

T T

i i

K
u F u u

t t

⎛ ⎞∂∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
                            (3.47) 

 
Επίσης, µετά από πράξεις, η Εξ.(3.37) είναι δυνατόν να γραφεί και ως εξής:  
 

{ } { }1

max

1 0
2

T
i i

i

A u F
C t
λρ

⎛ ⎞ ∂ ⎛ ⎞⎛ ⎞+ =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠⎝ ⎠
                                   (3.48) 

 
Εισάγοντας την Εξ.(3.48) στην Εξ.(3.47), προκύπτει: 
 

{ } [ ]( ) { }1

max

1 0
2

T
i i

i

K
A u u

C t
λρ

⎛ ⎞∂⎛ ⎞⎛ ⎞− =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠⎝ ⎠ ⎝ ⎠
                                 (3.49) 
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Αναδιατάσσοντας τους όρους στην τελευταία εξίσωση, προκύπτει: 
 

{ } [ ]( ) { }1
max

1 1 11
2

T

i i i

K
u u

C A t
λ

ρ

⎛ ⎞∂⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
                              (3.50) 

 
Πολλαπλασιάζοντας και διαιρώντας το δεξί µέλος της Εξ. (3.50) µε it , προκύπτει: 
 

{ } [ ]( ) { }1
max

1 1 11
2

T i

i i i i

t K
u u

C At t
λ

ρ

⎛ ⎞∂⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
                            (3.51) 

 
Αποδεικνύεται (βλ. Παράρτηµα 3.A) ότι ισχύει η ακόλουθη ισότητα: 
 

{ } [ ]( ) { } { } [ ]( ) { }T Ti i i
i i

i i

t K t K
u u u u

t t

⎛ ⎞ ⎛ ⎞∂ ∂
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

                              (3.52) 

 
Στην επίπεδη ελαστικότητα, το µητρώο δυσκαµψίας ενός πεπερασµένου στοιχείου i  είναι: 
 

T
i iA

K t dA= ∫ B EB                                                    (3.53) 

 
όπου it  είναι το πάχος του πεπερασµένου στοιχείου, E  είναι το µητρώο ελαστικότητας και 
B  το µητρώο µετατοπίσεων-παραµορφώσεων. Παραγώγιση ως προς το πάχος it  δίδει: 
 

( ) T
i A

i

K dA
t
∂

=
∂ ∫ B EB                                                 (3.54) 

 
Ο πολλαπλασιασµός και των δύο µελών της Εξ. (3.54) µε it  δίδει: 
 

( ) T T
i i i i iA A

i

t K t dA t dA K
t
∂

= = =
∂ ∫ ∫B EB B EB                               (3.55) 

 
Ο συνδυασµός των Εξ. (3.51, 3.55) δίδει: 
 

{ } [ ] { }1
max

1 1 11
2

T
i ii

i i i

u K u
C At

λ
ρ

⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

                                 (3.56) 

 
Η Εξ. 3.56) γράφεται και ως εξής: 
 

{ } [ ] { }
1

max

1 1 11
2

T

i ii

i i i

u K u
C At

λ
ρ

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
                                 (3.57) 

 
∆εδοµένου ότι 1 constλ =  και maxC const= , από την Εξ. (3.57) προκύπτει ότι: 
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{ } [ ] { }1
T

i ii

i i i

u K u
const

Atρ

⎛ ⎞⎛ ⎞
⎜ ⎟ =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                         (3.58) 

 
Η Εξ. (3.58) αποτελεί τη µαθηµατική έκφραση ενός νέου Βελτίστου Κριτηρίου, σύµφωνα µε 
το οποίο: 

 
Όταν αναζητείται το ελάχιστο βάρος ενός 2∆ συνεχούς σώµατος υπό την επιβολή ενός 
περιορισµού ανάπαλσης, τότε, στη βέλτιστη σχεδίαση, ο λόγος της πυκνότητας της 
ενέργειας παραµόρφωσης προς την πυκνότητα του υλικού είναι σταθερός. 

 
Χωρίς βλάβη της γενικότητας, είναι δυνατός ο προσδιορισµός της κατανοµής του πάχους 

it  µέσα από µία επαναληπτική διαδικασία, κατά την οποία τα πάχη των στοιχείων 
προσδιορίζονται σύµφωνα µε κάποια εξίσωση επανασχεδίασης. Μία τυπική εφαρµογή της 
µεθόδου των πολλαπλασιαστών Lagrange απαιτεί πρώτα την επίλυση της Εξ. (3.57) ως προς 
τον πολλαπλασιαστή Lagrange και στη συνέχεια την εισαγωγή αυτού του πολλαπλασιαστή 
στην εξίσωση που περιγράφει τον αντίστοιχο περιορισµό. Ωστόσο, για το εξεταζόµενο 
πρόβληµα βελτιστοποίησης, ο περιορισµός ανάπαλσης είναι εκπεφρασµένος ως προς το 
διάνυσµα σχεδίασης (Εξ.3.28) και όχι ως προς µία µεταβλητή σχεδίασης (Εξ.3.57). Αυτό 
σηµαίνει ότι η απαλοιφή του εµπλεκοµένου πολλαπλασιαστή Lagrange δεν αποτελεί µία 
τετριµµένη διαδικασία. Εναλλακτικά, είναι δυνατή η εφαρµογή της προτεινοµένης 
διαδικασίας, η οποία παρουσιάζεται στην επόµενη Ενότητα. 
 
3.3.2. Προτεινόµενη διαδικασία 

Η Εξ.(3.57) περιγράφει την ενεργειακή κατάσταση της κατασκευής στη βέλτιστη 
σχεδίαση, χωρίς, ωστόσο, να περιγράφει µε κάποιον τρόπο όδευσης προς αυτήν την 
κατάστασης. Συνεπώς είναι δυνατόν να διατυπωθούν διάφορες διαδικασίες. Προς αυτήν την 
κατεύθυνση, και θεωρώντας ότι χρησιµοποιείται το ίδιο υλικό σε όλη την κατασκευή, 
εισάγεται ο ακόλουθος ∆είκτης: 
 

{ } [ ] { }
max

1
T

ii i
i

i i i

u K u
a

C Atρ

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                         (3.59) 

 
Η φυσική σηµασία αυτού του ∆είκτη είναι ότι η πυκνότητα της ενέργειας παραµόρφωσης, 
κανονικοποιηµένης ως προς τη µέγιστη επιτρεπόµενη τιµή της ανάπαλσης, πρέπει να είναι 
σταθερή σε όλη την έκταση της κατασκευής. Λαµβάνοντας υπόψη τον περιορισµό για 
ελάχιστο πάχος, όπως αυτός περιγράφεται στην Εξ.(3.27), προκύπτει ότι η πυκνότητα της 
ενέργειας παραµόρφωσης πρέπει να είναι σταθερή σε όλη την έκταση του ενεργού µέρους της 
κατασκευής, δηλαδή του µέρους της κατασκευής στο οποίο όλα τα µέλη έχουν µη-κρίσιµες 
τιµές πάχους. Ως εκ τούτου, η αντίστοιχη µέση τιµή a  των ενεργών στοιχείων ισούται µε: 
 

1

activeN

i
i

active

a
a

N
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
                                                       (3.60) 

 
Συνεπώς, στη βέλτιστη σχεδίαση και για το ενεργό τµήµα της κατασκευής, ισχύει: 
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1iα
α

⎛ ⎞ →⎜ ⎟
⎝ ⎠

                                                          (3.61) 

 
∆ιαιρώντας τις Εξ. (3.59, 3.60) κατά µέλη και συνυπολογίζοντας την Εξ.(3.61), ισχύει: 
 

{ } [ ] { }1

max ,

1
activeN

Ti
ii i i

active i i i new

a u K u
N C Atρ
=

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎛ ⎞⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎜ ⎟
⎝ ⎠

∑
                                   (3.62) 

 
όπου ,i newt  είναι το επανασχεδιασθέν πάχος του i − στοιχείου. Επιλύοντας την Εξ.(3.62) ως 
προς το ,i newt  προκύπτει η ακόλουθη αναδροµική σχέση: 
 

{ } [ ] { }
,

max

1

1
active

T

active ii i
i new N

i i
i

i

u K uNt
C Aa ρ

=

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟
⎝ ⎠
∑

                               (3.63) 

 
Μία άλλη µορφή της Εξ.(3.63), πιο βολική για προγραµµατισµό, είναι η εξής: 

{ } [ ] { },, ,
, 1

max
,

1

1
active

T

i ki k i kactive
i k N

i i
i k

i

u K uNt
C Aa ρ+

=

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟
⎝ ⎠
∑

                            (3.64) 

 
όπου µε k  δηλώνεται ο αύξων αριθµός επανάληψης. Βάσει της ανωτέρω αναλύσεως, 
προτείνεται η ακόλουθη διαδικασία βελτιστοποίησης: 
 
Βήµα 1: Τυχαία επιλογή οµοιόµορφης κατανοµής πάχους it . 
Βήµα 2: Εκτίµηση των ∆εικτών iα  χρησιµοποιώντας την Εξ.(3.59). 

Βήµα 3: Εκτίµηση της µέσης τιµής iα  χρησιµοποιώντας την Eq.(3.60). 
Βήµα 4: Επανασχεδίαση της κατατοµής του πάχους it  χρησιµοποιώντας την Εξ.(3.64). 
Βήµα 5: Έλεγχος σύγκλισης, µε πιθανά κριτήρια σύγκλισης τα εξής: 

Κριτήριο #1: η µέγιστη µεταβολή του πάχους στοιχείου µεταξύ δύο διαδοχικών 
επαναλήψεων είναι µικρότερη από µία προκαθορισµένη ποσότητα, 
δηλαδή 1

1max k k
i it t tol+− ≤  

Κριτήριο #2: ο Συντελεστής Μεταβλητότητας (Coefficient of Variation - %CV) για 
την κατανοµή των ∆εικτών iα  είναι µικρότερος από µία 

προκαθορισµένη ποσότητα, δηλαδή ( ) 2% iCV a tol≤  

Βήµα 6: Εάν δεν έχει επιτευχθεί σύγκλιση και δεν έχει ξεπερασθεί το προκαθορισµένο 
µέγιστο πλήθος επαναλήψεων, τότε επιστροφή στο Βήµα 2. 
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3.3.3. Συµπεράσµατα 
Η προηγηθείσα ανάλυση αφορά σε µία ενδελεχή θεωρητική διερεύνηση του προβλήµατος 

βελτιστοποίησης κατασκευών υπό την επιβολή ενός περιορισµού ανάπαλσης και κατέληξε 
στην παρουσίαση µίας νέας διαδικασίας βελτιστοποίησης. Σε αντίθεση µε την υπάρχουσα 
βιβλιογραφία, στην προτεινόµενη διαδικασία δεν επιβάλλεται περιορισµός στην ποσότητα 
ύλης που πρόκειται να χρησιµοποιηθεί. ∆ιευκρινίζεται ότι η σχεδίαση υπό περιορισµό 
ανάπαλσης και η σχεδίαση υπό περιορισµό τάσεων είναι ισοδύναµες µόνον υπό συνθήκες 
(Bendsøe and Sigmund, 2003). Επειδή, δε, κανένας κανονισµός δεν επιβάλλει περιορισµό 
ανάπαλσης ως περιορισµό αντοχής ή περιορισµό λειτουργικότητας, το πρόβληµα 
βελτιστοποίησης κατασκευών υπό την επιβολή περιορισµού ανάπαλσης έχει, κατά κύριο 
λόγο, ακαδηµαϊκό ενδιαφέρον.  
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ΠΑΡΑΡΤΗΜΑ 3.Α: Έργο εξωτερικών δυνάµεων 
 
Είναι δυνατόν να αποδειχθεί ότι ισχύει η ακόλουθη ισότητα: 
 

{ } [ ]( ) { } { } [ ]( ) { }T Ti i i
i i

i i

t K t K
u u u u

t t

⎛ ⎞ ⎛ ⎞∂ ∂
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

                             (3.Α1) 

 
Είναι προφανές ότι κάθε µέλος της ανωτέρω ισότητας εκφράζει ένα βαθµωτό µέγεθος. 
Προκειµένου να δειχθεί ότι αυτά τα βαθµωτά µεγέθη είναι µεταξύ τους ίσα, εξετάζεται ένα 
2∆ συνεχές σώµα, διακριτοποιηµένο µε ένα πλέγµα από NN  κόµβους και NEL  
πεπερασµένα στοιχεία επίπεδης ελαστικότητας και σταθερού πάχους. Έστω [ ]iK  το µητρώο 
δυσκαµψίας του i − στοιχείου, του οποίου το πάχος είναι it . Για λόγους πληρότητας, 
αναφέρεται ότι ισχύει:  
 

[ ] T
i iA

K t dA= ∫ B EB                                                  (3.Α2) 

 
όπου E  είναι το µητρώο ελαστικότητας και B  είναι το µητρώο παραµορφώσεων-
µετατοπίσεων. Η µερική παράγωγος του µητρώου [ ]iK  ως προς το πάχος it  ισούται µε: 
 

[ ]( ) T
i A

i

K dA
t
∂

=
∂ ∫ B EB                                               (3.Α3) 

 
Πολλαπλασιάζοντας την Εξ.( 3.A3) µε it , τότε, από την Εξ. (3.Α2), προκύπτει: 
 

( ) T T
i i i i iA A

i

t K t dA t dA K
t
∂

= = =
∂ ∫ ∫B EB B EB                              (3.Α4) 

 
Με άλλα λόγια, το γινόµενο του πάχους it  επί τη µερική παράγωγο του [ ]iK  ως προς το 

πάχος it  ισούται µε το µητρώο [ ]iK . Συνεπώς, το δεξί µέλος της Εξ. (3.Α1) γράφεται: 
 

{ } [ ]( ) { } { } [ ]{ }T Ti i
i i i i i

i

t K
u u u K u

t

⎛ ⎞∂
=⎜ ⎟⎜ ⎟∂⎝ ⎠

                                  (3.Α5) 

 
Στο δεξί µέλος της Εξ. (3.A5) αναγνωρίζεται ότι: 
 

[ ]{ } { }i i iK u F=                                                      (3.Α6) 
 
Από τις Εξ.(3.Α1, 3.Α5 και 3. Α6), προκύπτει το ακόλουθο συµπέρασµα: 
 
Συµπέρασµα #1: Το δεξί µέλος της Εξ. (3.Α1) ισούται αριθµητικά µε το έργο των εξωτερικών 

δυνάµεων, οι οποίες ασκούνται στους κόµβους του i − στοιχείου. 
 
Στην επίπεδη ελαστικότητα, κάθε κόµβος του πλέγµατος διαθέτει δύο µεταφορικούς βαθµούς 
ελευθερίας, συνεπώς, συνολικά, εµπλέκονται 2 2NN NN×  βαθµοί ελευθερίας. Αυτό σηµαίνει 
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ότι η διάσταση του µητρώου δυσκαµψίας [ ]K  της εξεταζοµένης κατασκευής είναι 
2 2NN NN× . Το πάχος it  του i − στοιχείου εµφανίζεται σε εκείνες τις θέσεις του µητρώου 

[ ]K , οι οποίες αντιστοιχούν στους βαθµούς ελευθερίας του µητρώου [ ]iK . Συνεπώς, η 

µερική παράγωγος του µητρώου [ ]K  ως προς το πάχος it  θα ισούται µε έναν πίνακα 
διαστάσεων 2 2NN NN× , του οποίου όλα τα στοιχεία θα είναι µηδενικά πλην εκείνων, τα 
οποία αντιστοιχούν στους βαθµούς ελευθερίας του µητρώου [ ]iK . Αυτά τα µη-µηδενικά 

στοιχεία προέρχονται από την παραγώγιση του µητρώου [ ]iK  ως προς το πάχος it  (βλ. 

Εξ.(3.Α3)). Πολλαπλασιάζοντας τον πίνακα 
[ ]( )

i

K
t

∂

∂
 διαστάσεων 2 2NN NN×  επί το 

βαθµωτό µέγεθος it  προκύπτει ο πίνακας 
[ ]( )i

i

t K
t

∂

∂
, για τον οποίο ισχύουν τα ακόλουθα: 

 Η διάσταση του πίνακα είναι 2 2NN NN×  και τα µη-µηδενικά στοιχεία του είναι τα 
στοιχεία του µητρώου [ ]iK , τοποθετηµένα κατάλληλα στις αντίστοιχες θέσεις. 

 Ο πίνακας είναι αριθµητικά ίσος µε το µητρώο δυσκαµψίας ολόκληρης της 
κατασκευής, εάν το εν λόγω µητρώο περιέχει πληροφορία µόνον από το µητρώο 
δυσκαµψίας [ ]iK  του i − στοιχείου. 

 Ο πίνακας ισούται µε το µητρώο δυσκαµψίας [ ]iK , όταν αυτό προσαυξάνεται µε 
µηδενικά στοιχεία έτσι ώστε να αποκτήσει τις διαστάσεις του µητρώου δυσκαµψίας 
ολόκληρης της κατασκευής. 

 Από ποιοτικής απόψεως, ο πίνακας εκφράζει τη δυσκαµψία µόνον του i − στοιχείου. 
Το διάνυσµα { }u  περιέχει τις κοµβικές µετατοπίσεις της εκάστοτε εξεταζοµένης κατασκευής 

και η διάστασή του είναι 2 1NN × . Όταν το διάνυσµα { }u  πολλαπλασιάζεται από αριστερά 

επί 
[ ]( )i

i

t K
t

⎛ ⎞∂
⎜ ⎟⎜ ⎟∂⎝ ⎠

, όρος ο οποίος εκφράζει τη δυσκαµψία του i − στοιχείου, τότε το προκύπτον 

γινόµενο εκφράζει τις εξωτερικές δυνάµεις, οι οποίες ασκούνται στο i − στοιχείο. Περαιτέρω 
εξ αριστερών πολλαπλασιασµός επί { }Tu  δίδει το έργο των δυνάµεων αυτών. Συνεπώς, 
προκύπτει το ακόλουθο συµπέρασµα: 
 
Συµπέρασµα #2: Το αριστερό µέλος της Εξ. (3.Α1) ισούται αριθµητικά µε το έργο των 

εξωτερικών δυνάµεων, οι οποίες ασκούνται στους κόµβους του 
i − στοιχείου. 

 
Από το Συµπέρασµα #1 και το Συµπέρασµα #2, προκύπτει ότι η Εξ. (3.A1) είναι αληθής, 
διότι τα δύο µέλη της είναι αριθµητικά ίσα µεταξύ τους και εκφράζουν το ίδιο βαθµωτό 
µέγεθος (έργο εξωτερικών δυνάµεων, ασκουµένων στους κόµβους του i − στοιχείου). 
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ΠΑΡΑΡΤΗΜΑ 3.Β: Μη-ισοδυναµία µεταξύ περιορισµού µετατόπισης και περιορισµού 
ανάπαλσης 

 
Η επιβολή ενός περιορισµού ανάπαλσης δεν είναι πάντοτε ισοδύναµος µε την επιβολή ενός 
περιορισµού µετατόπισης. Ο λόγος έγκειται στο γεγονός ότι στον περιορισµό ανάπαλσης 
συµµετέχουν µόνον οι, φέροντες εξωτερικό φορτίο, κόµβοι, οι οποίοι δεν είναι απαραίτητο να 
εµφανίζουν το µέγιστο βέλος κάµψης. Ως ένα τέτοιο τυπικό παράδειγµα, εξετάζεται µία 
οριζόντια αµφιέρειστη δοκός υπό την επιβολή ενός σηµειακού κατακορύφου φορτίου. Σε 
αυτήν την περίπτωση, είναι σαφές ότι το έργο του εξωτερικού φορτίου ισούται µε:  
 

{ } { }T
i iu F u F=                                                     (3.Β1) 

 
ενώ ο περιορισµός ανάπαλσης είναι δυνατόν να γραφεί ως: 
 

{ } { } max
Tu F C≤                                                     (3.Β2) 

 
όπου maxC  είναι ένα άνω όριο σχετικά µε το έργο που παράγουν τα εξωτερικά φορτία. Ο 
συνδυασµός των Εξ.(3.B1, 3.B2) δίδει: 
 

max
maxi i i

i

Cu F C u
F

⎛ ⎞
≤ ⇒ ≤ ⎜ ⎟

⎝ ⎠
                                            (3.Β3) 

 
οπότε η µέγιστη µετατόπιση του φορτιζοµένου κόµβου ισούται µε: 
 

max
,maxi

i

Cu
F

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                     (3.Β4) 

 
Από Εγχειρίδια Μηχανικής (π.χ. Stahl im Hochbau, s.1110), βρίσκεται ότι για µία οριζόντια 
αµφιέρειστη δοκό υπό την επιβολή ενός κατακορύφου φορτίου iF , το µέγιστο βέλος κάµψης 
εµφανίζεται στο σηµείο εφαρµογής της ασκουµένου φορτίου όταν και µόνον όταν το εν λόγω 
σηµείο βρίσκεται στο µέσο του ανοίγµατος της δοκού, οπότε και ισχύει: 
 

max ,maxiy u=                                                         (3.Β5) 
 
Ωστόσο, σε κάθε άλλη περίπτωση, το µέγιστο βέλος κάµψης εµφανίζεται σε µία θέση 
διαφορετική από εκείνην της επιβολής του φορτίου και ισχύει: 
 

max ,maxiy u>                                                         (3.Β6) 
 
Από την Εξ. (3.B6) προκύπτει ότι η επιβολή του περιορισµού ανάπαλσης οδηγεί σε 
διαφορετικά αποτελέσµατα από εκείνα στα οποία καταλήγει η επιβολή του περιορισµού 
µετατόπισης, διότι ο περιορισµός ανάπαλσης επιτρέπει µεγαλύτερο βέλος κάµψης. Συνεπώς, 
το πρόβληµα ελαχιστοποίησης του βάρους µίας κατασκευής υπό την επιβολή περιορισµού 
µετατόπισης και το πρόβληµα ελαχιστοποίησης του βάρους µίας κατασκευής υπό την 
επιβολή περιορισµού ανάπαλσης είναι δύο διαφορετικά προβλήµατα, τα οποία συµπίπτουν 
µόνον υπό συνθήκες. 
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Αυτή η σελίδα είναι σκοπίµως κενή  
 
 

 
 
 



 
 

ΚΕΦΑΛΑΙΟ 4 
(ΠΕΡΙΛΗΨΗ) 

 

ΒΕΛΤΙΣΤΗ ΣΧΕΔΙΑΣΗ 

ΥΠΟ ΤΗΝ ΕΠΙΒΟΛΗ ΠΕΡΙΟΡΙΣΜΩΝ ΤΑΣΗΣ 
 
 
 
 

Σε αυτήν την περίληψη κεφαλαίου, εξετάσθηκε το πρόβλημα βελτιστοποίησης υπό την επιβολή 
περιορισμών τάσης. Πρώτα διερευνήθηκε η εφαρμογή της γνωστής μεθόδου Fully Stressed Design 

(FSD) σε 2Δ σκελετικές κατασκευές. Στη συνέχεια διερευνήθηκε η εφαρμογή της εν λόγω τεχνικής 
στη βελτιστοποίηση 2Δ κατασκευών συνεχούς μέσου, στη βελτιστοποίηση 2Δ πλακών καθώς και 
στη βελτιστοποίηση 3Δ κατασκευών συνεχούς μέσου. Για κάθε ένα από τα ανωτέρω προβλήματα, 

προτάθηκε μία νέα διαδικασία βελτιστοποίησης. Τέλος, επιλύθηκε θεωρητικά, με τη μέθοδο 
πολλαπλασιαστών Lagrange, το πρόβλημα της βελτιστοποίησης σκελετικών κατασκευών υπό την 

επιβολή ενός γενικευμένου περιορισμού τάσης. 
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4.1. Εισαγωγή 
Το πρόβληµα βελτιστοποίησης κατασκευών υπό περιορισµό τάσεων είναι εξαιρετικά 

σηµαντικό, διότι οι εν λόγω περιορισµοί αφορούν στην κατάσταση αστοχίας µίας 
κατασκευής. Συνεπώς, αιτιολογείται µια ενδελεχής µελέτη αυτού του προβλήµατος. 

Στο παρόν κεφάλαιο, διερευνήθηκε η δυνατότητα χρήσης της σχεδίασης πλήρους έντασης 
(Fully Stressed Design-FSD) στην αναζήτηση βελτίστων κατανοµών υλικού σε 2∆ 
κατασκευές. Προς τούτο, εξετάστηκαν δύο προσεγγίσεις, θεωρώντας την κατασκευή ως 
συναρµολόγηµα ακεραίου πολλαπλασίου πρώτα µίας βασικής µονάδος συνεχούς µέσου και 
έπειτα µίας βασικής µονάδος διακριτού µέσου. Και στις δύο προσεγγίσεις, η επανασχεδίαση 
στηρίχθηκε στη µεταβολή του πάχους, ή του εµβαδού αντίστοιχα, της εκάστοτε βασικής 
µονάδος. Στη συνέχεια, εξετάσθηκε η αναζήτηση της βέλτιστης σχεδίασης για διαφορετικές 
τοπολογίες. Από τη διεξαχθείσα διερεύνηση προέκυψε ένα νέο ιεραρχικό σχήµα 
βελτιστοποίησης δύο βηµάτων: στο πρώτο βήµα ορίζεται µία τοπολογία και στο δεύτερο 
βήµα επιδιώκεται η διαστασιολόγησή της µε τέτοιον τρόπο, ώστε να επιδιώκεται η πλήρης 
ένταση αυτής. Για την αξιολόγηση της προτεινοµένης διαδικασίας, χρησιµοποιήθηκαν 
τέσσερα τυπικά βιβλιογραφικά παραδείγµατα βελτιστοποίησης, τα οποία επελύθησαν την 
ισχυρή µαθηµατική µεθοδολογία SQP (Sequential Quadratic Programming). Προέκυψε ότι η 
προτεινόµενη διαδικασία βελτιστοποίησης καταλήγει στα ίδια βέλτιστα βάρη αλλά απαιτεί 
πολύ λιγότερο υπολογιστικό χρόνο. 

Στη συνέχεια, εξετάστηκε η ιδέα της χρήσης πεπερασµένων στοιχείων µεταβλητού πάχους 
στην επίλυση του προβλήµατος της ελαχιστοποίησης του βάρους µίας κατασκευής υπό 
περιορισµό τάσεων. Για την ενδοστοιχειακή παρεµβολή του πάχους, χρησιµοποιήθηκαν οι 
συναρτήσεις παρεµβολής του στοιχείου (ισοπαραµετρική παρεµβολή πάχους). Με τον τρόπο 
αυτό, οι κόµβοι του πλέγµατος µετατρέπονται σε σηµεία ελέγχου, τα οποία δύνανται να 
µετακινηθούν κάθετα ως προς τη µεσοεπιφάνεια των στοιχείων, διαµορφώνοντας, µε αυτόν 
τον τρόπο, µία συνεχή επιφάνεια. Για την αξιολόγηση της προτεινοµένης διαδικασίας, 
εξετάσθηκαν τέσσερα τυπικά βιβλιογραφικά παραδείγµατα. Συγκρίνοντας την προτεινόµενη 
διαδικασία µε την αντίστοιχη, στην οποία χρησιµοποιούνται πεπερασµένα στοιχεία σταθερού 
πάχους, προέκυψε ότι η προτεινόµενη επανασχεδίαση του πάχους σε επίπεδο κόµβου, και όχι 
σε επίπεδο στοιχείου, είναι δυνατόν να καταλήξει σε ελαφρύτερες σχεδιάσεις. 

Κατόπιν, µελετήθηκε το πρόβληµα της ελαχιστοποίησης του βάρους πλακών υπό τον 
περιορισµό τάσεων. Προς τούτο, διερευνήθηκαν οι διαφορές µεταξύ της µεταβολής της 
κατανοµής του πάχους µίας πλάκας (προσέγγιση µε τη µέθοδο FSD) και της ολικής αποβολής 
υλικού από έναν διακριτοποιηµένο χώρο σχεδίασης (προσέγγιση µε τη Evolutionary 
Structural Optimization - ESO). Σε αυτήν την περίπτωση, εξετάσθηκαν συνολικά οκτώ 
διαφορετικές περιπτώσεις (τέσσερα παραδείγµατα µε παραλλαγές). Προέκυψε ότι οι δύο 
προσεγγίσεις, αν και συλλογιστικά παρόµοιες ως προς την τελική µορφή του τασικού πεδίου, 
καταλήγουν σε σηµαντικά διαφορετικές σχεδιάσεις. 

Επίσης, διερευνήθηκε το πρόβληµα της ελαχιστοποίησης του βάρους µίας 3∆ κατασκευής 
υπό περιορισµό τάσεων. Ειδικότερα, διατυπώθηκε µία νέα διαδικασία βελτιστοποίησης, η 
επανασχεδίαση της οποίας στηρίζεται σε ένα νέο κριτήριο µέσης πυκνότητας ενέργειας 
παραµόρφωσης. Για την αξιολόγηση της προτεινοµένης διαδικασίας, πραγµατοποιήθηκε 
σύγκριση µε µία βιβλιογραφική µεθοδολογία, η οποία στηρίζεται σε κριτήριο τασικού πεδίου 
κατά von Mises, και επί τεσσάρων τυπικών βιβλιογραφικών παραδειγµάτων. Προέκυψε ότι η 
προτεινόµενη διαδικασία βελτιστοποίησης κατέληξε σε ελαφρύτερες σχεδιάσεις. 

Τέλος, εξετάστηκε το πρόβληµα της ελαχιστοποίησης του βάρους µίας σκελετικής 
κατασκευής υπό την επιβολή ενός γενικευµένου περιορισµού τάσης. Αναλυτικότερα, σε µία 
κατασκευή, ανεξαρτήτως του πλήθους των επιβαλλοµένων περιορισµών τάσεων, θεωρείται 
ότι στη βέλτιστη σχεδίαση µόνον ένας περιορισµός είναι ενεργός, χωρίς, ωστόσο, να είναι εκ 
των προτέρων γνωστό σε ποιο στοιχείο της κατασκευής ενεργοποιείται αυτός ο περιορισµός. 
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Με βάση τη µέθοδο πολλαπλασιαστών Lagrange, διατυπώθηκε µια θεωρητική λύση, η οποία 
καταλήγει στη διαµόρφωση τόσο ενός νέου Βελτίστου Κριτηρίου όσο και µίας νέας 
αναδροµικής σχέσης επανασχεδίασης. ∆ιευκρινίζεται ότι η εν λόγω προσέγγιση είναι 
διαφορετική από εκείνη της σχεδίασης Fully Stressed Design, διότι η πρώτη προσέγγιση 
επιβάλλει την ενεργοποίηση ενός περιορισµού τάσης, ενώ η δεύτερη επιδιώκει όλα τα δοµικά 
στοιχεία να λάβουν τη µέγιστη επιτρεπόµενη τάση στη βέλτιστη σχεδίαση. 
 

4.2. Σκελετικές κατασκευές υπό περιορισµό τάσης 
4.2.1. Θεωρητικό υπόβαθρο 

Μία κατασκευή αποτελεί το συναρµολόγηµα πολλών επί µέρους δοµικών µονάδων. Στην 
απλούστερη περίπτωση, µία κατασκευή προέρχεται από την επανάληψη µίας βασικής 
µονάδας. Στην περίπτωση ενός 2∆ σώµατος συνεχούς µέσου, ένα τετραπλευρικό στοιχείο 
είναι δυνατόν να θεωρηθεί ως µία τέτοια βασική µονάδα, έστω Basic Continuum Unit (BCU). 
Εισάγοντας ανισοτροπία υλικού, η µονάδα (BCU) είναι δυνατόν να εµφανίσει διαφορετική 
συµπεριφορά κατά µήκος διαφορετικών διευθύνσεων. Ένας άλλος αριθµητικός τρόπος 
εισαγωγής ανισοτροπίας είναι η µεταβολή του λόγου πλευρών της µονάδος, η οποία 
επηρεάζει σαφώς το µητρώο δυσκαµψίας της µονάδος (βλ. Παράρτηµα 4Α). Στην περίπτωση 
των διακριτών (σκελετικών) σωµάτων, ισχύουν αντίστοιχες προσεγγίσεις. Ειδικότερα, όπως 
φαίνεται στο Σχήµα 4.1, η δοµική µονάδα Basic Continuum Unit είναι δυνατόν να 
αντικατασταθεί µε ένα σχηµατισµό 6 ράβδων (Basic Discrete Unit – BDU). Και σε αυτήν την 
περίπτωση, είναι δυνατή η εµφάνιση µίας ανισοτροπικής συµπεριφοράς µεταβάλλοντας τις 
διαστάσεις της µονάδας BDU (βλ. Παράρτηµα 4A). Σε αυτήν την περίπτωση, µία µεταβολή 
στις εξωτερικές διαστάσεις της µονάδας προκαλεί µεταβολή του προσανατολισµού των 
διαγωνίων στοιχείων της, κάτι το οποίο επηρεάζει σηµαντικά τη δυσκαµψία της µονάδας. Η 
αντικατάσταση της µονάδος BCU από µία µονάδα BDU είναι ποιοτική και όχι ποσοτική, 
διότι το µητρώο δυσκαµψίας των δύο µονάδων είναι της αυτής διάστασης αλλά διαφορετικό. 
 

 
(a) (b) 

Σχήµα 4.1: Βασικές µονάδες µοντελοποίησης (a)συνεχές µέσο (Basic Continuum Unit - 
BCU) και (b) σκελετική κατασκευή (Basic Discrete Unit - BDU) 

 
4.2.2. Αριθµητικά παραδείγµατα 

Εξετάστηκαν τέσσερα τυπικά βιβλιογραφικά παραδείγµατα (Σχήµα 4.2): ο βαθύς 
πρόβολος, ο κοντός πρόβολος, η δοκός ΜΒΒ και η δοκός σχήµατος L (δοκός L). Για κάθε 
παράδειγµα, αναπτύχθηκαν δύο προσεγγίσεις, µία µε διγραµµικά πεπερασµένα στοιχεία 
(προσέγγιση συνεχούς µέσου) και µία µε στοιχεία ράβδου (προσέγγιση διακριτού µέσου), 
δηλαδή οκτώ διαφορετικά µοντέλα. Η µορφή της βασικής µονάδας πλέγµατος του συνεχούς 
µέσου ήταν ένα ορθογωνικό χωρίο διαστάσεων ( )2 2a b× , ενώ η αντίστοιχη µονάδα για το 
διακριτό µέσο σχηµατίστηκε τοποθετώντας στοιχεία ράβδου στην περίµετρο του εν λόγω 
χωρίου και εισάγοντας διαγώνια στοιχεία. Κάθε πλέγµα αποτελείτο από ακέραιο πλήθος 
βασικών δοµικών µονάδων. Βασική παράµετρος σχεδίασης ήταν ο λόγος πλευρών ( )a bλ =  
του εκάστοτε πλέγµατος. Ως πεδίο ορισµού του λόγου λ  ορίστηκε το σύνολο 

{ }1 4,1 3,1 2,1,2,3,4λ ∈ . Για κάθε µία τιµή του λόγου λ , εξετάστηκαν τρεις διαφορετικές 
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πυκνότητες πλέγµατος ( 7 3 21× =  αναλύσεις). Για τις σκελετικές κατασκευές, η µελέτη των 
διαφορετικών τιµών του λόγου λ  αποσκοπούσε στη εξέταση της επίδρασης, επί της 
βέλτιστης σχεδίασης, του προσανατολισµού των διαγωνίων ράβδων, ενώ τα πλέγµατα 
διαφορετικής πυκνότητας εξυπηρετούσαν στην εξασφάλιση ανεξαρτησίας πλέγµατος. Για τα 
διγραµµικά µοντέλα, τόσο οι διαφορετικές τιµές του λόγου λ  όσο και οι διαφορετικές 
πυκνότητες πλέγµατος εξυπηρετούσαν στην διερεύνηση της ανεξαρτησίας των 
αποτελεσµάτων από το πλέγµα. Συνολικά, εξετάστηκε ένας χώρος λύσεων µε 21 8 168× =  
σχεδιάσεις πρώτα χρησιµοποιώντας την τεχνική ‘stress-ratio’ και µετά χρησιµοποιώντας την 
Μέθοδο SQP (Sequential Quadratic Programming), όπως αυτή βρίσκεται στη MatLab.  
 

  

 
P=1N

3/5 2/5

3/5

2/5

 
(a) (b) (c) (d) 

Σχήµα 4.2: Γεωµετρία και φόρτιση εξετασθέντων παραδειγµάτων (a) βαθύς πρόβολος, (b) 
κοντός πρόβολος, (c) δοκός MBB και (d) δοκός L 

 
Σε όλες τις περιπτώσεις, αποδίδεται µοναδιαία πυκνότητα, λόγος Poisson 0.3v = , µέτρο 

ελαστικότητας 1E MPa=  και µοναδιαίο αρχικό πάχος (στην περίπτωση των σκελετικών 
κατασκευών, µοναδιαίο αρχικό εµβαδόν διατοµής). Η επιτρεπόµενη τάση ορίσθηκε ίση προς 

max 30MPaσ =  (von Mises τάση για τις προσεγγίσεις συνεχούς µέσου, αξονική τάση µελών 
για τις προσεγγίσεις σκελετικής κατασκευής). Στον Πίνακα 4.1 φαίνονται οι όγκοι των 
βελτίστων σχεδιάσεων για τις προσεγγίσεις του συνεχούς µέσου.  
 

Πίνακας 4.1: Βέλτιστα αποτελέσµατα (προσέγγιση συνεχούς µέσου) 

 Βαθύς πρόβολος Κοντός πρόβολος ∆οκός MBB ∆οκός L 
Aspect ratio [Hor:Ver] 1:1 1:2 1:1 1:2 
Initial volume [m3] 3.0 160.0 6.0 0.64 
Final volume FSD [m3] 0.7863 19.24 1.3814 0.2096 
Final volume SQP [m3] 0.7863 19.24 1.3814 0.2096 
Vfinal/Vo [%] 26.21% 12.02% 23.02% 32.75% 
 
Στον Πίνακα 4.2 φαίνονται οι όγκοι των βελτίστων σχεδιάσεων για τη σκελετική προσέγγιση. 
 

Πίνακας 4.2: Βέλτιστα αποτελέσµατα (προσέγγιση σκελετικής κατασκευής) 

 Βαθύς πρόβολος Κοντός πρόβολος ∆οκός MBB ∆οκός L 
Aspect ratio [Hor:Ver] 1:1 1:2 1:1 1:2 
Initial volume [m3] 3.0 160.0 6.0 0.64 
Final volume FSD [m3] 0.800 22.010 1.500 0.223 
Final volume SQP [m3] 0.800 22.010 1.500 0.223 
Vfinal/Vo [%] 26.67% 13.75% 25.00% 34.84% 
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Οι βέλτιστες κατανοµές υλικού, τόσο για την προσέγγιση συνεχούς µέσου όσο και για την 
προσέγγιση διακριτού µέσου, απεικονίζονται στο Σχήµα 4.3. 
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(c) 

 
Βαθύς 

πρόβολος 

 
Κοντός πρόβολος 

 
∆οκός MBB 

 
∆οκός L 

Σχήµα 4.3:Σχεδιάσεις Πλήρους Έντασης (Fully Stressed Designs): (a) προσέγγιση συνεχούς 
µέσου, (b) προσέγγιση σκελετικής κατασκευής και (c) βιβλιογραφική αναφορά (Duysinx και 

Bendsøe, 1998) 
 
4.2.3. Ιεραρχική διαδικασία βελτιστοποίησης 

Με βάση τη διερεύνηση, η οποία παρουσιάστηκε στην προηγούµενη ενότητα, προκύπτει 
ότι είναι δυνατή η διατύπωση µίας νέας διαδικασίας, ιεραρχικής µορφής και δύο βηµάτων. 
Στο πρώτο βήµα, επιλέγεται µία τοπολογία και στο δεύτερο βήµα αναζητείται η 
ελαχιστοποίηση του βάρους της. Η τοπολογία είναι δυνατόν να ορισθεί ως ο λόγος πλευρών 
του πλέγµατος ( )a bλ = . Ισοδύναµα, η τοπολογία είναι δυνατόν να περιγραφεί και ως 

( )1 bλ = , όπου ο παρονοµαστής b  λαµβάνει οποιαδήποτε θετική τιµή. Συνεπώς, το 
πρόβληµα βελτιστοποίησης διατυπώνεται ως η αναζήτηση εκείνης της τιµής b , για την οποία 
η βελτιστοποίηση πλήρους έντασης καταλήγει στο ελάχιστο βάρος. ∆εδοµένου ότι η 
µεταβλητή b  είναι µία παράµετρος, το αντίστοιχο πρόβληµα βελτιστοποίησης είναι 
µονοδιάστατο, συνεπώς, είναι δυνατόν για την επίλυσή του να χρησιµοποιηθεί οποιοδήποτε 
σχήµα αναζήτησης γραµµής. Η προτεινόµενη διαδικασία είναι η ακόλουθη: 
 
Βήµα 1: Επιλογή αρχικής τοπολογίας µε µεγάλη τιµή της παραµέτρου b  
Βήµα 2: Για την τοπολογία του Βήµατος 1, ελαχιστοποίηση βάρους µε τη διαδικασία FSD 
Βήµα 3: Απόδοση νέας τιµής για την παράµετρο b  βάσει ενός (οποιουδήποτε) σχήµατος 

αναζήτησης γραµµής. 
Βήµα 4: Έλεγχος σύγκλισης. Εάν το βάρος µεταξύ δύο διαδοχικών τιµών της παραµέτρου 

b  είναι µικρότερο από µία µικρή, προκαθορισµένη τιµή τότε η διαδικασία 
τερµατίζεται. 
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Βήµα 5: Εάν έχει ξεπερασθεί το µέγιστο προβλεπόµενο πλήθος επαναλήψεων, τότε η 
διαδικασία διακόπτεται. 

Βήµα 6: Επιστροφή στο Βήµα 2. 
 

Η προτεινόµενη διαδικασία εφαρµόσθηκε στα παραδείγµατα του Σχήµατος 4.3 και τα 
αποτελέσµατα παρουσιάζονται στον Πίνακα 4.3. Πιο συγκεκριµένα, η πρώτη γραµµή του 
Πίνακα 4.3 αφορά στη µείωση, η οποία σχετίζεται µε την προσέγγιση διακριτού µέσου, ενώ η 
δεύτερη γραµµή του εν λόγω πίνακα αφορά στην προσέγγιση συνεχούς µέσου. Η σύγκριση 
µεταξύ των δύο προσεγγίσεων καταγράφεται στην τρίτη γραµµή του Πίνακα 4.3. 
 

Πίνακας 4.3: Μειώσεις όγκου υλικού για τις βέλτιστες σχεδιάσεις. 

 Βαθύς 
πρόβολος 

Κοντός 
πρόβολος 

∆οκός MBB ∆οκός L 

1-(Vfinal/Vo) [%] (Skeletal) 73.33% 86.25% 75.00% 65.16% 
1-(Vfinal/Vo) [%] (Bilinear) 73.79% 87.98% 76.98% 67.25% 

(Skeletal-Bilinear) -0.46% -1.73% -1.98% -2.09% 
 
Στο Σχήµα 4.4, αποτυπώνεται, σε µορφή διαγράµµατος, η ποσότητα του υλικού στη βέλτιστη 
σχεδίαση συναρτήσει του λόγου πλευρών λ  (βλ. Ενότητα 4.2.2). Χαρακτηριστική είναι η 
διαφορά µεταξύ της καµπύλης, η οποία αντιστοιχεί στην προσέγγιση του συνεχούς µέσου, 
και αυτής, η οποία αντιστοιχεί στην προσέγγιση του διακριτού µέσου. 
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Σχήµα 4.4: Βέλτιστος όγκος υλικού συναρτήσει του λόγου πλευρών του πλέγµατος 
 

Στον Πίνακα 4.4 παρουσιάζονται τα βέλτιστα αποτελέσµατα, τα οποία ελήφθησαν µε την 
προτεινόµενη διαδικασία µε τη µέθοδο SQP.  
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Πίνακας 4.4: Σύγκριση αποτελεσµάτων µεταξύ προτεινόµενης διαδικασίας και SQP 
(σκελετικές κατασκευές) 

 Προτεινόµενη διαδικασία SQP  
Παράδειγµα Βέλτιστος 

όγκος 
Χρόνος 

t1 
Βέλτιστος 
όγκος 

Χρόνος 
t2 

t1 / t2 

#1 0.8004 0.99 0.8003 58.500 59 
#2 21.3633 2.25 21.3613 120.010 53 
#3 1.5000 2.86 1.5002 225.420 78 
#4 0.2235 4.22 0.2235 1235.100 292 

 
4.2.4. Συµπεράσµατα 

Με βάση τα αποτελέσµατα της προηγούµενης ενότητας σχετικά µε τα εξετασθέντα 
παραδείγµατα, προκύπτουν τα ακόλουθα συµπεράσµατα: 
• Οι βέλτιστες σχεδιάσεις, οι οποίες προέκυψαν από τις προσεγγίσεις FSD και SQP, ήταν 

ίδιες Αντιθέτως, το υπολογιστικό κόστος στην περίπτωση βελτιστοποίησης 
χρησιµοποιώντας την FSD ήταν σηµαντικά µικρότερο.  

• Ο βέλτιστος όγκος, ισοδύναµα το βέλτιστο βάρος, ήταν ελαφρώς µεγαλύτερο στην 
περίπτωση του συνεχούς µέσου.  

• Ο προσανατολισµός των µελών µίας σκελετικής κατασκευής είναι πρωτευούσης 
σηµασίας στη διαµόρφωση της βέλτιστης σχεδίασης, διότι, εξ αιτίας αυτού, είναι 
δυνατός ο εγκλωβισµός σε τοπικό ακρότατο.  

• ∆εδοµένου ότι το βέλτιστο βάρος, το οποίο προκύπτει χρησιµοποιώντας σκελετική 
προσέγγιση ή προσέγγιση συνεχούς µέσου, δεν είναι σηµαντικά διαφορετικό, το κριτήριο 
για την επιλογή της ανέγερσης µίας κατασκευής χρησιµοποιώντας είτε ραβδόµορφα 
στοιχεία είτε πλακοειδή στοιχεία, σχετίζεται µε την ευκολία και το κόστος χρήσεως των 
εν λόγω στοιχείων. 

Συµπερασµατικά, για πρακτικές εφαρµογές µηχανικού, προκύπτει ότι η χρήση της 
µεθόδου FSD, είτε επί σκελετικής κατασκευής είτε επί κατασκευής συνεχούς µέσου, αποτελεί 
µία καλή επιλογή αναζήτησης του ελαχίστου βάρους.  
 
4.3. Περιορισµός τάσης σε 2∆ συνεχή µέσα και πεπερασµένα στοιχεία 
µεταβλητού πάχους 
4.3.1. Γενικά 

Σε αυτήν την ενότητα εξετάζεται η σύζευξη της τεχνικής ‘stress-ratio’, η οποία αποτελεί 
το απλούστερο σχήµα βελτιστοποίησης κατασκευών υπό περιορισµό τάσεων, µε 
πεπερασµένα στοιχεία, το πάχος των οποίων είναι δυνατόν να µεταβληθεί εντός του 
στοιχείου. Ειδικότερα, χρησιµοποιείται το 3-κοµβικό τριγωνικό πεπερασµένο στοιχείο και για 
την παρεµβολή του πάχους χρησιµοποιούνται οι συναρτήσεις µορφής του στοιχείου. Η 
βασική ιδέα την εν λόγω προσέγγισης είναι η µετατροπή των κόµβων του πλέγµατος σε 
σηµεία ελέγχου της επιφανείας, η οποία καθορίζει την κατανοµή του υλικού. Με τον τρόπο 
αυτό, είναι δυνατόν να ληφθούν συνεχείς, άρα εύκολα κατασκευάσιµες, επιφάνειες. 
Ταυτόχρονα, επιδιώκεται η µείωση του υπολογιστικού κόστους, διότι ο έλεγχος της κίνησης 
των κόµβων (κατακόρυφη κίνηση ως προς τη µεσοεπιφάνεια των στοιχείων) επιτυγχάνεται 
µέσα από µία απλή διαδικασία µηδενικής τάξεως.  
 
4.3.2. Θεωρητική προσέγγιση 

Η προτεινόµενη διαδικασία στηρίζεται σε δύο θεωρητικά στοιχεία. Το πρώτο στοιχείο 
είναι η βιβλιογραφική τεχνική επανασχεδίασης ‘stress-ratio’ και το δεύτερο στοιχείο είναι τα 
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πεπερασµένα στοιχεία µεταβλητού πάχους. Στο παρόν κεφάλαιο, χρησιµοποιούνται δύο τύποι 
τέτοιων στοιχείων επίπεδης ελαστικότητας: το 3-κοµβικό τριγωνικό πεπερασµένο στοιχείο 
και το 4-κοµβικό τετραπλευρικό πεπερασµένο στοιχείο. Η ιδέα της παρεµβολής του πάχους 
ενός στοιχείου εντός του στοιχείου είναι εφαρµόσιµη σε κάθε τύπο πεπερασµένου στοιχείου, 
είτε της οικογένειας Lagrange είτε της οικογένειας Serendipity. Στις επόµενες παραγράφους, 
ακολουθεί συνοπτική περιγραφή των προαναφεροµένων θεωρητικών στοιχείων. 
 
4.3.3. Η τεχνική επανασχεδίασης stress-ratio 

Σύµφωνα µε τη µέθοδο πολλαπλασιαστών Lagrange, η συνάρτηση Lagrange, στην 
περίπτωση αναζήτησης ελαχίστου βάρους ενός δικτυώµατος υπό περιορισµούς τάσεων 
µόνον, έστω περιορισµοί ig , είναι: 
 

( )
1

,
NEL

i i
i

x W gλ λ
=

= +∑                                                   (4.1) 

 
όπου W  είναι το βάρος της κατασκευής, ix  είναι η διατοµή της i-ράβδου, iλ  είναι ο 
πολλαπλασιαστής Lagrange για τον περιορισµό τάσης της i-ράβδου και ig  είναι ο 
επιβαλλόµενος περιορισµός στην i-ράβδο. Θεωρώντας ότι οι αξονικές δυνάµεις των µελών 
του δικτυώµατος είναι ανεξάρτητες των διατοµών, η Εξ.(4.1), µετά από πράξεις, δίδει την 
ακόλουθη αναδροµική σχέση (εξίσωση ‘stress-ratio’, βλ. Ενότητα 3.3.1): 
 

1

max,

k k i
i i

i

x x σ
σ

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                                                     (4.2) 

 
όπου k  είναι ο αύξων αριθµός της επανάληψης. Για ένα ισοστατικό δικτύωµα, το ελάχιστο 
βάρος υπολογίζεται σε ένα βήµα. Για ένα υπερστατικό δικτύωµα, η Εξ.(4.2) είναι δυνατόν να 
χρησιµοποιηθεί µόνον ως µία προσέγγιση της βέλτιστης σχεδίασης. Ωστόσο, η αποκτηθείσα 
εµπειρία, η οποία είναι καταγεγραµµένη στη βιβλιογραφία, υποδεικνύει ότι η Εξ.(4.2) 
παρέχει καλά αποτελέσµατα, για µία ποικιλία προβληµάτων βελτιστοποίησης κατασκευών.  

Γενικεύοντας την ισχύ της Εξ.(4.2) σε προβλήµατα 2∆ συνεχούς µέσου, η ποσότητα ix  
είναι δυνατόν να αντιστοιχεί σε πάχος. Στην παρούσα, υιοθετείται µία περαιτέρω γενίκευση, 
σύµφωνα µε την οποία η ποσότητα ix  της Eξ.(4.2) αντιστοιχεί σε κοµβική τιµή µίας συνεχούς 
κατανοµής πάχους. ∆ιευκρινίζεται ότι είναι επιβεβληµένη η χρήση µίας ελάχιστης τιµής για 
την ποσότητα ix , διότι µία αρνητική τιµή στερείται φυσικής σηµασίας, ενώ µία µηδενική 
τιµή είναι δυνατόν να προκαλέσει σοβαρά προβλήµατα αριθµητικής αστάθειας. 

 
4.3.4. Ανάπτυξη τριγωνικού πεπερασµένου στοιχείου µεταβλητού πάχους 

Σε ένα τριγωνικό πεπερασµένο στοιχείο, το πεδίο µετατοπίσεων παρεµβάλλεται ως εξής: 
 

( ) 1, e e ex y C−= =u N a N a                                                 (4.3) 
 
όπου eN  είναι το µητρώο παρεµβολή, C  είναι ο πίνακας των συντεταγµένων των κόµβων 
του στοιχείου e , ea  είναι το διάνυσµα των κοµβικών µετατοπίσεων. Από τη θεωρία της 
Μεθόδου των Πεπερασµένων Στοιχείων (ΜΠΣ) είναι γνωστό ότι για ένα τριγωνικό στοιχείο 
εµβαδού A , το µητρώο δυσκαµψίας ισούται µε:  
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   e T

A

t dA= ∫K B E B                                                    (4.4) 

όπου E  είναι ο 3 3×  πίνακας ελαστικότητας και B  είναι ο 3 6×  πίνακας παραµορφώσεων –
µετατοπίσεων. Εάν το πάχος του στοιχείου είναι σταθερό (Σχήµα 4.1b), τότε ισχύει: 
 

   e Tt A=K B E B                                                       (4.5) 
 

 
(a) (b) 

Σχήµα 4.5: Τριγωνικό πεπερασµένο στοιχείο µε (a) σταθερό και (b) µεταβλητό πάχος 
 
Έστω τριγωνικό πεπερασµένο στοιχείο µεταβλητού πάχους (Σχήµα 4.1b), στο οποίο το πάχος 
παρεµβάλλεται χρησιµοποιώντας τις συναρτήσεις µορφής του στοιχείου. Προκύπτει: 
 

1 2 3    
3

e Tt t t A+ +⎛ ⎞= ⎜ ⎟
⎝ ⎠

K B E B                                             (4.6) 

 
όπου , 1,2,3it i =  είναι οι κοµβικές τιµές του πάχους.  
 
4.3.4.1. ∆ιαδικασία αξιολόγησης 

Για την αξιολόγηση της προτεινοµένης διαδικασίας, χρησιµοποιήθηκαν συνολικά πέντε 
∆είκτες Αξιολόγησης, δύο διαγράµµατα σχετικά µε την πορεία σύγκλισης, τρία διαγράµµατα 
καθώς και τρία 3∆ σχήµατα για την απεικόνιση της βέλτιστης κατανοµής υλικού (βέλτιστη 
σχεδίαση). Οι ∆είκτες Αξιολόγησης παρουσιάζονται στον Πίνακα 4.5.  
 
Πίνακας 4.5: ∆είκτες αξιολόγησης 

∆είκτης Ορισµός Σκοπός  

_1EI  100opti oud

oud

W W

W

−
×  Για κάθε προσέγγιση, σύγκριση µεταξύ τελικού και αρχικού 

βάρους κατασκευής 

_ 2EI  activeNodes

NN
 Για κάθε προσέγγιση, προσδιορισµός του βαθµού κάλυψης της 

επιφανείας, η οποία περιβάλλει τη βέλτιστη κατανοµή 

_ 3EI  ( )vonMisesCV σ  Για κάθε προσέγγιση, προσδιορισµός του βαθµού πλήρους 
εντάσεως της τελικής σχεδίασης 

_ 4EI  100surfer oud

oud

A A

A

−
×  

Για κάθε προσέγγιση, σύγκριση του εµβαδού της επιφανείας, 
η οποία περιβάλλει τη βέλτιστη κατανοµή, µεταξύ αρχικής και 
τελικής σχεδίασης 

_ 5EI  100surfer oud

oud

W W

W

−
×  

Για κάθε προσέγγιση, σύγκριση του βάρους της τελικής 
σχεδίασης, µετά την επιβολή καθολικού σχήµατος 
παρεµβολής της βέλτιστης κατανοµής του πάχους, του βάρους 
της αρχικής σχεδίασης 

t2 

t3 

t1 

Constant thickness CST element 
(t1 = t2 = t3) 

t2 

t3 
t1 

Variable thickness CST element 
(t1 ≠ t2 ≠ t3) 
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Για λόγους σύγκρισης, η προτεινόµενη διαδικασία βελτιστοποίησης εφαρµόσθηκε µία 
φορά µε πεπερασµένα στοιχεία σταθερού πάχους (έστω ‘Προσέγγιση #1’) και µία φορά µε 
πεπερασµένα στοιχεία µεταβλητού πάχους (έστω ‘Προσέγγιση #2’). 

∆ιευκρινίζεται ότι για µία κατασκευή υπό περιορισµό τάσης, η αποκαλούµενη Βέλτιστη 
Ισοπαχής Σχεδίαση (Optimum Uniform Design - OUD) ορίζεται ως η αρχική κατανοµή 
σταθερού πάχους για την οποία ο επιβαλλόµενος περιορισµός ικανοποιείται ισοτικά. Αυτή η 
σχεδίαση χρησιµοποιείται εκτενώς για συγκρίσεις. Επίσης, διευκρινίζεται ότι την αξιολόγηση 
της προτεινοµένης διαδικασίας βελτιστοποίησης, χρησιµοποιήθηκαν διαγράµµατα, τα οποία 
παρουσιάζονται αναλυτικά στον Πίνακα 4.6 και στον Πίνακα 4.7. 
 
Πίνακας 4.6: Γραφικά µέσα αξιολόγησης 

∆ιάγραµµα Σκοπός 

Plot_a Εκτίµηση σύγκλισης κάθε προσέγγισης ως προς τη µέγιστα εµφανιζόµενη τάση 
von Mises 

Plot_b Εκτίµηση σύγκλισης κάθε προσέγγισης ως προς το βάρος  

Plot_c Εκτίµηση βαθµού πλήρους εντάσεως µεταξύ των σχεδιάσεων από τις 
προσεγγίσεις #1 και #2 

Plot_d Απεικόνιση της διαφοράς βελτίστου βάρους µεταξύ των προσεγγίσεων #1 και #2 
Graph_a Απεικόνιση βέλτιστης σχεδίασης 

Graph_b Για κάθε προσέγγιση, παρεµβολή κοµβικών τιµών πάχους τελικής κατανοµής 
για την απόκτηση της σχεδίασης, η οποία θα κατασκευασθεί 

 
Για τα διαγράµµατα του Πίνακα 4.7, χρησιµοποιήθηκε ως αναφορά η Προσέγγιση #1. 
 
Πίνακας 4.7: ∆ιαγράµµατα Plot_3 και Plot_4 

∆ιάγραµµα Προσδιορισµός τεταγµένης διαγράµµατος 

Plot_3 ( )
( ) ( )

( )
(%) 100vonMises vonMisest const t const

vonMises

vonMises t const

σ σ
σ

σ
≠ =

=

−
∆ = ×

 

Plot_4 ( )
( ) ( )

( )
(%) 100nodal nodalt const t const

nodal

nodal t const

thickness thickness
thickness

thickness
≠ =

=

−
∆ = ×

 
4.3.4.2. Προτεινόµενη διαδικασία βελτιστοποίησης 

Η προτεινόµενη διαδικασία διακρίνεται σε δύο φάσεις. Στην πρώτη φάση, εφαρµόζεται 
µία επαναληπτική διαδικασία, η οποία εκκινείται από την, βιβλιογραφικά αποκαλούµενη, 
Βέλτιστη Ισοπαχή Σχεδίαση (Optimum Uniform Design - OUD). Πρόκειται για εκείνη την 
ισοπαχή κατανοµή υλικού, για την οποία ικανοποιείται ισοτικά ο επιβαλλόµενος περιορισµός. 

 
Φάση A: Καταγραφή της πορείας βελτιστοποίησης (αρχική σχεδίαση: OUD) 
Βήµα A1:  Προσδιορισµός της σχεδίασης (OUD) και καταγραφή βάρους, κατανοµής 

πάχους και κατανοµής τάσεων. 
Βήµα A2:  Από τη σχεδίαση (OUD), εκκίνηση διαδικασίας βελτιστοποίησης για επαρκή 

πλήθος επαναλήψεων. 
Βήµα A3:  Για κάθε επανάληψη, ενηµέρωση του διαγράµµατος Plot_a (βλ. Πίνακα 4.6). 
Βήµα A4:  Για κάθε επανάληψη, ενηµέρωση του διαγράµµατος Plot_b (βλ. Πίνακα 4.6). 
Βήµα A5:  Από το διάγραµµα Plot_a, προσδιορισµός της επανάληψης µε µηδενική (ή 

ελάχιστη) παραβίαση τάσης. 
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Φάση B: Προσδιορισµός της βέλτιστης σχεδίασης (για επανάληψη προσδιορισθείσα στο 
Βήµα A5). 

Βήµα B1:  Εφαρµογή οµοιόµορφης διακλιµάκωσης πάχους, προς αποφυγή παραβίασης 
τάσης. 

Βήµα B2:  Από το Βήµα A1 και το Βήµα B1, διάγραµµα Plot_c (βλ. Πίνακα 4.6). 
Βήµα B3:  Από το Βήµα A1 και το Βήµα B1, διάγραµµα Plot_d (βλ. Πίνακα 4.6). 
Βήµα B4:  Από το Βήµα A1 και το Βήµα B1, ∆είκτης EI_1 (βλ. Πίνακα 4.5). 
Βήµα B5:  Καταγραφή πλήθους ‘ενεργών’ κόµβων και προσδιορισµός ∆είκτη EI_2 (βλ. 

Πίνακα 4.5). 
Βήµα B6:  Για τους ενεργούς κόµβους µόνο, προσδιορισµός της µέσης τιµής, της τυπικής 

απόκλισης και του συντελεστού µεταβλητότητας για την κατανοµή των 
τάσεων von Mises (∆είκτης EI_3 - βλ. Πίνακα 4.1). 

Βήµα B7:  ∆ηµιουργία διαγραµµάτων Graph_a και Graph_b (βλ. Πίνακα 4.2). 
Βήµα B8:  Από το Βήµα B5, καταγραφή επιφανείας και προσδιορισµός ∆είκτη EI_4 (βλ. 

Πίνακα 4.1). 
Βήµα B9:  Από το Βήµα B5, καταγραφή όγκου και προσδιορισµός ∆είκτη EI_5 (βλ. 

Πίνακα 4.1). 
 
4.3.4.3. Εξετασθέντα παραδείγµατα 

Τα εξετασθέντα παραδείγµατα απεικονίζονται στο Σχήµα 4.2. 
 

        
(a) (b) (c) (d) 

Σχήµα 4.6:  Εξετασθέντα παραδείγµατα (a) βαθύς πρόβολος, (b) κοντός πρόβολος, (c) δοκός 
MBB και (d) κατασκευή Michell 

 

∆εδοµένα για τα εξετασθέντα παραδείγµατα καταγράφονται στον Πίνακα 4.4. 

 

Πίνακας 4.8: ∆εδοµένα για τα εξετασθέντα παραδείγµατα 

Παράδειγµα xL  
[ ]m  

yL  
[ ]m   

E  
[ ]Pa  v  dens

F  
[ ]N  

Σηµείο 
εφαρµογής 

F  

allowσ  
[ ]Pa   NN  NEL  

Βαθύς 
πρόβολος 3 1 1 0.3 1 12 ∆εξιά / µέσο 30 641 1200

Κοντός 
πρόβολος 16 10 1 0.3 1 12 ∆εξιά / µέσο 20 1333 2560

∆οκός 
MBB 6 1 1 0.3 1 2 Άνω / µέσο 20 1271 2400

Κατασκευή 
Michell 10 5 100e06 0.3 1 1000 Κάτω / µέσο 35000 1661 3200

F  

F

FF  
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Στον Πίνακα 4.8, ως xL  συµβολίζεται το πλάτος (οριζόντια διάσταση), ως yL  σηµειώνεται το 
ύψος (κατακόρυφη διάσταση), ως E  δηλώνεται το µέτρο ελαστικότητας, ως v  δηλώνεται ο 
λόγος Poisson, ως dens  δηλώνεται η πυκνότητα του υλικού, ως F  συµβολίζεται το 
εφαρµοζόµενο φορτίο, ως allowσ  δηλώνεται η επιτρεπόµενη τάση, ως NN  συµβολίζεται το 
πλήθος των κόµβων και ως NEL  δηλώνεται το πλήθος των πεπερασµένων στοιχείων του 
πλέγµατος. 
 
4.3.4.4. Αποτελέσµατα 

Οι τιµές των ∆εικτών Αξιολόγησης για τα εξετασθέντα παραδείγµατα καταγράφονται 
αναλυτικά στον Πίνακα 4.9. Πιο συγκεκριµένα, για κάθε ένα από τα εξετασθέντα 
παραδείγµατα παρατίθεται µία τριάδα γραµµών. Στην πρώτη γραµµή καταγράφονται διάφορα 
στοιχεία για τη βέλτιστη σχεδίαση, η οποία προκύπτει χρησιµοποιώντας 3-κοµβικά τριγωνικά 
πεπερασµένα στοιχεία σταθερού πάχους,. Στη δεύτερη γραµµή καταγράφονται τα αντίστοιχα 
αποτελέσµατα από τη χρήση των 3-κοµβικών τριγωνικών πεπερασµένων στοιχείων 
µεταβλητού πάχους, ενώ στην τρίτη γραµµή καταγράφεται η διαφορά µεταξύ των δύο 
προσεγγίσεων, διατηρώντας ως αναφορά τη σχεδίαση µε πεπερασµένα στοιχεία σταθερού 
πάχους. 
 
Πίνακας 4.9: ∆είκτες αξιολόγησης για τα εξετασθέντα παραδείγµατα 

Volume 
(FSD 

Design)

Uniform 
scaling 
factor

EI_1 EI_2 mean 
Svonmises EI_3 EI_4 EI_5

t=const 0.8017 1.0071 -93.504 88.768 28.10 17.372 1.955 68.893
t<>const 0.8431 1.0017 -93.132 78.783 26.78 21.513 1.693 10.419

% difference 5.17% -0.54% -0.40% -11.25% -4.69% 23.84% -13.40% -84.88%

t=const 28.4073 1.0086 -85.098 97.900 19.56 8.323 1.117 84.964
t<>const 30.4316 1.0020 -83.931 94.149 18.93 11.944 1.037 1.670

% difference 7.13% -0.65% -1.37% -3.83% -3.19% 43.50% -7.15% -98.03%

t=const 1.3481 1.0154 -81.644 99.685 19.48 3.631 3.268 93.716
t<>const 1.5380 1.0002 -78.735 96.223 18.62 8.651 1.883 6.294

% difference 14.09% -1.50% -3.56% -3.47% -4.39% 138.23% -42.37% -93.28%

t=const 0.4259 1.0054 -93.609 96.869 34.58 2.388 16.688 76.727
t<>const 0.4652 1.0045 -93.018 92.655 33.09 7.481 16.674 1.957

% difference 9.24% -0.09% -0.63% -4.35% -4.33% 213.28% -0.08% -97.45%

Deep 
cantilever

Short 
cantilever

MBB beam

Michel 
structure

 
 
Στο Σχήµα 4.7 απεικονίζονται οι βέλτιστες κατανοµές για κάθε ένα από τα εξετασθέντα 

παραδείγµατα. Ειδικότερα, για κάθε παράδειγµα, παρατίθεται µία τριάδα βελτίστων 
κατανοµών. Η πρώτη βέλτιστη κατανοµή προκύπτει από την εφαρµογή των 3-κοµβικών 
τριγωνικών πεπερασµένων στοιχείων σταθερού πάχους, η δεύτερη κατανοµή προκύπτει από 
τη χρήση των 3-κοµβικών τριγωνικών πεπερασµένων στοιχείων µεταβλητού πάχους, ενώ η 
τρίτη βέλτιστη κατανοµή προκύπτει από την επιβολή ενός καθολικού σχήµατος εξοµάλυνσης 
επί της δεύτερης, εκ των αναφεροµένων, κατανοµής. 
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(a) (b) (c) 

Βαθύς πρόβολος 

   

(a) (b) (c) 
Κοντός πρόβολος 

 

   
(a) (b) (c) 

∆οκός MBB 
 

   
(a) (b) (c) 

Κατασκευή Michell 

Σχήµα 4.7: Βέλτιστες σχεδιάσεις  
 
Στο Σχήµα 4.8 απεικονίζονται τα διαγράµµατα, τα οποία περιγράφονται στον Πίνακα 4.6 και 
στον Πίνακα 4.7. Πιο συγκεκριµένα, για κάθε ένα από τα εξετασθέντα παραδείγµατα, 
παρατίθεται µία τετράδα διαγραµµάτων, οπότε σχηµατίζεται µία διάταξη µε, συνολικά, 16 
διαγράµµατα. Τα διαγράµµατα της πρώτης στήλης της εν λόγω διατάξεως απεικονίζουν την 
πορεία σύγκλισης, ως προς τη µέγιστη εµφανιζόµενη τιµή τάσης. Τα διαγράµµατα της 
δεύτερης στήλης απεικονίζουν την πορεία σύγκλισης, ως προς το βάρος της κατασκευής. Τα 
διαγράµµατα της τρίτης στήλης περιγράφουν πόσο κοντά στην κατάσταση πλήρους εντάσεως 
βρίσκεται η κατασκευή, ενώ τα διαγράµµατα της τέταρτης στήλης δηλώνουν τη διαφορά 
µεταξύ των κοµβικών τιµών της κατανοµής του πάχους, όταν χρησιµοποιούνται πεπερασµένα 
στοιχεία σταθερού και µεταβλητού πάχους (αναφορά: στοιχεία σταθερού πάχους). 
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4.3.4.5. Συµπεράσµατα  
Με βάση τα αποτελέσµατα από τα εξετασθέντα παραδείγµατα, τα οποία παρουσιάστηκαν 

στην προηγούµενη ενότητα, προκύπτει ότι, σε όλες τις περιπτώσεις, η προτεινόµενη 
διαδικασίας βελτιστοποίησης κατέληξε σε σχεδιάσεις µικροτέρου βάρους και πιο οµαλής 
κατανοµής υλικού, κάτι που ενισχύει την ευκολία στην κατασκευή. Αυτό το συµπέρασµα 
ωθεί την έρευνα προς τη χρήση και άλλων τύπων πεπερασµένων στοιχείων µε ανώτερα 
σχήµατα παρεµβολής. Προς αυτήν την κατεύθυνση, εξετάστηκε και η περίπτωση του 4-
κοµβικού τετραπλευρικού στοιχείου, η οποία παρουσιάζεται στην επόµενη ενότητα. 
 
4.3.5. Ανάπτυξη 4-κοµβικού πεπερασµένου στοιχείου µεταβλητού πάχους 

Το 4-κοµβικό τετραπλευρικό πεπερασµένο στοιχείο επίπεδης ελαστικότητας είναι το 
απλούστερο µέλος της οικογενείας των τετραπλευρικών πεπερασµένων στοιχείων. Οι 
αντίστοιχες συναρτήσεις µορφής είναι: 
 

( )
( ) ( )

1,

0.25 1 1

e e e

e
i i i

x y C

N ξξ ηη

−= =

= − −

u N a N a
                                             (4.7) 

 
όπου eN  είναι ο πίνακας παρεµβολής, ως C  περιγράφονται οι κοµβικές συντεταγµένες του 
στοιχείου e  και ως ea  δηλώνονται οι αντίστοιχες κοµβικές συντεταγµένες. Από τη θεωρία 
της (ΜΠΣ), είναι γνωστό ότι το µητρώο δυσκαµψίας eK  του στοχείου e  δίδεται από την 
εξίσωση: 
 

    e T

A

t dA= ∫K B E B                                                    (4.8) 

 
όπου E  είναι ο 3 3×  πίνακας ελαστικότητας και B  είναι ο 3 8×  πίνακας παραµορφώσεων-
µετατοπίσεων. Για τον προσδιορισµό του µητρώου eK , η συνήθης πρακτική είναι η χρήση 
του κανόνα ολοκλήρωσης Gauss, ο οποίος, για 2∆ προβλήµατα, περιγράφεται ως: 
 

( ) ( )
1 21 1

1 11 1

, ,
p p

i j i j
i j

F d d w w Fξ η ξ η ξ η
+ +

= =− −

≈ ∑∑∫ ∫                                     (4.9) 

 
Στην Εξ.(4.9), 1p  και 2p  είναι το πλήθος των σηµείων Gauss στις διευθύνσεις ξ  και η , 

αντίστοιχα. Συνήθως χρησιµοποιείται το ίδιο πλήθος σηµείων, δηλαδή 1 2p p p= = , εάν 
χρησιµοποιούνται οι ίδιες συναρτήσεις µορφής ως προς τις δύο διευθύνσεις ξ  και η . Από 
τον συνδυασµό των Εξ.(4.8, 4.9) προκύπτει ότι για τον προσδιορισµό του µητρώου eK  
απαιτείται η έκφραση του διαφορικού dA  σε όρους των διαφορικών dξ  και dη . Αυτή η 
έκφραση (αναγωγή) είναι εφικτή µέσω της εξίσωσης: 
 

detdA d dξ η= J                                                     (4.10) 
 
όπου J  είναι ο Ιακωβιανός πίνακας, ο οποίος συνδέει τα διαφορικά ως προς { },x y  σε αυτά 

ως προς { },ξ η .  
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(a) (b) 

Σχήµα 4.9: 4-κοµβικό τετραπλευρικό πεπερασµένο στοιχείο µε (a) σταθερό και (b) 
µεταβλητό πάχος 

 

Για ένα 4-κοµβικό τετραπλευρικό στοιχείο σταθερού πάχους (Σχήµα 4.9a), ισχύει: 
 

A
    e Tt dA= ∫K B E B                                                 (4.11) 

 
Για ένα 4-κοµβικό τετραπλευρικό στοιχείο µεταβλητού πάχους (Σχήµα 4.9b), υπό την 

προϋπόθεση της ισοπαραµετρικής παρεµβολής του πάχους, ισχύει: 
 

( )
4

1
i i

i

t N t
=

= ∑                                                        (4.12) 

 
όπου it  είναι το πάχος του i − γωνιακού κόµβου του στοιχείου και iN  είναι η αντίστοιχη 
συνάρτηση παρεµβολής. Ο συνδυασµός των Εξ.(4.11, 4.12) δίδει: 
 

( )
4

1
A

i

e T
i iN t dA

=

= ΕΒ∑∫K B                                             (4.13) 

 
Εισάγοντας τον κανόνα ολοκλήρωσης Gauss της Εξ.(4.9) στην Εξ.(4.13), προκύπτει: 
 

( )
4

1 1

1 1
1

det
i

e T
i iN t J d dξ η

−

− −
=

= ΕΒ∑∫ ∫K B                                 (4.14) 

 
Σχετικά µε τους πίνακες E  και B , αυτοί ανακτώνται εύκολα από τη βιβλιογραφία. 
 
4.3.5.1. ∆ιαδικασία αξιολόγησης 

Για την αξιολόγηση της χρήσης του 4-κοµβικού τετραπευρικού πλήρως ισοπαραµετρικού 
στοιχείου στη βελτιστοποίηση 2∆ χωρίων, ορίσθηκαν οι ακόλουθοι τρεις ∆είκτες 
Αξιολόγησης (Evaluation Indices - EI): 
• ∆είκτης Αξιολόγησης 1EI : αφορά στην κανονικοποίηση του βελτίστου βάρους της 

κατασκευής, πριν την εφαρµογή διαδικασίας καθολικής εξοµάλυνσης, ως προς το αρχικό 
βάρος της κατασκευής, δηλαδή το βάρος της σχεδίαση (OUD): 

 

1
opti

OUD

W
EI

W
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                      (4.15) 

t4 
t3

t1 

 (t1 = t2 = t3 = t4) 

t4 

t3
t1

(t1≠ t2 ≠ t3≠ t4) 

t2
t2 
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• ∆είκτης Αξιολόγησης 2EI : αφορά στην εντατική κατάσταση της κατασκευής, πριν την 
εφαρµογή διαδικασίας καθολικής εξοµάλυνσης, και ισούται µε τη µέση τιµή της τάσης 
von Mises του ενεργού τµήµατος της κατασκευής: 

 

( )2 ,vonMises activeEI σ=                                                   (4.16) 
 
• ∆είκτης Αξιολόγησης 3EI : αφορά στην οµοιοµορφία της εντατικής κατάστασης της 

κατασκευής και ισούται µε το συντελεστή µεταβλητότητας (Coefficient of Variation - 
CV ) του τασικού κατά von Mises πεδίου, το οποίο αντιστοιχεί στο ενεργό τµήµα της 
κατασκευής: 

( )3 ,vonMises activeEI CV σ=                                                (4.17) 
 
Επιπροσθέτως, καταγράφεται η πορεία σύγκλισης, ως προς το βάρος της κατασκευής. 

Προφανώς, αντίστοιχοι δείκτες είναι δυνατόν να ορισθούν και για την κατάσταση µετά από 
την εφαρµογή διαδικασίας καθολικής εξοµάλυνσης 
 
4.3.5.2. Προτεινόµενη διαδικασία βελτιστοποίησης για 4-κοµβικά στοιχεία µεταβλητού 

πάχους (Προσέγγιση #1) 
Η προτεινόµενη διαδικασία είναι η ακόλουθη: 
 
Βήµα 1: Προσδιορισµός της σχεδίασης (OUD) και καταγραφή βάρους, πάχους και 

συµπληρωµατικής ενέργειας παραµόρφωσης (τιµές αναφοράς). 
Βήµα 2: Ανάλυση της κατασκευής µε τη (ΜΠΣ) και υπολογισµός της τάσης von Mises 

στα σηµεία Gauss. 
Βήµα 3: Επανασχεδίαση της κατανοµής του πάχους της κατασκευής στα σηµεία Gauss µε 

την τεχνική stress-ratio. 
Βήµα 4: Παρεµβολή των τιµών του πάχους στα σηµεία Gauss και εκτίµηση του πάχους 

στον κόµβο, τον οποίο περιβάλουν τα σηµεία Gauss.  
Βήµα 5: Ανάλυση της κατασκευής χρησιµοποιώντας την κατανοµή πάχους, η οποία 

προκύπτει από το Βήµα 4. 
Βήµα 6: Εφαρµογή οµοιόµορφης διακλιµάκωσης πάχους ώστε να µην παραβιάζεται σε 

κανένα σηµείο της κατασκευής ο επιβαλλόµενος περιορισµός τάσης. 
Βήµα 7: Έλεγχος σύγκλισης. Εάν δεν έχει επιτευχθεί σύγκλιση ούτε έχει ξεπερασθεί το 

µέγιστο επιτρεπόµενο πλήθος επαναλήψεων, επιστροφή στο Βήµα 2. 
Βήµα 8: Εφαρµογή µίας διαδικασίας εξοµάλυνσης (π.χ. τεχνικής Kriging) των κοµβικών 

τιµών της κατανοµής του πάχους. 
Βήµα 9: Εφαρµογή οµοιόµορφης διακλιµάκωσης στην εξοµαλυµένη κατανοµή υλικού 

(Βήµα 8), έτσι ώστε να µην παραβιάζεται κανένας περιορισµός τάσης. 
Βήµα 10: Υπολογισµός των ∆εικτών Αξιολόγησης. 
 
Για εσωτερικούς κόµβους του πλέγµατος, ο υπολογισµός της κοµβικής τιµής του πάχους 
προκύπτει παρεµβάλλοντας κατάλληλα τις αντίστοιχες τιµές πάχους των σηµείων Gauss, τα 
οποία περιβάλλουν τον εκάστοτε κόµβο. Για τους συνοριακούς κόµβους του πλέγµατος, η 
κοµβική τιµή του πάχους προκύπτει από προεκβολή των τιµών τιµές πάχους των σηµείων 
Gauss, τα οποία βρίσκονται πλησιέστερα στον εκάστοτε συνοριακό κόµβο. Περισσότερες 
λεπτοµέρειες επί του συγκεκριµένου θέµατος παρατίθενται στην ενότητα 4.3.5.4. 
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4.3.5.3. Προτεινόµενη διαδικασία βελτιστοποίησης για 4-κοµβικά στοιχεία σταθερού 
πάχους (Προσέγγιση #2) 

Η διαδικασία είναι η ακόλουθη: 
 
Βήµα 1: Προσδιορισµός της σχεδίασης (OUD) και καταγραφή βάρους, πάχους και 

συµπληρωµατικής ενέργειας παραµόρφωσης (τιµές αναφοράς). 
Βήµα 2: Ανάλυση της κατασκευής µε τη (ΜΠΣ) και υπολογισµός της τάσης von Mises 

στα σηµεία Gauss.  
Βήµα 3: Για κάθε στοιχείο, παρεµβολή των τιµών της τάσης von Mises στα σηµεία Gauss 

και υπολογισµός της τάσης στο κεντροειδές του στοιχείου. 
Βήµα 4: Επανασχεδίαση της κατανοµής του πάχους της κατασκευής στα σηµεία Gauss µε 

την τεχνική stress-ratio. 
Βήµα 5: Ανάλυση της κατασκευής µε τη (ΜΠΣ) και χρησιµοποιώντας την κατανοµή του 

πάχους από το Βήµα 4. 
Βήµα 6: Εφαρµογή οµοιόµορφης διακλιµάκωσης πάχους ώστε να µην παραβιάζεται σε 

κανένα σηµείο της κατασκευής ο επιβαλλόµενος περιορισµός τάσης. 
Βήµα 7: Έλεγχος σύγκλισης. Εάν δεν έχει επιτευχθεί σύγκλιση ούτε έχει ξεπερασθεί το 

µέγιστο επιτρεπόµενο πλήθος επαναλήψεων, επιστροφή στο Βήµα 2. 
Βήµα 8: Εφαρµογή µίας διαδικασίας καθολικής εξοµάλυνσης (π.χ. τεχνικής Kriging) της 

κατανοµής πάχους των στοιχείων. 
Βήµα 9: Εφαρµογή οµοιόµορφης διακλιµάκωσης στην εξοµαλυµένη κατανοµή υλικού 

(Βήµα 8), έτσι ώστε να µην παραβιάζεται κανένας περιορισµός µετατόπισης. 
Βήµα 10: Υπολογισµός των ∆εικτών Αξιολόγησης. 
 

Στην παρούσα, ο προσδιορισµός της τάσης στο κεντροειδές ενός πεπερασµένου στοιχείου 
πραγµατοποιήθηκε µε τους τρόπους, οι οποίοι αναφέρονται στην επόµενη ενότητα. 
 
4.3.5.4. Υπολογισµός κοµβικών τιµών τάσης 

Η κεντρική ιδέα της προτεινοµένης διαδικασίας είναι πρώτα να υπολογισθούν οι τάσεις 
στα σηµεία Gauss και στη συνέχεια να παρεµβληθούν οι εν λόγω τιµές στους κόµβους του 
πλέγµατος. Συνολικά, προτείνονται τρία σχήµατα παρεµβολής (έστω Σχήµα #1, Σχήµα #2 και 
Σχήµα #3). Για το Σχήµα #1, ως κοµβική τιµή χρησιµοποιείται η µέγιστη εκ των τιµών τάσης 
των σηµείων Gauss, τα οποία περιβάλλουν τον εκάστοτε κόµβο. Για το Σχήµα #2, ως 
κοµβική τιµή χρησιµοποιείται ο µέσος όρων των τιµών τάσης των σηµείων Gauss, τα οποία 
περιβάλλουν τον εκάστοτε κόµβο, ενώ για το Σχήµα #3, ως κοµβική τιµή χρησιµοποιείται η 
µικρότερη των τιµών τάσης των σηµείων Gauss. Στην παρούσα, επελέγη το 2 2×  σχήµα 
ολοκλήρωσης κατά Gauss σε συνδυασµό µε τετραπλευρικά στοιχεία. Σε αυτήν την 
περίπτωση, κάθε εσωτερικός κόµβος του πλέγµατος περιβάλλεται από τέσσερα σηµεία 
Gauss, κάθε κόµβος κατά µήκος του συνόρου από δύο σηµεία Gauss, ενώ για κάθε γωνιακό 
κόµβο η τιµή τάσης τίθεται ίση προς εκείνην του πλησιέστερου σηµείου Gauss. Στην 
περίπτωση πεπερασµένων στοιχείων σταθερού πάχους, µε βάση τις τιµές στα σηµεία Gauss, 
υπολογιζόταν, µε βάση τα προαναφερθέντα τρία σχήµατα παρεµβολής, η τιµή της τάσης στο 
κεντροειδές του στοιχείου. 
 
4.3.5.5. ∆ιακρίβωση του πεπερασµένου στοιχείου µεταβλητού πάχους 

Για τη διακρίβωση του πεπερασµένου στοιχείου, το οποίο προγραµµατίστηκε για τις 
ανάγκες της παρούσας µελέτης, χρησιµοποιήθηκε το στοιχείου SHELL63 του εµπορικού 
λογισµικού Ansys (ver.10). Ειδικότερα, εξετάσθηκε ένα 2∆ ορθογωνικό χωρίο σε απλή 
κάµψη και στη συνέχεια σε ασύµµετρο εφελκυσµό/θλίψη, για διάφορες πυκνότητες 
πλέγµατος λόγου πλευρών 1:1. Το εν λόγω χωρίο αναλύθηκε πρώτα µε κώδικα, ο οποίος 
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αναπτύχθηκε στο πλαίσιο της παρούσας ∆ιδακτορικής ∆ιατριβής, και στη συνέχεια µε το 
εµπορικό λογισµικό Ansys (επιλογές για το στοιχείο SHEL63: extra displacement shape 
functions excluded, membrane element stiffness only). Από τη σύγκριση των λύσεων µεταξύ 
των δύο περιπτώσεων, προέκυψε σύµπτωση των τιµών των τάσεων στα σηµεία Gauss. 
 
4.3.5.6. Εξετασθέντα παραδείγµατα 

Τα εξετασθέντα παραδείγµατα είναι εκείνα της ενότητας 4.3.4.3. ∆ιευκρινίζεται, δε, ότι σε 
όλες τις περιπτώσεις χρησιµοποιήθηκε πλέγµα µοναδιαίου λόγου πλευρών, προκειµένου να 
ελαχιστοποιηθεί η επίδραση, του σχήµατος των πεπερασµένων στοιχείων, στα αποτελέσµατα. 

 
4.3.5.7. Αποτελέσµατα 

Οι ∆είκτες Αξιολόγησης (EIs) για τα εξετασθέντα παραδείγµατα παρουσιάζονται στον 
Πίνακα 4.10. ∆ιευκρινίζεται ότι στον Πίνακα 4.10, τα σύµβολα t const=  και t const≠  
δηλώνουν σταθερό και µεταβλητό πάχος στοιχείου, αντίστοιχα. Η % διαφορά εκφράζεται ως 
προς τα αποτελέσµατα των πεπερασµένων στοιχείων σταθερού πάχους. 
 
Πίνακας 4.10: ∆είκτες Αξιολόγησης για τα εξετασθέντα παραδείγµατα 

EI1 EI2 ΕΙ3 EI1 EI2 ΕΙ3 EI1 EI2 ΕΙ3
t=const 0,2568 0,9912 1,2926 0,2458 0,9900 0,9188 0,2330 0,9917 1,1984
t≠const 0,2554 0,9898 0,9501 0,2445 0,9885 1,2616 0,2317 0,9865 1,6532
% difference -0,56% -0,13% -26,50% -0,51% -0,15% 37,31% -0,58% -0,53% 37,95%

t=const 0,2399 0,9962 0,1920 0,2252 0,9985 0,6435 0,2155 0,9997 0,2988
t≠const 0,2351 0,9860 0,5176 0,2218 0,9954 0,4290 0,2141 0,9936 0,4840
% difference -1,97% -1,03% 169,68% -1,52% -0,31% -33,33% -0,64% -0,60% 61,96%

t=const 0,1967 0,9997 0,1499 0,1806 0,9995 0,3194 0,1660 0,9990 0,1901
t≠const 0,1876 0,9816 0,2775 0,1734 0,9799 0,2910 0,1609 0,9755 0,3654
% difference -4,63% -1,81% 85,05% -4,00% -1,96% -8,89% -3,05% -2,34% 92,20%

t=const 0,2855 0,9930 0,2537 0,2633 0,9887 0,5086 0,2432 0,9838 1,0144
t≠const 0,2760 0,9552 0,3348 0,2571 0,9523 0,4399 0,2400 0,9461 0,3514
% difference -3,32% -3,80% 31,97% -2,35% -3,68% -13,52% -1,32% -3,83% -65,36%

Stress interpolation scheme #1 Stress interpolation scheme #2 Stress interpolation scheme #3

Deep 
cantilever

Short 
cantilever

MBB beam

Michell 
structure 
(bridge)  

 
Επιλεγµένες βέλτιστες σχεδιάσεις και πορείες σύγκλισης παρουσιάζονται στο Σχήµα 4.10. Το 
βασικό χαρακτηριστικό σε όλες τις βέλτιστες σχεδιάσεις είναι η ύπαρξη τριών ζωνών 
κατανοµής πάχους. Πιο συγκεκριµένα, υπάρχει µία ζώνη ελαχίστου πάχους, η οποία 
αποτελείται από στοιχεία µε κρίσιµη τιµή πάχους, άρα από στοιχεία, τα οποία είναι δυνατόν 
να αποµακρυνθούν. Η δεύτερη ζώνη αποτελείται από στοιχεία µικρού µεν πάχους, αλλά όχι 
πλησίον της κρίσιµης τιµής. Παρατηρώντας, δε, την θέση στην οποία εµφανίζονται, 
πρόκειται για στοιχεία τα οποία συµβάλουν στην παραλαβή της διάτµησης λόγω κάµψης. Η 
τρίτη ζώνη αποτελείται από στοιχεία µε πάχος σαφώς µεγαλύτερο από εκείνο των υπολοίπων 
στοιχείων. Πρόκειται για την πλέον ενεργή ζώνη της κατασκευής, η µορφή της οποίας 
υποδηλώνει και την πορεία που ακολουθεί το επιβαλλόµενο φορτίο προς τις θέσεις στήριξης. 
Ένα ακόµα σηµείο άξιο λόγου είναι η υψηλή τιµή του πάχους, η οποία παρατηρείται στη 
θέση επιβολής του εξωτερικού φορτίου. Η εν λόγω τιµή είναι τόσο µεγαλύτερη όσο 
µικρότερο είναι το µέγεθος των πεπερασµένων στοιχείων του πλέγµατος, κάτι αναµενόµενο 
από τη θεωρία της (ΜΠΣ). Ειδικότερα, θεωρώντας ότι το εξωτερικό φορτίο επιβάλλεται 
σηµειακά, όσο µικρότερο είναι το µέγεθος του φορτιζοµένου πεπερασµένου στοιχείου τόσο 
µεγαλύτερη είναι και η αναπτυσσόµενη τάση. Αυτός είναι ένας από τους λόγους για τους 
οποίους επιβάλλεται επιπρόσθετη µελέτη ανεξαρτησίας των αποτελεσµάτων από την 
λεπτότητα του χρησιµοποιηθέντος πλέγµατος. Προς αντιµετώπιση του εν λόγω αριθµητικής 
φύσεως προβλήµατος, υπάρχουν διάφορες τεχνικές, όπως η επιβολή του φορτίου σε ένα 
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πλήθος κόµβων, και όχι σηµειακά σε έναν κόµβο, ή το αποκαλούµενο ‘πάγωµα’ του πάχους, 
δηλαδή η απόδοση µίας ικανοποιητικής τιµής πάχους σε µία ζώνη πλησίον της φορτιζόµενης 
θέσεως και η εξαίρεση της ζώνης αυτής από τη διαδικασία της βελτιστοποίησης. 
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Σχήµα 4.10: Βέλτιστες κατανοµές για τα εξετασθέντα παραδείγµατα: (a) προσέγγιση #1, (b) 
προσέγγιση #2 και (c) πορεία σύγκλισης 

 
Προκειµένου να διερευνηθεί η εξάρτηση της βέλτιστης κατανοµής από τη διακριτοποίηση 

του χώρου σχεδίασης, πραγµατοποιήθηκε µία παραµετρική ως προς την πυκνότητα του 
πλέγµατος. Ενδεικτικά, απεικονίζονται οι βέλτιστες σχεδιάσεις για τον βαθύ πρόβολο και για 
δύο διαφορετικά πλέγµατα (Σχήµα 4.11a, 4.11b). Επίσης, παρουσιάζεται και διάγραµµα 
σύγκλισης ως προς το κανονικοποιηµένο βάρος της κατασκευής συναρτήσει του πλήθους των 
πεπερασµένων στοιχείων (Σχήµα 4.11c), από το οποίο φαίνεται ότι το βάρος τείνει 
ασυµπτωτικά προς µία τιµή. 
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Σχήµα 4.11: Βέλτιστες σχεδιάσεις για τον βαθύ πρόβολο: (a) πλέγµα 30x90, (b) πλέγµα 

40x120 και (c) κανονικοποιηµένο βάρος συναρτήσει του πλήθους στοιχείων του πλέγµατος 
 
4.3.5.8. Συµπεράσµατα 

Με βάση τα αποτελέσµατα από τα εξετασθέντα παραδείγµατα, τα οποία παρουσιάστηκαν 
στην προηγούµενη ενότητα, προκύπτει ότι, σε όλες τις περιπτώσεις, η προτεινόµενη 
διαδικασίας βελτιστοποίησης µε πεπερασµένα στοιχεία µεταβλητού πάχους κατέληξε σε 
σχεδιάσεις µικροτέρου βάρους και πιο οµαλής κατανοµής υλικού 
 
4.4. Βέλτιστη σχεδίαση πλάκας υπό περιορισµό τάσης  
4.4.1. Γενικά 

Η βέλτιστη σχεδίαση µίας πλάκας δεν εξαρτάται µόνον από τη εφαρµοζόµενη διαδικασία 
βελτιστοποίησης, αλλά και από άλλες παραµέτρους, όπως η αρχική γεωµετρία, οι συνθήκες 
στήριξης και η φόρτιση. Προς αυτήν την κατεύθυνση, στην παρούσα ενότητα διερευνήθηκαν 
ενδελεχώς τέσσερα χαρακτηριστικά παραδείγµατα, κάποια από αυτά µε παραλλαγές, 
προκειµένου να αναδειχθούν οι διαφορές µεταξύ των βελτίστων σχεδιάσεων, οι οποίες 
προκύπτουν όταν επιδιώκεται η µεταβολή του πάχους µίας κατανοµής υλικού και όταν 
αποβάλλεται πλήρως υλικό από µία ισοπαχή κατανοµή.  

 
4.4.2. Θεωρητικό υπόβαθρο 

Μία πλάκα ορίζεται ως ένα 3∆ σώµα, στο οποίο µία γεωµετρική διάσταση (πάχος) είναι 
σηµαντικά µικρότερη από τις άλλες δύο γεωµετρικές διαστάσεις και η µεσοεπιφάνειά του 
είναι επίπεδη. Ένα είδος πλακός (πλάκες κάµψης - bending plates) είναι εκείνες για τις οποίες 
ισχύει:  
 

int 0extW W Wδ δ δ= + =                                                (4.18) 
 
όπου 
 

( )int 2
A

x x xy xy y y x x y yW m k m k m k q q dAδ δ δ δ δγ δγ− = + + + +∫                    (4.19) 

 
και  
 

( )boundary terms
A

extW p w dAδ δ= +∫                                    (4.20) 

 
Το έργο των εσωτερικών δυνάµεων σε µητρωική µορφή, γράφεται ως: 
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( ) ( ) ( )int
A A

T T
b SW dA w w dAδ δ δ= +− ∇ + ∇ +∫ ∫Lφ D Lφ φ D φ                    (4.21) 

 
όπου οι άγνωστοι είναι το πεδίο των µετατοπίσεων ( ),w x y  και το διάνυσµα των στροφών 

T

x yϕ ϕ⎡ ⎤= ⎣ ⎦φ . Σύµφωνα µε τη θεωρία Kirchhoff (θεωρία λεπτής πλακός), συνεισφορά της 
διάτµησης αµελείται, οπότε προκύπτει: 
 

w= ∇ + =γ φ 0                                                      (4.22) 
 
Ο συνδυασµός των Εξ.(4.21, 4.22) δίδει:  
 

( )int
A

T
bW w wdAδ δ=− ∇ ∇∫ L D L                                         (4.23) 

 
Στην Εξ.(4.23), ο µόνος άγνωστος είναι το πεδίο των µετατοπίσεων. Σύµφωνα µε τη (ΜΠΣ), 
ισχύει: 
 

ww = N v     και    ϕ=φ N v                                             (4.24) 
 
όπου v  είναι το διάνυσµα των κοµβικών µετατοπίσεων και στροφών, ενώ wN  και ϕN  είναι 
τα µητρώα των συναρτήσεων παρεµβολής. Σύµφωνα µε τη θεωρία Kirchhoff για λεπτές 
πλάκες, λαµβάνονται υπόψη µόνον οι όροι κάµψης: 
 

( )int
A

TT
bW dAϕ ϕδ δ=− ∫ v LN D LN v% %                                       (4.25) 

 
όπου 
 

wwϕ= = −∇ = −∇φ N v N v% %                                              (4.26) 
 
Το µητρώο δυσκαµψίας ισούται µε: 
 

T
b b b bA

dA= = ∫k k B D B                                                (4.27) 

 
όπου  
 

b ϕ=B LN%                                                           (4.28) 
 

Με αυτόν τον τρόπο, σχηµατίζεται το στοιχείο πλακός 12 βαθµών ελευθερίας, το οποίο 
χρησιµοποιήθηκε στην παρούσα. Σύµφωνα µε τη θεωρία λεπτής πλακός, ισχύει: 
 

( )

1 0
1 0

0 0 0.5 1
b

v
K v

v

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

D                                             (4.29) 
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όπου  
 

( )
3

212 1
EtK

v
=

−
                                                     (4.30) 

 
Στην παρούσα, χρησιµοποιήθηκαν δύο διαδικασίες βελτιστοποίησης: η διαδικασία Fully 
Stressed Design (FSD) και η διαδικασία Evolutionary Structural Optimization (ESO). Και οι 
δύο διαδικασίες αποσκοπούν στον ίδιο στόχο, δηλαδή στη διαµόρφωση ενός οµοιόµορφου 
τασικού πεδίου στην ενεργή περιοχή της κατασκευής, το οποίο να έχει τιµή πλησίον της 
µέγιστης επιτρεπόµενης. 

Η αναδροµική σχέση επανασχεδίασης της διαδικασίας (FSD) προκύπτει από την 
εφαρµογή της µεθόδου των πολλαπλασιαστών Lagrange, σύµφωνα µε την οποία η 
συνάρτηση Lagrange για την κατασκευή βάρους W , υπό την επιβολή µόνον περιορισµών 
τάσεων ig  και µοντελοποιούµενης µε στοιχεία πλακός, είναι: 

( )
1

,
NEL

i

W gi iλ λ
=

= +∑t                                                (4.31) 

 
όπου t  είναι το διάνυσµα µε τα πάχη των στοιχείων πλακός. Εάν αναζητείται το ελάχιστο 
βάρος W , τότε η πρώτη παράγωγος της συνάρτησης Lagrange (Εξ.4.31) πρέπει να 
µηδενισθεί. Μετά από πράξεις, και θεωρώντας κατάσταση πλήρους εντάσεως για τα ενεργά 
στοιχεία της κατασκευής, προκύπτει η αναδροµική σχέση: 
 

(1/ )

1

max,

n

k k i
i i

i

t t σ
σ

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                                                 (4.32) 

 
όπου η ποσότητα n  στον εκθέτη είναι ένας συντελεστής χαλάρωσης, προς επίτευξη πιο 
οµαλής σύγκλισης. Στην παρούσα, θεωρήθηκε ότι 2n = . Για την επανασχεδίαση της 
κατασκευής µε τη µέθοδο (ESO), επιδιώκεται η προοδευτική αποβολή πλεονάζοντος υλικού, 
δηλαδή υλικού, στο οποίο οι αναπτυσσόµενες τάσεις είναι οι χαµηλότερες. Σύµφωνα µε τη 
βιβλιογραφία, τα προς αποβολή στοιχεία ικανοποιούν την ανισότητα:  
 

, ,maxvonMises e vonMisesRRσ σ≤ ≤                                            (4.33) 
 
όπου ,vonMises eσ  είναι η τάση von Mises του e-στοιχείου, ,maxvonMisesσ  είναι η µέγιστη τιµή τάσης 
von Mises, η οποία εµφανίζεται στην κατασκευής και στην τρέχουσα επανάληψη, ενώ ως 
RR  συµβολίζεται ο ρυθµός αποβολής υλικού (Rejection Ratio):  
 

1 2 3 ...oRR a a SS a SS a SS= + × + × + × +                                  (4.34) 
 
Ο ακέραιος αριθµός SS  καλείται Αριθµός Σταθερής Κατάστασης (Steady State number), ο 
οποίος αυξάνεται κάθε φορά που το σχήµα αποβολής υλικού της Εξ.(4.33) δεν οδηγεί στην 
αποµάκρυνση υλικού. Μία τυπική βιβλιογραφική τιµή είναι 10SS = . 
 
4.4.3. Εξετασθέντα παραδείγµατα 

Συνολικά, εξετάσθηκαν τέσσερα παραδείγµατα: 
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Παράδειγµα #1: Τετραγωνική πλάκα (Σχήµατα 4.12, 4.13), περιµετρικά αρθρωµένη και 
περιµετρικά πακτωµένη. Λόγω συµµετρίας, εξετάζεται µόνο το ένα 
τέταρτο της πλάκας. 

Παράδειγµα #2: Μονόπακτη πλάκα υπό την επίδραση δύο γωνιακών φορτίων της αυτής 
διεύθυνσης και φοράς (Σχήµα 4.14, Σχήµα 4.15). Εξετάζονται δύο 
περιπτώσεις: τα φορτία είναι ίσα µεταξύ τους και τα φορτία εµφανίζουν 

λόγο ( )1 / 2  µεταξύ τους. 

Παράδειγµα #3: Μονόπακτη πλάκα υπό την επίδραση κατανοµής φορτίου επί της ακµής 
της ευρισκόµενης απέναντι από τη στήριξη (Σχήµα 4.16, Σχήµα 4.17). 
Εξετάζονται δύο περιπτώσεις: η κατανοµή είναι σταθερή και η κατανοµή 
είναι τριγωνική.  

Παράδειγµα #4: Μονόπακτη πλάκα υπό την επίδραση δύο γωνιακών φορτίων της αυτής 
διεύθυνσης αλλά αντιθέτου φοράς (Σχήµα 4.18, Σχήµα 4.19). Εξετάζονται 
δύο περιπτώσεις: τα φορτία είναι ίσα µεταξύ τους και τα φορτία 

εµφανίζουν λόγο ( )1 / 2  µεταξύ τους. 

Σε όλες τις περιπτώσεις, χρησιµοποιήθηκε µέτρο ελαστικότητας 70E GPa= , λόγος Poisson 

0.3v =  και πυκνότητα 32707 /kg mρ = . Όλες οι φορτίσεις, σηµειακές και κατανεµηµένες, 

θεωρήθηκαν ως µοναδιαίες. Επίσης, σε όλα τα παραδείγµατα πλην του πρώτου, εξετάσθηκαν 

τρεις διαφορετικές γεωµετρίες µε λόγο πλευρών ( ) { }/ 1,2,3a b ∈ . 

 
4.4.4. Αποτελέσµατα 
Αποτελέσµατα για το Παράδειγµα #1 και µε την πλάκα περιµετρικά αρθρωµένη, 
απεικονίζονται στο Σχήµα 4.12. 
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(b) Evolutionary Structural Optimization 
(i) Ορισµός 

προβλήµατος (αρχικό 
στάδιο) 

(ii) Post-initial stage (iii) Intermediate stage (iv) Final stage 

Σχήµα 4.12: Βέλτιστη σχεδίαση περιµετρικά αρθρωµένης τετραγωνικής πλάκας 
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Αποτελέσµατα για το Παράδειγµα #1 και µε την πλάκα περιµετρικά πακτωµένη, 
απεικονίζονται στο Σχήµα 4.13. 
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(a) Fully Stressed Design 
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 (b) Evolutionary Structural Optimization 
(i) Ορισµός 

προβλήµατος (αρχικό 
στάδιο) 

(ii) Post-initial stage (iii) Intermediate stage (iv) Final stage 

Σχήµα 4.13: Βέλτιστη σχεδίαση περιµετρικά πακτωµένης τετραγωνικής πλάκας 
 
 
Αποτελέσµατα για το Παράδειγµα #2 και για ίσα φορτία, απεικονίζονται στο Σχήµα 4.14. 
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 (b) Evolutionary Structural Optimization 
(i) Ορισµός 
προβλήµατος 

(ii) ( ) ( )/ 1 /1a b =  (iii) ( ) ( )/ 1 / 2a b =  (iv) ( ) ( )/ 1 / 3a b =  

 
Σχήµα 4.14: Βέλτιστη σχεδίαση µονόπακτης πλάκας υπό την επιβολή δύο ίσων κοµβικών 

φορτίων 
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Αποτελέσµατα για το Παράδειγµα #2 και για άνισα φορτία, απεικονίζονται στο Σχήµα 4.15. 
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 (b) Evolutionary Structural Optimization 
(i) Ορισµός 
προβλήµατος 

(ii) ( ) ( )/ 1 /1a b =  (iii) ( ) ( )/ 1 / 2a b =  (iv) ( ) ( )/ 1 / 3a b =  

Σχήµα 4.15: Βέλτιστη κατανοµή µονόπακτης πλάκας υπό την επιβολή δύο άνισων κοµβικών 
φορτίων  

 
 
Αποτελέσµατα για το Παράδειγµα #3 και για σταθερή κατανοµή φορτίου, απεικονίζονται στο 
Σχήµα 4.16. 
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 (b) Evolutionary Structural Optimization 
(i) Ορισµός 
προβλήµατος 

(ii) ( ) ( )/ 1 /1a b =  (iii) ( ) ( )/ 2 /1a b =  (iii) ( ) ( )/ 3 /1a b =  

Σχήµα 4.16: Βέλτιστη κατανοµή µονόπακτης πλάκας υπό την επιβολή οµοιόµορφης 
κατανοµής φορτίου  
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Αποτελέσµατα για το Παράδειγµα #3 και για τριγωνική κατανοµή φορτίου, απεικονίζονται 
στο Σχήµα 4.17. 
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 (b) Evolutionary Structural Optimization 
(i) Ορισµός 
προβλήµατος 

(ii) ( ) ( )/ 1 /1a b =  (iii) ( ) ( )/ 2 /1a b =  (iii) ( ) ( )/ 3 /1a b =  

Σχήµα 4.17: Βέλτιστη κατανοµή µονόπακτης πλάκας υπό την επιβολή τριγωνικής κατανοµής 
φορτίου 

 
 
Αποτελέσµατα για το Παράδειγµα #4 και για ίσα φορτία, απεικονίζονται στο Σχήµα 4.18. 
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 (b) Evolutionary Structural Optimization 
(i) Ορισµός 
προβλήµατος 

(ii) ( ) ( )/ 1 /1a b =  (iii) ( ) ( )/ 1 / 2a b =  (iv) ( ) ( )/ 1 / 3a b =  

Σχήµα 4.18: Βέλτιστη κατανοµή µονόπακτης πλάκας υπό την επιβολή δύο αντιθέτων και 
ίσων κοµβικών φορτίων 

 



Δ.T.Βενετσάνος – Διδακτορική Διατριβή ‐ 2010 

Σ ε λ ί δ α  | ΕΛ.4.28 

Αποτελέσµατα για το Παράδειγµα #4 και για άνισα φορτία, απεικονίζονται στο Σχήµα 4.19. 
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 (b) Evolutionary Structural Optimization 
(i) Ορισµός 
προβλήµατος 

(ii) ( ) ( )/ 1 /1a b =  (iii) ( ) ( )/ 1 / 2a b =  (iv) ( ) ( )/ 1 / 3a b =  

Σχήµα 4.19: Βέλτιστη κατανοµή µονόπακτης πλάκας υπό την επιβολή δύο αντιθέτων και 
άνισων κοµβικών φορτίων 

 
Από το Σχήµα 4.12 έως και το Σχήµα 4.19, παρατίθεται, σε απλοποιηµένο σκίτσο, η 
γεωµετρία, η στήριξη και η φόρτιση της πλάκας. Στα ίδια σχήµατα, παρατίθεται µία τριάδα 
διαγραµµάτων µε την ένδειξη (Fully Stressed Design), η οποία αντιστοιχεί στις βέλτιστες 
κατανοµές υλικού, για διαφορετικό λόγο πλευρών της πλάκας και όταν επιτρέπεται η 
µεταβολή του πάχους των στοιχείων. Τέλος, στα ίδια σχήµατα στην τριάδα παρατίθεται µία 
τριάδα διαγραµµάτων µε την ένδειξη (Evolutionary Structural Optimization), η οποία 
αντιστοιχεί στις βέλτιστες κατανοµές υλικού, για διαφορετικό λόγο πλευρών της πλάκας και 
όταν επιβάλλεται η κατανοµή του υλικού να είναι διαρκώς ισοπαχής. 
 
4.4.5. Συµπεράσµατα 

Μελετήθηκαν οι τεχνικές µεταβολής του πάχους µίας κατανοµής υλικού και της πλήρους 
αποµάκρυνσης υλικού από µία ισοπαχή κατανοµή υλικού, οι οποίες είναι συλλογιστικά 
παραπλήσιες, δεδοµένου ότι αµφότερες επιδιώκουν τη διαµόρφωση µίας σχεδίασης, στην 
οποία το εναποµείναν υλικό χαρακτηρίζεται από, περίπου, την ίδια τάση. Από τα 
αποτελέσµατα, τα οποία παρουσιάστηκαν στην προηγούµενη ενότητα, καταδείχθηκε ότι οι εν 
λόγω τεχνικές, όταν εφαρµοσθούν σε προβλήµατα εκτός-επιπέδου-κάµψης µίας πλάκας, 
καταλήγουν σε σηµαντικά διαφορετικές βέλτιστες κατανοµές υλικού.  
 
4.5. Βέλτιστη σχεδίαση 3D συνεχούς µέσου υπό περιορισµό τάσεων 
4.5.1. Γενικά 

Η βέλτιστη σχεδίαση 3∆ κατασκευών συνεχούς µέσου υπό περιορισµό τάσης αποτελεί µία 
ιδιαίτερη κατηγορία προβληµάτων, δεδοµένου ότι, λόγω της φύσεως του προβλήµατος, είναι 
δυνατόν, κατά το πάχος, να δηµιουργούνται ζώνες µε υλικό και ζώνες κενές υλικού. 
Ισοδύναµα, προβλέπεται η δηµιουργία εσωτερικών κοιλοτήτων, συνεπώς δεν ενδείκνυται η 
χρήση της προσέγγισης µε την, κάθετα στη µεσοεπιφάνεια, µεταβολή του πάχους. Αντιθέτως, 
ενδείκνυται η ολική αφαίρεση υλικού από θέσεις, οι οποίες αντιστοιχούν σε πεπερασµένα 
στοιχεία του πλέγµατος. Προς αυτήν την κατεύθυνση, αναπτύχθηκε µία νέα διαδικασία 
βελτιστοποίησης, σύµφωνα µε την οποία η αποβολή υλικού στηρίζεται σε ένα ενεργειακό 
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κριτήριο, η µαθηµατική έκφραση του οποίου εµπλέκει την κανονικοποιηµένη µορφή της 
ενέργειας παραµόρφωσης του ενεργού τµήµατος της κατασκευής. Για λόγους αξιολόγησης, 
πραγµατοποιήθηκε σύγκριση µε συναφή βιβλιογραφική µεθοδολογία, στην οποία η αποβολή 
υλικού στηρίζεται σε κριτήριο σχετιζόµενο µε την τάση von Mises (έστω Basic Removal 
Scheme – BRS). Η σύγκριση συµπεριελάµβανε τέσσερα τυπικά βιβλιογραφικά 
παραδειγµάτων. Από τη, δε, σύγκριση προέκυψε η δυνατότητα διαµόρφωσης ανώτερων 
σχεδιάσεων µε την προτεινόµενη διαδικασία βελτιστοποίησης.  
 
4.5.2. Θεωρητικό υπόβαθρο 

Το πρόβληµα της ελαχιστοποίησης του βάρους µίας 3∆ κατασκευής συνεχούς µέσου υπό 
την επιβολή περιορισµού τάσεων είναι δυνατόν να διατυπωθεί ως εξής:  
 

mi 
,

1

NEL act

j
jV V

=

= ∑                                                       (4.35) 

έτσι ώστε 
max

1 0i

allow

σ
σ

− ≤                                              (4.36) 

 
όπου jV  είναι ο όγκος του j − στοιχείου της τελικής σχεδίασης, jσ  είναι η τάση von Mises 
του στοιχείου αυτού, allowσ  είναι η επιτρεπόµενη τάση von Mises (περιορισµός τάσης) και 

,NEL act  είναι το πλήθος των πεπερασµένων στοιχείων της τελικής σχεδίασης (ενεργά 
στοιχεία). ∆ιευκρινίζεται ότι η Εξ.(4.36) περιγράφει την κατάσταση κατά την οποία 
θεωρείται ότι το επιτρεπόµενο όριο εφελκυσµού και θλίψης είναι, κατά απόλυτη τιµή, το ίδιο. 
Για την εύρεση της βέλτιστης σχεδίασης, απαιτείται ο καθορισµός τριών βασικών 
παραµέτρων: ο τρόπος αποµάκρυνσης/αποβολής του υλικού (ή, ισοδύναµα, ο τρόπος 
επανασχεδίασης), το κριτήριο σύγκλισης και το κριτήριο τερµατισµού της διαδικασίας 
βελτιστοποίησης. Τα θέµατα αυτά αναπτύσσονται συνοπτικά στις επόµενες παραγράφους. 
 
4.5.2.1. Κριτήριο αποβολής υλικού 

Η επανασχεδίαση της κατασκευής στηρίζεται στη βαθµιαία αποβολή πλεονάζοντος 
υλικού, η οποία υλοποιείται µέσω της αποβολής ενός ή περισσοτέρων πεπερασµένων 
στοιχείων του πλέγµατος. Ο χαρακτηρισµός ενός στοιχείου ως πλεονάζοντος είναι δυνατόν 
να στηριχθεί στην ενέργεια παραµόρφωσης του στοιχείου, η οποία αποθηκεύεται σε αυτό. 
Ωστόσο, εάν το πλέγµα αποτελείται από πεπερασµένα στοιχεία διαφορετικού µεγέθους, τότε 
η ενέργεια παραµόρφωσης δεν αποτελεί το καλύτερο κριτήριο χαρακτηρισµού. Αντιθέτως, 
είναι προτιµητέα η χρήση της εννοίας της πυκνότητας της ενέργειας παραµόρφωσης ju  κάθε 
στοιχείου: 
 

T
ju d= ∫σ ε                                                         (4.37) 

 

Αρχικά, η µέση τιµή της πυκνότητας ενέργειας παραµόρφωσης της κατασκευής ισούται µε: 

 

1

1 NEL

j j
j

u u
NEL =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑                                                     (4.38) 
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∆ιαιρώντας κατά µέλη την Εξ.(4.37) µε την Εξ.(4.38), προκύπτει η κανονικοποιηµένη 
πυκνότητα ενέργειας παραµόρφωσης (Normalized Strain Energy Density – NSED) για κάθε 
στοιχείο: 
 

( )/j j jn u u=                                                        (4.39) 
 
Ο δείκτης jn  είναι δυνατόν να χρησιµοποιηθεί για την αξιολόγηση της ενεργειακής 
συµµετοχής κάθε στοιχείου του πλέγµατος. Πεπερασµένα στοιχεία µε χαµηλή τιµή jn  
θεωρείται ότι αντιστοιχούν σε πλεονάζον υλικό, χαρακτηρίζονται ως παθητικά στοιχεία 
(passive elements) και θα πρέπει να αποµακρυνθούν, συµβάλλοντας στη µείωση του βάρους 
της κατασκευής. Η, δε, αποµάκρυνσή τους πραγµατοποιείται σε δύο βήµατα. Στο πρώτο 
βήµα, όλα τα εναποµείναντα (ενεργά) στοιχεία του πλέγµατος ταξινοµούνται µε κριτήριο την 
τιµή του δείκτη jn . Στο δεύτερο βήµα, αποµακρύνεται είτε κάποιο προκαθορισµένο πλήθος 
στοιχείων είτε κάποιο προκαθορισµένο ποσοστό στοιχείων (Material Removal Step). 
Συνεπώς, στην k − επανάληψη, ο δείκτης j , ο οποίος εµφανίζεται στις Εξ.(4.37, 4.38, 4.39), 
λαµβάνει τιµές:  
 

, 11 act kj NEL −≤ ≤                                                     (4.40) 
 
Στο σηµείο αυτό, τονίζεται ιδιαιτέρως ότι, στις επόµενες παραγράφους, η αποβολή του 
υλικού είναι φυσική, υπό την έννοια ότι τα αντίστοιχα πεπερασµένα στοιχεία του πλέγµατος 
δεν λαµβάνονται υπόψη. Αντιθέτως, σε µία αριθµητική προσέγγιση, λαµβάνονται υπόψη όλα 
τα στοιχεία του πλέγµατος και αποδίδεται µία τέτοια τιµή σε κάποια χαρακτηριστικά ιδιότητα 
του στοιχείου, έτσι ώστε η συνεισφορά του στο µητρώο δυσκαµψίας της κατασκευής να είναι 
αµελητέα. 
 
4.5.2.2. Κριτήριο σύγκλισης 

Για τη σύγκλιση της αριθµητικής διαδικασίας, είναι δυνατόν να χρησιµοποιηθεί ένα εκ 
των εξής κριτηρίων:  
 

( )1k kV V tol− − <     ή    ( ) minkMRS MRS<                                  (4.41) 
 
όπου ως V  συµβολίζεται ο όγκος του παρεµένοντος υλικού, ως MRS  συµβολίζεται το Βήµα 
Αποβολής Υλικού (Material Removal Step - MRS), ενώ ως k  δηλώνεται η τρέχουσα 
επανάληψη. Σύµφωνα µε την πρώτη εκ των ανισοτήτων στην Εξ.(4.41), θεωρείται ότι έχει 
επιτευχθεί σύγκλιση όταν η µεταβολή του όγκου του εναποµείναντος υλικού στην κατασκευή 
και µεταξύ δύο διαδοχικών επαναλήψεων καταστεί µικρότερη από µια προκαθορισµένη τιµή. 
Σύµφωνα µε τη δεύτερη εκ των εν λόγω ανισοτήτων θεωρείται ότι έχει επιτευχθεί σύγκλιση 
όταν η παράµετρος MRS (Material Removal Step) λάβει τιµή µικρότερη από µία 
προκαθορσιµένη. 
 
4.5.2.3. Κριτήριο τερµατισµού 

Για τον τερµατισµό της διαδικασίας, αρκεί να διαγνωσθεί ότι η εµφανιζόµενη µέγιστη τιµή 
του τασικού πεδίου von Mises είναι υψηλότερη της αντίστοιχης επιτρεπόµενης τιµής: 
 

( )max / 1i allowσ σ >                                                  (4.42) 
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Επίσης, όπως σε κάθε επαναληπτική διαδικασία, προβλέπεται ο τερµατισµός της διαδικασίας 
εάν ξεπερασθεί κάποιο προκαθορισµένο µέγιστο πλήθος επαναλήψεων: 
 

maxkN N>                                                          (4.43) 
 
όπου η ποσότητα kN  αντιστοιχεί στον αύξοντα αριθµό της τρέχουσας επανάληψης και maxN  
είναι το µέγιστο επιτρεπόµενο πλήθος επαναλήψεων. 
 
4.5.3. Προτεινόµενη διαδικασία βελτιστοποίησης 

Η προτεινόµενη διαδικασία βελτιστοποίησης είναι η ακόλουθη: 
 

Βήµα 1: ∆οµηµένη διακριτοποίηση του 3∆ χώρου σχεδίασης µε πεπερασµένα στοιχεία και 
ορισµός αρχικής τιµής για το Βήµα Αποβολής Υλικού (Material Removal Step - 
MRS). 

Βήµα 2: Υπολογισµός της πυκνότητας της ενέργειας παραµόρφωσης (Strain Energy 
Density - SED) κάθε πεπερασµένου στοιχείου. 

Βήµα 3: Υπολογισµός της κανονικοποιηµένης πυκνότητας της ενέργειας παραµόρφωσης 
(Normalized Strain Energy Density - NSED) για κάθε στοιχείο. 

Βήµα 4: Αποµάκρυνση (MRS) στοιχείων µε τη µικρότερη τιµή NSED. 
Βήµα 5: Υπολογισµός της τιµής (NSED) για τα εναποµείναντα στοιχεία (ενεργά στοιχεία). 
Βήµα 6: Έλεγχος σύγκλισης και τερµατισµός της διαδικασίας εάν έχει επιτευχθεί 

σύγκλιση. 
Βήµα 7: Έλεγχος παραβιάσεων τάσεων. Εάν παρατηρείται παραβίαση τάσης, τότε µείωση 

του βήµατος (MRS). 
Βήµα 8: Επιστροφή στο Βήµα 4. 
 

Για τη διακριτοποίηση του χώρου σχεδίασης, µία καλή επιλογή είναι η χρήση 8-κοµβικών 
6-εδρικών πεπερασµένων στοιχείων. Η χρήση 20-κοµβικών 6-εδρικών στοιχείων κατά κύριο 
λόγο αποσκοπεί στην αντιµετώπιση του, αποκαλούµενου στη βιβλιογραφία, ‘προβλήµατος 
σκακιέρας’ (checkerboard problem). 
 
4.5.4. Εξετασθέντα παραδείγµατα 

Η αξιολόγηση της προτεινοµένης διαδικασίας στηρίχθηκε σε τέσσερα βιβλιογραφικά 
παραδείγµατα. ∆ιευκρινίζεται ότι δεδοµένα για τρία παραδείγµατα (βαθύς πρόβολος, κοντός 
πρόβολος και δοκός ΜΒΒ) παρατίθενται και σε άλλο σηµείο της παρούσης. Ωστόσο, για την 
πληρότητα του κειµένου, στοιχεία για τα εν λόγω παραδείγµατα παρατίθενται εκ νέου. Στο 
Σχήµα 4.20 απεικονίζεται σχηµατικά η γεωµετρία, η στήριξη και η φόρτιση των 
εξετασθέντων παραδειγµάτων. 
 

        
(a) (b) (c) (d) 

Σχήµα 4.20: Τα εξετασθέντα προβλήµατα (a) βαθύς πρόβολος, (b) κοντός πρόβολος, (c) 
δοκός beam και (d) τάκος υπό θλίψη 

F

FF  

p  
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Στον Πίνακα 4.10 καταγράφονται στοιχεία για τα εν λόγω παραδείγµατα. 
 
Πίνακας 4.11: ∆εδοµένα για τα εξετασθέντα προβλήµατα 

Πρόβληµα xL  
[ ]m  

yL  
[ ]m  

E  
[ ]Pa  v dens

Φορτίο
F  

Σηµείο 
εφαρµογής του 

F

allowσ  
[ ]Pa  NN  NEL  

Βαθύς πρόβολος 3 1 1 0.3 1 12N ∆εξιά / Μέσο 30 10571 9000
Κοντός πρόβολος 16 10 1 0.3 1 12N ∆εξιά / Μέσο 20 2079 1300
∆οκός MBB  6 1 1 0.3 1 2N Άνω / Μέσο 20 4092 3000

Τάκος υπό θλίψη 1 0.4 1 0.3 1 0.1 
N/mm2

Άνω /  
Κατανοµή  16 3960 3200

 
Η αξιολόγηση της προτεινοµένης διαδικασίας πραγµατοποιήθηκε σε δύο φάσεις. Στην 

πρώτη φάση δηµιουργήθηκαν διαγράµµατα, στα οποία αποτυπώθηκε η επίδραση της 
παραµέτρου MRS (Material Removal Step) στη διαδικασία της βελτιστοποίησης. Πιο 
συγκεκριµένα, για κάθε παράδειγµα εκτός του τάκου υπό θλίψη, δηµιουργήθηκε ένα 
διάγραµµα µε άξονα τετµηµένων τιµές της παραµέτρου MRS, πρωτεύοντα άξονα τεταγµένων 
τον παραµένοντα όγκο υλικού και δευτερεύοντα άξονα τεταγµένων το πλήθος των 
επαναλήψεων, οι οποίες απαιτήθηκαν κάθε φορά µέχρι επιτεύξεως συγκλίσεως. Στη δεύτερη 
φάση συγκρίθηκε η προτεινόµενη διαδικασία βελτιστοποίησης µε την βιβλιογραφική µέθοδο 
ESO, σύµφωνα µε την οποία η αποµάκρυνση του υλικού στηρίζεται στο αναπτυσσόµενο 
πεδίο τάσεων von Mises (έστω Βασικό Σχήµα Αποβολής - Basic Removal Scheme - BRS). Η, 
δε, σύγκριση στηρίχθηκε στους εξής τρεις ∆είκτες Αξιολόγησης (Performance Indices - PI’s): 
 

1
act

ini

NELPI
NEL

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

          ,max
2

,

vonMises

vonMises allow

PI
σ
σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

          3 iterPI N=                  (4.44) 

 
Ο δείκτης 1PI  εκφράζει, σε κανονικοποιηµένη µορφή, τον όγκο του παραµένοντος υλικού. Ο 
δείκτης 2PI  εκφράζει τον λόγο της µέγιστης εµφανιζόµενης τάσης von Mises stress προς την 
επιτρεπόµενη τιµή και ο δείκτης 3PI  αντιστοιχεί στο πλήθος των επαναλήψεων, οι οποίες 
απαιτούνται µέχρι να επιτευχθεί η σύγκλιση. 
 
4.5.5. Αποτελέσµατα  

Τα αποτελέσµατα της πρώτης Φάσης απεικονίζονται στο Σχήµα 4.21. Σε τρία 
παραδείγµατα εξετάσθηκαν δύο τιµές πάχους, ενώ σε ένα παράδειγµα (τάκος υπό θλίψη) 
εξετάστηκε µόνο µία περίπτωση, διότι από τον ορισµό του προβλήµατος το πάχος ελάµβανε 
προκαθορισµένη τιµή. Συνεπώς, για τα τρία παραδείγµατα µε δύο τιµές πάχους παρατίθενται 
δύο τριάδες διαγραµµάτων, µία τριάδα για κάθε τιµή πάχους. ∆ιευκρινίζεται ότι οι τιµές της 
τετµηµένης των διαγραµµάτων (παράµετρος Material Removal Step - MRS) έχουν δοθεί 
αυθαίρετα και δεν προέρχονται από κάποιο σχήµα βελτιστοποίησης. 
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I. First thickness value 
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II. Second thickness value 

(a) (b) (c) (d) 
Σχήµα 4.21: Επίδοση της προτεινόµενης διαδικασίας: (a) βαθύς πρόβολος, (b) κοντός 

πρόβολος, (c) δοκός MBB και (d) τάκος υπό θλίψη. 
 
Στο Σχήµα 4.22 παρουσιάζονται οι προκύπτουσες βέλτιστες σχεδιάσεις στην περίπτωση του 
κοντού προβόλου για διάφορες τιµές του ρυθµού αποβολής υλικού (Marerial Removal Ratio). 
 

 
Σχήµα 4.22: Βελτιστοποιηµένη σχεδίαση για τον κοντό πρόβολο (άνω σειρά: κατανοµή 

τάσης von Mises, κάτω σειρά: παραµένον υλικό) 
 
Στο Σχήµα 4.23 παρουσιάζονται συγκριτικά αποτελέσµατα µεταξύ της προτεινοµένης 
διαδικασίας βελτιστοποίησης και του Βασικού Σχήµατος Αποβολής. 
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Σχήµα 4.19: Σύγκριση ανάµεσα στην προτεινόµενη διαδικασία και στο Βασικό Σχήµα 
Αποβολής: (a) δείκτης Ρ1, (b) δείκτης Ρ2 και (c) δείκτης Ρ3. 
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Στο Σχήµα 4.23 παρουσιάζονται αποτελέσµατα για τον βαθύ πρόβολο και τον τάκο υπό 
θλίψη. Πιο συγκεκριµένα, κάθε ένα από αυτά τα παραδείγµατα βελτιστοποιήθηκε τόσο 
χρησιµοποιώντας το Βασικό Σχήµα Αποβολής (BRS, βλ. Ενότητα 4.5.4) όσο και την 
προτεινόµενη διαδικασία. Για κάθε ένα παράδειγµα και για κάθε µία διαδικασία 
βελτιστοποίησης, παρουσιάζεται µία τριάδα εικόνων. Στην πρώτη εικόνα (ένδειξη: Αρχική) 
παρουσιάζεται η αρχική σχεδίαση, στη δεύτερη εικόνα (έδειξη: Ενδιάµεση) παρουσιάζεται η 
µορφή της κατασκευής περίπου στο µέσο της διαδικασίας βελτιστοποίησης, ενώ στην τρίτη 
εικόνα απεικονίζεται η βέλτιστη σχεδίαση.  
 

  
Αρχική Ενδιάµεση Τελική initial Mid final 

  
initial mid final initial Mid final 

 (a)   (b)  
Σχήµα 4.23: Βελτιστοποιηµένη σχεδίαση: (a) βαθύς πρόβολος και (b) τάκος υπό θλίψη (άνω 
σειρά: προτεινόµενη διαδικασία, κάτω σειρά: Βασικό Σχήµα Αποβολής - Basic Removal 

Scheme) 
 
Κατ’ αντιστοιχία του Σχήµατος 4.22, στο Σχήµα 4.24 παρουσιάζονται τριάδες εικόνων για 
την περίπτωση του κοντού προβόλου. 

 
Αρχική Ενδιάµεση Τελική 

 
Αρχική Ενδιάµεση Τελική 

Σχήµα 4.24: Βελτιστοποιηµένη σχεδίαση κοντού προβόλου (άνω σειρά: προτεινόµενη 
διαδικασία, κάτω σειρά: Βασικό Σχήµα Αποβολής - Basic Removal Scheme) 
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Κατ’ αντιστοιχία του Σχήµατος 4.22, στο Σχήµα 4.25 παρουσιάζονται τριάδες εικόνων για 
την περίπτωση της δοκού ΜΒΒ. 
 

 
Αρχική Ενδιάµεση Τελική 

 
Αρχική Ενδιάµεση Τελική 

Σχήµα 4.25: Βελτιστοποιηµένη σχεδίαση δοκού MBB (άνω σειρά: προτεινόµενη διαδικασία, 
κάτω σειρά: Βασικό Σχήµα Αποβολής - Basic Removal Scheme) 

 
4.5.6. Συµπεράσµατα  

Από τα αποτελέσµατα, τα οποία παρουσιάστηκαν στην προηγούµενη ενότητα, προέκυψε 
ότι, σε όλες τις περιπτώσεις, η προτεινόµενη διαδικασία βελτιστοποίησης κατέληξε σε 
ελαφρύτερες σχεδιάσεις. Επιπροσθέτως, διαπιστώθηκε ότι η χρήση του κριτηρίου 
αξιολόγησης του διαθέσιµου υλικού βάσει της κανονικοποιηµένης πυκνότητας της ενέργειας 
παραµόρφωσης είναι δυνατόν να επηρεάσει την πορεία της βελτιστοποίησης, καταλήγοντας 
σε σχεδιάσεις ανώτερες, ως προς το βάρος και την κατανοµή υλικού, από εκείνες οι οποίες 
έχουν καταγραφεί στη βιβλιογραφία και λαµβάνονται όταν χρησιµοποιείται η έννοια της 
ενέργειας παραµόρφωσης.  
 
4.6.  Ένα νέο Βέλτιστο Κριτήριο για την επιβολή περιορισµού τάσης σε 

σκελετικές κατασκευές 
4.6.1. Θεωρητικό υπόβαθρό  

Σύµφωνα µε τον ορισµό του γενικευµένου προβλήµατος βελτιστοποίησης µίας 2∆ 
σκελετικής κατασκευής υπό περιορισµό τάσεων, ανεξαρτήτως του πλήθους των 
επιβαλλοµένων περιορισµών τάσεων, µόνον ένας τέτοιος περιορισµός είναι ενεργός στη 
βέλτιστη σχεδίαση. Αυτό σηµαίνει ότι η µέγιστη επιτρεπόµενη τάση εµφανίζεται µόνο σε ένα 
δοµικό στοιχείο, χωρίς, ωστόσο, να είναι γνωστό εκ των προτέρων ποιο είναι αυτό το 
στοιχείο. Η µαθηµατική διατύπωση του εν λόγω προβλήµατος είναι η εξής: 

 

minimize ( )∑
=

=
NEL

k
kkk LAW

1
ρ                                            (4.45) 

such that allowσ σ≤  and AA ≤min                                       (4.46) 
 
όπου A  είναι το εµβαδόν διατοµής, L  το µήκος στοιχείου, ρ  η πυκνότητα υλικού, σ  η 
αξονική τάση, ο δείκτης k  αναφέρεται στην −k ράβδο, ενώ ο δείκτης allow  αφορά σε 
επιτρεπόµενη τιµή. Το ολικό πλήθος των στοιχείων, ράβδων εν προκειµένω, δηλώνεται ως 
NEL , ενώ η χρήση του απολύτου στην Εξ.(4.46) δηλώνει ότι η ίδια επιτρεπόµενη τιµή θα 
χρησιµοποιηθεί και για εφελκυστικές και για θλιπτικές τάσεις. Επιπροσθέτως, επιβάλλεται 
κατώτατο όριο σχετικά µε το εµβαδόν της διατοµής, έτσι ώστε να εξασφαλισθεί ο 
σχηµατισµός ενός θετικά ορισµένου µητρώου δυσκαµψίας. Σύµφωνα µε τη µέθοδο των 
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πολλαπλασιαστών Lagrange, για το προαναφερθέν πρόβληµα και µη λαµβάνοντας υπόψη τον 
περιορισµό στο εµβαδόν των διατοµών, η αντίστοιχη συνάρτηση Lagrange, έστω  , είναι: 
 

( ) ( )1
1

NEL

i i i allow
i

A Lρ λ σ σ
=

= + −∑                                         (4.47) 

 
όπου 1λ  είναι ο πολλαπλασιαστής Lagrange για τον περιορισµό τάσης. Από τη Μηχανική του 
Παραµορφωσίµου Σώµατος και αξιοποιώντας την έννοια του µοναδιαίου φορτίου, η τάση 
ενός ραβδόµορφου στοιχείου ισούται µε:  
 

1

P QNEL
ji i

j i
i i i j

EF F L
A E L

σ
=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑                                                (4.48) 

 
όπου, επιπροσθέτως των προαναφεροµένων συµβόλων, µε τον δείκτη j  σηµειώνεται το υπό 
θεώρηση ραβδόµορφο στοιχείο, στα άκρα του οποίου επιβάλλονται δύο µοναδιαία φορτία 
αντιθέτου φοράς και κατά τη διεύθυνση του στοιχείου. Επίσης, µε E  συµβολίζεται το µέτρο 
ελαστικότητας, ως PF  περιγράφεται η αναπτυσσόµενη αξονική δύναµη εξ αιτίας της 
επιβολής των πραγµατικών φορτίων, ως QF  περιγράφεται η αναπτυσσόµενη αξονική δύναµη 
εξ αιτίας της επιβολής των µοναδιαίων φορτίων, ενώ µε τον δείκτη i  δηλώνεται κάθε ένα από 
τα NEL  στοιχεία της σκελετικής κατασκευής. Εισάγοντας την Εξ.(4.47) στην Εξ. (4.48) 
προκύπτει: 
 

( ) 1
1 1

P QNEL NEL
ji i

i i i i allow
i i i i j

EF FA L L
A E L

ρ λ σ
= =

⎛ ⎞⎛ ⎞
⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑                           (4.49) 

 
Η µερική παράγωγος της Εξ.(4.49) ως προς το εµβαδόν διατοµής iA  ισούται µε: 
 

1 12i

P Q P Q
j jQi i l l l

A i i i l l
li i j i i l l j

E EF F F F LL L F F
A E L A A A E L

ρ λ λ
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂

∇ = − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
∑    (4.50) 

 
Ωστόσο, οι όροι εντός του αθροίσµατος είναι, ταυτοτικά, ίσοι µε µηδέν. Αυτό συµβαίνει 
διότι, σε ισοστατικά δικτυώµατα, η αξονική δύναµη ενός µέλους είναι ανεξάρτητη της 
διατοµής του, ενώ, σε υπερστατικά δικτυώµατα, ο Berke έχει δείξει ότι αυτοί οι όροι 
σχηµατίζουν ένα ισορροπούν σύστηµα εσωτερικών δυνάµεων (Berke και Khot, 1987). 
Λαµβάνοντας υπόψη τα ανωτέρω, η Εξ.(4.50) γράφεται: 
 

1 2i

P Q
ji i

A i i i
i i j

EF FL L
A E L

ρ λ
⎛ ⎞

∇ = − ⎜ ⎟⎜ ⎟
⎝ ⎠

                                         (4.51) 

 
Σύµφωνα µε τη µέθοδο των πολλαπλασιαστών Lagrange, ισχύει: 
 

0
iA∇ =                                                           (4.52) 

 
Ο συνδυασµός των Εξ.(4.51, 4.52), µετά από πράξεις, δίδει: 
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1
1 11

P Q
ji i

i i i j i

EF F
A A E L

λ
ρ

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

                                           (4.53) 

 
Ο συντελεστής 1λ , ως µεµονωµένη ποσότητα, έχει σταθερή τιµή: 
 

const=1λ                                                          (4.54) 
 
Θεωρώντας ότι όλα το µέλη της υπό εξέταση σκελετικής κατασκευής είναι κατασκευασµένα 
από το ίδιο υλικό, ισχύει: 
 

i constρ =                                                          (4.55) 
 
Ο συνδυασµός των τελευταίων τριών εξισώσεων, µετά από εκτέλεση πράξεων, δίδει: 
 

{

1

i j

P Q
ji i

i i i j

w v

EF F const
A A E L

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠14243

                                            (4.56) 

 
Ο πρώτος όρος στην αριστερή πλευρά της Εξ.(4.56) αντιστοιχεί στην πυκνότητα της 
συµπληρωµατικής ενέργειας παραµόρφωσης iw  της i -ράβδου, ενώ ο δεύτερος όρος, έστω 

jv , εκφράζει το λόγο του µέτρου ελαστικότητας της j − ράβδου προς το µήκος της. Συνεπώς, 
σύµφωνα µε την Εξ.(4.56), για τη σχεδίαση ελαχίστου βάρους υπό την ενεργοποίηση ενός 
περιορισµού τάσης, το γινόµενο των όρων iw  και jv  είναι εκείνη η ποσότητα, η οποία 
παραµένει σταθερή. Αυτό σηµαίνει ότι το µήκος των µελών συµµετέχει σηµαντικά στον 
καθορισµό της, επικρατούσας στη βέλτιστη σχεδίαση, ενεργειακής κατάστασης. Αν και η 
Εξ.(4.56) αποτελεί τη µαθηµατική περιγραφή της εν λόγω ενεργειακής κατάστασης, δεν 
υποδεικνύει κάποιον δρόµο προς την επίτευξη αυτής, οπότε υπάρχει περιθώριο ανάπτυξης 
νέων διαδικασιών, οι οποίες θα καταλήγουν στην ικανοποίηση της Εξ.(4.56). Σε αυτό το 
πλαίσιο, προτείνεται µία νέα διαδικασία, κλειστής µορφής για ισοστατικά δικτυώµατα και 
αναδροµικής µορφής για υπερστατικά δικτυώµατα, η οποία περιγράφεται λεπτοµερέστερα 
στην επόµενη Ενότητα. 
 
4.6.2. Προτεινόµενη διαδικασία 

Έστω µία σκελετική κατασκευή από NEL  ράβδους και έστω ένα αρχικό διάνυσµα 
σχεδίασης µε τυχαία επιλεγµένες διατοµές. Μία ανάλυση της κατασκευής µε τη Μέθοδο των 
Πεπερασµένων Στοιχείων και χρησιµοποιώντας τα πραγµατικά επιβαλλόµενα φορτία δίδει το 
πεδίο των κοµβικών µετατοπίσεων καθώς και τα αξονικά φορτία P

iF , βάσει των οποίων είναι 
δυνατόν να εντοπισθεί το µέλος, έστω 

axm
Nσ , µε την µεγαλύτερη αξονική τάση. Μία άλλη 

ανάλυση τέτοιου τύπου χρησιµοποιώντας ένα ζεύγος µοναδιαίων φορτίων, ασκουµένων στα 
άκρα του µέλους 

axm
Nσ  δίδει τα αξονικά φορτία Q

iF . Γνωρίζοντας τα προαναφερθέντα 
φορτία, είναι δυνατόν να εντοπισθούν τα µέλη µε µη-µηδενικά γινόµενα φορτίων, δηλαδή τα 
µέλη για τα οποία ισχύει P Q

i iF F tol> , όπου tol  είναι µία µικρή, θετική ποσότητα (1E-06). 
Για κάθε µία από αυτές τις ράβδους, είναι δυνατόν να ορισθεί η ακόλουθη ποσότητα: 
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i i jw v=                                                           (4.57) 

 
Η αντίστοιχη µέση τιµή   όλων των τιµών i  ισούται µε: 
 

1

activeN

i
i

activeN
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ 

                                                       (4.58) 

 
Αντικαθιστώντας την ποσότητα i  της Εξ.(4.57) µε τη µέση τιµή   από την Εξ.(4.58), 
προκύπτει: 
 

, ,

, ,

1P Q
ji new i new

i new i new i j

EF F
A A E L

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                              (4.59) 

 
όπου ,i newA  είναι η νέα τιµή της διατοµής της i − ράβδου. ∆ιαιρώντας την Εξ.(4.57) µε την 
Εξ.(4.59) προκύπτει: 
 

, ,

, ,

1

1

P Q
ji i

i i i ji
P Q

ji new i new

i new i new i j

EF F
A A E L

EF F
A A E L

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠




                                           (4.60) 

 
Ωστόσο, για ένα ισοστατικό δικτύωµα, οι αξονικές δυνάµεις P

iF  και Q
iF  είναι ανεξάρτητες 

από τα εµβαδά των διατοµών: 
 

0
P Q

i i

i i

F F
A A

⎛ ⎞ ⎛ ⎞∂ ∂
= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

                                                 (4.61) 

 
Συνεπώς, µετά από µερικές πράξεις, η Εξ. (4.61) είναι δυνατόν να γραφεί, ως: 
 

2
,

2
i newi

i

A
A

⎛ ⎞
= ⎜ ⎟
⎝ ⎠




                                                       (4.62) 

 
Επιλύοντας την τελευταία εξίσωση ως προς τη νέα διατοµή της i − ράβδου, προκύπτει: 
 

,
i

i new iA A ⎛ ⎞= ⎜ ⎟
⎝ ⎠




                                                   (4.63) 

 
Αν και η Εξ. (4.63) προέρχεται από την αντιµετώπιση ενός ισοστατικού δικτυώµατος, είναι 
δυνατόν να εφαρµοσθεί και σε υπερστατικά δικτυώµατα, στα οποία η ευαισθησία των 
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αξονικών φορτίων σε µεταβολές των εµβαδών των διατοµών των ράβδων είναι µικρή. Αυτό 
συµβαίνει είτε όταν η ισορροπία των δυνάµεων έχει σηµαντικά µεγαλύτερη επίδραση από τη 
συµβιβαστότητα των µετατοπίσεων είτε όταν η σχεδίαση βρίσκεται πλησίον της βέλτιστης. 
Για άλλες περιπτώσεις υπερστατικών δικτυωµάτων, η Εξ.(4.63) πρέπει να χρησιµοποιείται 
επαναληπτικά µέχρι συγκλίσεως. Προκειµένου, δε, να ελεγχθεί ότι οι επανασχεδιασθείσες 
διατοµές δεν οδηγούν στην παραβίαση του επιβαλλοµένου περιορισµού τάσης, απαιτείται µία 
οµοιόµορφη διακλιµάκωση των διατοµών των ράβδων. 
 
4.6.3. Οµοιόµορφη διακλιµάκωση του διανύσµατος σχεδίασης 

Για ένα ισοστατικό δικτύωµα, η τιµή της ποσότητας i  εξαρτάται από τις δυνατές 
δυνάµεις Q

iF , το εµβαδόν διατοµής iA , το µήκος iL  και το µήκος jL . Συνεπώς, σε µία 
κατασκευή σταθερής τοπολογίας και υπό την προϋπόθεση ότι χρησιµοποιείται ένα υλικό, 
ισχύει: 
 

( ),
P Q

j Qi i
i i i

i i j

EF F L f F A
A E L

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

                                         (4.64) 

 
Θεωρώντας ότι το µέλος, στο οποίο ασκείται το ζεύγος των µοναδιαίων φορτίων είναι 
γνωστό, οι δυνάµεις Q

iF  είναι, επίσης, γνωστές, οπότε η Εξ.(4.64) λαµβάνει τη µορφή: 
 

( )
P Q

ji i
i i

i i j

EF F L f A
A E L

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

                                            (4.65) 

 
όπου η διατοµή iA  αποτελεί τον µοναδικό άγνωστο. Συνεπώς, κάθε προσθετέος στην 
Εξ.(4.48), ο οποίος είναι αριθµητικά ίσος προς τη συνεισφορά της κάθε ράβδου στην τάση 
της j − ράβδου, είναι δυνατόν να υποστεί διακλιµάκωση µέσω της απλής µεταβολής της 
διατοµής iA . Επιπροσθέτως, από τον συνδυασµό των ανωτέρω εξισώσεων προκύπτςι ότι εάν 
εφαρµοσθεί η ίδια διακλιµάκωση σε όλες τις διατοµές iA  (οµοιόµορφη διακλιµάκωση), τότε 
η τάση στη j − ράβδο διακλιµακώνεται ισόποσα: 
 

_scaled before scalingaσσ σ=                                                (4.66) 
 
Η σταθερά aσ  υποδηλώνει ένα συντελεστή διακλιµάκωσης, ως προς τη µέγιστη 
εµφανιζόµενη αξονική τάση. Εάν ως scaledσ  επιλεχθεί η µέγιστη επιτρεπόµενη τάση allowσ , 
τότε ο συντελεστής aσ  καθίσταται ίσος προς το λόγο της επιτρεπόµενης προς την 
εµφανιζόµενη τάση (για απλότητα στη γραφή, ο δείκτης before_scaling παραλείπεται): 
 

allowaσ
σ
σ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                       (4.67) 

 
Ο συνδυασµός των Εξ. (4.48, 4.66) δίδει: 
 



Δ.T.Βενετσάνος – Διδακτορική Διατριβή ‐ 2010 

Σ ε λ ί δ α  | ΕΛ.4.40 

 

1

P QNEL
ji i

allow i
i i i j

EF Fa L
A E Lσσ

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑                                          (4.68) 

 
∆εδοµένου ότι ο συντελεστής διακλιµάκωσης είναι σταθερός, η Εξ. (4.68) γράφεται ως: 
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ji i
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i ji

i

EF F L
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aσ

σ
=
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⎜ ⎟
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∑                                             (4.69) 

 
Η σύγκριση µεταξύ της Εξ.(4.69) και της Εξ.(4.48) δίδει την ακόλουθη εξίσωση 
επανασχεδίασης: 
 

,
,

i old
i new

A
A

aσ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                         (4.70) 

 
όπου οι δείκτες new  και old  δηλώνουν τη νέα και την παλιά τιµή της διατοµής της 
i − ράβδου, αντίστοιχα. Συνεπώς, είναι δυνατή η οµοιόµορφη διακλιµάκωση των, 
επανασχεδιασµένων µε την Εξ.(4.63), διατοµών διαιρώντας αυτές µε τον συντελεστή 
διακλιµάκωσης aσ .  

Η ανωτέρω ανάλυση στηρίχθηκε στην εφαρµογή ενός ζεύγους µοναδιαίων φορτίων στην 
εκάστοτε υπό εξέταση ράβδο, η οποία ονοµάσθηκε j − ράβδος. Η επιλογή αυτής της ράβδου 
είναι εξαιρετικής σηµασίας. Σε µια διαδικασία βελτιστοποίησης, η κακή επιλογή της 
j − ράβδου είναι δυνατόν να οδηγήσει σε κάποιο τοπικό ακρότατο αρκετά µακριά από το 
καθολικό ακρότατο. Όπως περιγράφεται λεπτοµερέστερα και στην Ενότητα 5.2.4, ειδικά η 
επιλογή της j − ράβδου στην πρώτη επανάληψη της διαδικασίας βελτιστοποίησης έχει 
ιδιαίτερη βαρύτητα. Ενδείκνυται, δε, η διαδικασία βελτιστοποίησης να εκκινείται από εκείνη 
τη σχεδίαση, στην οποία κάθε µέλος χαρακτηρίζεται από µοναδιαία δυσκαµψία. 
Περισσότερες λεπτοµέρειες επ’ αυτού αναφέρονται στο Κεφάλαιο 5.  
 
4.6.4. Σχολιασµός 

Με βάσει τα ανωτέρω, διατυπώθηκε µία θεωρητική λύση του προβλήµατος της 
ελαχιστοποίησης βάρους µίας 2∆ σκελετικής κατασκευής υπό την επιβολή ενός γενικευµένου 
περιορισµού τάσης. Σε αυτήν τη διατύπωση, υπάρχουν διάφορα θέµατα προς περαιτέρω 
διερεύνηση, όπως η επιλογή της αρχικής σχεδίασης και ο τρόπος χαρακτηρισµού ενός µέλους 
ως ‘ενεργό’ ή ‘παθητικό’. Αυτά τα θέµατα, εξετάζονται εκτενώς στο επόµενο κεφάλαιο.  
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ΠΑΡΑΡΤΗΜΑ 4A: Μητρώο δυσκαµψίας για τη Βασική Συνεχή Μονάδα (Basic 
Continuum Unit - BCU) και τη Βασική ∆ιακριτή Μονάδα (Basic 
Discrete Unit -BDU) 

 
Το µητρώο δυσκαµψίας για το τετραπλευρικό ορθογωνικό στοιχείο επίπεδης ελαστικότητας 
(Basic Continuum Unit - BCU) είναι: 
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Είναι προφανές ότι τα στοιχεία του µητρώου 2DK  είναι γραµµικοί συνδυασµοί των ζευγών 
( )1 4,s s  ή ( )2 5,s s  ή ( )3 6,s s . Οι ποσότητες του τελευταίου ζεύγους είναι ανεξάρτητες από τις 

γεωµετρικές διαστάσεις ( ),a b  της Βασικής Συνεχούς Μονάδος (BCU), οπότε η τιµή των 
αντιστοίχων στοιχείων του µητρώου 2DK  δεν µεταβάλλεται καθώς µεταβάλλεται ο λόγος 
πλευρών ( )a bλ = . Σχετικά µε τα ζεύγη ( )1 4,s s  και ( )2 5,s s , ισχύει: 
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Οι εµφανιζόµενοι συνδυασµοί, των όρων αυτών των ζευγών, στο µητρώο 2DK  είναι: 
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Είναι προφανές ότι οι όροι στην (4.Α5) εξαρτώνται µόνο από τον λόγο πλευρών λ , 
δεδοµένου ότι η ποσότητα C  είναι σταθερή. Από την άλλη πλευρά, το µητρώο δυσκαµψίας 
του συναρµολογήµατος των έξι ράβδων (Basic Discrete Unit - BDU) ισούται µε: 
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Καθίσταται φανερό ότι κάποιοι όροι του µητρώου εξαρτώνται από µεµονωµένες τιµές των 
µεταβλητών a  και b . Αυτό σηµαίνει ότι εάν µεταβληθούν οι γεωµετρικές διαστάσεις της 
Βασικής ∆ιακριτής Μονάδος (BDU), τότε θα µεταβληθεί και το µητρώο δυσκαµψίας TRUSSK , 
ακόµα και εάν ο λόγος πλευρών διατηρηθεί ο ίδιος. Επίσης, το µητρώο TRUSSK  περιέχει 
µηδενικά στοιχεία, σε αντίθεση µε το µητρώο 2DK . Εάν, δε, θεωρηθεί µία σταθερή τοπολογία 
για τις Βασικές Μονάδες, τότε οι όροι του µητρώου 2DK  συσχετίζονται µε µία µόνο 
µεταβλητή (το πάχος της Μονάδος BCU), ενώ οι µη-µηδενικοί όροι του µητρώου TRUSSK  
συσχετίζονται µε έξι µεταβλητές (τις διατοµές των ράβδων της Μονάδος BDU ). Οι τρεις 
προαναφερθείσες διαφορές, µε έµφαση στην τελευταία, δικαιολογούν τη διαφορά στη 
συµπεριφορά των εν λόγω Βασικών Μονάδων.  
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ΠΑΡΑΡΤΗΜΑ 4B: Μητρώο δυσκαµψίας στοιχείου επίπεδης ελαστικότητας µε 
µεταβλητό πάχος  

 
4B.1 Γενικά 

Έστω πεπερασµένο στοιχείο επίπεδης ελαστικότητας και µεταβλητού ενδοστοιχειακού 
πάχους, παρεµβαλλοµένου µε τις συναρτήσεις µορφής του στοιχείου (ισοπαραµετρική 
παρεµβολή πάχους) και έστω ότι αναζητείται ο υπολογισµός του µητρώου δυσκαµψίας του. 
Από τη θεωρία της Μεθόδου των Πεπερασµένων Στοιχείων, είναι γνωστό ότι ισχύει: 
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όπου et  είναι το πάχος του e -στοιχείου, ο πίνακας [ ]B  προκύπτει από τις σχέσεις 
παραµορφώσεων-µετατοπίσεων, [ ]D  είναι το µητρώο ελαστικότητας και [ ]J  είναι ο 
Ιακωβιανός πίνακας. Έαν το πάχος παρεµβάλλεται ισοπαραµετρικά, τότε ισχύει: 
 

1 1 2 2 3 3 4 4et N t N t N t N t= + + +                                            (4.B2) 
 
όπου iN  και it  είναι οι συναρτήσεις µορφής και το πάχος του i − κόµβου, αντίστοιχα. Σε 
µητρωϊκή γραφή, ισχύει: 
 

[ ]{ }et N t=                                                         (4.B3) 
 
όπου ο πίνακας [ ]N  είναι διάστασης 4 1×  και ο πίνακας { }t  είναι διάστασης 1 4× . Ο 
συνδυασµός των Εξ. (4B.1, 4B.3) δίδει: 
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Σύµφωνα µε τη µέθοδο ολοκλήρωσης κατά Gauss, η τιµή του 2∆ ολοκληρώµατος 
 

( )
1 1

1 1
,I f d dξ η ξ η

+ +

− −
= ∫ ∫                                              (4.B5) 

 
προσεγγίζεται ως: 
 

( )( )
1 1

,
n n

l m l m
l m

I w w f ξ η
= =

≈∑∑                                             (4.B6) 

 
όπου n  είναι το πλήθος των σηµείων Gauss, τα οποία πρόκειται να χρησιµοποιηθούν, οι 
δείκτες ,l m  δηλώνουν το τρέχον σηµείο Gauss, ενώ οι ποσότητες lw  και mw  
αντιπροσωπεύουν τα, αντιστοιχούντα στο σηµείο Gauss ( ),l mξ η , βάρη. Ο συνδυασµός των 
Εξ. (4B.5, 4B.6) δίδει: 
 

[ ] ( )( )
1 1

,
n n

l m i l me
l m

k w w f ξ η
= =

= ∑∑                                          (4.B7) 
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όπου η συνάρτηση εντός του αθροίσµατος ισούται µε: 
 

( ) [ ]{ }[ ] [ ][ ] [ ]( ), detT
l m

lm
f N t B D B Jξ η =                                (4.B8) 

 
Συνεπώς, το µητρώο δυσκαµψίας [ ]e

k  είναι δυνατόν να υπολογισθεί σύµφωνα µε την 
ακόλουθη διαδικασία: 
Βήµα 1: επιλογή του πλήθους των σηµείων Gauss που πρόκειται να χρησιµοποιηθούν και για 

κάθε σηµείο Gauss ορισµός των συντεταγµένων ( ),l mξ η  και των βαρών lw , mw  

Βήµα 2: ορισµός της τιµής iN  των συναρτήσεων µορφής σε κάθε σηµείο Gauss ( ),l mξ η  

Βήµα 3: υπολογισµός των µητρώων [ ]B  και [ ]J  σε κάθε σηµείο Gauss ( ),l mξ η  

Βήµα 4: υπολογισµός της ποσότητας ( ),i l mf ξ η  σύµφωνα µε την Εξ.(4B.8) 
Βήµα 5: υπολογισµός του µητρώου δυσκαµψίας [ ]e

k  σύµφωνα µε την Εξ.(4B.7) 
 
4B.2 Εφαρµογή: τετρακοµβικό τετραπλευρικό πεπερασµένο στοιχείο επίπεδης 
ελαστικότητας 

Έστω ένα 4-κοµβικό τετραπλευρικό πεπερασµένο στοιχείο επίπεδης ελαστικότητας. Η 
µετατόπιση ( ),u v  ενός οποιουδήποτε σηµείου του στοιχείου ισούται µε: 
 

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

u N u N u N u N u
v N v N v N v N v
= + + +
= + + +

                                         (4.B9) 

 
Για το συγκεκριµένο πεπερασµένο στοιχείου, οι συναρτήσεις µορφής iN , εκπεφρασµένες στο 
φυσικό σύστηµα συντεταγµένων, γράφονται ως: 
 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1

2

3

4

0.25 1 1

0.25 1 1

0.25 1 1

0.25 1 1

N

N

N

N

ξ η

ξ η

ξ η

ξ η

= − −

= + −

= + +

= − +

                                            (4.B10) 

 
Το διάνυσµα των παραµορφώσεων ισούται µε: 
 

{ }
T

u v u v
x y y x

ε ⎧ ⎫∂ ∂ ∂ ∂
= +⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭

                                        (4.B11) 

 
Για τον υπολογισµό των µερικών παραγώγων των µετατοπίσεων u  και v  στο Καρτεσιανό 
Σύστηµα Συντεταγµένων, οι ανωτέρω µετατοπίσεις θεωρούνται ως: 
 

( ) ( )
( ) ( )

( ) ( )( )
( ) ( )( )

, , ,, , , ,

, , , , , ,

u u x yu u x y v v x y

x x y y v v x y

ξ η ξ η

ξ η ξ η ξ η ξ η

⎧ ⎫== = ⎫⎪ ⎪ ⎪⇒⎬ ⎨ ⎬
= = =⎪ ⎪ ⎪⎭ ⎩ ⎭

                   (4.B12) 

 
Εφαρµόζοντας τον κανόνα της αλυσίδος, προκύπτει: 
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,

u u x u y v v x v y
x y x y

u u x u y v v x v y
x y x y

ξ ξ ξ ξ ξ ξ

η η η η η η

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎧ ⎫ ⎧ ⎫= + = +⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪= + = +
⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭

                    (4.B13) 

 
Ισοδύναµα, ισχύει: 
 

,

J J

u x y v x yu v
x x
u vu x y v x y
y y

ξ ξ ξ ξ ξ ξ

η η η η η η

∂ ∂ ∂ ∂ ∂ ∂⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤∂ ∂⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬∂ ∂∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎢ ⎥ ⎢ ⎥∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦14243 14243

                  (4.B14) 

 
Στην Εξ. (4B.14) εµφανίζεται ο 2 2×  Ιακωβιανός πίνακας J , ο οποίος συνδέει το 
Καρτεσιανό Σύστηµα Συντεταγµένων ( ),x y  µε το φυσικό σύστηµα συντεταγµένων ( ),ξ η . 

Ειδικότερα, οι Καρτεσιανές Συντεταγµένες ( ),x y  οποιουδήποτε σηµείου ενός πεπερασµένου 
στοιχείου επίπεδης ελαστικότητας είναι δυνατόν να περιγραφούν ως: 
 

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

x N x N x N x N x
y N y N y N y N y
= + + +
= + + +

                                      (4.B15) 

 
Η παράγωγος της Εξ. (4B.15) ως προς ξ  και η  ισούται µε: 
 

1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

x N N N Nx x x x

y N N N Ny y y y

x N N N Nx x x x

y N N N Ny y y y

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

η η η η η

η η η η η

∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂ ∂

                               (4.B16) 

 
Σε µητρωΐκή γραφή, ισχύει: 

[ ]

[ ]

[ ]

[ ]

1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

T

T

T

T

x N N N N x x x x

y N N N N y y y y

x N N N N x x x x

y N N N N y y y y

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

η η η η η

η η η η η

⎡ ⎤∂ ∂ ∂ ∂ ∂
= ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦
⎡ ⎤∂ ∂ ∂ ∂ ∂

= ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦
⎡ ⎤∂ ∂ ∂ ∂ ∂

= ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦
⎡ ⎤∂ ∂ ∂ ∂ ∂

= ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

                      (4.B17) 
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Οι µερικές παράγωγοι των συναρτήσεων µορφής iN  υπολογίζονται από την Εξ.(4B.10) και 
είναι ίσες προς: 
 

( )

( )

( )

( )

( )

( )

( )

( )

1 1

2 2

3 3

4 4

0.25 1 0.25 1

0.25 1 0.25 1
,

0.25 1 0.25 1

0.25 1 0.25 1

N N

N N

N N

N N

η ξ
ξ η

η ξ
ξ η

η ξ
ξ η

η ξ
ξ η

∂ ∂⎧ ⎫ ⎧ ⎫= − − = − −⎪ ⎪ ⎪ ⎪∂ ∂
⎪ ⎪ ⎪ ⎪
∂ ∂⎪ ⎪ ⎪ ⎪= + − = − +⎪ ⎪ ⎪ ⎪∂ ∂⎪ ⎪ ⎪ ⎪

⎨ ⎬ ⎨ ⎬∂ ∂⎪ ⎪ ⎪ ⎪= + + = + +
⎪ ⎪ ⎪ ⎪∂ ∂
⎪ ⎪ ⎪ ⎪∂ ∂⎪ ⎪ ⎪ ⎪= − + = + −
⎪ ⎪ ⎪ ⎪∂ ∂⎩ ⎭ ⎩ ⎭

                       (4.B18) 

 
Σύµφωνα µε την Εξ. (4B.14), ισχύει: 
 

1 1,

u vu v
x xJ J
u vu v
y y

ξ ξ

η η

− −

∂ ∂⎧ ⎫ ⎧ ⎫∂ ∂⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪∂ ∂∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬∂ ∂∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪

∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪∂ ∂⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭

                              (4.B19) 

 
Συνεπώς, είναι πλέον διαθέσιµες όλες οι απαραίτητες πληροφορίες για τον υπολογισµό του 
των παραµορφώσεων. 
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Αυτή η σελίδα είναι σκοπίµως κενή  
 
 

 
 
 



 
 

ΚΕΦΑΛΑΙΟ 5 
(ΠΕΡΙΛΗΨΗ) 

 
 

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ  

ΣΚΕΛΕΤΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ 

ΥΠΟ ΤΗΝ ΕΠΙΒΟΛΗ  

ΓΕΝΙΚΕΥΜΕΝΟΥ ΠΕΡΙΟΡΙΣΜΟΥ ΜΕΤΑΤΟΠΙΣΗΣ 
 
 
 
 

Σε αυτήν την περίληψη κεφαλαίου, επανεξετάζεται το πρόβλημα της ελαχιστοποίησης του βάρους 
σκελετικών κατασκευών υπό την επιβολή ενός περιορισμού μετατόπισης. Η συνεισφορά της 

παρούσης σε αυτό το εξαιρετικά δημοφιλές και πολυμελετημένο πρόβλημα έγκειται στη διατύπωση 
μίας νέας μεθοδολογίας βελτιστοποίησης, η οποία εμφανίζει τέσσερα πρωτότυπα στοιχεία. Για την 
αξιολόγηση της μεθοδολογίας, εξετάσθηκαν συνολικά 48 περιπτώσεις. Ειδικότερα, μελετήθηκαν 

βιβλιογραφικά παραδείγματα (δύο παραλλαγές του δικτυώματος 3‐bar, δύο παραλλαγές του 
δικτυώματος 5‐bar, δύο παραλλαγές του δικτυώματος 56‐bar και δύο παραλλαγές της δοκού ΜΒΒ), 

ενώ διατυπώθηκαν και νέα παραδείγματα αξιολόγησης (πέντε παραλλαγές της δοκού ΜΒΒ με 
τρεις διαφορετικές πυκνότητες πλέγματος και έξι παραλλαγές του δικτυώματος 9‐bar, εκάστη για 
τέσσερα σενάρια φόρτισης). Προκειμένου να ισχυροποιηθεί η αξιολόγηση, όλα τα προαναφερθέντα 
παραδείγματα, εκτός εκείνων για τα οποία υπάρχει αναλυτική λύση στη βιβλιογραφία, επελύθησαν 

χρησιμοποιώντας την μέθοδο SQP (ρουτίνα fmincon στο λογισμικό MatLab), η οποία αποτελεί μία 
εξαιρετικά ισχυρή Μέθοδο Μαθηματικού Προγραμματισμού. Προέκυψε ότι, σε όλες τις 

περιπτώσεις, η προτεινόμενη μεθοδολογία βελτιστοποίησης συνέκλινε στις βέλτιστες λύσεις, οι 
οποίες είτε αναφέρονταν στη βιβλιογραφία είτε λαμβάνονταν από τη χρήση της μεθόδου SQP, και 
με υπολογιστικό κόστος το πολύ ίσο προς αυτό της βιβλιογραφίας και σημαντικά μικρότερο αυτού 

της SQP. 
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5.1. Εισαγωγή 
Το πρόβληµα της ελαχιστοποίησης του βάρους µίας κατασκευής υπό την επιβολή ενός 

περιορισµού µετατόπισης αποτελεί ένα από τα πλέον δηµοφιλή προβλήµατα στην περιοχή 
της βελτιστοποίησης κατασκευών. Στο παρόν κεφάλαιο, παρουσιάζεται µία νέα µεθοδολογία 
βελτιστοποίησης σκελετικών κατασκευών. Πιο συγκεκριµένα, η εν λόγω µεθοδολογία 
εµφανίζει τέσσερα πρωτότυπα στοιχεία. Το πρώτο πρωτότυπο στοιχείο αφορά στην επίλυση 
του προβλήµατος βελτιστοποίησης υπό την επιβολή ενός γενικευµένου περιορισµού 
µετατόπισης, σε αντίθεση µε τις υπάρχουσες βιβλιογραφικές µεθοδολογίες, σύµφωνα µε τις 
οποίες είναι εκ των προτέρων γνωστός ο βαθµός ελευθερίας στον οποίο επιβάλλεται ο 
περιορισµός µετατόπισης. Το δεύτερο πρωτότυπο στοιχείο αφορά στη διατύπωση µίας 
αναδροµικής σχέσεως, για την επανασχεδίαση της σκελετικής κατασκευής, η οποία, αν και 
προκύπτει µε αυστηρά µαθηµατικό τρόπο από τη µέθοδο πολλαπλασιαστών Lagrange, τελικά 
δεν εµπλέκει κανέναν τέτοιο συντελεστή, σε αντίθεση µε την υπάρχουσα βιβλιογραφία. Το 
τρίτο πρωτότυπο στοιχείο αφορά στην κατηγοριοποίηση των µελών της κατασκευής 
χρησιµοποιώντας παράλληλα δύο κριτήρια, ένα κριτήριο δύναµης, διαφορετικό από εκείνο 
της υπάρχουσας βιβλιογραφίας, και ένα κριτήριο διατοµής, µε αποτέλεσµα τη διαµόρφωση 
τεσσάρων διαφορετικών κατηγοριών µελών, σε αντίθεση µε την, επικρατούσα στη 
βιβλιογραφία, κατηγοριοποίηση. Η µελέτη της προτεινόµενης κατηγοριοποίησης απεκάλυψε 
την, καθοριστική δράση µίας συγκεκριµένης κατηγορίας. Το τέταρτο πρωτότυπο στοιχείο 
αφορά στη βελτιστοποίηση των µελών της κατασκευής, τα οποία διαπιστώνεται ότι ανήκουν 
στην προαναφερθείσα κατηγορία. Για λόγους αξιολόγησης, πραγµατοποιήθηκε εκτενής 
µελέτη επί συνολικά 48 σκελετικών κατασκευών, από την οποία προέκυψε ότι η 
προτεινόµενη µεθοδολογία βελτιστοποίησης συνέκλινε πάντοτε στην καθολικά βέλτιστη 
σχεδίαση και µε υπολογιστικό κόστος µικρότερο, ή το πολύ ίσο, µε αυτό της βιβλιογραφίας.  
 
5.2. Θεωρητική προσέγγιση 
5.2.1. Η διατύπωση Βελτίστου Κριτήριου 

Σύµφωνα µε τη διατύπωση του προβλήµατος βελτιστοποίησης 2∆ σκελετικών 
κατασκευών υπό την επιβολή ενός περιορισµού µετατόπισης, θεωρείται µόνον ένας 
περιορισµός µετατόπισης. Γενίκευση του εν λόγω προβλήµατος αποτελεί η θεώρηση ότι, 
ασχέτως του πλήθους των επιβαλλοµένων περιορισµών µετατόπισης, µόνον ένας τέτοιος 
περιορισµός είναι ενεργός στη βέλτιστη σχεδίαση και µάλιστα χωρίς να είναι εκ των 
προτέρων γνωστός ο βαθµός ελευθερίας, στον οποίο αντιστοιχεί ο ενεργός περιορισµός. Η 
µαθηµατική διατύπωση του εν λόγω προβλήµατος είναι: 
 

min ( )∑
=

=
NEL

k
kkk LAW

1
ρ                                                 (5.1a) 

έτσι ώστε allowuu ≤  και AA ≤min                                       (5.1b) 
 
όπου η ποσότητα A  εκφράζει εµβαδόν διατοµής δοµικού µέλους, η ποσότητα L  εκφράζει το 
µήκος δοµικού µέλους, ρ  είναι η πυκνότητα υλικού, η ποσότητα u  δηλώνει κοµβική 
µετατόπιση, ενώ οι δείκτες k  και allow  δηλώνουν την −k ράβδο και την επιτρεπόµενη τιµή, 
αντίστοιχα. Το συνολικό πλήθος των ράβδων της σκελετικής κατασκευής δηλώνεται ως 
NEL . Ο επιβαλλόµενος περιορισµός µετατόπισης (1b) υποδηλοί ότι η κοµβική µετατόπιση 
δεν επιτρέπεται να είναι µεγαλύτερη από allowu  είτε ως προς την x  είτε ως προς την y  
διεύθυνση. Επιπροσθέτως, επιβάλλεται ένας περιορισµός σχετικά µε την ελάχιστη τιµή, την 
οποία είναι δυνατόν να αποδοθεί στις διατοµές των µελών, έτσι ώστε να εξασφαλίζεται ο 
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σχηµατισµός ενός θετικά ορισµένου µητρώου δυσκαµψίας. Σύµφωνα µε τη µέθοδο των 
πολλαπλασιαστών Lagrange, η συνάρτηση Lagrange του εν λόγω προβλήµατος 
βελτιστοποίησης, εάν αµεληθεί ο περιορισµός επί των διατοµών, διατυπώνεται ως εξής: 
 

( ) ( )1
1

NEL

i i i allow
i

A L u uρ λ
=

= + −∑                                           (5.2) 

 
όπου 1λ  είναι ο συντελεστής Lagrange για τον περιορισµό της µετατόπισης. Από τη 
Μηχανική είναι γνωστό ότι, βάσει της έννοιας του µοναδιαίου φορτίου, η κοµβική 
µετατόπιση είναι δυνατόν να εκφρασθεί ως:  
 

1

P QNEL
i i

i
i i i

F Fu L
A E=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑                                                      (5.3) 

 
όπου, επιπροσθέτως των προηγούµενων συµβόλων, ως E  δηλώνεται το µέτρο 
ελαστικότητας, P

iF  είναι η αξονική δύναµη λόγω της επιβολής των πραγµατικών φορτίων, 
ως Q

iF  δηλώνεται η αξονική δύναµη λόγω της κατάλληλης εφαρµογής µοναδιαίου φορτίου, 
ενώ ως i  δηλώνεται το, υπό θεώρηση, δοµικό µέλος. Ο συνδυασµός της Εξ.(5.3) µε την 
Εξ.(5.2) δίδει: 
 

( ) 1
1 1

P QNEL NEL
i i

i i i i allow
i i i i

F FA L L u
A E

ρ λ
= =

⎛ ⎞⎛ ⎞
= + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑                                (5.4) 

 
Στην Εξ. (5.4), η µερική παράγωγος ως προς το εµβαδόν διατοµής iA  ισούται µε: 
 

1 12 2 2i

P Q P Q
Qi i l l l

A i i i l l
li i i i l l

F F F F LL L F F
A E A A A E

ρ λ λ
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂

∇ = − + +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
∑          (5.5a) 

 
Ωστόσο, ο πρώτος, εντός του αθροίσµατος της Εξ.(5.5α), όρος είναι ταυτοτικά µηδέν. Αυτό 
ισχύει διότι σε ισοστατικά δικτυώµατα οι ραβδικές δυνάµεις είναι ανεξάρτητες των διατοµών, 
ενώ σε υπερστατικά δικτυώµατα ο Berke απέδειξε ότι ο συγκεκριµένος όρος είναι µηδενικός. 
Συνεπώς, η Εξ. (5.5a) γράφεται ως ακολούθως: 
 

1 2i

P Q
i i

A i i i
i i

F FL L
A E

ρ λ
⎛ ⎞

∇ = − ⎜ ⎟
⎝ ⎠

                                            (5.5b) 

 
Σύµφωνα µε τη µέθοδο των πολλαπλασιαστών Lagrange, πρέπει να ισχύει: 
 

0
iA∇ =                                                              (5.6) 

 
Ο συνδυασµός των Εξ.(5.5b, 5.6), µετά από πράξεις, δίδει: 
 



Δ.T. Βενετσάνος – Διδακτορική Διατριβή ‐ 2010 

Σ ε λ ί δ α  | ΕΛ.5.4 

1
1 11

P Q
i i

i i i i

F F
A A E

λ
ρ

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                                (5.7) 

 
Ο συντελεστής 1λ  αποτελεί αυθύπαρκτη ποσότητα, οπότε διαθέτει σταθερή τιµή: 
 

const=1λ                                                            (5.8) 
 
Υπό την παραδοχή ότι όλες οι ράβδοι κατασκευάζονται από το ίδιο υλικό, ισχύει: 
 

i constρ =                                                            (5.9) 
 
Ο συνδυασµός των Εξ.(5.7, 5.8, 5.9) δίδει: 
 

1P Q
i i

i i i

F F const
A A E

⎛ ⎞
=⎜ ⎟

⎝ ⎠
                                                 (5.10) 

 
Το αριστερό µέλος Εξ.(5.10) αντιστοιχεί στην πυκνότητα της συµπληρωµατικής ενέργειας 
παραµόρφωσης της i -ράβδου του εξεταζοµένου δικτυώµατος. Σύµφωνα µε αυτήν την 
εξίσωση, η βέλτιστη σχεδίαση υπό την επιβολή ενός γενικευµένου περιορισµού µετατόπισης 
χαρακτηρίζεται, σε όλο το ενεργό τµήµα της κατασκευής, από σταθερή, κατά απόλυτη τιµή, 
πυκνότητα συµπληρωµατικής ενέργειας παραµόρφωσης. Αυτή η διατύπωση αποτελεί 
γενίκευση ενός Βελτίστου Κριτηρίου ήδη γνωστού από τις αρχές της δεκαετίας του 70. 
Επιπροσθέτως, η διατύπωση µίας συνθήκης, η οποία περιγράφει µία ενεργειακή κατάσταση 
στο καθολικό ακρότατο, δεν προσδιορίζει την οδό, η οποία καταλήγει σε αυτήν την 
ενεργειακή κατάσταση. Συνεπώς, υπάρχει περιθώριο για διατύπωση νέων προσεγγίσεων και 
µάλιστα για τη γενικευµένη περίπτωση. Στην επόµενη ενότητα αναπτύσσεται ακριβώς αυτό 
το αντικείµενο. Ειδικότερα, παρουσιάζεται µία νέα µεθοδολογία βελτιστοποίησης, η οποία 
είναι κλειστής µορφής για ισοστατικά δικτυώµατα και επαναληπτικής µορφής για 
υπερστατικά δικτυώµατα. 
 
5.2.2. Προτεινόµενη διαδικασία επανασχεδίασης 

Έστω ένα σύνολο από NEL  ράβδους, το εµβαδόν διατοµής των οποίων επιλέγεται τυχαία. 
Μία ανάλυση µε τη Μέθοδο των Πεπερασµένων Στοιχείων (ΜΠΣ) και χρησιµοποιώντας τα 
πραγµατικά φορτία δίδει τόσο τις ραβδικές δυνάµεις iF  όσο και το πεδίο των µετατοπίσεων, 
από το οποίο εντοπίζεται ο κόµβος µε τη µεγαλύτερη µετατόπιση, έστω κόµβος 

axmuN . Μία 
δεύτερη ανάλυση µε τη (ΜΠΣ), επιβάλλοντας ένα µοναδιαίο φορτίο στον κόµβο 

axmuN  κατά 

την κατεύθυνση της µέγιστης µετατόπισης, θα δώσει τις ραβδικές δυνάµεις Q
iF . Συνεπώς, 

καθίσταται πλέον δυνατός ο εντοπισµός των µελών για τα οποία ισχύει P Q
i iF F tol> , όπου 

tol  είναι µία µικρή θετική ποσότητα, έστω 1E-06. Τα εν λόγω µέλη χαρακτηρίζονται ως µη-
µηδενικής δύναµης ή ,ισοδύναµα, ως ενεργά µέλη, και για κάθε ένα από αυτά η πυκνότητα 
συµπληρωµατικής ενέργειας παραµόρφωσης iw  ισούται προς: 
 

1P Q
i i

i
i i i

F Fw
A A E

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                    (5.11) 
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Η αντίστοιχη µέση τιµής w  όλων των επί µέρους τιµών iw  είναι: 
 

1

activeN

i
i

active

w
w

N
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
                                                      (5.12) 

 
Σύµφωνα µε το προαναφερθέν Βέλτιστο Κριτήριο, η µαθηµατική έκφραση του οποίου 
δίδεται από την Εξ.(5.10), όλα τα ενεργά µέλη διαθέτουν την ίδια πυκνότητα 
συµπληρωµατικής ενέργειας παραµόρφωσης, η οποία, κατ’ επέκτασιν, θα ισούται προς τη 
µέση τιµή της πυκνότητας συµπληρωµατικής ενέργειας παραµόρφωσης των ενεργών µελών. 
Ως εκ τούτου, το αριστερό µέλος της Εξ.(5.11) τίθεται ίσο προς w , δηλαδή ισχύει: 
 

, ,

, ,

1P Q
i new i new

i new i new i

F F
w

A A E
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                 (5.13) 

 
όπου ,i newA  είναι η επαναδιαστασιολογηµένη διατοµή της i − ράβδου. ∆ιαιρώντας κατά µέλη 
την Εξ.(5.11) µε την Εξ.(5.13), προκύπτει: 
 

, ,

, ,

1

1

P Q
i i

i i ii
P Q

i new i new

i new i new i

F F
A A Ew

w F F
A A E

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                 (5.14) 

 
Ωστόσο, σε ένα ισοστατικό δικτύωµα, οι ραβδικές δυνάµεις P

iF  και Q
iF  επηρεάζονται µόνον 

από την τοπολογία της κατασκευής και είναι ανεξάρτητες των διατοµών, δηλαδή ισχύει: 
 

0
P Q

i i

i i

F F
A A

⎛ ⎞ ⎛ ⎞∂ ∂
= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

                                                 (5.15) 

 
Συνεπώς, η Εξ.(5.14), µετά από πράξεις, γράφεται και ως εξής: 
 

2
,

2
i newi

i

Aw
w A

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                       (5.16) 

 
Επιλύοντας την τελευταία εξίσωση, ως προς την επαναδιασιολογηµένη διατοµή της 
i − ράβδου, προκύπτει: 
 

,
i

i new i
wA A
w

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                    (5.17) 

 
Η Εξ.(5.17) προέκυψε για ισοστατικά δικτυώµατα. Ωστόσο, είναι δυνατόν να χρησιµοποιηθεί 
και σε υπερστατικά δικτυώµατα όταν η ευαισθησία των δυνάµεων των µελών του 
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δικτυώµατος ως προς τις διατοµές είναι χαµηλή, δηλαδή είτε όταν η ισορροπία των δυνάµεων 
υπερισχύει της συµβιβαστότητας των µετατοπίσεων είτε όταν πρόκειται για µία σχεδίαση 
πλησίον της βέλτιστης. Για άλλα υπερστατικά δικτυώµατα, η Εξ.(5.17) πρέπει να 
χρησιµοποιείται επαναληπτική µέχρι συγκλίσεως. Ωστόσο, αν και το διάνυσµα σχεδίασης 

newA , το οποίο προκύπτει από την Εξ.(5.17), πληροί την απαίτηση για οµοιόµορφη κατανοµή 
της πυκνότητας της συµπληρωµατικής ενέργειας παραµόρφωσης στο ενεργό τµήµα της 
κατασκευής, δεν διασφαλίζεται η απαίτηση για εµφάνιση κοµβικής µετατόπισης το πολύ ίσης 
µε µια µέγιστη επιτρεπόµενη. Προς τούτο, απαιτείται µία οµοιόµορφη διακλιµάκωση του 
διανύσµατος σχεδίασης newA , όπως περιγράφεται στην επόµενη ενότητα. 
 
5.2.3. Οµοιόµορφη διακλιµάκωση του διανύσµατος σχεδίασης 

Σε ένα ισοστατικό δικτύωµα, η τιµή της πυκνότητας της συµπληρωµατικής ενέργειας 
παραµόρφωσης της ενεργού i − ράβδου εξαρτάται και από την, αναπτυσσόµενη σε αυτήν, 
δύναµη Q

iF  λόγω µοναδιαίου φορτίου και από τη διατοµή iA  της εν λόγω ράβδου. Συνεπώς, 
για µία κατασκευή σταθερής τοπολογίας, στην οποία τα µήκη iL  των ράβδων είναι σαφώς 
ορισµένα και αµετάβλητα, και υπό την προϋπόθεση ότι όλα τα µέλη είναι κατασκευασµένα 
από το ίδιο υλικό, άρα το µέτρο ελαστικότητας iE  για κάθε ράβδο είναι, οµοίως, σαφώς 
ορισµένο και αµετάβλητο, ισχύει: 
 

( ),
P Q

Qi i
i i i

i i

F F L f F A
A E

=                                                 (5.18) 

 
Εάν το σηµείο εφαρµογής του µοναδιαίου φορτίου είναι γνωστό, τότε οι αξονικές δυνάµεις 

Q
iF  λόγω µοναδιαίου φορτίου είναι, επίσης, γνωστές και καλώς ορισµένες, οπότε η Εξ.(5.18) 

λαµβάνει τη µορφή: 
 

( )
P Q

i i
i i

i i

F F L f A
A E

=                                                    (5.19) 

 
Στην τελευταία εξίσωση, οι διατοµές iA  αποτελούν τον µοναδικό άγνωστος. Συνεπώς, η 
συµπληρωµατική ενέργεια παραµόρφωσης κάθε ράβδου, η οποία αριθµητικά ισούται µε τη 
συνεισφορά κάθε ράβδου στη µετατόπιση του σηµείου εφαρµογής του µοναδιαίου φορτίου, 
είναι δυνατόν να διακλιµακωθεί µεταβάλλοντας το εµβαδόν iA . Επιπροσθέτως, ο 
συνδυασµός των Εξ.(5.3, 5.19) υποδηλοί ότι εάν εφαρµοσθεί η ίδια διακλιµάκωση σε όλες τις 
διατοµές iA  (οµοιόµορφη διακλιµάκωση) τότε η µετατόπιση του σηµείου εφαρµογής του 
µοναδιαίου φορτίου υφίσταται την ίδια διακλιµάκωση, δηλαδή ισχύει: 
 

scalingbeforescaled uau _=                                                  (5.20) 
 
Η ποσότητα a  δηλώνει τη σταθερά διακλιµάκωσης, ενώ οι δείκτες στις άλλες δύο ποσότητες 
της Εξ.(5.20) είναι επαρκώς περιγραφικοί. Εάν χρησιµοποιηθεί η ποσότητα allowu  στη θέση 
της ποσότητας scaledu , τότε ο συντελεστής διακλιµάκωσης a  τίθεται ίσος µε το λόγο της 
επιτρεπόµενης προς την εµφανιζόµενη κοµβική µετατόπιση u  (για λόγους απλοποίησης της 
γραφής, ο δείκτης before_scaling παραλείπεται): 
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⎟
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u
ua allow                                                         (5.21) 

 
Ο συνδυασµός των Εξ.(5.3, 5.20) δίδεί: 
 

1

P QNEL
i i

allow i
i i i

F Fu a L
A E=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑                                              (5.22) 

 
∆εδοµένου ότι ο συντελεστής διακλιµάκωσης είναι σταθερός, η Εξ.(5.22) γράφεται και ως:  
 

1

P QNEL
i i

allow i
ii

i

F Fu L
A E
a

=

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
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∑                                                (5.23) 

 
Από τη σύγκριση της Εξ. (5.23) µε την Εξ. (5.3) προκύπτει η εξής αναδροµική σχέση: 
 

,
,

i old
i new

A
A

a
⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                      (5.24) 

 
όπου οι δείκτες new  και old  δηλώνουν τη νέα και την παλαιά τιµή της διατοµής της 
i − ράβδου, αντίστοιχα. Συνεπώς, η εφαρµογή µίας οµοιόµορφης διακλιµάκωσης στα ενεργά 
µέλη της κατασκευής απαιτεί τη διαίρεση όλων των αντιστοίχων διατοµών, οι οποίες 
προκύπτουν χρησιµοποιώντας την Εξ.(5.17), δια του συντελεστού a .  

Ένα τελευταίο σηµείο, το οποίο χρήζει διερεύνησης, αφορά στην επιλογή του βαθµού 
ελευθερίας, προκειµένου να επιβληθεί σε αυτόν το µοναδιαίο φορτίο. Μία πρώτη σκέψη θα 
ήταν η τυχαία δηµιουργία ενός αρχικού διανύσµατος σχεδίασης, η εύρεση του βαθµού 
ελευθερίας µε τη µέγιστη µετατόπιση και η επιβολή σε αυτόν του µοναδιαίου φορτίου. 
Ωστόσο, αυτή η επιλογή δεν είναι η καλύτερη δυνατή διότι υπάρχει περίπτωση εσφαλµένης 
υπόδειξης του εν λόγω βαθµού ελευθερίας. Το συγκεκριµένο θέµα αναλύεται στην επόµενη 
ενότητα. 
 
5.2.4. Σχεδίαση Μοναδιαίας ∆υσκαµψίας (Unit Stiffness Design) 

Σε ένα ισοστατικό δικτύωµα, ο υπολογισµός των αξονικών δυνάµεων των µελών του είναι 
δυνατόν να επιτευχθεί χρησιµοποιώντας τη Μέθοδο των Κόµβων, σύµφωνα µε την οποία 
απαιτείται η γνώση των, εξωτερικώς επιβαλλοµένων στην κατασκευή, φορτίων και του 
χωρικού προσανατολισµού της εκάστοτε ράβδου στο δικτύωµα. Με άλλα λόγια, η Μέθοδος 
των Κόµβων εµπλέκει εξωτερικά φορτία και προσανατολισµό µελών. Από την άλλη πλευρά, 
ο ίδιος υπολογισµός είναι δυνατόν να επιτευχθεί χρησιµοποιώντας τη Μέθοδο των 
Πεπερασµένων Στοιχείων (ΜΠΣ), σύµφωνα µε την οποία επιλύεται η ακόλουθη εξίσωση: 
 

{ } [ ] { }UKF =                                                        (5.25) 
 
όπου { }F  είναι το διάνυσµα των, εξωτερικώς επιβαλλοµένων στην κατασκευή, φορτίων, [ ]K  
είναι το καθολικό µητρώο δυσκαµψίας της κατασκευής και { }U  είναι το διάνυσµα των 
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κοµβικών µετατοπίσεων. Το µητρώο [ ]K  προκύπτει από την κατάλληλη σύνθεση των 
µητρώων δυσκαµψίας [ ]jK  των µελών της κατασκευής, όπου: 
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                                 (5.26) 

 
Στο δεξί µέλος της Εξ.(5.26), εµφανίζεται το γινόµενο δύο όρων, εκ των οποίων ο πρώτος 
αφορά στη δυσκαµψία της −j ράβδου και ο δεύτερος αφορά στον χωρικό προσανατολισµό 
της εν λόγω ράβδου. Με άλλα λόγια, η Εξ.(5.25) εµπλέκει εξωτερικά φορτία, δυσκαµψία 
µελών και προσανατολισµό µελών. ∆εδοµένου ότι και οι δύο µέθοδοι εφαρµόζονται για την 
επίλυση του ίδιου προβλήµατος, θα πρέπει να υπάρχει ποιοτική αντιστοιχία µεταξύ των 
εµπλεκοµένων, σε κάθε µέθοδο, εννοιών. Βάσει της προηγηθείσας ανάλυσης, µία τέτοια 
αντιστοιχία επιτυγχάνεται εάν αναιρεθεί η επίδραση της παρουσίας της δυσκαµψίας µελών 
στην Εξ.(5.26). Προς τούτο, είναι απαραίτητη η απόδοση µοναδιαίας δυσκαµψίας σε κάθε 
µέλος της κατασκευής, οπότε, θεωρώντας ότι η τοπολογία της κατασκευής είναι γνωστή και 
αµετάβλητη, το εµβαδόν διατοµής της −j ράβδου θα πρέπει να ισούται µε: 
 

j
j E

LA ⎟
⎠
⎞

⎜
⎝
⎛=                                                          (5.27) 

 
Για λόγους ονοµατοδοσίας, έστω ότι η σχεδίαση, η οποία προκύπτει χρησιµοποιώντας την 
Εξ.(5.27),  καλείται ‘Unit Stiffness Design’ ή, εν συντοµία, USD (αρκτικόλεξο των αγγλικών 
όρων ‘Σχεδίαση Μοναδιαίας ∆υσκαµψίας’). Όπως αναφέρεται στην επόµενη παράγραφο, από 
τα αριθµητικά αποτελέσµατα της µελέτης ισοστατικών δικτυωµάτων, προέκυψε ότι εάν η 
διαδικασία βελτιστοποίησης εκκινηθεί από τη σχεδίαση USD τότε πάντοτε εντοπίζεται η 
καθολικά βέλτιστη λύση. Αντιθέτως, εάν χρησιµοποιηθεί ένα τυχαίο αρχικό διάνυσµα 
σχεδίασης, η  διαδικασία βελτιστοποίησης είναι δυνατόν να εγκλωβισθεί σε τοπικό ακρότατο. 
Προεκβάλλοντας αυτήν την παρατήρηση, η χρήση αρχικού διανύσµατος βάσει της σχεδίασης 
USD επεκτάθηκε και στη βελτιστοποίηση υπερστατικών κατασκευών.  
 
5.2.5. Εντοπισµός ενεργών και παθητικών µελών 

Το Βέλτιστο Κριτήριο, το οποίο περιγράφεται από την Εξ.(5.10), στηρίζεται σε δύο 
παραδοχές: κατά πρώτον ότι, στην καθολικά βέλτιστη σχεδίαση, µόνον ένας περιορισµός 
µετατόπισης είναι ενεργός και κατά δεύτερον ότι όλα τα µέλη της κατασκευής δύνανται να 
επηρεάζουν το πεδίο µετατοπίσεών της (ενεργά µέλη). Ωστόσο, δεν είναι δυνατή η, εκ των 
προτέρων, εξασφάλιση της ισχύος των εν λόγω παραδοχών, συνεπώς, προς αντιµετώπιση της 
περίπτωσης κατά την οποία είτε µία είτε και οι δύο από αυτές παραβιάζονται, θα πρέπει να 
αναπτυχθούν κατάλληλες αριθµητικές διαδικασίες. 

Η διαδικασία επανασχεδίασης, όπως αυτή περιγράφεται στις ενότητες 5.2.2 και 5.2.3, 
εκκινείται από ένα διάνυσµα σχεδίασης, έστω iniA . Σύµφωνα µε την ενότητα 5.2.2, εάν 
ληφθούν υπόψη µόνο τα γινόµενα P Q

i iF F , τότε όλοι οι όροι της µορφής P Q
i iF F tol≤  (έστω 

κριτήριο βάσει δυνάµεων), όπου tol  µία µικρή θετική ποσότητα, έχουν αµελητέα συµµετοχή 
στην Εξ.(5.3), συνεπώς οι αντίστοιχες i − ράβδοι δύνανται να χαρακτηρισθούν ως 
‘παθητικές’. Επειδή, δε, αυτός ο χαρακτηρισµός στηρίζεται σε κριτήριο βάσει δυνάµεων, οι 
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εν λόγω ράβδοι είναι δυνατόν να αποκληθούν ως ‘παθητικά τη δυνάµει’ στοιχεία. Κατ’ 
αντιστοιχία, όλες οι ράβδοι για τις οποίες ισχύει P Q

i iF F tol>  είναι δυνατόν να αποκληθούν 
ως ‘ενεργά ως προς τη δύναµη’ στοιχεία. Επιπροσθέτως, είναι δυνατόν να χρησιµοποιηθεί το 
εµβαδόν των διατοµών ως κριτήριο χαρακτηρισµού των ράβδων (κριτήριο βάσει εµβαδού). 
Σε αυτήν την περίπτωση, όλες οι ράβδοι µε εµβαδόν διατοµής iA  µικρότερο από µία 
αρκούντως µικρή τιµή, έστω minA , έχουν µικρή συνεισφορά στη συνολική δυσκαµψία της 
κατασκευής. Σε αναλογία µε τα προαναφερθέντα, αυτές οι ράβδοι είναι δυνατόν να 
χαρακτηρισθούν ως ‘ενεργά ως προς τη διατοµή’ στοιχεία. Αντιθέτως, όλες οι ράβδοι µε 
εµβαδόν διατοµής miniA A>  χαρακτηρίζονται, κατ’ αντιστοιχία, ως ‘παθητικά ως προς τη 
διατοµή’ στοιχεία. Συνδυάζοντας τα δύο προαναφερθέντα κριτήρια χαρακτηρισµού, µία 
ράβδος είναι δυνατόν να χαρακτηρισθεί ως: 
• ‘ενεργό ως προς τη δύναµη’ και ‘ενεργό ως προς τη διατοµή’ στοιχείο: Τέτοια στοιχεία 

συµµετέχουν στη διαδικασία επανασχεδίασης, όπως αυτή παρουσιάζεται στις Ενότητες 
2.2 και 2.3. 

• ‘ενεργό ως προς τη δύναµη’ και ‘παθητικό ως προς τη διατοµή’ στοιχείο: Τέτοια στοιχεία 
συµµετέχουν στη διαδικασία επανασχεδίασης, κατά την οποία αποκτούν εµβαδόν 
διατοµής µικρότερο από minA . Ωστόσο, λόγω της επιβολής του κάτω ορίου minA , τελικά 
αποδίδεται σε αυτά τα στοιχεία εµβαδόν minA . Αυτή η απόδοση είναι αποδεκτή, 
δεδοµένου ότι µια διατοµή αποκτά µεγαλύτερο εµβαδόν από το απαιτούµενο. 

• ‘παθητικό ως προς τη δύναµη’ και ‘ενεργό ως προς τη διατοµή’ στοιχείο: αυτή η 
περίπτωση είναι ιδιαιτέρως ενδιαφέρουσα και εξετάζεται στην επόµενη παράγραφο. 

• ‘παθητικό ως προς τη δύναµη’ και ‘παθητικό ως προς τη διατοµή’ στοιχείο: τέτοια 
στοιχεία εξαιρούνται από τη διαδικασία επανασχεδίασης και αποκτούν εµβαδόν minA .  

Πιο συγκεκριµένα, τα ‘παθητικά ως προς τη δύναµη’ και ‘ενεργά ως προς τη διατοµή’ 
στοιχεία actpass−A  φέρουν τα ακόλουθα χαρακτηριστικά: 
C1) Για την τρέχουσα επανάληψη, δηλαδή για την επανάληψη κατά την οποία προκύπτει ο 

χαρακτηρισµός του στοιχείου, δεν επιτρέπεται η συµµετοχή τους στη διαδικασία 
επανασχεδίασης, όπως αυτή περιγράφεται στις ενότητες 5.2.2 και 5.2.3. Ειδικότερα, ο 
αριθµητής της Εξ.(5.17) τείνει προς το µηδέν, οπότε τα εν λόγω στοιχεία κρατούν το 
εµβαδόν διατοµής που απέκτησαν κατά την εκτέλεση της προηγούµενης επανάληψης. 

C2) ∆ιαθέτουν εµβαδόν διατοµής µεγαλύτερο από το κάτω όριο minA , οπότε εάν τους 
αποδοθεί το εµβαδόν minA , τότε ο επιβαλλόµενος περιορισµός µετατόπισης θα 
παραβιασθεί. Ωστόσο, χωρίς βλάβη της γενικότητας, είναι δυνατή η περαιτέρω µείωση 
της διατοµής χρησιµοποιώντας κάποιο σχήµα αναζήτησης γραµµής, όπως είναι η 
µέθοδος binary search. Η διαδικασία µείωσης της διατοµής εφαρµόζεται επαναληπτικά, 
µέχρι παραβίασης του περιορισµού µετατόπισης. Υπό αυτό το πρίσµα, διαµορφώνεται 
το ακόλουθο υπο-πρόβληµα βελτιστοποίησης:. 

 
Min actpass−A                                                  (5.28a) 

µε minpass act A− >A                                                 (5.28b) 

έτσι ώστε allowUu =max                                             (5.28c) 
 
Εάν _pass actN  είναι το πλήθος των ‘παθητικά ως προς τη δύναµη’/‘ενεργητικά ως προ τη 
διατοµή’ στοιχείων, τότε ο χώρος λύσεων του ανωτέρω υπο-προβλήµατος βελτιστοποίησης 
είναι το σύνολο _pass actNR . Εν γένει, µια διαδικασία αναζήτησης γραµµής περιγράφεται 
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µαθηµατικά ως 1i iX X a d+ = +
rr r

, όπου ως X
r

 δηλώνεται το διάνυσµα σχεδίασης, ως d
r

 
συµβολίζεται η διεύθυνση αναζήτησης, ως a  ορίζεται το βήµα αναζήτησης, ενώ i  είναι ο 
αύξων αριθµός της τρέχουσας επανάληψης. Εάν _ 1pass actN = , τότε ο χώρος λύσης είναι το 
σύνολο R+  των πραγµατικών αριθµών, το πρόβληµα αναζήτησης γραµµής είναι βαθµωτό, 
ενώ η βέλτιστη λύση είναι δυνατόν να εντοπισθεί µέσω µίας αναζήτησης γραµµής κατά 
µήκος του θετικού ηµι-άξονα των πραγµατικών αριθµών. Ωστόσο, εάν ισχύει _ 1pass actN > , 
τότε η βέλτιστη λύση ανήκει σε έναν διανυσµατικό χώρο και υπάρχουν δύο λύσεις:  
1) Χρήση Μεθόδου Μαθηµατικού Προγραµµατισµού προς επίλυση του προβλήµατος, το 

οποίο περιγράφεται από τις Εξ.(5.28a-5.28c). Το αρχικό πρόβληµα βελτιστοποίησης 
διαιρείται σε δύο µέρη, το πρώτο εκ των οποίων επιλύεται µε την προτεινόµενη 
διαδικασία βελτιστοποίησης, ενώ το δεύτερο µέρος επιλύεται χρησιµοποιώντας 
οποιαδήποτε βιβλιογραφική µέθοδο βελτιστοποίησης. Το βασικό πλεονέκτηµα του εν 
λόγω υβριδικού σχήµατος βελτιστοποίησης έγκειται στο γεγονός ότι τελικώς εντοπίζεται 
µία λύση του προβλήµατος. Επίσης, το υπολογιστικό κόστος είναι, εν γένει, µικρότερο 
από εκείνο, το οποίο προκύπτει εάν χρησιµοποιηθεί εξ αρχής κάποια µέθοδος 
Μαθηµατικού Προγραµµατισµού για την επίλυση ολόκληρου του προβλήµατος (αυτή η 
επίλυση εµπλέκει NEL  µεταβλητές σχεδίασης, ενώ η επίλυση του υπο-προβλήµατος της 
Εξ.(5.28) εµπλέκει µόνον _pass actN NEL<<  αγνώστους).  

2) Χρήση µεθόδου αναζήτησης γραµµής σταθερής διεύθυνσης αναζήτησης. Πρακτικά, 
πρόκειται για την εφαρµογή µίας οµοιόµορφης διακλιµάκωσης επί των ‘παθητικά ως προς 
τη δύναµη’/‘ενεργά ως προς τη διατοµή’ στοιχείων. Αυτή η προσέγγιση αποτελεί έναν 
συµβιβασµό µεταξύ της χρήσης του διανύσµατος σχεδίασης, όπως αυτό προκύπτει από 
την προτεινόµενη διαδικασία βελτιστοποίησης, χωρίς περαιτέρω επίλυση του υπο-
προβλήµατος της Εξ.(5.28), και της επίλυσης του υπο-προβλήµατος της Εξ.(5.28) µε 
κάποια Μέθοδο Μαθηµατικού Προγραµµατισµού. 

Με βάση τα προαναφερθέντα στα (1) και (2), προκύπτει ότι µία καλή επιλογή θα ήταν η 
προσαύξηση της διαδικασίας επανασχεδίασης µε µία, µικρού υπολογιστικού κόστους, 
ρουτίνα, έτσι ώστε να λαµβάνεται µια καλύτερη, αλλά µόνον κατά προσέγγιση, βέλτιστη 
λύση όταν διαγιγνώσκεται η διαµόρφωση του υποπροβλήµατος της Εξ.(5.28). Η, δε, 
αξιοποίηση µίας αναζήτησης κατά σταθερή διεύθυνση σχολιάζεται λεπτοµερέστερα στην 
επόµενη ενότητα. 
 
5.2.6. Αναζήτηση κατά σταθερή διεύθυνση 

Σε µία τυπική διαδικασία αναζήτησης, η οποία περιγράφεται απλά ως 1i iX X a d+ = +
rr r

, το 

βαθµωτό βήµα αναζήτησης a  και η διεύθυνση αναζήτησης d
r

 υπολογίζονται εκ νέου σε κάθε 
επανάληψη, µέχρι συγκλίσεως. Εάν η διεύθυνση αναζήτησης d

r
 διατηρείται σταθερή, τότε ο 

χώρος λύσης είναι το −R σύνολο (1∆ πρόβληµα βελτιστοποίησης). Ισοδύναµα, πρόκειται για 
µία οµοιόµορφη διακλιµάκωση των αντιστοίχων µεταβλητών σχεδίασης X

r
. Για το εν λόγω 

πρόβληµα, ο αντικειµενικός σκοπός είναι η εύρεση εκείνου του βήµατος αναζήτησης a , το 
οποίο συρρικνώνει το διάνυσµα actpass−A  χωρίς να οδηγεί σε παραβίαση του επιβαλλοµένου 
περιορισµού µετατόπισης. Προς αυτήν την κατεύθυνση, είναι δυνατόν να χρησιµοποιηθεί 
οποιαδήποτε αναζήτηση γραµµής. Στην παρούσα, προτείνεται η ακόλουθη διαδικασία: 
Βήµα 1: Ορισµός του κατώτατου ορίου για τις µεταβλητές σχεδίασης ως 

min,, AA jLowerBoundactpass =− , όπου ο δείκτης j  είναι ο µετρητής των ‘παθητικά ως 
προς τη δύναµη’/‘ενεργά ως προς τη διατοµή’ στοιχείων. 

Βήµα 2: Ορισµός του αρχικού διανύσµατος σχεδίασης ως pass act−A . 
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Βήµα 3: Όσο δεν έχει επιτευχθεί σύγκλιση και δεν έχει ξεπερασθεί το µέγιστο πλήθος των 
προβλεποµένων επαναλήψεων: 

Βήµα 3a: ορισµός ( ), ,0.5new pass act pass act LowerBound pass act− − −= +A A A  
Βήµα 3b: υπολογισµός του βαθµού κατάστασης του καθολικού µητρώου δυσκαµψίας της 

κατασκευής (1-norm condition number, έστω ( )globcond K ) 
Βήµα 3c: Εάν ( ) [ ]UBLBcond glob ,∈K  τότε  

Ανάλυση της κατασκευής µε τη (ΜΠΣ) 
Εάν allowUu >max  τότε , ,pass act LowerBound new pass act− −=A A   

∆ιαφορετικά ,pass act new pass act− −=A A  
Βήµα 3d: Αύξηση του µετρητή επαναλήψεων κατά µία επανάληψη 
 
Θεωρείται ότι έχει επιτευχθεί σύγκλιση όταν 1_, tolactpassactpassnew ≤− −− AA , όπου 1_tol  είναι 

µια µικρή, θετική ποσότητα, έστω 1 06E − . Το κάτω όριο ( )LB  και το άνω όριο ( )UL  για το 
βαθµό κατάστασης του καθολικού µητρώου δυσκαµψίας της κατασκευής είναι, αντίστοιχα, 
ένας µικρός και ένας µεγάλος αριθµός, έστω 31 −= eLB  και 201eUB = . Ο ορισµός ενός 
πεδίου επιτρεποµένων τιµών για τον εν λόγω βαθµό κατάστασης εξασφαλίζει τη δυνατότητα 
αντιστροφής του µητρώου δυσκαµψίας της κατασκευής, συνεπώς εξασφαλίζει τη δυνατότητα 
εφαρµογής της (ΜΠΣ). Τέλος, όπως άλλωστε σε όλες τις επαναληπτικές διαδικασίες, 
χρησιµοποιείται, ως ασφαλιστική δικλίδα, και ένας µετρητής πλήθους εκτελεσθέντων 
επαναλήψεων, για τον ελεγχόµενο τερµατισµό της διαδικασίας. 
 
5.2.7.  Ειδική περίπτωση επιβολής ενός φορτίου  

Μία ειδική περίπτωση επιβολής φορτίου είναι εκείνη στην οποία ο κόµβος εφαρµογής της 
δύναµης είναι και ο κόµβος µε τη µέγιστη µετατόπιση. Ειδικότερα, όταν επιβάλλεται µόνον 
ένα φορτίο P , τότε από το 2ο θεώρηµα Castigliano’s (Παράρτηµα 5.A), προκύπτει: 
 

1

NEL
i i i

i i i

c b Lu P
A E=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑                                                     (5.29) 

 
όπου ic  είναι η σταθµισµένη συνεισφορά του πραγµατικού φορτίου P  στην αξονική δύναµη 
της i − ράβδου και ib  είναι η σταθµισµένη συνεισφορά του δυνατού φορτίου στη δυνατή 
αξονική δύναµη, η οποία αναπτύσσεται στη i − ράβδο. Εάν ασκηθεί ένα µοναδιαίο φορτίο 
στο σηµείο εφαρµογής του πραγµατικού φορτίου P , τότε, λόγω γραµµικότητας, ισχύει: 

i
i

cb
P

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                           (5.30) 

 
Ο συνδυασµός των τελευταίων δύο εξισώσεων δίδει: 
 

2

1

NEL
i i

i i i

c Lu
A E=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑                                                       (5.31) 

 
Η Εξ.(5.31) υποδηλοί ότι µία i − ράβδος µε 0ic ≠  συνεισφέρει µόνον αυξητικά στη 
µετατόπιση του θεωρούµενου σηµείου. Αντιθέτως, όλα τα µέλη µε 0ic =  έχουν µηδενική 
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συνεισφορά. Προφανώς, αυτή η περίπτωση είναι ιδιαιτέρως βολική διότι δεν εµφανίζονται 
όροι της µορφής 0i ic b <  στην Εξ.(5.29). Συνεπώς, περιπτώσεις στις οποίες η µέγιστη 
µετατόπιση εµφανίζεται στο σηµείο εφαρµογής του µοναδικού ασκουµένου φορτίου 
αποτελούν µία ιδιαίτερη (βολική) κλάση προβληµάτων, η οποία ενδεχοµένως να µην βοηθά 
στην αποκάλυψη αδυνάτων σηµείων µίας διαδικασίας βελτιστοποίησης, ακριβώς επειδή δεν 
εµφανίζεται το ‘αγκάθι’ των µελών µε 0i ic b < . Συνεπώς, µία αξιολόγηση σε ένα πλαίσιο ‘ευ 
αγωνίζεσθαι’ θα πρέπει να περιλαµβάνει και παραδείγµατα, τα οποία δεν εµπίπτουν στην 
προαναφερόµενη ειδική κατηγορία προβληµάτων. 
 
5.2.8. Ανάλυση ευαισθησίας 

Για µία κατασκευή µε δεδοµένη τοπολογία και φόρτιση, και υπό την παραδοχή ότι 
χρησιµοποιείται το ίδιο υλικό σε όλα τα µέλη της κατασκευής, ισχύει (τα σύµβολα είναι 
εκείνα της Εξ.(5.31)): 
 

ilc const=    iL const=    iE const=    constPl =                           (5.32) 
 
Οι ποσότητες ib  εξαρτώνται από το σηµείο επιβολής του δυνατού φορτίου, ή, ισοδύναµα, 
από τη θέση του κόµβου για τον οποίο αναζητείται η µετατόπιση. Χωρίς βλάβη της 
γενικότητας, ισχύει: 
 

( ),i iu f b A=                                                        (5.33) 
 
Από την Εξ.(5.17) προκύπτει ότι η κοµβική µετατόπιση u  αποτελεί συνεχή συνάρτηση ως 
προς το εµβαδόν των διατοµών και ασυνεχή συνάρτηση ως προς τα σηµεία επιβολής του 
µοναδιαίου φορτίου, δεδοµένου ότι αυτά τα σηµεία είναι διακριτά και εξαρτώνται από την 
τοπολογία της κατασκευής. Συνεπώς, για τον εντοπισµό ενός ακροτάτου στο πεδίο των 
κοµβικών µετατοπίσεων, συναρτήσει των συνεχών µεταβλητών iA , πρέπει να ισχύει: 
 

0
i

u
A
∂

=
∂

                                                           (5.34) 

 
Ισοδύναµα, µετά από πράξεις επί της Εξ(5.29), πρέπει να ισχύει: 
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∑                                             (5.35) 

 

Είναι φανερό ότι η Εξ. (5.34) είναι αληθής για κάθε τιµή iA  εάν 0ib =  ή 
1

0
m

il l
l

c P
=

=∑ . 

∆ηλαδή, όταν η συνεισφορά του µοναδιαίου φορτίου της i − ράβδου είναι µηδενική ή όταν η 
αξονική δύναµη της i − ράβδου είναι µηδενική.  
 
5.3. Αριθµητική προσέγγιση 
5.3.1. Η προτεινόµενη διαδικασία 

Η προτεινόµενη διαδικασία, για την ελαχιστοποίηση του βάρους µίας 2∆ σκελετικής 
κατασκευής υπό την επιβολή ενός γενικευµένου περιορισµού µετατόπισης έχει ως εξής: 
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Βήµα 1: Εύρεση της αρχικής σχεδίασης µοναδιαίας δυσκαµψίας (Unit Stiffness Initial 
Design  - U.S.I.D.) για την υπό εξέταση κατασκευή. 

Βήµα 2: Ανάλυση της κατασκευής µε τη (ΜΠΣ), χρησιµοποιώντας τα πραγµατική φορτία. 
Βήµα 3: Βάσει των αποτελεσµάτων από το Βήµα 2, εύρεση της µέγιστης κοµβικής 

µετατόπισης uumax,  και εντοπισµός των στοιχείων της κατασκευής για τα οποία 

ισχύει iF tol>  (προσωρινά ενεργά στοιχεία). 
Βήµα 4: Οµοιόµορφη διακλιµάκωση των προσωρινά ενεργών στοιχείων µε συντελεστή 

διακλιµάκωσης την ποσότητα ( )uallow uU max,/  και απόδοση της ελάχιστα 
επιτρεποµένης τιµής διατοµής minA  στα υπόλοιπα στοιχεία. 

Βήµα 5: Επαναληπτική εφαρµογή των Βηµάτων 6-14 µέχρι συγκλίσεως ή µέχρι 
εξαντλήσεως του προβλεποµένου µεγίστου πλήθους επαναλήψεων. 

Βήµα 6: Ανάλυση της κατασκευής µε τη (ΜΠΣ) επιβάλλοντας ένα µοναδιαίο φορτίο στο 
βαθµό ελευθερίας, ο οποίος αντιστοιχεί στη µετατόπιση uumax, . 

Βήµα 7: Κατηγοριοποίηση των δοµικών µελών, χρησιµοποιώντας το κριτήριο βάσει 
εµβαδού, σε ‘ενεργά ως προς τη δύναµη’/‘ενεργά ως προς τη διατοµή’, ‘ενεργά 
ως προς τη δύναµη’/‘παθητικά ως προς τη διατοµή’, ‘παθητικά ως προς τη 
δύναµη’/‘ενεργά ως προς τη διατοµή’ και ‘παθητικά ως προς τη 
δύναµη’/‘παθητικά ως προς τη διατοµή’ (Ενότητα 5.2.5). 

Βήµα 8: Για τα ‘ενεργά ως προς τη δύναµη’/‘ενεργά ως προς τη διατοµή’ στοιχεία, 
εφαρµογή της διαδικασίας επανασχεδίασης της ενότητας 5.2.2, δηλαδή: 

Βήµα 8a: Για κάθε ένα από αυτά τα στοιχεία, υπολογισµός της πυκνότητας της 
συµπληρωµατικής ενέργειας παραµόρφωσης iw  χρησιµοποιώντας την Εξ.(5.11). 

Βήµα 8b: Για όλα αυτά τα στοιχεία, υπολογισµός της µέσης τιµής w  µέσω της Εξ.(5.12). 
Βήµα 8c: Για κάθε ένα από αυτά τα στοιχεία, επανασχεδίαση βάσει της Εξ.(5.17). 
Βήµα 8d: Ανάλυση της κατασκευής µε τη (ΜΠΣ) και υπολογισµός της µέγιστης κοµβικής 

µετατόπισης. 
Βήµα 8e: Εφαρµογή οµοιόµορφης διακλιµάκωσης χρησιµοποιώντας τις Εξ.(5.21, 5.24). 
Βήµα 9: Για τα ‘παθητικά ως προς τη δύναµη’/‘ενεργά ως προς τη διατοµή’ στοιχεία, 

εφαρµογή της διαδικασίας επανασχεδίασης της ενότητας 5.2.3, δηλαδή: 
Βήµα 9a: Έλεγχος εάν είναι δυνατή η απόδοση του κατώτερου ορίου minA  σε κάθε ένα από 

αυτά τα στοιχεία. Εάν ο έλεγχος αποτυγχάνει, τότε µετάβαση στο Βήµα 9b. 
Βήµα 9b: Εφαρµογή αναζήτησης τύπου binary search, σε συνδυασµό µε ανάλυση της 

κατασκευής χρησιµοποιώντας τη (ΜΠΣ), προς εντοπισµό του µεγίστου 
συντελεστού συρρίκνωσης, ο οποίος είναι δυνατόν να εφαρµοσθεί στα ‘παθητικά 
ως προς τη δύναµη’/‘ενεργά ως προς τη διατοµή’ στοιχεία, χωρίς να προκαλείται 
παραβίαση του επιβαλλοµένου περιορισµού µετατόπισης. 

Βήµα 10: Για τα ‘ενεργά ως προς τη δύναµη’/‘παθητικά ως προς τη διατοµή’ και τα 
‘παθητικά ως προς τη δύναµη’/‘παθητικά ως προς τη διατοµή’ στοιχεία, απόδοση 
της ελάχιστης επιτρεπόµενης διατοµής minA . 

Βήµα 11: Εάν από την εφαρµογή των Βηµάτων 9-10 προκύψει µία νέα διατοµή ,i newA  
µικρότερη από την minA , τότε , mini newA A= . 

Βήµα 14: Επιστροφή στο Βήµα 6, εκτός και εάν έχει επιτευχθεί σύγκλιση και ως προς το 
βάρος της κατασκευής και ως προς τη µέγιστη µεταβολή διατοµής µεταξύ δύο 
διαδοχικών επαναλήψεων (βλ. επόµενη ενότητα 5.3.2). Εάν ξεπερασθεί το 
µέγιστο επιτρεπόµενο πλήθος επαναλήψεων, τερµατισµός της διαδικασίας µε 
εµφάνιση αντιστοίχου µηνύµατος.  

Βήµα 15: Παρουσίαση αποτελεσµάτων σε µορφή αναφοράς. 
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5.3.2. Κριτήρια σύγκλισης 
Για τη σύγκλιση της προτεινόµενης διαδικασίας, χρησιµοποιήθηκαν δύο κριτήρια, ως ο 

Rozvany προτείνει. Ειδικότερα, το πρώτο κριτήριο σύγκλισης αφορά στη µεταβολή του 
βάρους της κατασκευής µεταξύ δύο διαδοχικών επαναλήψεων, έστω new και old. Σε αυτήν 
την περίπτωση, η µαθηµατική έκφραση είναι η ακόλουθη ( 1Ctol  είναι µία εξ αρχής ορισµένη 
µικρή, θετική ποσότητα): 
 

1
new old

C
old

W W
tol

W
−

≤                                                   (5.36) 

 
Σύµφωνα µε το δεύτερο κριτήριο, θεωρείται ότι έχει επιτευχθεί σύγκλιση όταν η µέγιστη 
µεταβολή στο εµβαδόν διατοµής µεταξύ δύο διαδοχικών επαναλήψεων, έστω new και old, 
είναι µικρότερη από µία προκαθορισµένη µικρή, θετική ποσότητα, έστω 2Ctol : 
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                                           (5.37) 

 
Εν γένει, εάν χρησιµοποιηθεί µία σχετικά µεγάλη τιµή για τις ποσότητες 1Ctol  και 2Ctol , τότε 
η διαδικασία τερµατίζεται σχετικά νωρίς, κάτι το οποίο εµποδίζει την εµφάνιση δυσκολιών 
σύγκλισης. Προς αποφυγή, λοιπόν, διαµόρφωσης ψευδούς εικόνας ως προς την 
αποτελεσµατικότητα της προτεινοµένης διαδικασίας, στα παραδείγµατα του παρόντος 
κεφαλαίου θεωρήθηκε ότι 1 2 1 15tol tol E= = − , εκτός και εάν ορίζεται κάτι διαφορετικό.  
 
5.3.3. Αξιολόγηση αποτελεσµάτων 

Προς αξιολόγηση της προτεινοµένης διαδικασίας, µελετήθηκε ένα εκτεταµένο σύνολο 
παραδειγµάτων, κάθε ένα εκ των οποίων αντιµετωπίσθηκε ως εξής:  
Βήµα E1: Ανάκτηση δεδοµένων από τη βιβλιογραφία. Εάν ήταν βιβλιογραφικά διαθέσιµο 

το βέλτιστο διάνυσµα σχεδίασης, τότε εξεταζόταν η εγκυρότητά του µέσα από 
την ανάλυση της αντίστοιχης κατασκευής µε τη (ΜΠΣ) και ελέγχοντας εάν 
προέκυπταν παραβιάσεις του περιορισµού µετατόπισης. 

Βήµα E2: Επίλυση του προβλήµατος βελτιστοποίησης χρησιµοποιώντας τη ρουτίνα 
fmincon (διαδικασία SQP) του λογισµικού Matlab, εκκινώντας τη διαδικασία 
βελτιστοποίησης από 100 διαφορετικά και τυχαίως επιλεγµένα διανύσµατα 
σχεδίασης. Για κάθε επιτυχή εκτέλεση της διαδικασίας βελτιστοποίησης, 
καταγραφή του πλήθους των επαναλήψεων µέχρι συγκλίσεως, του πλήθους των 
κλήσεων της αντικειµενικής συνάρτησης (άρα και του αντιστοίχου πλήθους των 
αναλύσεων µε τη ΜΠΣ), του ελαχίστου βάρους της κατασκευής και του 
βελτίστου διανύσµατος σχεδίασης. Το Βήµα Ε2 δεν εκτελείτο για εκείνα τα 
παραδείγµατα για τα οποία ήταν βιβλιογραφικά διαθέσιµες ακριβείς αναλυτικές 
λύσεις. 

Βήµα E3: Λύση του προβλήµατος βελτιστοποίησης χρησιµοποιώντας την προτεινόµενη 
διαδικασία, εκκινώντας τη διαδικασία από σχεδίαση µοναδιαίας δυσκαµψίας 
(Unit Stiffness Design) και καταγραφή, µέχρι συγκλίσεως, του πλήθους των 
επαναλήψεων, του πλήθους των αναλύσεων µε τη (ΜΠΣ), του ελαχίστου βάρους 
της κατασκευής καθώς και του βελτίστου διανύσµατος σχεδίασης. Επιπροσθέτως, 



Δ.T. Βενετσάνος – Διδακτορική Διατριβή ‐ 2010 

Σ ε λ ί δ α  | ΕΛ.5.15 

καταγραφή της ιστορίας σύγκλισης ως προς τις ποσότητες της ενότητας 5.3.2 και 
απεικόνιση σε ηµιλογαριθµικό διάγραµµα. 

Βήµα E4: Επίλυση του προβλήµατος βελτιστοποίησης χρησιµοποιώντας την προτεινόµενη 
διαδικασία βελτιστοποίησης, και εκκινώντας την από 100 διαφορετικά και 
τυχαίως επιλεγµένα διανύσµατα σχεδίασης (διαφορετικά της σχεδίασης Unit 
Stiffness Design) και καταγραφή του πλήθους των επαναλήψεων µέχρι 
συγκλίσεως, του πλήθους των αναλύσεων µε τη (ΜΠΣ), το ελάχιστο βάρος και το 
βέλτιστο διάνυσµα σχεδίασης. 

Σε αυτό το σηµείο, διευκρινίζεται ότι το σύνολο των 100 αναλύσεων, το οποίο αναφέρεται 
στο Βήµα E2, αποσκοπεί στην αύξηση της πιθανότητας εντοπισµού της καθολικά βέλτιστης 
σχεδίασης, ενώ το σύνολο των 100 αναλύσεων, το οποίο αναφέρεται στο Βήµα E4, 
αποσκοπεί στη διερεύνηση της επίδρασης του αρχικού διανύσµατος σχεδίασης στον 
εντοπισµό της καθολικά βέλτιστης σχεδίασης.  
 
5.4. Παραδείγµατα 

Για την αξιολόγηση της προτεινοµένης µεθοδολογίας βελτιστοποίησης εξετάστηκε ένα 
εκτενές πλήθος παραδειγµάτων, τόσο βιβλιογραφικών όσο και νέων, τα οποία διατυπώθηκαν 
ακριβώς για τους σκοπούς της εν λόγω αξιολόγησης. Τα παραδείγµατα χωρίστηκαν σε δύο 
µεγάλες οµάδες. Στην πρώτη οµάδα κατατάχθηκαν τέσσερα διαφορετικά υπερστατικά 
δικτυώµατα, µερικά εξ αυτών µε παραλλαγές, και ειδικότερα το δικτύωµα 3-bar (µε τρεις 
παραλλαγές), το δικτύωµα 5-bar, το δικτύωµα 56-bar (µε δύο παραλλαγές) και µία τυπική 
σκελετική προσέγγιση της δοκού MBB (µε δύο διαφορετικές πυκνότητες πλέγµατος). 
Συνολικά, η πρώτη οµάδα περιείχε οκτώ δικτυώµατα. Στη δεύτερη οµάδα κατατάχθηκαν τρία 
διαφορετικά ισοστατικά δικτυώµατα, µερικά εξ αυτών µε παραλλαγές, και ειδικότερα το 
δικτύωµα 5-bar, η δοκός MBB (µε πέντε παραλλαγές, εκάστη εµφανιζόµενη µε τρεις 
διαφορετικές πυκνότητες πλέγµατος) και το δικτύωµα 9-bar (έξι παραλλαγές, εκάστη µε 
τέσσερα διαφορετικά σενάρια φόρτισης). Συνολικά, η δεύτερη οµάδα περιείχε 40 
περιπτώσεις. Σε αυτό το σηµείο, διευκρινίζεται ότι οι πέντε προαναφερθείσες ισοστατικές 
παραλλαγές της δοκού MMB αφορούν στις πολύ γνωστές σχεδιάσεις κατά Pratt, Howe, 
Warren, Baltimore και K-truss (Beer and Johnston, 1988). Σε συµφωνία µε την προτροπή της 
ενότητας 5.2.7 για ‘ευ αγωνίζεσθαι’, το δικτύωµα 9-bar δηµιουργήθηκε από το πολύ γνωστό 
δικτύωµα 10-bar και µε γνώµονα τη διατύπωση νέων προβληµάτων, ειδικά σχεδιασµένων για 
την αξιολόγηση της προτεινοµένης µεθοδολογίας. Συνολικά, η αξιολόγηση της 
προτεινοµένης µεθοδολογίας εξετάσθηκε µέσα από ένα σύνολο 48 περιπτώσεων  
 
5.4.1. Υπερστατικές σκελετικές κατασκευές 
Ο Πίνακας 5.1 παρουσιάζει τις εξετασθείσες υπερστατικές σκελετικές κατασκευές, ενώ οι 
αντίστοιχες τοπολογίες παρουσιάζονται στα Σχήµατα 5.1 έως και 5.4.  
 
Πίνακας 5.1: Εξετασθείσες υπερστατικές σκελετικές κατασκευές 

Α/Α Περιγραφή Βιβλιογραφική αναφορά Βιβλιογραφική 
Λύση 

1 δικτύωµα 3-bar (παραλλαγή A) Morris, 1982 Αριθµητική 
2 δικτύωµα 3-bar (παραλλαγή Β) Rozvany και Zhou, 1991 Αναλυτική 
3 δικτύωµα 5-bar Patnaik και συν., 1998 Αριθµητική 
4 56-bar truss (παραλλαγή A) Rozvany και Zhou, 1991 Αναλυτική 
5 56-bar truss (παραλλαγή Β) Rozvany, 1992 Αναλυτική 
6 ∆οκός MBB Nha Chu και συν., 1997 Αριθµητική 
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Οι βιβλιογραφικές αναφορές, οι οποίες αναγράφονται στον Πίνακα 5.1, περιλαµβάνουν 
περισσότερες λεπτοµέρειες σχετικά µε τη διατύπωση του εκάστοτε προβλήµατος 
βελτιστοποίησης. 
 

 
(a) (b) 

Σχήµα 5.1: Τοπολογία για το δικτύωµα 3-bar (a) παραλλαγή Α και (b) παραλλαγή Β 

 

  
(a) (b) 

Σχήµα 5.2: Τοπολογία για το δικτύωµα 5-bar: (a) υπερστατική και (b) ισοστατική παραλλαγή 

 

 

(a) (b) 

Σχήµα 5.3: Τοπολογία για το δικτύωµα 56-bar: (a) παραλλαγή Α και (b) παραλλαγή Β 
(παχιές γραµµές: εναποµείναντα στοιχεία, διακεκοµµένες γραµµές: αποµακρυθέντα στοιχεία) 

 

(a) (b) 

Σχήµα 5.4: ∆οκός MBB: (a) πεδίο ορισµού και (b) τυπική υπεστατική διακριτοποίηση 
 

A B 

C D 

E 



Δ.T. Βενετσάνος – Διδακτορική Διατριβή ‐ 2010 

Σ ε λ ί δ α  | ΕΛ.5.17 

5.4.2. Ισοστατικές σκελετικές κατασκευές 
Ο Πίνακας 5.2 παρουσιάζει τις εξετασθείσες ισοστατικές σκελετικές κατασκευές, ενώ οι 
αντίστοιχες τοπολογίες παρουσιάζονται στα Σχήµατα 5.5 έως και 5.8.  
 
Πίνακας 5.2: Εξετασθείσες ισοστατικές σκελετικές κατασκευές 

Α/Α Περιγραφή Αναφορά / Σύγκριση µε Βιβλιογραφική 
Λύση 

1 δικτύωµα 5-bar Patnaik και συν., 1995 Αριθµητική 
2 ∆οκός MBB (Baltimore) fmincon (SQP) MatLab Αριθµητική 
3 ∆οκός MBB (Howe) fmincon (SQP) MatLab Αριθµητική 
4 ∆οκός MBB (K-truss) fmincon (SQP) MatLab Αριθµητική 
5 ∆οκός MBB (Pratt) fmincon (SQP) MatLab Αριθµητική 
6 ∆οκός MBB (Warren) fmincon (SQP) MatLab Αριθµητική 
7 δικτύωµα 9-bar (σχεδίαση 9a) fmincon (SQP) MatLab Αριθµητική 
8 δικτύωµα 9-bar (σχεδίαση 9b) fmincon (SQP) MatLab Αριθµητική 
9 δικτύωµα 9-bar (σχεδίαση 9c) fmincon (SQP) MatLab Αριθµητική 
10 δικτύωµα 9-bar (σχεδίαση 9d) fmincon (SQP) MatLab Αριθµητική 
11 δικτύωµα 9-bar (σχεδίαση 9e) fmincon (SQP) MatLab Αριθµητική 
12 δικτύωµα 9-bar (σχεδίαση 9h) fmincon (SQP) MatLab Αριθµητική 

 
Περισσότερες λεπτοµέρειες σχετικά µε τη διατύπωση των αντιστοίχων προβληµάτων 
βελτιστοποίησης αναγράφονται στις βιβλιογραφικές αναφορές του Πίνακα 5.2. 
 

(a) Πεδίο ορισµού (b) Σχεδίαση Baltimore 

(c) Σχεδίαση design (d) Σχεδίαση K-truss 

(e) Σχεδίαση Pratt  (f) Σχεδίαση Warren 

Σχήµα 5.5: Πεδίο ορισµού και τυπικές ισοστατικές σχεδιάσεις της δοκού MBB  

 
Το δικτύωµα 9-bar προκύπτει από το δικτύωµα 10-bar truss (Σχήµα 5.8a), όταν, σε µία εκ 

των δύο θέσεων στήριξης, η άρθρωση αντικατασταθεί µε κύλιση και αποµακρυνθεί µία 
ράβδος (Σχήµα 5.8b).  
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Σχήµα 5.6: (a) Αρχική διατύπωση και (b) ισοστατική παραλλαγή του δικτυώµατος 10-bar  
 
∆έκα ράβδοι, λαµβανόµενες ανά εννέα, δίδουν δέκα διαφορετικούς συνδυασµούς, όπως 
φαίνεται στον Πίνακα 5.3. Ωστόσο, τέσσερεις από αυτούς τους συνδυασµούς είναι 
µηχανισµοί (βλ. Πίνακα 5.3, σχεδιάσεις 9f, 9g, 9i και 9j), οι οποίοι, προφανώς, δεν 
εξετάζονται.  
 
Πίνακας 5.3: ∆υνατές τοπολογίας για το δικτύωµα 9-bar (αναφορά: Σχήµα 5.8a) 

Design

9a 1 2 3 4 5 6 7 8 9
9b 1 2 3 4 5 6 7 8 10
9c 1 2 3 4 5 6 7 9 10
9d 1 2 3 4 5 6 8 9 10
9e 1 2 3 4 5 7 8 9 10
9f 1 2 3 4 6 7 8 9 10
9g 1 2 3 5 6 7 8 9 10
9h 1 2 4 5 6 7 8 9 10
9i 1 3 4 5 6 7 8 9 10
9j 2 3 4 5 6 7 8 9 10

Remaining elements x i , i=1,2,…,9

 
 

Επίσης, διευκρινίζεται ότι, στο παρόν κεφάλαιο και για το δικτύωµα 9-bar, εξετάσθηκαν τα 
φορτία, τα οποία περιγράφονται στον Πίνακα 5.4.  

 
Πίνακας 5.4: Φορτία σε [kips] για το δικτύωµα 9-bar 

#1 #2 #3 #4
F2,y -100 -100 0 -150
F3,y -100 0 -100 -150
F5,y 0 0 0 50
F6,y 0 0 0 50

Load casesForce 
component

 
 
5.5. Αποτελέσµατα 
5.5.1. Υπερστατικές σκελετικές κατασκευές 

Στην παρούσα ενότητα, καταγράφονται τα αποτελέσµατα από την µελέτη των 
κατασκευών, οι οποίες αναφέρονται στους Πίνακες 5.1 και 5.2. Πιο συγκεκριµένα και για την 
εκάστοτε περίπτωση, παρατίθεται, σε µορφή διαγραµµάτων, η πορεία σύγκλισης και, σε 
µορφή πινάκων, το βέλτιστο διάνυσµα σχεδίασης, το οποίο προκύπτει από την εφαρµογή της 
προτεινοµένης διαδικασίας, καθώς και το βέλτιστο διάνυσµα σχεδίασης, το οποίο αναφέρεται 
στη βιβλιογραφία.  
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Σχήµα 5.7: Για το δικτύωµα 3-bar (παραλλαγή Α), πορεία σύγκλισης ως προς (a) την 
κανονικοποιηµένη συνάρτηση κόστους ( 1 6tol E= − ) και (b) τα σχετικά σφάλµατα 

( 1 16tol E= − ) 
 
Πίνακας 5.5: Βέλτιστα διανύσµατα σχεδίασης για το δικτύωµα 3-bar (παραλλαγή Α) 

Unit Stiffness 
Design 

(accuracy:1E‐15)

Random Initial 
Design 

(accuracy:1E‐15)

Convergence 
accuracy similar to 

'Reference'

Convergence 
accuracy similar to 

'SQP'

x1 [in
2] 15.07 1.50739210E+01 1.50739218E+01 1.80509258E+01 1.52563007E+01 1.50739148E+01

x2 [in
2] 0.1 1.00000000E‐01 1.00000000E‐01 3.41640786E+00 1.00000000E‐01 1.00000000E‐01

x3 [in
2] 0.9318 9.31786600E‐01 9.31786205E‐01 3.90879015E+00 7.77238782E‐01 9.31793251E‐01

U4x [in] 5.0013E‐03 5.00000014E‐03 5.00000001E‐03 5.00000000E‐03 5.00010978E‐03 4.99999999E‐03

U4y  [in] ‐4.3423E‐03 ‐4.34112802E‐03 ‐4.34112766E‐03 ‐2.23606798E‐03 ‐4.23037756E‐03 ‐4.34113197E‐03

min W [lbs] 113.7 113.67744382 113.67744668 172.36067977 113.87424499 113.67744718

Reference SQP

Present paper

 
 
Από τον Πίνακα 5.5, καθίσταται φανερό ότι η προτεινόµενη διαδικασία βελτιστοποίησης 
καταλήγει στη βιβλιογραφικά βέλτιστη σχεδίαση, η οποία συµπίπτει και µε εκείνην που 
προκύπτει από την εφαρµογή της µεθόδου SQP. 
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Σχήµα 5.8: Για το δικτύωµα 3-bar (παραλλαγή Β µε ελάχιστα όρια επί των µεταβλητών 
σχεδίασης), πορεία σύγκλισης ως προς (a) την κανονικοποιηµένη συνάρτηση κόστους 

( 1 6tol E= − ) και (b) τα σχετικά σφάλµατα ( 1 16tol E= − ) 
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Σχήµα 5.9: Για το δικτύωµα 3-bar (παραλλαγή Β άνευ ελαχίστων ορίων επί των µεταβλητών 
σχεδίασης), πορεία σύγκλισης ως προς (a) την κανονικοποιηµένη συνάρτηση κόστους 

( 1 6tol E= − ) και (b) τα σχετικά σφάλµατα ( 1 16tol E= − ) 
 
Πίνακας 5.6: Βέλτιστα διανύσµατα σχεδίασης για το δικτύωµα 3-bar (παραλλαγή Β) 

No lower bound
With lower 
bound

Unit Stiffness Design 
(no lower bound)

Random Initial Design 
(no lower bound)

Unit Stiffness Design 
(with lower bound)

Random Initial Design 
(with lower bound)

z1  0.00 0.06 1.00000000E‐13 1.00000000E‐13 6.00000000E‐02 1.32936075E+00

z2 1.00 1.00 1.00000000E+00 1.00000000E+00 9.57573593E‐01 6.00000000E‐02

z3 0.00 0.06 1.00000000E‐13 1.00000000E‐13 6.00000000E‐02 1.32936076E+00

U4x 0.00 0.00 0.00000000E+00 0.00000000E+00 0.00000000E+00 4.38556657E‐09

U4y ‐1.00 ‐1.00 ‐1.00000000E+00 ‐1.00000000E+00 ‐9.999999999998E‐01 ‐9.999999953548E‐01

min W 1.0000000 1.1272792 1.0000000000003 1.0000000000003 1.127279221 3.820000019

Normalized 
variables

Present paperReference

 
 
Από τον Πίνακα 5.6, καθίσταται φανερό ότι η προτεινόµενη διαδικασία βελτιστοποίησης 
καταλήγει στη βιβλιογραφικά βέλτιστη σχεδίαση, όταν το αρχικό διάνυσµα σχεδίασης 
αντιστοιχεί σε κατασκευή µοναδιαίας δυσκαµψίας. Σε αντίθετη περίπτωση, είναι δυνατός ο 
εγκλωβισµός σε κάποιο τοπικό ακρότατο (βλ. τελευταία στήλες 3, 6, 7 του Πίνακα 5.6).  
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Σχήµα 5.10: Για το υπερστατικό δικτύωµα 5-bar, πορεία σύγκλισης ως προς (a) την 
κανονικοποιηµένη συνάρτηση κόστους και (b) τα σχετικά σφάλµατα 

 
 



Δ.T. Βενετσάνος – Διδακτορική Διατριβή ‐ 2010 

Σ ε λ ί δ α  | ΕΛ.5.21 

 
Πίνακας 5.7: Βέλτιστα διανύσµατα σχεδίασης για το υπερστατικό δικτύωµα 5-bar 

Unit Stiffness Design 
(accuracy:1E‐12)

Random Initial Design 
(accuracy:1E‐12)

x1 [in
2] 0.001 9.999999995186E‐13 1.000000000000E‐12 1.000000000000E‐12

x2 [in
2] 1.475 1.500000008427E+00 1.499999999999E+00 1.499999999999E+00

x3 [in
2] 0.001 9.999999990372E‐13 1.000000000000E‐12 1.000000000000E‐12

x4 [in
2] 2.124 2.121320337564E+00 2.121320343559E+00 2.121320343559E+00

x5 [in
2] 0.001 9.999999998731E‐13 1.000000000000E‐12 1.000000000000E‐12

U4x [in] 0.677684 6.666666629209E‐01 6.666666666667E‐01 6.666666666667E‐01

U4y  [in] ‐2.008781 ‐2.000000000022E+00 ‐2.000000000000E+00 ‐2.000000000000E+00

min W [lbs] 44.817 44.9999999995132 45.0000000000155 45.0000000000155

Reference SQP

Present paper

 
 
Από τον Πίνακα 5.7, καθίσταται φανερό ότι η προτεινόµενη διαδικασία βελτιστοποίησης 
καταλήγει στη βιβλιογραφικά βέλτιστη σχεδίαση, η οποία συµπίπτει και µε εκείνην που 
προκύπτει από την εφαρµογή της µεθόδου SQP. 
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Σχήµα 5.11: Για το δικτύωµα 56-bar/παραλλαγή Α, πορεία σύγκλισης ως προς (a) την 
κανονικοποιηµένη συνάρτηση κόστους και (b) τα σχετικά σφάλµατα 

 
Όπως φαίνεται στο Σχήµα 5.13(b), η πορεία σύγκλισης εµφανίζει ορισµένες απότοµες 
µεταβολές. Η λεπτοµερής καταγραφή των αποτελεσµάτων απεκάλυψε ότι οι µεταβολές αυτές 
παρατηρούνται όταν, στην προτεινόµενη διαδικασία βελτιστοποίησης, ενεργοποιείται η 
αναζήτησης γραµµής (βλ. Ενότητα 5.3.1/Βήµα9b). 
 
Πίνακας 5.8: Βέλτιστα διανύσµατα σχεδίασης για το δικτύωµα 56-bar/παραλλαγή Α 

Unit Stiffness Design 
(accuracy:1E‐12)

Random Initial Design 
(accuracy:1E‐12)

z1 2.83642084582115E+00 2.82842712474591E+00 2.82842712474591E+00

z2 2.82931425525085E+00 2.82842712474601E+00 2.82842712474601E+00

z3 2.82403815657757E+00 2.82842712474600E+00 2.82842712474600E+00

z4 2.82397042932332E+00 2.82842712474596E+00 2.82842712474596E+00

min Φs 16.0000 16.0000684808730 16.0000000000049 16.0000000000049

Reference SQP
Nondimensional 

quantities

Present paper

 
 
Από τον Πίνακα 5.8, καθίσταται φανερό ότι, και στην περίπτωση του δικτυώµατος 56-
bar/παραλλαγή Α, η προτεινόµενη διαδικασία βελτιστοποίησης καταλήγει στη βιβλιογραφικά 
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βέλτιστη σχεδίαση, η οποία συµπίπτει και µε εκείνην που προκύπτει από την εφαρµογή της 
µεθόδου SQP. 
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Σχήµα 5.12: Για το δικτύωµα 56-bar/παραλλαγή Α (συνολικά 276 µέλη), πορεία σύγκλισης 
ως προς (a) την κανονικοποιηµένη συνάρτηση κόστους και (b) τα σχετικά σφάλµατα  

 
Όπως στο Σχήµα 5.13(b), έτσι και στο Σχήµα 5.14(b), η πορεία σύγκλισης εµφανίζει 
ορισµένες απότοµες µεταβολές, οι οποίες εµφανίζονται όταν, στην προτεινόµενη διαδικασία 
βελτιστοποίησης, ενεργοποιείται η αναζήτησης γραµµής (βλ. Ενότητα 5.3.1/Βήµα9b). 
 
Πίνακας 5.9: Βέλτιστα διανύσµατα σχεδίασης για το δικτύωµα 56-bar/παραλλαγή Β 

 
 
Από τον Πίνακα 5.9, καθίσταται φανερό ότι τα εναποµείναντα µέλη εµφανίζουν µεταξύ τους 
επικάλυψη. Όταν αυτή ληφθεί υπόψη, τότε το βέλτιστο διάνυσµα σχεδίασης του Πίνακα 5.9 
(βλ. τελευταία στήλη του Πίνακα 5.9) ταυτίζεται µε αυτό του Πίνακα 5.8.  
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Σχήµα 5.13: Για τη δοκό ΜΒΒ, πορεία σύγκλισης ως προς (a) την κανονικοποιηµένη 
συνάρτηση κόστους (πλέγµα 12 2× ) και (b) τα σχετικά σφάλµατα (πλέγµα: 48 8× )  
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Σχήµα 5.14: Βέλτιστες σχεδιάσεις της δοκού MBB µε την προτεινόµενη διαδικασία και για 

πλέγµα (a) 12 2× , (b) 24 4×  και (c) 48 8×  
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Σχήµα 5.15: Οµαδοποίηση εναποµεινάντων στοιχείων στη βέλτιστη σχεδίαση της δοκού 
MBB και για πλέγµα (a) 48 8× , (b) 24 4×  and (c) 12 2×  

 
Από το Σχήµα 5.16 προκύπτει ότι η προτεινόµενη διαδικασία συνέκλινε στην ίδια βέλτιστη 
τοπολογία µε αυτήν που καταγράφεται στη βιβλιογραφία. Επίσης, το Σχήµα 5.17 δείχνει ότι, 
στη βέλτιστη σχεδίαση, παραµένει σηµαντικά µικρότερο πλήθος στοιχείων, συγκριτικά µε το 
πλήθος των στοιχείων του αρχικού πλέγµατος, τα οποία εµφανίζουν υψηλή κοινοτυπία.  

 
5.5.2. Ισοστατικές σκελετικές κατασκευές  
Η βελτιστοποίηση του ισοστατικού δικτύωµατος 5-bar αποτυπώνεται στον Πίνακα 5.9. 

Πίνακας 5.10: Βέλτιστη σχεδίαση για το ισοστατικό δικτύωµα 5-bar 

Unit Stiffness Design 
(accuracy:1E‐12)

Random Initial Design 
(accuracy:1E‐12)

x1 [in
2] 1.000000000000E‐12 1.000000000000E‐12 1.000000000000E‐12

x2 [in
2] 9.715414157277E‐01 1.500000000000E+00 1.500000000000E+00

x3 [in
2] 9.999999999948E‐13 1.000000000000E‐12 1.000000000000E‐12

x4 [in
2] 2.913778091812E+00 2.121320343560E+00 2.121320343560E+00

x5 [in
2] 2.867287369717E‐07 1.000000000000E‐12 1.000000000000E‐12

max(abs(Uy)) [in] 2.000000000000E+00 2.000000000000E+00 2.000000000000E+00

min W [lbs] 45.051 45.0000000227642 45.0000000000341 45.0000000000341

Reference SQP

Present paper
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Όπως προκύπτει από τον εν λόγω πίνακα, η προτεινόµενη διαδικασία βελτιστοποίησης 
συνέκλινε στο ίδιο βάρος µε αυτό που προκύπτει από την εφαρµογή της µεθοδολογίας SQP. 
Ωστόσο, µε την προτεινόµενη διαδικασία προκύπτει µία καθαρά διµελής κατασκευή, ενώ µε 
τη µεθοδολογία SQP υπάρχει µία διατοµής (µέλος x5) η οποία τείνει να αποµακρυνθεί, χωρίς, 
τελικά, να αποµακρύνεται από το βέλτιστο διάνυσµα σχεδίασης. 

Η βελτιστοποίηση της ισοστατικής διατύπωσης της δοκού ΜΒΒ αποτυπώνεται στους 
Πίνακες 5.9-5.12 και στα Σχήµατα 5.18-5.22. 
 
Πίνακας 5.11: Επίδοση ως προς το πλήθος των επαναλήψεων (δοκός ΜΒΒ) 

 
 
Από τον Πίνακα 5.10 προκύπτει ότι η προτεινόµενη διαδικασία, συγκριτικά µε τη 
µεθοδολογία SQP, απαιτεί σηµαντικά µικρότερο πλήθος επαναλήψεων µέχρι συγκλίσεως. 
 

Πίνακας 5.12: Κανονικοποίηση ελαχίστου βάρους ως προς αποτελέσµατα SQP (δοκός 
ΜΒΒ) 

 
 
Ο Πίνακας 5.11 παρουσιάζει τα αποτελέσµατα, στα οποία συγκλίνει η προτεινόµενη 
διαδικασία, όταν αυτά κανονικοποιηθούν ως προς τα αποτελέσµατα, τα οποία προκύπτουν 
από την εφαρµογή της µεθόδου SQP. Όπως καθίσταται φανερό, η προτεινόµενη διαδικασία 
συγκλίνει πάντοτε στην καθολικά βέλτιστη σχεδίαση, εάν ως αρχική σχεδίαση 
χρησιµοποιηθεί εκείνη της µοναδιαίας δυσκαµψίας (Unit Stiffness Initial Design - USID). 
Αντιθέτως, εάν χρησιµοποιηθεί µία τυχαία σχεδίαση (Random Initial Design - RID) 
διαφορετικής της (USID) τότε είναι δυνατόν να παρατηρηθεί εγκλωβισµός σε τοπικό 
ακρότατο. 
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Σχήµα 5.16: MBB – Σχεδίαση Baltimore  
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Σχήµα 5.18: MBB – Σχεδίαση K-truss 
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Σχήµα 5.19: MBB – Σχεδίαση Pratt 
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Σχήµα 5.20: MBB – Σχεδίαση Warren 

 
Τα Σχήµατα 5.18-5.22 δείχνουν το λόγο κάθε διατοµής ως προς την, µε SQP, προκύπτουσα. 
 
Πίνακας 5.13: Κανονικοποίηση ελαχίστου βάρους ως προς τις σχεδιάσεις MBB 

Design Variation #1 Variation #2 Variation #3

Baltimore 1.218 1.294 1.492
Howe 1.211 1.285 1.481
K_truss 1.139 1.069 1.104
Pratt 1.212 1.287 1.482
Warren 1.000 1.110 1.328  
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Ο Πίνακας 5.12 εµφανίζει µία ενδιαφέρουσα, από κατασκευαστικής απόψεως, πληροφορία. 
Πιο συγκεκριµένα, τα ελάχιστα βάρη, τα οποία προέκυψαν για κάθε µία σχεδίαση της δοκού 
ΜΒΒ και για κάθε ένα από τα τρία διαφορετικά πλέγµατα, τα οποία χρησιµοποιήθηκαν, 
κανονικοποιήθηκαν ως προς το ελάχιστο των ελαχίστων βάρος. Όπως φαίνεται από τον εν 
λόγω Πίνακα, οι βέλτιστες σχεδιάσεις είναι δυνατόν να διαφέρουν µεταξύ τους από, περίπου, 
7% έως και, περίπου, 49%. Συνεπώς, καθίσταται φανερό ότι, ειδικά στις σκελετικές 
κατασκευές, η πλέον δόκιµη προσέγγιση είναι εκείνη στην οποία, µε κάποιον ιεραρχικό 
τρόπο, θα πρέπει να βελτιστοποιείται και η τοπολογία και το µέγεθος των µελών. 

Τα αποτελέσµατα από τη διερεύνηση του δικτυώµατος 9-bar καταγράφονται στους 
Πίνακες 5.13 και 5.14.  

 
Πίνακας 5.14: Αποτελέσµατα για τη σχεδίαση 9a και για όλες τις φορτίσεις (δοκός ΜΒΒ) 

SQP Present paper SQP Present paper SQP Present paper SQP Present paper

Wopti 8867.234400 8867.234400 1287.228600 1287.228600 6488.691200 6488.691200 9470.672909 9470.672900
x1 21.045831 21.045835 0.100000 0.100000 18.000021 18.000000 21.750839 21.750841
x2 51.551611 51.551556 11.236751 11.236753 36.000001 36.000000 53.278522 53.278462
x3 29.763207 29.763305 7.945585 7.945584 18.000028 18.000000 34.391054 34.391099
x4 42.091664 42.091670 11.236754 11.236753 25.455901 25.455844 43.501691 43.501682
x5 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000
x6 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000
x7 21.045865 21.045835 0.100000 0.100000 17.999898 18.000000 21.750772 21.750841
x8 21.045884 21.045835 0.100000 0.100000 18.000017 18.000000 26.639117 26.639231
x9 29.763288 29.763305 0.100000 0.100000 25.455811 25.455844 30.760447 30.760334

Design 9a   Load Case 1 Design 9a   Load Case 2 Design 9a   Load Case 3 Design 9a   Load Case 4

 
 

Πίνακας 5.15: Αποτελέσµατα για όλες τις σχεδιάσεις και για την τρίτη φόρτιση (δοκός 
ΜΒΒ) 

SQP Present 
paper SQP Present 

paper SQP Present 
paper SQP Present 

paper SQP Present 
paper SQP Present 

paper
Weight 6488,70 6488,70 4163,10 4163,10 4164,6 4164,6 4164,6 4164,6 6490,2 6490,2 4164,6 4164,6

x1 18,000 18,000 14,400 14,400 14,400 14,400 14,400 14,400 18,000 18,000 14,400 14,400
x2 36,000 36,000 28,800 28,800 28,800 28,800 28,800 28,800 36,000 36,000 28,800 28,800
x3 18,000 18,000 0,100 0,100 0,100 0,100 0,100 0,100 18,000 18,000 20,365 20,365
x4 25,456 25,456 20,365 20,365 20,365 20,365 20,365 20,365 25,456 25,456 0,100 0,100
x5 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 14,400 14,400
x6 0,100 0,100 14,400 14,400 14,400 14,400 14,400 14,400 18,000 18,000 0,100 0,100
x7 18,000 18,000 0,100 0,100 0,100 0,100 0,100 0,100 18,000 18,000 0,100 0,100
x8 18,000 18,000 0,100 0,100 0,100 0,100 0,100 0,100 25,456 25,456 0,100 0,100
x9 25,456 25,456 20,365 20,365 20,365 20,365 20,365 20,365 0,100 0,100 20,365 20,365

9e 9h9a 9b 9c 9d

 
 
Από τους παραπάνω Πίνακες προκύπτει ότι η προτεινόµενη µεθοδολογία βελτιστοποίησης 
συνέκλινε στα ίδια ελάχιστα βάρη µε εκείνα, τα οποία προκύπτουν από την εφαρµογή της 
µεθοδολογίας SQP. Ειδικότερα, οι όποιες διαφοροποιήσεις εµφανίζονται στα αποτελέσµατα, 
εντοπίζονται µετά από το τέταρτο δεκαδικό ψηφίο. 
 
5.6. Συµπεράσµατα 

Στο παρόν κεφάλαιο, παρουσιάσθηκε µία νέα µεθοδολογία βελτιστοποίησης, η οποία 
ανήκει στην κατηγορία των Βελτίστων Κριτηρίων, και αφορά στην περίπτωση 
ελαχιστοποίησης βάρους σκελετικής κατασκευής υπό την επιβολή ενός γενικευµένου 
περιορισµού µετατόπισης. Εν συντοµία, τα ιδιαίτερα χαρακτηριστικά της µεθοδολογίας είναι: 
• Η αναδροµική σχέση για την επανασχεδίαση της κατασκευής είναι εξαιρετικά απλή. 
• ∆εν απαιτείται ο έµµεσος ή άµεσος υπολογισµός συντελεστών Lagrange. 
• Τα διανύσµατα σχεδίασης, τα οποία διαµορφώνονται κατά την εξέλιξη της 

προτεινοµένης διαδικασίας, πάντοτε ανήκουν στο αποδεκτό τµήµα του χώρου λύσεων, 
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συνεπώς ο τερµατισµός της διαδικασίας σε οποιαδήποτε επανάληψη δίδει ένα αποδεκτό 
διάνυσµα σχεδίασης. 

• Η συµπεριφορά της αναδροµικής σχέσεως για την επανασχεδίαση της κατασκευής είναι 
ευσταθής διότι δεν εµπλέκει κάποια παράµετρο σχετικά µε το βήµα των µεταβολών, οι 
οποίες είναι δυνατόν να πραγµατοποιηθούν χωρίς να προκύψει πρόβληµα ευστάθειας. 

Τα συµπεράσµατα, τα οποία προέκυψαν από την ενδελεχή διερεύνηση της εν λόγω 
µεθοδολογία είναι τα εξής: 
• Για τα βιβλιογραφικά παραδείγµατα, για τα οποία δεν έχει καταγραφεί αναλυτική λύση, 

η προτεινόµενη µεθοδολογία, συγκριτικά µε τις αντίστοιχες βιβλιογραφικές, κατέληξε 
στις ίδιες τιµές ελαχίστου βάρους και µετά από, περίπου, το ίδιο πλήθος επαναλήψεων.  

• Για τα βιβλιογραφικά παραδείγµατα, για τα οποία έχει καταγραφεί αναλυτική λύση, η 
προτεινόµενη µεθοδολογία, συγκριτικά µε τις αντίστοιχες βιβλιογραφικές, κατέληξε στις 
ίδιες τιµές ελαχίστου βάρους (συµφωνία µε αυτές σε τουλάχιστον δώδεκα σηµαντικά 
ψηφία), απαιτώντας λιγότερες επαναλήψεις. 

• Για τα νέα παραδείγµατα, τα οποία διατυπώθηκαν ειδικά στην παρούσα για λόγους 
αξιολόγησης, η προτεινόµενη µεθοδολογία, συγκριτικά µε την ισχυρότατη µαθηµατική 
µέθοδο SQP (υπορουτίνα fmincon του λογισµικού MatLab), κατέληξε στις ίδιες τιµές 
ελαχίστου βάρους και σε ελαφρώς διαφορετικά βέλτιστα διανύσµατα.. 

• Σε όλες τις περιπτώσεις, η εκκίνηση της προτεινόµενης διαδικασίας από διάνυσµα 
σχεδίασης µοναδιαίας δυσκαµψίας (Unit Stiffness Design) κατέληγε στη θεωρούµενη ως 
καθολικά βέλτιστη σχεδίαση. Αντιθέτως, η εκκίνηση από τυχαίο διάνυσµα σχεδίασης 
ενίοτε κατέληγε σε εγκλωβισµό σε τοπικό ακρότατο.  

• Η κατηγοριοποίηση των µελών µίας σκελετικής κατασκευής, σύµφωνα µε τα κριτήτια 
της Ενότητας 5.3, είναι πιο λεπτοµερής, συγκριτικά µε την κατηγοριοποίηση της 
βιβλιογραφίας, και αναδεικνύει την ύπαρξη µίας οµάδος δοµικών στοιχείων, τα εδώ 
αποκαλούµενα ως ‘παθητικά ως προς τη δύναµη’/‘ενεργά ως προς τη διατοµή’ στοιχεία, 
τα οποία επηρεάζουν σηµαντικά την πορεία της διαδικασίας βελτιστοποίησης. 

• Εν γένει, η πορεία σύγκλισης του βάρους της κατασκευής είναι πολύ οµαλή. Αυξητικές 
εξάρσεις εµφανίζονται στην καµπύλη σύγκλισης όταν τα προαναφερθέντα ‘παθητικά ως 
προς τη δύναµη’/‘ενεργά ως προς τη διατοµή’ στοιχεία αλλάζουν κατάσταση και 
ανάγονται σε ‘παθητικά ως προς τη δύναµη’/‘παθητικά ως προς τη διατοµή’ στοιχεία. 

• Εν γένει, η πορεία σύγκλισης του σχετικού σφάλµατος, ως προς το βάρος της 
κατασκευής, είναι οµαλή και φθίνουσα. Όπως και στην πορεία σύγκλισης του βάρους, 
αυξητικές εξάρσεις παρατηρούνται στην καµπύλη σύγκλισης όταν τα προαναφερθέντα 
‘παθητικά ως προς τη δύναµη’/‘ενεργά ως προς τη διατοµή’ στοιχεία αλλάζουν 
κατάσταση και ανάγονται σε ‘παθητικά ως προς τη δύναµη’/‘παθητικά ως προς τη 
διατοµή’ στοιχεία. Επίσης, µειωτικές εξάρσεις παρατηρούνται στην ίδια καµπύλη όταν 
‘παθητικά ως προς τη δύναµη’/‘ενεργά ως προς τη διατοµή’ στοιχεία λαµβάνουν την 
κατώτατη επιτρεπόµενη τιµή διατοµής. 

• Η πορεία σύγκλισης του σχετικού σφάλµατος, ως προς τη µέγιστη µεταβολή των 
µεταβλητών σχεδίασης µεταξύ δύο διαδοχικών επαναλήψεων, είναι είτε οµαλή και 
φθίνουσα είτε αρκετά σταθερή και απότοµα βυθιζόµενη προς την τιµή σύγκλισης. 

• Η επέκταση της προτεινόµενης µεθοδολογίας σε 3∆ σκελετικές κατασκευές είναι 
τετριµµένη. 

Συµπερασµατικά, τα αποτελέσµατα από τη διερεύνηση της προτεινοµένης µεθοδολογίας 
υποδηλώνουν ότι πρόκειται για ένα απλό και αποτελεσµατικό εργαλείο βελτιστοποίησης 
κατασκευών. 
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ΠΑΡΑΡΤΗΜΑ 5.A: Κοµβικές µετατοπίσεις βάσει του 2ου θεωρήµατος Castigliano 

 
Σύµφωνα µε τη µαθηµατική διατύπωση του 2ου θεωρήµατος Castigliano, ισχύει: 
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Στην Εξ.(5.Α1) έχει χρησιµοποιηθεί ο ίδιος συµβολισµός µε αυτόν του κυρίου κειµένου, µε 
τη µόνη διαφορά ότι ως *

kF  δηλώνεται το δυνατό φορτίο, όχι απαραιτήτως µοναδιαίου 
µέτρου. Για ένα ισοστατικό δικτύωµα και υπό την επιβολή των πραγµατικών φορτίων 

mlPl ,...,2,1, = , ισχύει: 
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Η ανάλυση του δικτυώµατος µε τη µέθοδο των κόµβων καταλήγει στην περιγραφή κάθε 
συνιστώσας δύναµης kF  ως συνδυασµό πραγµατικών και δυνατών φορτίων. Η ποσότητα ilc  
αποτελεί έναν συντελεστή, εξαρτώµενο αποκλειστικά από την τοπολογία του δικτυώµατος 
και το σηµείο εφαρµογής των πραγµατικών φορτίων lP . Ποσοτικά, ο εν λόγω συντελεστής 
εκφράζει τη συνεισφορά του πραγµατικού φορτίου lP  στην αξονική δύναµη, η οποία 
αναπτύσσεται στην −i ράβδο. Συνεπώς, για µία δεδοµένη τοπολογία δικτυώµατος και ένα 
δεδοµένο σύνολο φορτίων, οι συντελεστές ilc  είναι σταθεροί. Κατ’ αντιστοιχία, η ποσότητα 

kb  εξαρτάται από την τοπολογία του δικτυώµατος και το σηµείο εφαρµογής των δυνατών 
*

kF , ενώ, ποσοτικά, εκφράζει τη συνεισφορά του δυνατού φορτίου στη δυνατή αξονική 
δύναµη, η οποία αναπτύσσεται στην −i ράβδο. Στην Εξ.(5A.4) έχει χρησιµοποιηθεί µία πιο 
συνεκτική γραφή, όπου: 
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Ο συνδυασµός των Εξ.(5A.1-5A.5) δίδει: 
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Μετά από πράξεις, προκύπτει: 
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όπου ο δείκτης j  υποδηλώνει το θεωρούµενο βαθµό ελευθερίας. Η Εξ.(5.A7) περιγράφει τη 
µετατόπιση u  οποιουδήποτε κόµβου σε όρους τοπολογίας, µεγέθους και δυσκαµψίας υπό 
την επιβολή οποιουδήποτε φορτίου. Στην ειδική περίπτωση επιβολής ενός µόνον φορτίου, 
δηλαδή όταν 1=l , η κοµβική µετατόπιση ju γράφεται ως: 
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ΚΕΦΑΛΑΙΟ 6 
(ΠΕΡΙΛΗΨΗ) 

 
 

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΧΕΔΙΑΣΗΣ 

2Δ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ 

ΥΠΟ ΤΗΝ ΕΠΙΒΟΛΗ 

ΕΝΟΣ ΓΕΝΙΚΕΥΜΕΝΟΥ ΠΕΡΙΟΡΙΣΜΟΥ ΜΕΤΑΤΟΠΙΣΗΣ 
 
 
 
 

Σε αυτήν την περίληψη κεφαλαίου, παρουσιάζεται η βελτιστοποίηση 2Δ συνεχούς μέσου, όταν 
επιβάλλεται ένας γενικευμένος περιορισμός μετατόπισης, σύμφωνα με τον αντίστοιχο ορισμού του 

Κεφαλαίου 5. Αναλυτικότερα, εξετάζεται η βελτιστοποίησης μέσω είτε της πλήρους αποβολής 
υλικού είτε της μεταβολής του πάχους μίας κατανομής υλικού. Για κάθε μία περίπτωση, 

προτείνεται μία διαδικασία βελτιστοποίησης, η οποία αξιολογείται μέσα από τέσσερα τυπικά 
βιβλιογραφικά παραδείγματα (βαθύς πρόβολος, κοντός πρόβολος, δοκός ΜΒΒ και μία κατασκευή 

Michell). Τα προκύπτοντα αποτελέσματα υποδηλώνουν ότι η προτεινόμενες διαδικασίες 
βελτιστοποίησης αποτελούν ένα ικανό εργαλείο για τη διαμόρφωση ανώτερων σχεδιάσεων, 

συγκριτικά με εκείνες της βιβλιογραφίας. 
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6.1. Εισαγωγή 
Ένα από τα πλέον δηµοφιλή προβλήµατα στην περιοχή της βελτιστοποίησης 2∆ 

κατασκευών συνεχούς µέσου είναι εκείνο της αναζήτησης του ελαχίστου βάρους, υπό την 
επιβολή ενός περιορισµού µετατόπισης. Η εν λόγω δηµοτικότητα οφείλεται στο γεγονός ότι 
οι 2∆ συνεχείς κατασκευές αποτελούν τις πλέον απλές κατασκευές συνεχούς µέσου, συνεπώς 
αποτελούν το πλέον πρόσφορο έδαφος για έρευνα. Επίσης, οι 2∆ συνεχείς κατασκευές είναι 
δυνατόν να θεωρηθούν ως ψευδό-3∆ συνεχείς κατασκευές, συνεπώς οποιαδήποτε 
µεθοδολογία διατυπώνεται για αυτές είναι οιονεί εφαρµόσιµη και στις 3∆ συνεχείς 
κατασκευές. Για τη, δε, βελτιστοποίησή τους απαιτείται η αποµάκρυνση πλεονάζοντος 
υλικού, δηλαδή υλικού, το οποίο πιο πολύ επιβαρύνει µε την παρουσία του στην κατασκευή 
παρά ωφελεί. Προς τούτο, απαιτείται η διατύπωση κάποιου κριτηρίου, βάσει του οποίου 
υλικό θα χαρακτηρίζεται ως πλεονάζον, ή ως παραµένον, καθώς και η διαµόρφωση κάποιας 
διαδικασίας αποβολής του πλεονάζοντος υλικού. Στο παρόν κεφάλαιο εξετάζονται δύο 
τέτοιες διαδικασίες αποβολής.  

Σύµφωνα µε την πρώτη διαδικασία αποβολής υλικού (βλ. Ενότητα 6.2), µέσω µίας 
επαναληπτικής διαδικασίας, αφαιρείται, προοδευτικά και εξ ολοκλήρου, υλικό από µία 
ισοπαχή κατανοµή, αφήνοντας κενά στις θέσεις του αφαιρούµενου υλικού. Στην περίπτωση 
αυτή, προτείνεται µία διαδικασία βελτιστοποίησης, η οποία προέκυψε από µία υπάρχουσα 
βιβλιογραφική µεθοδολογία (µεθοδολογία ESO), στην οποία χρησιµοποιήθηκε διαφορετικό 
ενεργειακό κριτήριο επιλογής υλικού προς αποβολή. 

Σύµφωνα µε τη δεύτερη διαδικασία αποβολής υλικού (βλ. Ενότητα 6.3), πάλι µέσω µίας 
επαναληπτικής διαδικασίας, µεταβάλλεται προοδευτικά το πάχος µίας αρχικώς ισοπαχούς 
κατανοµής υλικού, καταλήγοντας σε µία σχεδίαση, εν γένει, ανισοπαχούς κατανοµής υλικού. 
Στην περίπτωση αυτή, προτείνεται µία διαδικασία βελτιστοποίησης, η οποία εµφανίζει δύο 
σηµαντικές ιδιαιτερότητες: αφ’ ενός µεν αποτελεί την επέκταση της πρωτότυπης 
µεθοδολογίας του Κεφαλαίου 5 και στις 2∆ κατασκευές συνεχούς µέσου, αφ’ ετέρου δε 
εµπεριέχει τη χρησιµοποίηση πεπερασµένων στοιχείων µε ισοπαραµετρική ενδοστοιχειακή 
παρεµβολή του πάχους. 

Η ενδελεχής µελέτη των προαναφεροµένων δύο διαδικασιών αποβολής υλικού µέσω 
τεσσάρων τυπικών βιβλιογραφικών παραδειγµάτων καταλήγει στο συµπέρασµα ότι οι 
προτεινόµενες διαδικασίες παρέχουν τη δυνατότητα διαµόρφωσης βελτίστων σχεδιάσεων, οι 
οποίες είναι ανώτερες είτε από εκείνες της βιβλιογραφίας (βλ. πρώτη διαδικασία αποβολής 
υλικού) είτε από εκείνες που προκύπτουν χρησιµοποιώντας πεπερασµένα στοιχεία σταθερού 
πάχους (βλ. δεύτερη διαδικασία αποβολής υλικού) 
 
6.2. Ολική αποβολή υλικού από κατανοµή υλικού σταθερού πάχους 
6.2.1. Θεωρητικό υπόβαθρο 

Η διατύπωση του προβλήµατος ελαχιστοποίησης βάρους κατασκευής υπό την επιβολή 
ενός περιορισµού µετατόπισης είναι η ακόλουθη: 
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Αυτή η διατύπωση υποδηλοί ότι ένα 2∆ συνεχές χωρίο αντικαθίσταται από ένα σύνολο 

NEL  πεπερασµένων στοιχείων, κάθε ένα από τα οποία έχει πάχος t . Το βάρος του 
j − στοιχείου σηµειώνεται ως ( )jw t , το συνολικό βάρος της κατασκευής είναι W , η µέγιστη 
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κοµβική µετατόπιση είναι max iu , ενώ η µέγιστη επιτρεπόµενη τιµή της κοµβικής 
µετατόπισης είναι allowu . Για την αναζήτηση της βέλτιστης σχεδίασης, πρέπει να 
προσδιορισθούν τρεις βασικοί παράγοντες: το κριτήριο αποβολής υλικού (επανασχεδίαση), 
το κριτήριο τερµατισµού της επαναληπτικής διαδικασίας και το κριτήριο βάσει του οποίου θα 
κριθεί µία σχεδίαση ως βέλτιστη. Οι εν λόγω παράγοντες σχολιάζονται στις επόµενες 
ενότητες. 
 
6.2.1.1. Κριτήριο αποβολής υλικού 

Σύµφωνα µε τη µέθοδο Evolutionary Structural Optimization (ESO), η επανασχεδίαση 
στηρίζεται στην προοδευτική αποµάκρυνση πλεονάζοντος υλικού, ή, ακριβέστερα, στην 
αποµάκρυνση πεπερασµένων στοιχείων µε χαµηλή ενεργειακή συµµετοχή. Ο χαρακτηρισµός 
ενός πεπερασµένου στοιχείου του πλέγµατος ως πλεονάζοντος στηρίζεται στην απόλυτη τιµή 
της συµπληρωµατικής ενέργειας παραµόρφωσης iu  του στοιχείου αυτού, η οποία προκύπτει 
από την επιβολή ενός µοναδιαίου φορτίου στον πλέον κρίσιµο βαθµό ελευθερίας: 
 

{ } { }, , ,i q i elem i p iu U K U= ⎡ ⎤⎣ ⎦                                               (6.3) 
όπου  

iu :  συµπληρωµατική ενέργεια παραµόρφωσης του i − στοιχείου 

{ },q iU :  διάνυσµα µετατόπισης του i − στοιχείου λόγω επιβολής µοναδιαίου φορτίου 

,elem iK⎡ ⎤⎣ ⎦ : µητρώο δυσκαµψίας του i − στοιχείου 

{ },p iU : διάνυσµα µετατόπισης του i − στοιχείου λόγω επιβολής πραγµατικού φορτίου 
 

Όλα τα στοιχεία ταξινοµούνται κατά αύξουσα σειρά µε κριτήριο τη συµπληρωµατική 
ενέργεια παραµόρφωσης, ενώ ένα προκαθορισµένο ποσοστό των στοιχείων µε τις 
χαµηλότερες τιµές iu  αποβάλλεται. Οι επινοητές της µεθόδου ESO παρατήρησαν ότι, σε 
περίπτωση κατά την οποία το πλέγµα αποτελείται από ανισοµεγέθη στοιχεία, θα πρέπει να 
χρησιµοποιείται η πυκνότητα της συµπληρωµατικής ενέργειας παραµόρφωσης. Επίσης, 
παρατήρησαν ότι το αποκαλούµενο ‘προβλήµατα σκακιέρας’ (checkerboard problem) 
αντιµετωπίζεται αποτελεσµατικά εάν χρησιµοποιηθεί ο µέσος όρος των κοµβικών τιµών των 
ενεργειών παραµόρφωσης γειτονικών στοιχείων 
 
6.2.1.2. Κριτήριο τερµατισµού 

Η διαδικασία τερµατίζεται όταν η µέγιστη, εµφανιζόµενη στην κατασκευή, µετατόπιση 
καταστεί µεγαλύτερη από την επιτρεπόµενη τιµή: 
 

max
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>                                                            (6.4) 

 
Όταν προκύψει ότι ισχύει η Εξ.(6.4), τότε λαµβάνεται η σχεδίαση της προηγούµενης 

επανάληψης και εφαρµόζεται στο πάχος αυτής µια οµοιόµορφη διακλιµάκωση, έτσι ώστε να 
ικανοποιηθεί ισοτικά ο περιορισµός της µετατόπισης 
 
6.2.1.3. Κριτήριο βελτίστου σχήµατος 

Σε µία νεώτερη έκδοση της µεθόδου ESO, χρησιµοποιείται ένα διαφορετικό κριτήριο για 
τη διαδικασία βελτιστοποίησης, το οποίο εµπλέκει έναν ∆είκτη Επίδοσης (Performance Index 
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- PI). Ο εν λόγω δείκτης αποτελεί µέσο σύγκρισης µεταξύ της τρέχουσας σχεδίασης και της 
αρχικής σχεδίασης, η οποία χρησιµοποιείται ως αναφορά:  
 

,max

,max

o o

cur cur

u WPI
u W

=                                                       (6.5) 

 
όπου  

,maxou : η απόλυτη τιµή της µέγιστης κοµβικής µετατόπισης στην αρχική σχεδίαση 

,maxcuru : η απόλυτη τιµή της µέγιστης κοµβικής µετατόπισης στην τρέχουσα σχεδίαση  

oW :  το βάρος της κατασκευής στην αρχική σχεδίαση  

iW :  το βάρος της κατασκευής στην τρέχουσα σχεδίαση 
 
Με βάση τον ορισµό του ∆είκτη Επίδοση (Εξ.6.5), προκύπτει ότι, όταν η τρέχουσα 

σχεδίαση είναι χειρότερη από την αρχική, χαρακτηρίζεται από τιµή µικρότερη της µονάδος. 
Συνεπώς, η διαδικασία βελτιστοποίησης έχει νόηµα να εκτελείται όσο ο δείκτης ΡΙ είναι 
µεγαλύτερος της µονάδος. Με βάση αυτό το σκεπτικό, ορίζεται το ακόλουθο κριτήριο 
τερµατισµού της επαναληπτικής διαδικασίας: 
 

1PI <                                                               (6.6) 
 
6.2.2. Η προτεινόµενη διαδικασία βελτιστοποίησης 

Ένα από τα βασικά πλεονεκτήµατα διαδικασιών βελτιστοποίησης τύπου ESO είναι η 
χρήση του ίδιου πλέγµατος καθ’ όλη τη διάρκεια της βελτιστοποίησης. Αντιθέτως, οι 
ιδιότητες υλικού των στοιχείων του πλέγµατος µεταβάλλονται και, πιο συγκεκριµένα, 
αποδίδεται µοναδιαία τιµή στο µέτρο ελαστικότητας σε εκείνο το στοιχείο, το οποίο 
χαρακτηρίζεται ως πλεονάζον και πρέπει να αποµακρυνθεί. Με αυτόν τον, αριθµητικής 
φύσεως, τρόπο εξασφαλίζεται η αµελητέα συµµετοχή των εν λόγω στοιχείων στο καθολικό 
µητρώο δυσκαµψίας. Ωστόσο, προκειµένου να εξασφαλισθεί η ελάχιστη δυνατή επίδραση 
των προς αποµάκρυνση στοιχείων επί της εξελικτικής πορείας της διαδικασίας 
βελτιστοποίησης, προτείνεται η χρήση της κανονικοποιηµένης πυκνότητας της 
συµπληρωµατικής ενέργειας παραµόρφωσης, στην οποία συµµετέχουν µόνον τα ενεργά 
στοιχεία: 
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όπου  

jn : η κανονικοποιηµένη πυκνότητα συµπληρωµατικής ενέργειας παραµόρφωσης του 
ενεργού j − στοιχείου  

,VSED ju : η πυκνότητα συµπληρωµατικής ενέργειας παραµόρφωσης του ενεργού 
j − στοιχείου  

NAE : το συνολικό πλήθος των ενεργών στοιχείων 
 
Με βάση όλα τα ανωτέρω, η προτεινόµενη διαδικασία έχει ως εξής: 
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Φάση #1:  
 
Βήµα 1:  ∆ιακριτοποίηση του χώρου σχεδίασης χρησιµοποιώντας ένα λεπτό πλέγµα 

πεπερασµένων στοιχείων. 
Βήµα 2:  Ανάλυση της κατασκευής για τα επιβαλλόµενα φορτία. 
Βήµα 3:  Εάν παραβιάζεται το κριτήριο τερµατισµού (Εξ.6.4), τότε ΤΕΡΜΑΤΙΣΜΟΣ. 
Βήµα 4:  Υπολογισµός του ∆είκτη Επίδοσης (PI) για την τρέχουσα σχεδίαση (Εξ.6.5). 
Βήµα 5:  Εφαρµογή ενός µοναδιαίου φορτίου στον πλέον κρίσιµο βαθµό ελευθερίας. 
Βήµα 6:  Υπολογισµός της κανονικοποιηµένης πυκνότητας της συµπληρωµατικής 

ενέργειας παραµόρφωσης jn  (Eξ.6.7) για όλα τα ενεργά στοιχεία της κατασκευής 
Βήµα 7:  Ταξινόµηση των ενεργών στοιχείων κατά αύξουσα σειρά των jn  τιµών τους 
Βήµα 8:  Αποµάκρυνση (αποβολή) ενός µικρού και προκαθορισµένου ποσοστού στοιχείων 

µε τις µικρότερες τιµές jn  (πλεονάζον υλικό) 
Βήµα 9: Επιστροφή στο Βήµα 3 

 
Φάση #2:  
 
Βήµα 10: Από τα αποτελέσµατα της Φάσης #1, εντοπισµός της σχεδίασης µε την 

υψηλότερη τιµή PI (βέλτιστο σχήµα) 
Βήµα 11: Για τη σχεδίαση του Βήµατος 10, εφαρµογή οµοιόµορφης διακλιµάκωσης της 

κατασκευής έτσι ώστε να ικανοποιηθεί οριακά ο περιορισµός µετατόπισης 
 
6.2.3. ∆είκτες αξιολόγησης 

Για την αξιολόγηση της προτεινοµένης διαδικασίας, χρησιµοποιήθηκαν οι δείκτες, οι 
οποίοι παρουσιάζονται στις επόµενες παραγράφους.  
 
6.2.3.1. Πλήθος επαναλήψεων 

Καταγράφεται το µέγιστο πλήθος επαναλήψεων, το οποίο απαιτείται µέχρι τερµατισµού 
της διαδικασίας, ή, ισοδύναµα, µέχρι εντοπισµού της βέλτιστης σχεδίασης. 
 
6.2.3.2. Κανονικοποιηµένο βάρος κατασκευής ως προς το αρχικό βάρος 

Προκειµένου να διαπιστωθεί η µείωση του βάρους της κατασκευής µεταξύ τρέχουσας και 
αρχικής σχεδίασης, ορίζεται ο ακόλουθος δείκτης: 
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                                                   (6.8) 

όπου  
curW : το βάρος της κατασκευής στην τρέχουσα σχεδίαση και 

iniW : το βάρος της κατασκευής στην αρχική σχεδίαση (σχεδίαση αναφοράς) 
 
6.2.3.3. Κανονικοποιηµένο βάρος κατασκευής ως προς το βάρος της σχεδίασης OUD 

Ως σχεδίαση αναφοράς είναι δυνατόν να χρησιµοποιηθεί η αποκαλούµενη Βέλτιστη 
Ισοπαχής Σχεδίαση (Optimized Uniform Design - OUD), η οποία προκύπτει από την 
οµοιόµορφη µεταβολή µίας ισοπαχούς κατανοµής υλικού, έτσι ώστε να ικανοποιηθεί ισοτικά 
ο εκάστοτε επιβαλλόµενος καθολικός περιορισµός τάσης ή µετατόπισης. Συνεπώς, 
προκειµένου να διαπιστωθεί η µείωση του βάρους της κατασκευής µεταξύ τρέχουσας 
σχεδίασης και της Σχεδίασης OUD, ορίζεται ο ακόλουθος δείκτης:  
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_ 2 cur OUD

OUD

W WPI
W

⎛ ⎞−
= ⎜ ⎟
⎝ ⎠

                                                 (6.9) 

 
όπου  

curW : το βάρος της κατασκευής στην τρέχουσα σχεδίαση και 

OUDW : το βάρος της κατασκευής στη Βέλτιστη Ισοπαχή Σχεδίαση (OUD) 
 
6.2.3.4. Συνολικό εµβαδόν επιφανείας 

Για πρακτικούς λόγους, είναι χρήσιµη η γνώση της πληρότητας µίας επιφανείας. 
Χαρακτηριστικό παράδειγµα αποτελεί η δοκός ΜΒΒ, η οποία χρησιµοποιείται στην άτρακτο 
των αεροσκαφών Airbus. Για τη βέλτιστη σχεδίαση, απαιτείται µεν η γνώση του τασικού και 
παραµορφωσιακού πεδίου για λόγους αντοχής και λειτουργικότητας, αλλά απαιτείται και η 
πληρότητα της επιφανείας του κορµού της δοκού, διότι από αυτά τα κενά (οπές) θα διέλθουν 
οι καλωδιώσεις και οι σωληνώσεις διαφόρων συστηµάτων του αεροσκάφους. Συνεπώς, εκτός 
της ελαχιστοποίησης του βάρους θα πρέπει να ελεγχθεί και η πρακτική αξία της κατασκευής. 
Για το λόγο αυτό, είναι δυνατή η χρήση του ακόλουθου λόγου πληρότητας: 
 

_ 3 NActElem

NEL

A
PI

A
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

                                                   (6.10) 

 
όπου  

,N ActElemA : η συνολική επιφάνεια των ενεργών πεπερασµένων στοιχείων 

NELA :  η συνολική αρχική επιφάνεια του συνεχούς µέσου 
Εάν το συνεχές µέσο διακριτοποιηθεί µε ισοµεγέθη πεπερασµένα στοιχεία, τότε ο 

ανωτέρω δείκτης είναι δυνατόν να λάβει την ακόλουθη απλοποιηµένη µορφή: 
 

_ 3 ActElemNPI
NEL

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                (6.11) 

όπου  
ActElemN :  το πλήθος των ενεργών πεπερασµένων στοιχείων 

NEL :  το συνολικό πλήθος των πεπερασµένων στοιχείων του πλέγµατος 
 
6.2.3.5. ∆είκτης (PI) 

Χρήση του δείκτη (PI) (Eξ.6.5) ως δείκτη αξιολόγησης, και όχι µόνον ως δείκτη για τον 
τερµατισµό της διαδικασίας:  
 

_ 4PI PI=                                                         (6.12) 
 
6.2.4. Παραδείγµατα αξιολόγησης 

Για την αξιολόγηση της προτεινοµένης διαδικασίας, χρησιµοποιήθηκαν τέσσερα 
βιβλιογραφικά παραδείγµατα και ειδικότερα ο βαθύς πρόβολος (deep cantilever), ο κοντός 
πρόβολος (short cantilever), η δοκός MBB και µία κατασκευή τύπου Michell (Σχήµα 6.1).  
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(a) (b) (c) (d) 

Σχήµα 6.1: Το πεδίο ορισµού των εξετασθέντων παραδειγµάτων (a) βαθύς πρόβολος, (b) 
κοντός πρόβολος, (c) δοκός MBB και (d) κατασκευή τύπου Michell 

 
6.2.4.1. Παράδειγµα #1: Βαθύς πρόβολος 

Ο βαθύς πρόβολος απεικονίζεται στο Σχήµα 6.1a. Οι διαστάσεις x yL L×  (Μήκος xΎψος) 
του, ορθογωνικής µορφής, χώρου σχεδίασης είναι 200xL mm=  και 450yL mm= , ενώ το 
αρχικό οµοιόµορφο πάχος του προβόλου είναι 1t mm= . Ολόκληρη η αριστερή πλευρά της 
κατασκευής είναι πακτωµένη, ενώ ένα σηµειακό φορτίο 200F N=  ασκείται στο µέσο της 
δεξιάς πλευράς. Επιβάλλεται περιορισµός µετατόπισης 1mm  και κατά την οριζόντια και κατά 
την κατακόρυφη διεύθυνση. Θεωρείται ότι το υλικό της κατασκευής έχει µέτρο 
ελαστικότητας 200E GPa= , µοναδιαία πυκνότητα και λόγο Poisson 0.3v = . Το πεδίο ορισµού 
διακριτοποιείται µε 36 16×  4-κοµβικά ορθογωνικά πεπερασµένα στοιχεία. Σε κάθε 
επανάληψη, ο λόγος αποβολής υλικού (Element Elimination Ratio – ERR) ήταν σταθερός και 
ίσος προς 2% , ενώ εφαρµοζόταν µόνον επί των εναποµεινάντων στοιχείων. 
 
6.2.4.2. Παράδειγµα #2: Κοντός πρόβολος 

Ο βαθύς πρόβολος απεικονίζεται στο Σχήµα 6.1b. Οι διαστάσεις x yL L×  (Μήκος xΎψος) 
του, ορθογωνικής µορφής, χώρου σχεδίασης είναι 160xL mm=  και 100yL mm= , ενώ το 
αρχικό οµοιόµορφο πάχος του προβόλου είναι 1t mm= . Οι συνθήκες στήριξης και φόρτισης 
είναι ίδιες µε αυτές του προηγουµένου παραδείγµατος, µε τη µόνη διαφορά ότι η ασκούµενη 
δύναµη έχει µέτρο 3F kN= . Επιβάλλεται ένας περιορισµός µετατόπισης κατά την οριζόντια 
και την κατακόρυφη διεύθυνση, ενώ εξετάζονται τρεις διαφορετικές τιµές επιτρεπόµενης 
µετατόπισης ( 1allowu mm= , 0.50allowu mm=  και 0.75allowu mm= ). Θεωρείται ότι το υλικό της 
κατασκευής έχει µέτρο ελαστικότητας 207E GPa= , µοναδιαία πυκνότητα και λόγο Poisson 

0.3v = . Το πεδίο ορισµού διακριτοποιείται µε 32 20×  4-κοµβικά ορθογωνικά πεπερασµένα 
στοιχεία, ο λόγος αποβολής υλικού (Element Elimination Ratio – ERR), σε κάθε επανάληψη, 
ήταν σταθερός και ίσος προς 1% , ενώ εφαρµοζόταν µόνον επί των εναποµεινάντων 
στοιχείων. 
 
6.2.4.3. Παράδειγµα #3: ∆οκός MBB 

Η δοκός MBB είναι η αµφιέρειστη δοκός του Σχήµατος 6.1c. Οι διαστάσεις x yL L×  
(Μήκος xΎψος) του, ορθογωνικής µορφής, χώρου σχεδίασης είναι 2400xL mm=  και 

400yL mm= , ενώ το αρχικό οµοιόµορφο πάχος του προβόλου είναι 1t mm= . Ασκείται ένα 

F  

F

FF  
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συγκεντρωµένο φορτίο 20F kN=  στο µέσο της άνω πλευράς της δοκού. Το βέλος κάµψης της 
κατασκευής προβλέπεται να είναι το πολύ ίσο προς 9.4mm . Και σε αυτήν την περίπτωση, 
θεωρείται ότι το υλικό της κατασκευής έχει µέτρο ελαστικότητας 200E GPa= , µοναδιαία 
πυκνότητα και λόγο Poisson 0.3v = . Το πεδίο ορισµού διακριτοποιείται µε 66 11×  32 20×  4-
κοµβικά ορθογωνικά πεπερασµένα στοιχεία, ο λόγος αποβολής υλικού (Element Elimination 
Ratio – ERR), σε κάθε επανάληψη, ήταν σταθερός και ίσος προς 1% , ενώ εφαρµοζόταν 
µόνον επί των εναποµεινάντων στοιχείων.  
 
6.2.4.4. Παράδειγµα #4: Κατασκευή Michell 

Η κατασκευή Michell απεικονίζεται στο Σχήµα 6.1d. Ο χώρος σχεδίασης είναι 
ορθογωνικής µορφή διαστάσεων x yL L× , όπου 550xL mm=  και 400yL mm= , από τον οποίο 
έχει αφαιρεθεί ένας κύκλος ακτίνας 100r mm= . Ο κύκλος εφάπτεται στο µέσο της αριστερής 
πλευράς του ορθογωνικού χωρίου και είναι πακτωµένος καθ’ όλο το µήκος της περιφερείας 
του. Το αρχικό οµοιόµορφο πάχος της κατασκευής είναι 1t mm= . Επιβάλλεται ένα σηµειακό 
φορτίο 50F kN= στο µέσο της δεξιάς πλευράς του ορθογωνικού χωρίου. Επιβάλλεται ένας 
περιορισµός µετατόπισης ενώ εξετάζονται τρεις διαφορετικές τιµές επιτρεπόµενης 
µετατόπισης ( 9allowu mm= , 5allowu mm=  και 7allowu mm= ). Θεωρείται ότι το υλικό της 
κατασκευής έχει µέτρο ελαστικότητας 205E GPa= , µοναδιαία πυκνότητα και λόγο Poisson 

0.3v = . Το πεδίο ορισµού διακριτοποιείται µε 33 24×  4-κοµβικά ορθογωνικά πεπερασµένα 
στοιχεία, ο λόγος αποβολής υλικού (Element Elimination Ratio – ERR), σε κάθε επανάληψη, 
ήταν σταθερός και ίσος προς 0.5% , ενώ εφαρµοζόταν µόνον επί των εναποµεινάντων 
στοιχείων. ∆ιευκρινίζεται ότι λόγω συµµετρίας, απαιτείται η ανάλυση µόνον του άνω µισού 
της κατασκευής. 
 
6.2.5. Αποτελέσµατα 

Τα αποτελέσµατα των εξετασθέντων παραδειγµάτων καταγράφονται στον Πίνακα 6.1.  
 
Πίνακας 6.1: ∆είκτες αξιολόγησης εξετασθέντων παραδειγµάτων 

Example Scenario ERR (%) Iterations PI_1 PI_2 PI_3 PI_4

A 2 73 -99.80 -44.23 19.44 1.793

B 2 52 -99.80 -44.14 19.79 1.790

-28.77% 0.00% -0.22% 1.79% -0.17%

A 1 52 -72.70 -16.37 56.88 1.196

B 1 42 -73.16 -17.79 55.00 1.216

-19.23% 0.63% 8.64% -3.30% 1.71%

A 1 82 -99.98 -35.50 39.67 1.550

B 1 68 -99.98 -35.99 39.95 1.562

-17.07% 0.00% 1.39% 0.70% 0.77%

A 0.5 171 -77.28 -28.40 37.88 1.397

B 0.5 78 -76.84 -27.02 56.06 1.370

-54.39% -0.57% -4.85% 48.00% -1.89%

Deep cantilever

Michell structure

MBB beam

Short cantilever

 
 

Οι όροι ‘Scenario A’ και ‘Scenario B’ αντιστοιχούν στην εφαρµογή της τυπικής 
διαδικασίας ESO και της προτεινόµενης διαδικασίας, αντίστοιχα. Οι στήλες ‘Iterations’, 
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_1PI , _ 2PI , _ 3PI  και _ 4PI  αντιστοιχούν στους ∆είκτες Αξιολόγησης. Σε κάθε 
παράδειγµα του Πίνακα 6.1, αντιστοιχούν τρεις γραµµές, εκ των οποίων οι πρώτες δύο 
περιέχουν τιµές δεικτών αξιολόγησης ενώ η τρίτη αντιστοιχεί στη σύγκριση µεταξύ των 
‘Scenario A’ και ‘Scenario B’, σύµφωνα µε την ακόλουθη έκφραση:  
 

_ _

_

Scenario B Scenario A

Scenario A

Value Value
Value

Value
⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

                                  (6.13) 

 
Για κάθε παράδειγµα, η βέλτιστη σχεδίαση απεικονίζεται στο Σχήµα 6.2.  
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(a) βαθύς πρόβολος 

  
(b) κοντός πρόβολος 

 
(c) δοκός MBB 

 
(d) κατασκευή Michell 

Βιβλιογραφία Σενάριο A – ERR: 0.5%  Σενάριο B – ERR: 0.5%  

Σχήµα 6.2: Βέλτιστες σχεδιάσεις 
 
6.2.6. Συµπεράσµατα 

Από τα αποτελέσµατα, τα οποία παρουσιάσθηκαν στην Ενότητα 6.2.5, προκύπτει ότι η 
προτεινόµενη διαδικασία βελτιστοποίησης καταλήγει σε σχεδιάσεις, οι οποίες, συγκριτικά µε 
τις υπάρχουσες βιβλιογραφικές, είναι το πολύ του αυτού βάρους (υπάρχουν περιπτώσεις στις 
οποίες είναι ελαφρύτερες) και έχουν προκύψει µε σαφώς χαµηλότερο (από 17% έως και 54%) 
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υπολογιστικό κόστος. Συνεπώς, εκτός από τον ρυθµό αποβολής στοιχείων (EER) και την 
πυκνότητας του πλέγµατος, κατεδείχθη ότι το προτεινόµενο ενεργειακό κριτήριο 
χαρακτηρισµού του υλικού ως πλεονάζοντος αποτελεί έναν βασικό παράγοντα στη 
διαδικασία βελτιστοποίησης. 
 
6.3. Κατανοµή υλικού µεταβλητού πάχους υπό την επιβολή ενός 
γενικευµένου περιορισµού µετατόπισης 
6.3.1. Θεωρητικό υπόβαθρο 

Η προτεινόµενη διαδικασία βελτιστοποίησης εµπλέκει δύο θεωρητικά στοιχεία: την 
βελτιστοποιηµένη επανασχεδίαση της κατασκευής υπό την επιβολή ενός γενικευµένου 
περιορισµού µετατόπισης και το σχηµατισµό του µητρώου δυσκαµψίας ενός πεπερασµένου 
στοιχείου µεταβλητού πάχους. Για λόγους πληρότητας, τα εν λόγω θεωρητικά στοιχεία 
σχολιάζονται συνοπτικά στις επόµενες παραγράφους. ∆ιευκρινίζεται εκ των προτέρων ότι, ως 
ενεργό, χαρακτηρίζεται εκείνο το τµήµα της κατασκευής, στο οποίο το πάχος είναι 
µεγαλύτερο από την κατώτατη τιµή του αντιστοίχου περιορισµού. 
 
6.3.2. Βέλτιστο Κριτήριο για το πρόβληµα βελτιστοποίησης υπό την επιβολή ενός 
περιορισµού µετατόπισης 

Στο Κεφάλαιο 5 παρουσιάσθηκε ένα Βέλτιστο Κριτήριο για την περίπτωση 
βελτιστοποίησης σκελετικής κατασκευής υπό την επιβολή ενός γενικευµένου περιορισµού 
µετατόπισης, ενώ διατυπώθηκε και µία µεθοδολογία βελτιστοποίησης, κατάλληλη για την 
επίλυση του εν λόγω προβλήµατος βελτιστοποίησης. Η προέκταση της εφαρµογής της 
µεθοδολογίας αυτής σε 2∆ συνεχή µέσα είναι δυνατόν να επιτευχθεί εάν στον αναδροµικό 
τύπο της επανασχεδίασης (Εξ.5.17) το βασικό γεωµετρικό µέγεθος της σκελετικής 
κατασκευής (εµβαδόν διατοµής iA  ράβδου) αντικατασταθεί από το βασικό γεωµετρικό 
µέγεθος του συνεχούς µέσου (πάχος στοιχείου it ): 
 

,
i

i new i
wt t
w

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                       (6.14) 

 
Επιπροσθέτως, προτείνεται η επιβολή οµοιόµορφης διακλιµάκωσης των µεταβλητών 
σχεδίασης σε κάθε επανάληψη, εξασφαλίζοντας, µε αυτόν τον τρόπο, την ισοτική 
ικανοποίηση του επιβαλλοµένου περιορισµού µετατόπισης. 
 
6.3.3. Μητρώο δυσκαµψίας 4-κοµβικού τετραπλευρικού πεπερασµένου στοιχείου 
µεταβλητού πάχους 

Το µητρώο δυσκαµψίας του 4-κοµβικού τετραπλευρικού στοιχείου µε ενδοστοιχειακή 
ισοπαραµετρική παρεµβολή πάχους περιγράφεται λεπτοµερέστερα στο Παράρτηµα 4B, 
σύµφωνα µε το οποίο ισχύει:  
 

( )
41 1

1 1
1

dete T
i i

i
N t J d dξ η

+ +

− −
=

= ΕΒ∑∫ ∫K B                                   (6.15) 

 
όπου it  είναι το πάχος του i − γωνιακού κόµβου του e − στοιχείου, iN  είναι η αντίστοιχη 
συνάρτηση µορφής, B  είναι ο 3 8×  πίνακας παραµορφώσεων-µετατοπίσεων, E  είναι το 
3 3×  µητρώο ελαστικότητας και J  είναι η Ιακωβιανή, η οποία χρησιµοποιείται για τη 
µετάβαση από το καθολικό σύστηµα { },x y  στο τοπικό σύστηµα αναφοράς { },ξ η .  
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(a) (b) 

Σχήµα 6.3: 4-κοµβικό τετραπλευρικό στοιχείο µε (a) σταθερό και (b) µεταβλητό πάχος 
 
6.3.4. Προτεινόµενη διαδικασία βελτιστοποίησης 

Στο παρόν κεφάλαιο προτείνεται και εξετάζεται η χρήση πεπερασµένων στοιχείων 
µεταβλητής ενδοστοιχειακής κατανοµής πάχους (Προσέγγιση #1). Για λόγους σύγκρισης, 
αναπτύχθηκε η αντίστοιχη προσέγγιση, όταν χρησιµοποιούνται πεπερασµένα στοιχεία 
σταθερής ενδοστοιχειακής κατανοµής πάχους (Προσέγγιση #2). Και στις δύο περιπτώσεις, 
πραγµατοποιείται σύγκριση µε τη Σχεδίαση (OUD) (βλ. Ενότητα 6.2.3.3),  
 
6.3.4.1. ∆ιαδικασίας βελτιστοποίησης χρησιµοποιώντας πεπερασµένα στοιχεία 

µεταβλητού πάχους (Προσέγγιση #1) 
Η προτεινόµενη διαδικασία είναι η ακόλουθη: 
 

Βήµα 1: Προσδιορισµός της σχεδίασης (OUD) και καταγραφή βάρους, πάχους και 
συµπληρωµατικής ενέργειας παραµόρφωσης (τιµές αναφοράς). 

Βήµα 2: Εφαρµογή µοναδιαίου φορτίου στον πλέον κρίσιµο βαθµό ελευθερίας. 
Βήµα 3: Υπολογισµός της κανονικοποιηµένης πυκνότητας της συµπληρωµατικής 

ενέργειας παραµόρφωσης για κάθε ενεργό στοιχείο. 
Βήµα 4: Υπολογισµός της κανονικοποιηµένης πυκνότητας της συµπληρωµατικής 

ενέργειας παραµόρφωσης σε κάθε κόµβο ενεργών στοιχείων (ενεργοί κόµβοι) 
Βήµα 5: Ανανέωση του πάχους των ενεργών κόµβων χρησιµοποιώντας την προτεινόµενη 

αναδροµική σχέση (Εξ. 6.15). 
Βήµα 6: Εφαρµογή οµοιόµορφης διακλιµάκωσης πάχους ώστε καµία κοµβική µετατόπιση 

να µην παραβιάζει τον επιβαλλόµενο περιορισµό µετατόπιση. 
Βήµα 7: Έλεγχος σύγκλισης. Εάν δεν έχει επιτευχθεί σύγκλιση ούτε έχει ξεπερασθεί το 

µέγιστο επιτρεπόµενο πλήθος επαναλήψεων, επιστροφή στο Βήµα 2. 
Βήµα 8: Εφαρµογή µίας διαδικασίας εξοµάλυνσης (π.χ. τεχνικής Kriging) των κοµβικών 

τιµών της κατανοµής του πάχους. 
Βήµα 9: Εφαρµογή οµοιόµορφης διακλιµάκωσης στην εξοµαλυµένη κατανοµή υλικού 

(Βήµα 7), έτσι ώστε να µην παραβιάζεται κανένας περιορισµός µετατόπισης. 
Βήµα 10: Υπολογισµός των ∆εικτών Αξιολόγησης. 
 

Ο υπολογισµός της κοµβικής τιµής της πυκνότητας της συµπληρωµατικής ενέργειας 
παραµόρφωσης προκύπτει παρεµβάλλοντας κατάλληλα τις αντίστοιχες τιµές των στοιχείων, 
τα οποία συντρέχουν στον εκάστοτε εξεταζόµενο κόµβο. Στην παρούσα, χρησιµοποιήθηκαν 
τρία σχήµατα παρεµβολής, τα οποία περιγράφονται στην ενότητα 6.3.6.  
 
6.3.4.2. ∆ιαδικασίας βελτιστοποίησης χρησιµοποιώντας πεπερασµένα στοιχεία σταθερού 

πάχους (Προσέγγιση #2) 
Η διαδικασία είναι η ακόλουθη: 
 

t4 
t3 

t1 

 (t1 = t2 = t3 = t4) 

t4 

t3 
t1

(t1≠ t2 ≠ t3≠ t4) 

t2 
t2 
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Βήµα 1: Προσδιορισµός της σχεδίασης (OUD) και καταγραφή βάρους, πάχους και 
συµπληρωµατικής ενέργειας παραµόρφωσης (τιµές αναφοράς). 

Βήµα 2: Εφαρµογή µοναδιαίου φορτίου στον πλέον κρίσιµο βαθµό ελευθερίας.  
Βήµα 3: Υπολογισµός της κανονικοποιηµένης πυκνότητας της συµπληρωµατικής 

ενέργειας παραµόρφωσης για κάθε ενεργό στοιχείο. 
Βήµα 4: Ανανέωση του πάχους των ενεργών στοιχείων χρησιµοποιώντας την 

προτεινόµενη αναδροµική σχέση (Εξ. 6.15). 
Βήµα 5: Εφαρµογή οµοιόµορφης διακλιµάκωσης πάχους ώστε καµία κοµβική µετατόπιση 

να µην παραβιάζει τον επιβαλλόµενο περιορισµό µετατόπιση. 
Βήµα 6: Έλεγχος σύγκλισης. Εάν δεν έχει επιτευχθεί σύγκλιση ούτε έχει ξεπερασθεί το 

µέγιστο επιτρεπόµενο πλήθος επαναλήψεων, επιστροφή στο Βήµα 2. 
Βήµα 7: Εφαρµογή µίας διαδικασίας καθολικής εξοµάλυνσης (π.χ. τεχνικής Kriging) της 

κατανοµής πάχους των στοιχείων. 
Βήµα 8: Εφαρµογή οµοιόµορφης διακλιµάκωσης στην εξοµαλυµένη κατανοµή υλικού 

(Βήµα 7), έτσι ώστε να µην παραβιάζεται κανένας περιορισµός µετατόπισης. 
Βήµα 9: Υπολογισµός των ∆εικτών Αξιολόγησης. 

 
Στο σηµείο αυτό, διευκρινίζεται ότι η κοµβική τιµή της πυκνότητας της συµπληρωµατικής 

ενέργειας παραµόρφωσης προκύπτει παρεµβάλλοντας κατάλληλα τις τιµές των 
πεπερασµένων στοιχείων, τα οποία συντρέχουν στον εκάστοτε εξεταζόµενο κόµβο. Στην 
επόµενη ενότητα παρουσιάζονται τρία τέτοια σχήµατα παρεµβολής 
 
6.3.5. Υπολογισµός κοµβικών τιµών συµπληρωµατικής ενέργειας παραµόρφωσης 

Η κεντρική ιδέα της προτεινοµένης διαδικασίας είναι πρώτα να υπολογισθεί η πυκνότητα 
συµπληρωµατικής ενέργειας παραµόρφωσης (ΠΣΕΠ) για κάθε πεπερασµένο στοιχείο του 
πλέγµατος και στη συνέχεια να παρεµβληθούν οι εν λόγω τιµές στους κόµβους του 
πλέγµατος. Συνολικά, προτείνονται τρία σχήµατα παρεµβολής (έστω Σχήµα #1, Σχήµα #2 και 
Σχήµα #3). Για το Σχήµα #1, ως κοµβική τιµή χρησιµοποιείται η µέγιστη εκ των τιµών 
(ΠΣΕΠ) των πεπερασµένων στοιχείων, τα οποία συντρέχουν στον εκάστοτε κόµβο. Για το 
Σχήµα #2, ως κοµβική τιµή χρησιµοποιείται ο µέσος όρος των τιµών (ΠΣΕΠ) των 
πεπερασµένων στοιχείων, τα οποία συντρέχουν στον εκάστοτε κόµβο, ενώ για το Σχήµα #3 
χρησιµοποιείται η ελάχιστη εκ των τιµών (ΠΣΕΠ) των πεπερασµένων στοιχείων, τα οποία 
συντρέχουν στον εκάστοτε κόµβο. Στην περίπτωση ενός δοµηµένου πλέγµτος µε 4-κοµβικά 
τετραπλευρικά ορθογωνικά στοιχεία, είναι προφανές ότι σε κάθε εσωτερικό κόµβο του 
πλέγµατος συντρέχουν τέσσερα πεπερασµένα στοιχεία, ενώ σε κάθε κόµβου επί του συνόρου 
συντρέχουν δύο πεπερασµένα στοιχεία. Σε κάθε, δε, γωνιακό κόµβο, η εν λόγω ενεργειακή 
συνεισφορά οφείλεται σε ένα και µόνον πεπερασµένο στοιχείο.  
 
6.3.6. Αξιολόγηση της προτεινοµένης διαδικασίας 

Η αξιολόγηση της προτεινοµένης διαδικασίας περιελάµβανε δύο στάδια. Το πρώτο στάδιο 
αφορούσε στη διακρίβωση του πεπερασµένου στοιχείου (4-κοµβικό τετραπλευρικό στοιχείο 
µε ισοπαραµετρική ενδοστοιχειακή παρεµβολή πάχους), το οποίο αναπτύχθηκε για τις 
ανάγκες της παρούσας µελέτης. Το δεύτερο στάδιο αφορούσε στην αξιολόγηση της 
προτεινοµένης διαδικασίας βελτιστοποίησης επί τη βάσει του βελτίστου βάρους κατασκευής, 
της κατανοµής της πυκνότητας της συµπληρωµατικής ενέργειας παραµόρφωσης και της 
πορείας σύγκλισης. 
 
6.3.6.1. ∆ιακρίβωση πεπερασµένου στοιχείου µεταβλητού πάχους 

Για τη διακρίβωση του πεπερασµένου στοιχείου, το οποίο προγραµµατίστηκε για τις 
ανάγκες της παρούσας µελέτης, χρησιµοποιήθηκε το στοιχείου SHELL63 του εµπορικού 
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λογισµικού Ansys (ver.10). Ειδικότερα, εξετάσθηκε ένα 2∆ ορθογωνικό χωρίο σε απλή 
κάµψη και στη συνέχεια σε ασύµµετρο εφελκυσµό/θλίψη, για διάφορες πυκνότητες 
πλέγµατος λόγου πλευρών 1:1. Το εν λόγω χωρίο αναλύθηκε πρώτα µε κώδικα, ο οποίος 
αναπτύχθηκε στο πλαίσιο της παρούσας ∆ιδακτορικής ∆ιατριβής, και στη συνέχεια µε το 
εµπορικό λογισµικό Ansys (επιλογές για το στοιχείο SHEL63: extra displacement shape 
functions excluded, membrane element stiffness only). Από τη σύγκριση των λύσεων, 
προέκυψε σύµπτωση των τιµών των κοµβικών µετατοπίσεων µεταξύ των δύο περιπτώσεων. 
 
6.3.6.2. Ορισµός ∆εικτών Αξιολόγησης 

Για την αξιολόγηση της προτεινοµένης διαδικασίας χρησιµοποιήθηκαν οι ακόλουθοι 
δείκτες: 
• ∆είκτης Αξιολόγησης 1EI : αφορά στην κανονικοποίηση του βάρους της κατασκευής πριν 

από την εφαρµογή της οµοιόµορφης διακλιµάκωσης του πάχους και του βάρους της 
κατασκευής, το οποίο αντιστοιχεί στη σχεδίαση (OUD): 

 

1
opti

OUD

W
EI

W
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                      (6.16) 

 
• ∆είκτης Αξιολόγησης 2EI : αφορά στην κατανοµή της πυκνότητας της συµπληρωµατικής 

ενέργειας παραµόρφωσης πριν από την εφαρµογή της οµοιόµορφης διακλιµάκωσης του 
πάχους και ορίζεται ως ο συντελεστής µεταβλητότητας (Coefficient of Variation – CV) 
της εν λόγω κατανοµής στους ενεργούς κόµβους: 

 
( )2 _active nodesEI CV VSED=                                              (6.17) 

• ∆είκτης Αξιολόγησης 3EI : αφορά στο µέγεθος των ενεργών µελών της κατασκευής και 
ορίζεται, αντίστοιχα για τα στοιχεία σταθερού και µεταβλητού πάχους, ως: 

 

3 ,active activeNN NELEI
NN NEL

⎧ ⎫⎛ ⎞ ⎛ ⎞= ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

                                        (6.18) 

 
όπου NN  είναι το πλήθος των κόµβων και NEL  είναι το πλήθος των στοιχείων. 

 
Επιπροσθέτως, η πορεία σύγκλισης ως προς το βάρος της κατασκευής, κατεγράφη και 

απεικονίσθηκε µε τη µορφή διαγραµµάτων. 
 
6.3.6.3. ∆ιακρίβωση των εξοµαλυµένων βελτιστοποιηµένων κατανοµών 

Προς εξασφάλιση της µη-παραβίασης των επιβαλλοµένων περιορισµών εξ αιτίας της 
διαδικασίας εξοµάλυνσης, επιβάλλεται µία τελευταία ανάλυση της κατασκευής µε τη (ΜΠΣ), 
βάσει των αποτελεσµάτων της οποίας θα εφαρµοσθεί µία τελευταία οµοιόµορφη µεταβολή 
της κατανοµής του πάχους. Με αυτόν τον τρόπο, ελαφρώς υπερ-διαστασιολογηµένες 
κατανοµές θα συρρικνωθούν και ελαφρώς υπο-διαστασιολογηµένες κατανοµές θα 
διογκωθούν. Πρόκειται για µία διαδικασία δύο βηµάτων, η οποία, αν και δεν αποτελεί 
αναγκαία συνθήκη βελτίστου, είναι απολύτως αποδεκτή για πρακτικές εφαρµογές µηχανικού. 
 
6.3.7. Παραδείγµατα αξιολόγησης 

Τα εξετασθέντα 2∆ παραδείγµατα παρουσιάζονται σχηµατικά στο Σχήµα 6.4.  
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(a) (b) (c) (d) 

Σχήµα 6.4: Το πεδίο ορισµού των εξετασθέντων παραδειγµάτων (a) βαθύς πρόβολος, (b) 
κοντός πρόβολος, (c) δοκός MBB και (d) γέφυρα Michell 

 
6.3.7.1. Παράδειγµα #1: Βαθύς πρόβολος 

Τα δεδοµένα του εν λόγω προβλήµατος αναφέρθηκαν στην Ενότητα 6.2.4.1. 
 
6.3.7.2. Παράδειγµα #2: Βραχύς πρόβολος 

Τα δεδοµένα του εν λόγω προβλήµατος αναφέρθηκαν στην Ενότητα 6.2.4.2. 
 
6.3.7.3. Παράδειγµα #3: δοκός MBB 

Τα δεδοµένα του εν λόγω προβλήµατος αναφέρθηκαν στην Ενότητα 6.2.4.3. 
 
6.3.7.4. Παράδειγµα #4: γέφυρα Michell 

Η γέφυρα Michell απεικονίζεται στο Σχήµα 6.4d. Πρόκειται για µια αµφιέρειστη δοκό, 
µήκους 2400xL mm=  και ύψους 400yL mm= . Το αρχικό οµοιόµορφο πάχος της 
κατασκευής είναι 1t mm= . Επιβάλλεται ένα σηµειακό φορτίο 50F kN= στο µέσο της 
εφελκυόµενης ίνας της δοκού κάτω πλευράς του ορθογωνικού χωρίου. Επιβάλλεται ένας 
περιορισµός µετατόπισης ( 9.4allowu mm=  ). Θεωρείται ότι το υλικό της κατασκευής έχει µέτρο 
ελαστικότητας 200E GPa= , µοναδιαία πυκνότητα και λόγο Poisson 0.3v = . Το πεδίο ορισµού 
διακριτοποιείται µε 66 11×  4-κοµβικά ορθογωνικά πεπερασµένα στοιχεία. 
 
6.3.8. Αποτελέσµατα 

Τα αποτελέσµατα των εξετασθέντων παραδειγµάτων καταγράφονται στον Πίνακα 6.2.  
 
Πίνακας 6.2: ∆είκτες Αξιολόγησης εξετασθέντων προβληµάτων 

EI1 EI2 ΕΙ3 EI1 EI2 ΕΙ3 EI1 EI2 ΕΙ3
t=const 0,5061 0,6420 0,9340 0,5061 0,6420 0,9340 0,5061 0,6420 0,9340
t≠const 0,5180 1,1399 0,9094 0,5025 3,1369 0,9030 0,5044 0,3627 0,9634
% difference 2,34% -2,64% -0,72% -3,32% -0,34% 3,15%

t=const 0,6220 1,5188 0,9906 0,6220 1,5188 0,9906 0,6220 1,5188 0,9906
t≠const 0,6356 2,9201 0,9740 0,6112 2,5655 0,9870 0,6116 0,0179 1,0000
% difference 2,20% -1,68% -1,73% -0,36% -1,67% 0,95%

t=const 0,5343 0,0078 1,0000 0,5343 0,0078 1,0000 0,5343 0,0078 1,0000
t≠const 0,5603 2,1304 0,9876 0,5094 1,9019 0,9988 0,5099 0,0025 1,0000
% difference 4,86% -1,24% -4,66% -0,12% -4,56% 0,00%

t=const 0,5343 0,0078 1,0000 0,5343 0,0078 1,0000 0,5343 0,0078 1,0000
t≠const 0,5603 2,2111 0,9888 0,5093 1,9877 1,0000 0,5098 0,0017 1,0000
% difference 4,87% -1,12% -4,68% 0,00% -4,58% 0,00%

VSED interpolation scheme #1 VSED interpolation scheme #2 VSED interpolation scheme #3

Deep 
cantilever

Short 
cantilever

MBB beam

Michell 
structure 
(bridge)  

 
Από τον Πίνακα 6.2 καθίσταται φανερό ότι, σε όλες τις περιπτώσεις, είναι δυνατόν να 

προκύψει µία κατανοµή υλικού µικρότερου βάρους, εάν χρησιµοποιηθεί η προτεινόµενη 
διαδικασία βελτιστοποίησης σε συνδυασµό µε πεπερασµένα στοιχεία σταθερού πάχους.  

F

F

FF  
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Σχήµα 6.5: Βέλτιστες κατανοµές για τα εξετασθέντα παραδείγµατα: (a) προσέγγιση #1, (b) 
προσέγγιση #2 και (c) πορεία σύγκλισης 

 
6.3.9. Συµπεράσµατα 

Τα αποτελέσµατα της προηγούµενης ενότητας, υποδηλώνουν ότι η µεθοδολογία, η οποία 
παρουσιάσθηκε στο Κεφάλαιο 5 για σκελετικές κατασκευές, είναι δυνατόν να προσαρµοσθεί 
και για την επίλυση προβληµάτων βελτιστοποίησης 2∆ συνεχούς µέσου υπό την επιβολή ενός 
γενικευµένου προβλήµατος βελτιστοποίησης. Η κεντρική ιδέα αυτής της προσαρµογής ήταν 
η χρήση της προτεινόµενης αναδροµικής σχέσης επανασχεδίασης σε συνδυασµό µε 
πεπερασµένα στοιχεία, στα οποία το πάχος παρεµβαλλόµενο µε τις συναρτήσεις παρεµβολής 
του στοιχείου (ισοπαραµετρική ενδοστοιχειακή παρεµβολή πάχους). Προέκυψε ότι, µε τον 
προτεινόµενο τρόπο βελτιστοποίησης, είναι δυνατόν να ληφθούν κατανοµές, οι οποίες 
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αντιστοιχούν σε µικρότερο βάρος από εκείνες, οι οποίες λαµβάνονται µε πεπερασµένα 
στοιχεία σταθερού πάχους. 
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Είναι γνωστό ότι, στις κατασκευές, ελάχιστο βάρος δεν σημαίνει απαραίτητα και ελάχιστο κόστος, 
οπότε η ταυτόχρονη μείωση βάρους και κόστους είναι υψηλής πρακτικής αξίας. Ωστόσο, δεν 

υπάρχει μία μεθοδολογία γενικής ισχύος, τέτοια ώστε να επιτυγχάνονται ταυτόχρονα οι 
προαναφερθέντες στόχοι, διότι, ειδικά αναφορικά με το κόστος, είναι επιβεβλημένος ο 

συνυπολογισμός των ιδιαιτεροτήτων της εκάστοτε κατασκευής. Αντιθέτως, είναι πιο συμφέρουσα 
και αποδοτική η διαμόρφωση διαδικασιών καθέτου εφαρμογής. Σε αυτό το πλαίσιο, στην παρούσα 
περίληψη κεφαλαίου, παρουσιάζονται δύο διαδικασίες βελτιστοποίησης, η πρώτη εκ των οποίων 
είναι κατάλληλη για σκελετικές κατασκευές υπό την επιβολή περιορισμών τάσης, ενώ η δεύτερη 
είναι κατάλληλη για συγκολλητές δεξαμενές αποθήκευσης πετρελαιοειδών. Αναφορικά με την 
πρώτη διαδικασία, πρόκειται για μία μετά‐τη‐βελτιστοποίηση τεχνική, σύμφωνα με την οποία, 
αρχικά, τα δομικά μέλη της ίδιας ή περίπου της ίδιας διατομής ομαδοποιούνται κατάλληλα και, 

τελικά, τα δομικά μέλη με κρίσιμη ή περίπου κρίσιμη διατομή διαγράφονται (απομακρύνονται) από 
την κατασκευή. Τόσο η ομαδοποίηση όσο και η διαγραφή στηρίζονται σε μία στατιστική προσέγγιση. 
Η προτεινόμενη διαδικασία εφαρμόσθηκε σε τέσσερα βιβλιογραφικά παραδείγματα, ήτοι στον κοντό 

πρόβολο, στον μακρύ πρόβολο, στη δοκό ΜΒΒ και στη δοκό σχήματος L. Προέκυψε ότι η 
προτεινόμενη διαδικασία κατέληξε σε μείωση και του βάρους και του κόστους. Η, δε, επέκταση της 

εν λόγω διαδικασίας είτε σε 3Δ σκελετικές κατασκευές είτε σε περιπτώσεις επιβολής άλλων 
περιορισμών είναι τετριμμένη. Η δεύτερη εκ των προτεινομένων διαδικασιών αφορά στην 

ελαχιστοποίηση του κατασκευαστικού κόστους δεξαμενής αποθήκευσης πετρελαιοειδών, όταν 
λαμβάνονται υπόψη το χρησιμοποιούμενο υλικό, το κόστος συγκολλήσεων και η φύρα. Η εν λόγω 

διαδικασία εφαρμόσθηκε για πλήθος σχεδιάσεων τέτοιων δεξαμενών και τα αποτελέσματα από τις 
εκάστοτε βελτιστοποιήσεις καταγράφηκαν κατάλληλα σε νομογραφήματα. Από τη συνολική 
διερεύνηση προέκυψε ότι η διαμόρφωση διαδικασιών βελτιστοποίησης καθέτου εφαρμογής, σε 
αντίθεση με διαδικασίες γενικής ισχύος, είναι δυνατόν να ανταποκρίνονται καλύτερα στην 

απαίτηση για βελτιστοποίηση της εκάστοτε εξεταζόμενης κατασκευής. 
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7.1. Εισαγωγή 
Είναι γνωστό ότι σε πρακτικές εφαρµογές Μηχανικού, η επιδίωξη για ελάχιστο βάρος δεν 

καταλήγει πάντοτε στο ελάχιστο κόστος, διότι στο κατασκευαστικό κόστος εµπλέκονται 
έµµεσα αρκετές παράµετροι, τρεις εκ των οποίων, ίσως οι πλέον σηµαντικές, είναι η έλλειψη 
κοινοτυπίας, το κόστος των συγκολλήσεων και η ποσότητα του µη-αξιοποιηθέντος υλικού 
(φύρα).  

Ο όρος ‘κοινοτυπία’ αφορά την οµοιότητα µεταξύ των δοµικών µελών µίας κατασκευής 
ως προς τη διατοµή τους. Ως παράδειγµα αναφέρεται ένα δικτύωµα, το οποίο αποτελείται από 
πεπερασµένο πλήθος ράβδων. Θεωρητικά, κάθε ράβδος δύναται να έχει διαφορετική διατοµή 
από τις υπόλοιπες. Αυτό, αν και ενδεχοµένως να είναι επιθυµητό από πλευράς µείωσης του 
βάρους της κατασκευής, δεν αποτελεί καλή επιλογή από πλευράς κατασκευαστικού κόστους 
διότι πάντοτε είναι φθηνότερη η αγορά µεγάλης ποσότητας δοµικών µελών της ίδιας 
διατοµής παρά η αγορά µικροτέρων ποσοτήτων από µέλη διαφορετικής διατοµής. Συνεπώς, 
είναι σηµαντική η αύξηση της κοινοτυπίας µίας κατασκευής. 

Μία άλλη παράµετρος, η οποία επηρεάζει σηµαντικά το κόστος της κατασκευής, άρα και 
τη σχεδίασή της, είναι κόστος των συγκολλήσεων. Ως παράδειγµα αναφέρεται η 
γερανογέφυρα µε φορέα κλειστής διατοµής. Η ελαχιστοποίηση του βάρους του εν λόγω 
φορέα εµπλέκει και τη χρήση διαµήκων ενισχυτικών. Ωστόσο, αυτά τα ενισχυτικά 
συγκολλούνται στο εσωτερικό της διατοµής, κάτι το οποίο αυξάνει το κατασκευαστικό 
κόστος, όχι µόνον διότι η ίδια η συγκόλληση κοστίζει αλλά διότι απαιτείται και χρόνος για 
την κατάλληλη προετοιµασία των προς συγκόλληση τεµαχίων (τοποθέτηση τεµαχίων και 
οδηγών). Εναλλακτικά, είναι δυνατή η επιλογή ελασµάτων τέτοιου πάχους ώστε να µην 
απαιτείται η χρήση διαµήκων ενισχυτικών. Με αυτόν τον τρόπο, προσαυξάνεται µεν το βάρος 
αλλά µειώνεται σηµαντικά το µήκος των συγκολλήσεων. Συνολικά, λοιπόν, µειώνεται το 
κατασκευαστικό κόστος διότι η αγορά του πλεονάζοντος υλικού κοστίζει λιγότερο από όσο 
θα κόστιζαν οι συγκολλήσεις, οι οποίες πλέον αποφεύγονται. Ως εκ τούτου, είναι δυνατόν να 
υιοθετηθεί µία εντελώς νέα σχεδιαστική τάση, η οποία καταλήγει σε βαρύτερες αλλά 
φθηνότερες κατασκευές. 

Η φύρα, δηλαδή η ποσότητα του αγορασθέντος αλλά αναξιοποίητου υλικού, αποτελεί µία 
ακόµα σηµαντική παράµετρο στον καθορισµό του κατασκευαστικού κόστους. Προφανώς, το 
ιδανικό θα ήταν η ύπαρξη µηδενικής φύρας. Προκειµένου να επιτευχθεί αυτός ο στόχος, 
επιβάλλεται η αξιοποίηση των ιδιαιτεροτήτων και αναγκών, τις οποίες καλείται να 
ικανοποιήσει η εκάστοτε κατασκευή. Στην ιδανική περίπτωση της µηδενικής φύρας, η 
κατασκευή αποτελείται από ακέραιο πλήθος δοµικών στοιχείων, όπως είναι τα ελάσµατα και 
οι δοκοί, στις εµπορικά διαθέσιµες διαστάσεις τους. 

Στις επόµενες ενότητες παρουσιάζεται συνοπτικά η έννοια της κοινοτυπίας, η οποία 
εξετάζεται µέσα από παραδείγµατα σκελετικών κατασκευών. Τέτοιες κατασκευές είναι 
δυνατόν να χρησιµοποιηθούν ως υποκατάστατα συνεχών µέσων. Επιπροσθέτως, 
παρουσιάζεται µία διαδικασία ελαχιστοποίησης του κατασκευαστικού κόστους, εφαρµόσιµη 
στην περίπτωση σχεδίασης δεξαµενών αποθήκευσης πετρελαιοειδών.  
 
7.2. Ελαχιστοποίηση κόστους µέσω της αύξησης της κοινοτυπίας 
7.2.1. Θεωρητική προσέγγιση 

Η προτεινόµενη διαδικασία για την ελαχιστοποίηση κόστους κατασκευής µέσω της 
αύξησης της κοινοτυπίας αποτελείται από τέσσερα βήµατα. Τα δύο πρώτα βήµατα, δηλαδή η 
αντικατάσταση της κατασκευής από µία σκελετική διάταξη καθώς και η βελτιστοποίηση της 
διάταξης αυτής, έχουν σχολιασθεί εκτενώς σε προηγούµενα κεφάλαια. Για την πληρότητα 
του κειµένου, θα επαναδιατυπωθεί το πρόβληµα βελτιστοποίησης. Τα τελευταία δύο βήµατα, 
δηλαδή η οµαδοποίηση των µελών της εν λόγω διάταξης καθώς και η διαγραφή εκείνων των 
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µελών, τα οποία δεν συνεισφέρουν στην αντοχή της κατασκευής, θα παρουσιασθούν µε 
σχετικά µεγαλύτερη λεπτοµέρεια.  

Η έννοια της οµαδοποίησης είναι στενά συνυφασµένη µε την αρχή της κοινοτυπίας 
(Papalambros, 1995, Fellini et al, 2003). Σύµφωνα µε αυτήν την αρχή, όσο λιγότερα µέλη έχει 
µία κατασκευή και όσο περισσότερο όµοια είναι αυτά τα µέλη µεταξύ τους, τόσο µειώνεται 
το κόστος της κατασκευής. Η διαγραφή µελών από µία κατασκευή είναι στενά συνυφασµένη 
µε το γεγονός ότι µέλη µε κρίσιµη τιµή διατοµής, δηλαδή µε διατοµή έχουσα τη µικρότερη 
τιµή από τις διαθέσιµες, θα έπρεπε να αποµακρυνθούν από την κατασκευή διότι πρακτικά δεν 
συνεισφέρουν στη δυσκαµψία της κατασκευής, ενώ ταυτόχρονα αυξάνουν το βάρος της 
κατασκευής. Συνεπώς, το συνολικό πρόβληµα βελτιστοποίησης υποδιαιρείται σε τρία υπο-
προβλήµατα, ήτοι την εύρεση της βέλτιστης σχεδίασης της κατασκευής, την οµαδοποίηση 
των δοµικών µελών και τη διαγραφή των µελών εκείνων µε κρίσιµη τιµή διατοµής. Τα εν 
λόγω επί µέρους προβλήµατα είναι δυνατόν να αντιµετωπισθούν µε διάφορους τρόπους. Ένας 
τρόπος είναι η διαµόρφωση µίας επαναληπτικής διαδικασίας, στην οποία ένας κύκλος 
περιλαµβάνει την εκτέλεση µίας επανάληψης για κάθε ένα από τα προαναφερθέντα 
υποπροβλήµατα. Ένας άλλος τρόπος είναι η ενεργοποίηση της επίλυσης ενός 
υποπροβλήµατος αφού προηγηθεί η πλήρης επίλυση του προηγοµένου υποπροβλήµατος, 
θεωρώντας ότι έχει προαποφασισθεί η σειρά µε την οποία τα εν λόγω υποπροβλήµατα θα 
αντιµετωπισθούν. Στην παρούσα υλοποιήθηκε ο δεύτερος εκ των προαναφεροµένων τρόπων. 
Η φυσική σηµασία της οµαδοποίησης σχετίζεται τόσο µε τις διατοµές των δοµικών µελών 
όσο και τις οµάδες αυτών.  

Αναφορικά µε τις διατοµές, έστω ότι σε µία κατασκευή υπάρχουν N  δοµικά µέλη. Στην 
πλέον γενική περίπτωση, η βέλτιστη σχεδίαση θα περιλαµβάνει cN  διατοµές µε κρίσιµη τιµή 
εµβαδού και nc cN N N= −  διατοµές µε µη-κρίσιµη τιµή εµβαδού. Αν και δεν είναι 
απαραίτητο, οι ncN  διατοµές είναι δυνατόν να διαιρεθούν σε gN  οµάδες, σε κάθε µία εκ των 
οποίων τα µέλη θα έχουν την ίδια ή περίπου την ίδια διατοµή. Σε µία τέτοια περίπτωση και 
από την οπτική γωνία του κατασκευαστικού κόστους, θα ήταν επιθυµητό όλα τα µέλη µίας 
οµάδας να αποκτήσουν την ίδια διατοµή, κάτι που θα κατέληγε στη χρησιµοποίηση gN  
διαφορετικών διατοµών και όχι gN N> . Από καθαρά θεωρητική άποψη, κάτι τέτοιο δεν 
ενδείκνυται διότι ακόµα και µία ελαφρά διαφοροποίηση των διατοµών µίας βέλτιστης 
σχεδίασης προκαλεί την παραβίαση κάποιου εκ των επιβαλλοµένων περιορισµών. Ωστόσο, 
στις πρακτικές εφαρµογές Μηχανικού, κάτι τέτοιο ενδείκνυται διότι είναι δυνατόν να 
οδηγήσει σε σηµαντική µείωση του κατασκευαστικού κόστους, ενώ οι παραβιάσεις των 
περιορισµών να είναι πολύ µικρές, έως και αµελητέες.  

Αναφορικά µε τις οµάδες διατοµών, έστω ότι τα µέλη µίας κατασκευής έχουν ήδη 
οµαδοποιηθεί µε κριτήριο τη διατοµή τους και έστω ότι κάποια µέλη ίδια διατοµής είναι 
συνευθειακά. Σε αυτήν την περίπτωση, είναι δυνατή η µεταξύ τους συνένωση, υπό την έννοια 
ότι δύο ή περισσότερα συνευθειακά µέλη και της αυτής διατοµής, αντικαθίστανται από ένα 
δοµικό µέλος της ίδια διατοµής και µε µήκος ίσο προς το άθροισµα των µηκών των επί 
µέρους µελών. Από καθαρά θεωρητικής απόψεως, αυτή η επιλογή πιθανότατα να καταλήξει 
στο σχηµατισµό ενός κακώς ορισµένου µητρώου δυσκαµψίας, διότι η συνένωση µελών 
πρακτικά εµπεριέχει την αποµάκρυνση κόµβων από το πλέγµα, οπότε τα µέλη που 
συντρέχουν στους προς αποµάκρυνση κόµβους ίσως να µην στηρίζονται πλέον επαρκώς. Η 
αναίρεση ενός τέτοιου προβλήµατος είναι εφικτή µε ελαφρές σχεδιαστικές τροποποιήσεις. 
Ωστόσο, από πρακτικής απόψεως, η οµαδοποίηση µελών είναι µία πολύ καλή ιδέα διότι µε 
αυτόν τον τρόπο µειώνεται και το πλήθος των σηµείων σύνδεσης, άρα και το κόστος 
συναρµολόγησης και συντήρησης.  
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7.2.2. ∆ιατύπωση του προβλήµατος 
Μία 2∆ σκελετική κατασκευή, η οποία είναι δυνατόν να θεωρηθεί ως δικτύωµα 

αντικαθιστόν ένα 2∆ συνεχές µέσο, δεν είναι τίποτε άλλο παρά ένα σύνολο ράβδων, το βάρος 
W των οποίων ισούται µε: 
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=

= ∑                                                         (7.1) 

 
Η αξονική τάση της i-ράβδου ισούται µε:  
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και ο περιορισµός τάσης σχετικά µε την i-ράβδο εκφράζεται ως εξής: 
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                                                   (7.3) 

 
Εάν αναζητείται το ελάχιστο βάρος W  της κατασκευής, είναι δυνατόν να διατυπωθεί η 
ακόλουθη τετραγωνική µορφή του προβλήµατος: 
 

min ( ) ( ) ( ) ( )21
2

TW x W x W x x x W x x⎛ ⎞∆ = +∇ ∆ + ∆ ∇ ∆⎜ ⎟
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                       (7.4) 

subject to ( ) ( ) 0, 1,2,...,T
i ig x g x x i N+∇ ∆ ≤ =
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                            (7.5) 
 
Εάν θεωρηθεί ότι οι ράβδοι είναι κυκλικής διατοµής, τότε το βάρος της κατασκευής 
εκφράζεται συναρτήσει του τετραγώνου της ακτίνας iR  της εκάστοτε διατοµής:  
 

2

1

n

i i i
i

W R lπ ρ
=

= ∑                                                        (7.6) 

 
Σε αυτήν, δε, την περίπτωση, η αξονική τάση της i-ράβδου εκφράζεται ως: 
 

int

2
i

i
i

F
R

σ
π
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                          (7.7) 

 
Ως προς την ακτίνα iR  της εκάστοτε κυκλικής διατοµής, η τετραγωνική µορφή του 
προβλήµατος διατυπώνεται ως εξής: 
 

min ( ) ( ) ( ) ( )21
2

TW R W R W R R R W R R⎛ ⎞∆ = +∇ ∆ + ∆ ∇ ∆⎜ ⎟
⎝ ⎠% % % % % % %

                     (7.8) 

subject to ( ) ( ) 0, 1,2,...,T
i ig R g R R i N+∇ ∆ ≤ =
% % %

                           (7.9) 
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Η τελευταία διατύπωση είναι προτιµητέα έναντι εκείνης των Εξ.(7.4, 7.5), διότι η 
αντικειµενική συνάρτηση αποτελεί έκφραση τετραγωνικής µορφής ως προς τις µεταβλητές 
σχεδίασης, συνεπώς ο πίνακας Hessian ( )2W R∇

%
 είναι ένας καλώς ορισµένος διαγώνιος 

πίνακας. 
 
7.2.3. Η έννοια της οµαδοποίησης 

Η οµαδοποίηση διατοµών (Σχήµα.7.1) αφορά δοµικά µέλη µε ίδια ή περίπου ίδια διατοµή. 
Σε αυτήν την περίπτωση, είναι δυνατόν να αποδοθεί η ίδια διατοµή σε όλα αυτά τα µέλη, τα 
οποία και εντάσσονται σε µία οµάδα µε κοινή διατοµή. Με αυτόν τον τρόπο, το πλήθος των 
διαφορετικών διατοµών, οι οποίες τελικά θα χρησιµοποιηθούν για τη βέλτιστη σχεδίαση, 
µειώνεται. 

 

 
Σχήµα 7.1: Οµαδοποίηση διατοµών 

 
Από την άλλη πλευρά, η οµαδοποίηση µελών (Σχήµα.7.2) αφορά σε δοµικά µέλη τα οποία 

όχι µόνον διαθέτουν ίδια διατοµή αλλά είναι και συνευθειακά. Σε αυτήν την περίπτωση, τα εν 
λόγω µέλη συνενώνονται και αντικαθίστανται από ένα µέλος, ίδιας διατοµής µε τα επί µέρους 
µέλη, το µήκος του οποίου ισούται µε το άθροισµα των µηκών των επί µέρους µελών. Με 
αυτόν τον τρόπο, µειώνεται το πλήθος των µελών µίας οµάδας διατοµών. 
 

 
Σχήµα 7.2: Οµαδοποίηση µελών 

 

7.2.4. ∆ιαδικασία οµαδοποίησης διατοµών 
Η προτεινόµενη οµαδοποίηση διατοµών, µετά το πέρας της διαδικασίας βελτιστοποίησης, 

στηρίζεται στον απλό στατιστικό κανόνα σύµφωνα µε τον οποίο µία οµάδα τιµών xi είναι 
δυνατόν να αντικατασταθεί από την µέση τιµή τους x  εάν η αντίστοιχη τυπική απόκλιση s , 
ή, ισοδύναµα, η τιµή του συντελεστή µεταβλητότητα CV , είναι αρκούντως µικρή. 
Ειδικότερα, η προτεινόµενη διαδικασία οµαδοποίησης είναι η ακόλουθη: 
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Βήµα 1: ταξινόµηση κατά φθίνουσα όλων διατοµών , 1,2,...,ix i N=  της βέλτιστης σχεδίασης  
Βήµα 2:  απόδοση της τιµής 1 στον µετρητή των οµάδων διατοµών ( )gn  και του τρέχοντος 

στοιχείου ( )ce  ( )1gn ce= =  
Βήµα 3:  απόδοση της τιµής 1x  στην οµάδα 1gn =  
Βήµα 4:  απόδοση στον µετρητή ce  του τρέχοντος στοιχείου της τιµής 2 
Βήµα 5:  απόδοση της τιµής cex  στην οµάδα gn  
Βήµα 6: για την οµάδα gn , υπολογισµός της µέσης τιµής gnx  και της τυπικής απόκλισης gns  

(ή του συντελεστού µεταβλητότητας gnCV ) 
Βήµα 7: ΕΑΝ gns tol≤  (ή gnCV tol≤ ) ΤΟΤΕ αύξηση του µετρητή ce  κατά 1 και επιστροφή 

στο Βήµα 5 
Βήµα 8:  ΕΑΝ gns tol>  (ή gnCV tol> ) ΤΟΤΕ  

Αποµάκρυνση του στοιχείου ce  από την οµάδα gn  
Αύξηση του µετρητή των οµάδων διατοµών gn  κατά 1 
Απόδοση του στοιχείου ce  στη νέα οµάδα gn  
Αύξηση του µετρητή του τρέχοντος στοιχείου ce  κατά 1 

Βήµα 9: ΕΑΝ ce N<  ΤΟΤΕ επιστροφή στο Βήµα 5 ∆ΙΑΦΟΡΕΤΙΚΑ Τερµατισµός 
 

Σηµειώνεται ότι η ποσότητα tol  είναι µία µικρή, θετική ποσότητα και ορίζεται από τον 
χρήστη. Είναι προφανές ότι σηµαντικών διαφορετικές τιµές της ποσότητας tol  είναι δυνατόν 
να καταλήξουν σε σηµαντικώς διαφορετικές βέλτιστες σχεδιάσεις. Η ανωτέρω διαδικασία 
αποτελεί µία συστηµατική, στατιστικής φύσεως, ταξινόµηση των διατοµών σε οµάδες. Το 
επόµενο βήµα είναι η αποµάκρυνση (διαγραφή) οµάδων διατοµών µε αµελητέα συνεισφορά 
στην κατασκευή. Με άλλα λόγια, το επόµενο βήµα είναι η ελαχιστοποίηση του µετρητή gn . 
 
7.2.5. ∆ιαγραφή οµάδων διατοµών 

Από στατιστικής απόψεως, η διαγραφή οµάδων διατοµών έχει την έννοια της συνένωσης, 
µία διαδικασία η οποία υπακούει σε συγκεκριµένους στατιστικούς κανόνες (Petruccelli, 
1999). Από την οπτική γωνία ενός Μηχανικού, η διαγραφή οµάδων διατοµών, µετά την 
εφαρµογή µίας διαδικασίας βελτιστοποίησης, έχει την έννοια της αποµάκρυνσης όλων 
εκείνων των µελών µε διατοµή ίση ή περίπου ίση µε την µικρότερη δυνατή διατοµή, διότι 
αυτά τα µέλη δεν συνεισφέρουν στην αντοχή της κατασκευής. Στην πραγµατικότητα, 
πρόκειται για µέλη τα οποία πολύ πιθανώς να αποµακρύνονταν κατά τη διαδικασία της 
βελτιστοποίησης, ωστόσο διατηρούνται στην κατασκευή για λόγους αριθµητικής ευστάθειας. 
Η διαγραφή µίας οµάδας διατοµών είναι δυνατόν να επιτευχθεί µέσα από µία διαδικασία δύο 
βηµάτων. Στο πρώτο βήµα, κατασκευάζεται ένα ιστόγραµµα µε όλες τις διατοµές, οι οποίες 
εµφανίζονται στη βέλτιστη σχεδίαση, προκειµένου να εντοπισθούν πιθανές προς 
αποµάκρυνση οµάδες διατοµών. Στο δεύτερο βήµα, ελέγχεται κατά πόσον διακυβεύεται η 
ευστάθεια της κατασκευής από την αποµάκρυνση µίας υποψήφιας οµάδος διατοµών. Αυτό 
ελέγχεται πολύ εύκολα, εκτιµώντας, για το µητρώο δυσκαµψίας της εκάστοτε ελεγχόµενης 
κατασκευής, το βαθµό κατάστασης, µέσω του οποίου διαπιστώνεται κατά πόσον το εν λόγω 
µητρώο είναι αντιστρέψιµο ή όχι. Στην παρούσα, χρησιµοποιήθηκε η προσέγγιση των 
προαναφερθέντων δύο βηµάτων. 
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7.2.6. Περαιτέρω δυνατές επεµβάσεις 
Η διαδικασία της διαγραφής διατοµών δεν είναι τίποτε άλλο παρά αποµάκρυνση υλικού 

από την κατασκευή, οπότε η ποσότητα του εναποµείναντος στην κατασκευή υλικού 
µειώνεται. Αυτό σηµαίνει ότι το βάρος της κατασκευής µειώνεται, ενώ οι αναπτυσσόµενες 
τάσεις αυξάνονται, ενδεχοµένως παραβιάζοντας ελαφρά τους επιβαλλόµενους περιορισµούς 
τάσης. Σε εφαρµογές Μηχανικού, αυτή η προσέγγιση είναι αποδεκτή και εάν η προκύπτουσα 
σκελετική κατασκευή είναι υπερστατική τότε δεν απαιτείται η λήψη κάποιων πρόσθετων 
µέτρων. Στην περίπτωση διαµόρφωσης ισοστατικού δικτυώµατος, η επιπρόσθετη εφαρµογή 
µίας διαδικασίας βελτιστοποίησης επί του εν λόγω δικτυώµατος θα οδηγήσει σε µία νέα 
διαστασιολόγηση µε ταυτόχρονη ικανοποίηση όλων των περιορισµών. Εάν, δε, η 
προκύπτουσα σκελετική κατασκευή είναι υποστατική (µηχανισµός), τότε απαιτείται πρώτα η 
προσθήκη δοµικών µελών προς διαµόρφωση µίας τουλάχιστον ισοστατικής κατασκευής και 
στη συνέχεια η επιπρόσθετη εφαρµογή µίας διαδικασίας βελτιστοποίησης, όπως αναφέρθηκε 
προηγουµένως. 
 
7.2.7. Αριθµητικά παραδείγµατα 

Στην παρούσα ενότητα, µελετήθηκαν τέσσερα βιβλιογραφικά παραδείγµατα, ήτοι ο κοντός 
πρόβολος, ο µακρύς πρόβολος, η δοκός MMB (Messerschmitt-Bölkow-Blohm) και η δοκός 
σχήµατος L (L-δοκός). Πιο συγκεκριµένα, η διαδικασία, η οποία εφαρµόσθηκε, αποτελείται 
από τις ακόλουθες φάσεις (κατά σειρά εκτέλεσης): 
 
Φάση 1: Βελτιστοποίηση της κατασκευής µε τη µέθοδο SQP (βλ. Ενότητα 8.2.3) 
Φάση 2: Οµαδοποίηση των δοµικών µελών (βλ. Ενότητα 8.2.4) 
Φάση 3: ∆ιαγραφή ‘άχρηστων’ δοµικών µελών (βλ. Ενότητα 8.2.5) 
Φάση 4: Όπου εφικτόν, εφαρµογή διαδικασίας µετά-οµαδοποίησης (βλ. Ενότητα 8.2.6) 
 

Μετά το πέρας των Φάσεων 1, 3 και 4, καταγράφηκαν και συγκρίθηκαν ο όγκος της 
κατασκευής και η µέγιστη αξονική τάση. Για λόγους ελέγχου και επιβεβαίωσης των 
αποτελεσµάτων, οι εκάστοτε προκύπτουσες βέλτιστες σχεδιάσεις αναλύονταν µε το εµπορικό 
λογισµικό ανάλυσης κατασκευών ALGOR (ver.12).  

Στις επόµενες ενότητες, παρουσιάζονται τα αποτελέσµατα για κάθε ένα από τα 
εξετασθέντα παραδείγµατα. Κάθε παράδειγµα συνοδεύεται από δύο Σχήµατα. Το πρώτο 
Σχήµα διαθέτει τέσσερεις απεικονίσεις, εκ των οποίων η πρώτη (a) δείχνει την προς µελέτη 
κατασκευής (οι διαστάσεις σε [m]), η δεύτερη (b) δείχνει το πλέγµα (σκελετική προσέγγιση) 
της κατασκευής, η τρίτη (c) παρουσιάζει το αποτέλεσµα της Φάσεως 1, ενώ η τέταρτη (d) 
παρουσιάζει το αποτέλεσµα της Φάσεως 4. Το δεύτερο Σχήµα περιλαµβάνει ένα διάγραµµα 
κατανοµής διατοµών, για την εκάστοτε κατασκευή και µετά το πέρας της Φάσεως 1, καθώς 
και έναν Πίνακα µε στατιστικά στοιχεία σχετικά µε την οµαδοποίηση των διατοµών της 
βελτιστοποιηµένης σχεδίασης.  
 
7.2.7.1. Ο κοντός πρόβολος 

Ο κοντός πρόβολος, ως µία 2∆ σκελετική κατασκευή, απεικονίζεται στο Σχήµα 8.3a. Η 
αριστερή πλευρά ( )0x =  του προβόλου είναι πακτωµένη, ενώ ένα κατακόρυφο φορτίο 

12F N=  ασκείται στη δεξιά πλευρά του και στη θέση ( ) ( ), 1, 1.5x y = . Η µέγιστη 
επιτρεπόµενη τάση είναι max 30Paσ = , ενώ το µέτρο ελαστικότητας είναι 1E Pa= . Για τον 
εν λόγω πρόβολο, είναι γνωστό ότι η βέλτιστη σχεδίαση της σκελετικής του διαµόρφωσης 
προκύπτει όταν χρησιµοποιηθεί πλέγµα µε λόγο πλευρών 1λ =  (Provatidis και Venetsanos, 
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2003). Βάσει αυτής της πληροφορίας, δηµιουργήθηκε το πλέγµα του Σχήµατος 8.3b, το οποίο 
αποτελείται από 456  ράβδους.  
 

 
Σχήµα 7.3: Ο κοντός πρόβολος 

 
Το αποτέλεσµα της εφαρµογής της Φάσεως 1 απεικονίζεται στο Σχήµα 7.3c, ενώ το 
αποτέλεσµα της εφαρµογής της Φάσεως 4 φαίνεται στο Σχήµα 7.3d. Η κατανοµή των 
διατοµών µετά τη Φάση 1 παρουσιάζεται στο Σχήµα 7.4a, ενώ αναλυτικότερα στατιστικά 
στοιχεία σχετικά µε τη Φάση 4 παρουσιάζονται στο Σχήµα 7.4b. 
 

 
Σχήµα 7.4: Στατιστική ανάλυση δοµικών στοιχείων για τον βελτιστοποιηµένο κοντό 

πρόβολο 
 
7.2.7.2.  Ο µακρύς πρόβολος 

Ο µακρύς πρόβολος απεικονίζεται στο Σχήµα 7.5a. Η αριστερή πλευρά ( )0x =  του 
προβόλου είναι πακτωµένη, ενώ ένα κατακόρυφο φορτίο 12F N=  ασκείται στη δεξια 
πλευρά του και στη θέση ( ) ( ), 16, 5x y = . Η µέγιστη επιτρεπόµενη αξονική τάση είναι 

max 30Paσ = , ενώ το µέτρο ελαστικότητας είναι 1E Pa= . Για τον εν λόγω πρόβολο, είναι 
γνωστό ότι η βέλτιστη σχεδίαση της σκελετικής του διαµόρφωσης προκύπτει όταν 
χρησιµοποιηθεί πλέγµα µε λόγο πλευρών ( )5 8λ =  (Provatidis και Venetsanos, 2003). Βάσει 
αυτής της πληροφορίας, δηµιουργήθηκε το πλέγµα του Σχήµατος 7.5b, το οποίο αποτελείται 
από 420  ράβδους. Το αποτέλεσµα της εφαρµογής της Φάσεως 1 απεικονίζεται στο Σχήµα 
7.5c, ενώ το αποτέλεσµα της εφαρµογής της Φάσεως 4 φαίνεται στο Σχήµα 7.5d. Η κατανοµή 
των διατοµών µετά τη Φάση 1 παρουσιάζεται στο Σχήµα 7.6a, ενώ αναλυτικότερα στατιστικά 
στοιχεία σχετικά µε τη Φάση 4 παρουσιάζονται στο Σχήµα 7.6b. 
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Σχήµα 7.5: Ο µακρύς πρόβολος 

 

 
Σχήµα 7.6: Στατιστική ανάλυση δοµικών στοιχείων για τον βελτιστοποιηµένο µακρύ 

πρόβολο 
 

 
7.2.7.3. Η δοκός MBB 

Η δοκός MBB απεικονίζεται στο Σχήµα 7.7a. Το κάτω αριστερό άκρο ( ) ( ), 0,0x y =  της 

δοκού είναι αρθρωµένο, ενώ το κάτω δεξιό άκρο της ( ) ( ), 6,0x y =  φέρει κύλιση. Ένα 

κατακόρυφο φορτίο 2F N=  ασκείται στο µέσο ( ) ( ), 3,1x y =  της δοκού. Η µέγιστη 
επιτρεπόµενη τάση είναι max 20Paσ = , ενώ το µέτρο ελαστικότητας είναι 1E Pa= . Για τη 
δοκό MBB είναι γνωστό ότι η βέλτιστη σχεδίαση της αντίστοιχης σκελετικής διαµόρφωσης 
επιτυγχάνεται όταν ο λόγος πλευρών είναι ίσος προς 1λ =  (Provatidis και Venetsanos, 2003). 
Με βάση αυτήν την πληροφορία, δηµιουργήθηκε το πλέγµα του Σχήµατος 7.7a, το οποίο 
περιλαµβάνει 412  ράβδους. 

Το αποτέλεσµα της εφαρµογής της Φάσεως 1 της προτεινοµένης διαδικασίας 
απεικονίζεται στο Σχήµα 7.7c και το τελικό αποτέλεσµα της εφαρµογής της Φάσεως 4 
παρουσιάζεται στο Σχήµα 7.7d. Η κατανοµή των διατοµών των ράβδων µετά τη Φάση 1 
φαίνεται στο Σχήµα 7.8a, ενώ αναλυτικότερα στατιστικά στοιχεία σχετικά µε τη Φάση 4 
παρουσιάζονται στο Σχήµα 7.8b.  
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Σχήµα 7.7: Η δοκός MBB 

 

 
Σχήµα 7.8: Στατιστική ανάλυση δοµικών στοιχείων για τη βελτιστοποιηµένη δοκό MBB 

 
 
7.2.7.4. Η δοκός σχήµατος L (L-δοκός) 

Η δοκός σχήµατος L απεικονίζεται στο Σχήµα 7.10a. Όπως φαίνεται, η άνω ακµή ( )0y =  
της δοκού είναι πακτωµένη, ενώ ένα κατακόρυφο φορτίο 1F N=  ασκείται στη θέση 
( ) ( ), 1,0.2x y = . Η µέγιστη επιτρεπόµενη τάση είναι max 30Paσ = , ενώ το µέτρο 
ελαστικότητας είναι ίσο µε 1E Pa= . Για την L-δοκό είναι γνωστό ότι εάν χρησιµοποιηθεί 
ενιαίο πλέγµα, δηλαδή εάν ο λόγος πλευρών είναι σταθερός σε όλη την έκταση του 
πλέγµατος, τότε το ελάχιστο βάρος προκύπτει για λόγο πλευρών ( )1 2λ =  (Provatidis και 
Venetsanos, 2003). Ωστόσο, σε αυτήν την περίπτωση, προκύπτει µία κατανοµή διατοµών µε 
αρκετά µεγάλη διασπορά, όπως φαίνεται στο Σχήµα 7.9b, κάτι που λειτουργεί εις βάρους της 
κοινοτυπίας. Συνεπώς, η χρήση µη-ενιαίου πλέγµατος (Σχήµα 7.10b). Θεωρώντας λόγους 
πλευρών 1 1λ = , ( )2 1 2λ =  και ( )3 1 3λ = , ως φαίνεται στο Σχήµα 7.10b, κατασκευάσθηκε 
ένα πλέγµα µε 825 ράβδους. Το αποτέλεσµα της εφαρµογής της Φάσεως 1 της προτεινόµενης 
διαδικασίας απεικονίζεται στο Σχήµα 7.10c, ενώ το τελικό αποτέλεσµα της Φάσεως 4 
φαίνεται, µε συνεχείς γραµµές, στο Σχήµα 7.10d. Η κατανοµή των διατοµών µετά την 
επιβολή της Φάσεως 1 απεικονίζεται στο Σχήµα 7.11a, ενώ στατιστικά στοιχεία σχετικά µε 
την εν λόγω κατανοµή παρουσιάζονται στο Σχήµα 7.11b. Σε αυτό το σηµείο διευκρινίζεται 
ότι ο χρήστης είναι δυνατόν να επέµβει στην τελική κατασκευή, προκειµένου να τοποθετήσει, 
κατά την κρίση του, επιπρόσθετα δοµικά µέλη (διακεκοµµένη γραµµή στο Σχήµα 7.10d και 
µεταξύ των κόµβων A και C). 
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Σχήµα 7.9: Η L-δοκός (λόγος πλευρών πλέγµατος: λ=const) 

 

 
Σχήµα 7.10: Η L-δοκός (λόγος πλευρών πλέγµατος: λ≠ const) 

 

 
Σχήµα 7.11: Στατιστική ανάλυση δοµικών στοιχείων για τη βελτιστοποιηµένη L-δοκό (λόγος 

πλευρών πλέγµατος: λ≠const) 
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7.2.8. Αξιολόγηση 
Η διερεύνηση, η οποία παρατέθηκε ανωτέρω, στηρίζεται στην εφαρµογή της 

προτεινόµενης διαδικασίας τεσσάρων φάσεων. Για λόγους αξιολόγησης, πραγµατοποιήθηκε 
σύγκριση µε τα αποτελέσµατα, τα οποία λαµβάνονται όταν χρησιµοποιηθεί µία ισχυρή, 
βιβλιογραφική διαδικασία βελτιστοποίησης, όπως είναι η µέθοδος SQP (Sequential Quadratic 
Programming). Προς αυτήν την κατεύθυνση, δηµιουργήθηκαν οι Πίνακες 7.1 και 7.2. Πιο 
συγκεκριµένα, το αποτέλεσµα από το πέρας της Φάσεως 1 σηµειώνεται ως [P1], ενώ το 
αποτέλεσµα από το πέρας της Φάσεως 4 σηµειώνεται ως [P4]. Μία σύγκριση µεταξύ των 
καταστάσεων [P1] και [P4] παρουσιάζεται στον Πίνακα 7.1 µε κριτήριο την κατασκευαστική 
απλότητα, δηλαδή ως προς το πλήθος των οµάδων διατοµών και το πλήθος των ράβδων. 

 
Πίνακας 7.1: Σύγκριση ως προς την κατασκευαστική απλότητα (οµάδες διατοµών και 
πλήθος ράβδων)  

 
 
Ειδικότερα, σε κάθε ένα από τα εξετασθέντα παραδείγµατα αντιστοιχεί µία τριάδα 

στηλών. Οι, σηµειούµενες ως [P1] και [P4], στήλες παρουσιάζουν δεδοµένα σχετικά µε τις 
καταστάσεις [P1] και [P4], αντίστοιχα. Οι, σηµειούµενες µε [%], στήλες παρουσιάζουν µια 
σχετική σύγκριση, σε εκατοστιαία γραφή, µεταξύ των καταστάσεων [P1] και [P4], 
θεωρώντας ως αναφορά την κατάσταση [P1]. Η γραµµή µε την ένδειξη minix x=  αναφέρεται 
σε εκείνες τις ράβδους, των οποίων η διατοµή ix  λαµβάνει την κατώτερη δυνατή τιµή minx . 
Η γραµµή µε την ένδειξη i minx x≈  αναφέρεται σε εκείνες τις ράβδους, των οποίων η διατοµή 

ix  λαµβάνει τιµή πλησίον της κατώτερης δυνατής τιµής minx . Οι γραµµές µε ένδειξη 

i minx x≠  και i minx x≈/  αναφέρονται σε ράβδους, οι διατοµές ix  των οποίων δεν είναι ούτε 
ίσες ούτε περίπου ίσες µε την κατώτερη δυνατή τιµή minx . Η γραµµή µε την ένδειξη ‘Total’ 
αναφέρεται σε πλήθος ράβδων, οι οποίες εµφανίζονται στις καταστάσεις [Ρ1] και [Ρ4], 
αντίστοιχα. Τέλος, η γραµµή µε την ένδειξη ‘Groups’ αναφέρεται στο πλήθος των 
διαφορετικών διατοµών, οι οποίες εµφανίζονται στη βέλτιστη σχεδίαση. ∆ιευκρινίζεται ότι, 
για λόγους απλοποίησης στη γραφή, οι % διαφορές στρογγυλοποιούνται στην πλησιέστερη 
ακέραιη τιµή. 

Από τον Πίνακα 7.1, προκύπτει ότι η κατάσταση [P4] υπερτερεί έναντι της κατάστασης 
[P1]. Πιο συγκεκριµένα, για την περίπτωση του κοντού προβόλου, η κατάσταση [Ρ4] 
εµπλέκει µόνον δύο δοµικά µέλη, τα οποία, µάλιστα, είναι της αυτής διατοµής, άρα 
σχηµατίζουν µία οµάδα διατοµών. Αντιθέτως, η κατάσταση [Ρ1] περιλαµβάνει 456  δοµικά 
µέλη και 20  διαφορετικές διατοµές, άρα 20 οµάδες διατοµών. Συνεπώς, η εφαρµογή της 
προτεινοµένης διαδικασίας κατέληξε σε µία µείωση του πλήθους των συµµετεχόντων 
δοµικών στοιχείων της τάξεως του 99%  και του πλήθους των εµπλεκοµένων διατοµών κατά 
95% . Λαµβάνοντας υπόψη και τα τέσσερα παραδείγµατα, προέκυψε ότι το πλήθος των 
συµµετεχόντων δοµικών στοιχείων µειώθηκε από 97% έως και 99% , ενώ το πλήθος των 
εµπλεκοµένων διατοµών µειώθηκε κατά 87% έως και 95% .  
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Ο Πίνακας 2 παρουσιάζει µία σύγκριση µεταξύ των καταστάσεων [Ρ1] και [Ρ4], µε 
κριτήριο τον όγκο της κατασκευής. Η γραµµή µε την ένδειξη ( )%volumeδ  δηλώνει διαφορά 
όγκου µεταξύ των καταστάσεων [Ρ1] και [Ρ2], µε αναφορά την κατάσταση [Ρ1].  
 
Πίνακας 7.2: Σύγκριση ως προς τον όγκο της κατασκευής 

 
 

Από τον Πίνακα 2, προκύπτει ότι, συγκριτικά µε την κατάσταση [Ρ1], η κατάσταση [Ρ4] 
συνοδεύεται από µείωση του όγκου της τάξεως από 0.13%  έως και 1.79% . Προφανώς, αυτή 
η µείωση, αν και υπαρκτή, δεν είναι εντυπωσιακή. Ωστόσο, το µεγάλο κέρδος από την 
αύξηση της κοινοτυπίας δεν είναι τόσο η χρησιµοποίηση µικρότερης ποσότητας υλικού όσο η 
χρησιµοποίηση αυξηµένου πλήθους οµοίων δοµικών στοιχείων, κάτι που µειώνει σηµαντικά 
το κατασκευαστικό κόστος. Υπό αυτό το πρίσµα, η σηµασία της οµαδοποίησης, ή, 
ισοδύναµα, η σηµασία της αύξησης της κοινοτυπίας σε µία κατασκευή, είναι αυταπόδεικτη. 
 
7.3. Ελαχιστοποίηση κόστους θεωρώντας κόστος συγκόλλησης και φύρα 
7.3.1. Γενικά 

Η µείωση του κατασκευαστικού κόστους είναι εφικτή εάν, εκτός του κόστους αγοράς της 
πρώτης ύλης, συνυπολογισθούν το κόστος των συγκολλήσεων και το κόστος της φύρας. 
Ωστόσο, δεν υπάρχει µία διαδικασία βελτιστοποίησης γενικού χαρακτήρα, τέτοια ώστε να 
λαµβάνει υπόψη τα προαναφερθέντα κόστη, χωρίς να απαιτείται κάποια διαδικασία 
υπολογισµών καθέτου εφαρµογής. Με άλλα λόγια, αντί µίας γενικής διαδικασίας, είναι 
προτιµητέα η ανάπτυξη διαδικασιών βελτιστοποίησης προσανατολισµένων στις ανάγκες των 
εκάστοτε εξεταζοµένων κατασκευών. Σε αυτό το πλαίσιο, επελέγη η ανάπτυξη διαδικασίας 
βελτιστοποίησης σχεδίασης µεταλλικών δεξαµενών αποθήκευσης πετρελαιοειδών. Για τη 
σχεδίαση χρησιµοποιήθηκε το πρότυπο ΑΡΙ650. 
 
7.3.2. Ορισµός παραµέτρων 

Οι πλέον σηµαντικές παράµετροι στη σχεδίαση δεξαµενών είναι η χωρητικότητά τους και 
οι διαστάσεις τους. ∆ιευκρινίζεται ότι ο πλέον συνήθης προσανατολισµός δεξαµενών 
αποθήκευσης πετρελαιοειδών είναι ο κατακόρυφος (Σχήµα 7.12).  
 

 
Σχήµα 7.12: Τυπικές δεξαµενές αποθήκευσης πετρελαιοειδών διαφορετικών λόγων ακτίνας 

προς ύψος 
 

Σε µία δεξαµενή υπάρχουν τρία βασικά τµήµατα, ήτοι η οροφή, το πλαϊνό τοίχωµα και ο 
πυθµένας, ο οποίος είναι επικαλυµµένος µε µεταλλικές πλάκες και τοποθετείται επί 
καταλλήλου θεµελίου. Η οροφή και η θεµελίωση αποτελούν ευθύνη Πολιτικού Μηχανικού, 
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ενώ το πλαϊνό τοίχωµα και ο πυθµένας αποτελούν αντικείµενο Μηχανολόγου Μηχανικού. 
Για αυτόν τον λόγο, στην παρούσα εξετάζονται µόνον τα δύο τελευταία. Συνεπώς, από την 
οπτική του Μηχανολόγου Μηχανικού, η βέλτιστη σχεδίαση µίας δεξαµενής αποτελείται από 
τρία επί µέρους προβλήµατα βελτιστοποίησης:  

• Βελτιστοποίηση του πλαϊνού τοιχώµατος 
• Βελτιστοποίηση των δακτυλιοειδών πλακών (sketch plates) του πυθµένα 
• Βελτιστοποίηση των ελασµάτων επίστρωσης του πυθµένα 

Κάθε ένα από αυτά τα προβλήµατα αναλύεται συνοπτικά στις επόµενες ενότητες. 
 
7.3.3. Βελτιστοποίηση του πλαϊνού τοιχώµατος της δεξαµενής 
7.3.3.1. Layout optimization 

Για κατασκευαστικούς λόγους, το πλαϊνό τοίχωµα της δεξαµενής σχηµατίζεται από 
ελάσµατα ορθογωνικού σχήµατος. Μετά από ειδική κατεργασία (κουρµπάρισµα), κάθε 
έλασµα αποκτά µία συγκεκριµένη καµπυλότητα. Πολλά τέτοια ελάσµατα συνδεδεµένα 
µεταξύ τους µέσω µετωπικής συγκόλλησης σχηµατίζουν µία δακτυλιοειδή κλειστή επιφάνεια, 
ή, για συντοµία, δακτυλίδι (course). Το πλαϊνό τοίχωµα της δεξαµενής σχηµατίζεται όταν 
δακτυλίδια τοποθετούνται το ένα επάνω στο άλλο. Ειδικά για δεξαµενές αποθήκευσης 
πετρελαιοειδών, απαιτείται η χρήση πιστοποιηµένων ελασµάτων, τόσο ως προς τις 
γεωµετρικές τους διαστάσεις όσο και ως προς τις ιδιότητες του υλικού. 

Από κατασκευαστικής απόψεως, η βέλτιστη σχεδίαση του πλαϊνού τοιχώµατος 
επιτυγχάνεται όταν απαιτείται η χρήση ακεραίου πλήθους ελασµάτων, ή, ισοδύναµα, όταν 
αξιοποιείται όλο το υλικό το οποίο έχει αγορασθεί (µηδενική φύρα). Συνεπώς, µία πρώτη 
προσέγγιση του προβλήµατος της σχεδίασης µίας δεξαµενής θα ήταν η αναζήτηση εκείνης 
της σχεδίασης δεξαµενής ‘µηδενικής φύρας’ για την οποία η χωρητικότητά της είναι η 
πλησιέστερη δυνατή στην χωρητικότητα προδιαγραφής. Η µαθηµατική διατύπωση αυτού του 
προβλήµατος βελτιστοποίησης είναι η εξής: 
 

Ελαχιστοποίηση ( )specifV V−  

µε ( ), , , ,, , , , 1,2,3,...circ j circ j vert j vert jV f N L N W j= =  

και , ,specif low specif highD D D≤ ≤ , , ,specif low specif highH H H≤ ≤ ,                       (7.10) 

( ) ( ) ( ), ,
/ / /

specif low specif high
H D H D H D≤ ≤  

όπου  
V    είναι η χωρητικότητα της βελτιστοποιηµένης δεξαµενής,  

specifV   είναι η χωρητικότητα προδιαγραφής της δεξαµενής,  

,circ jL   είναι το µήκος των ελασµάτων κατά την περιφερειακή διεύθυνση της δεξαµενής, 

,circ jN   είναι το πλήθος ελασµάτων µήκους ,circ jL  κατά την περιφερειακή διεύθυνση της 
δεξαµενής, 

,vert jW   είναι το πλάτος των ελασµάτων κατά την κατακόρυφη διεύθυνση της δεξαµενής, 

,vert jN   είναι το πλήθος ελασµάτων πλάτους ,vert jW  κατά την κατακόρυφη διεύθυνση της 
δεξαµενής, 
D   είναι η διάµετρος της δεξαµενής, 

specifD  είναι η διάµετρος προδιαγραφής της δεξαµενής, 
H   είναι η ύψος της δεξαµενής και 

specifH  είναι το ύψος προδιαγραφής της δεξαµενής. 
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Η επιβολή περιορισµού σχετικά µε τον λόγο ύψους δεξαµενής προς διάµετρο δεξαµενής 
είναι υποχρεωτική, διαφορετικά είναι δυνατόν να προκύψουν ακραίες σχεδιάσεις µηδενικής 
πρακτικής αξίας. ∆εδοµένου, δε, ότι για την εξεταζόµενη περίπτωση δεξαµενής πρέπει 
χρησιµοποιηθούν πιστοποιηµένα ελάσµατα, σε συνδυασµό µε το γεγονός ότι στην Ελληνική 
αγορά διατίθενται πιστοποιηµένα ελάσµατα διαστάσεων 2 6m m×  και 2.5 6m m× , το 
πρόβληµα βελτιστοποίησης της Εξ.(7.10) είναι δυνατόν να εκφρασθεί ως εξής (αναφέρεται 
µόνον η αντικειµενική συνάρτηση µιας και οι περιορισµοί είναι οι ίδιοι): 
 

Ελαχιστοποίηση ( )specifV V−  

µε ( ),1 ,1 ,2 ,2, 6, , 2, , 2.5circ circ vert vert vert vertV f N L N W N W= = = =                 (7.11) 
 
Εκτός από τη χωρητικότητα, η οποία είναι η κυριαρχούσα προδιαγραφή σε µία δεξαµενή, 
υπάρχουν και άλλες παράµετροι καθοριστικές για την επιλογή της τελικής σχεδίασης, όπως 
είναι ο χρόνος που απαιτείται για την αµµοβολή και το χρωµατισµό του πλαϊνού τοιχώµατος 
της δεξαµενής, καθώς και ο χρόνος για την εκτέλεση των συγκολλήσεων. Συνεπώς, το 
ανωτέρω πρόβληµα βελτιστοποίησης είναι δυνατόν να επαναδιατυπωθεί µε έναν πιο 
λεπτοµερή τρόπο, ως εξής: 
 

Ελαχιστοποίησης ( )specifV V− , shellA , ,weld circL , ,weld vertL  

µε ( ),1 ,1 ,2 ,2, 6, , 2, , 2.5circ circ vert vert vert vertV f N L N W N W= = = =                 (7.12) 
 
όπου shellA  δηλώνει το εµβαδόν του πλαϊνού τοιχώµατος, ,weld circL  είναι το µήκος της 
συγκόλλησης κατά την περιφερειακή διεύθυνση της δεξαµενής και ,weld vertL  είναι το µήκος 
της συγκόλλησης κατά την κατακόρυφη διεύθυνση της δεξαµενής. Ωστόσο, ενδέχεται η, 
προκύπτουσα από την επίλυση του προβλήµατος (7.12), σχεδίαση να είναι σηµαντικά 
διαφορετική από την προδιαγραφή. Αυτό σηµαίνει ότι η θεωρητικώς βέλτιστη σχεδίαση 
ενδέχεται να χαρακτηρίζεται από µικρή, έως και αµελητέα, αξία. Για τον λόγο αυτό, είναι 
προτιµητέα η αναζήτηση της βέλτιστης σχεδίασης σε µία περιοχή ενδιαφέροντος, οπότε το 
πρόβληµα (7.12) διατυπώνεται ως ακολούθως: 
 

Ελαχιστοποίηση ( )( )specifV V V− ± ∆ , shellA , ,weld circL , ,weld vertL  

Με ( ),1 ,1 ,2 ,2, 6, , 2, , 2.5circ circ vert vert vert vertV f N L N W N W= = = =                 (7.13) 
 
όπου V∆  είναι η αποδεκτή απόκλιση της χωρητικότητας της τελικής σχεδίασης από τη 
χωρητικότητα προδιαγραφής.  
 
7.3.3.2. Βελτιστοποίηση πάχους 
Το πλαϊνό τοίχωµα παραλαµβάνει το ίδιον βάρος, το βάρος όλων των, ανηρτηµένων σε αυτό, 
εξαρτηµάτων, φορτίο χιονιού, φορτίο ανέµου και φορτία από εργαλεία συντήρησης, τα οποία 
είναι δυνατόν να τοποθετηθούν στην οροφή της δεξαµενής κατά τη διαδικασία συντήρησης. 
Επίσης, ανάλογα µε την σεισµική δραστηριότητα της περιοχής τοποθέτησης των δεξαµενών, 
συνυπολογίζονται και φορτία λόγω σεισµού. Όλα αυτά τα φορτία έχουν ως αποτέλεσµα την 
ανάπτυξη τάσεων στο πλαϊνό τοίχωµα, οι οποίες δεν πρέπει να ξεπερνούν κάποια ανώτατη 
τιµή, επιβαλλόµενη από κανονισµούς. Συνεπώς, το πρόβληµα βελτιστοποίησης του πάχους 
του πλαϊνού τοιχώµατος είναι δυνατόν να διατυπωθεί ως εξής: 
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Ελαχιστοποίηση ,
1

cN

shell shell j
j

V V
=

= ∑  µε ( ), 1, , , , , , ,shell j d tV f H D t S S E G CA=  

 
υπό τον περιορισµό , ,shell j shell allowτ τ≤                                     (7.14) 

 
όπου  
 
D   είναι η διάµετρος της δεξαµενής, 
H   είναι το ύψος της δεξαµενής, 
1t   είναι το πάχος του πρώτου δακτυλιδιού (first course), 

dS   είναι η επιτρεπόµενη τάση για την κατάσταση σχεδίασης (design condition), 

tS  είναι η επιτρεπόµενη τάση για την κατάσταση δοκιµής υπό υδροστατική πίεση 
(hydrostatic test condition), 

E   είναι ο συντελεστής ασφαλείας των συγκολλήσεων, 
G   είναι η ειδική πυκνότητα του προς αποθήκευση πετρελαιοειδούς, 
CA   είναι το πάχος προστασίας έναντι διάβρωσης και  
τ   δηλώνει τάση. 
 
Οι δείκτες j  και allow  δηλώνουν τον αύξοντα αριθµό του δακτυλιδιού (course) και την 
επιτρεπόµενη τάση , αντίστοιχα, ενώ ως cN  δηλώνεται το συνολικό πλήθος των δακτυλιδιών 
της δεξαµενής. 
 
7.3.4. Βελτιστοποίηση των sketch plates 
7.3.4.1. Κοπή των sketch plates  

Η δακτυλιοειδής ζώνη ελασµάτων (sketch plates), επί της οποίας επικάθεται το πλαϊνό 
τοίχωµα, διαµορφώνεται από, την µεταξύ τους µετωπική συγκόλληση, κατάλληλα κοµµένων 
ελασµάτων. Τα εν λόγω ελάσµατα είναι ορθογωνικής γεωµετρίας και διατίθενται σε 
τυποποιηµένες διαστάσεις, όπως φαίνεται στον Πίνακα 5.3. ∆ιευκρινίζεται ότι, για την 
περίπτωση των sketch plates, δεν απαιτείται η χρήση πιστοποιηµένων ελασµάτων. 
 
Πίνακας 7.3: Ελάσµατα εµπορίου για την κοπή των sketch plates 

3 4 5 6 7 8 9 10 11 12 14 15 16 18 20 22 25 30 35 40 45 50
1000
1250
1500
1800
2000
2300
2500

Available thicknesses [mm]
Width [mm]

 
 

Ωστόσο, τα sketch plates, ως τµήµατα δακτυλίου, έχουν τοξοειδή µορφή, άρα η κοπή 
τέτοιων τµηµάτων από ορθογώνια ελάσµατα συνοδεύεται από απώλεια υλικού (φύρα). 
Ανάλογα µε τη διάταξη των προς κοπή τµηµάτων, µεταβάλλεται και η εν λόγω φύρα, όπως 
φαίνεται στο Σχήµα 7.13.  
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(a) (b) (c) (d) 

Σχήµα 7.13: ∆ιαφορετική διάταξη των sketch plates σε έλασµα τυποποιηµένων διαστάσεων 
 

Συνεπώς, είναι επόµενο να αναζητείται εκείνη η διάταξη για την οποία η φύρα 
ελαχιστοποιείται, οπότε το αντίστοιχο πρόβληµα βελτιστοποίησης διατυπώνεται ως εξής: 
 

Ελαχιστοποίηση unexploitableA  ή scrapA , µε *N ∈Ν                            (7.15) 
 
όπου N  είναι το συνολικό πλήθος των sketch plates.∆ιευκρινίζεται ότι µετά την εύρεση της 
βέλτιστης σχεδίασης για το πλαϊνό τοίχωµα της δεξαµενής, η διάµετρος της δεξαµενής, άρα η 
εσωτερική και εξωτερική ακτίνα των sketch plates, είναι σαφώς ορισµένη και η µεταβλητή 
N  καθίσταται η µόνη άγνωστη ποσότητα.  
 
7.3.4.2. Βελτιστοποίηση πάχους 

Σύµφωνα µε τον κανονισµό API Standard 650, το ελάχιστο πάχος των εν λόγω ελασµάτων 
(sketch plates) συσχετίζεται άµεσα µε τη διάµετρο της δεξαµενής, η οποία εκτιµάται κατά τη 
βελτιστοποίηση του πλαϊνού τοιχώµατος της δεξαµενής (API 650/Section 3.5.3). Συνεπώς, 
δεν έχει έννοια η επίλυση αντιστοίχου προβλήµατος βελτιστοποίησης.  
 
7.3.5. Βελτιστοποίηση των ελασµάτων επίστρωσης του πυθµένα  
7.3.5.1. Βέλτιστη επίστρωση πυθµένα 

Ο πυθµένας µίας δεξαµενής αποθήκευσης πετρελαιοειδών πρέπει να είναι καλυµµένος µε 
χαλύβδινα ελάσµατα πιστοποιηµένης ποιότητας και ακρίβειας γεωµετρικών διαστάσεων. 
Στην Ελληνική αγορά, τέτοιου τύπου ελάσµατα είναι διαθέσιµα στις διαστάσεις 2 6m m×  και 
2.5 6m m× . Συνεπώς, το πρόβληµα της κάλυψης του πυθµένα µε τέτοια ελάσµατα ανάγεται 
σε πρόβληµα προσαρµογής, στο οποίο ορθογωνικά ελάσµατα πρέπει να τοποθετηθούν µε 
τέτοιον τρόπο εντός κύκλου, ώστε το αναξιοποίητο υλικό (φύρα) να ελαχιστοποιηθεί. Το 
προαναφερθέν πρόβληµα απεικονίζεται στο Σχήµα 7.14, στο οποίο έχει αξιοποιηθεί η 
συµµετρία της κατασκευής.  

L 2L / 3 L / 3

        

L

L / 3 L / 3L / 3

2L / 3 L / 3 5L / 6

L / 6

 
(a) 10 14m D m< <  (b) 14 18m D m< <  (c) 18 22m D m< <  

Σχήµα 7.14: Κάλυψη πυθµένα µε ελάσµατα για δεξαµενές διαφόρων διαµέτρων 
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Η κεντρική ιδέα είναι η χρήση περιττού πλήθους ελασµάτων jN  κατά την οριζόντια 
διεύθυνση και η προσαρµογή του ελάσµατος κατά την εγκάρσια διεύθυνση (κατακόρυφη 
διεύθυνση στο Σχήµα 7.14), έτσι ώστε να χρησιµοποιείται είτε ένα ολόκληρο έλασµα είτε ένα 
καλώς ορισµένο τµήµα αυτού. Στο Σχήµα 7.14 απεικονίζεται η περίπτωση δεξαµενής µε 
διάµετρο D  µεταξύ των τιµών minD  και maxD , όπου ως εσωτερικός κύκλος αντιστοιχεί στη 
διάµετρο minD  και ο εξωτερικός κύκλος αντιστοιχεί στη διάµετρο maxD . Οι υποδιαιρέσεις 
των ελασµάτων, οι οποίες απαιτούνται για κάθε µία εκ των περιπτώσεων του Σχήµατος 7.14, 
δηλώνονται µε διαφορετικό χρώµα ως φαίνεται στο ίδιο Σχήµα. Οι γραµµοσκιασµένες 
περιοχές αντιστοιχούν σε αναξιοποίητο υλικό (φύρα), έστω S , το εµβαδόν του οποίου 
υπολογίζεται πολύ εύκολα εάν αφαιρεθεί, από το συνολικό εµβαδόν των ελασµάτων, το 
εµβαδόν του κυκλικού πυθµένα ακτίνας R . Με βάση το σχήµα 7.14, κατά µήκος της 
οριζόντιας διεύθυνσης σχηµατίζονται jN  στήλες από ελάσµατα, κάθε µία εκ των οποίων έχει 
πλάτος jx∆  και ύψος jy∆ . Η µαθηµατική έκφραση υπολογισµού της φύρας δίδεται από την 
εξίσωση: 
 

( )
1

2 2

1 1

j j
j

j

N N
x

j j j x
j j

S S x y R x dx
−= =

⎛ ⎞= = ∆ ∆ − −⎜ ⎟
⎝ ⎠∑ ∑ ∫                               (7.16) 

 
Συνεπώς, το πρόβληµα βελτιστοποίησης των ελασµάτων πυθµένα ορίζεται ως: 
 

Ελαχιστοποίηση του S  όπου { }( )6, 2.0,2.5jS f L W= ≤ ∈                   (7.17) 
 
όπου L  και W  δηλώνουν το µήκος και το πλάτος των, πιστοποιηµένων και διαθεσίµων στην 
Ελληνική αγορά, ελασµάτων, µε τα οποία καλύπτεται ο πυθµένας της δεξαµενής. 
 
7.3.5.2. Βελτιστοποίηση πάχους 

Το πάχος των ελασµάτων του πυθµένα καθορίζεται από κανονισµούς (API 650 / Section 
3.4.1), συνεπώς δεν έχει έννοια η επίλυση αντιστοίχου προβλήµατος βελτιστοποίησης. 
 
7.3.6. Υπολογισµοί 

Ενδεικτικά, αναφέρεται η διαδικασία υπολογισµού της φύρας, η οποία προκύπτει από την 
κοπή των sketch plates (οριζόντιος προσανατολισµός, Σχήµα7.13a): 
 
Βήµα 0: Χρήση της διαµέτρου D  και του ύψους H , τα οποία προκύπτουν από τη 

βελτιστοποίηση του πλαϊνού τοιχώµατος 
Βήµα 1: Καθορισµός των ποσοτήτων 1d  και 2d  από κανονισµούς (για κανονισµό API650: 

1 2 ''d = , 2 24 ''d = ) 
Βήµα 2: Προσδιορισµός του πάχους 

1ct  του πρώτου δακτυλιδιού (first course) 
Βήµα 3: Προσδιορισµός της εσωτερικής διαµέτρου του sketch plate 10.5inR D d= −   
Βήµα 4: Προσδιορισµός της εξωτερικής διαµέτρου του sketch plate 

1 20.5out cR D t d= + +  

Βήµα 5: Για διάφορα *2,N N≥ ∈Ν  
Βήµα 6: Προσδιορισµός της πολικής γωνίας θ  κάθε sketch plate 
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Βήµα 7: Προσδιορισµός του πλάτους του ελάσµατος ( )2 sin 0.5j outW R θ= , από το οποίο 
θα κοπεί το κάθε sketch plate  

Βήµα 8: Εύρεση τυποποιηµένου πλάτους stW  αµέσως µεγαλυτέρου του jW  (Πίνακας 1) 
Βήµα 9: Εάν 2300stW mm>  Τότε το N  απορρίπτεται; 1N N= + ; επιστροφή στο Βήµα 5 
Βήµα 10: Προσδιορισµός του µήκους του ελάσµατος j out inL R R= − , από το οποίο θα κοπεί 

το κάθε sketch plate  
Βήµα 11: Προσδιορισµός εµβαδού ,pp j j jA W L=  της περιγεγραµµένης ορθογωνίου πλάκας 

Βήµα 12: Προσδιορισµός εµβαδού ( )2 2
,sp j j out inA R Rθ= −  του sketch plate 

Βήµα 13: Προσδιορισµός εµβαδού φύρας , , ,scrap j pp j sp jA A A= −  ανά sketch plate  

Βήµα 14: Προσδιορισµός συνολικού εµβαδού φύρας , ,
1

spj N

scrap sp scrap j
j

A A
=

=

= ∑  

Βήµα 15: Προσδιορισµός συνολικού µήκους toth N h=  
Βήµα 16: Προσδιορισµός του µήκους της συγκόλλησης #1 ( ),1w out inL N R R= −  (τα sketch 

plates συγκολλούνται µεταξύ τους µετωπικά),  
Βήµα 17: Προσδιορισµός του µήκους της συγκόλλησης #2 ,2w inL Dπ=  (τα sketch plates 

συγκολλούνται µε τις πλάκες του πυθµένα), 
Βήµα 18: Καταγραφή των µεγεθών N , totE∆ , ,1wL , ,2wL , toth  
Οι δείκτες pp  και sp  αντιστοιχούν στους όρους ‘prescribing plate’ (περιγεγραµµένη 
ορθογώνια πλάκα) και ‘sketch plate’. 
 
7.3.7. Αποτελέσµατα 

Τα διαγράµµατα στο Σχήµα 7.15 απεικονίζουν τη διάµετρο της δεξαµενής συναρτήσει του 
λόγου (D/H), για διάφορους συνδυασµούς πιστοποιηµένων ελασµάτων. Κάθε σηµείο σε αυτά 
τα διαγράµµατα αντιστοιχεί σε µία βέλτιστη σχεδίαση. ∆ιευκρινίζεται ότι το εύρος τιµών του 
λόγου (D/H) καθορίζεται από τον Μηχανικό.  
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Σχήµα 7.15: ∆ιάµετροι δεξαµενών για βέλτιστες σχεδιάσεις πλαϊνού τοιχώµατος 
χρησιµοποιώντας πιστοποιηµένα ελάσµατα της Ελληνικής αγοράς: (a) µόνον ελάσµατα 

2m× 6m, (b) µόνον ελάσµατα 2.5m× 6m και (c) ελάσµατα 2m× 6m / 2.5m× 6m 
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Τα διαγράµµατα στο Σχήµα 7.16 απεικονίζουν τη χωρητικότητα της δεξαµενής 
συναρτήσει του λόγου (D/H) για διάφορες περιπτώσεις πιστοποιηµένων ελασµάτων.  
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Σχήµα 7.16: Χωρητικότητα δεξαµενών για βέλτιστες σχεδιάσεις πλαϊνού τοιχώµατος 
χρησιµοποιώντας πιστοποιηµένα ελάσµατα της Ελληνικής αγοράς: (a) µόνον ελάσµατα 

2m× 6m, (b) µόνον ελάσµατα 2.5m× 6m και (c) ελάσµατα 2m× 6m / 2.5m× 6m. 
 

Τα διαγράµµατα στο Σχήµα 7.17 απεικονίζουν το εµβαδόν των πλαϊνών τοιχωµάτων της 
δεξαµενής συναρτήσει του λόγου (D/H). Με τη βοήθεια αυτών των διαγραµµάτων είναι 
δυνατή η εκτίµηση της, προς αµµοβολή και χρωµατισµό, επιφανείας. Πρόκειται για 
πληροφορία άκρως χρήσιµη για λόγους προγραµµατισµού εργασιών. 
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Σχήµα 7.17: Εµβαδόν πλαϊνών τοιχωµάτων για βέλτιστες σχεδιάσεις χρησιµοποιώντας 
πιστοποιηµένα ελάσµατα της Ελληνικής αγοράς: (a) µόνο ελάσµατα 2m× 6m, (b) µόνο 

ελάσµατα 2.5m× 6m και (c) ελάσµατα 2m× 6m / 2.5m× 6m 
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Τέλος, τα διαγράµµατα στο Σχήµα 7.18 απεικονίζουν το συνολικό µήκος των 
συγκολλήσεων για την κατασκευή της δεξαµενής. Η συγκεκριµένη πληροφορία είναι 
καθοριστικής σηµασίας όχι µόνον από πλευράς κόστους, το οποίο είναι πολύ υψηλό από 
µόνο του, αλλά και από πλευράς απαιτούµενου χρόνου διεκπεραίωσης της εργασίας. 
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Σχήµα 7.18: Μήκος συγκόλλησης για βέλτιστες σχεδιάσεις χρησιµοποιώντας πιστοποιηµένα 
ελάσµατα της Ελληνικής αγοράς: (a) µόνο ελάσµατα 2m× 6m, (b) µόνο ελάσµατα 2.5m× 6m 

και (c) ελάσµατα 2m× 6m / 2.5m× 6m 
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ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΚΑΤΑΣΚΕΥΩΝ  

ΒΑΣΕΙ  

ΛΕΙΤΟΥΡΓΙΚΗΣ ΑΡΤΙΟΤΗΤΑΣ 
 
 
 
 

Στο παρόν κεφάλαιο, εξετάζεται η βελτιστοποίηση διακριτών κατασκευών βάσει της λειτουργικής 
τους αρτιότητας. Στην πράξη, πολλές μηχανολογικές κατασκευές αποτελούν συναρμολογήματα 
από τυποποιημένα δομικά στοιχεία εμπορίου, όπως είναι τα ελάσματα και οι δοκοί. Για τέτοιες 

κατασκευές, η βέλτιστη σχεδίαση αντιστοιχεί σε εκείνον τον συνδυασμό τυποποιημένων στοιχείων, 
για τον οποίο το βάρος της κατασκευής είναι ελάχιστο, ενώ, ταυτόχρονα, ικανοποιούνται και όλοι οι, 
επιβαλλόμενοι από κάποιον κανονισμό, περιορισμοί. Πρακτικά, αυτό σημαίνει την αναζήτηση του 
βέλτιστου, μεταξύ πολλών υποψηφίων, συνδυασμού. Πρόκειται για ένα πρόβλημα συνδυαστικού 

τύπου, η επίλυση του οποίου είναι δυνατή χρησιμοποιώντας κάποια, ολικώς ή μερικώς παραγοντική, 
διαδικασία. Σε αυτό το πλαίσιο, διατυπώθηκαν συνολικά τρεις νέες διαδικασίες βελτιστοποίησης. Η 
πρώτη διαδικασία αφορά στη βελτιστοποίηση κατασκευής, στην οποία εμπλέκεται μία μεταβλητή 
σχεδίασης. Η δεύτερη διαδικασία αφορά στη βελτιστοποίηση κατασκευής, η οποία κατασκευάζεται 

πλήρως από στοιχεία τυποποιημένης διατομής. Η τρίτη διαδικασία αφορά στη βελτιστοποίηση 
κατασκευής, η οποία κατασκευάζεται πλήρως από ελάσματα τυποποιημένου πάχους. Οι δύο 

τελευταίες είναι ευρυστικού χαρακτήρα, μερικώς παραγοντικές, διαδικασίεςβελτιστοποίησης. Ως 
εφαρμογές, εξετάσθηκαν επικαθήμενες γερανογέφυρες απλού και διπλού φορέα φέρουσες ένα 
φορείο, γεραδοκός συγκολλητής διατομής φέρουσα μία γερανογέφυρα καθώς και ένα υπόστεγο 
αεροσκαφών. Σε όλες τις περιπτώσεις, επεβλήθησαν τα κατά τον Ευρωκώδικα προβλεπόμενα. 

Επίσης, πραγματοποιήθηκε σύγκριση με εμπορικό λογισμικό ανάλυσης μεταλλικών κατασκευών, 
από την οποία προέκυψε η ανωτερότητα της αντίστοιχης (δεύτερης) εκ των προτεινομένων 

διαδικασιών.  

Στην περίληψη του παρόντος κεφαλαίου παρουσιάζονται συνοπτικά οι τρεις προτεινόμενες 
διαδικασίες. 
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8.1. Εισαγωγή 
Τα προβλήµατα βελτιστοποίησης κατασκευών χρησιµοποιώντας τυποποιηµένες διατοµές, 

δηλαδή προβλήµατα συνδυαστικού τύπου, χαρακτηρίζονται κυρίως από το τεράστιο πλήθος 
των δυνατών συνδυασµών, οι οποίοι πρέπει να εξετασθούν προκειµένου να βρεθεί εκείνος ο 
συνδυασµός για τον οποίο το βάρος της κατασκευής είναι ελάχιστο και ταυτόχρονα 
ικανοποιούνται όλοι οι επιβαλλόµενοι περιορισµοί. Από θεωρητικής απόψεως, ο βέλτιστος 
συνδυασµός εντοπίζεται εύκολα και µε ακρίβεια εάν ελεγχθούν όλοι οι δυνατοί συνδυασµοί 
και τελικά επιλεγεί ο καλύτερος. Ωστόσο, κάτι τέτοιο συνοδεύεται από πολύ υψηλό, έως και 
απαγορευτικά υψηλό, υπολογιστικό κόστος. Επιπροσθέτως, σε µία κατασκευή είναι δυνατή η 
χρήση εν µέρει τυποποιηµένων διατοµών και εν µέρει µη-τυποποιηµένων διατοµών, οπότε η 
διατύπωση του αντιστοίχου προβλήµατος βελτιστοποίησης είναι µικτού τύπου. Κάτι τέτοιο 
προσαυξάνει την δυσκολία του προς επίλυση προβλήµατος βελτιστοποίησης διότι κάποιες 
από τις µεταβλητές σχεδίασης είναι διακριτές, άρα οι πιθανές τιµές τους είναι πεπερασµένες 
σε πλήθος, ενώ κάποιες άλλες είναι συνεχείς, άρα οι πιθανές τιµές τους είναι άπειρες σε 
πλήθος. ∆ιαπιστώνεται, λοιπόν, ότι τα συνδυαστικού τύπου προβλήµατα βελτιστοποίησης 
κατασκευών εµφανίζουν ιδιαιτερότητες. Ένας τρόπος αντιµετώπισης τέτοιων προβληµάτων 
είναι ευρυστικών διαδικασιών. Αυτές, αν και δεν αποδεικνύεται µε αυστηρά µαθηµατικό 
τρόπο ότι οδηγούν στην καθολικά βέλτιστη σχεδίασης, αποτελούν έναν πολύ καλό 
συµβιβασµό µεταξύ αποτελεσµατικότητας και αλγοριθµητικής απλότητας. 

Στην παρούσα περίληψη κεφαλαίου, αντιµετωπίζονται τρία είδη προβληµάτων 
βελτιστοποίησης κατασκευών συνδυαστικού τύπου. Τα δύο πρώτα σχετίζονται µε τη χρήση 
τυποποιηµένων δοκών θερµής έλασης (χρήση αµιγώς διακριτών µεταβλητών σχεδίασης) και 
το τρίτο αφορά σε συγκολλητές διατοµές, οι οποίες προκύπτουν όταν ελάσµατα 
τυποποιηµένων παχών συγκολληθούν µεταξύ τους (χρήση και διακριτών και συνεχών 
µεταβλητών σχεδίασης). Και στις τρεις περιπτώσεις, αντικειµενικός σκοπός είναι η 
ελαχιστοποίηση του βάρους της κατασκευής. Για την επίλυση των ανωτέρω προβληµάτων, 
προτείνονται, αντίστοιχα, τρεις διαδικασίες βελτιστοποίησης, οι οποίες εφαρµόζονται σε 
αντίστοιχες κατασκευές µε πρακτική εφαρµογή. 
 
8.2. ∆ιακριτή βελτιστοποίηση κατασκευών µε µία µεταβλητή σχεδίασης 
8.2.1. Γενικά 

Ο συγκεκριµένος τύπος προβλήµατος συναντάται στην πράξη σε κατασκευές, οι οποίες 
είναι δυνατόν να θεωρηθούν ως µία δοκός τυποποιηµένης διατοµής, όπως συµβαίνει σε 
ορισµένες περιπτώσεις γερανογεφυρών, απλού ή διπλού φορέα, και γερανοδοκών. Τέτοια 
προβλήµατα δεν εµφανίζουν ιδιαίτερη δυσκολία στην επίλυσή τους. Μία απλή διαδικασία 
επίλυσης θα ήταν η δηµιουργία λιστών µε υποψήφιες διατοµές, έτσι ώστε κάθε λίστα να 
περιλαµβάνει διατοµές µίας συγκεκριµένης οικογενείας διατοµών, π.χ. ΗΕΑ, ΗΕΒ, ΗΕΜ, 
κλπ., η επίλυση του προβλήµατος βελτιστοποίησης χρησιµοποιώντας κάθε µία λίστα 
ξεχωριστά, ώστε για κάθε λίστα να προκύψει µία βέλτιστη διατοµή, και τελικά η επιλογή της 
βέλτιστης, µεταξύ των βελτίστων, διατοµής. Αναφορικά µε την επίλυση του προβλήµατος 
βελτιστοποίησης για κάθε µία λίστα, είναι δυνατή η χρήση οποιασδήποτε διαδικασίας 
αναζήτησης γραµµής (π.χ. µέθοδος binary search, µέθοδος bisection, µέθοδος dichotomous 
search, µέθοδος interval halving). Τα κοµβικά σηµεία σε αυτό το βήµα επίλυσης είναι πρώτον 
η χρήση ταξινοµηµένων λιστών µε τις διαθέσιµες διατοµής και δεύτερον η αναζήτηση 
χρησιµοποιώντας τον αύξοντα αριθµό, τον οποίο φέρει κάθε διατοµή στην εκάστοτε λίστα. Σε 
αυτό το πλαίσιο, προτείνεται η διαδικασία βελτιστοποίησης, η οποία παρουσιάζεται στην 
επόµενη Ενότητα. 
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8.2.2. Προτεινόµενη διαδικασία βελτιστοποίησης 

Έστω LL  το µήκος µίας λίστας από δοκούς του ιδίου τύπου διατοµής, lx  ο δείκτης της 
πρώτης διατοµής της λίστας, ux  ο δείκτης της τελευταίας διατοµής της λίστας και mx  ο 
δείκτης της διατοµής στο µέσο της λίστας. Θεωρείται ότι στην εν λόγω λίστα, οι δοκοί είναι 
ταξινοµηµένες κατά αύξουσα σειρά του βάρους τους ανά µονάδα µήκους. Εάν 
πραγµατοποιηθεί µία ανάλυση µε τη Μέθοδο των Πεπερασµένων Στοιχείων (ΜΠΣ) 
χρησιµοποιώντας τη δοκό µε δείκτη ux  και διαπιστωθεί ότι παραβιάζεται έστω και ένας 
περιορισµός, τότε απορρίπτεται όλη η λίστα. Στην αντίθετη περίπτωση, πραγµατοποιείται µία 
ανάλυση µε τη (ΜΠΣ) και χρησιµοποιώντας τη διατοµή µε δείκτη lx . Εάν διαπιστωθεί ότι 
ικανοποιούνται όλοι οι περιορισµοί, τότε αυτή θεωρείται η βέλτιστη διατοµή. ∆ιαφορετικά 
εκκινείται µία διαδικασία αναζήτησης, όπως είναι αυτή της διχοτόµησης. Πιο συγκεκριµένα, 
τίθεται ( ){ }int 0.5m l ux x x= +  και πραγµατοποιείται µία ανάλυση µε τη (ΜΠΣ), 

χρησιµοποιώντας τη δοκό µε δείτκη mx . Έαν παραβιάζεται έστω και ένας περιορισµός, τότε ο 
δείκτης lx  τίθεται ίσος µε τον δείκτη mx  και εκτελείται µία νέα επανάληψη. Εάν 
ικανοποιούνται όλοι οι περιορισµοί, τότε ο δείκτης ux  τίθεται ίσος µε το δείκτη mx  και 
εκτελείται µία νέα επανάληψη. Η όλη διαδικασία επαναλαµβάνεται έως ότου οι δείκτες ux  
και lx  καταστούν συνεχόµενοι µεταξύ τους, οπότε η τρέχουσα βέλτιστη διατοµή θεωρείται 
ως και η καθολικά βέλτιστη. Στη συνέχεια, η ίδια διαδικασία επαναλαµβάνεται µε µία λίστα 
διατοµών άλλου τύπου. Με αυτόν τον τρόπο, τελικά διαµορφώνεται ένας πληθυσµός από 
βέλτιστες διατοµές, η ελαφρύτερη εκ των οποίων αποτελεί τη ‘βέλτιστη των βελτίστων’ 
διατοµή. Αλγοριθµικά, η προτεινόµενη διαδικασία περιγράφεται ως εξής: 

 
Βήµα 1: ∆ιαχωρισµός των διαθεσίµων δοκών σε κατηγορίες, ανάλογα µε τον τύπο της 

διατοµής, και για κάθε κατηγορία δηµιουργία µιας ταξινοµηµένης λίστας κατά 
αύξουσα σειρά βάρους ανά µονάδα µήκους 

Βήµα 2: Για κάθε λίστα, εκτέλεση των Βηµάτων 2a και 2b: 
Βήµα 2a:  Προσδιορισµός του µήκους LL  της λίστας 
Βήµα 2b: Επιλογή της τελευταίας διατοµής της λίστας και ανάλυση της κατασκευής µε 

τη (ΜΠΣ) 
ΕΑΝ παραβιάζεται έστω και ένας περιορισµός ΤΟΤΕ  

Απόρριψη της λίστας 
∆ΙΑΦΟΡΕΤΙΚΑ 

Αποδοχή της διατοµής ως της τρέχουσας καλύτερης 
Επιλογή της πρώτης διατοµής της λίστας  
Ανάλυση της κατασκευής µε τη (ΜΠΣ) 
ΕΑΝ παραβιάζεται έστω και ένας περιορισµός ΤΟΤΕ 

Απόρριψη της διατοµής 
Εκκίνηση διαδικασίας αναζήτησης λίστας (π.χ. µέθοδος διχοτόµησης)  

∆ΙΑΦΟΡΕΤΙΚΑ  
Αποδοχή της διατοµής ως της καθολικά  

 
Η προτεινόµενη διαδικασία διακρίνεται για την ευελιξία της, υπό την έννοια ότι, 

αλλάζοντας µόνον κάποια υπορουτίνα, είναι δυνατή η ενσωµάτωση σε αυτήν διαφόρων και 
διαφορετικών επιλογών. Ενδεικτικό παράδειγµα αποτελεί η διαδικασία αναζήτησης. Αντί της 
µεθόδου της διχοτόµησης, είναι δυνατή η χρήση οποιουδήποτε άλλου σχήµατος αναζήτησης, 
απλά αλλάζοντας την αντίστοιχη ρουτίνα. Επίσης, αναφορικά µε τον τρόπο ανάλυσης της 
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κατασκευής, είναι δυνατή η χρήση τόσο κλασσικής µηχανικής όσο και υπολογιστικής 
µηχανικής (ΜΠΣ), πάλι αλλάζοντας την αντίστοιχη υπορουτίνα. Με αυτόν τον τρόπο 
επιτυγχάνεται η επιλογή εκείνης της θεωρίας ανάλυσης (π.χ. γραµµική ή µη-γραµµική 
ανάλυση), η οποία ανταποκρίνεται καλύτερα στο εκάστοτε εξεταζόµενο πρόβληµα. Για 
παράδειγµα, έστω ότι αναζητείται η βέλτιστη τυποποιηµένη διατοµή για µία γερανοδοκό. Εάν 
επιλεχθεί διατοµή Κατηγορίας-1, κατά τον Ευρωκώδικα 3, τότε µία γραµµική ανάλυση είναι 
επαρκής διότι, σύµφωνα πάντα µε τον Ευρωκώδικα 3, στις διατοµές της εν λόγω κατηγορίας 
εµφανίζεται πρώτα η διαρροή του υλικού και µετά ο λυγισµός. Ωστόσο, εάν επιλεχθεί 
διατοµή Κατηγορίας-4, πάντα κατά τον Ευρωκώδικα 3, τότε ο λυγισµός εµφανίζεται πριν τη 
διαρροή του υλικού, οπότε η πλέον ενδεδειγµένη είναι µία µη-γραµµική ανάλυση (snap-
through buckling), προκειµένου να εκτιµηθεί µε ασφάλεια το κρίσιµο φορτίο λυγισµού.  
 
8.2.3. Εφαρµογή: Βέλτιση επιλογή δοκού θερµής έλασης ως φορέα γερανογέφυρας 

8.2.3.1. Βασικά θεωρητικά στοιχεία 
Στο Σχήµα 8.1 παρουσιάζεται η εξετασθείσα εφαρµογή. Ειδικότερα, πρόκειται για µία 

τυπική επικαθήµενη γερανογέφυρα µονού φορέα (Σχήµα 8.1a), φέρουσα ένα τυπικό 
ανηρτηµένο βαρουλκοφορείο µε σχέσεις κλάδων 4/2 (Σχήµα 8.1b). Το ιδιαίτερο 
χαρακτηριστικό των φορείων τύπου /2 είναι ότι εξασφαλίζεται η κατακόρυφη κίνηση του 
αγκίστρου, εξ αιτίας της οποίας αφ’ ενός µεν το ανηρτηµένο φορτίο ισοκατανέµενεται µεταξύ 
των τροχών του ίδιου άξονα και αφ’ ετέρου δε οι δυνάµεις στους τροχούς δεν µεταβάλλονται 
κατά την ανύψωση του φορτίου. 

 

 
(a) (b) 

Σχήµα 8.1: Σκίτσο (a) απλής επικαθήµενης γερανογέφυρας και (b) βαρουλκοφορείου 
 
Σχετικά µε τα φορτία, τα οποία αναπτύσσονται στους τροχούς του φορείου, ισχύει: 

 
( )11 12 0.5 0.5R R Q aW= = +                                              (8.1) 

( )( )21 22 0.5 0.5 1R R Q a W= = + −                                          (8.2) 
όπου  

11 12,R R : δυνάµεις στους τροχούς του άξονα #1 (Σχήµα 8.1b) 

21 22,R R : δυνάµεις στους τροχούς του άξονα #2 (Σχήµα 8.1b) 
Q :  συνολικό ανηρτηµένο φορτίο 
W :  ίδιον βάρος 
a :  % ποσοστό ιδίου βάρους στον άξονα #1  

 
Από τις Εξ. (8.1, 8.2) προκύπτει ότι η κατανοµή φορτίου µεταξύ των τροχών του φορείου 

είναι σταθερή. Τα χαρακτηριστικά του βαρουλκοφορείου φαίνονται στον Πίνακα 8.1. 
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Πίνακας 8.1: Στοιχεία βαρουλκοφορείου 

W  575kg   1d  498mm
a   50%   3e  900mm
Q  3200kg  e  50mm  

 
Σχετικά µε την διατοµή του φορέα, εξετάσθηκαν τυποποιηµένες διατοµές (Σχήµα 8.2), οι 

οποίες είναι διαθέσιµες στην Ελληνική αγορά. 
 

  
(a) (b) (c) (d) 

Σχήµα 8.2: Εξετασθείσες διατοµές (a) HEA-IPBL, (b) HEB-IPB, (c) INP και (d) IPE 

 
Όπως αναφέρθηκε προηγουµένως, για την εξεταζόµενη επικαθήµενη γερανογέφυρα απλού 

φορέα, επελέγη µία ανοικτή, τυποποιηµένη διατοµή και ένα βαρουλκοφορείο ανηρτηµένου 
τύπου. Ως εκ τούτου, κάθε τροχός του φορείου έρχεται σε επαφή µε την άνω επιφάνεια του 
κάτω πέλµατος της διατοµής του φορέα (Σχήµα 8.3a) και ασκεί σε αυτήν ένα συγκεντρωµένο 
φορτίο, το οποίο είναι έκκεντρο ως προς τον κατακόρυφο κεντροβαρικό άξονα του κορµού 
της διατοµής (Σχήµα 8.3b). Επιπροσθέτως, δεν είναι δυνατόν να αναρτηθεί οποιδήποτε 
φορείο σε οποιαδήποτε δοκό, λόγω γεωµετρικών περιορισµών σχετικά µε το πάχος και το 
πλάτος του πέλµατος της εν λόγω διατοµής (Σχήµα 8.3b). 
 

         
                                             (a)                           (b) 

Σχήµα 8.3: Τροχοί ενός τυπικού ανηρτηµένου φορείου 
 
Μία δοκός θερµής έλασης αποτελεί δυνατή λύση αν και µόνον αν παρέχει επαρκή 

αντίσταση στο επιβαλλόµενο φορτίο. Οι ποσότητες, οι οποίες, κατά κύριο λόγο, καθορίζουν 
την εν λόγω αντίσταση είναι (α) το µέγιστο βέλος κάµψης, (β) η µέγιστη διατµητιµή τάση, (γ) 
η µέγιστη ορθή τάση λόγω κάµψης και (β) η µέγιστη τάση από το συνδυασµό των (β) και (γ). 
Για τον υπολογισµό των (α) – (γ), είναι απαραίτητη η εξέταση τριών διαφορετικών θέσεων 
του φορείου επί του φορέα (βλ. Σχήµα 8.4): 
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Θέση #1: µέγιστο βέλος κάµψης, όπου 1 2 2
L ax = −  (Σχήµα 8.4a) 

Θέση #2: µέγιστη διατµητική τάση, όπου 1 1
2 3min ,

2 2
d dx e e⎧ ⎫= + +⎨ ⎬

⎩ ⎭
 (Σχήµα 8.4b) 

Θέση #3:µέγιστη καµπτική ροπή, όπου 3 2 4
L ax = −  (Σχήµα 8.4c) 

 
 

 
 
 
 
 

(a) (b) (c) 
Σχήµα 8.4: Θέσεις φορείου για (a) µέγιστο βέλος κάµψης, (b) µέγιστη διάτµηση και (c) 

µέγιστη κάµψη 
 
8.2.3.2. Αριθµητική προσέγγιση 

Η µοντελοποίηση του φορέα απαιτεί την αντικατάσταση της φυσικής οντότητας µε κάποιο 
αριθµητικό ισοδύναµο. Η πλέον απλή επιλογή είναι η χρήση στοιχείων δοκού. Ωστόσο, σε 
αυτήν την περίπτωση θεωρείται ότι τα φορτία ασκούνται κατά τον κατακόρυφο κεντροβαρικό 
άξονα του κορµού της διατοµής, κάτι το οποίο δεν επιτρέπει τον συνυπολογισµό επιδράσεων 
ούτε λόγω τοπικής επιβολής φορτίου (Σχήµα 8.3b) ούτε λόγω διατµητικής υστέρησης (Cook, 
1995; Σχήµα 8.5a). Μια άλλη δυνατότητα θα ήταν η χρήση στοιχείων 3∆ ελαστικότητας, 
όπως είναι το οκτακοµβικό εξαπλευρικό πεπερασµένο στοιχείο (brick element, Σχήµα 8.5b). 
Σε αυτήν την περίπτωση, τα αριθµητικά αποτελέσµατα είναι αξιόπιστα υπό δύο πολύ βασικές 
προϋποθέσεις:  
α) η διακριτοποίηση του φορέα είναι τέτοια ώστε κατά το πάχος των ελασµάτων της 

διατοµής του φορέα να υπάρχουν τουλάχιστον δύο πεπερασµένα στοιχεία και 
β) ο λόγος πλευρών (aspect ratio) των στοιχείων του πλέγµατος του φορέα είναι αποδεκτός. 
Οι ανωτέρω προϋποθέσεις, σε συνδυασµό µε το µήκος του φορέα, το οποίο είναι πολύ 
µεγάλο σε σχέση µε τις διαστάσεις της διατοµής του, έχουν ως αποτέλεσµα την απαίτηση για 
δηµιουργία πλέγµατος µε µεγάλο αριθµό πεπερασµένων στοιχείων, κάτι το οποίο 
µεταφράζεται σε εξαιρετικά υψηλό υπολογιστικό κόστος. Αυτή δεν είναι µία καλή επιλογή 
όταν πρόκειται να εφαρµοσθεί µία επαναληπτική διαδικασία, όπως αυτή της βελτιστοποίσης.  
 

 
(a) (b) (c) 

Σχήµα 8.5: (a) Φαινόµενο διατµητικής υστέρησης, (b) µοντέλο µε στοιχεία τύπου brick και 
(c) µοντέλο µε στοιχεία πλακός  

1R  

L

1x  
1d  

2R

L

2x  
1R 2R

1d

L

3x 1R  2R  

1d  

xσ



Δ.T. Βενετσάνος – Διδακτορική Διατριβή ‐ 2010 

Σ ε λ ί δ α  | EΛ.8.7 

Στην παρούσα διερεύνηση χρησιµοποιήθηκαν τυπικά τετρακοµβικά στοιχεία πλακός 
(Σχήµα 8.5c), τα οποία αποτελούν πολύ καλό συµβιβασµό µεταξύ κόστους και αξιοπιστίας.  

 
8.2.3.3. Περιορισµοί 

Σε µία κατασκευή, επιβάλλονται περιορισµοί σύµφωνα µε κάποιο πρότυπο (π.χ. 
κανονισµοί DIN, κανονισµοί BS, κανονισµοί ASD - LRFD - AASHTO, κανονισµοί JIS, 
κλπ). Στον ευρωπαϊκό χώρο, εφαρµόζονται πλέον οι Ευρωκώδικες. Χωρίς βλάβη της 
γενικότητας, είναι δυνατόν να επιβληθούν οι κατωτέρω περιορισµοί: 
 

600y
LU ≤         ,max ,x x allowσ σ≤         max allowτ τ≤         ,vonMises vm allowσ σ≤             (8.3) 

 
όπου yU  είναι το µέγιστο βέλος κάµψης, ενώ οι δείκτες ‘ x ’ και ‘ allow ’ καταδεικνύουν τον 
διαµήκη άξονα του φορέα και την εκάστοτε επιτρεπόµενη τιµή, αντίστοιχα. Για τον 
συνδυασµό των εµφανιζοµένων τάσεων, είναι δυνατόν να χρησιµοποιηθεί ο περιορισµός:  
 

2 2 2

, , , , 3 1
/ / / / /

o o o o o

x Ed z Ed x Ed z Ed Ed

y M y M y M y M y Mf f f f f
σ σ σ σ τ

γ γ γ γ γ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

+ − + ≤⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

            (8.4) 

 
όπου  

,x Edσ : τιµή σχεδίασης της ορθής, και κατά τον διαµήκη άξονα, τάσης  

,z Edσ : τιµή σχεδίασης της ορθής, και κατά τον εγκάρσιο άξονα, τάσης  

Edτ :  τιµή σχεδίασης της διατµητικής τάσης  

yf :  τάση διαρροής υλικού 

oMγ : µερικός συντελεστής ασφαλείας ( )1.1
oMγ =  

Στην πλέον γενική περίπτωση, υπάρχουν ακόµα δύο περιορισµοί, οι οποίοι αφορούν στο 
λυγισµό και στο διατµητικό λυγισµό εξ αιτίας της επιβολής των φορτίων. Ωστόσο, οι 
εξετασθείσες διατοµές ανήκουν στην, κατά τον Ευρωκώδικα 3, Κατηγορία-1 διατοµών, στις 
οποίες η διαρροή του υλικού εµφανίζεται πριν από το λυγισµό, ενώ αυτές παρέχουν επαρκή 
αντίσταση έναντι διατµητικού λυγισµού (Falke, 1996). 
 
8.2.3.4. ∆ιαδικασία βελτιστοποίησης 

Η διαδικασία βελτιστοποίησης της Ενότητας 8.2.2 ουσιαστικά αποτελεί µία αναζήτηση 
γραµµής σε λίστες. Πρόκειται για ένα πρόβληµα αριθµητικής ανάλυσης, το οποίο έχει 
διευρευνηθεί διεξοδικά στη διεθνή βιβλιογραφία. Η ιδιαιτερότητα στην περίπτωση των 
κατασκευών είναι ότι δεν χρησιµοποιείται µία µόνον λίστα αλλά περισσότερες, κάθε µία εκ 
των οποίων αντιστοιχεί και σε µία διαφορετική οικογένεια τυποποιηµένων διατοµών. 
Συνεπώς, εκτός της επίλυσης του αντιστοίχου προβλήµατος βελτιστοποίησης, θα ήταν 
ιδιαιτέρως χρήσιµη η κατασκευή διαγραµµάτων (νοµογραφηµάτων), βάσει των οποίων είναι 
δυνατή η, µε γραφικό τρόπο, επιλογή της βέλτιστης διατοµής. Προς αυτήν την κατεύθυνση, η 
διαδικασία που ακολουθεί διακρίνεται σε δύο φάσεις: στην πρώτη φάση επιλύεται το 
πρόβληµα βελτιστοποίησης και ταυτόχρονα καταγράφονται οι µέγιστες τιµές των µεγεθών 
ενδιαφέροντος (Εξ. 8.3, 8.4), ενώ στη δεύτερη φάση οι εν λόγω µέγιστες τιµές 
αποτυπώνονται σε διαγράµµατα, έτοιµα προς χρήση για πρακτικούς σκοπούς. Οι 
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χρησιµοποιηθείσες τυποποιηµένες διατοµές φαίνονται στον Πίνακα 8.2, ενώ η γεωµετρία 
τους ελήφθη από τη βιβλιογραφία (Stahl im Hochbau, 1967). 

 
Πίνακας 8.2: Χρησιµοποιηθείσες διατοµές 

Κατηγορία Μέγεθος 
HEA-IPBL 200 220 240 260 280 300 
HEB-IPB 200 220 240 260 280 300 

INP 280 300 320 340 360 400 
IPE 330 360 400 450 500 550 

 
Ειδικότερα, η εφαρµοσθείσα διαδικασία είναι η ακόλουθη: 

 
Φάση A: Επίλυση προβλήµατος βελτιστοποίησης 
Για κάθε κατηγορία τυποποιηµένων δοκών (HEA-IPBL, HEB-IPB, INP, IPE)  

Για κάθε εξετασθέν άνοιγµα φορέα (από 5m  µέχρι 30m  µε βήµα 1m ) 
Βήµα 1: Μοντελοποίηση του φορέα µε στοιχεία πλακός 
Βήµα 2: Επίλυση του προβλήµατος βελτιστοποίησης χρησιµοποιώντας τη 

διαδικασίας της Ενότητας 8.2.2 και για τις εξής περιπτώσεις φόρτισης: 
i) Φορείο στη θέση #1 (βλ. Σχήµα 8.4a) 
ii) Φορείο στη θέση #2 (βλ. Σχήµα 8.4b) 
iii) Φορείο στη θέση #3 (βλ. Σχήµα 8.4c) 

Step 3: Για την προκύπτουσα από το Βήµα 2 βέλτιστη σχεδίαση, εφαρµογή εκ 
νέου των Βηµάτων 2i, 2ii και 2iii και καταγραφή του µεγίστου βέλους 
κάµψης, της µέγιστης διατµητικής τάσης, της µέγιστης καµπτικής τάσης 
και της µέγιστης ισοδύναµης κατά von Mises τάσης. 

 
Φάση B: Αποτύπωση των αποτελεσµάτων της Φάσης #1 σε διαγράµµατα 

Για κάθε εξετασθείσα κατηγορία διατοµών  
Για όλα τα εξετασθέντα ανοίγµατα φορέα, δηµιουργία των εξής διαγραµµάτων: 
• ∆ιάγραµµα #1: µέγιστο βέλος κάµψης σε [mm] συναρτήσει ανοίγµατος 

φορέα σε [m] (Σχήµα 8.6a) 
• ∆ιάγραµµα #2: µέγιστη διατµητική τάση σε [MPa] συναρτήσει ανοίγµατος 

φορέα σε [m] (Σχήµα 8.6b) 
• ∆ιάγραµµα #3: µέγιστη καµπτική τάση σε [MPa] συναρτήσει ανοίγµατος 

φορέα σε [m] (Σχήµα 8.6c) 
• ∆ιάγραµµα #4: µέγιστη von Mises τάση σε [MPa] συναρτήσει ανοίγµατος 

φορέα σε [m] (Σχήµα 8.6d) 
 
Ειδικά για το ∆ιάγραµµα #1, έχει σχεδιασθεί µία επιπρόσθετη γραµµή, η οποία αντιστοιχεί 
στον επιβαλλόµενο περιορισµό µετατόπισης (Εξ.8.3). ∆ιευκρινίζεται ότι τα προαναφερθέντα 
διαγράµµατα αφορούν σε µία ποιότητα χάλυβα, ενώ για διαφορετική ποιότητα θα πρέπει να 
εκτελεσθούν εκ νέου οι Φάσεις Α και Β. Επίσης, διευκρινίζεται ότι το ίδιον βάρος των 
φορέων έχει ληψθεί υπόψη ως οµοιόµορφα κατανεµηµένο φορτίο κατά µήκος του φορέα. 
 
8.2.3.5. Αποτελέσµατα - ∆ιαγράµµατα (νοµογραφήµατα) 

Προκειµένου να ελεγχθεί η αποτελεσµατικότητα της προτεινοµένης διαδικασίας, 
ελύθησαν τα ίδια προβλήµατα βελτιστοποίησης, µε το ίδιο πεδίο ορισµού και τους ίδιους 
περιορισµούς, χρησιµοποιώντας την τεχνική της σαρωτικής αναζήτησης (exhaustive search), 
κατά την οποία επιλύεται το εκάστοτε πρόβληµα για κάθε ένα από τα διανύσµατα σχεδίασης 



Δ.T. Βενετσάνος – Διδακτορική Διατριβή ‐ 2010 

Σ ε λ ί δ α  | EΛ.8.9 

του πεδίου ορισµού. Προέκυψε ότι, σε όλες τις περιπτώσεις, η προτεινόµενη διαδικασία 
βελτιστοποίησης συνέκλινε στην καθολικά βέλτιστη διατοµή. Επίσης, µε βάση τη διαδικασία 
της Ενότητας 8.2.3.4 και τα στοιχεία του Πίνακα 8.2, συνολικά προκύπτουν 16 
νοµογραφήµατα. Στο Σχήµα 8.6 απεικονίζεται, ενδεικτικά, µία τετράδα τέτοιων 
διαγραµµάτων αφορούσα την οικογένεια διατοµών HEA-IPBL.  

(a) (b) 

(c) (d) 
 

Σχήµα 8.6: Νοµογραφήµατα συναρτήσει του ανοίγµατος φορέα (a) µεγίστου βέλους 
κάµψης, (b) µεγίστης διατµητικής τάσεως, (c) µεγίστης ορθής τάσεως και (δ) τάσης vonMises 
 

Τα εν λόγω διαγράµµατα, είναι δυνατόν να χρησιµοποιηθούν µε δύο τρόπους: 
Τρόπος (A): για δεδοµένη οικογένεια διατοµών, εύρεση της απόκρισης µίας συγκεκριµένης 

διατοµής 
Βήµα 1:  από τον x-άξονα και για δεδοµένο άνοιγµα, φέρεται κάθετη γραµµή, έστω (VL) 
Βήµα 2: από το σηµείο τοµής της γραµµής (VL) και ενός εκ των καµπυλών του 

διαγράµµατος, φέρεται οριζόντια γραµµή, έστω (HL), προς τον y-άξονα 
Βήµα 3: ανάγνωση της τιµής του σηµείου τοµής της γραµµής (HL) και του y-άξονα 
 
Τρόπος (B):  για δεδοµένη οικογένεια διατοµών, εύρεση εκείνης της διατοµής, η απόκριση 

της οποίας είναι πλησιέστερα, από την ασφαλή πλευρά, σε µία δεδοµένη τιµή  
Step 1:  από τον x-άξονα και για δεδοµένο άνοιγµα, φέρεται κάθετη γραµµή, έστω (VL) 
Step 2:  από τον y-άξονα και για δεδοµένη τιµή του µεγέθους ενδιαφέροντος (επιλέγεται και 

το κατάλληλο διάγραµµα), φέρεται οριζόντια γραµµή, έστω (HL) 
Step 3: εντοπισµός του σηµείου τοµής των ευθειών (VL) και (HL) 
Step 4: επιλογή της πρώτης εκ των καµπυλών του διαγράµµατος, οι οποίες κείτονται κάτω 

από το σηµείο τοµής του Βήµατος 3, και η, αντιστοιχούσα στην εν λόγω καµπύλη, 
διατοµή αποτελεί τη βέλτιστη επιλογή 

Με την ανωτέρω ανάλυση παρουσιάστηκε ένας γρήγορος γραφικός τρόπος επιλογής της 
βέλτιστης τυποποιηµένης διατοµής, στην περίπτωση αναζήτησης ελαχίστου βάρους 
κατασκευής, όταν εµπλέκεται µία διακριτή µεταβλητή σχεδίασης. Στις δύο επόµενες ενότητες 
παρουσιάζεται η γενίκευση της προσέγγισης αυτής, δηλαδή όταν εµπλέκονται πολλές 
µεταβλητές σχεδίασης, και µάλιστα κάποιες από αυτές δεν είναι διακριτής φύσεως. 
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8.3. ∆ιακριτή βελτιστοποίηση κατασκευών µε πολλές µεταβλητές σχεδίασης 
8.3.1. Γενικά 

Το πλήθος των περιπτώσεων στι οποίες οι κατασκευές είναι δυνατόν να µοντελοποιηθούν 
ως δοκοί είναι αρκετά περιορισµένο. Πιο τυπική είναι η περίπτωση κατά την οποία µία 
µηχανολογική κατασκευή αποτελεί ένα συναρµολόγηµα από οµάδες δοµικών στοιχείων, εκ 
των οποίων κάθε οµάδα περιέχει διαφορετικό πλήθος δοµικών µελών αλλά αφορά σε µία 
συγκεκριµένη διατοµή. Σε µία τέτοια περίπτωση, εάν αναζητείται το ελάχιστο βάρος της 
κατασκευής, τότε η διαδικασία βελτιστοποίησης της Ενότητας 8.2.2 δεν είναι κατάλληλη, 
διότι αυτή δύναται να διαχειρισθεί µόνο µία οµάδα δοµικών µελών. Συνεπώς, απαιτείται µία 
άλλη προσέγγιση. Προς αυτήν την κατεύθυνση, η διαδικασία της Ενότητας 8.2.2 επεκτείνεται 
καταλλήλως, έτσι ώστε να είναι δυνατή η διαχείριση ενός µεγάλου πλήθος οµάδων δοµικών 
µελών. Θεωρητικά, αυτό το πλήθος είναι άπειρο, ωστόσο, για πρακτικούς λόγους, δηλαδή για 
λόγους υπολογιστικού κόστους, το εν λόγω πλήθος περιορίζεται σε λίγες δεκάδες. Η 
προαναφερθείσα γενίκευση είναι δυνατόν να διατυπωθεί ως ένα γενικό πρόβληµα 
βελτιστοποίησης στο οποίο αναζητείται εκείνο το διάνυσµα σχεδίασης X  για το οποίο η 
βαθµωτή ποσότητα ( )f X  ελαχιστοποιείται υπό την προϋπόθεση ότι οι επιβαλλόµενοι 
ισοτικοί ( ) 0jh =X  και/ή ανισοτικοί περιορισµοί ( ) 0jg ≤X  δεν παραβιάζονται:  
 

( )min f X                                                            (8.5) 

( ) 0,    1,2,...,jh j m= =X                                              (8.6) 

( ) 0,    1, 2,...,jg j m m p≤ = + +X                                       (8.7) 
 
όπου 

[ ]1 2 ... T
nx x x=X                                                 (8.8) 

 
Στην Εξ.(8.8), ως ix  συµβολίζεται η διατοµή ενός συνόλου δοκιµών στοιχείων, το πεδίο 
ορισµού των οποίων είναι: 
 

[ ]1 2 ... T
i nx A A A∈                                                  (8.9) 

 
όπου ο δείκτης i  αφορά σε ένα σύνολο δοκιµών στοιχείων και , 1,...,kA k n=  είναι οι 
εµπορικώς διαθέσιµες τυποποιηµένες διατοµές. 
 
8.3.2. Προτεινόµενη ευρυστική διαδικασία βελτιστοποίησης  

Έστω ότι µία κατασκευή έχει N  οµάδες διατοµών και ότι κάθε οµάδα περιλαµβάνει M  
διαφορετικές τυποποιηµένες διατοµές. Μια πλήρως παραγοντική (full-factorial) διαδικασία 
απαιτεί την εξέταση MN  συνδυασµών, κάτι το οποίο ενδεχοµένως να είναι απαγορευτικό. 
Αντιθέτως, η προτεινόµενη διαδικασία χρησιµοποιεί µεν N  οµάδες διατοµών µε M  µέλη η 
καθεµιά, αλλά µε τέτοιον τρόπο ώστε να πραγµατοποιείται µια προοδευτική ολίσθηση προς 
το, φαινοµενικά, βέλτιστο διάνυσµα σχεδίασης. Ειδικότερα, η διαδικασία έχει ως εξής: 

 
Βήµα 1: Ορίζονται οι πίνακες (λίστες), οι οποίοι περιέχουν τις τυποποιηµένες διατοµές και 

αποτελούν το πεδίο ορισµού κάθε µεταβλητής σχεδίασης. Αρχικά, αποδίδεται µία 
πολύ µεγάλη τιµή στο βέλτιστο βάρος της κατασκευής. ∆ιευκρινίζεται ότι οι εν 
λόγω λίστες πρέπει να είναι ταξινοµηµένες. 
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Βήµα 2: Ορίζεται το αρχικό διάνυσµα σχεδίασης (είτε δηλώνεται από τον χρήστη είτε 
επιλέγεται τυχαία) 

Βήµα 3: Ορίζεται το εύρος αναζήτησης (search width) σχετικά µε τους πίνακες του 
Βήµατος 1. Το διάνυσµα σχεδίασης, σε συνδυασµό µε το εύρος αναζήτησης, ορίζει 
έναν υποπίνακα, ο οποίος θα διευρενηθεί σαρωτικά. Σε περίπτωση κατά την οποία 
είτε το άνω είτε το κάτω όριο του εν λόγω υποπίνακα βρεθεί εκτός του πεδίο 
ορισµού του προβλήµατος, τότε το συγκεκριµένο όριο τίθεται ίσο µε το αντίστοιχο 
άνω ή κάτω όριο του πεδίου ορισµού, έτσι ώστε ο υποπίνακας να αποτελεί πάντοτε 
υποσύνολο του πεδίου ορισµού. 

Βήµα 4: Για κάθε µεταβλητή σχεδίασης, λαµβάνεται µία τιµή από τον υποπίνακα του 
Βήµατος 3. Με αυτόν τον τρόπο σχηµατίζεται ένα νέο διάνυσµα σχεδίασης.  

Βήµα 5: Αναλύεται η κατασκευή, χρησιµοποιώντας είτε ιδιωτικό (in-house) κώδικα είτε 
κάποιο εµπορικό λογισµικό. 

Βήµα 6: Αξιολογούνται τα αποτελέσµατα του Βήµατος 5. Εάν ικανοποιούνται όλοι οι 
περιορισµοί και το βάρος της κατασκευής είναι µικρότερο από το τρέχον ελάχιστο 
βάρος, τότε το νέο διάνυσµα σχεδίασης θεωρείται ως το τρέχον βέλτιστο διάνυσµα.  

Βήµα 7: Εάν προκύψει νέο βέλτιστο διάνυσµα σχεδίασης από το Βήµα 6, τότε αυτό το 
διάνυσµα καθίσταται ως αρχικό διάνυσµα για τον επόµενο κύκλο αναζήτησης. 

Βήµα 8: Εάν δεν προκύψει νέο βέλτιστο διάνυσµα σχεδίασης από το Βήµα 6, τότε ως 
αρχικό διάνυσµα για τον επόµενο κύκλο αναζήτησης χρησιµοποιούνται οι διατοµές 
του διανύσµατος σχεδίασης του προηγουµένου κύκλου αναζήτησης, 
‘µετατοπισµένες’ στη λίστα του Βήµατος 1 κατά ένα προκαθορισµένο βήµα. 

Βήµα 9: Η διαδικασία τερµατίζεται όταν όλες οι µεταβλητές σχεδίασης αποκτούν τη 
µέγιστη δυνατή διατοµή, όπως αυτή προκύπτει από τις λίστες του Βήµατος 1. 

 
Στην προαναφερθείσα επαναληπτική διαδικασία, είναι δυνατή η ενσωµάτωση τεσσάρων 
κανόνων, οι οποίοι βελτιώνουν σηµαντικά την ικανότητα αναζήτησης. Αυτοί οι κανόνες είναι 
οι ακόλουθοι: 
 
Κανόνας #1: Εάν η ανάλυση της κατασκευής για ένα διάνυσµα σχεδίασης, του οποίου οι 

µεταβλητές σχεδίασης φέρουν τις µέγιστες δυνατές τιµές (άνω όριο πεδίου 
ορισµού), οδηγεί σε παραβίαση έστω και ενός εκ των περιορισµών, τότε δεν 
υπάρχουν δυνατές σχεδιάσεις στον ορισθέντα χώρο σχεδίασης, συνεπώς δεν 
συντρέχει λόγος εκκίνησης της διαδικασίας βελτιστοποίησης. 

Κανόνας #2: Εάν η ανάλυση της κατασκευής για ένα διάνυσµα σχεδίασης, του οποίου οι 
µεταβλητές σχεδίασης φέρουν τις ελάχιστες δυνατές τιµές (κάτω όριο 
πεδίου ορισµού), οδηγεί σε ικανοποίηση όλων των περιορισµών, τότε το εν 
λόγω διάνυσµα σχεδίασης είναι και το βέλτιστο στον ορισθέντα χώρο 
σχεδίασης. Και σε αυτήν την περίπτωση, δεν συντρέχει λόγος εκκίνησης 
της διαδικασίας βελτιστοποίησης. 

Κανόνας #3: ∆ιάνυσµα σχεδίασης X , στο οποίο όλες οι µεταβλητές σχεδίασης, µία-
προς-µία, είναι µεγαλύτερες από τις αντίστοιχες του τρέχοντος βελτίστου 
διανύσµατος σχεδίασης, αντιστοιχεί σε βαρύτερη κατασκευή. Σε αυτήν την 
περίπτωση δεν συντρέχει λόγος ανάλυσης της κατασκευής για το διάνυσµα 
σχεδίασης X . 

Κανόνας #4: Έστω ότι ένα διάνυσµα σχεδίασης παραβιάζει έστω και έναν περιορισµό. 
Το διάνυσµα αυτό ονοµάζεται violX . Κάθε διάνυσµα σχεδίασης, στο οποίο 
όλες οι µεταβλητές σχεδίασης έχουν µία-προς-µία µικρότερη τιµή από τις 
µεταβλητές σχεδίασης του violX  θα παραβιάζει και αυτό τουλάχιστον έναν 
περιορισµό, συνεπώς δεν συντρέχει λόγος ανάλυσης της κατασκευής. Το 
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διάνυσµα violX  ενηµερώνεται κάθε φορά που κάποιο διάνυσµα, µε όλες τις 
µεταβλητές σχεδίασής του µία-προς-µία µεγαλύτερη από τις αντίστοιχες 
του τρέχοντος violX , προκαλεί την παραβίαση έστω και ενός περιορισµού. 

 
8.3.3. Εφαρµογή: Ελαχιστοποίηση βάρους υποστέγου αεροσκαφών 

Η προδιαγραφή του προς εξέταση υποστέγου αεροσκαφών αφορά στη στάθµευση δύο 
αεροσκαφών τύπου Boeing 737-700. Σύµφωνα µε την επίσηµη ιστοσελίδα της 
κατασκευάστριας εταιρίας, ο συγκεκριµένος τύπος αεροσκάφους έχει µήκος 33.6m , 
εκπέτασµα 35.8m  και µέγιστο ύψος 12.5m . Βάσει αυτών των µεγεθών, θεωρήθηκε ότι το 
υπόστεγο θα είχε µήκος 80m , πλάτος 44m  και εσωτερικό ύψος 16m , το µέγιστο ύψος στην 
είσοδο του υποστέγου θα ήταν 9.55m , ενώ αυτό θα έφερε και µια γερανογέφυρα 5t .  
 

 
(a) (b) (c) 

Σχήµα 8.7: Το υπόστεγο αεροσκαφών (a) 3D όψη της κατασκευής, (b) τµήµα του υποστέγου 
και (c) γερανογέφυρα. 

Τα εξωτερικώς επιβαλλοµένα φορτία (ιδίου βάρους, φορτίου ανέµου, φορτίου χιονιού καθώς 
και όλων των συνδυασµών αυτών) καθώς και οι περιορισµοί αντοχής και λειτουργικότητας 
ήταν σύµφωνα µε τον Ευρωκώδικα 1 και τον Ευρωκώδικα 3, αντίστοιχα. 
 
8.3.3.1. Στοιχεία για το υπόστεγο  

Συνολικά, τα δοµικά στοιχεία της µεταλλικής κατασκευής του υποστέγου 
συγκεντρώθηκαν σε 16 οµάδες (groups), όπως φαίνεται στον Πίνακα 8.1. 
 
Πίνακας 8.3: Οµάδες δοµικών στοιχείων του εξεταζοµένου υποστέγου 

Group1 Group5 Group9 Group13 
HEA200 HEA360 TUBO-D193.7X4.5 HEM180 
HEB200 HEA400 TUBO-D219.1X5 HEM200 

 HEA450 TUBO-D244.5X5.4 HEM220 
Group2 Group6 Group10 Group14 

TUBO-D323.9X5.9 TUBO-D193.7X4.5 HEA120 TUBO-D139.7X4 
TUBO-D323.9X5.9 TUBO-D219.1X5 HEB140 TUBO-D152.4X4 

 TUBO-D244.5X5.4 HEA160 TUBO-D168.3X4 
Group3 Group7 Group11 Group15 

TUBO-D298.5X5.9 HEA180 HEA240 HEA140 
TUBO-D323.9X5.9 HEA200 HEA260 HEA160 

 HEB220 HEB280 HEA180 
Group4 Group8 Group12 Group16 
HEB800 HEA140 TUBO-D193.7X4.5 HEB200 
HEB1000 HEA160 TUBO-D219.1X5 HEB220 

 HEA180 TUBO-D244.5X5.4 HEB240 
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Το υπόστεγο βελτιστοποιήθηκε δύο φορές, µία χρησιµοποιώντας την, ενσωµατωµένη στο 
εµπορικό λογισµικό SAP2000, δυνατότητα βελτιστοποίησης και µία µε την προτεινόµενη 
διαδικασία. Τα αποτελέσµατα από αυτές τις δύο βελτιστοποιήσεις, δηλαδή το βέλτιστο 
διάνυσµα σχεδίασης και το βάρος της κατασκευής, παρουσιάζονται στον Πίνακα 8.4. 
 
Πίνακας 8.4: Βέλτιστες σχεδιάσεις για το εξεταζόµενο υπόστεγο 

Οµάδα δοµικών στοιχείων Βελτιστοποίησης µε εµπορικό 
λογισµικό  

Βελτιστοποίηση µε την 
προτεινόµενη διαδικασία

Group #1 ΗΕB220 HEA200 
Group #2 TUBO-D323,9X5,9 TUBO-D323,9X5,9 
Group #3 TUBO-D355,6X6,3 TUBO-D298,5X5,9 
Group #4 ΗΕB800  ΗΕB800 
Group #5 HEB400 HEA400 
Group #6 TUBO-D219,1X5 TUBO-D219,1X5 
Group #7 ΗΕB220 HEA180 
Group #8 ΗΕB200 HEA160 
Group #9 TUBO-D244,5x5,4 TUBO-D193,7X4,5 
Group #10 HEA160 HEB140 
Group #11 ΗΕB280 HEA240 
Group #12 TUBO-D273x5,6 TUBO-D219,1X5 
Group #13 ΗΕM200 HEM180 
Group #14 TUBO-D168,3x4 TUBO-D152,4X4 
Group #15 ΗΕA180 HEA140 
Group #16 ΗΕB240 HEB220 

Συνολικό βάρος κατασκευής [t] 62.7  55.0 
 

Από τους δύο ανωτέρω πίνακες, προκύπτει ότι η προτεινόµενη διαδικασία καταλήγει σε 
µία σχεδίαση ελαφρύτερη κατά 12.3% συγκριτικά µε εκείνην, η οποία προέκυψε 
χρησιµοποιώντας το εµπορικό λογισµικό. Ειδικά για τη λειτουργικότητα, ισχύει: 
 
• Κατά τον άξονα x, οι µέγιστες µετατοπίσεις είναι ( )19L m= : 
 

,min 51.046 / 300 63xu mm L mm= − < =  και ,max 56.105 / 300 63xu L mm= < =      (8.10) 
 
• Κατά τον άξονα y, οι µέγιστες µετατοπίσεις είναι ( )80L m= : 
 

,min 143.851 / 300 267yu mm L mm= − < =  και ,min 81.621 / 300 267yu L mm= < =      (8.11) 
 
• Κατά τον άξονα z, οι µέγιστες µετατοπίσεις είναι ( )44L m= : 
 

,max 211.325 / 200 220zu L mm= < =                                     (8.12) 
 

Από τους ανωτέρω ελέγχους, προκύπτει ότι η βέλτιστη σχεδίαση, όπως αυτή προκύπτει 
από την εφαρµογή της προτεινοµένης διαδικασίας, ικανοποιεί όλους τους, σχετικούς µε τη 
λειτουργικότητα της κατασκευής, περιορισµούς. Συγκριτικά, δε, µε τις µετατοπίσεις, οι 
οποίες αντιστοιχούν στο βέλτιστο διάνυσµα σχεδίασης, όπως αυτό προέκυψε από τη χρήση 
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του εµπορικού λογισµικού, σηµαντική διαφορά υπάρχει µόνο στην κατακόρυφη µετατόπιση, 
όπως φαίνεται και στον Πίνακα 8.5. 
 
Πίνακας 8.5: Σύγκριση βελτίστων σχεδιάσεων µε κριτήριο τις µετατοπίσεις 

∆ιεύθυνση 
Μετατόπιση [mm] 

Βελτιστοποίηση µε 
εµπορικό λογισµικό 

Βελτιστοποίηση µε την 
προτεινόµενη διαδικασία 

Οριζόνια 
κατά τον άξονα x 57 56,105 

-51 -51,046 

κατά τον άξονα y 143 143,851 
-81 -81,621 

Κάθετη κατά τον άξονα z 145 211,325 
 

8.3.3.2. Στοιχεία για τη γερανογέφυρα  

Σχετικά µε την ανηρτηµένη γερανογέφυρα, αυτή ήταν µορφής δικτυώµατος, ύψους 3m  
και ανοίγµατος 70m  

Τα αναπτυσσόµενα κατακόρυφα φορτία στις γερανοδοκούς οφείλονται στο ανηρτηµένο 
φορτίο, στο ίδιον βάρος της γερανογέφυρας και στο ίδιον βάρος του βαρουλκοφορείου. Για 
τις ανάγκες της παρούσης, θεωρήθηκε ανηρτηµένο φορτίο 5t  και ίδια βάρη 15.2t , ενώ 
υπολογίστηκαν οι αντιδράσεις, για το χειρότερο σενάριο φόρτισης, στις δύο θέσεις στήριξης 
της γερανογέφυρας ίσες 87kN  και 53kN , αντίστοιχα. 

Οι οριζόντιες δυνάµεις, οι οποίες αναπτύσσονται στη γερανοδοκό, θεωρείται ότι 
οφείλονται στην επιτάχυνση/επιβράδυνση της γερανογέφυρας. Σύµφωνα µε τον Ευρωκώδικα, 
θεωρείται ότι οι οριζόντιες δυνάµεις δρουν ταυτόχρονα µε τις κατακόρυφες δυνάµεις. Για τις 
ανάγκες της παρούσης, οι οριζόντιες δυνάµεις θεωρήθηκαν ίσες µε το 15%  των 
κατακορύφων δυνάµεων, ήτοι 10kN .  

Ο χώρος σχεδίασης για την ανηρτηµένη γερανογέφυρα περιγράφεται στον Πίνακα 8.6, 
στον οποίο οι, προκύπτουσες µε την προτεινόµενη διαδικασία, διατοµές σηµειώνονται µε 
έντονα γράµµατα. 

 
Πίνακας 8.6: Χώρος σχεδίασης για την ανηρτηµένη γερανογέφυρα 

Group 1 Group 2 Group 3 Group 4 Group 5 
2L150X100X14/25/ 2L150X100X14/25/ L90X8 L65X6 L65X6 
2L150X100X14/30/ 2L150X100X14/30/ L90X10 L65X7 L65X7 
2L150X100X14/40/ 2L150X100X14/40/ L90X12 L70X10 L70X10 

 
Σηµειώνεται ότι, τόσο το εµπορικό λογισµικό όσο και η προτεινόµενη διαδικασία 

βελτιστοποίησης, κατέληξαν στο ίδιο βέλτιστο διάνυσµα σχεδίασης για τη γερανογέφυρα. 
Αυτό σηµαίνει ότι είναι εφικτή µία µείωση στο βάρος της γερανογέφυρας εάν µεταβληθεί η 
τοπολογία ή το σχήµα της γερανογέφυρας, και όχι το µέγεθος της διατοµής των δοµικών της 
στοιχείων.  
 
8.3.3.3. Ανάλυση υπολογιστικού κόστους 

Για την αξιολόγηση του υπολογιστικού κόστους της προτεινοµένης διαδικασίας 
βελτιστοποίησης, εκτιµήθηκε ο υπολογιστικός χρόνος (CPU time) κάθε µίας από τις 
εµπλεκόµενες λειτουργίες (Σχήµα 8.8). 
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R1: άνοιγµα αρχείων 
R2: ανάγνωση δεδοµένων από αρχεία SAP 
R3: νέο διάνυσµα σχεδίασης (NDV) 
R4: αποθήκευση του (NDV) 
R5: άνοιγµα βοηθητικών αρχείων 
R6: δηµιουργία νέου αρχείου SAP 
R7: κλήση λογισµικού SAP 
R8: έλεγχος περιορισµών 
R9: διαγραφή παλαιών αρχείων SAP, νέο 
βέλτιστο διάνυσµα σχεδίασης 
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(a) (b) 

Σχήµα 8.8: Ανάλυση συνολικού υπολογιστικού χρόνου (a) λειτουργίες και (b) ποσοστό επί 
του συνολικού υπολογιστικού χρόνου 

 
Οι κύριες λειτουργίες κατά την εκτέλεση της προτεινόµενης διαδικασίας παρουσιάζονται 

στο Σχήµα 8.8a. Από το Σχήµα 8.8b προκύπτει ότι τέσσερεις λειτουργίες, από τις εννέα 
συνολικά, καταναλώνουν το µεγαλύτερο µέρος του υπολογιστικού χρόνου. Η πλέον 
χρονοβόρος λειτουργία, µε ποσοστό 58.4% επί του συνολικού υπολογιστικού χρόνου, αφορά 
στην κλήση του εµπορικού λογισµικού και στην εκτέλεση µίας ανάλυσης της κατασκευής. 
Ένα µεγάλο µέρος αυτού του κόστους αποτελεί κυριολεκτικά σπατάλη χρόνου διότι αφορά 
στην έναρξη και στον τερµατισµό του εµπορικού λογισµικού, κάθε φορά που πρέπει να 
εξετασθεί ένα διάνυσµα σχεδίασης. Το υπολογιστικό κόστος θα µειωνόταν σίγουρα εάν θα 
ήταν εφικτή η διατήρηση του εµπορικού λογισµικού σε κατάσταση λειτουργίας και η χρήση 
του όποτε αυτό απαιτείτο.  

∆ύο άλλες, επίσης χρονοβόρες, λειτουργίες σχετίζονται µε τη δηµιουργία, διαχείριση και 
διαγραφή αρχείων τύπου txt, τα οποία χρησιµοποιούνται για την επικοινωνία µεταξύ του 
εµπορικού κώδικα και του ιδιωτικού (in-house) κώδικα που αναπτύχθηκε στο περιβάλλον 
MatLab. Η χρήση αρχείων txt δεν αποτελεί την καλύτερη επιλογή, σε αντίθεση µε τη χρήση 
µίας βάσης δεδοµένων. Ωστόσο, στο πλαίσιο της παρούσης, ο κύριος σκοπός ήταν η 
διερεύνηση της δυνατότητας ενσωµάτωσης ενός εµπορικού λογισµικού για την ανάλυση 
κατασκευής σε µία διαδικασία βελτιστοποίησης. Η επικοινωνία µεταξύ ιδιωτικού κώδικα και 
εµπορικού λογισµικού µέσω αρχείων βάσης δεδοµένων θα µπορούσε να αποτελέσει µία 
µελλοντική βελτίωση. 

Τέλος, σηµειώνεται ότι για το εξετασθέν υπόστεγο αεροσκαφών και για τον 
χρησιµοποιηθέντα χώρο σχεδίασης, το συνολικό πλήθος συνδυασµών ήταν 8,503,056 . Με 
την προτεινόµενη ευρυστική διαδικασία βελτιστοποίησης, εξετάσθηκαν λιγότερο από 0.01%  
αυτών των συνδυασµών, µέχρι να εντοπισθεί η βέλτιστη σχεδίαση, το βάρος της οποίας είναι 
µικρότερο κατά 12.3%  συγκριτικά µε εκείνο που προέκυψε χρησιµοποιώντας το εµπορικό 
λογισµικό. 
 
8.4. Μικτού τύπου βελτιστοποίηση κατασκευών µε πολλές µεταβλητές 
σχεδίασης  
8.4.1. Γενικά 
Έστω ότι µία κατασκευή, π.χ. ο φορέας µίας γερανογέφυρας, αποτελείται από εµπορικώς 
διαθέσιµα ελάσµατα, τα οποία διατίθενται σε συγκεκριµένες διαστάσεις. Αν και µε 
διαδικασίες κοπής και συγκόλλησης είναι, θεωρητικά, δυνατή η δηµιουργία οποιασδήποτε 
επιφανείας, ωστόσο το πάχος των ελασµάτων είναι τυποποιηµένο και διακριτό. Εάν, λοιπόν, 
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αναζητείται το ελάχιστο βάρος ενός φορέα, τότε στο εν λόγω πρόβληµα βελτιστοποίησης 
εµπλέκονται και διακριτές µεταβλητές, το πάχος των ελασµάτων εν προκειµένω, και συνεχείς 
µεταβλητές, το πλάτος και το µήκος των ελασµάτων εν προκειµένω. Τέτοιου είδους 
προβλήµατα, στα οποία εµπλέκονται µεταβλητές σχεδίασης διαφορετικού τύπου, 
ονοµάζονται προβλήµατα βελτιστοποίησης µικτού τύπου. Ωστόσο, για πρακτικούς λόγους, 
είναι δυνατόν οι συνεχείς µεταβλητές να λαµβάνουν µόνον ακέραιες τιµές. Στην περίπτωση 
των ελασµάτων, για λόγους κατεργασίας και κατασκευαστικού κόστους, οι διαστάσεις, µήκος 
και πλάτος, των τεµαχίων στα οποία θα κοπούν τα ελάσµατα, στρογγυλοποιούνται µε µία 
προκαθορισµένη ακρίβεια. Συνεπώς, οι συνεχείς µεταβλητές σχεδίασης, αν και αρχικώς 
ορίζονται στο χώρο των πραγµατικών αριθµών, τελικά λαµβάνουν τιµές από το χώρο των 
ακεραίων αριθµών, οι οποίες είναι διακριτές µεν αλλά άπειρες στο πλήθος. Υπό αυτήν την 
έννοια, οι εν λόγω µεταβλητές είναι δυνατόν να ορισθούν ως ψευδο-διακριτές. Βάσει αυτού 
του ορισµού, η διαδικασία της Ενότητας 8.3.2 αναδιατυπώνεται, ως φαίνεται στην επόµενη 
Ενότητα. 
 
8.4.2. Προτεινόµενη ευριστική διαδικασία βελτιστοποίησης 

Έστω ότι σε µία κατασκευή ορίζονται N  µεταβλητές σχεδίασης, εκ των οποίων οι DN  
είναι διακριτής φύσεως και οι qDN  είναι ψευδο-διακριτής φύσεως. Ως ‘ψευδοδιακριτές’ 
ορίζονται εκείνες οι µεταβλητές, οι οποίες, αν και στην πραγµατικότητα είναι συνεχείς, 
λαµβάνουν µόνον ακέραιες τιµές. Έστω ότι σε κάθε µία από τις DN  µταβλητές αποδίδεται 
µία διακριτή τιµή , 1,...,iM i D=  και σε κάθε µία από τις qDN  είναι αποδίδεται µία ακέραια 
τιµή , 1,...,iM i D= . Μια πλήρως παραγοντική (full-factorial) προσέγγιση απαιτεί την εξέταση 
ενός τεραστίου πλήθους συνδυασµών. Αντιθέτως, η προτεινόµενη διαδικασία στηρίζεται σε 
µία µερικώς παραγοντική (partial-factorial) διαδικασία αναζήτησης, η οποία είναι 
διαδραστική υπό την έννοια ότι ο χρήστης έχει τη δυνατότητα να επέµβει και να επηρεάσει 
την πορεία της βελτιστοποίησης αξιοποιώντας την κρίση και την εµπειρία του. Η 
προτεινόµενη ευριστική διαδικασία έχει ως εξής: 
 
Βήµα 1: Σχηµατισµός των λιστών, οι οποίες αποτελούν το πεδίο ορισµού κάθε µίας 

µεταβλητής. Αυτές οι λίστες είναι ταξινοµηµένες κατά αύξουσα. 
Βήµα 2: Ορισµός ενός αρχικού διανύσµατος σχεδίασης (επιλογή του χρήστη ή τυχαία 

δηµιουργία).  
Βήµα 3: Για κάθε µία µεταβλητή σχεδίασης, ορισµός του άνω ορίου, του κάτω ορίου και 

του βήµατος αναζήτησης του υποπεδίου που πρόκειται να διερευνηθεί. Η 
διερεύνηση θα είναι σαρωτική και εµπεριέχει τους λογικούς κανόνες της 
Ενότητας 8.3.2, προκειµένου να περιορισθεί το υπολογιστικό κόστος. 

Βήµα 4: Έναρξη ενός κύκλου αναζήτησης. Εάν σχηµατίζονται δυνατά διανύσµατα 
σχεδίασης, τότε αποθηκεύεται εκείνο, το οποίο αντιστοιχεί στο ελάχιστο βάρος. 
∆ιαφορετικά, ο χρήστης θα πρέπει να µεταβάλλει τα όρια ή/και το βήµα 
αναζήτησης του υποχώρου, στον οποίο πραγµατοποιείται η αναζήτηση, και το 
Βήµα 4 εκτελείται εκ νέου έως ότου προκύψει ένα δυνατό διάνυσµα σχεδίασης. 

Βήµα 5: Βάσει του διανύσµατος σχεδίασης, το οποίο προκύπτει από το Βήµα 4, 
πραγµατοποίηση µίας σαρωτικής αναζήτησης γύρω από το εν λόγω διάνυσµα και 
για ένα προκαθορισµένο εύρος. 

Βήµα 6: Επανάληψη του Βήµατος 5µέχρι συγκλίσεως του βάρους της κατασκευής. 
 

Σε αυτό το σηµείο διευκρινίζεται ότι, µετά το πέρας ενός κύκλου αναζήτησης, ο χρήστης 
είναι δυνατόν να µεταβάλλει ή ακόµα και να ‘παγώσει’ όρια και βήµατα αναζήτησης, 
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προκειµένου να ενσωµατώσει την προσωπική του κρίση και εµπειρία στην πορεία της 
βελτιστοποίησης. Αν και δεν αποδεικνύεται ότι η ανωτέρω διαδικασία καταλήγει πάντοτε στο 
καθολικά βέλτιστο διάνυσµα σχεδίασης, ο χρήστης έχει τη δυνατότητα να εκκινήσει τη 
διαδικασία βελτιστοποίησης από διαφορετικά αρχικά διανύσµατα σχεδίασης και να 
πειραµατισθεί µε διάφορες επιλογές. Με τον τρόπο αυτό, είναι δυνατόν να αποκτήσει µία 
αίσθηση σχετικά µε το πόσο βέλτιστη είναι τελικά η προκύπτουσα σχεδίαση. Σε αυτήν την 
διερεύνηση, σηµαντικό αρωγό αποτελεί η χρήση των κανόνων της Ενότητας 8.3.2, διότι 
αυτοί δεν επιτρέπουν την εκτέλεση µίας ανάλυσης όταν διαγιγνώσκεται ότι το τρέχον 
διάνυσµα σχεδίασης θα οδηγήσει σε παραβίαση τουλάχιστον ενός εκ των επιβεβληµένων 
περιορισµών. 
 
8.4.3. Εφαρµογή: Βελτιστοποίηση γερανογέφυρας διπλού φορέα κλειστής διατοµής  

8.4.3.1. Γενικά 
Η εξετασθείσα εφαρµογή αφορά στην ελαχιστοποίηση του βάρους επικαθήµενης 

γερανογέφυρας διπλού φορέα κλειστής συγκολλητής διατοµής (Σχήµα 8.9).  
 

 
(a) (b) (c) (d) 

Σχήµα 8.9: Τυπικές µορφές γερανογέφυρας διπλού φορέα: (a) τύπου πυλώνα, (b) 
επικαθήµενη, (c) ανηρτηµένη και (d) τύπου tri-girder. 

 
Για τη διαµόρφωση της διατοµής του φορέα θεωρήθηκε ότι θα χρησιµοποιηθούν 

τυποποιηµένα ελάσµατα, διαθέσιµα στην Ελληνική αγορά. Το εν λόγω πρόβληµα είναι 
µικτού τύπου διότι εµπλέκονται διακριτές και συνεχείς µεταβλητές. Ειδικότερα, δεδοµένου 
ότι τα διαθέσιµα ελάσµατα διαθέτουν τυποποιηµένα πάχη, έπεται ότι τα πάχη των κορµών 
και των πελµάτων είναι δυνατόν να λάβουν µόνον συγκεκριµένες και διακριτές τιµές, άρα 
αποτελούν διακριτές µεταβλητές σχεδίασης. Από την άλλη πλευρά, το ύψος των κορµών, το 
πλάτος των πελµάτων αλλά και η εσωτερική απόσταση µεταξύ των κορµών, είναι δυνατόν να 
λάβουν οποιαδήποτε θετική πραγµατική τιµή. Συνεπώς, αυτά τα µεγέθη αποτελούν συνεχείς 
µεταβλητές σχεδίασης. Ωστόσο, για κατασκευαστικούς λόγους και λόγους κόστους, τα εν 
λόγω µεγέθη στρογγυλοποιούνται και λαµβάνουν µόνον θετικές, ακέραιες τιµές, άρα είναι 
ψευδο-διακριτής φύσεως (βλ. Ενότητα 8.4.2). Συνολικά, βελτιστοποιήθηκαν 75 περιπτώσεις, 
όπως αυτές προκύπτουν από το συνδυασµό των παραµέτρων του Πίνακα 8.7. 

 
Πίνακας 8.7: Παράµετροι και τιµές αυτών 

Index Variable Value Units 
1 Crane Bridge Span { }10,15,20,25,30CBS∈  [m] 

2 Total Hoisting Mass { }10,15,20,25,30THM ∈  [t] 

3 Trolley Wheel Base { }1000,1250,1500TWB∈  [mm] 

∆ιευκρινίζεται ότι όλα τα σενάρια φόρτισης υπολογίσθηκαν κατά τον Ευρωκώδικα 1, ενώ 
όλοι οι περιορισµοί (Πίνακας 8.8) επεβλήθησαν σύµφωνα µε Ευρωκώδικα 3. 
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Πίνακας 8.8: Περιορισµοί κατά Ευρωκώδικα 3 
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8.4.3.2. Αποτελέσµατα - ∆ιαγράµµατα 
Για την αξιολόγηση της προτεινοµένης διαδικασίας, πραγµατοποιήθηκε σύγκριση µε τη 

µέθοδο της σαρωτικής αναζήτησης (exhaustive search) του πεδίου ορισµού. Σε όλες τις 
περιπτώσεις, προέκυψε ότι η προτεινόµενη διαδικασία βελτιστοποίησης συνέκλινε στο 
καθολικά βέλτιστο διάνυσµα σχεδίασης. 

Με βάση, δε, τα βέλτιστα διανύσµατα σχεδίασης από τις 75 εξετασθείσες περιπτώσεις, 
κατασκευάσθηκαν διαγράµµατα προκειµένου να αποκαλυφθεί κάποια συσχέτιση µεταξύ των 
µεταβλητών σχεδίασης. Ειδικότερα, ορίσθηκαν τρεις οµάδες κανονικοποιηµένων δεικτών. Η 
πρώτη οµάδα περιλαµβάνει τους ακόλουθους δείκτες: 
 

( )1 2 i
t t    ( )2 3 i

t t    ( )2 i
t b    ( )w i

b h    ( )4 w i
t h    ( )3 w i

t h                      (8.13) 
 
όπου 1 1,b t  είναι το πλάτος και το πάχος του κάτω πέλµατος, 2 2,b t  είναι το πλάτος και το 
πάχος του άνω πέλµατος, ενώ 3 4, ,wh t t  είναι το ύψος και τα πάχη των κορµών, αντίστοιχα. Ο 
δείκτης [ ]1,2,...,75i∈  αντιστοιχεί στον αύξοντα αριθµό της εξετασθείσης γερανογέφυρας. Η 
δεύτερη οµάδα δεικτών περιλαµβάνει τις ακόλουθες ποσότητες: 
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όπου A  είναι το εµβαδόν διατοµής και οι δείκτες 1,2,3,4, tot  υποδηλώνουν το κάτω πέλµα, 
το άνω πέλµα, τον αριστερό κορµό, το δεξιό κορµό και τη συνολική διατοµή, αντίστοιχα, 
µίας κλειστής διατοµής φορέα. Ο δείκτης i  χρησιµοποιείται όπως και στην Εξ.(8.13). 
∆ιευκρινίζεται ότι οι δείκτες της Εξ.(8.13) και της Εξ.(8.14) αποσκοπούν στην αποκάλυψη 
συσχέτισης σε όρους διαστάσεων και σε όρους εµβαδού διατοµής, αντίστοιχα. Η τρίτη οµάδα 
δεικτών περιλαµβάνει τις ακόλουθες ποσότητες: 
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όπου ως I  δηλώνεται η ροπή αδρανείας της διατοµής, οι δείκτες , ,uf lf w  δηλώνουν το άνω 
πέλµα, το κάτω πέλµα και τους κορµούς, αντίστοιχα, ενώ ο δείκτης y  δηλώνει τον οριζόντιο 
άξονα της διατοµής.  

Οι δείκτες των Εξ.(8.13, 8.14, 8.15) απεικονίσθηκαν σε ραβδοδιαγράµµατα (Σχήµα 8.10), 
στα οποία εφαρµόσθηκε πολυωνυµική διαδικασία αναδροµής. Όπως φαίνεται, υπάρχει υψηλή 
συσχέτιση µεταξύ των αποτελεσµάτων, κάτι που υποδηλώνει ότι οι ορισθέντες 
κανονικοποιηµένοι δείκτες υπακούουν σε πολυωνυµικούς νόµους µικρού έως και µεσαίου 
βαθµού πολυωνύµου. Επίσης, από αυτά τα διαγράµµατα, προκύπτουν χρήσιµες παρατηρήσεις 
για τη σχεδίαση κλειστών διατοµών γερανογεφυρών διπλού φορέα. Χαρακτηριστικά, 
αναφέρεται ότι η συνεισφορά των κορµών στη ροπή αδρανείας ως προς τον οριζόντιο άξονα 
είναι µεγαλύτερη από αυτή των πελµάτων (Σχήµα 8.8c), ενώ, µεταξύ των δύο πελµάτων, το 
άνω πέλµα είναι εκείνο το οποίο συνεισφέρει πολύ περισσότερο στη ροπή αδρανείας ως προς 
τον οριζόντιο άξονα (Σχήµα 8.8c). 
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Σχήµα 8.10: ∆ιαγράµµατα κανονικοποιηµένων δεικτών ως προς (a) τις γεωµετρικές 
διαστάσεις, (b) το εµβαδόν και (c)τις ροπές αδρανείας των βελτίστων διατοµών 
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Σε αυτήν την περίληψη κεφαλαίου παρουσιάζεται εν συντομία η συνεισφορά της παρούσας 
Διδακτορικής Διατριβής καθώς θέματα για περαιτέρω έρευνα. 
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9.1. Συνεισφορά ∆ιδακτορικής ∆ιατριβής 
Εν συντοµία, η συνεισφορά της παρούσης ∆ιδακτορικής ∆ιατριβής είναι δυνατόν να 

συνοψισθεί στα κατωτέρω: 
• ∆ιατύπωση νέων κανονικοποιηµένων δεικτών για την αξιολόγηση µίας µεθόδου 

βελτιστοποίησης. 
• Ανάπτυξη µίας νέας υβριδικής µεθόδου για την επίλυση προβληµάτων ελαχιστοποίησης 

του βάρους µίας κατασκευής υπό την επιβολή οποιουδήποτε πλήθους περιορισµών 
µετατόπισης ή/και τάσης. Η εν λόγω µέθοδος εφαρµόσθηκε για τη βελτιστοποίηση 
σκελετικών κατασκευών, ενώ η εφαρµογή της µεθόδου και σε κατασκευές συνεχούς 
µέσου είναι τετριµµένη. 

• ∆ιατύπωση ενός νέου Βελτίστου Κριτηρίου για την επίλυση του προβλήµατος 
ελαχιστοποίησης του βάρους µίας κατασκευής συνεχούς µέσου υπό την επιβολή ενός 
περιορισµού ανάπαλσης.  

• Ανάπτυξη µίας νέας διαδικασίας βελτιστοποίησης, για την επίλυση του προβλήµατος 
ελαχιστοποίησης του βάρους µίας 2∆ κατασκευής συνεχούς µέσου υπό την επιβολή 
περιορισµών τάσης, εισάγοντας ισοπαραµετρική ενδοστοιχειακή παρεµβολή πάχους και 
χρησιµοποιώντας τους κόµβους του πλέγµατος ως σηµεία ελέγχου σµίλευσης της 
επιφανείας της κατασκευής. 

• ∆ιερεύνηση και σύγκριση των βιβλιογραφικών µεθόδων ESO και FSD στην επίλυση του 
προβλήµατος ελαχιστοποίησης του βάρους 2∆ πλακών υπό την επιβολή περιορισµού 
τάσης. 

• Ανάπτυξη µίας νέας διαδικασίας βελτιστοποίησης για την επίλυση του προβλήµατος 
ελαχιστοποίησης του βάρους µίας 3∆ κατασκευής συνεχούς µέσου υπό την επιβολή 
περιορισµού τάσης.  

• ∆ιατύπωση ενός νέου Βελτίστου Κριτηρίου για την επίλυση του προβλήµατος 
ελαχιστοποίησης του βάρους 2∆ και 3∆ σκελετικών κατασκευών υπό την γενικευµένη 
επιβολή ενός περιορισµού τάσης. 

• Ανάπτυξη µίας νέας διαδικασίας βελτιστοποίησης για την επίλυση του προβλήµατος 
ελαχιστοποίησης του βάρους 2∆ και 3∆ σκελετικών κατασκευών υπό την γενικευµένη 
επιβολή ενός περιορισµού τάσης. 

• ∆ιατύπωση ενός νέου Βελτίστου Κριτηρίου για την επίλυση του προβλήµατος 
ελαχιστοποίησης του βάρους 2∆ και 3∆ σκελετικών κατασκευών υπό την γενικευµένη 
επιβολή ενός περιορισµού µετατόπισης. 

• Ανάπτυξη µίας νέας διαδικασίας βελτιστοποίησης για την επίλυση του προβλήµατος 
ελαχιστοποίησης του βάρους 2∆ και 3∆ σκελετικών κατασκευών υπό την γενικευµένη 
επιβολή ενός περιορισµού µετατόπισης. 

• Ανάπτυξη µίας παραλλαγής της µεθόδου ESO για την επίλυση του προβλήµατος 
ελαχιστοποίησης του βάρους 2∆ συνεχών µέσων υπό την επιβολή ενός περιορισµού 
µετατόπισης. 

• Ανάπτυξη µίας νέας διαδικασίας βελτιστοποίησης για την επίλυση του προβλήµατος 
ελαχιστοποίησης του βάρους µίας 2∆ κατασκευής συνεχούς µέσου υπό τη γενικευµένη 
επιβολή ενός περιορισµού µετατόπισης, εισάγοντας ισοπαραµετρική ενδοστοιχειακή 
παρεµβολή πάχους και χρησιµοποιώντας τους κόµβους του πλέγµατος ως σηµεία 
ελέγχου σµίλευσης της επιφανείας της κατασκευής. 

• Ανάπτυξη µίας νέας διαδικασίας βελτιστοποίησης για την επίλυση του προβλήµατος 
ελαχιστοποίησης του κόστους µίας σκελετικής κατασκευής, επιδιώκοντας την 
οµαδοποίηση των ενεργών δοµικών στοιχείων και την αύξηση της κοινοτυπίας τους. 

• Ανάπτυξη µίας νέας διαδικασίας βελτιστοποίησης για την επίλυση του προβλήµατος 
ελαχιστοποίησης του κατασκευαστικού κόστους δεξαµενών αποθήκευσης 
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πετρελαιοειδών, χρησιµοποιώντας εµπορικά διαθέσιµα ελάσµατα, λαµβάνοντας υπόψη 
το κόστος των συγκολλήσεων και επιδιώκοντας την ελαχιστοποίηση της φύρας. 

• Ανάπτυξη µίας νέας διαδικασίας βελτιστοποίησης για την επίλυση του προβλήµατος 
ελαχιστοποίησης του βάρους κατασκευών, οι οποίες είναι δυνατόν να θεωρηθούν ως 
απλές δοκοί, όπως συµβαίνει στην περίπτωση γερανογέφυρας απλού φορέα. 

• Ανάπτυξη µίας νέας ευρυστικής διαδικασίας βελτιστοποίησης για την επίλυση του 
προβλήµατος ελαχιστοποίησης του βάρους κατασκευών, οι οποίες αποτελούνται από 
τυποποιηµένα ραβδόµορφα ή δοκιδόµορφα στοιχεία. 

• Ανάπτυξη µίας νέας ευρυστικής διαδικασίας βελτιστοποίησης µικτού τύπου για την 
επίλυση του προβλήµατος ελαχιστοποίησης του βάρους κατασκευών, οι οποίες 
αποτελούνται από πλακόµορφα στοιχεία. Στην περίπτωση αυτή, το πάχος των πλακών 
είναι τυποποιηµένο (διακριτό πρόβληµα βελτιστοποίησης) αλλά οι άλλες δύο 
γεωµετρικής διαστάσεις είναι δυνατόν να θεωρηθούν ως συνεχείς µεταβλητές (πρόβληµα 
βελτιστοποίησης συνεχών µεταβλητών). 

• Επίλυση του προβλήµατος ελαχιστοποίησης του βάρους µίας σειράς κατασκευών µε 
πρακτική εφαρµογή, επιβάλλοντας όλους τους, προβλεπόµενους από κανονισµούς και 
πρότυπα, περιορισµούς και χρησιµοποιώντας ανάλυση ευαισθησίας ή/και εµπορικό 
κώδικα. 

 
9.2. Περαιτέρω έρευνα 

Σχετικά µε ιδέες για περαιτέρω έρευνα, ένα άµεσο βήµα είναι η εφαρµογή της 
προτεινοµένης διαδικασίας βελτιστοποίησης υπό την γενικευµένη επιβολή ενός περιορισµού 
µετατόπισης σε 3∆ κατασκευές συνεχούς µέσου. Το επόµενο βήµα θα ήταν η εφαρµογή του 
προτεινοµένου Βελτίστου Κριτηρίου για την επίλυση του προβλήµατος ελαχιστοποίησης του 
βάρους υπό την γενικευµένη επιβολή ενός περιορισµού τάσης, σε διάφορες 2∆ και 3∆ 
κατασκευές. Στη συνέχεια θα ήταν δυνατή η σύζευξη των προτεινοµένων, στην παρούσα 
∆ιδακτορική ∆ιατριβή, Βελτίστων Κριτηρίων προς επίλυση προβληµάτων ελαχιστοποίησης 
βάρους κατασκευών υπό τη γενικευµένη επιβολή ενός περιορισµού µετατόπισης και υπό τη 
γενικευµένη επιβολή ενός περιορισµού τάσης. Επίσης, ενδιαφέρον θα παρουσίαζε η 
διερεύνηση της επιβολής άλλων ειδών περιορισµών, όπως είναι οι περιορισµοί σχετικά µε τις 
ιδιοσυχνότητες, πάντοτε υπό τη µορφή προβλήµατος βελτιστοποίησης υπό τη γενικευµένη 
επιβολή ενός περιορισµού. Προφανώς, ένας υψηλός στόχος θα ήταν η αντιµετώπιση του 
προβλήµατος βελτιστοποίησης υπό τη γενικευµένη επιβολή ενός περιορισµού µετατόπισης, 
ενός περιορισµού τάσης, ενός περιορισµού ιδιοσυχνότητας και ενός περιορισµού ευστάθειας. 
Ένα ακόµα πεδίο ερεύνης θα αποτελούσε η χρήση ιδεών και τεχνικών από το χώρο του CAD 
(Computer Aided Design) για τη σµίλευση του σχήµατος ενός συνεχούς µέσου, κατά την 
οποία οι κόµβοι θα χρησιµοποιούνταν ως σηµεία ελέγχου µίας καλώς και σαφώς ορισµένης 
επιφανείας, ενώ για την παρεµβολή του πάχους θα χρησιµοποιούνται διαφορετικά σχήµατα 
ισοπαραµετρικής παρεµβολής. Τέλος, ένας εντελώς διαφορετικός δρόµος έρευνας θα ήταν η 
ενσωµάτωση ιδεών, όπως των προαναφερθέντων, σε άλλες υπολογιστικές µεθόδους, όπως 
είναι η Μέθοδος των Συνοριακών Στοιχείων (Boundary Element Method) και η Μέθοδος 
Άνευ Πλέγµατος (Meshless Method), και σε άλλα υλικά, όπως είναι τα σύνθετα υλικά. 
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ΠΑΡΑΡΤΗΜΑ Α 
 
 

ΔΗΜΟΣΙΕΥΣΕΙΣ 

ΚΑΙ 

ΑΝΑΚΟΙΝΩΣΕΙΣ 
 
 
 
 

Σε αυτό το Παράρτημα παρατίθενται οι δημοσιεύσεις και οι ανακοινώσεις, οι οποίες προέκυψαν από 
τμήμα υλικού της παρούσης Διδακτορικής Διατριβής. Συνολικά, αναφέρονται δύο δημοσιεύσεις σε 
έγκριτα επιστημονικά περιοδικά και 25 ανακοινώσεις σε διεθνή συνέδρια και παγκόσμιες συνόδους, 

με κρίση επί εκτεταμένης περίληψης. 
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