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Evyaplotisg

[Ipwrtioctog OBa Bera va evyapiotiow Tov enifrémovtd pov, Kabnyntn Mavoin [Horadpaxdkn,
Yo TNV €ukaipior TOv Hov £dmGE Vo acyoAn0d pe epeuvnTIKA BEpoTa aryung, To omoia £xovv
dupeon epappoyn péow e Meboddov twv Ienepacpuévov Xtoyginv Kot apopovy TNV EmiAvon
TPOKTIK®OV TpoPAnudtov [MoMtikod kot Agpovovmnyod Mrnyoavikov. Méow g mapaymyikng
LG ouvepyaoiog Kol TNng EMGTNUOVIKNG Tov kKaBodynong, kotdeepe va Hov LIodeiEel to
AmEPIOPIOTO TV SVVATOTHTAOV HOV Kol Vo 0E€5EL WAoVG £pELVNTIKOVG GTOYOVG GTO TAOIGLOL TNG
napovoas Awtppng. o 6ha avtd mov pov &xel mpoceépet, Ba NBeha va exkppdow v Pabdid
LoV ELYVOUOGHVY).

Oa NBera va ekpacm £va PEYOAO EVYXOPIOTH GTOV GLVASEAPO OAAG Kol @ilo, Ymoynelo
Awdktopa Méton Ilavayiwtn pe 10v omoio mepdoape ouETpnNTeg MPES cLINTAOVTOG
EMOKOOOUNTIKA Y10 O1dpopa emoTnuovikd 0épata. EmmAéov éva peydho vuyopliotd yio v
avidlotedn Pondeld tov 1 omoia NTav TpaypaTikd avextiung aéiog.

Ev ovveyeia, Oa n0era va svyaprotiom ta dAAia 000 péAN e Tpuelovg Emrponnic, Kabnynt
Muyoni KotooPo kat Enikovpo Kadnynm Xpioto Zépn, yo T1g evolopépovaseg cu{NTIOELS TOV
elyape oe Bépota g Aaktoptkng Alatping aiid kol v mTapoyn Pondelag oe epeuvnTIKO
eminedo, omote avtn elxe {nmoei. O cupPovréc Kan Ta GYOMA Tovg PorOncav onuavTiKd 6T
Beltioon g mapovcos epyaciog.

®a MOeha va exkppdcm ™V Pabdid pov extipnon otovg Kabnynty BAdon Kovpovon ko
Avaminpot) Kadnynm Kovotaviivo Zaniiomovio, ot omoiot Ntav mhvia dwbéciuot yuo
EMOIKOOOUNTIKA GYOALL Kot GUUPBOVAES EMTL TOV EPEVVNTIKOV LLOV EPYOV.

Evyapiotod OAa 1o péAn g 7-pedovg emirpomng Kot edikotepo tov kaf. Kdammo, yuo ta
EMOIKOOOUNTIKA TOVG GYOMO KOl TOPOTNPNOES Ol omoieg Pondnoav omnv Peitioon g
napoveog Atatpipg.

Oa N0l emiong va gvyapiotiow tov Ap I'idpyo ZtavpovAdkn yio v cvvepyacio mov siyoyple
ot0 TAaicla TG epeLVNTIKTG opdadas tov Kabnynt| Mavoin Iarnadpakdkn kot 1 onoio ftov
ndvtote eVYAPLOTN Ko emotkodountikn. Emiong 6o n0ela vo exppdom v ekTiuncn Hov 6Tovg
Ap. Mydin ©paykiodakn, Ap. F'edpyro Avkidn, Ap. Apwoteidn [Momoypnotion kot Ymoynelo
Awdaxktopa Kovotavtivo IMomavikoddmovAio yio Tig TOADTYES GLUPOVAEG TOVG €mi TOL
EPELVNTIKOV OV £PYOV.

Yta mhaicww ™G Awaktopwng Atwtpifig  exkmoviOnkov 600 Awmiopatikés Kor pio
Mertantvylokr Epyoacia and v Ztepavia Bactopyehaxn kot tov Havayiovm Kapakitsio, ot
omoiot pécO amO TNV OYOAOCTIKY] TOUG OOVAEWL GUVTIEAECHV ONUOVTIIKG OTNV EKTEVN
TOPOLETPIKT OEPEHVNON TOL KMOKO TEMEPACUEVOV OTOYEI®V OV avamthynke ota mhaico
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TOV EPEVVNTIKOV aVTOV £pyov. Ba Meda Vo TOVG EVXUPICTIC® YLO. TNV (PLOTY KOL GUVOLO,
EMOTKOJOUNTIKN GUVEPYACTOL [LOGC.

®a M0era va guyapiomnom tov Kabnynt) Kvpidrko [Navvakoyiov, tov Aéktopa Afpo Xopunn,
tov Ap. Anuntpn Kovpmoyidvvn kot tov Ap. Zoyopic Movpodtn yio v Topoy®yikn
oLUVEPYOGIOL HOG OTO TACIGIOL TOL EPELVNTIKOV £PYOV TOVL EKTEAECTNKE GTO TPOTTLYLOKO,
LETATTUYIOKO OAAG Kol OTO oapykd oTddlo G Adaxtoptkng AwTpifng pov, oe Oépata
OAANAETIOPOAOTG PEVGTOV-KATOGKEVNC.

Evyapiotd 6ha ta moudid g Epsvvntikng opdadag tov Kadnynty Mavoin Homadpokdkn yio
NV Gyoyn GuVEPYGia Kol TNV Tapay®Yyikn o1dfeon mov enédeiay.

Téhoc Ba Bera va gvyapiotiom v yuvaike pov Mapiva yuo TV LITOUOVH] Kol ETHOVI TOV
enEdEEE KATA TN SIUPKED TNG EKTEAEGNG TOV EPEVVITIKOV OVTOV £PYoV, KoOMS emiong Kot Yo
™V QUEPIOTN oTHPIEN TS, TNV ELVYOPIOTO Y1 TO YEYOVOS OTL TOTE OEV EMONYE VA TGTEVEL OTIG
SVVOTOTNTEG OV KoL YU awTd o TG €O TOVTOTIVA ELYVAOUM®V.

Evyapiotod!

['edpylog Mdprkov, Abnva, lav 2011.
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Special Reference to the Life of J. Argyris

This article was first published in 2004 in Computer Methods in Applied Mechanics and Engineering, Vol. 193, pp. 3763-3766.
With the permission of the authors and CMAME, | share it with you here.

U persen with great vision, class and pewsuasion, whe dramatically influenced Cemputational
Engineering and Science and whe will be long wemembieved as ene of the great piocneews of the

Jebin Ft. (rgyris passed away quietly en 2 Upnil 2004 after nespiratory cemplications. Johin
nests in peace in Sankt Jorgens Cemetery in the city of Varbierg, 60 fm south of Goteliang, Sweden,
near (ugyris’ summer house.

Jefin was bewn on 19 August 1913 in the city ef Veles, 300 km noxth of Uthens, Greece into a
Gueelt Onthodox family. Ftis father was a divect descendant of a Gueek Jndependence War fren,
while his mother came from an old Byzantine family of politicians, peets and scientists, which
included the famoeus mathematician Constantine FHaratheodoni, Professon at the Univewity of
Munich.

Vales, as it was duding his childhoed, remained veny much alive in his memony, especially the
fause fe grew up in. Fe vividly semembesed, until the end, details of the weom where, at the age
two, fie almast died from typhoid fever. In 1919 his family moved te (thens where he received his
initial educatien at a Classical Gymnasium in (thens. (fter studying Civil Engineering for four
years at the Naticnal Jechnical Univewsity of thens, fe continued his studies at the Jechnical
Univewsity of Munich where e cbitained his Engineering Diploma in 1936. Just after graduation
fie was employed by a private consulting organization working on the leading-edge technical
design of highly complex stuctures. One of these early engineeting accemplisfunents was that of
designing a 320 m high radic transmitter mast with a fieavy mass cencentrated at the tap.

With the cutbireak of World War IJ, John was in Bedin centinuing his studies at the Jechnical
Univewsity of Bedin. Just after the Geunan invasion of Gueece, Johin was avested and led te a
cencentration camp, en the accusation of transfeviing reseanch secnets to the Wllies. Ftis savion
tuned cut to be the eminent Geunan dmiral Kanaris, of Gueek descent, whe avianged his escape
by infouning the guards that the prisener would be executed autside the camp. In 1944, Kanaris
himself was tragically executed as ene of the leaders of the assassination attempt against Hitlex.
Following his escape from prisen, Johin managed te leave Gevmany scon theveafter in a vewy
dramatic manner. Fe swam acnoss the Rhine River during a midnight air waid, helding his
passpext in his teeth. He managed to neach Switzedland whexre e completed his Daoctoral degree at
ETH of Zwrich in 1942 in Uenonautics. In 1943 he maved to England and waerked as a technical
officer at the Engineering Department of the Reyal Uenonautical Society of Londen.

Vii
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Jebin could never derive any pleasure in ordinany day-to-day werk and was enly attracted to
prolilems that seemed unsclvabile. Even when working in industuy, his divectors soon realized that
the lest policy towards Jehn (ugyris was to entwust him with intractabile probilems. (t the same
time fie was fascinated by the propenties of triangular and tetrafiedrial cempaonents that appeared
te him as ideal elements te build up an engineeting system. He could never sympathize with
Cantesian analytical geometry that fie found mast inelegant. During the war, fie wrote three classic
papews in Repets and Memeranda of the then (ewonautical Research Council. These were
concewned with the diffusion of leads inte stringer-einforced stressed skin stuuctures of wings and
fuselages. Fe developed a theory using his intuition that combined diffetential equations and
finite difference caleulus that was immediately successful and later confiuned by experiments
and applied with great success to Buitish fighter and bomber aincnaft during the war. However,
the weal break-thruough in his way of thinking and appureach to technical prebilems of selid
mechanics was achieved when the finst electro-mechanical computing devices emerged in 1944 in
Buitain at the Natienal Physical Laborateny and in the United States at Haward University.

JIn those days aerenautical engineers were twying to build the finst combat jet aircraft whose speed
nequined swept-back wings. One such example was the flawed Gevman fighter ME262, procf of
its designens’ failure to develop a weliabile method of analyzing the non-euthogenal geometwy of
wings. In Qugust of 1943 Jobin spent three whole days and nights in a beld attempt te soluve that
panticular probilem. FHis enly help was a wdimentary computing device capabile of sclving a
system of up te 64 unfinowns. Jt took ene sudden moment of claxity, on the third evening of his
brainstovming session for him te wealize that the answer could be the application of tvangular
enaugh the deviation frem preceding experimental test wesults proved less than 8Y,. This was the
binth of the matiic force and displacement methods, the finite element methed, as later named.
Immediately, all publications on this methed were declared secret. Within the triangular element
philesophy, Johin did net use Cartesian direct and shear stresses and strains, but a novel
definition of stresses, expressed in teuns of these dinect stresses and strains, measured parallel te
the thuee sides of each tiiangle. This new definition of stresses and strains led te the formulation
of the Natuwal Upproach which pessessed great cemputational advantages and allowed a
simple and elegant generalization to large displacements.

Jn 1949 John jeined the Imperial College of the Univewsity of London as a Senion Lecturer and
in 1955 became a Full Professor and Director eof the Subi-department of enonautical Studies
until 1975. Aften becoming an Emeritus Prnofesson fe continued his callaboration with Imperial
Callege as a Visiting Prefesser until 1980. In 1959 e accepted an offer from the Univewsity of
Stuttgant and became Dinectar of the Jnstitute for Statics and Dynamics of Uerospace Stuuctures.
Fe created the Uevenautical and Ustronautical Campus of the Univewsity of Stuttgaxt, a focal
paint for applications of digital cemputers and electronics. (ften becoming an Emenitus P san
at the University of Stuttgaxt fie continued te work until the age ef 88 with the same viger, uniting
bocks and scientific papews with a campelling vitality and creative thinking.

viii
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Jn 1956 Johin addressed the prolilem of stress analysis of aincraft fuselages with many cut-cuts,
apenings and severe iwegularities. Computers then were not capabile of enalbiling a glebial
protilem could be solved by a new physical device involuving the application of initial stresses and
strains and an extension of mattix methods to a higher level. This was presented at the JUTAM
Congress in Buwssels in 1956 and created a great upheaval, because the whale devivation involved
only 20 lines of physical argument and four lines of advanced matiix algebra. Most expets in
the United States and Euwrepe said that the theowy must be wrong on the grounds of its simple
that proved the covectness of this dervivation. Semewhat later, however, a Ph.D. Thesis frem
Sydney, Uustralia was sent to John in which the candidate proved in 124 pages of close
also extensively applied to the design of the Boeing 747 as eady as 1960. Jn the 1960s and
19705 jJofin had applied the finite element method with great success in (ewedynamics,
Optimization, Combustion Probilems, Nonlinear Mechanics and other fields of research and
industiial intexest, among them the suspension woef of the Munich Olympic Stadium in the late
1960s. (round that perviod NUASU sought his knowledge on the thewmal shielding of the (polle
spacecraft. e suggested covering the fuselage with specially fevmulated subistances that, upon
weentwy inte the atmesphere, woeuld evapaerate and coel its surface. In 1976 Johin was concerned
with the theery of Chaos and intreduced these theoties in studying the turbulence flow areund the
Euwwopean Space Vehicle Fenmnis.

Jt is difficult to summarize the impuessive accomplisfiments of Jobin (rgyris. Umong his witings
were cver 10 books, including thuee impontant teatbooks: Jntrwoduction to the Finite Element
Method, Vels. I, T and JIJ, 1986-88; Dynamics of Stwctures, 1991; Un Explanation of
Chaos, 1994. Fhe latter was printed in English and Gevman and in Genmany alone was publisfied
thuee times in ane year, a ware achievement for a scientific publication of this kind. Jn addition te
these wiitings, fie pubilisfied over 500 eatended scientific articles in major intexnaticnal jeurnals
and lectured extensively both within Eunvape and alroad. His teatbooks and extensive journal
publications axe essential weading matevial for students, practicing engineers and wesearchers
around the wold and have become benchmanks for later treatises en Computational Mechanics.
editowship of the journal Cemputer Methods in Upplied Mechanics and Engineering, a
publication that has provided much of the lfebloed of Computaticnal Metheds in Upplied
pride in this venture and insisted on wunning the jouwnal meticulously and diligently, thus

Jehn neceived many henens including 18 Dectorate Degrees, "FHonoris Causa”, three honorany
professonships and sixc academy membewhips from univensities and academies all aver the world,
and mexe than 25 ather awards and distinctions, ameng them the Gauss—Newten ward from
JACM, the ven Kavman Medal frem ASCE, the Timashentio Medal from ASME, the Laskewitz

ix
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Gald Medal frem the Ucademy of Science of New York for "the invention of the Finite Element
Methed”, the Prince Philip Gald Medal of the Reyal Ucademy ef Engineering, the Grand Cuoss
Foundation for his "mementous work on the Finite Element Method and Chacs Theory’. Fe was
alse Fellow of the Royal Society of London, Henorvany Membien of the Executive Council of
JACM and Fenorarny President of GACM.

Jebin was blessed with many talents, making him a twe modewn Renaissance man; fe was a
schalar, a thinfer, a teacher, a visicnary, an onator, an elegant witer, a linguist. Deeply
cultivated, a man with rane principles and a passicnate patiict, fie was alse unique in blending
his Meditevanean temperament with Western Eurapean raticnalism.

Jn the paper which coined the name "Finite Element Method”, pubilished in 1960, the world-
senowned author Ray Clough refers to the finite element method as "the ugyris Method’. Ven
Havman's prophetic statement that (ugyris’ invention of the Finite Element Methad entailed one
of the greatest discoveties in Engineeting Mechanics and wevolutionized cur thinking processes
mexe than 50 years age was proven te be abiselutely tue. Indeed, the Finite Element Method,
based on Johin (gyris' fundamental and far-weaching centribution, has tudy revelutionized
teday's engineering and scientific envivonments. He had the vision and intellectual capacity to
develop the basic steps of the Finite Element Method and te make numerous contributions in the
development of the method. Fis ealy werk "Energy Jheorems of Stuuctural Unalysis”, publisted
in 1954, is considered to be the most impostant sedies of papers ever published in the field of
Stwuctural Mechanics.

Duiing the ealy years at Imperial College fie met his wife Inga-Lisa whe provided him with
unshakable suppaet thuoughout all the difficult moments of bis life. Johin was alse fortunate te
see fis san FHolger follow a successful career in engineeting and buing into the wold, with his wife
John, in accordance with Ferakleitos' aphoism of “T0 WAVTQ O fias joined the Pantheon of
thase enlightening pexsenalities whe, with their revelutionany ideas and contriliutions, have
changed the scientific wedld in the 20th Century. Fis geometrical spinit, the elegance of his
writings, his deep appureciation and undewstanding of classical ideas, his creativity and his
epachal vision of the future initiated and defined the madewn exa of Engineering Unalysis and set
us all on life's path of discovery. Our Computational Mechanics Community has lost the mast
eminent member and for many of ws, a devoted friend. Fe will be deeply missed, but his legacy

By Thomas J. R. Hughes, J. Tinsely Oden, and Manolis Papadrakakis
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Discrete Element(s)

Degree(s) Of Freedom

Finite Element

Finite Element Analysis

Finite Element Method
Fluid-Structure Interaction
8-noded HEXAhedral element
20-noded HEXAhedral element
27-noded HEXAhedral element
HYbrid MODeling method
Local Fracture Initiation
Newton-Raphson
Object-Oriented Programming
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Onset of Stable Fracture Propagation
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Page(s)
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Unified Total Crack Approach
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MpoAoyog

Méow tng paydaiag avamtulng TwV LITOAOYIOTROV TIG TEAEVTAIEG SEKAETIES, LN PEE pia
YEWUETPIKA aviavouevn mpoodog oty avamtugn AOYIOUIK®V TA 0oia 8ivouv aToug
¥pNoteg T SuvatoTNTA AVAALONG KAl OXESIAOUOV KATAOKEVOV OO OMAIOUEVO
OKLPOSEUA UE TN XPNOoT S1aPopwV aAplOUNTIK®OV TPOCOUOIWUATOV. Ta Aoylouikd avtd
TTOKETA (EUITOPIKA KAl EPEVVNTIKA) XPNOIUOTOI0VY TN Snuo@iAn apiBuntikn pebodo
TV menepacuévov otolxeiwv (IIX), mpokeluévou va Stapopomorjcovy To uabnuatiko
LOVTEAO TIOV OIETEL TI) CLUTEPIPOPA TOU EKACTOTE TIPOCOUOIWUATOS KAl UECW® TNG
EPAPUOYNG OUYKEKPIUEVOY aplOunTtikov pefodwv emilvong va vmoloyicouv Tta
EVTATIKA HeYEDN 7ov aAvamTLOoOVTIAL 0€ Ui KATOOKELT, HE QMWMTEPO OKOMO TNV
QITOTIUNON TNG CLUMEPLPOPAS TNE LITO dedopevoug cuvivaouolg POPTIONC KAl TNV
O1KOVOUIKT) KA1 A0@AATn 81a0Tac1oAdynoT) me.

Metd amo Vv avakaAvyn kat 6tadoon tng pueboddov twv I amd Tovg YyvwoToug
«matepeg» g uebodov: Argyris J. H.I1, Clough R. W.[2], Turner M. .31 ko Zienkiewicz O.
C.[4, o1 ortoiol ava@épovtal pe aApanTikn oe1lpd He OKOO TNV ATTOPUYT] 1EPAPYNONG
TN¢ O7ToLSAIOTNTAC TOV £PYOV TOVG, 1| XPNoN NS uebodov £yve evpewg AmodekTr) Ao
TNV E€PEVVNTIKN KOWOTNTA KAOMC €ioNng KAl TOUG CLYYPAPEIC EMAYYEAUATIKGOV
KoOIKwV avaAvong Kal oXeS1a0HoV KATAOKEV®V JOAITIKOU UNYAVIKOD KaBwg kot
TANO®pag AANA®WV TPOPANUATOV OTIC EMTOTIUES TOV UNYXAVIKOV. AeSOUEVNG TNG LAKPAG
otopiag, g AeTouepoVg S1ATHIWOTNC AAAA KAl TNG TAPAUETPIKNG Siepevvnong g
uebodov twv IIT mov &xel mpaypatomomnOel amd v epeLvviTiK] ouada otV omoia
evtayOnke o ovyypagpeag g apovoag Alatpifrg, emAexdnke n uebodog avtr) yia v
avamtuln PBeATIOUEVOL AOYIOUIKOU JTIPOCOUOIWOTNC KAl EPAPUOYRDV UEYAANG KAILAKAG
7ov Ba TapovolaoTovV OTNV Japovoa Atatpipn.

[Mapd tig aApatwdelg €€eAifelc Twv AOYIOUIK®V TTAKET®V JIOAITIKOD UNYAVIKOU, T
avaykn Onuovpyiag €vog AOYIOUIKOU JTPOCOUOIMOTNG KATAOKEV®OV OO OAIOUEVO
oKLPOSEUA TO 07010 Va eival aplOunNTikA oTfapo Kal va [ITopel va TIPOCOUOIWVEL e
QITo0EKTN akpifela T Un-yPAUUIKT) ATTOKPI0T 0TTO1A0OT)TOTE TPIOIA0TATIC KATAOKELT|G
OTTAIOLEVOL OKUPOOEUATOC QUTOTIUMVTIAG UE PEAAIOTIKO TPOTO TNV AVIOXN TNG O€
OpPlaKEG POPTIOELG, €lval akoun vmapktn. To yeyovog autd avadvetal HECKH TV
VIIEPATTAOVOTEVUEV®V TTPOsOopoIwUaTV IIX mov yprnolpomolovvtal otny mtpasn ya v
AVAALOT] KATAOKEV®V AIT0 OTTAIOUEVO oKLPOSepa kabwg emiong K1 amod v advvapia
TV 0 AETTOUEPHOV LOVTEAWYV TTOV EXOVV AVANTUXOEL EPELVIITIKA V1A TNV TPOCOUOIWON
TPAYUATIKOV KATAOKEL@V efaitiag tng aplfuntikng moAvmAokotntag tovg. Ilepav
AQUTOU, TA OYETIKA Alyd EUITOPIKA JIPOYPAUUATA JIOV VLITAPYOLV  TTAPOLOIALOVV
advvapieg kaf10TOVTAG TA U1 TPAKTIKA £PYAAEid KATA TOV OXEGIAOUO TOAVTAOK®V
KATAOKEVQV.
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Ta tpla Pacika spofANuATA TTOL TTAPOVOIAJOVYV TA EUTTOPIKA Jpoypaupata [1X
AVAALOTC KATACKEV®V QIO OTTAICUEVO OKLUPOSEUA elval:

i.  HeéMewn avTiKeluevikoT)tag TV AmoTEAETUATOV,
ii. H éMewn apiBunukng evotabelag Katd Tn un-ypapukn avaivon
iii.  To vePPOAIKO VITOAOYIOTIKO KOOTOG AVAALOTC KATA TN S1dpKela emiAvong Tov
ap1Buntikov mpofPAnuatoc.

To mpwto mpoPAnua amavratar oe kmdikeg IIX (kuplwg eUTOPIKOV AOYIOUIK®DV
JTOKETWV) Ol OTOI0l YPNOIUOTOI0VV OTOLXEld O0KOU 1) KEAVPOUC Yld TNV €AAOTIK)
TIPOOOUOINOT] TWV KATAOKEVACTIK®V HUEADV €VOG KTNPIOL a0 OMAIOUEVO OKLupOSeua
(0%), n omoila ayvoel Pacika YApAKTNPIOTIKA TOV LVAIKOU (Owg TN pnyUAT®OoT Tov
OKLPOSEUATOG, TNV eMIOPAOT] TWV SIATUNTIKOV TAGEWYV, TN S10pPpoT) TWV OTAIOUDV KATT),
KATOANYOVTAG 0€ JIPOCEYYIOTIKA QITOTEAEOUATA TA OToia dev avTiKATOMTPifovV TNV
TPAYUATIKT) QTOKPIOT] TV KATAOKELMV AQUTMV 0€ OPlaKES Kataotaoelg poptiong. H
XPNOT AVTOV TWV VAEPATAOVOTEVUEVDV TTPOCOUOIWUATOV YIVETAL EVPEWS ATTO TTOAAA
EUITOPIKA TTAKETA TTIOAITIKOU UnYavikov otig xwpeg pag (EAada kar Kvmpo) adda kau
0710 e€wTeP1KO. TNV avtimepa OxOn, kAol EPELVITIKA, KAOMS £TIONG KAl OPIOUEVA
EUITOPIKA AOYIOUIKA JTAKETA, XPNOIUOTTOI0UV TPISIA0TATA AETTTOUEPT] TTPOCOUOI®UATA
avaAvong Kataokevwv anto O, ta omoia Aaufavouv vTown Ta fAcTKA YAPAKTNPIOTIKA
TV §Vo VAIkoV. Ta KOpla TPOoPANUATA AVTOV TOV AOYIOUIK®V JTAKETOV eVTOMi{ovTal
otV aplOunukn evotdbeid tovg (18iwg OTavV TAPATNPEITAL PNYUAT®OT KATA TN
S1apKela NG UN-YPAUUIKNC avAaALoNG) KAl 0TO LIEPPOAMKO VITOAOYIOTIKO KOOTOG JIOV
QITALTEITAL Y TNV  avAALOT] PEAAIOTIKOD UeYeBoug KATAOKEL®V, ITPOPANHATA
aMnAevdeta peta&d Toug, Ta 0moia 081N yoUV 0TOUG YVWOTOUS TTEPLOPIOUOVES WG TTPOC TO
uEyebog TwV HOVIEA®V TA Oold UITopovV va  availvBolv evtog amodSekTmv
VITOAOYLOTIKOV XPOVOV.

AeSouevev TV TO TTAVK TPOPANUAT®OV Kol pe PAOT TIG TPEXOLOES AVAYKES TOU
OUYXPOVOU TIOAITIKOU UNYAVIKOU, 1 Bacikr) stpoomadeia Tng EpEVVNTIKNC EPYACIAS TTOV
avaAvOnke oto mAaiolo avtng g Atdaktopikng Alatpifrg, eivat n Snuovpyia evog
VITOAOYLOTIKOV €PYAAELOV TO 071010 O avTieT®ITidel amoTeAeonaTIKA TIG fAOIKEG AUTEG
OVOKOAIEG, e ATOTEPO OKOMO TN Onuovpyla €vog AOYIOUIKOU TIPOCOUOIwOoNG Kal
avaAvOoT G KATaokevwv amo O, To 07010 va £xeL 1 SUVATOTNTA HECW TNG XPTIONG EVOG
KOWVOU VLTIOAOYIOTI], VO AVAAVEL LLE QITOOEKTI] aKPIPEId, OYETIKI] AVTIKEIUEVIKOTNTA,
VITOAOYIOTIKI] evoTdfela kal eviog €OAOYOU XPOVIKOU Ola0TNUATOC, UN-YPOAUUIKA
TP181A0TATA TTPOCOUOIOUATA KATAOKEV®V atd OX o€ oplakeg @optioelg (oTaTikeg Kot
0TO MPooeYES HEAOV Suvauikeg). H emitevén evog tétolov otoyov Ba dnuiovpynoet
0Agg TIg TTPOVMOOEDELG, OV AElTTOVY OTO MAPOV O0TASI0, OVTWS WOTE VA UTTOPECEL T
TPIS1A0TATN UN-YPOAUUIKT) AVOAVOT] PE TN XPTOT AETTOUEP®V TPOCOUOIMUATOV VA
amtoteAeoel Paocikd epyadeio ot Sadikaocia oxeSlaopoy aAA KUPIWG OEIOUIKIG
QUITOTIUNON G TV KATAoKELWV Ao OX.
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Preface

During the last decades a significant increase in the number of available commercial and
research software was observed, for modeling, analysis and design of reinforced concrete
structures. Several type of models were presented in the international literature concerning the
prediction of the nonlinear behavior of reinforced concrete structures which have been
incorporated in civil engineering commercial and research codes. These software packages
(commercial and research), are based on Finite Element Method (FEM), in order to numerically
discretize the mathematical models that are used for the simulation of their structural behavior.
Through the use of this numerical method, the stress state and deformed shape of any given
structure can be computed, providing the analyst with the ability of assessing the structural
behavior for any given load combination.

Following the discovery and dissemination of the Finite Element Method by its known
“forefathers”: Argyris J. H.. Clough R. W.”, Turner M. J.B! xou Zienkiewicz O. C.[ which
are mentioned alphabetically in order to avoid establishing any sense of priority amongst them,
the use of the FEM for the development of research and commercial software, in order to solve
any type of physical problem which is governed by partial differential equations, becomes a
necessity. Given the long term involvement of the author’s supervisor research team with this
numerical method, it was chosen as the main tool for the development of an enhanced software
package which to be used for the large-scale numerical implementations presented in this
research work.

Despite the fact that civil engineering software packages have increased in number
significantly, the need of a software package that will be able to predict, with an acceptable
accuracy, the realistic nonlinear behavior of reinforced concrete structures, in an affordable
computational time and with numerical stability, computational efficiency and robustness, is
still a task that has not been fully accomplished. This is due to the fact that software developers
(especially commercial software companies) use simple finite element formulations for the
analysis of reinforced concrete structures that provide numerical robustness during the analysis
procedure without the requirement for advanced numerical simulations to cope with the
nonlinear behavior under static and dynamic loading. On the other hand, existing software that
uses complex or advanced numerical models for the analysis of the nonlinear response of
reinforced concrete structures, faces serious problems regarding the numerical robustness and
computational efficiency even for relatively small-scale models. This is the main reason which
hindered 3D detailed models from being used in the design procedure of full-scale structures.

According to the author’s experience, the three main problems that the analysts encounter when
using the available commercial civil engineering software, in order to realistically predict the
behavior of reinforced concrete structures, are the following:
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I.  The lack of objectivity in the numerical results,
ii.  The lack of numerical stability and robustness during the nonlinear analysis procedure
iii.  The excessive computational demand required for the nonlinear solution of large-scale
detailed models.

The first problem derives from the fact that most finite element analysis software (mainly
commercial packages) use structural type finite elements (beam-column and shell elements) to
analyze elastically the behavior of reinforced concrete (RC) structures. This type of modeling
does not account for nonlinear material features that affect the overall behavior, thus the
predicted structural response deviates from reality. The use of such models has been adopted in
many software packages used by civil engineers all over the world. On the other hand, software
that incorporate detailed models for the three-dimensional analysis of RC structures are
hampered by numerical problems mainly attributed to the numerical complexity and the
excessive computational demand of these models. These numerical phenomena inhibit the
designers from using this type of modeling in the analysis of full-scale structures and restrict
their application to structural members or small parts of RC structures.

Taking into account the above numerical problems and given the modern needs of civil
engineers, the main task of the research work conducted in this Dissertation is the development
of a software which will alleviate most of the difficulties described above, in order to predict
the nonlinear behavior of full-scale RC structures with the use of widely available CPU
systems. The accomplishment of such a task requires the development of the necessary tools in
order to analyze RC structures with an acceptable accuracy but at the same time with
computational robustness and efficiency. In order to make this task feasible, the main
drawbacks when implementing 3D detailed models has to be deled with thus making this kind
of modeling approach practical even when addressing the seismic nonlinear response of full-
scale RC structures.
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Introduction

I. General

The realistic prediction of the nonlinear behavior of RC structures has been the subject of
intensive research by many researchers thus numerous methods can be found in the literature
that describe several numerical and theoretical approaches for the 3D detailed nonlinear
modeling of RC structures. Nevertheless, the use of 3D detailed nonlinear analysis for assessing
the structural response of real RC structures still remains a numerically and computationally
complicated task. Since the present needs of the civil engineering profession require tools that
will provide the designer with numerical “confidence” and “reliability” during the simulation
procedure, these numerically cumbersome methods are considered to be in a developmental
stage thus are not as widely used as they should be. The incremental static nonlinear analysis,
also called push over analysis, is used in several cases for the seismic assessment of RC
structures but the finite elements that are used for modeling the structural members are beam-
column or shell elements with a number of limitations in capturing the realistic nonlinear
response of RC structures.

When a civil engineer is called to design seismically resistant structures following the current
code provisions (EC8, EAK etc.), the use of a commercial civil engineering software is the only
choice available. These software tools attempt to predict the overall nonlinear behavior of the
structure when it is excited by a strong seismic wave (design earthquake) by performing linear
analyses with simplified finite element formulations and by following the semi-empirical
building design codes.

Many researchers have realized the presence of the above problems and have attempted to
overcome these difficulties through the development of reliable software. During the last two
decades, serious attempts were made, through the development of several finite element
analysis (FEA) software that use nonlinear models and solution processes, by a number of
research and commercial software development teams. The better-known research software
packages are the following:

a) OpenSees (http://opensees.berkeley.edu),

b) Fedeas (http://www.ce.berkeley.edu/~filippou/Research/fedeas.htm),

c) Feap (http://www.ce.berkeley.edu/projects/feap/),

d) Zeus NL (http://www.ideals.illinois.edu/handle/2142/9271),

e) BEFE-Concrete (G. Beer™ integrated by H. HartI®)

f) FINEL (Hitchings!”! integrated by M.D. Kotsovos & M.N. Pavlovic®)

g) FE77 (integrated by G. Lykidis™).

h) ANSR (Maison, Bruce F., http://nisee.berkeley.edu/elibrary/getpkg?id=PCANSR)
i) ReConAn Academic (G. Markou, http://users.ntua.gr/markgeo)
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At international level numerous commercial software packages were developed the last decade
which incorporate different types of finite elements and material constitutive models.
Nonetheless, only a few incorporate nonlinear constitutive models which account for cracking
and 3D stress-strain states, albeit they have limitations when addressing full-scale RC structure
simulations. The most widely used commercial software packages are the following:

a) ATENA (http://www.Cervenka.cz/),

b) TNO DIANA (http://tnodiana.com/),

c) ABAQUS (http://www.simulia.com/products/abaqus fea.html),

d) ANSYS (http://www.ansys.com/),

e) FEMAP with NXNastran
(http://www.plm.automation.siemens.com/en us/products/velocity/femap/femap.shtml),

f) ADINA (http://www.adina.com/index.shtml),

g) GT STRUDL (http://www.gtstrudl.gatech.edu/)

h) SAP2000 — ETABS (http://www.csiberkeley.com/),

i) STAAD Pro (http://www.bentley.com/en-US/Products/STAAD.Pro/).

J) LS-DYNA (http://www.lIstc.com/Isdyna.htm)

k) SEISMOSTRUCT (http://www.seismosoft.com/en/HomePage.aspx)

Considering that the above list of software represents a small portion of the available finite
element packages, since the list becomes much larger when accounting for the more general
finite element oriented software codes, it is indisputable that the finite element method is the
most frequently used numerical method worldwide when dealing with the prediction of a large
number of physical phenomena. A second observation which derives from the above
presentation is that, regardless of the development of powerful analysis software tools from
several software development teams, there is no software available that is able to predict
realistically the nonlinear behavior of full-scale RC structures with the use of standard CPU
systems.

Based on personal experience of the author, in order for civil engineering software to be able to
provide the user with the ability to analyze and design RC structures with the use of advanced
numerical methods and sophisticated material constitutive models, it has to combine the
following features:

i.  Reliable numerical results through the use of advanced FE modeling.

ii.  Incorporation of advanced material models that take into account basic material
characteristics that control their nonlinear response. In addition to that, the
corresponding material models should preferably be described through a small number
of material parameters (i.e. compressive strength, steel yielding stress).

iii.  Automation of the modeling and discretization procedure.

iv.  Automation of the nonlinear solution procedure (i.e. Newton-Raphson load steps).

v.  Numerical robustness and computational efficiency.

It is indisputable that the automation tools provided by a software code during the pre-
processing phase of the creation of a model, the analysis procedure and the post-processing
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phase of presenting the results, characterizes the software commercial advantages (1. Portability
2. Parallel processing 3. Inter-operability with other software 4. Error checking 5. Regularity
etc.). The expression “user friendly” derives from the above software features, which play a
significant role in decreasing and mainly controlling potential user-induced mistakes. This was,
and still is, the reason why software companies invest most of their resources in the
development of high quality pre- and post-processing environments. The previously described
restrictions when dealing with numerically cumbersome methods, is the reason why the
development of 3D detailed FE models addressing the design procedure of RC structures is
limited compared to other FE models.

In an effort to overcome the above diachronic problems, the main task of this Dissertation is an
attempt to prove that it is feasible to use advanced nonlinear numerical methods combined with
sophisticated material modeling for the seismic assessment of full-scale RC structures through
advanced programming techniques and development of state-of-the-art modeling methods. In
addition to that, this task will require the creation of a software package which will overcome
the five limiting features described above and, through the use of standard CPU systems, to
predict within an acceptable computational time the nonlinear response of full-scale RC
buildings. By fulfilling such a task, the design of safer structures will be accomplished avoiding
potential failures which may derive from the use of simplified models for the design procedure
of RC buildings (Fig. 1.1). Moreover the validity of the numerous code provisions regarding the
design of earthquake resistant RC structures can be assessed.

(») (8)

FIGURE 1.1 RC FAILURES DUE TO EARTHQUAKES. (A) FAILURE OF COLUMN, DUE TO SHORT COLUMN
EFFECT, OF A 5-STOREY BUILDING IN ANO LIOSIA, WHICH WAS BUILT IN 1997 ACCORDING TO THE NEW
GREEK SEISMIC CODE AND (B) BRIDGE COLLAPSE AFTER THE KOBE EARTHQUAKE IN JAPAN 1995.
For the accomplishment of the above task, an extensive literature investigation on 3D concrete
material constitutive models was conducted, in order to choose the most feasible and accurate
modeling techniques, and advanced numerical methods for the modeling and analysis of RC
structures. In addition to that, an object-oriented software code was developed which
incorporates the above features in an attempt to accommodate the numerical methods used for
the 3D detailed analysis of RC structures. The ReConAn FEA software (Reinforced Concrete
Analysis) was developed from scratch during this Dissertation so as to provide a controlled
programming environment that is based on a unified programming technique. ReConAn FEA
software is a sophisticated numerical tool which provides the user with the ability of advanced
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finite element (FE) analysis options combining different types of finite elements and material
models for an accurate, numerically robust and computationally efficient prediction of the
nonlinear response of RC structures.

II. Dissertation Objectives

Modeling of RC structures with beam-column type finite elements was proven to be insufficient
and inaccurate, especially when dealing with shear dominated structural members and
structures with complex geometries. Nevertheless, this type of finite element is used widely for
the analysis and design of RC structures due to its computational efficiency which is attributed
to the resulting reduced-size numerical finite element models. Based on these limitations, an
extensive literature survey was conducted, with the intention to allocate the most promising
beam-column FE formulation for modeling RC structures. It was concluded that one of the
most numerically advanced beam FE type was the Natural Beam-Column Flexibility-Based
(NBCFB) element, which was incorporated in ReConAn software code following an extensive
parametric investigation regarding its nonlinear numerical behavior.

The second objective of this Dissertation was the literature investigation of 2D and 3D
nonlinear modeling methods for RC structures with the purpose of acquiring a general idea
about the trends on more sophisticated FE models. Furthermore, the selection of the
numerically most promising 3D modeling method was a primary objective, in order to develop
a sophisticated software tool capable of predicting the nonlinear response of full-scale RC
structures in an acceptable computational time. After this literature review, it was concluded
that the existing three-dimensional modeling techniques exhibit a number of limitations for
capturing the nonlinear behavior of RC structures and that the corresponding software with
sophisticated models for the simulation of nonlinear phenomena, such as cracking and detailed
rebar modeling, are very sparse. This is attributed to the numerical restrictions and difficulties
described above, whereas the required CPU resources become excessive when dealing with
such numerical models even for the case of small-scale FE models.

It is well known that the analysis of multistory RC buildings is performed through the use of
beam-column elements which allow fast simulation times without serious numerical
instabilities. In order to be able to analyze this type of structures with three-dimensional
constitutive material models incorporated into 3D finite elements and the use of standard CPU
systems, the availability of a powerful software tool is not enough. This constraint derives from
the fact that CPU processors are bounded from an upper limit which is determined from the
hardware itself. Processing power was not and will never be enough since the demand for the
solution of larger numerical models constantly increases. In general, this is attributed to the
necessity of large-scale simulations with detailed models for the purpose of capturing, as
realistically as possible, the nonlinear behavior of structural systems. Therefore, the third
objective of this Dissertation was to determine numerical techniques which will overcome these
limitations when dealing with full-scale RC structures. A well-known approach that is used
widely in computational mechanics is the use of parallel solvers which in this case will become
a subject of future work. A second approach for overcoming this numerical restriction is to use
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models which combine different types of FE models and which will be called “hybrid models”.
This type of modeling assumes that shear dominated structural members with an expected
highly nonlinear behavior are modeled with 3D detailed finite elements and the rest of the
structure is modeled with simpler beam-column finite elements. This technique leads to a
reduction in the complexity of the model and of the required computational demand for the
solution of the discretized model, retaining at the same time an acceptable accuracy during the
analysis procedure.

Finally, the last objective of this research work, was the development of an object-oriented FEA
code, capable of easily incorporating advanced numerical techniques and modeling methods for
the analysis of RC structures. In addition, it will have the ability to incorporate easily future
work and simulation enhancements, which will result into a more general FEA code that will
provide the ability of realistic and reliable predictions of the nonlinear response of any type of
structure. For the purpose of developing an extendable and sustainable program code, modern
programming techniques are used and new numerical methods are developed to create the
necessary program structure which will incorporate these state of-the-art features. It is the
author’s personal opinion that this task is of great importance, especially when dealing with the
solution of computationally complex numerical problems.

I11. Layout of the Thesis

Each Chapter is constructed through a specific format which can be considered as self-
contained from the rest of the Thesis, but is indirectly connected with the other Chapters
through the general objective that characterizes this work.

The content of each Chapter is described as follows:

Chapter 1: In this Chapter a literature survey on several beam like element models that are
used for the RC structure simulation are presented, along with several nonlinear
solution techniques.

Chapter 2. The second Chapter deals with the theoretical and numerical aspects of the
NBCFB element where the numerical investigation of its nonlinear behavior is
performed. In addition, the computational robustness and efficiency between
ReConAn FEA and OpenSees is presented.

Chapter 3: In the third Chapter a literature survey of 2D and 3D available nonlinear concrete
material models is presented and subsequently, the selected constitutive material
model for concrete is presented. The smeared crack approach is discussed in
detail, since it is the approach adopted for modeling crack formation and
propagation, as well as the modifications proposed for the numerically improved
concrete material model.

Chapter 4.  The fourth Chapter presents the proposed mesh generation method for the case of
the allocation of the embedded rebar elements (reinforcement of concrete) inside
hexahedral concrete elements. As it will be illustrated, the proposed method
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allows the arbitrary positioning of rebar elements inside the concrete volume and
moreover can be applied in large-scale models with many thousands of rebar
elements.

In this Chapter the proposed modeling method for RC structures is presented.
The concrete domain is modeled with 8-nodded hexahedral elements which treat
cracking with the smeared crack approach and the reinforcement is considered to
be embedded and modeled with the proposed embedded beam element. An
extended parametric investigation is presented of the numerical behavior of the
proposed modeling method. The accuracy of the resulting output data are
correlated between existing experimental data. The computational performance
of the developed code is compared with the commercial code ATENA, which is
considered one of the most widely accepted software packages for RC structures
incorporating 3D models.

In this Chapter, the rationale behind the use of hybrid models is explained and
the proposed reduction level concept is presented leading to the Hybrid Modeling
Method (HYMOD) which is tested through several numerical tests.

This Chapter describes the basic programming features of ReConAn FEA and
discusses some automation issues which are required in order to make the use of
3D geometrically complex models more “user friendly”.

The final conclusions derived from this research work are presented in this
Chapter and the proposed future work is discussed.
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1.1 The Finite Element Method

The FEM is the most widely used numerical technique for the modeling of structures. Many
scientists tried to present their own version about the creation of the method, involving
Egyptian mathematicians as well as Archimedes and other great scientists as inspirers of the
method. It is the authors’ belief that the method evolved with time reaching its final form when
the CPU systems began to mark their appearance, thus numerical methods that were used prior
to the generation of computer systems using some concepts of FEM cannot be baptized as FEM
as it is known in its current form. It has to be made clear that FEM is a worthless numerical
technique without the existence of CPU systems. Therefore, a substantial acknowledge has to
be attributed to those who have contributed to the evolution of CPU systems and of course the
scientists and engineers that, through their work, managed to evolve and make this method one
of the most important discoveries of the 20™ century in engineering science.

Mathematically speaking, FEM involves the approximate solution of partial differential
equations (PDE) as well as of integral equations. The solution approach is based either on
eliminating the differential equation completely, or rendering the PDE into an approximating
system of ordinary differential equations, which are then numerically integrated using standard
techniques such as the Euler's method, Gauss, Runge-Kutta, etc. The FEM is the most
appropriate choice for solving partial differential equations over complicated domains (like
civil engineering structures, airplanes, cars, ships, oil pipelines, fluid flow, weather pattern on
Earth, etc.). It’s worth mentioning that one of the characteristics that gave the main impulse for
its vast development is that symmetric matrices are produced when applying this numerical
technique, making its numerical implementation through programming, much easier. This
numerical characteristic gave also the ability of using several solution algorithms that can be
applied only when the system of equations is symmetric, thus saving substantial computational
effort during the analysis process.

j{.,, Uy, j"J i
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FIGURE 1.1 TWO DIMENSIONAL TRUSS FINITE ELEMENTS.

When modeling 3D structures, the simplest finite element that can be used is the truss element
which consists of 2 nodes. The truss element actually acts as a spring that can only be
compressed or tensioned and in 3D space it has 3 degrees of freedom (dof) per node. Fig. 1.1
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illustrates the 2D formulation, which can easily be integrated to the 3D formulation by
introducing an additional dof per node along the z direction.

A more complex rod element is the Euler-Bernoulli beam element (Fig. 1.2b), which also
consists of two nodes and has 6 dof per node (three translational and three rotational along the
X, Y and Z axis). Mathematically, the main difference of beams with respect to trusses is the
increased order of continuity required for the assumed displacement functions. These functions
must be continuous and possess continuous first derivatives along the longitudinal direction. To
meet this requirement both deflections and slopes must be compatible at nodal points.
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Internal Forces
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FIGURE 1.2 DOF AND FORCES OF THE (A) TWO ANfD 25) THREE DIMENSIONAL BEAM FINITE ELEMENTS.
By far the most popular FE for modeling RC structures is the beam element which takes into
account the axial, the bending, torsional and the shear forces providing the ability of modeling
structural members whose main deformation is flexure-dominated. What made this element so
popular for modeling RC structural members was the simplicity of its formulation providing the
engineering software developers with a “computationally light” numerical tool that was also
able to capture some of the main characteristics of any beam-like RC structural member,
especially when the structure was assumed to behave elastically. The element stiffness matrix is
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assumed to be constant throughout the solution procedure thus the stiffness matrix of Eq. 1.1
remains fixed since the material nonlinearities are neglected.
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where A, E,G, I, J and | are the area of the section, modulus of elasticity, shear modulus,
moment of inertia, torsional moment of inertia and the length of the beam, respectively.

In RC frame structures designed according to current specifications of earthquake resistant
design, forces and displacements induced by earthquakes are expected to exceed those assumed
by the design equivalent static lateral loads specified by the codes. When these structures are
subjected to severe earthquake excitations, they are expected to enter the inelastic range and
dissipate the large seismic energy input into the structure through large but controllable
inelastic deformations at critical regions. In order to predict the distribution of forces and
deformations in these structures under the maximum possible earthquake that can occur at the
site, accurate models of the nonlinear behavior of the structural elements are necessary, thus the
elastic response assumption does not apply.

A basic assumption adopted by the design codes for the design of structures is the
transformation of the earthquake excitation inertial loads into equivalent static lateral loads.
Therefore, it is expected that during a severe earthquake excitation the forces and displacements
of the structures will exceed those produced by the equivalent static lateral loads which are
prescribed by codes, due to the dissipation of the seismic energy through large but controllable
inelastic deformations at structural regions that are assumed as critical (joints, shear walls, short
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columns etc.). Thus, the prediction of the distribution of forces and deformations in RC
structures under earthquake excitations requires arithmetically accurate models of the nonlinear
behavior of the critical regions of the structure.

In the following, a historical representation of previous work will be described, regarding the
different attempts presented in the literature in order to create a nonlinear beam element that
will incorporate the necessary properties for the nonlinear analysis of RC structures.

1.2 Review of Nonlinear Beam Element Models

Many models were presented the last fifty years for the prediction of the inelastic response of
RC elements subjected to large displacements. The majority of these models incorporate
information from experimental investigations and on-field observations of the hysteretic
behavior of RC structural members, ranging from the simple two-component models with
bilinear hysteretic laws to refined fiber or layer models based on more accurate descriptions of
the cyclic stress-strain behavior of concrete and reinforcing steel. Some of the presented models
take also into account shear strain through the Timoshenko beam theory and relatively
advanced material models, as it is going to be presented through this literature overview.

Nonlinear rotational springs

a— o
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(a) Two-Component Model (b) One-Component Model

FIGURE 1.3 SIMPLE LUMPED PLASTICITY MODELS. (A) THE CLOUGH & JOHNSON MODEL AND (B) THE
GIBERSON MODEL.

The very first inelastic girder model was proposed by Clough et al.%. This model consisted of
a bilinear elastic-strain hardening moment-curvature relationship, known as the two-component
model, which is assumed along the element (Fig. 1.3a). One of the shortcomings of this model
is the difficulty of taking into account the stiffness deterioration of RC elements during cyclic
load reversals. In addition to that this model is applicable only to flexure-dominated structural
members. To overcome the problem of stiffness deterioration Gibersont*! proposed another
model in 1967 known as the one-component model (Fig. 1.3b). This model consists of two
nonlinear rotational springs which are attached at the ends of a perfectly elastic element. The
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elemental nonlinear deformations are lumped in these two rotational springs which endows the
model with the advantage that any kind of hysteretic law can be assigned independently to the
nonlinear springs.

Otani*? in 1974 proposed a different approach to the problem of modeling the seismic behavior
of RC beams and columns (Fig. 1.4a), by dividing each into two line elements, one linearly
elastic and one inelastic, which act in parallel. In addition, an inelastic rotational spring was
attached at each end of the element which represented the fixed-end rotation at the beam-
column interface due to slip of the reinforcement in the joint. The main disadvantage of this
approach was the result of a non-symmetric flexibility matrix, unless one of the following
assumptions was made: (a) the inelastic deformations are concentrated at the beam ends, or (b)
the contraflexure point is assumed fixed at the midspan of the member. Nevertheless, Otani's
study recognizes for the first time the significance of fixed-end rotations in predicting the
nonlinear seismic response of RC frame structures.

Mahin and Bertero!®! in 1976, after reviewing the various definitions of ductility factors in
earthquake resistant design, pointed out how ductility factors for a beam represented by a two-
component model must be modified to match those for a beam in which inelastic deformations
spread along the member. In 1977, Anderson and Townsend™** studied the effect of different
hysteretic models on the nonlinear response of RC frames by implementing four different
models. The study showed that the degradation of the stiffness played a significant role in the
interstory displacements, a numerical phenomenon that affects significantly the P-o effect.

Soleimanit*® in 1979, introduced the first model which accounts for the spread of inelastic
deformations into the element. An inelastic deformation zone was assumed that gradually enters
the nonlinear range through the beam-column interface into the element as a function of loading
history. It is assumed that the rest of the element behaves elastically throughout the loading
history. Furthermore, the fixed-end rotations at the beam-column interface are modeled through
point hinges which are placed at the ends of the element. The connection between the point
hinges and the curvature at the corresponding end section is implemented through an effective
intervention length factor which remains constant during the entire loading history.

The effect of axial force on the flexural stiffness of a member was first taken into account in the
model presented by Takayanagi and Schnobrich™® in 1979 (Fig. 1.4b). Their study was focused
on the seismic response of coupled wall systems where the walls and coupling beams were
represented by one-dimensional beam elements. Otani's model was selected for modeling the
coupling beams where the effect of shear in the coupling beams was also taken into account.
The pinching effect was pointed out for during reloading as well as the strength degradation due
to loss of shear resistance after cracking initiation and yielding of the reinforcement.

Emori and Schnobrich™™” studied in 1981, the seismic response of a plane frame coupled with a
shear wall where they conducted nonlinear static analyses under cyclic loading and compared
their results by using three different beam models. The first model was identical to Otani's™*?
model, the second was an element composed of several springs acting in series and
interconnected by rigid links and the third model, which was a modification of the concentrated
spring model, was based on a layered element. The layered approach was applied at a length L,
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at the ends of the beam and was set equal to the length of the region where major inelastic
action was expected. The authors concluded that if a detailed study of the nonlinear response of
plastic regions in columns was desired, the layer model is the most appropriate choice.

Nonlinear rotational spring
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Another researcher that investigated the applicability of point hinge models in studying the
seismic response of structures was Anagnostopoulost®!. His study, which was published in
1981, was mainly focused on flexural members subjected to end moments and uniformly
distributed gravity loads. Through this investigation, it was concluded that a section hinge
model is incapable of reproducing the gradual degradation of stiffness of a member in the post-
yielding range. It was also proven that setting the strain hardening ratio equal to the ratio of the
moment-curvature relation is incorrect, since this underestimates the post-yield stiffness of
flexural members. This study proposed an iterative solution for determining the strain-
hardening ratio of the moment-rotation relation of section hinge models.

Banon et al.'*) proposed another model for the analysis of seismic response of RC structures
which combined nonlinear rotational springs at the ends of the element with the hysteretic
moment-rotation relation based on a modified Takeda®™ model. Moreover, several damage
indicators were proposed in order to quantify the performance of a structure during an
earthquake. The main conclusions were that the one-component model is sufficiently accurate
in modeling the inelastic response of RC members subjected to severe deformation reversals
and that the model could predict the damage of RC members.

Park and Angf®! in 1985 proposed a model where damage was expressed as a linear function of
the maximum deformation and the hysteretic energy absorbed during cyclic load reversals. The
same year, in their study of plane rectangular frames and coupled shear walls, Keshavarzian and
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Schnobrich!?? extended the spread plasticity model proposed by Soleimani™® to column
elements. For the determination of the strength and stiffness of the column element, the
interaction between bending moment and axial force was considered. Their numerical
implementations showed that the one-component model is suitable and accurate enough for
describing the inelastic behavior of RC beams and columns yielding similar results with the
two-component model. It was also stated that the layered model was found to be
computationally expensive.

It is well known that the main limitation of layered or fiber elements is that they are incapable
of simulating the nonlinear response of structural members that undergo high shear
deformations. One of the early attempts to overcome this limitation was that of Vecchio and
Collins®?®! in 1986 who proposed a model with a dual-section analysis procedure discretizing
the element into layers where iterations are performed for each layer until the internal
equilibrium between adjacent sections is satisfied. Nevertheless, the proposed method was
applied only for 2D cases. Another similar attempt was introduced by Ozcebe and Saatcioglul®"
in 1989. This model was based on the experimentally observed stiffness degradation and the
associated pinching of hysteretic loops proposing empirically derived expressions that account
for the effect of axial load on the hysteretic behavior.

In the 1987 study of Roufaiel and Meyer® an extension of the spread plasticity model
developed earlier by Meyer et al.®) (1983) was proposed. This new model, took into account
the effect of shear and axial forces on the flexural hysteretic behavior modulated on a set of
empirical rules. The same year, Pantazopoulou®”! proposed a formulation for the prediction of
the behavior of T beams.

After this extensive investigation and research work with the use of displacement-based finite
elements, researchers began to show a great interest at the force (flexibility) method of analysis
for the formulation of beam finite elements. The Beam-Column Flexibility-Based Beam
element is known for its numerical robustness due to its nonlinear internal state determination
procedure which assures that the internal forces equilibrate with the nodal displacements.
Mahasuverachai and Powell®® (1982), Kaba and Mahinf®® (1984), Zeris®*"! (1986), Zeris and
Mahin"3? (1988, 1991) suggested different formulations and identified the advantages of the
force method in the formulation of nonlinear frame elements. The latter introduced material
softening in the solution procedure.

Spacone et al.?*3 presented a beam element for seismic damage analysis which was integrated
with the flexibility-based formulation where interpolation of both displacement and force fields
was applied and an iterative nonlinear algorithm was implemented for the determination of the
resisting forces during the element state determination. The element was integrated with the
fiber approach and material models that accounted the pinching phenomenon and stiffness
degradation due to cycling loading. The effects of shear and bond-slip were neglected. These
studies proved that the flexibility-based formulation utilizes the beam-column element with
numerical robustness and computational efficiency. It was also concluded that the comparisons
between the results of the proposed model and experimental data were in a good agreement for
cases that had average damage of flexural form. This was attributed to the inability of the model
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to account for shear deformations. It is imperative to note, that this research work gave the
flexibility-based method the required momentum in order to be recognized and used by many
researchers, including the author of this Dissertation .

Petrangeli and Ciampi®® (1997), Petrangeli et al.*"! (1999) and Petrangeli®® (1999) presented
a flexibility-based, fiber element which incorporated through its formulation, shear
deformations. The element basic concept was to model the shear mechanism at each concrete
fiber of the cross sections, assuming the strain field of the section as given by the superposition
of the classical plane section hypothesis for the longitudinal strain field with a predetermined
distribution over the cross section for the shear strain field. Transverse strains are determined
by imposing the equilibrium between the concrete and the transverse steel reinforcement. As
the authors mention, the resulting model, although computationally more demanding than the
conventional fiber element, has proved to be very efficient in the analysis of shear sensitive RC
structures under cyclic loading where the full 2D and 3D models are too time-consuming.

Mohammad and Spaconel®® presented in 2001, two general formulations of one-dimensional

structural elements with deformable interfaces. The interface accounted for the bond-slip
between the elemental components. The first formulation was the classical displacement-based
formulation and the second one used the flexibility-based approach. The two formulations were
derived from the equilibrium and compatibility differential equations of the problem and a
special force recovery procedure, based on residual deformations, was presented for the second
formulation. The numerical tests selected for illustrating the performance of the two
formulations were a reinforcing bar with bond slip and a steel-concrete composite beam with
partial interaction between the steel beam and the concrete slab.

After performing a comparison between different beam formulations!*®, Neuenhofer and
Filippoul*! (1998) presented a geometrically nonlinear flexibility-based element, which
accounted for geometrical nonlinearities. Ayoub and Filippou™? (1999) presented a mixed
formulation for problems that account for bond-slip phenomena in the cases of cyclic loading.
Schulz and Filippoul®! (2001) presented a spatial Timoshenko beam element with a total
Lagrangian formulation, which was based on curvature interpolation that was independent of
the rigid-body motion of the beam element in order to simulate members with hyperelastic
materials. The section response derived from plane section kinematics, taking into account
nonlinear material behavior. The authors stated that the proposed numerical method exhibited
accuracy and superior numerical performance.

Limkatanyu and Spacone® ! (2002) continued the work of Mohammad and Spacone®* and
presented the theory and applications of three different formulations of RC frame elements
accounting for bond slip in the reinforcing bars. The first was the displacement-based
formulation, derived from the principle of stationary potential energy. The second was the
flexibility-based formulation, which was derived from the principle of stationary
complementary energy and the third was the two-field mixed formulation, derived from the
principle of stationary Hellinger—Reissner potential. The final conclusion of this study was that
the flexibility-based element is slightly more precise than the mixed element, but it is
numerically less stable.
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Battini and Pacoste!® %1 (2002) presented a 3D co-rotational elastic beam element including
warping effects and through its formulation incorporated elasto-plastic deformations. In order to
achieve this, it was assumed that the element had seven degrees of freedom at each node. The
main purpose of this element was to model elasto-plastic instability problems. The performance
of the element was tested through several numerical tests. The same year, Klinkel and
Govindjee® presented their work using finite strain 3D-material models in beam and shell
elements, illustrating the importance of using a three-dimensional formulation in modeling
material nonlinearities.

REINFORCING STEEL
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FIGURE 1.5 FIBER ELEMENT. CONTROL SECTIONS AND DISCRETIZATION WITH FIBERS??,

Klinkel and Govindjee!*® (2002) suggested that, a J, three-dimensional plasticity law could be
used with the aim of assessing the inelastic response of shear-deformable steel structures and a
3D material law was employed under the assumption of “plane-stress” conditions. The term
“plane-stress” in a beam element is loosely adopted to denote a situation where out-of-plane
conditions are imposed at the integration points. The verification of the computational
efficiency of the proposed element formulation with regard to displacement-based and
conventional force-based beam-column elements, was carried out through experimental data
available in the literature and numerical results obtained by using detailed discretization with
shell finite elements.

Saritas and Filippoul®® (2004) presented a force-based formulation for the seismic assessment
of steel structures using a multi-dimensional law, where their study was limited to the two-
dimensional case of a single section type and has been numerically examined on simple
academic examples.

Papaioannou et al.’% (2005) presented a fiber flexibility-based beam, which incorporated the
natural mode method proposed by Argyris et al.®*. The numerical results of this study showed
that when the flexibility-based method is combined with the natural mode method and the fiber
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approach which accounts for material nonlinearities, an elegant formulation is derived which
produces numerically efficient and accurate results. This element is also incorporated in
ReConAn and will be presented in the next Chapter of this Dissertation .

In the research work presented by Mazars et al.®? in 2006, the solutions for an enhanced
multifiber beam element accounting for shear and torsion through the Timoshenko beam theory
was investigated. Higher order interpolation functions were used to avoid any shear locking
phenomena and the cross section warping kinematics was extended to nonlinear behavior using
advanced constitutive laws. The authors reported that the numerical results were in good
correlation with corresponding experimental data for T-shaped RC sections.

Marini and Spacone®® (2006) presented a flexibility-based, shear-deformable beam element
where a separate phenomenological constitutive law for the shear component was adopted. This
was a simplifying assumption but maintains all the advantages of fiber beam elements in terms
of robustness and simplicity of the material laws. Following, Navarro et al.>* (2007) presented
a model for the analysis of reinforced and prestressed concrete frame elements under combined
loading conditions, including axial force, biaxial bending, torsion and biaxial shear force. The
proposed model was based on the simple kinematic assumptions of the Timoshenko beam
theory and was implemented through the FEDEASLab™!, a Matlab-based toolbox developed at
the University of California, Berkeley. The control sections of the frame element were
subdivided into regions with 1D, 2D and 3D material response. The validity of the model was
illustrated through the numerical comparisons to flexure dominated well-known tests.

Another resent attempt to present a flexibility-based beam element with a damage-plastic
section constitutive law was that of Addessi and Ciampi®® (2007). In their work, both
displacement-based and flexibility-based approaches were used and compared. With the
intension of overcoming the analytical problems and the pathological mesh dependency of the
numerical response in the presence of strain-softening post-peak behavior, a classical non-local
regularization procedure was adopted. The regularization technique was based on a selected
integration procedure along the element length, which predefines the location of the Gauss
points in the beam region, where the localization phenomena take place.

Mata et al.®”! (2007) in continuation of the work of Simo and Vu-Quoct® %% presented a beam
model for static analysis under nonlinear geometric and material behavior. The displacement-
based method was used for the solution of the resulting nonlinear equations and
thermodynamically consistent three-dimensional constitutive laws were used for describing the
material behavior where the simple mixing rule was applied. For describing the residual
strength and the load carrying capacity of the beam element, they proposed a method defining
the global damage state of a structure based on a scalar damage index. Through the numerical
example conducted in their work on a RC cantilever beam, it was clear that the displacement
formulation lacked the robustness and accuracy, requiring the discretization of the structural
member with a large number of beam elements.

Ghosh and Roy™® in 2008, investigated an isoparametric interpolation of total quaternion for
geometrically consistent, strain-objective and path-independent finite element solutions of the
geometrically exact beam. This interpolation was a variant of the broader class known as slerp.
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The interpolation of rotations uses a standard finite element discretization, as adopted by Simo
and Vu-QuocP®,

Fardis®®! (2008) presented a numerical investigation on the nonlinear response of fiber models
when used for the nonlinear analysis of RC structures. Moreover he used a phenomenological
model which was based on the Otani® model to perform dynamic analysis on real RC
buildings. The main conclusions of this research work were that the fiber approach was
prohibitive for the analysis of real RC structures where their use is adequate as a research tool
and the concentrated plasticity models reproduce acceptable results when used for the seismic
assessment of real RC buildings.

Papachristidis et al.[ % extended the element presented by Papaioannou et al.*® incorporating
the Klinkel and Govindjee!® three-dimensional plasticity law to assess the inelastic response of
shear-deformable steel and RC structures. The Timoshenko beam theory was incorporated and
the interaction between axial, bending and shear behavior was accounted for through their
corresponding material models. The numerical results of the proposed model were in a good
correlation with experimental data and numerical examples.

Kwak and Kim!®4 (2010), proposed a simple analytical procedure to analyze RC beams with a
cracked section on the basis of the simplified moment-curvature relations of RC sections. The
proposed model also considered fixed-end rotation caused by anchorage and was tested through
numerical correlation with experimental data.

Through his paper, Landesmann!®® (2010) presented an application of a computational tool,
named SAAFE Program, developed to analyze nonlinear inelastic steel and composite 2D
framed structures. The proposed plastic-hinge model was formulated based on three
characteristics which controlled the beam stiffness, the residual stresses and the structural
member instability. The validity of the proposed formulation was refined through numerical
examples and available experimental data. As the author stated, based on the obtained results,
the proposed model can be used to perform inelastic analysis for 2D isolated or full frame
members, incorporating geometric and material nonlinearity.

Valipour and Foster® (2010) presented an element for nonlinear analysis of RC framed
structures subjected to torsion, using the flexibility formulation. The interaction between the
axial force and bending moment was considered by adopting the Navier-Bernoulli assumption
and using the fiber element approach. The torsional dofs were formulated independently and the
effect of normal and tangential forces on the torsional stiffness of section was accounted for by
modifying the torque-twist curve of a section under pure torsion. The authors conclude by
stating that the model requires further development in order to be used for full-scale simulation
of RC structures subjected to torsional deformations.

It is very clear that a lot of effort has been devoted to create a robust, efficient, rational and
objective beam-column model, which will be able to analyze the three-dimensional nonlinear
response of steel and RC framed structures. It is indisputable that none of the above research-
works managed to fully succeed in this task and it is the author’s belief that, it will be difficult
to accomplish such a task in the future, especially when dealing with shear dominated RC
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structures. This conclusion derives from the fact that when three-dimensional nonlinear
phenomena occur (3D shear stains, cracking, warping, increase of concrete strength due to 3D
confinement, etc.), the beam element formulation is incapable of capturing deformations and,
therefore, these can only be modeled with the use of 3D finite elements. As it will be presented
in Chapter 5, the most accurate and objective numerical way of predicting the nonlinear
response of RC structures, is by using detailed simulation with 3D solid finite elements, which
account for most of the nonlinear phenomena, through their 3D formulation. It is inevitable that
when 3D nonlinear FE models will become computationally efficient and the use of 3D models
completely automatic, they will be the optimum numerical tool for the prediction of the
inelastic response of RC structures. Until then, beam-column elements will be the main
analytical tool for the analysis and design of full-scale RC structures.

Through this literature review, it is easy to conclude that the flexibility-based formulation of
beam-column elements appears to be the most accurate and efficient method when large
amplitude nonlinearities occur, establishing equilibrium between the internal resisting forces
and external nodal deformations. In addition to that, when combined with the fiber approach, it
provides a numerical tool which can model with relative accuracy the inelastic response of RC
structural members. Given that this numerical method is computationally demanding, the use of
the natural mode method is essential for the decrease of the computational cost, as it will be
demonstrated in the next Chapter through the presentation of the relevant algorithmic
implementation.

1.3 Solution Algorithms for Systems of Nonlinear Equations

One of the most important numerical features of the FEM is that after the stiffness formulation
and regardless of the nature of the problem at hand, the system of equations required to be
solved has the simple form of

K, -us=f, 1.2

where K, is the global stiffness matrix of the structure, ug is the array which contains the
unknown nodal displacements and f; is the corresponding array with the external loads. In
addition to that, the stiffness of the structure is always symmetric, which permits the
implementation of advanced solution algorithms combined with memory and storage saving
programming techniques, optimizing the computational performance during analysis.

It is obvious that, when dealing with nonlinearities, Eq. 1.2 cannot be solved explicitly,
requiring iterative solution algorithms like the well-known family of Newton-Raphson type of
methods. Early work presented by several researchers® 'Y highlighted the advantages of the
Newton-Raphson method for solving nonlinear systems of equations resulting from the finite
element method, making it perhaps the best known incremental step method for finding
successively better approximations to the roots of a nonlinear set of equations. Many alternative
versions of the method were proposed in the literature for handling the incremental steps. Three
basic Newton-Raphson (NR) iterative algorithms will be presented in this section: (1) Force-
Control, (2) Displacement-Control and (3) Arc-Length.
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1.3.1 Force-Control Newton-Raphson

If in the FE formulation, it is assumed that the boundary conditions remain constant during the
solution of Eq. 1.2, then the displacements for a given load combination At - f; are equal to
At - ug for a linear static problem. If the structural problem at hand contains nonlinearities
(material and/or geometrical) then this is not the case. In order to find the equilibrium state
between the internal forces of the structure and the external loads, it is assumed that the applied
loads can be expressed as a function of pseudo-time t, for static problems, and the equilibrium
at each step can be expressed as:

Ft—Ri=0 13

where Flare the externally applied nodal forces of the structure at time t and RE are the nodal
forces that correspond to the internal stresses of the structure. The relation of Eq. 1.3 expresses
the equilibrium of the system in the current deformed geometry accounting for all
nonlinearities. It is important to note that, this relation is general and applies also for dynamic
problems where the forces due to inertia and damping are included in the Ff array.

Therefore, by dividing the external forces into n load steps and by using a specific load

increment (4t = 1/n), the external loads are applied incrementally and at each time step a new
load increment is added to the structure external loading. This requires the satisfaction of Eq.
1.3 through the whole loading time history. For the case of static loads, the definition of time is
only a convenient variable which specifies different load levels and, correspondingly, different
structural configurations.

Assuming that i is the current load step of the analysis, then the accepted solution can be stated
as

ut, t=1i-At 1.4
therefore, the solution of the next load increment at time ¢ + At will be
ultat = ul + uft, Aug = uft, tips = ({+1)-A4t 1.5

For the computation of the unknown displacements at load increment ¢, a prediction of the
solution is obtained by using the stiffness matrix of the previous load increment.

Kst . Auﬁ“‘t — Afst+At 1.6

The next stage of the nonlinear algorithm is to compute the resisting forces at each node of the
structure and assemble the R¢ array in order to verify if Eq. 1.3 is satisfied. In nonlinear
solution algorithms, Eq. 1.3 is never equal to zero thus a convergence criterion is applied which

specifies if convergence is achieved. The result of Eq. 1.3 is the vector of the residual forces rsj

(Eq. 1.8). This vector is used in order to compute the error of the iterative procedure according
to the adopted convergence criterion (Egs. 1.7).

Au!
L 17
llus ™|l
”Ft+At _ Rt+At”
— S S S eF 1.7b

e =
TR =R
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L AudljRee— Rer
T A R

eg 1.7c

rsj = FAt _ pt+at 1.8
where j is the corresponding internal iteration, ep is the displacement, eg is the force and eg is
the energy convergence tolerance criterion, respectively. For each internal iteration j, the
stiffness matrix of the structure is updated by using the new material properties which are
implemented through the material constitutive matrix C of the finite element formulation. If the
numerical problem at hand accounts for geometrical nonlinearities, then the stiffness matrix of
the FE model is also affected by the current configuration. The updated global stiffness matrix
IS known as the tangent stiffness matrix. In the event that the convergence criterion is not
satisfied, the residual forces are applied as external forces through Eq. 1.6 and the nonlinear
solution algorithm proceeds with the j+1 internal iteration.

!_7 Aus 4‘]“* Au: 4‘|
|«

t
Aus ul

FIGURE 1.6 FULL NEWTON-RAPHSON ITERATIVE SCHEME.

When the global stiffness matrix of the structure is updated for each internal iteration, then we
have the full NR scheme (Fig. 1.6). This is computationally demanding with respect to the
computational effort required for the factorization and back substitution procedures of the
stiffness matrix at each iteration, but at the same time this effort is counter balanced by the
increased convergence properties of the method. Most researchers also state that the assemblage
of the stiffness matrix is time consuming, a statement that is not verified in this research work.
A reduction of the computational cost per iteration may be achieved with alternative NR
algorithms like the “Modified” scheme or quasi-Newton scheme, where the stiffness matrix is
updated after a specific number of internal iterations or implicitly after each iteration,
respectively, during the solution procedure. The disadvantage of these methods is the slow
convergence rate for cases with strong nonlinearities requiring larger number of iterations until
convergence. This is illustrated in Figs. 1.7a and 1.7b where two NR schemes are presented.

It is worth mentioning that the force-control NR schemes appear to be numerically less stable
than the corresponding displacement-control schemes which are presented below. In this work
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the full NR scheme with the force-control approach is used, which exhibited numerical
robustness and efficiency in the numerical tests considered.

Fa Fa

=At t=At

(A) (B)
FIGURE 1.7 (A) MODIFIED NEWTON-RAPHSON AND (B) QUASI-NEV\/TON SCHEMES. STIFFNESS MATRIX
UPDATES EVERY TWO INTERNAL ITERATIONS.

1.3.2 Displacement-Control Newton-Raphson

When the inelastic branch of the P-¢ curve is descending (Fig. 1.8 case: B) then it is evident
that the force-control approach fails to converge regardless the number of internal iterations
performed. In Fig. 1.8, two possible unstable branches (A and B) are shown. Branch A is
followed by a stable branch until it reaches the equilibrium point Peq, while branch B is an
unstable descending branch until failure. In both cases the force-control approach fails to
capture the descending branch of the P-o curve. When ultimate load analysis is performed, the
main task is to predict the maximum carrying capacity of the structure (ultimate load). In this
case the force-control approach still has some difficulties in computing the exact ultimate load.

For the case where one needs to compute the unstable descending branch of a structure during a
nonlinear analysis, the displacement-control approach has to be used. This approach, assumes
that instead of a load incrementation, a specific displacement is imposed on a structural node
and the corresponding nonlinear response of the structure is predicted by computing the internal
resisting forces. Solving this kind of problems, the conversion of the Dirichlet problem into an
equivalent Neumann through the use of Egs. 1.9 & 1.10 is required. Fig. 1.9 illustrates the
graphical representation of such a transformation for the case of a cantilever beam, which is
discretized with three beam elements.

The corresponding equation is transformed as follows:

_ W _fu
oo} o)

K K
K, =I v U’Il therefore,
1.9b

KI,U KI,I
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F A Branch A
/// ‘ Unstable
K3 —_— \__~_-__—’/--'—""-LP:@C11B
~S_ Ultimate Load for ‘ Sa,
t=At the case of branch B
Af s |
‘ u
L o

\

rl= Aus

FIGURE 1.8 FORCE-CONTROL NEWTON-RAPHSON. POSSIBLE SOLUTION DIVERGENCE.

Transforming the Dirichlet problem into an equivalent Neumann problem requires the
separation of the dof of the unknown displacements (uy) from the dof where the displacements
are imposed (u;), rearranging the rows and columns of the displacement, force and stiffness
matrices (Egs. 1.9a-1.9b). After the rearrangement of the dof and with the use of Eq. 1.2, the
transformation is carried out where Eq. 1.10 is formed, which explicitly computes the unknown
displacements.

KU,U KU,I u f
K, - u :fs:>[ ve=4" = Kyy-uy +Ky;-u =fy=
K,, K.l fi

uy :Kfl,lu'(fu_KU,I'uI):KL_J,lU'fU 1.10
The displacement-control method does not introduce any significant modification to the NR
formulation since the equations remain unaltered. Assuming that the total imposed
displacements are divided into n steps, then the implementation is straightforward, as it was
illustrated previously. What changes here is that the imposed displacements are known and
must remain unaltered during any internal iteration inside each load step. This requires the
solution of the system of equations by using Eq. 1.10 predicting the unknown displacements
due to the imposed displacement increment by setting u, = Au!, thus Eq. 1.6 takes the form

Ky - Aujrat = Aftrat 1.11

Following the computation of the unknown displacements (Eq. 1.11), the state determination is

carried out for the computation of the nodal resisting forces for each uknown dof (Ar{,:l). At
this point, the first internal iteration has been completed and the error criteria are implemented
in order to check if the algorithm has converged. If this is not the case, the computed residual
forces are applied as external forces through Eqg. 1.12, in order to correct the solution and
achieve convergence.
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KG - Ault = —ar), 1.12

It is important to note, that the force resulting from the multiplication of —K,; - u; in Eq.
1.10, is set to zero after the 1% internal iteration, therefore the Au! displacement array is applied
only once at the beginning of each incremental NR step.

BLI 2 El2 3 El3 4

D ——

Dinchlet problem -
Deformed shape

Equivalent Neum ann problem -
Deform ed shape

FIGURE 1.9 GRAPHICAL REPRESENTATION OF THE TRANSFORMATION OF A DIRICHLET PROBLEM INTO
THE EQUIVALENT NEUMANN PROBLEM.

1.3.3 The Arc-Length Method

To obtain a more general technique, for capturing any type of unstable branches, the arc-length
method for structural analysis, originally developed by Wempner? in 1971 and Riks!™ "
(1972, 1979) and later modified by several researchers, has been proposed. Various forms of
the arc-length method followed the original work of Wempner and Riks making the method
widely acceptablel’>®2].

As it was mentioned above, in the load-control method the load increment remains constant
during a load step, a strategy used also for the displacement-control method in which the
displacement is kept constant during the increment. Unlike the load- and displacement-control
methods, the arc-length method considers a load-factor at each iteration which is modified so
that the iterations follow some specified path until convergence is achieved.

Treating the load-factor as a separate variable, an additional unknown is introduced in the
system of equations which results from the finite element procedure. If N is the number of
unknown dof then the solution of N+1 equations is required, thus an additional constraint
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equation expressed in terms of current displacement, load-factor and arc-length is necessary.
For the achievement of this task, two approaches can be used, the fixed arc-length and the
varying arc-length. For the first approach the arc-length is kept constant for the current
increment, whereas in the second approach, a new arc-length is evaluated at the beginning of
each load step to achieve convergence. Simplifying the constraint equation leads to a quadratic
equation, whose roots are used for the determination of the load-factor, a procedure which is
concerned to be a key issue of the method since the proper selection of the root is crucial.

Concerning the initialization of the method, for the first increment a trial value is assumed for
the load-factor, usually equal to 1/10 of the total applied external load. For the following
increments, the load-factor is computed according to the rate of convergence of the solution
process. If the procedure fails to converge, the arc-length is reduced and computations are
repeated. Another major issue, when dealing with this method, is the computation time of the
solution process during the FEA process, thus a maximum number of internal iterations is set
and if the solution fails to converge in the specified number then the load step is reduced and
the process restarts.

In order to describe the technique used in the Arc-Length method, the following equilibrium of
nonlinear system of equations is assumed:

g () =f;—a 1.13
where f; is the vector of resisting nodal forces, q is the external applied load vector, 4 is the

load-level parameter, and gj is the residual force vector. The arc-length method is aiming at
finding the intersection of Eq. 1.13 with the arc-length constant s which can be written as:

5= dequu + dA%y2qTq 1.14

or in incremental form
s =AuTAu+ A2%Y?qTq — 412 =0 1.15

where Au is the vector of incremental displacements, 44 is the incremental load-factor, Al is the
fixed radius, and v is the scaling parameter of the loading terms. Eqgs. 1.13 and 1.15 can be used
to compute the iterative change of the displacement vector and the load-factor, through the
following equation which is written in matrix form as:

K _ -1
{?Al}:_ 200 ZA/h/J‘ZIqTq] {gfll;} 1.16

where ou is the iterative change of the displacement vector, o4 is the iterative change of the
load-factor, Ky is the tangential stiffness matrix and gois and Sqiq are the previous values of the
unbalanced loads and arc-length, respectively. After the computations of the iterative change éu
and o4, the displacement vector and the corresponding load-factor are updated.

A different technique, is to introduce the constraint proposed by Baltoz and Dhatt!™ for the
displacement-control at a single point (Crisfield"®). According to this study, the iterative
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change of the displacements for the new unknown load level 44;,; = 44; + 52 can be written
as:

ou=—K;'g+ 6AK;'q = 6g + 6A6u; 1.17
thus the corresponding iterative displacement increment for the next increment is written as:
Au; = Au; + 6u 1.18

and by substituting Eqgs.1.17 and 1.18 into the constraint Eq. 1.16, the following expression is
dimmed

C1512 + 6251 + C3 = 0 1.19
where,

¢, =6uldu +y3qTq 1.20a
c, =26u (Adu+8g) +24¢9*q"q 1.20b
c; = (Au+6g)"(Au + 6g) — A2 + AyY2qTq 1.20c

The solution of Eq. 1.19 is performed for the evaluation of 6/ and the definition of the iterative
change. This equation leads to two results (roots) of 64 but only one of them is selected!’™.
Fig.1.10 represents graphically the described method.

,.A,....A,,.....‘.A..Uﬁllcw“"“ 1
- Iteration 2

/ Iteration 3

¥ Equilibrium
ALY path

ALY New converged
. : point
A/.‘q /
Al 1~ :
: Constraint
surface

8, —=pS -3t

A Last congerved ?poirél

l [Por%o?]

0 [F =202~ TP —
‘#—-«AR_.‘Dlsplac«.mml (p)

FIGURE 1.10 THE ARC-LENGTH METHOD FOR A SPECIFIC ITERATION.
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2.1 General Characteristics of the Element

The NBCFB element is a 2-noded three-dimensional beam FE which is shown in Fig. 2.1. The
element has 12 dof (6 per node) and assuming that xyz represent the global coordinate system,
they are grouped in the vector

_ 2.1
P—[ul i W ooy U, v, W, 60, 0 ‘//2]
were u, v and w represent the translational dof, whereas 6, ¢ and y denote the rotational dof.
These dof can refer either to a global or to a local Cartesian coordinate system that are related
through transformation matrices which contain directional cosines.

A local Cartesian coordinate system x’y’z’ is assigned to the element with the corresponding
Cartesian dof:

ﬁ:[Ul Vi W 51 ooy U v, W, 52 ?, V72:| 2:2
A natural coordinate o is adopted spanning the beam’s axis which coincides with the local
Cartesian axis x’. The local Cartesian dof are transformed into natural invariant rigid body and

straining modes po and py, respectively, so that a unique and reversible relation exists between
the natural modes and the local and global dof:

P S P S Py Py Pyn= P — Po 2.3

(12x1) (12x1) (6x1) (6x1) (6x1)  (12x1)  (6x1)

In case of a fiber consideration along the cross section of the beam, an additional coordinate
system is defined for every fiber (k), namely the 123 coordinate system with axis 1 along the
principal reinforcement direction and axis 2 perpendicular to it. Note that material axis 3 is
parallel to the local Cartesian axis z’. Then, for every fiber k, axis 1 forms an angle 6 with the
local axis x” (see Fig. 1.2). Therefore, the NBCFB element comprises 12 Cartesian dof but the
actual number of straining modes is 6 (Eq. 2.4).

12 Cartesian d.o.f - 6 rigid body d.o.f =6 straining modes 2.4

It is worth noting, that the number of natural modes are always the difference of the nodal dof
and the rigid body modes®?.

2.2 Kinematics

2.2.1 Natural Rigid Body Modes

Fig. 2.2 illustrates the rigid body modes that were selected for the beam element. The first three
modes correspond to the translations and the last three to the rotations in space

Po :[/701 P2 Pz Pu P poe] 2.5
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Gauss-Lobatto Int. Points

zi r

=t e

i: number of fiber

xvz - global axes
xv'z' : local axes
123 : matenal axes

FIGURE 2.1 RC FIBER BEAM IN SPACE.

Rigid body modes do not create any strains and therefore they only produce body forces and
moments which can be written in vector form

Poz[Pm Pe Fs Fu R Pos] 2.6

The three translational modes can be deduced from Fig. 2.2 and are equal to

1 1 1 2.7a
U = Porr Uy = Pors Vi = Py _Epoe’ Vo = P +§poe’ W, = Pos +§,005, W, = Py _Epos
from which we obtain
1 1 1
P01:E(u1+u2)a ,002=§(V1+V2), Po3:§(W1+W2) 2 7h
1 1
Pos = E(wl —W,), P = E(v2 —v,), L :beam's length
The fourth rigid body mode is a rotation with respect to the x axis, which is equal
1
Pos :E(Hl+02) 2.8
The above relations can be expressed in compact matrix notation format as
P =0 P 2.9

(6x1)  (6x12) (12x1)
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where pis the vector of the local Cartesian dof.

FIGURE 2.2 NATURAL RIGID BODY MODES.
The matrix a, which extracts the natural rigid body modes from the local Cartesian dof is given

by

- . _
2 S 2
1 1
2 2
1 1
@, = 2 2 2.10
(6x12) 1 l
2
1 1
5 _2
1 1
L L |
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In order to reduce the required matrix calculations, the rigid body motions are not extracted
when the local dof are available (they are deduced from the global displacements and rotations);
instead the element’s rigid body motions are calculated from the global dof

p =T, p 2.11
(12x1)  (12x12) (12x1)

where p, Tos represent the vector of global nodal displacements and matrix of direction cosines

respectively. Therefore, Eq. 2.9 becomes
Po=0a p =a, T, p 2.12

(6x1)  (6x12) (12x1)  (6x12) (12x12) (12X1)

In this work, the extraction of the rigid body motion is done through the global dof.

2.2.2 Natural Strain Modes

The natural strain modes are those that create internal stresses and strains which are used in
order to calculate the beam internal forces. Fig. 2.3 illustrates the natural modes that were
selected for the beam element and Fig. 2.4 depicts the corresponding generalized forces and
moments. The vector that contains the 6 natural strain modes is

2.13
Pn = [le Pnz Pns Pns Pis pN6]
while the corresponding work conjugate natural forces are grouped in the vector

2.14
I:)N :[PNl PNZ PN3 I:)N4 I:)NS I:)N6:|
The natural straining modes and forces are related via the natural stiffness matrix

2.15

Py = kNpN

The operations are performed on a non-dimensional coordinate ¢ with origin being the center of
the beam.

-1<¢<1, == ——<Xx<— :
J J L 2 2

And also

o(.) Of.

o) _o)eg o _2a2 2.17

ox 0 X ox oL

The natural stiffness matrix of the beam element is extracted from the natural deformations
without considering the rigid body motions.
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Mode 1
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anfisyrmmatric bendnig in x-z
transverse shearing

§  symmepic bendnig in x-v

§  anfisymmetric bemdnig in x-v

torsion abour x

FIGURE 2.3 NATURAL STRAINING MODES.

2.2.2.1 Mode 1: Extension

The first natural strain mode is a unit extension py;. Half of this extension is assigned to the left
beam end and the other half to the right, as shown in Fig. 2.3. Consequently, the displacement
along the beam is written as a linear function of the coordinate " as

1
u(g)zzépm 2.18
The displacement u gives rise to the axial strain

. ou oaud . 1
yo =M _MOE _Pa_pe) g 2.19
ox ol ox L L
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FIGURE 2.4 GENERALIZED NATURAL FORCES.

2.2.2.2 Mode 2: Symmetric Bending in the X-Z Plane

The second natural straining mode is a symmetrical bending mode in the x-z plane and is
denoted as pxp. This mode comprises a unit rotation equal to 1/2p,, at the left and at the right
node, respectively. These node rotations deform the elastic curve into a quadratic polynomial

w(x)=ax?+bx+c, x:—£—>%

and by implementing the set of boundary conditions
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X=—¢ 2.23

and therefore

W(é’):%(l—é’z)pm 2.24

2.2.2.3 Mode 3: Antisymmetrical Bending and Transverse in the X-Z Plane

The third mode consists of two different kinds of deformation, the bending and transverse
shearing deformation

Prns = Prs T P 2.25

2.2.2.3.1 Solely Antisymmetrical Bending

For the case of antisymmetrical bending mode in the x-z plane denoted as p"xs, the equation of
the displacement curve takes the form of a cubic polynomial

w(x)=ax’ +bx* +cx+d 2.26

and using the boundary conditions

(i

( LY 1 (L 1 b
Wi—Z5 =3P W o =_§pN3’ Pns = Pns

we get
W($)=£(¢*-¢*) 228

Superimposing the elastic displacement curves originated from the second and third modes we
obtain

W(C)=%(1—§Z)pm+%(§3—§2)pm 2.29

The axial direct strain is equal to

, 8w 2.30
X dx?
therefore
Z z
yxx:EpNZ_sté/pNS 2.31
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2.2.2.3.2 Antisymmetric Bending and Transverse Shearing

The transverse shear strains are generated via the antisymmetric natural straining mode p°z. In
fact, equilibrium arguments substantiate the existence of the transverse shear force in order to
equilibrate the antisymmetrical bending moments (Fig. 2.5).

Thus

o 2M, 2.32
L

The angle on the left beam node, due to the action of the moment M4 on the same node is

g = ML 233
-
3El

where E, | and L are the Young modulus, moment of inertia and length of the beam,
respectively. When the same moment Ma is applied to the right edge on the left node then

g7 — _MiL 2.34
b
6El

Superposing the two angles, the antisymmetric bending is obtained

6, =6 +6 = '\é'é:‘ 2.35

For the case of transverse shear, the angle of straining is

M,L 2M
Pns :pll\)ls +pr§|3 :2(0b +98): 2( 6|£| + LG;\j 2.36

And if we want to express Ma in terms of py3 we deduce from Eq. 2.36 the expression

sl
L 2.37
I\/IA - 12EI pN3
I+ m s
L°"GA
or

3

B L B 3El _12El 238
MA_ 1+12E| pNS_[L(l-ﬁ-l)JpNy A= LZGA
L*GA

where 7 is the beam’s shearing coefficient. From Eq. 2.38 it can be easily observed that if

m, = EL 2.39

GA—o> o= 450, C
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FIGURE 2.5 BENDING AND SHEAR DEFORMATIONS INDUCED BY THE ANTISYMMETRICAL MODE.

This is an important mechanical feature of the beam element that naturally leads to the
circumvention of the transverse shear locking phenomenon that is frequently encountered in
classical finite element methods.

2.2.2.4 Mode 4: Symmetrical Bending in the X-Y Plane

The fourth natural straining mode pn4 is the same to the symmetrical bending mode pn, with the
difference that it is assigned to the x-y plane. Therefore, the equation of the elastic curve due to
this natural straining mode is

v(¢) :%(1_42)%4 2.40

2.2.2.5 Mode 5: Antisymmetrical Bending in the X-Y Plane

The fifth natural straining mode is also similar to mode py3 with the difference that it occurs in
the x-y plane and includes only bending. This means that shear deformation is not accounted for
which raises an equilibrium problem due to the absence of the transverse shear. The moment
M2 is not equilibrated; however for a laminated beam M3 is small and its contribution to the
overall deformation is negligible. Therefore, by superpositioning the displacement curves
stemming from the fourth and fifth modes, we obtain

L L
V(é/)zg(l—é/z)p'\m—}—5(4/3—4/),0,\‘5 241
and the strain field is equal to
y y 2.42
7 xx :EION4_3E§pN5
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2.2.2.6 Mode 6: Torsion about the X Axis

The last straining mode (sixth natural straining mode) is a unit twisting angle pys Which is
illustrated in Fig. 2.4. Half of the angle is assigned to the left beam node and the other half to
the right. Its linear variation with respect to the non-dimensional coordinate { is

0($) =2 243

The displacement field due to this twisting angle is (Fig. 2.6)

u(x,y,z)=6(x)¥(y.z),

v(x,2)=-0(x)z, 2.44
w(x,y)=0(x)y

where ¥(y,z) is the warping function. By substituting Eq. 2.43 in Eq. 2.44 we get

u(g”,y,z):e‘P(y,z):%‘P(y,z)pm,
W(62)=-02=-2C2p, 245

W(C,y)=6y= %:ypm

XU

w=ey | v=-9z

VoV o

FIGURE 2.6 DISPLACEMENT FIELD DUE TO TORSION.

Finally, the derivation of the strain field that arises from this mode in terms of the x coordinate
is accomplished by using Eqgs. 2.16 and 2.45:

1
u(Xx, y,z):E\P(y,z)pNB,
X
v(x,z):-Isza, 2.46

X
w(x,y)= T YA
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As for the derivation of the strain field, we proceed the same way as before. Thus

1( ou, O, . 2.47
ii +— L)]=XY,Z )
T = 2[ax ax.] A

Being consistent with the definition of strain energy, all shear strains and stresses must be
multiplied by v/2. Therefore

ou, oy, 2.48
=S =32 B ] 2
The strain field is therefore the following
ou ov ow
:—:0’ :—:O’ ZZ:_:O'
o= o Yy & Va= 7,
Gy o Lfa ) 1(10¥ 2
7/xy \F ay ax ﬁ L ay L pN6’ 249
1 (ou ow 1(10¥Y vy
= —| — —_— [ — __+_ ,
\/_7/yz 2\ 6z 8xj \/ﬁ(L oz Ljpm
1 (ov ow 1( x, X
= | —— |=—= 0
Vo= 7l a 8y) ﬁ( ] L)”“
By grouping the non-zero strains due to the torsional natural mode we get
oY oY 250
_O \/_ xy \/_( Z]pNG’ \/5 yz = L\/_( yjp )
and in matrix form
0
Pl ] 1 o
2y, |==| —=| —-z or —a' 2,51
«/;Xy L| 2\ oy Pre (szl) @x) ﬁi‘fﬁ
“Z (%)
V2la 7))

2.3 Natural Stiffness Matrix

To compute the natural stiffness matrix we must have the strain operator matrix and the
constitutive relations referred to the material coordinate system 123 (Fig. 2.1). Subsequent to
that, by using the strain energy expression, the natural stiffness matrix is derived.
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2.3.1 Strain Operator Matrix

By superposing all the natural straining modes the complete strain field is arranged in the vector

Vs Vet Vo +Vm 7
N2y, | = 2y, 2.52
\/57 yz \/57 yz

where v, v22,v4b,yI. are the strains due to the axial straining, symmetrical bending,
antisymmetrical bending and torsional modes, respectively.

By collecting all derived expressions for the axial strain y,, we have

c 1
Vo = Vxx +7§f +7>§<b +7Ix = E(le +Zpy; —3Z8Pnz+ YPua _3y§pN5) 2:53
or in matrix form
_le_
v 1 z 32§ y -3y¢ : o
N L(M_ZJ Prs 2.54
’ L \E oy Pna
2y,
1 (0¥(y.2) Pns
i 2 0z | L Pne
and by using vector notation
Yy =ay py 2.55

(3x1)  (3x6) (6x1)

where a, is a strain operator matrix which connects the Cartesian strains with the natural
straining modes and is defined as

1 z 32§ y -3y¢ .
T 1 (o¥(ye) 2.56
L 2 oy
1 (a¥(y.2)
_ A

2.3.2 Constitutive Relation

The material constitutive relations that refer to the material coordinate 123 (Fig. 2.1) for every
fiber i read

o =K,Y, 2.57
Os =Kg)s

and for an orthotropic material
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On E v,E Tu
1
Opn | = JE vi,E, E - Va2 |
1-v, = 2.58
—\ﬁalz—i Y E 2G,, (1—V122 E) \/5712 ’
L El Ji
*/50-13 _|:ZG - } ‘/5713
_‘/Eo-zs_i 2G |, \/5723 i
For complete isotropy v;, = v, =V, E; = E, = E, G, = G, EQ. 2.58 reduces to
- ; . -
o] 1-v¢ 11—V ,
O_ll |, E E 7/11
22 - 2 2 22 !
1-v¢ 1-v
_\/Eo'lz_i G \/5712 i 2.59

_\/50_13_ [2G . } \/57/13
_\/Eo'zs_i .- 26 i ‘/2723 i

The material stiffnesses are transformed from the material coordinate 123 to the local Cartesian
coordinate system x’y z” by using the following transformations

K'= [AiT’(lel:'i !

2.60
G'=[ AG,A, |
where
c2 sz \2s,c,
A=| s ¢z —J2s,c, |,
—2sc, 25,0, 2G 2.61

c, S .
As:{ o "}, c,=c0s6, s,=sind

-s, C, |

The angle 6 represents the angle formed between the fiber axis 1 and the local axis x’ (Fig. 2.1).
Since in this work we take into account only the strains y,,,yy, and y,, the transformed
Cartesian constitutive relation becomes
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o E E . 7 xx

X XX Xy
V2o, | =|E, 26, . ||[N2y,| = o=xy 2.62
ﬁo—xz i ) ! ZGXZ i '\EJ/XZ

2.3.3 Strain Energy and the Natural Stiffness Matrix

For the derivation of the natural stiffness matrix the utilization of the expression of the strain
energy is required.

U= ja‘ydv 2.63
\Y

By using Egs. 2.54 and 2.62 we get

V= O0NPys 2.64

G=KY

therefore

U=p.|la, ¥ a,dV
o D (6x2) %9 (ax) k’;{) 265

natural stiffness matrix

It’s easy to conclude that the final natural stiffness matrix is a 6x6 matrix and its expression is

Exx ZExx _BZé/Exx yExx —3Y§EXX Exy (lP - Z)
ﬁ Wy
ZE,
2°E,, -37°CE, zyE, -3zy(E, \/Ey (‘P,y _ z)
202 2
ky = izj. SR R, 9CTE, _3z3llexy (lP,y B Z) 2.66
x6) L7V YE,
(6x6) yzEXX —3y2§2Exx NEy (\va _ Z)
Symm' gyzé/zExX B Sy\é//gExy (vay - Z)
i GW(‘Pyy—z)2+GXZ(‘P’y+y)2_

The above matrix corresponds to the full natural stiffness matrix of a beam element for the most
general stiffness formulation with an anisotropic material. Some of the entries in the above full
stiffness matrix represent a very small to negligible contribution and therefore they can be
eliminated. In particular, the coupling term E,y is very small and equal to zero for isotropic
materials. In addition, we assume that some of the natural straining modes are not coupled.
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EXy ~ 0,
PniP> <Pz PP Pus
2.67
Prnz2 P Pyzs Pz B Pys
Pnz P Pnas Pz B Pys
Pna>< Pys,  ><NO interaction
Thus a simplified form of the natural stiffness matrix is given by
_EXX ZEXX ' yEXX ]
ZZEXX ' ZyEXX
97%¢°E :
k _ 1 J- é/ XX , 2 6
(er\é) |_ \ y Exx ' 8
symm. 9y?*¢PE,,
2 2
I G, (¥, -2) +G,(¥,+y) |

EQ. 2.68 represents the 6x6 simplified natural stiffness matrix of the NBCFB element. With this
formulation we reduce the required stiffness data for the solution procedure from 78 double
precision variables to 21. In ReConAn FEA, all symmetrical matrices are stored in arrays
therefore, if we have a nxn matrix the required array size is equal to n(n+1)/2. For instance, if
we have a 12x12 matrix the required array size is 78 which represents the 78 upper triangular
values of the matrix. This storage type reduces significantly the required memory of our models
and speeds up the CPU time required by the processor when performing calculations related to
this type of arrays. In order to be able to conduct matrix operations with array type variables,
we have developed special subroutines that perform several matrix operations such as matrix
multiplication etc. This means that it is not required to transform the array variable into a square
matrix, perform the required calculation and then store it again in an array format. Everything is
done explicitly.

As we are going to see in the numerical implementation section, software architecture, variable
manipulation, data flow control, dynamic memory redistribution and smart programming gives
us the ability to solve fast and accurate large-scale RC structures.

The final step in order to compute the natural stiffness matrix is to evaluate the integrals of Eq.
2.681%%. By doing so and by taking into consideration that the material is isotropic, the above
stiffness matrix takes its final form
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EA :
El, :
K, = [L+12E'Wj 2.69
e L L(GA)
El, :
symm. 3El, .
GJ,

where E, G, A, lyy, I,; and J,, are the Young Modulus, the shear Modulus, the area of the section,
the bending moment of inertia with respect to the y axis, the bending moment of inertia with
respect to the z axis and the polar moment of inertia, respectively.

2.4 Local and Global Stiffness Matrix

In this section the transformation matrices will be presented in order to transform the natural
stiffness matrix ky to the local and ultimately to the global Cartesian coordinates. This requires
the connection between the natural straining modes and the local dof. The relevant matrix
equation is

Py =Ty P 2.70
(6x1)  (6x12) (12x1)

The connection matrix a, contains only geometrical parameters and this is established from the
fact that most natural straining modes are generated simply by addition or subtraction of the
local nodal dof. The contribution of the vertical nodal displacements to the antisymmetrical
mode is illustrated in Fig. 2.7.

2w>

L
FIGURE 2.7 ANTISYMMETRICAL ROTATION DUE TO VERTICAL NODAL DISPLACEMENTS.
The explicit expressions for the natural modes are
2(wW, — W,
), 200w

Pni=Uy =l Oy =0, — @, pst_((Pl"‘(ﬂz
L 2.71

2(v,—v,)
L

Pna =V~ VY, pNSZ(l//1+l//2)+ v Pn=0,-6,

from which the matrix relation is deduced
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o
|
H
|
I
|
H

a, = L 2.72

g...l.——...l
L

-1 . .. . .1

We are now in position to connect the natural rigid body modes and the natural straining modes
with the local Cartesian dof through the two matrices:

1 1
2 2
1 1
2 2
1 1
2 2
1 1
a, L
(6x12) 1 1
I e e S 2.73
"""" - L L
&N
(6x12)
-1 .o 1
. -1 . 1
2 1 2
L L
: 1 : -1
2 1. 2 1
L L
i e o1 ]
From Eq. 2.12, Eq. 2.70 and Eq. 2.73 we have
Po a, a,
(6x1) (6x12) (6x12)
..... =l e | Py = | Ty p 2.74
(12x1) _ (12x12) (12x1)
Pn N
(6x1) (6x12) (6x12)
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Conversely,
Po
(6x1)
P = 7&1 “_10 | ‘ZN ---- 275
(12x1)  (12x12)| (12x6) (12x6)
(5?1)
and therefore
|:&:|—l:[£_1 2.76

Once more, the expression for the strain energy takes the form

U =[a"yav
\Y

g4 [ v

@xe)| ¥ (6x3) 3%3) (3x6) (6x1)

natural stiffness matrix

_ _ 2.77
—t —t t — —
= p | ay IaNkaNdV a, | p
ax12)| @2xe)| ¥ (6x3) 3*3) (3x6) (6x12) | (12x1)
natural stiffness matrix
L local Cartesian stiffness matrix
The local elemental vector p is related to the global elemental vector p via
p=Tyup 2.78
where To4 is @ matrix that contains submatrices of direction cosines
TO
T, To 2.79
(12x12) To .
TO
with
Cx'x X'y Cx'z
_ 2.80
Ty =|C, €y Cy,
(3x3)
Cz'x Cz'y Cz'z

where ¢, denotes the cosine of the angle formed between the local Cartesian axis x’ and the
global Cartesian axis x. the same convention is used for all other entries.

Using
py=ayp=oT,p=0a,p 2.81
the strain energy expression becomes
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ax12)| (2x12)| @2x6)| ¥ (6x3) 3*3) (3x6) (6x12) |(12x12) |(12x1)

U=p'| T, | @, DaL kaNdV}&N T, |p 2.82

natural stiffness matrix ky

local Cartesian stiffness matrix k

global Cartesian stiffness matrix k

From which we deduce the equilibrium equations in natural, local and global coordinate
systems as follows:

P, =Kkypy, natural coordinate system,

P=kp, local coordinate system, 2.83

P =kp, global coordinate system

We must note at this point that from the numerical implementation view, the most “sensitive”
matrices are the cosine matrix T, and the connection matrix a,. Due to their numerical role
and arithmetical nature they must be given special attention in order to reassure that they obey
the same coordinate system rules (either left hand side or right hand side orientation).

2.5 Flexibility-Based Formulation and Element’s State Determination Procedure

In this section we will describe the NBCFB formulation concerning the procedure for the
calculation of its internal forces and the modifications that are required in order to incorporate
the natural mode method. As it was mentioned in Chapter 1, Spacone et al®* proposed a Fibre
Beam-Column model for the nonlinear analysis of RC frames with a flexibility-based
formulation which relied on force interpolation functions that strictly satisfy the equilibrium of
bending moments and axial force along the element. This flexibility-based formulation requires
an iterative procedure for calculating the internal forces during the elements state
determination.

2.5.1 Generalized Forces and Deformations

As it was mentioned above (Fig. 2.1), the natural beam element has 12 dof (6 dof per node) and
therefore 12 nodal forces when we refer to the global system. These work conjugate nodal
forces and displacements when referred to the global system can be written in the following
vectors

P=[R P, .. .. P, P, 284

.
p:[p1 Pr e e P plz]

The connection between these nodal forces and displacements with the natural rigid body and
straining modes is done with the use of the connecting matrices of Eqs. 2.72 and 2.79. It was
assumed that the torsion response is linear elastic and uncoupled from the other dof. Therefore,
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the element has five general dof: one axial extension p; and two rotations relative to the cord at
each node, (p2, p3) at node 1 and (p4, ps) at node 2. These five deformations (Fig. 2.8) are called
element generalized deformations g and the corresponding generalized forces Q (Fig. 2.8): Q1 Is
the axial force and the two bending moments at each end node, (Q», Qs) at node 1 and (Qa, Qs)
at node 2.

Q:[Ql Q Q Q Qs]T 2.85
q=[q, & o q,

The transformation of p into q writes as follows

q=ay T, p, ¢q(6)=0 2.86

(6x1)  (6x12) (12x12) (12x1)

v
Q“q\ﬁ

FIGURE 2.8 GENERALIZED DISPLACEMENTS AND FORCES OF NBCFB ELEMENT.
The section’s force and deformation vectors have the form
N(¢)
D(¢)=1M,(¢) 287
M. (¢)

&($)
d(£)=11,(¢) 258
7. (¢)
ReConAn FEA is appropriately constructed with the intention of minimizing the computational
cost during the solution procedure. In order to accomplish this task, several parameters were

selected to be available throughout the solution procedure. These constant and non-constant
variables are stored dynamically in array type matrices and are reachable at any time and any
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module of the code. In the fiber formulation, the geometrical and material inputs for each type
of section are stored including fiber strain and stress vectors

51(51 yllzl)

e (5) = Eiiver (é:v Yifiver 1 Zifiberl) 2.89

& (&Y 12,)

O-l(é:v ylizl)

E (96) = Oifiber (ég' Yifiver 1 Zifiberl) 2.90

o, (& Y0 2,)

where ¢ describes the natural coordinate position of the section along the beam longitudinal axis
and Visiver, Zifiver are the fiber coordinates in the section’s local coordinate system. The fiber
strain vector e(&) and the section deformation vector d(¢) are related by the matrix relation

e()=1(¢£)d(¢) 291

where (<) is a linear geometric matrix

1 -7 Yi
I (5) =11 ~Zier  Viiver 2.92
1 -z A

The Bernoulli hypothesis that the plane of the section remains plane and normal to the
longitudinal axis gives us the ability to assume this linear connection between the two strain
matrices, something that is rather unrealistic for RC structures especially when the structural
members are shear dominated. More complex forms of the compatibility matrix 1() can be used
to account for the effects of shear.

2.5.2 Beam-Column Element Formulation

In the two-field mixed formulation of Zienkiewicz and Taylor®® independent shape functions
were used for approximating the force and deformation fields. In this work, we adopt the
simplified mixed finite element method which is known as the flexibility or force method of
Spacone et al.**) who proposed a deformation shape function that simplifies the standard two-
field mixed method into the flexibility method. Denoting with A the increments of the
corresponding quantities, the two fields are expressed as follows:
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Ad'(&)=a(&).Aq 2.93

i i : i 2.94
D'(£)=b(¢)Q and  AD'(&)=b(&)AQ

where matrices a(¢) and b(¢) are the deformation and force interpolation matrices respectively.
Parameter & represents the natural position of the Gauss-Lobato integration point (control-
section). Superscript i denotes the i-th iteration of the NR scheme, until equilibrium is
satisfied![®4 8%,

The integral forms of equilibrium and section force-deformation relations are combined to
obtain the relation between element force and deformation increments. The weighted integral
form of the linearized section force-deformation relation is given by

[5D7 (£)[Ad"(2)- £ (£) D (£) £ =0 205

and the flexibility form of the section force-deformation relation writes

A (£)= £(2)AD'(¢) e

in order for the resulting element flexibility matrix f to be symmetric[84'85]. The superscript i-1
indicates that the section flexibility matrix of the previous NR iteration is used. Substituting
Egs. 2.94 and 2.96 in Eq. 2.95 we get

5QTIbT (&)-[a(&).Aq' - F7(£)b(£).AQ [ =0 2.97
and since Eq. 2.97 must hold for any §QT, it follows that

DbT dg} A UbT 7 (g)dg},AQi -0 2.98
where

[IbT £ (g)d§:| 2.99
T {!bT (5),3(5)(1(5} 2.100

F is the element flexibility matrix and T is a matrix that depends on the interpolation functions.
Using Eq. 2.99 and Eq. 2.100, Eq. 2.98 can be written as

T.AQ =F™AQ! 2.101

which is the linearized section force-deformation relation in matrix format.
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Next, the equilibrium of the beam element must be satisfied. The classical two-field mixed
method requires that the integral form of the equilibrium equation is derived from the virtual
displacement principle

j £).[ D'(&)+AD (&) de =5q" P! 2.102

where P_' is the vector of the applied forces that have to be in equilibrium with the internal
forces D'(&)+AD'(&). By substituting Egs. 2.93 and 2.94 in Eq. 2.102 results in

59" HaT (&).[b(&)Q™ +b(§)AQi]d§} =59 P =

2.103
L
DaT(f).b( } Q" [ja dé} AQ' =
0
and by using Eq. 2.100 we get in matrix notation the relation
TTQ+TT.AQ =P 2.104

which is the matrix expression of the integral form of the element equilibrium equations. The
rearrangement and combination of Eq. 2.101 and Eq. 2.104 results in

-F" T jAQ :{ 0 } 2.105
™ ollaq P _TT Q"

Solving the above equation system in terms of AQ', the following expression is derived

TT.[FHT.T.Aq‘ =P -TTQ" 2106

At this point the selection of force and deformation interpolation functions « and b must be
performed. Although, in the mixed FEM the deformation interpolation functions a(x) are
completely independent of b(x) (x represents the longitudinal axis of the beam), Mahasuverachai
and Mahasuverachai and Powell® proposed a choice of the deformation shape functions a(x)
which simplifies considerably (Eq. 2.106). Replacing the parameter x with the & we get

a(£)=2(&)b(e) [F] 2.107

These interpolation functions relate the section deformations with the corresponding element
deformations according to

Ad' (&)= £7(£)b()[F] " g 2.108

where F'? is the tangent element flexibility matrix at the end of the i-1 NR iteration. This
special selection of deformation shape functions reduces matrix T in Eqg. 2.106 to 3x3 identity
matrix 1. To prove this statement we proceed with the following relation:
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L
:{J.bT(f). } D’bT f'l (5) :|':F|l] [F”] [F'l] 2.109
0
The above choice of the deformation shape functions a(&) simplifies Eq. 2.106 into

|:Fi—1:|71 Aq =P -Q™
and at the same time the two-field mixed finite element method reduces into the classical

flexibility method. Eq. 2.110 expresses the linearized relation between the applied unbalanced
forces P'- Q™ and the corresponding incremental displacements Aq' at the element level.

2.110

The four main differences between the flexibility-based method and the classical stiffness
method are a) the elements stiffness matrix is calculated by inverting the flexibility matrix, b)
the element’s state determination begins from the elements internal forces equilibrium, c) the
section flexibility needs to be evaluated, which involves an inversion of the section stiffness
obtained in the classical stiffness approach and d) codes that use the direct stiffness approach
treat deformations as the primary unknown. The flexibility formulation provides numerical
robustness to the nonlinear solution algorithm, which is attributed to the fact that the internal
nonlinear state determination procedure computes the exact solution of the equilibrium between
the resisting forces and the nodal displacements of each element, inducing numerical stability in
the nonlinear NR solution procedure of the structure.

In order to extract the force distribution D¢&) along the element from the generalized force
vector Q, a selection of the interpolation functions b is required. If we take under
consideration that the force field was selected so that the two bending moment fields My (<) and
M (&) in Eq. 2.87 are linear and the axial force N(x) is constant, the interpolation function
becomes

b(§)=4. -1 & . . . 2.111
-1 ¢

where ¢ is the natural position coordinate of the Gauss-Lobato point (corresponding control-
section) which is the integration method adopted in this work.

When one of the sections enters for the first time into the nonlinear strain-stress field, the
update of the sections stiffness matrix is necessary. As it was indicated above, ReConAn stores
the geometric and material data for each type of section and therefore all area and Young
modulus for each fiber are stored in array type matrices. By denoting the array type matrix A,
with entries the areas Aisiner Of the fibers and the array type matrix E with entries the Young
modulus Eisper Of the fibers for each section type, then the section tangent stiffness matrix
becomes

K (£)=1" (&)( Edoer Arer )1 (€) 2.112

which results in
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nfibers nfibers nfibers
i _ i i
Z Eifiber'pﬁfiber Z Eifiber'pﬁfiber'zifiber Z Eifiber'Aifiber'yifiber
ifiber=1 ifiber=1 ifiber=1
nfibers nfibers nfibers
(Y| _ j j 2 _ i
K (ég )— Z Eifiber'Afiber'Zifiber Z Eifiber-pﬁﬁber-zifiber Z Eifiber'Aﬁfiber'zifiber'yifiber 2.113
ifiber=1 ifiber=1 ifiber=1
nfibers nfibers nfibers
] _ j j 2
Z Eifiber'Afiber'yifiber Z Eifiber'Aifiber'zifiber'yifiber Z Eifiber'Afiber'yifiber
| ifiber=1 ifiber=1 ifiber=1 a

When the beam’s section is located in the elastic range, the above formulation leads to the
classical beam’s stiffness matrix. It must be noted at this point, that when a section enters the
nonlinear range, its fibers do not necessarily enter the plastic range, all at the same time.
Therefore, some of the fibers can be in the nonlinear stress-strain state and the rest of them can
still respond elastically capturing the phenomenon of the spreading plasticity.

To obtain the updated natural stiffness matrix of the NBCFB element, we have to calculate for
each beam section its stiffness matrix and then invert each one of them to obtain the tangent
flexibility matrix f /& and then add their contribution (Eq. 2.114) to compute the beam
flexibility matrix F:

nSections

F = > b'(&).£50(&).b(&)we 2.114

(6x6) isection  (6x3) (3x3) (3x6)

where the w parameter represents the sections integration weight factor. Finally, by inverting
the beams natural flexibility matrix F we get the tangential (or elastic) natural stiffness matrix

[Kl?l::lrjr:’al ] = [F;Jeam ]*1 2.1 15
(6x6) (6x6)

Similarly, the section internal resisting forces D{z(f) cannot be obtained directly from the
section force-deformation relation (Eg. 2.88), but are determined by summation of the axial
force and biaxial bending contribution of the fibers as shown below

Di(&)=1"(¢).E A 2.116
and after carrying the multiplications

nfibers
j
Z Otiver - Atber
ifiber=1
) nfibers . 2 1 1 7
j _J_ j .
Dy (ét) = Z Otiver - Atver -Zitiber
ifiber=1
nfibers

i
z O tiver - Ptiver - Yiiver

ifiber=1

The relation that connects the section internal resisting forces Dé(f) with the general forces Q
IS
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nSections
Q — Zt: bT (gg).D';Section (é).WiSection 2.118

(6x1)  isection=1 (6x3) (3x1)
where w is the parameter that represents the sections Gauss-Lobato integration weight factor.
The relation that provides the element’s internal forces in the Global Cartesian system is

Pinternal = TO-lé—l . a: Q 2119
(12x1) (12x12) (12x6) (6x1)

At this point, we are ready to move to the description of the modified nonlinear flexibility-

based element’s state determination procedure which is integrated with the natural mode

method.

2.5.3 Integrated Beam-Column Flexibility-Based Element with the Natural Mode Method

In this section we are going to describe the NBCFB element’s state determination integrated
with the natural mode method. In order to be able to describe the state determination process, a
few words on the nonlinear solution algorithm implemented in this study are necessary.
ReConAn code architecture is based on a general in-core object-oriented structure which gives
the ability to use any kind of material model or solution strategy. One of the nonlinear solution
algorithms incorporated in our code, is the standard NR scheme (Fig. 1.6) which performs the
update of the structures stiffness matrix whenever nonlinearities occur. Therefore, the total load
is divided into n load increments and the external load vector Pexwernal IS Varied in an incremental
fashion at each NR load step.

Assuming that k stands for the k-th NR load step and i denotes the i-th NR internal iteration,
then the incremental-iterative NR procedure can be described as follows:
1) Initialization.
Initialize all required variables including k =1, i = 1.
2) Solve the global equation system and update the structural displacement increments.
; ; : c -l
AR = (Khnaun) (99 = (") = (Kl | P 2120
I the internal iteration is greater than 1, then APk = (PX)' ™" where (PK)' ™" is the
unbalanced load vector from the previous NR iteration. The unbalanced force vector is
obtained as the difference between the total applied loads and the internal resisting
forces at the end of the i-1 NR iteration in step (18). A check is performed for the need
to update the stiffness matrix before proceeding to the displacement calculation. The
calculated structural incremental displacements (§4p*)¢ are added to the displacement
increments (4p*)i~1 which were calculated at the previous NR iteration i-1 to obtain
the new displacement increment (4p*)* for iteration i inside the k-th load step.

(30') =(00")" +(a") i
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Compute the element’s deformation increments.
By using the connection matrix ay and the direction cosine matrix To4 the change in the

element deformation increments is computed from the structural displacement
increments.
i i
(") = ay . T, .(oAp") 2.122
(6)(1) (6X12) (12X12) (12X1)
It must be noted here that the element displacement increments do not change during the
element iteration loop j.
Start the element state determination.
Setj=1.
Compute the change in the element force increment.
For j =1, ((&IQ")L')1 is obtained from the element displacement increments (§4q*)°
for the current NR iteration i using the element natural stiffness matrix.
i\! i i
((5AQK)) = (K&)' (ong¥) 2.123
(6x1) (6x6) (6x1)
For j > 1, ((64Q%)")’ is obtained from the residual element deformation ((s*)!)’™" at
the end of the previous element iteration j-1 and the corresponding element natural

stiffness matrix.

((5AQk)')J =((K;)')J 1,((sk)')J 1 2.124
(6x1) (6x6) (6x1)

Update the element force increments and element resisting forces

With the change in the elements force increments ((SAQ")")], an update of the previous

vector is obtained by

i) i\t i)

((AQ“)) =((AQk)) +((5AQ")) 2.125

(6x1) (6x1) (6x1)
The current element resisting forces are calculated by adding the element force
increments to the resisting force vector Q" of the previous element iteration k-1:

i\ N
((Qk)) =Q“+((AQk)) 2.126
(6x1)

(6x1) (6x1)
Compute the section force increments.
In order to compute the element section force increments we must know the total
number of Gauss-Lobato integration points. By using the interpolation functions b(&) the

following equation gives the section force increments:
N N
(83D (£)) ) =b(&)-((3Q")] 2.127
(

(3x) 3x6) (6x1)

N N N

(a0 (£)) )J=((AD“(§)) )J +((aD(£)) )J 2.128
(3x1) (3x1) (3x1)

and the total section forces are computed by
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(o (5))i)j = D" (£)+((aD* (gf))i)j 2.129

(3x1) D (3x1)

8) Compute the change in section deformation increments. _
The change in the section deformation increments ((54d* (f))i)] Is computed from:

(a0t ) =(( @) +{(r @) b N {(m)) ()

(3x1) (3x1) (3x3) (6x6) (6x1)

-1

2.130

then

(2 ()} =((a0* (&))" +((na* ))) 2131

9) Compute the fiber deformation increments.
The fiber deformation increments are computed by using the section compatibility

matrix 1(x) of Eqg. 2.92 and the fiber deformation increments are updated as follows:

(@ @) =100 (" (2))

i

(1x1) 1 (3x1) 2.132
then | | |
((ae* (&) )J ~((ae*(2) )H+((5Aek @) )J 2.133
(1x1) (1x1) (1x1)

and the fiber deformations are updated by

(&) - ek(jxg)§)+((Aek ©)) 2134

10) Compute fiber stresses and update the tangent modulus of the fibers.
By using the current fiber deformation of Eq. 2.134, the fiber material subroutine will

compute the fiber normal stresses and the updated Young’s modulus of each fiber.

11) Compute the section tangent stiffness and flexibility matrices.
From step (10) we obtain the updated Young’s modulus for each fiber and with the help

of Eq. 2.113 the calculation of the current section tangent (or elastic) stiffness matrix

N
((k"(f))l> is carried out. By inverting the computed stiffness matrix, the flexibility
matrix is obtained.
) -1
i\J i\l
() {((kk(é))) } 2.135
(3x3) (3x3)

12) Compute the section resisting forces.
Eqg. 2.117 determines the section internal forces which are derived explicitly from the

fiber stresses.
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13) Compute the sections unbalanced forces.
The difference between applied loads and resisting forces results in the section

unbalanced forces:

(C )] ~((o* ©)) —((Dé(e‘))i) 2.136
(3x1) (3x1) (3x1)
14) Compute the residual segtion deformat_ions.

() (@) (e ))) 2137

15) Compute the element flexibility matrices.
The element flexibility matrix is computed by numerical integration and more precisely

by the Gauss-Lobato integration rule, of section flexibilities

i\ tot.num.sec i\l
((Fk) ) _ z \Nisec'bT (gisec)'((fk (é;isec)) ) 'b(é:isec) 2.138
(6x6) isec=1 (6x3) (3x3) (3x6)
where tot.num.sec is the total number of Gauss-Lobato integration points (total number
of control sections), &isec is the natural position coordinate of the section along the beam
length and wise is the corresponding weight factor. We must state here that in the case of
natural modes all elements of the 6" row and column of the flexibility matrix are equal
to zero. This is attributed to the values of the 6™ column of the matrix b(&) which are

N
equal to zero and therefore the corresponding values of the flexibility matrix ((Fk) )

become equal to zero. Finally, the element’s stiffness matrix is obtained by inverting the
i\l i\
flexibility matrix ((F")) and the main diagonal stiffness coefficient ((K(G,G)"))

(5x5)

corresponds to the torsional stiffness:

((Kk)i)j :[((Fk)iﬂl’ ((Kk(6,6))i)j = Gip 2.139

(5x5)

(5x5)

16) Check for element convergence.
The convergence criterion that was implemented in this work was an energy-based

criterion given by Eq. 2.140 and its tolerance was set to 107°.
if (tolerance >error) then — exit

()] (01 {07)
(o) (1) ] o)

where s¥ is the residual element deformation

error =

i\l tot.numsec

((sk)) = > weightisec.bT((;sec).((rk(gisec))i)j 2.141

(6x1) isec=1 (6x3) (3x1)
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If the convergence criterion is satisfied then we proceed to the next step, otherwise we
return to step (5) and increase j by 1.
17) Compute the resisting forces of each element and the internal forces of the structure -

Update the stiffness matrix of the structure.
When all NBCFB elements manage to converge, the i-th NR iteration is completed

regarding the calculation of the internal forces at structural level. The internal forces of

the structure (P’,g)l are calculated by assembling all element internal forces (Q’e‘le)l

according to the expression

(PL) = To, - ar (Qh), 2.142a
(12x1) (12x12) (12x6) (6x1)
then
v i num.ele ) i , 142b
(PR) = IZ (Piele) .
iele=1

The structural stiffness matrix is updated by assembling the element stiffness matrices

(K&) = T2 .al (Ki) . &, . T, 2.143a
(12)(12) (12X12) (12X6) (GXG) (6X12) (12X12)

then

i num.ele i
(KE) = (KE) 2.143b
iele=1
18) Compute the unbalanced forces of the structure.
where P! is computed from the total applied load at the current NR load step k.
PX = PX1 4+ APf 2.145

19) Check for global convergence.
If the convergence criterion at structural level is achieved, then we can proceed to the

next load step, otherwise we increase i by 1 and return to step (2) for the i+1 NR
iteration. In this work, an energy based convergence criterion was used to check if the
solution converged. The convergence tolerance selected for all numerical applications
was 10,

20) Check if the prescribed load is achieved.
If the entire external load was applied the analysis is complete, otherwise we increase k

by 1 and proceed to the computation of the new external load vector and return to step
(2). Spacone et al®! proposed that in this step all force and deformation vectors are
updated by adding the vector increments of the previous load step k to the corresponding
total forces and deformations. The proposed nonlinear state determination algorithm
does not require something similar because the update and storage of all current
variables is done in-core during the element’s state determination process.
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2.5.4 Fiber Constitutive Material Models

ReConAn material library contains several 1D material models, among them the Menegotto-
Pinto®®® for the reinforcing steel bars and the Kent-Park®” for confined and unconfined
concrete. As it was mentioned above, the NBCFB element uses the fiber approach which means
that the nonlinear behavior of the proposed finite element derives entirely from the nonlinear
behavior of the fibers. Consequently the accuracy of the arithmetical results depends on the
numerical reliability of the fiber material models. It is important to note here that both material
stress-strain models are explicit functions of strain. This means that in order to determine the
stress field the only necessary variable is that of the strain increment which are determined from
the section increment deformations.

2.5.4.1 Steel Stress-Strain Relation

The Menegotto-Pinto®® material model is presented in this sub-section. The steel stress-strain
model has the form!®®!

o =b-& + ' 2.146
(17"
where
* 8 - gr
& = 2.147
&y — &
and
o =% 2.148
Oy, — 0,
fo (&,0%)
(85 020) ®) O/AE
|
|
|
(a) I
\EO
} €
&y =
(82 62) _/ (E[l) 7010)

FIGURE 2.9 MENEGOTTO — PINTO STEEL MODEL.

Fig. 2.9 illustrates the theoretical curve of the Menegotto-Pinto®® material model and Fig. 2.10
represents the curve for the specific values of the characteristic parameters used in this work. R
is the value of the parameter R during the first loading and a;, a, are experimentally determined
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parameters together with Ro. This particular material model was also integrated with the
Filippou et al.”®® isotropic hardening

R=R - 2.149
a+¢

where ¢ is updated following a strain reversal. The definition of ¢ remains valid in case that

reloading occurs after partial unloading.

0
o (MPa)

0,015 0,01 0,015

Z//f/// : -600

-800

FIGURE 2.10 MENEGOTTO — PINTO STEEL MODEL FOR THE SPECIFIC PARAMETERS USED IN THIS WORK
(Ro =20, a; = 18.5, &, = 0.15, f, = 500MPa).

Regarding the simplicity of the formulation, its major drawback stems from its failure to allow
for isotropic hardening. To account for this effect Filippou et al.’®® proposed a stress shift in the
linear yield asymptote as a function of the maximum plastic strain as follows:

R (ﬂn_ax_%] 2.150

0,02
&(m/m)

Oy &y

where emax IS the absolute maximum strain at the instant of strain reversal, ¢,, oy are, the strain
and stress at yield, respectively, and as, a4 are experimentally determined parameters which are
set to zero in this study.

2.5.4.2 Concrete Stress-Strain Relation

The monotonic envelope curve of concrete material in compression is modeled with the use of a
Kent-Park®") concrete material model that was later extended by Scott et al.®. The so-called
modified Kent-Park model offers simplicity and accuracy at the same time and it is considered
to be arithmetically one of the most efficient and convenient 1D material models. In the
modified Kent-Park model the monotonic stress-strain relation in compression is divided into
three regions.
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2
£ <& o, =K-f’ ZC_]_(E_j 2.151
0 0

6<e<g  o,=K-f/[1-Z(g,-5)]202K- 2.152
where
& =0.002-K 2.153
f
K=1+ps yhoop’ Z= 05
f! 3+0.29f’ h 2.154
¢ ST 10.75p, | —0.002-K
1451000 s,

go IS the concrete strain at maximum stress, K is a factor which takes account for the strength
increase due to confinement, Z is the strain softening slope, f. is the concrete compressive

cylinder strength in MPa, f,  is the yield strength of stirrups in MPa, ps is the ratio of the

volume of hoop reinforcement to the volume of concrete core measured outside of stirrups, h'is

the width of concrete core measured outside the stirrups and s, is the center to center spacing of
stirrups or hoop sets.

When concrete is assumed to be inside the confinement area of the beam’s section (concrete
located inside stirrups), Scott et al.®” suggest that &, can be computed conservatively from

£, =0.004+0.9- p, -(fs hoop 300j 2.155

8 o¢ K f' Confined Concrete

- UnConfined Concrete

¥ ?

[ i
| |
| |
! |
|

| |
L |
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|
o1 |
Eute-ﬂ:lle \' 0 ] 002 20 &c Ec I
. - Eu
Tensile Strain Compressive Strain

tensile
—1Yu

FIGURE 2.11 KENT — PARK CONCRETE MODEL WITH TENSILE STRENGTH FOR MONOTONIC LOADING.

In order to take into consideration the crushing of concrete, the strength is reduced to 0.2f. and
0.2Kf. once the compressive strain exceeds the value of .. We must note that in the Kent-Park
model, the tensile strength is neglected. In our model the tensile strength is accounted through
the use of a simple linear relationship that requires only one percentile parameter.
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O_Ltlensile — pt X fcr 2156

where p; is the tensile strength percentile parameter. Fig. 2.12 shows the arithmetical data
retrieved from a numerical simulation that was performed from ReConAn and illustrates the
stress-strain relationship for a single fiber during the analysis. Fig. 2.13 shows the
corresponding fiber normal strain history. We must note here that compression is assumed to
have a positive sign in both graphs.

Confined
35
o (MPa)
fc=30MPa

30 K=1.101
25
20 4
15
10

5 4

’_'+'_'_'—'9"_” T T
-0,002 1E-17 0,002 0,004 0,006 0,008 e(m/m) 0,01

FIGURE 2.12 KENT — PARK CONCRETE MODEL FROM ANALYSIS DATA (f; = 30MPa, K = 1.101).
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FIGURE 2.13 SCHEMATIC REPRESENTATION OF THE NORMAL STRAIN HISTORY OF A CONCRETE FIBER.
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2.6 Computational Experiments

Many researchers use software packages such as OpenSees®™ and Fedeas™ in order to
perform several numerical simulations by using various element types and material models.
OpenSees seems to be the most popular thanks to its simplicity, the existence of a variety of
FEM models, its computational efficiency and numerical robustness. OpenSees, is written in
C++ programming language and uses Tcl scripting language in order to interpret the input data
into FEM analysis data. In addition to that it is one of the few software packages that contain
the flexibility-based element, therefore it was chosen for the comparison tests that will be
presented in the following sub-sections.

We proceed with the numerical experiments by using specific models that were chosen in order
to illustrate the numerical robustness and efficiency of the NBCFB element and consequently
the computational superiority of ReConAn FEA. All FEM models that will be presented were
analyzed by using the nonlinear incremental-iterative force-control NR algorithm. For the
numerical simulations a 1.9GHz processor was used (personal laptop) with 2GB DDR2 Ram.

2.6.1 Cantilever I Beam

The first tests example is the cantilever steel I beam shown in Fig. 2.14 with a vertical load on
its right end (P = 600 kN). Its length is equal to 3 m and the | section dimensions are illustrated
in Fig. 2.14. The FEM model is shown in Fig. 2.15 which consists of 10 elements. The material
model used in this numerical experiment is the Menegotto — Pinto with Young modulus,
tangent modulus and yield stress equal to: E = 200 GPa, E; = 2 GPa and fy, = 500 MPa,
respectively. In order to make this problem computationally demanding we set the number of
Gauss-Lobato points equal to 10 for each element, the number of fibers to 400 for each section
and the number of loading steps equal to 1000.
'«— 250 —n‘

<20

P

ka-15

400

<+ L =3m ———— P

YD DY4
§

Section Dimensions in mm

FIGURE 2.14 CANTILEVER | BEAM.

20

As it was stated previously, OpenSees uses a Tcl scripting language so as to interpret input data
into FEM analysis data, meaning that a txt style input file is required. For rather simple FEM
models this type of input generation is adequate. When the FEM models become large, txt type
input files become difficult to manipulate and especially to control. For this reason, ReConAn
was given the ability to read and write neutral type files of the pre- and post- processing FEA
program Femap™®. Furthermore, an external program (“SMAD Custom Properties” by
G.Stavroulakis) is used for assigning customized parameters to the required FEM properties for
the purpose of introducing extra parameters like the number of fibers, rebar elements etc. that
Femap does not include in its basic property types.

Page 66 of 272



Chapter 2 Athens, Jan 2011

123456~

\\—a
—
\

700

600 — —
—
ammeme— —
—
b S
—
500 - .
Z 400 - .
a ’ ==ReConAn 25seg
300 - , ! OpenSees 40sec
200
100 ’
0

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55
Tip displacementd (m)

FIGURE 2.16 CANTILEVER | BEAM. P-0 CURVE.

Fig. 2.16 shows the P-0 curves for both software packages and as it can be seen they are
identical. On the other hand, if we compare the required computational time ReConAn is 1.5
times faster than OpenSees. This shows the computational efficiency of the developed code
which results from the formulation of the natural mode method that the NBCFB element is
integrated with. It is also clear that the P-4 curves match without any variations even after the
cantilever beam enters the inelastic range.

It is important to point out at this point, that an extensive sensitivity investigation was
conducted with ReConAn (Vasilomichelaki®®%) in order to examine the numerical behavior of
the NBCFB element. The main conclusions of this research work were the following:

1. The results are not sensitive to load increment deviations, meaning that when the load
increment is increased the predicted P-o curve is not affected. This is attributed to the
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nonlinear state determination procedure and the numerical robustness of the developed
FEA code.

2. The element is not affected from the degree of discretization, maintaining its accuracy
even for the case where only a single element is used for the simulation of a structural
member. This numerical phenomenon is attributed to the use of the nonlinear state
determination procedure integrated with the natural mode method, Gauss-Lobato
integration scheme and the fiber approach, utilizes the element in predicting the stiffness
matrix degradation of the structural member accurately capturing the plasticity
distribution during the loading history.

3. The computational robustness and efficiency of the developed nonlinear code is very
satisfactory.

0.00871
FIGURE 2.17 CANTILEVER | BEAM. DEFORMED SHAPE AT THE FINAL LOAD STEP.

Before moving to the next test example, it is worth mentioning that, the speed of the developed
code with regards to Fedeas™ code is obvious since the latter is a matlab code which is much
slower.

2.6.2 Cantilever RC Beam

The second numerical test is a RC cantilever beam depicted in Fig. 2.18. The discretization and
boundary conditions that were used in this case are the same with that of the previous test
example. The vertical load applied to the edge of the cantilever is equal to 120 kN and the FEM
model and analysis parameters the same as before (number of fibers, NR load steps, Gauss-
Lobato points).

The material characteristics that were used for the concrete material model were: E; = 30 GPa
and f; = 30 MPa, (Young modulus and compressive strength, respectively). The corresponding
material characteristics of the reinforcing steel bars were: Es = 210 GPa, E; = 2.1 GPa, f, = 500
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MPa and he = 30 mm, where E, E;, fy and h. are the Young modulus, the tangent modulus, the
yielding stress and the concrete cover width, respectively.

[ S

Stirmups @ 8mm/ 10cm

Section Dimensions in mm

FIGURE 2.18 CANTILEVER RC BEAM. GEOMETRIC AND REINFORCEMENT DETAILS.

A
123456

Reinforcement Bars
Unconfined Area (Z;, )

= Confined Area (Z,, Kf)
Reinforcement Bars

he

o he he "
FIGURE 2.20 DISCRETIZATION OF THE RECTANGULAR RC SECTION WITH FIBERS.
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The discretization of the rectangular section with fibers is performed by dividing the section
into two main regions. The first region is the unconfined area corresponding to the concrete
cover width as it can be seen in Fig. 2.20 and the second region is the confined concrete area,
which is discretized by using a finer grid as illustrated in Fig. 2.20. When the fiber
discretization procedure is performed, the appropriate material model is assigned to each fiber
and the geometric characteristics are properly stored, providing the required information during
the analysis procedure.

From the obtained results it can be seen that the NBCFB element of the ReConAn code
manages to solve 843 load steps in 1 min with a total tip displacement of 37 cm. On the other
hand, OpenSees ends its solution procedure at load step 733 as it was unable to converge
beyond the load level of 88 kN. The numerical robustness of the developed code is attributed to
the same reasons previously discussed and the improved code architectural structure which will
be described at a later stage in this Dissertation . The incorporation of advanced numerical
techniques, equipped ReConAn with the ability to reduce the necessary computational effort
and converge faster in predicting the nonlinear response with accuracy and computational
efficiency. Concerning the computational time, this can be approximately estimated and is in
favor of ReConAn.

120

100 | / y |
| L=}

80 g
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OpenSees 10 elements 60sec for 733steps
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= ==ReConAn 1 element 10sec for 847steps

’, | | === ReConAn 10 elements| 60sec for 843steps
]

nl

]

20

f

o !
,0
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FIGURE 2.21 CANTILEVER RC BEAM. P-6 CURVE.

0

To conclude with this numerical test and illustrate the robustness of the NBCFB element, the
same problem was solved with only a single NBCFB element. The P-o curve can be seen in
Fig. 2.21 and it is clear that the reproduced numerical results were the same with those obtained
when discretizing the cantilever beam with 10 NBCFB elements. This shows that as a result of
the element’s formulation, it is feasible to discretize structural members with one element per
structural member and reduce significantly the computational effort without losing the required
accuracy.
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FIGURE 2.22 CANTILEVER RC BEAM. DEFORMED SHAPE AT THE FINAL NR LOAD STEP. DISPLACEMENT

CONTOUR.
As it was mentioned in the previous section, an extended parametric investigation on the
behavior of the steel and RC NBCFB element can be found in the Diploma and M.Sc. Theses
conducted by Vasilomichelaki®®*. One of the most interesting result of this work, was
obtained for a similar cantilever RC beam modeled with 10 elements, 10 Gauss-Lobato per
element, 1000 fibers per control section and the collapse load was divided into 5 and 1000 load
increments, respectively. For both load increment scenarios ReConAn managed to predict the
maximum capacity load (166 kN) without any numerical instabilities. Furthermore, the
corresponding CPU times illustrate the computational superiority of the developed code (Table
2.1).

180 -
)
160 - — ReConAn_V1.0-3NBCFBelements-
—- - 10sections/member-1000fibers/1000NL-Steps
140 =1 Lol
2 =
= 120 - / OpenSees-3NBCFBelements-10sections/member-
3 // 1000fibers-1000NL-Steps
2 1004 ¢
2 g0 . = =e= = ReConAn_V1.0-3NBCFBelements-
S 10sections/member-1000fibers-5NL-Steps
°
60 -
e o «® ¢ » OpenSees-3NBCFBelements-10sections/member-
40 - : 1000fibers-5NL-Steps
20 A /
0 T T T T T 1
0.00 0.10 0.20 0.30 0.40 0.50

Displacement (m)

FIGURE 2.23 RC CANTILEVER BEAM®], P-§ CURVES OBTAINED BY RECONAN AND OPENSEES FOR 5 AND
1000 LOAD STEPS.
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Load steps Required CPU time
Program
analyzed (sec)
ReConAn 1000 23.8
Opensees 862 23.9

TABLE 2.1 RC CANTILEVER BEAM 3. CPU TIME FOR THE NONLINEAR ANALYSIS PROCEDURE.

2.6.3 RCFrame

In continuation to the above parametric investigation, a single-span RC frame is considered
with the geometrical features illustrated in Fig. 2.24. It is assumed that the structural members
of the frame are reinforced identically and the corresponding material properties are provided in
Table 2.2. As can be seen from Fig. 2.24, the sections have the same rectangular geometry
(20x40 cm) with 5&174 longitudinal rebar on the upper and lower sectional regions (concrete
cover 3 cm). The RC frame span is 4.60 m, its height measures 2.80 m and is considered to be
fixed on its base.

. = &l
-t
=
Beam
o
I ramm—— i
@ C &
o - Stirrups S
= 5 ®10mm/5cm 5
o =4 O
O 5¢14
N
20cm
0,40 4,60 0,40
FIGURE 2.24 RC FRAME. GEOMETRIC CHARACTERISTICS AND REINFORCING DETAILS.
- Compressive Young Hardening
Material YIEI%%%:; ress Strength Modulus Eo | Parameter
(MPa) (GPa) b=E;/Eg
Concrete - 35 28 -
Steel 500 - 210 0.0085

TABLE 2.2 RC FRAME. MATERIAL DETAILS.

Two FE models were created in order to analyze this RC frame, by discretizing each structural
member with 1 and 5 NBCFB elements, respectively. The first FE model can be seen in Fig.
2.25, where 4 Gauss-Lobato points were applied for each element and their corresponding
control-sections were discretized with 400 fibers. A horizontal load was applied on the upper
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left node of the frame and the number of load increments was set to 25. The NR energy
tolerance criterion was set to 10 and the corresponding tolerance of the state determination
procedure was set to 10™%°,
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FIGURE 2.25 RC FRAME. FE MODEL WHEN DISCRETIZING WITH 1 ELEMENT PER STRUCTURAL MEMBER.
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FIGURE 2.26 RC FRAME. P-6 CURVE FOR THE CASE OF DISCRETIZING WITH 1 ELEMENT PER STRUCTURAL
MEMBER.

Fig. 2.26 illustrates the base shear force vs. horizontal displacement of the upper left node for
the first FE model, where it can be seen that the two curves are identical when the frame is in
the elastic region and in the first inelastic branch of the inelastic region. When the total
horizontal load reaches a value of 144 kN the reinforcement of the beam yields and when the
total horizontal load reaches 176 kN the reinforcement of the columns also yields deteriorating
even more the stiffness of the RC frame (second reduction of the slope of the P-6 curve). The
second characteristic point is also the point where OpenSees fails to converge on elemental
level due to high nonlinearities. On the other hand ReConAn manages to continue with the
nonlinear steps predicting the inelastic branch of the P-0 curve without any significant
convergence problems. Once again, the previous conclusions are confirmed through this test
example illustrating the computational robustness of the developed FEA code.
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As it was presented previously, the natural mode method leads to a 6x6 decreased elemental
stiffness matrix (natural matrix) which is used during the nonlinear state determination
procedure. This has the advantage of reducing the numerical error induced due to the precision
of the numerical computations regarding the natural stiffness matrix during the state
determination procedure and makes the process more stable. Additionally, the NBCFB element
is shear lock free and computations during the state determination stage are not affected by this
numerical phenomenon.

The second FE model is produced by discretizing each structural member with 5 beam
elements, considering 4 Gauss-Lobato points for each finite element and 400 fibers per control-
section (Fig. 2.27).
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FIGURE 2.27 RC FRAME. FE MODEL WHEN DISCRETIZING WITH 5 ELEMENTS PER STRUCTURAL MEMBER.
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FIGURE 2.28 RC FRAME. P-6 CURVE FOR THE CASE OF DISCRETIZING WITH 5 ELEMENTS PER
STRUCTURAL MEMBER.
From Fig 2.28 it can be seen that the two curves are the same when the reinforcement response
is at the elastic range. After yielding occurs and the nonlinearities become excessive (point
where the second reduction of the slope Fig. 2.28), OpenSees fails to converge terminating the
analysis procedure prematurely. Despite the large nonlinearities ReConAn continues the
numerical procedure managing to predict the entire inelastic branch without any numerical

Page 74 of 272



Chapter 2 Athens, Jan 2011

instabilities. The deformed shapes of the frame are depicted in Fig. 2.29. The ZY view
illustrates that the FE model manages to predict the in-plane deformation without producing
out-of-plane displacements.
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FIGURE 2.29 RC FRAME. DEFORMED SHAPES. XY AND YZ VIEWS.

2.6.4 High Rise RC Building

A full scale 37-storey RC building with I beam shear braces was designed (Figs. 2.30 and 2.31)
specifically for this numerical test in order to illustrate the computational capabilities of the
proposed FEA code and how the earthquake resistant design of this structure can be improved.

%%?g;?f Concrete SFeeI Steegr\](é)ung St_eel Number of
Structural Levels X Young Yield . Failure | Gauss-Lobato
Member Type | applied Tensile Modulus | Stress Hardening Strain Points and
Strength (GPa) | (MPa) Modulus (m/m) | Fibers/Section
(MPa) (GPa)
Column100x100 - 60.0/3.0 50.0 555.0 210.0 /2.1 0.10 5/ 400
Column75x75 1-19 60.0/3.0 50.0 555.0 210.0 /2.1 0.10 5/300
Column60x60 19-37 60.0/3.0 50.0 555.0 210.0 /2.1 0.10 5/300
Beam40x80 1-30 60.0/3.0 50.0 555.0 210.0/2.1 0.10 5/200
Beam35/70 31-37 60.0/3.0 50.0 555.0 210.0/2.1 0.10 5/200
IPE6OO - - - 355.0 210.0/2.1 0.10 5/200
TABLE 2.3 RC HIGH RISE BUILDING. MATERIAL CHARACTERISTICS AND FIBER DATA FOR INITIAL

CARCASS.

Fig. 2.30 illustrates the initial plan views of the building carcass and as it can be seen its base
has a total area of 1298.88 m? (45.40x28.60 m). Each storey has a height of 3.50 m and the total
height of the building is 129.50 m (37-stories x 3.50 m). At the 15™ and 30" floors, a change in
geometry occurs as is depicted in Fig. 2.31 where inclined steel | beam-column elements are
placed (IPE600) for structural reasons in order to strengthen the transition areas. The same steel
sections were used for the shear braces located at the sides and at the center of the building
(Fig. 2.31). In Table 2.3 material characteristics and fiber data for each section used in the FE
models can be found.
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FIGURE 2.31 RC HIGH RISE BUILDING. INITIAL FEM MODEL (A) FRONT AND (B) 3D VIEW.
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As it was  mentioned
previously, NBCFB element  Sca,
has the advantage of using one
element per structural member
without losing the desired
accuracy of the nonlinear
analysis decreasing this way
the total dof of the FE model.
By applying this discretization
rule (one finite element per S
structural member) a FE model

for this building is created

which  consists of 5,855

NBCFB elements and 1,264

nodes. It is also assumed that I'y I'c I'p

each slab acts as a diaphragm FIGURE 2.32 SHAPE OF THE ELASTIC RESPONSE SPECTRUM (ECS8).
which is modeled with rigid

elements. Regarding the boundary conditions, all nodes that are located on the base of the
structure are considered to be fixed (Fig. 2.31) and the horizontal loads are computed by using
the EC8 earthquake design code (Design Spectrum).

E\J

n

n
—

ot 2.157
P ear =M S, (T)

base shear

25 Tc-Ty 2.158

Se(M)=7,-8,-S- P , for T, <T <4s

where M and Sy(T) are the effective mass of the structure and the response spectrum
acceleration, respectively, while y, is the importance building factor, T is the vibration period, a4
is the design ground acceleration, S is the soil factor, q is the behavior factor, T¢ is the upper
limit of the period of the constant spectral acceleration branch and Tp is the value defining the
beginning of the constant acceleration response range of the spectrum (Fig. 2.32) where the
fundamental period of this structure is located.

According to ECS8, the distribution of the base shear force is computed as follows

i m;z;

Pr:orizontaI:Pbt;stslshear n 2.159
2 mz,
=1

where m;, m; are the storey masses computed and z;, z; are the heights of the masses above the

level of application of the seismic action (foundation or top of a rigid basement). The

assumptions made regarding the several parameters of Eqgs. 2.157 and 2.158 are given in Table

2.4,

Given that the computed fundamental period of the structure in the load direction (x axis) is
3.25 sec, the normalized horizontal load distribution was computed according to EC8 and is
given in Table 2.5. We must point out here that the dead loads caused from the structure’s self-
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weight of the beams and columns were also accounted for during the base shear force
computations of the building and were applied in the FE model by activating the body load
command. The vertical load that is depicted at the end of Table 2.5 was distributed to each

storey nodes according to the structural mass distribution.

40cm

Parameters of EC8 Value
Ground Type A
Tc 0.4 sec
To 2.0 sec
S 1
q 1
Acceleration ag 0.24g
Importance Class v
Importance Factor y; 1.4

TABLE 2.4 RC HIGH RISE BUILDING. EC8 PARAMETERS.

Four different analyses were performed using 50, 20, 10 and 6 load steps, respectively. The P-6
curves can be seen in Fig. 2.34, the deformed shape prior to failure for the 10 NR load steps
case, in Fig. 2.35 and Table 2.6 contains the computational times required for the solution of the
four analysis cases. Regarding the size of this numerical problem, the required skyline storage
for the stiffness matrix was 1,888,662 double precision variables and the required RAM for the
solution procedure was approximately 800 Mb. Since the required computational times are
affordable (Table 2.6), it is clear that the limitation when solving this kind of problems with
ReConAn, becomes the 2 Gb maximum size (32bit system) for allocating the stiffness matrix of
the structure, which is always the largest array of the numerical problem. This limitation can be
alleviated by using a 64bit system or multicore computing environment.

7Y22

] uJ:‘.\’uu

5Y18 ]

o
o FF

80cm

Beam40x80
14Y22+10Y18
Stir. Y10/10

5Y18

o O

3Y16

70cm

Beam35x70
10Y22+46Y16
Stir. Y10/10

>3Y16

Pl
—

75cm

1%

oo
o
[ +#:

36Y25
Stir. 3Y1010

TScm

[*]
a]#]
##]

[+

60cm

5| Column60x60
32Y25

[#]2)
14!
no

o o
Stir. Y12/5
E| |mm oo
o
1 |po og

Column75x75

100cm

100em

[+14

oo

Qu
oo

+u)
oo

[£+

+5]

oQ

o0

og

2= |

Column100x100
46Y25
Stir. 4Y10/10

FIGURE 2.33 RC HIGH RISE BUILDING. RC SECTIONS REINFORCEMENT DETAILS.
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Storey Normalized Horizontal Storey Normalized Horizontal

Load Load
1 0.0667 20 0.4110
2 0.1333 21 0.4315
3 0.2000 22 0.4521
4 0.2667 23 0.4726
5 0.3333 24 0.4931
6 0.4000 25 0.5137
7 0.4667 26 0.5342
8 0.5333 27 0.5548
9 0.6000 28 0.5753
10 0.6667 29 0.5959
11 0.7333 30 0.6164
12 0.8000 31 0.3268
13 0.8667 32 0.3373
14 0.9333 33 0.3479
15 1.0000 34 0.3584
16 0.3288 35 0.3690
17 0.3493 36 0.3795
18 0.3699 37 0.3900
19 0.3904

Total Horizontal Load 130.35 MN

Total Vertical Load 208.63 MN

TABLE 2.5 RC HIGH RISE BUILDING. LOAD DISTRIBUTION ACCORDING TO EC8.
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FIGURE 2.34 RC HIGH RISE BUILDING. P-0 CURVES OF HIGH RISE RC BUILDING.

As it can be seen from the P-J curves in Fig. 2.34, the numerical procedure of the solution
terminates for a horizontal load of 85 MN (55 cm top floor horizontal displacement) which is
the ultimate limit state of the structure. The failure mechanism that resulted from the loading
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history was due to rebar failure at the base of the structure (columns and beams) and therefore
the numerical procedure could not continue due to zero diagonal values of the global stiffness
matrix of the structure. When a NBCFB element section looses completely its bearing strength,
ReConAn sets the natural stiffness matrix of that element to zero and proceeds with the
computations. Thus, the solution procedure continues and a redistribution of the internal forces
is accomplished. The solution procedure terminates when the global stiffness matrix of the
structure becomes singular thus it is not possible to solve the system of equations.
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FIGURE 2.35 RC HIGH RISE BUILDING. INITIAL AND DEFORMED SHAPES PRIOR TO FAILURE — INITIAL
CARCASS.
Fig. 2.34 shows that the initial design of the carcass is unable to bear the seismic load computed
according to EC8 (130.35 MN) failing prematurely for a total base shear load of 85 MN.
Therefore, a redesign was implemented in order to reinforce the carcass of the building by
assigning to the columns, which had the section type Column 75x75 cm, a larger section type
(Column100x100 cm as shown in Fig. 2.33). Correspondingly the section type Column75x75
cm was assigned to the columns that were initially discretized with the section type Column
60x60 cm. Following the strengthening of the members, the four analyses were performed and
the new predicted P-o curves can be seen in Fig. 2.36. As it was expected, the predicted P-o
curves illustrate an increased structural capacity with a mean ultimate base shear force of 135

MN.
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Newton-Raphson Computational Time
Load Steps (minutes)
50 45
20 25
10 15
6 8
TABLE 2.6 RC HIGH RISE BUILDING. COMPUTATIONAL TIMES FOR DIFFERENT LOAD INCREMENTS.
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FIGURE 2.36 RC HIGH RISE BUILDING. P-J CURVES FOR THE REDESIGNED CARCASS.
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FIGURE 2.37 RC HIGH RISE BUILDING. DEFORMED SHAPE PRIOR TO FAILURE.
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An intention grabbing observation can be depicted in Fig. 2.37, where the initial and deformed
shapes of the structure are shown. As it can be seen, the deformed shape maintains its initial
geometry regarding the out-of-plane deformations, thus no abnormal distortion of the mesh can
be observed. Since the loading was applied horizontally along the positive X direction and
given the structure’s symmetry about the Z and Y axes, then no rotations of the structure should
be produced which would have been translated through abnormal deformation of the lines when
viewing the deformed shape in the XZ view (Fig. 2.37). Even though the predicted
deformations are scaled by X20 in Fig. 2.37, the deformed shapes of the lines retain their initial
thickness illustrating the numerical robustness of the developed FEA code.

Before moving to the next Chapter, it is important to note at this time, that this numerical test
was basically created in order to illustrate the computational robustness and efficiency of the
developed FEA code and in no case represents a complete design procedure for this kind of
structures, where the P-¢ effect, wind loading, structure-soil interaction, time history analysis
and other response features should be considered during the design process. Nevertheless, it is
obvious that ReConAn is able to analyze large-scale RC and steel structures at an affordable
computational time which is a good indicator that it can equally well be applied to the design of
this type of structures under earthquake loading.

Page 82 of 272



Chapter 3 Athens, Jan 2011

Chapter 3 3D Modeling of Concrete Materials
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3.1 Brief Overview of the Material

It is indisputable that concrete has been established as the most significant structural material of
the last century. Concrete material has been used in many areas of civil engineering structures,
especially for the construction of residential buildings, bridges, offshore platforms, containment
structures, arc dams, nuclear power plants, high-rise buildings (Figs. 3.1), irrigation systems
etc.

MARCH 2008 Projected

height:
800m

MAY 2007 |

509m
452m
442m

NOV 2008 381m

235m

Burj Dubai Taipei Petronas Sears Empire Canag
{Dubai) 101 Towers Tower e Wha:
(Taipel)  (Kuala Lumpur) (Chicago) {New York) {London)

A B
FIGURE 3.1 BURJ KHALlF(A. )(A) CONSTRUCTION PROGRESS AND (B) COMFfAzZISON WITH OTHER
PROJECTS.

Being a heterogeneous material, concrete consists of hardened cement paste in which
aggregates are embedded making the numerical prediction of its behavior complex. In addition
to that, the nonlinear stress-strain behavior and anisotropic elastic degradation during loading
makes this task even more complex. Nevertheless, material behavior has been one of the most
important parameters for modeling RC structures predicting the overall response. It is clear that,
idealizing this behavior into an elasto-plastic material model is not a proper description of the
material’s behavior that turns to be a key factor for the successful prediction of the nonlinear
behavior of RC structures.

The main “nonlinear” material characteristics of concrete behavior are:

i.  Elastic degradation.
ii.  Stress-strain constitutive relation.
iili.  Micro- and macro-cracking.
iv.  Fracture mechanisms.
v.  Ultimate strength and behavior at failure.
vi.  Shrinkage and Creep.
vii.  Rate of loading.

Taking into consideration these characteristics, an extensive research work has been made in
recent years in the area of 3D constitutive modeling, aiming at the formulation of plasticity and
crack models that will predict objectively the response of the material. Despite the fact that
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several material models were presented, none of them managed to combine computational
robustness and efficiency.

In this Chapter, the concrete material behavior will be discussed, illustrating the main
parameters that affect its mechanical characteristics. A discussion on whether concrete should
be modeled with the use of a brittle or a softening branch model will be performed and the
proposed material model adopted will be presented. In the final section of this Chapter a
numerical investigation will be presented regarding the modeling of cylindrical concrete
specimens under uniaxial loading.

3.2 Mechanical Parameters of Concrete - Physical Interpretation and Idealization

Several effects which alter the mechanical behavior of concrete, as observed in experiments, are
presented in this section. The performance of concrete is dependent on numerous factors which
will be discussed thoroughly.

3.2.1 Experimental Data and Test Methods

Over the past decades, numerous experimental results were presented in the literature, for the
prediction of the behavior of plain concrete, producing a considerable data-base of experimental
data. Studying these stress-strain curves, the main conclusion that has been reached is that none
of them has the same quantitative or qualitative features especially when referring to the
inelastic braches of these curves. Taking into consideration that most material models proposed
in the literature are calibrated (and their parameters defined) through experimental data, a
significant question arises: “Which material model formulation will provide realistic
approximation of the behavior of concrete when combined with the FEM?” It is the author’s
belief that the answer to this question lies in the numerical aspect of the problem, meaning that
the proper selection of the corresponding material parameters accounted for in the numerical
model, will postulate on the objectivity of its results. In search of an objective modeling method
of RC structures, the proper concrete material model should be selected and therefore, a
discussion on the corresponding model selected in this work is analyzed.

It is well known that conducting and obtaining triaxial material data for the realistic modeling
of concrete through experimental setups, is rather expensive and difficult to attain. This
conclusion is justified through the scatter of available experimental data which proves that
concrete material properties are not easy to obtain, especially when referring to its inelastic
range. Numerically speaking, an inelastic branch is ideal for establishing numerical stability and
robustness when high nonlinearities occur (Fig. 2.12). On the other hand, when considering the
actual concrete behavior in simple compressive experiments, it is evident that this inelastic
softening branch is clearly an outcome of the interaction between the loading system and the
concrete specimen.

An extensive discussion on strength, constitutive response and interaction between loading
mechanisms and concrete specimens can be found in several articles®®8. More specifically,
Gerstle et al.® % presented the differences among test methods which vary depending on the
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loading system type used (Fig. 3.2). The main characteristic variables of the different loading
systems are as follows:

I.  Degree of normal boundary constraint in the direction of the applied load.
ii.  Degree of lateral boundary constraint on the plane of the boundary.
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FIGURE 3.2 MULTIAXIAL TEST METHODS %1,

In Fig. 3.2, different types of loading systems for applying compression to concrete specimens
are shown. As discussed in Gerstle et al.®* ! devices with rigid steel plates are most common
and permit the application of uniform normal displacements in the direction of loading. These
types of devices create normal stresses which are non-uniformly distributed because of the
friction between the concrete and the steel plates. Alternatively, a fluid cushion assures uniform
normal stress free of lateral displacements thus the shear stress on the boundary conditions is
zero. Consequently, the behavior of the other loading system types usually ranges between the
behaviors of these two devices. Gerstle et al.®* ®! presented their results which showed a large
scatter which can be depicted from Fig. 3.3.

In resolving this problem and giving an answer to the question whether concrete has an inelastic
branch and in what ways the loading mechanisms affect the specimen’s behavior, van Mier et
al.’® (1997) presented the results of an international experimental program where 10 different

Page 86 of 272



Chapter 3 Athens, Jan 2011

research labs participated in order to study the behavior of concrete during uniaxial
compression. One of the most characteristic results of this research program is given in Fig. 3.4,
which illustrates different stress-strain curves for the same specimens that were tested by using
different loading mechanisms. Through this work, Zisopoulos et al.*”! showed that when the
shear stresses due to friction between the loading device and the concrete specimen tend to
zero, then the concrete material behavior is brittle thus the inelastic branch becomes vertical
(Fig. 3.4). Similar results were obtained by Schickert’s®®® (1981) research where the
slenderness ratio for two different loading systems was investigated (Fig. 3.5).
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gl94.95]

Normalised stress {s/,)

Steel platens

— — — Brush platens o2
------ MGA pads
— - — - Rubber platens

-15 14 13 -12 11 10 9 8 7 6 5 -4 -3 -2 -1 o 1 2 3
Normalised strain (2 /= at a,)

FIGURE 3.4 STRESS-STRAIN CURVES FOR DIFFERENT TYPES OF LOADING TYPES®’.
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FIGURE 3.5 TEST DEVICES WITH (A) HIGH AND (B) NEGLIGIBLE FRIC'I('II?gN ON THE LOADING DEVICE-
SPECIMEN INTERFACEL®!.
Extensive analysis and discussions on the effects of loading devices influencing the material
behavior can be found also in Kotsovos and Pavlovic® (1995), Wesche®® (1996) and Griibl et
al.’%! (2001). In continuations to the description of the concrete material behavior, the findings
in Kotsovos and Newman™%! will be discussed in section 3.3.2 and the numerically
modified Kotsovos and Pavlovic concrete material model will be presented in section 3.3.5.

3.2.2 Size and Shape of Specimen

An important issue when testing the strength of concrete is the size of the specimen, which
affects the ultimate strength. The smaller a specimen is, it appears to develop greater strength
than larger specimens (Fig. 3.6) of the same age (usually 28 days). Different reasons may cause
this effect where one of them is the core moisture obtained in relation to the size at 28 days, as
it was described in the Schickert®® (1981) and Wesche!®®! (1996) research works. The influence
of moist core may decrease when the specimen becomes older and moreover, the initial stresses
are larger for larger specimen.
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FIGURE 3.6 DEPENDENCE OF THE COMPRESSIVE STRENGTH ON THE SPECIMEN SIZEP!.

A second reason for obtaining higher ultimate strengths in uniaxial compression tests when
specimens are smaller, is related to the triaxial stress field that is created from the loading
device-concrete specimen interaction thus an additional strength is induced to the specimen due
to triaxial stress state phenomena. This is the main reason why the cube specimens appear to
have larger ultimate strength than the corresponding cylindrical ones. Fig. 3.7a illustrates the
schematic representation of the effect of the boundary friction restraint t on the state of stress
within cylindrical specimens under uniaxial compression o,*°*, a figure which also shows the
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triaxial stress state created by the loading device-specimen interaction at the ends of the
specimen. Moreover, Fig. 3.7b shows the stress paths induced in the central and at the end
zones of cylinders under increasing uniaxial compression as presented by Kotsovos™®*!.
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FIGURE 3.7 CYLINDERS UNDER UNIAXIAL COMPRESSION o,'*!. SCHEMATIC REPRESENTATION OF THE
(A) EFFECT BOUNDARY FRICTIONAL RESTRAINT (z) ON THE STATE STRESS WITHIN AND (B) STRESS PATHS
INDUCED IN THE CENTRAL AND END ZONES OF THE CYLINDERS.

0 Ty Tt 3

FIGURE 3.8 CYLINDERS UNDER UNIAXIAL COMPRESSION g,'*". DEFORMED SHAPES AND
CORRESPONDING CRACK PATTERNS
In Fig. 3.8, the deformed shapes and corresponding crack patterns of a cylindrical specimen
under uniaxial compression are illustrated. It can be seen that the end zones of the cylindrical
specimen at a load level close to the maximum load-carrying capacity of the specimen, are
inclined due to the restrain of the boundary conditions. If the height of the cylindrical specimen
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is decreased, then the central zone of the specimen will be diminished and the stress state within
the specimen will be governed from triaxial phenomena overestimating the ultimate strength of
concrete. This is a third size related effect which plays a significant role on the mechanical
behavior of concrete specimens, thus it is evident that when a cubic specimen is tested the
compressive strength is governed by triaxial state phenomena.

3.2.3 Concrete in Tension

The tensile behavior of concrete was studied extensively by several researchers in an attempt to
create an objective formulation for the constitutive tensile behavior of concrete. In CEB
19961%! it is assumed that tensile stress can be transferred even after the crack initiation.
However, this phenomenon is attributed to the stiff experimental setup® *°®. Bazant and
Celodin™® stated that the inelastic branch in tension is just a numerical manifestation in order
to induce stability when tensile failure occurs.

As it can be seen in Figs. 3.9, the tensile behavior is linear up to about two thirds of the tensile
strength and near the ultimate tensile strength a nonlinear behavior is observed. The inelastic
softening branch represents the remaining tensile strength after cracking!°"-%°!,
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w=Al-el

A B
FIGURE 3.9 TENSILE BEHAVIO(R ZDF CONCRETE BY (A) DuBA™® AND (B) COTTI(ER)EL AND MAI1%],
Taking into consideration the extensive experimental work conducted for the investigation of
the fragile behavior of concrete, it is the author’s belief that a simple linear formulation, which
has a vertical softening branch, is the most realistic numerical model for the description of the
tensile behavior of concrete. Despite the fact that near the maximum tensile failure stress f; the
behavior is inelastic, the linearization of the branch is acceptable given the magnitude of the
corresponding ultimate tensile stress, which is assumed approximately equal to 5% of the
compressive strength. Therefore, the error induced by making such an assumption is negligible.

3.2.4 Shrinkage and Creep

3.2.4.1 Shrinkage

Shrinkage of concrete material is the time-dependent volume change of concrete without any
external loading. The shrinkage deformations can be separated into four different components:
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1. Plastic shrinkage, which is also known as capillary shrinkage and occurs when water is
lost from concrete while it is still in its plastic state.

2. Carbonation shrinkage, which is caused by the reaction of hydrated cement paste with
carbon dioxide in the air when moisture is present. Carbonation of shrinkage is limited
to the outer zones thus its contribution is not significant in most cases.

3. Drying shrinkage which is caused by the water reduction in concrete to the level of
moisture that the surrounding air contains. The rate of drying shrinkage is dependent on
the member size™® since small sections lose moisture at much higher rate than thick
sections. Although a thick section may reach the final shrinkage value only after a
considerable time, the final value of drying shrinkage is considered independent of
member size. Fig. 3.10 shows different stages of a section cured at 100% moisture
content and then exposed to 50% moisture content in the surrounding environment.

| r—— I
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RH=50% : [ |
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1

FIGURE 3.10 MOISTURE, STRAIN AND STRESS DISTRIBUTION ATTRIBUTED TO DRYING SHRINKAGE™?],

4. Autogenous shrinkage, which is also known as self-desiccation shrinkage or chemical
shrinkage. This type of shrinkage is associated with the continual hydration of cement
where the volume of the hardened cement paste is less than the volume of water and the
volume of cement. Member size and the moisture content in the surrounding
environment do not affect autogenous shrinkage, which is small compared to drying
shrinkage for normal strength concrete. However, the phenomenon of shrinkage is
governed from this component when dealing with high-strength concrete (Fig. 3.11).
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FIGURE 3.11 AUTOGENOUS AND DRYING SHRINKAGE COMPONENTS!MY,

3.2.4.1 Creep

Creep is the physical phenomenon for the time-dependent increase of strain at constant stress
and it is considered to be directly related to the stress state and temperature of concrete. The
chemical activity which occurs during the creep phenomenon is that of the re-arrangement of
water particles in consequence of internal stresses and temperature deviations, thus the creep
behavior is mainly governed by the consistency of the cement paste. Strains due to creep also

Page 91 of 272



Chapter 3 Athens, Jan 2011

increase if the ratio of cement paste is high compared to the aggregates or if the corresponding
stiffness of the aggregate is relatively small. In addition to that, a large water/cement ratio will
increase significantly the creep strains.

The total creep strains & can be separated into different components depending on the
phenomenological properties considered by researchers. One way is to split creep into a
reversible component that may be recovered when unloading occurs and into an irreversible
component as shown in Fig. 3.12, (Griibl et al.*%%). The reversible component is referred to as
delayed elastic strain ecq and the irreversible component as flow &t

Fig. 3.12 assumes that for a constant internal stress state and temperature around a concrete
specimen, the rate of strains attributed to creep, decreases geometrically converging to a steady
state which is constant (Ross et al.**?, England™*®, Browne™*, Lykidis™®), Griibl et al.'*%).

A second way to separate the creep strains into components is to assume that creep has a short-
time and a long-time component. Short-time creep is explained by stress-induced redistribution
of water and long-time creep is caused by displacements of particles in the hardened cement
paste, (Wittmannt*e).

Given that in this work, we are going to study RC structures under static loadings, the
phenomenon of creep may affect, in some cases, the accuracy of the resulting displacements,
since this phenomenon is not accounted for in the proposed modeling method.
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FIGURE 3.12 CREEP STRAIN COMPONENT DEFINITIONS!%,

3.2.5 Rate of Loading

Another significant effect that should be taken into consideration when modeling RC structures
is the rate of loading which affects the material behavior. Mahin et al.**"! (1972) conducted an
experimental research on RC specimens where it was found that the effect of the rate of loading
on strains is relatively small (0.001 and 0.25 strain/sec for high seismic excitations). In addition
to that, when many loading cycles are applied, the behavior is similar to that of static loading
and the phenomenon does not play a significant role*'"),

Lowes**®! (1999) presents a literature review of experimental tests conducted in order to study
if the rate of loading affects the response of strain rate in concrete. As it was presented through
Fig. 3.13, the compressive strength of concrete obtained with dynamically imposed loads, does
not deviate from the corresponding compressive strength when the loading is performed
statically. Therefore, when analyzing concrete material it is acceptable to assume that the
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response can be modeled by using material characteristics obtained through statically imposed
loads.
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FIGURE 3.13 INFLUENCE OF CONCRETE STRENGTH DUE TO STRAIN RATE!®],

3.3 Constitutive Relations of Concrete

3.3.1 Review

As it was presented in Chapter 1, concrete was initially modeled with the use of 1D constitutive
relations, which were described through simple strain-stress curves. These constitutive relations
for concrete were unable to capture the response of shear dominated structural members even
when the new code provisions were implemented during the design process (Kotsovos and
Pavlovic™'®l). Researchers tried to improve the constitutive relations of concrete by combining
them with advanced beam elements formulations in order to capture the nonlinear response of
RC structures without any significant success. Even in cases where shear strains were
accounted for, the modeling of three-dimensional geometries (3D RC Joints, Shear Walls,
Slabs, etc.) with beam elements is inadequate (Fig. 3.14).

FIGURE 3.14 LEFT: SHEAR WALL FAILURE (VINA DEL MAR) CHILE, FEB 2010. RIGHT: TYPICAL JOINT
FAILURE.

According to the above statements, it is obvious that for such models, a three-dimensional
constitutive relation for the concrete material behavior is necessary, combined with the use of
solid finite elements that discretize the exact geometry of the structure. For accomplishing such
a task, a three-dimensional constitutive law has to be implemented according to the literature
findings on concrete material behavior. This material law has to incorporate the basic concrete
material characteristics thus being numerically robust and computationally efficient.
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As it was mentioned previously, the experimental data on concrete behavior used for the
development of constitutive laws are obtained from tests on specimens such as cylinders,
prisms, cubes etc. Such specimens are subjected to various load combinations, usually applied
through rigid steel plates (pure compression or triaxial test). The obtained results are expressed
in the form of stress-strain curves which consist of a branch of positive stiffness, gradually
reducing, followed by a strain softening one. After an extensive research work that started at the
carly 80’s (Kotsovos!'®, van Mier™") and confirmed in late 90’s (van Mier et al.’®), it was
found that only strain hardening may describe material behavior under a definable state of
stress. This means that the strain softening branch basically reflects the interaction between
specimens and loading platens (Figs. 3.15), which is affected through the development of
uncontrolled frictional stresses at the faces between the specimen and the loading device.

For proving the above theory through experimental evidence, Kotsovos and Newman!*2%3!
conducted an experimental program, which involved the testing of two different types of
specimens with two different concrete mixes:

1. 250 mm height x 100 mm diameter cylinders with 50 and 29 N/mm?.
2. 100 mm cubes with 60 and 37.7 N/mm”.

The specimens were subjected to varying degrees of frictional restraint across their loaded
surfaces. This was achieved by placing various types of anti-friction media at the specimen-
loading device interface. The antifriction media used were:

a layer of synthetic rubber 0.45 mm thickness,

a MGA pad,

a brush platen,

no anti-friction medium (plain steel plates),

an active restraint induced by Hi-Torque hose clamps.

® 00 oW

During these test experiments, the strength was measured for both cubic and cylindrical
specimens and the complete deformational behavior was recorded within the central zone of the
cylinders. The results can be depicted in Figs. 3.15, where the diversification of the inelastic
branches for each boundary condition type is obvious. The less friction induced on the interface
of the specimen the more vertical softening branches occur, verifying the brittle nature of
concrete material. It is also interesting to note here that the nonlinear behavior of the stresses
depicted in Figs. 3.15 approximately begin between 60-80% of the ultimate strength!®!.

In his Ph.D. thesis, Hartl'® (2000) used these experimental evidence and is also based on the
research study conducted by Newman*??! (1973). Hartl'® assumed that concrete behaved
linearly elastic and isotropic up to failure which was described by the Ottosen™?? (1977)
surface. In addition to that, Hartl referred to a comment made by Gerstle et al.®¥ saying:
“Concrete response to multiaxial stress states at working load level can be considered elastic for
engineering purposes’.
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FIGURE 3.15 STRESS-STRA(JAN) CURVES FOR DIFFERENT BOUNDARY CONDITIO(NBg[mA]. (A) f. =29 N/ mm?
AND (B) f, =50 N/ mm?.
It is indisputable that concrete behaves as an elastic medium up to a certain level, but
consequently a nonlinear branch will always evolve prior to cracking thus with the intention of
predicting accurately the nonlinear response of RC structures a more advanced material law is
required. Nevertheless, linear elastic behavior of concrete materials is used by several software
codes for the analysis and design of concrete structures.

Many papers have been published on plasticity models, smeared crack approach or combination
of these models, specifically implemented on concrete structures (Rashid**®! (1968), Cervenka
and Gerstle™4 (1971), Owen et al.'**! (1983), Bazant and Oh*?®! (1983), De Borst**") (1986),
Simo and Jul*?® (1987), Rotsi**®! (1989), Pramono and Willam!**! (1989), Kotsovos and
Pavlovic® (1995), Etsel** (1992), Feenstra™®? (1993), Feenstra et al.l***! (1998), Menetrey et
al.®*% (1997), Bazant et al.™®! (2000), Bazant and Caner™® 3" (2005), Spiliopoulos and
Lykidis™® (2006), Sato and Naganuma***! (2007), Cervenka et al.**°! (2008)), but a few
researchers stated that their algorithms showed computational accuracy and numerical
robustness. Furthermore, concerning the combination of plasticity with smeared crack models,
none of them succeeded in providing a computationally efficient code even when dealing with
relatively small-scale FE models. This is attributed to the increased demands of the numerical
problem that results from a 3D FE formulation and the numerical instabilities induced from the
smeared crack formulation when cracking occurs.

Since many studies have been conducted on 3D concrete material laws, a brief presentation will
follow of the different types of material formulation that have been proposed in the literature
and following the Kotsovos and Newman[*®*%! experimental findings will be presented.
Moreover, the Kotsovos and Pavlovic® material constitutive model will be presented, together
with the proposed numerical modifications for improving its numerical behavior during the
nonlinear analysis of RC structures.
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FIGURE 3.16 FAILURE PROCESS OCCURRING WHEN CONCRETE IS SUBJECTED TO INCREASED LOADING!™?"
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3.3.1.1 Models Based on Elasticity

In this category five main models are encountered:

1. lIsotropic Linear Elastic
Cauchy Elastic

Hypo Elastic
Variable Moduli

AN N

Hyper Elastic or Green Elastic

The first two types are the simplest to use requiring only a few parameters for their
implementation (usually the Young Modulus E and the Poisson Ratio v). As it was discussed
previously, this type of material models is used extensively, as a result of its simplicity, by most
commercial software for the analysis and design of RC structures.

The Cauchy Elastic Model is usually of the form

g =f(e)

3.1

and its main drawback is the generation of energy under certain loading-unloading cycles,
which is inadmissible since it violates the laws of thermodynamics.
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In Hyper and Hypo Elastic models, the energy can be generated through any load cycle and
thermodynamic laws are always satisfied. Their main difference is that for the Hyper Elastic
model stresses are expressed in terms of a strain-energy density function independent from the
loading path leading to the current state. On the other hand, Hypo Elastic models are described
in terms of increments of stresses and strains. Such models are dependent on the deformation
history and conceptually, such models are capable of accounting for the material anisotropy at
high loads. The main drawback of this model is the complexity of their formulation since their
aim is to predict the nonlinear behavior of concrete at moderately high load levels.

The last model type is the Variable Moduli where the employment of a loading surface is
adopted in order to make a distinction between loading and unloading. Unloading and loading
are performed when the new stress increment gives a stress state within or outside the loading
surface, respectively. Nevertheless, this type of models is not based on solid mechanical
foundations.

3.3.1.2 Models Based on Plasticity

Plasticity models usually rely on the classical plasticity theory assuming that the strains can be
separated into an elastic and a plastic component, according to Eq. 3.2.

— P
de;; = dej; + deg;; 3.2

When the yield criterion is satisfied (von Mises, Mohr-Coulomb, Drucker-Prager, Tresca-
Guest, Huber—Mises—Hencky, Mroz multi-surface plasticity) a decrease of the elastic modulus
is assumed (hardening modulus) resulting to the degradation of stiffness. This formula may be
suitable for steel materials, however for concrete is not suitable since hardening is a
phenomenon that does not occur in concrete materials as it was explained previously. In Figs.
3.17 different yield surfaces can be seen. Lubliner et al.**? (1989) and Lubliner™?! (1990)
suggested that the yield surfaces should be readjusted according to the stress state with multiple
criteria.

o
G2 .} ! \
von Mises Drucker-Prager Tresca-Guest
Gyield
Tresca
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FIGURE 3.17 DIFFERENT YIELD CRITERIA.
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In order to capture the elastic degradation of concrete, the plastic fracturing theory is used
which is an extension of the classical plasticity theory. It accounts for the degradation of the
elastic material modulus with respect to the increase of deformation according to:

6 = C&ff + Cef} 3.3

where C is the elastic constitutive matrix, C denotes the rate of degradation of the elastic
constitutive matrix and &} = &;; — sfj This formulation is more accurate when modeling

concrete materials since it accounts for the elastic degradation of the elastic branch caused by
micro-cracking.

A more complex plasticity-based type of model is called Endochronic (Valanis***! (1971)) and
can be regarded as a more sophisticated type of a visco-plasticity model, which is characterized
by the dependence of the viscosity on the strain rate. Through the endochronic theory the
prediction of material behavior under non-proportional loading is achieved accounting for
pronounced rotations of the principal stresses. Given its complex formulation, there are very
few experimental data existing for such loading paths. Moreover, it is difficult to obtain the
large number of material parameters required through experimental tests.

3.3.1.3 Damage Models

Damage models are based on the thermodynamic law and can model the internal mechanism of
progressive propagation and concentration of micro-cracks in brittle materials like concrete.
The damage of the material is induced through the use of a damage index 0 < d < 1 which
causes the degree of the degradation in the stiffness matrix.

Several studies on damage models can be found in the literature (Bazant and Kim™*®! (1979),
Mazars, J."¢1 (1986), Lemaitre!**”! (1986), Chaboche!**® 4% (1988), Lubliner et al.l**?! (1989),
Lemaitre™® (1996), Meschke et al.® (1998), Ragueneau et al.'®? (2000), Kattan and
Voyiadjist*®® (2002), Cusatis et al.™>* (2008), Benzarti et al.l*** (2009), Yu et al.**®! (2010)).
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FIGURE 3.18 (A) ELASTOPLASTIC MODEL WITH HARDENING, (B) ELASTIC MODEL WITH DAMAGE AND (C)
COMBINATION OF (A) AND (B).

It is evident that damage models are widely used, due to the simplicity of their formulation and
ability of combining them with other methods like elasticity, elastoplasticity or even debonding
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behavior models in order to capture the nonlinear behavior of brittle materials. A schematic
illustration of the resulted model when combining a damage model with the elastoplastic model
with hardening is given in Fig. 3.18.

3.3.1.4 Microplane Models

This type of models, project the strain tensor of a material point to numerous spatially oriented
planes which this point contains. The constitutive relations are formulated for each one of these
planes where the stresses acting on them are obtained. The initial idea behind these models was
presented by Bazant and Gambarova*®! (1984), Bazant and Prat'**® (1988) and in continuation
of the latter the models were extended in Bazant et al.™®> *°! (2000, 2001), Bazant and
Caner™® 137 (2005). In Bazant and Ozbolt*®®! (1990) it was shown that microplane models are
suitable for modeling brittle material in monotonic and cyclic loadings. Fig. 3.19 shows
schematically the coupling of kinematically and statically constrained microplane systems for
hardening and softening responses and the components of strain or stress vectors on microplane
proposed by Bazant and Caner® %71,

These models have also the advantage of being able to account for time-depending material
phenomena. According to CEBM%! 1996 this type of models can predict objectively the
behavior of plain concrete for any type of loading.

t £y Oy
e

FIGURE 3.19 LEFT: COUPLING OF KINEMATICALLY AND STATICALLY CONSTRAINED MICROPLANE
SYSTEMS FOR HARDENING AND SOFTENING RESPONSES. RIGHT: COMPONENTS OF STRAIN OR STRESS
VECTORS ON MICROPLANE™®],

3.3.1.5 Crack Models

All the previously mentioned models have a significant disadvantage when it comes to the
objective and realistic modeling of brittle materials. Since brittle materials do not appear to
have softening branches and for a specific level of loading the ultimate tensile stress is reached,
the opening of cracks occurs initiating a significant redistribution of the internal stresses. In
order to account for cracking and to predict the redistribution of internal stresses and strains, the
use of crack models is necessary. Four main categories can be found in the literature for
modeling the crack phenomena:
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Discrete Crack Models
Smeared Crack Models
Discrete Element Methods
Meshless or Meshfree Methods

Cow>

The first two models are widely used by several researchers with satisfactory results in terms of
accuracy and experimental verification. The other two models are relatively new and appeared
the last two decades illustrating very good characteristics but with many numerical and
computational problems to be solved.

A Drief presentation of these four crack modeling methods will follow and a more extensive

discussion on the smeared crack approach will be presented, since this is the method adopted in
this research work.

3.3.1.5.1 Discrete Crack Models

The main idea behind this type of models is to create the discrete crack occurring within the FE
mesh and separate the nodes between the two adjacent crack faces (Fig. 3.20). This way a
discrete representation of the crack is achieved (Fig. 3.21) and the stiffness of the structure is
regenerated accordingly. This method was used in the first FE analysis conducted by Ngo and
Scordelis™™ (1967), but the method did not become as popular as the smeared crack approach.
This is attributed to the numerous computational issues that arise when crack opening occurs.
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FIGURE 3.21 DISCRETE CRACK MODELS. CRACK PATTERN OF A SINGLE EDGE NOTCHED BEAM™ ",

Several researchers tried to improve this type of methods (Nilson*®? (1968), Grootenboer et
al.l'®®l (1981), Feenstra et al.l*®1 (1991), Rots™® (1991), Xie and Gerstle!*®®! (1995),
Bittencourt and Ingraffea™®” (1995), Riddell et al.™®® (1997), Ruiz et al.** (2001), Galvez et
al.l'’® (2002), Prasad and Krishnamoorthy!*™ (2002), Dias-da-Costal*’? (2009)). Nevertheless,
all numerical tests that are encountered in the literature are strictly limited to simple structural
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member implementations pointing the major disadvantage of this approach when it comes to
multi-member RC structures.

3.3.1.5.2 Smeared Crack Models

The basic idea of smeared crack models is to introduce cracked areas by modifying the stiffness
properties and stresses at relevant integration points. This approach gives the ability of
simulating individual cracks without the need of mesh alterations like in the case of the
discrete-crack approach described in the previous sub-section. As it was mentioned, the first
discrete-crack model appears to have been used by Ngo and Scordelis*®®. The main
disadvantage of the discrete-crack approach is that it requires intricate programming techniques
and even then it is restricted in use since complicated mesh refinements become necessary to
accommodate the propagation of only a few cracks. Then again, the main advantage of the
discrete-crack approach is the ability of modeling the crack’s tip. Even so, the heterogeneous
nature of concrete at such microscopic scale can no longer be ignored, thus this kind of
modeling introduces formidable problems even to the powerful analytical tools afforded by
present-day. This is the main reason why discrete-crack approach cannot yet be used to
simulate and analyze full-scale RC structures.

Other methods were developed in order to model discontinuities like the discrete finite element
method, the particle finite element method, the extended finite element method etc. The basic
problem in implementing these methods is the computational cost due to the necessity of mesh
refinements required when cracks open.

Since material properties are computed and evaluated only at specific points in an element, such
as the integration points or the nodes, the change of material properties due to cracking affects
the contributing region from which these properties are evaluated. Hence smearing the effect of
cracking over a greater region manages to utilize the method with the ability of modeling cracks
without the need of remeshing. In fact, a single crack represents an infinite number of parallel
fissures throughout that part of the element related to an integration point or a node. Therefore,
the essence of smeared modeling is the setting up of cracked areas by modifying the stiffness
matrix and stresses at the relevant Gauss points. In this work, an 8-noded hexahedral element
with 8 Gauss points is used and when a crack is created, it affects only the stiffness properties
of that specific Gauss point, thus one eighth of the element is affected. The smeared crack
method implemented in this work is based on the Rashid™*! (1968) work as described by
Gonzalez-Vidosa et al.*”®! (1991).

The non-linear analysis process considers that the external load is applied incrementally and the
computation of the global equilibrium at each load increment is performed. At each load
increment, the stress-increments at any Gauss point are found from the corresponding stress-
strain increments through the constitutive matrix C.

Ao =C-Ag 3.4

Page 101 of 272



Chapter 3 Athens, Jan 2011
Ao, [2G+u y7i U | [Ae,
Ao, U 2G+u u S Ag,
Ao, | | H 7 2G+u . . . Ag, 35
At,, : : : G . .| |Ayy '
Az, . . . . G .| |Ay,
A, | . . . . G Ay,
where
v-E 2G
=——+————, Lameconstantor u=K-—
A TR 36

Egs. 3.4 and 3.5 refer to an uncracked Gauss point where we assume that the concrete has no
discontinuities. Since the relations are in incremental form, the above material constants are the
tangent ones. They may be evaluated® by differentiation from the secant material constants and
are functions of oo and 7o as they are described in the Kotsovos and Pavlovic!® constitutive
concrete law (section 3.3.3).

A crack occurs when the ultimate deviatoric stress zo, at a Gauss point has been exceeded
(usually in tension or tension-compression combinations) where a plane is formed (crack’s
plane) which is perpendicular to the direction of the maximum tensile stress that existed before
the cracking. This tensile stress is set to zero and transformed into unbalanced forces which are
going to be distributed throughout the surrounding Gauss points.

The relations between stress-strain increments, in local axes, subsequently become such that the
third local axis is perpendicular to the plane of the crack (axis z"), implying zero stress along
this axis (Fig. 3.22). The shear rigidity is G in the uncracked plane and a residual shear rigidity
LG is assumed in the other two planes (Eq. 3.7). The stress-strain incremental relationship takes
the following form:

Ac' | [2G+u U Co . Ag’,
Ao, U 2G+u . . . . Ae',
Ao, . . Co : Ag',
, = * ' 3.7
AT’ . . . G . . Ay'y
AT’ . . .. pG . Ay',
At', ) | . . ... BG] |Ar',

If a tensile state of stress is reached for the second time, then a second crack opens and its plane
is perpendicular to the direction of the new maximum principal tensile stress which together
with the previous plane leaves only stiffness along the intersection of the two planes (Fig. 3.22).
Therefore, the incremental-stresses in terms of the incremental-strains along these Cartesian
axes (x'',y’’, z"") are given by
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Ac”, .26+ .. : . Ae”,

Ao, . . . . . Ag", 28
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2nd Crack——»q
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element
FIGURE 3.22 LOCAL AXES FOR THE CASE OF TWO CRACKS AT A SPECIFIC GAUSS POINT.

Because of the anisotropy induced from the crack openings, the expression of the stress—strain
matrix in local axes is transformed to global axes using the standard coordinate system
transformation laws. If a third tensile stress occurs at the same Gauss point, then we assume a
complete loss of the carrying capacity at that specific Gauss point. This is performed by setting
to zero the constitutive matrix C.

Parameter g

The main arithmetical problem of the smeared crack method are the ill-posed stiffness matrices
that are produced when crack openings occur, which may result in numerical difficulties during
the solution of the nonlinear incremental equations. For this reason, parameter £ is vital when
using the smeared crack approach due to its numerical contribution when one or more cracks
open. This parameter is correlated to the remaining stiffness due to aggregate interlocking along
the crack’s surface. If this parameter is neglected and set to zero, then an instability of the
numerical solution procedure may be observed and it would have been unable to proceed after
the opening of the first cracks. The most commonly used value for this variable is that of g =
0.05-0.1 which was extracted through experimental datal*™. It is therefore assumed that 5-10%
of the initial shear stiffness remains after the crack opening and is applied along the crack’s
plane. In the numerical tests that will be presented in this work, the value assumed for this
parameter was set equal to 5%.
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3.3.1.5.3 Discrete Finite Element Methods

The Discrete Element (DE) Methods (also called smooth Particle Hydrodynamics) are rapidly
evolving methods that have demonstrated satisfactory results especially for impact problems
and problems that produce high nonlinearities attributed to high deformations. The main idea of
DE methods is to discretize the continuum media with relatively small discrete elements
(tetrahedral, hexahedral, spheres) which are connected to each other through special boundary
conditions. Usually these boundary conditions obey material rules that are governed by a
yielding surface, as shown in Fig. 3.17. When for the case of two neighboring elements this
criterion is satisfied, then the rigid connection ceases and the two elements are not connected to
each other and a discontinuity is introduced (crack). The material can be modeled at a meso- or
macro-scale, with the size of the DE being small enough in order for the model to be predictive.
Nevertheless, the DE size is always restricted from the computational cost due to the large
number of elements required when very small sizes during discretization are implemented.
Finally, the identification process used, plays a significant role for the predictiveness of a model
as described by Hentz et al.l'’!. In their work, an extensive presentation of the DE model is
attempted.

Because of the computational demands of these models, multi-domain finite and DE method
(Fig. 3.23) was proposed by Rousseau et al.'"® (2009). Despite the decrease in the number of
dof, this method is unable to overcome the excessive computational effort, thus
implementations are restricted to single structural element problems. More literature and details
about discrete models can be found in Rousseau et al.'’” (2007) and Hentz et al.*™®! (2004).

|
[
i
I
\
|

ya

FIGURE 3.23 COMBINED FINITE AND DISCRETE ELEMENT METHODS FOR MODELING AN IMPACT
PROBLEM™"®, LEFT: FULL MODEL. RIGHT: TRANSACTION AREA.

3.3.1.5.4 Meshless or Meshfree Methods

These methods are mesh free in terms of the discretization of the media and a particle-based
concept is applied, which is particularly suitable for the analysis of fracture, due to its capacity
to model large deformation and track the free surfaces generated. Continuum damage models
are usually used to predict the fracture within the model and the evolution of damage can be
predicted by using the strain history of each particle. For the case of brittle materials, damage
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usually inhibits the transmission of tensile stress between particles and once the stress reaches
unity it is unable to transmit tensile deformations, resulting in a macro-crack. Connected macro-
cracks lead to complete fragmentation.

FIGURE 3.24 CRACK PATTERN OF THE REINFORCED CONCRETE BEAM AT FAILURE FROM TWO DIFFERENT
VIEWING POINTSI,

W P

(a) 0.2 ms (b) 0.2 ms (c) 0.4 ms (d 0.4 ms

(e) 1.65 ms (f) 1.65 ms

FIGURE 3.25 CONCRETE SLAB O1 UNDER EXPLOSIVE LOADING USING APPROXIMATELY 265,000
PARTICLES, IN RED: CRACKED PARTICLES, IN BLUE: UNCRACKED PARTICLES!®],
As it can be seen in Figs. 3.24 and 3.25, due to the nature of the method, the cracks can be
arbitrarily oriented and as it is stated in Rabczuk and Belytschko*® (2007) their growth is
represented discretely by activation of crack surfaces at individual particles.

The method also appears to be less complex than the interelement separation models®”**# and
significantly less complex than the extended finite element method®?. In the latter, the cracks
can be modeled only along element interfaces in the mesh (Camacho and Ortiz*" (1996), Ortiz
and Pandolfi™®” (1999) and Zhou and Molinari™®! (2004), Belytschko and Gracie™™® (2007)).

It is the author’s opinion that, despite the fact of the necessity for further improvement,
concerning the assumptions made for the particle interactions and the computational excessive
demands, which are attributed to the nature of this type of methods, they will eventually
dominate the scientific field of crack modeling. Given the large interest shown in the detailed
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simulation of heterogeneous materials, it is one of the most promising modeling methods, for
the analysis of brittle heterogeneous materials. More references on meshless and meshfree
methods can be found in Belytschko and Lu*®®! (1995) and Liu*®* (2003).

3.3.2 Kotsovos and Newman Experimental Findings

After the review on the available material models for concrete analysis and the methods for
modeling cracks, the Kotsovos and Pavlovict® material model will be presented together with
the numerical modifications performed for the purposes of this research work. The presentation
and discussion of the experimental findings of Kotsovos and Newman™*%% (1977-1979) will
proceed, followed by the proposed modifications.

The experimental program conducted by Kotsovos and Newman!®*%! concerned a range of
concrete specimens with uniaxial cylinder compressive strength varying in the range 15 MPa <
fc < 65 MPa. The specimens were tested under different stress state (compression, tension,
triaxial compression, triaxial tension) and the stress-strain relationships were expressed in terms
of normal stresses (o, 0,,05) and normal strains (&, &5, £5). Typical experimental stress-strain
curves obtained for cylindrical specimens under uniaxial compression can be seen in Fig. 3.29a
for different concrete types and in Fig. 3.26b the case of concrete with compressive strength f.
= 31.7 MPa, which was tested for different types of triaxial compression for various values of

hydrostatic stress a,, .

180

Stress: Nmm? 150

fo = 317 N‘mm?
— Predicted relationships

fc = uniaxial strength

£2 = & _ 03 =0
; \ i % — —— | D 98 Stress path
s i N 0 1 L 1 1 1 1
8 GTens“ 1 -2 o 2 4 6 ~60 -40 -20 0 20 40 60 80 100
< Strain: mm/m Compressive Tensile PR Compressive
(») (B)

FIGURE 3.26 TYPICAL STRESS-STRAIN CURVES FOR CONCRETES OBTAINED FROM TESTS ON
CYLINDERS!™. (A) VARIOUS CONCRETES UNDER UNIAXIAL COMPRESSION AND (B) CONCRETE WITH f. =
31.7 MPA UNDER TRIAXIAL COMPRESSION FOR VARIOUS VALUES OF HYDROSTATIC STRESSES 0y.

For the analysis of the experimental data (both uniaxial and multiaxial), use is made of the
assumption that the nonlinear material behavior is governed mainly by changes in the structure.
These structural changes occur in the form of fracture initiation and propagation processes
which have the following two opposing effects on the material deformation:

Effect A. Cracking causes a reduction of the high, predominantly tensile stress
concentrations existing near the crack tips. This reduction in tensile stress can be
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assumed to be equivalent to the application of a compressive stress that tends to
reduce the volume of concrete.
Effect B. Cracking produces voids, which tend to increase the volume of material.

It is assumed that the deformation history and crack pattern evolution until complete failure can
be divided into three main stages. These stages are illustrated schematically in Fig. 3.27 and can
be described as follows:

Stage |

The elastic deformation is dominant from the onset of loading up to 30 ~ 70% of fc. The
lower limiting value applies for low strength concrete and the higher value applies for
high strength concrete. There is only a small increase of microcracks and the material
behavior is approximately linear. At this stage effect A is significant while effect B is
relatively insignificant since cracking is localized. This has the result of the specimen’s
volume decrease.

During this stage, the microcracks remain stable and do not propagate. With increasing
load tensile strains start to concentrate near the crack tips and the initially stable
microcracks start to branch in the direction of the maximum principle compressive
stress. This branching process tends to relief strain concentrations. Once strain
redistribution has occurred, the individual crack configurations remain stable during
further increase of the applied stress. The start of such deformational behavior is termed
LFI (Local Fracture Initiation) by Kotsovos and Newman™®! see Fig. 3.27. The
beginning of this local fracture initiation is shown by a dotted line in the stress and the
strain space for the triaxial loading in Fig. 3.28.

Stage 11

In this stage, effects A and B are both significant, but effect A is greater than the effect
B thus the volume continues to decrease. Analyzing this behavior, it means that the
existing cracks propagate in the direction of the compressive load in a relatively stable
manner. If the applied load is held constant, crack propagation does not continue. This
behavior is termed as OSFP (Onset of Stable Fracture Propagation) which is given in
Fig. 3.27.

Stage 111

This is the final stage where for the first time effect B is more significant than effect A,
causing a volume increase of the specimen. The degree of cracking can reach a level, at
which the crack system becomes unstable and failure occurs even if the load remains
constant over a relatively long time. The start of this stage is termed as OUFP (Onset of
Unstable Fracture Propagation) in Fig. 3.27 and it is characterized from the fact that the
volume becomes minimum. The load can still be increased beyond this point to the
Ultimate Surface (US), but the amount of increase depends on the rate at which the load
is applied and the loading device.

Page 107 of 272



Athens, Jan 2011

Chapter 3
€2 &y £
. s & I
Stage Il f\ b / \ :/
OUFP,i' .= - '
/

T

I

K / I
/ I

/ I

4 S h

I

I

I

Stage |l
OSFPI' j
! I
[} |
StaT'el / | ’]
' Tensile Compressive (a) (b) (c)
Strain i"'
&1 : é :
L terial rt
\ | Random e2+JH| £4= Volumetric srain (5) Eftoct of mtena stesses
\'Z | cracks (c) Effect of void formation
‘ ]
G A / ) /( ( LFI  Local Fracture Initiation
Y 4 / \ ure
nu ) /\/ ,) OSFP Onset of Stable
/1 \ / ( Fracture Propagation
J FP
1 A OURP ou gnset of Unstable
ool £ ( e

crack
FIGURE 3.27 STAGES IN THE PROGRESS OF CRACK DEVELOPMENT UNDER COMPRESSIVE LOADM®

Based on the above description, the deformation behavior of concrete was decomposed into the

following three components:

1. A linear component throughout, governed by the material characteristics which is

unaffected by the fracture process.

2. A nonlinear component expressing the effect of the internal stresses caused by the

fracture processes.
3. A nonlinear component expressing the effect of void formation.

After the gathering of the experimental results (Fig. 3.29), the analysis of the experimental data
was performed by transforming the stress-strain curves into corresponding hydrostatic and
deviatoric stress and strains components, i.e. in the form of normal and shear octahedral stresses
(0, — 1) and strains (&, — yo), respectively (Egs. 3.9-3.12). For the definition of these octahedral

parameters see Appendix A.
1
Op = 5(0'1 + 0, +03)

1
&o :§(S1+32 + £3)

1
To = §\/(01 - 02)2 + (02 - 03)2 + (03 - 01)2

1
Yo = §\/(51 — )2+ (&5 — €3)% + (63 — )2
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The results of these tests, indicated that the deformational behavior of concrete material under
hydrostatic stress o, can be described completely by the hydrostatic (volumetric) strain &),
since the corresponding deviatoric strain y,n has been found to be insignificant!"®®!. By using
the subscript h it is denoted that the octahedral strains result from the application of pure
hydrostatic stress state. These relationships o, — &,n) depend only on the uniaxial strength f. of
the concrete (Fig. 3.29a).

If the specimen is deformed through the application of an external deviatoric stress 7, then
both volumetric and deviatoric strains are affected. Therefore, the deformation response of
concrete under increasing deviatoric stress is defined by both 7, — y,@ and z, — &)
relationships. In this case, the subscript d denotes that the octahedral strains are due to a pure
deviatoric stress state. Typical deviatoric results are shown in Fig. 3.29b and data points for
both 7, — y,@) and 7, — e, characteristics are given in Figs. 3.31 and 3.32 respectively.

It is evident that both sets of curves are essentially independent of the stress path, indicating
that the influence of the direction of t, on the octahedral planes is negligible and that any
stress-induced anisotropy is insignificant and can be ignored for practical purposes. In addition
to that, the stress path independency was also illustrated by Gerstle et al.®®! (1980) and it is
shown in Fig. 3.32. The stress paths denoted as 1 and 3 correspond to the triaxial loading, while
stress path 2 refers to the additional case of constant principal stress. It is obvious that these
three paths coincide sufficiently thus it is safe to say that their differences are attributed to
random effects.

It is important to annotate at this point that the volumetric deformation due to deviatoric stress

is attributed to the normal octahedral internal stress a;,, which is considered to be the result of
cracking within the concrete specimen. In the next subsection, the procedure of computing this
internal stress from the corresponding z, — &,y relationship will be shown.

60 —
01> 02 =03 Oy = 03 > 03
S50 g
401 -
E
E 39} l f. = 31:7 Nimm?
S 30 =
z |
e q | oo/ fe =
0O 0449
20 o 072 -
a 097 J
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10 o 169
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FIGURE 3.31 TYPICAL EXPERIMENTAL 7,-€,(d) CURVES FOR CONCRETE WITH fc = 31.7MPa, FOR TWO
POSSIBLE STRESS PATHS. (A) 01 > 6> = 03 AND (B) 01 = 0 > g3,
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FIGURE 3.32 DEVIATORIC STRESS-STRAIN CURVES OBTAINED FROM TRIAXIAL TESTS BY USING
DIFFERENT LOADING PATHS!®!,

3.3.3 The Kotsovos and Pavlovic Concrete Material Model

Three different approaches were described by Kotsovos and Pavlovict® for the incorporation of
the phenomenological features and corresponding experimental findings that were presented in
the previous subsection.

Approach 1. Three Moduli
Approach 2. Internal Stress
Approach 3. Combined

The third approach is the material model used in this work and it is a combination of the first
two. Given the detailed description of these approaches in the literature, specific features of the
first two approaches will be given as they will be needed in the combined approach.

The three moduli approach adopts the octahedral representation of stresses and strains, and
permits the decoupling of volume and distortional changes, with two natural material constants
named bulk modulus K and shear modulus G, given by the following expressions:

_o, __ E
35, 3(L-2v) 3.13a
_% __E
3 20e) 3.13b

The third material modulus proposed in this approach, is the coupling modulus H (Eq. 3.14),
which was presented for the first time by Gerstle et al.®® and modified in the combined

approach by an equivalent superimposed stress state (o;,) based on the internal stress concept.

T
H=—" 3.14
€o(d)

Through the use of these three material moduli, the concrete behavior is described and the
octahedral stress-strain relations can be computed for any given stress state (Egs. 3.15).
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Oy %o
&y =&yny T €)= 3K +H_ 3.15a
S S
Vo=V SR 3.15b
0 =00 T 50 .

The internal stress concept is described through a typical ascending branch of the stress-strain
relations of concrete, depicted in Fig. 3.33. It is assumed that the use of this internal stress state
in conjunction with the initial moduli K¢, Ge or Ee, Ve is sufficient to describe the nonlinear
constitutive behavior.

When the material moduli are considered to be constant, the generalized form of Hooke’s law
for a stress state o;; may be written as:

1+v
& =_£O'kk5i' +( e)O'i'
' E ) E ) 3.16

[ [

or equivalently
3K, -2G 1 3.17
& =~ 040 + =0
18K.G, 2G,
where K, Ge the bulk and shear moduli, respectively. By decomposing the total strains &;; and
stresses oj; into their hydrostatic components:

3.18
6‘0 :€kk3 , O, :6%
and deviatoric components:
€ =& —&0; Sij =0y —040; 3.19

the following generalized form of Hooke’s law is obtained:

S.
o 5 4 0 3.20

& :‘905ij +€; = 3K, i 26,

e ——

£
1
——

FIGURE 3.33 THE INTERNAL STRESS CONCEPT USED TO ACCOUNT FOR NONLINEAR CONSTITUTIVE
RELATIONS OF CONCRETE MATERIALS®.,
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In order for the above equations to be valid, the following expression must be satisfied:
o; = gi]?“ + gi‘jm 3.21

where the subscripts ext and int denote the external applied and the internal microcracking
stress states, respectively. By decomposing each state of stress and strain into a hydrostatic and
a deviatoric component, the internal stress state may be quantified through the use of
experimental data shown in Figs. 3.29-3.31. After a regression analysis of g, — ¢,n) data, the
relation between external stress and resulting strain was found to be:

A 3.22a
Eoty _ 0 +3aK.0 for % <
3K, c
o, +3abK, (21,)" o, +3a(1-b)K, (21,) o4 3.22b
Eony = for % >2
3K, c
7, +2¢G, 7, 3.23
Vo= °G —

e
where K. and G, are the initial bulk and shear moduli, respectively. The expressions that
describe these moduli are given through the following relations:

_ 2
K, =11000+3.2- f; 3.24

G, =9224+136- f, +3296-10°*° - f %" 3.25

where f¢ is the uniaxial cylinder compressive strength expressed in MPa. Parameters a, b, c, d
depend on the material characteristics and are described through the following equations:

b=20+181.10"°. f**

3.26
d =2.12+0.0183- f, for f, <31.7MPa 3.27a
d=270 for f, >31.7MPa 3.27b

while parameters a and b are absorbed by parameters A and B which will be described below.

For Eg. 3.21 to be compatible with the first term on the right-hand side of Eq. 3.20, the
hydrostatic component of the internal state of stress must be:

b
on A [0 o
f—:—A'(f—: for %32 3284
Oih _ob-1ppn.| C0 |1oba(1_ o
f—c—2 Ab f0j+2 A(1-b) for %>2 3.28b

where A is given by:
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A=3aK, f"* 3.29
and with the regression analysis of the experimental data the following expressions for
parameter A are obtained, thereby incorporating parameter a:
A=0.516 for f, <31.7MPa 3.30a
3 0.516
- 1+0.0027(f,-3L.7

for f, <31.7MPa 330b

)2.389

Moreover, for Eq. 3.23 to be compatible with the second term of the right-hand side of Eg.
3.20, the shear stress zig must be expressed as:

d
Tig Ty

Jd _c.| 2o

uc () 331
where

C= ZCGe fcm1 3.32

Parameter C incorporates and defines the parameter c, through the following expressions that
yield after the regression analysis on the experimental data for the z, — y,(q) relations.

C=3573 for f, <31.7MPa 3332

B 3.573
1+0.0134( f, —31.7

for f, <31.7MPa 333b

)1.414

The above relations are valid only for concrete materials with cylinder compressive strength
ranging betweenl5 MPa < f. < 65 MPa. Outside this range, K. and G, remain constant and
equal to the corresponding values obtained when f. = 15 MPa or f; = 65 MPa, depending on the
case at hand.

In order to classify the above stresses that are obtained from the corresponding loading type, the
following three loading types were presented:
i.  Hydrostatic Loading. This occurs when the current external stress o¢ exceeds any

previous external stress ¢ =, resulting in an increase of oy, .
ii.  Deviatoric loading. This occurs when the current external stress T} exceeds any previous

external stress rg<i, resulting in an increase of 7.

iii.  Combined loading. This occurs when the current combination of external stresses ¢, t}
exceeds any previous combination of external stresses o-({ <t Té<i , resulting in an
increase of g;,.

It is implied that various combinations of loading and unloading may take place simultaneously,
thus the above formulation will be able to predict the correct material behavior.

The next step is to choose whether the nonlinearities of K and G moduli should be accounted
for in the o, — e,(n) and z, — y,( relations. The combined approach assumes that this numerical
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feature can be accounted for through the use of the ;4 variable which takes into consideration
the coupling effect z, — &,(). In order to achieve this, Eqgs. 3.15 must be rewritten to:

0, +0,
&y =&y T o) = 3K 3.34a
S
Yo = Yoy = ot
0 = /o) 2G, 3.34b

where Ks and Gs are the secant bulk and shear moduli, respectively. Once more, a regression
analysis of the experimental data similar to the one that led to expressions of Eqgs 3.22 and 3.23
is performed giving

K =1%

S

’ GS = —
3 &, 3.35

The expressions that describe the relation between the secant bulk modulus and the initial bulk
modulus write as:

%:;b_l foraf%£2
: 1+A(G°] i

3.36a
fC
% _ ! - for Uf% <2
°o14 2“Ab—2bA(G°] 3.36b
G, 1
Ge - d-1
1+C(?] 3.37

Similarly, the tangent bulk and shear moduli, which relate stress and strain increments, may be
obtained by differentiating the expressions in Egs. 3.22 and 3.23, respectively. It is worth
noting at this point that, even for very small stress values, the moduli are affected, meaning that
the constitutive matrix C (Eq. 3.4) is changed. During the nonlinear solution procedure, this
results into unbalanced forces very early in the iterative procedure requiring additional
iterations until convergence is achieved. This feature applies also for the case of the tangent
moduli which are computed from:

ﬁ:;b_l for 00% <2

R 1+bA(‘_;°j ° 3.38a
K _ 1_ o1 90/ < 3.38b
K, 1+2°%Ab f,

e
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G 1 3.39

i
G d-1
° 1+dC (?’j

The above formulation for the secant and tangent moduli is schematically illustrated in Figs.
3.34. These figures refer to a particular concrete which has a cylindrical compressive strength f.
= 31.7 MPa.

12 - fo = 31-7 Nemm?

f. = 31.7 NNmm? 121 apg 0 H>th=m exerimental data
O o =0=93 & M=o ru for G,/ G,
experimental data for K/ K,
—— Predicted relationships

10 ke & —— Predicted relationships

08

06

K1K,

o4l

ozl

0 05 1 15 2

(»)
FIGURE 3.34 TYPICAL VARIATION OF THE (A) BULK MODULI Ks, Kt WITH g9 AND (B) SHEAR
MODULI Gs, Gt WITH 7o FOR A SPECIFIC CONCRETE (f, = 31.7MPa)1*%%,
At this point, the computation of the stress o;; is required. A regression analysis of the
experimental data similar to those shown in Fig. 3.35 led to the following analytical expression
that describes the stress o, :

Oig _ Ty

T {f_j 3.40
where

M = K

1+|(?J 3.41

and parameters k, I, m, n are the material parameters which are expressed as:

40

T 1+1087-(f,-15.0)"" 3422
| =0.222+0.01086- f, —0.000122- 3.42b
m=-2.414 for f, <31.7MPa 3.472¢
m=-3.532+0.0352- f, for f, >31.7MPa 3.42d
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tensor relation. Given that the second term
of this equation does not impose any
deviation from nonlinear elasticity, the
first term does involve the correction o;,
to the applied a,.

___________ e ——— e ———

n=10 for f, <31.7MPa 347%e
n=0.3124+0.0217- f, for f, >31.7MPa 3.42f
Since the stress g;, is a pure hydrostatic % = a; =
. . . 7o = b,
correction, expressions in Egs. 3.34 are = @0 @@= F———- -——
equivalent to Eq. 3.43, which is expressed : i —— }
in the global coordinate directions. ! do = a {
. . . l !

Eq. 3.43 is obtained by noting that the two ! I
terms of the strain tensor of Eq. 3.20 must Cien : : %
be handled separately when the Nk . Pt
constitutive relations are introduced in this - S :

' |

i |

! |

L/ l

/L

Yo

FIGURE 3.35 SCHEMATIC REPRESENTATION OF THE APPROACH USED
TOEVALUATE 0;; FORA GIVEN g, AND T, COMBINATIONI®,

0y +0,49; 3,
gij :TJ_E_(O-O—i—Gid)é}j 3.43

S S

where Es and vs are the secant Young modulus and Poison ratio, respectively. These two
material parameters derive from Ks and Gs by the following expressions:

E-_JKG 3.44
3K+G

y o 3K=26 3.45
6K +2G

Eqg. 3.43 describes the expression which forms the basis for calculating global strains from
global stresses according to the following procedure:

» The octahedral stresses (oo, 7o) are calculated either from the principal stresses (o1, o2,
o3) - computed previously on the basis of the global stresses gij, i.e. (ox, 6y, 07, Txy, Tyz Tax)
— or directly from the first and second stress invariants expressed in terms of gj;
(Appendix A).

> K, Gs and Es, vs are calculated.

» The hydrostatic correction oiq is calculated.

> Global strains ¢;; are calculated.

The computation of global strain increments from global stress increments follows the same
procedure, with the material constants being defined in terms of the tangent values Ky, Gt and

ET, VT.
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3.3.4 The Failure Surface

The octahedral stresses are also used to describe the failure surface of concrete, which may be
represented in the three-dimensional principal stress space as an open and convex failure
surface. The form of such a failure surface can be seen in Fig. 3.36, indicating the very small
strength of concrete under tensile stresses (positive axes refer to compressive stresses). The
projection of the failure surface on the deviatoric plane, which is normal to oy, results in a curve
that represents the geometrical locus of the ultimate deviatoric stress 7o, This ultimate stress
may be calculated from oo and 6, where 4 is the rotational angle that the deviatoric stress vector
forms with one of the projected stress principal axes on the deviatoric plane.

) 21, (rsc ~72, ) oSO + 7, (270e — 74, )\/[4(2'02C ~72, ) cos’0+5¢;, - 42‘002'09} >
4(r§c —759)00829+(1'OC —27,, )2 .

z-Ou

This expression describes a smooth convex curve with tangents perpendicular to the directions
of 7pe and zoc at 6 = 0° and 6 = 60° respectively (Figs. 3.37). Therefore, a full description of the
strength surface can be established when the variants of 7. and 7o with oy are determined. Once
more, a mathematical description of the two strength envelopes may be obtained by fitting
curves to the experimental data. Such an approach leads to the following expressions

0.724

% ~0.944 % +o.05j 3.47a
0.857

%:0.633 %+0.05J 3.47b

When the state of stress is known, then the quantities oo, 7o, @ may be calculated from

00:%11, 7, = (205—%12} 00339:—gJ3 3.48
0

where I; and |, are the first and second invariants of the stress tensor, whereas Js is the third
invariant of the deviatoric stress tensor sj; = aij — 0o dj}.

It is an experimentally documented fact that when the compressive stresses reach certain values,
concrete starts to increase its volume. As a result of concrete’s in-homogeneity, such a localized
region under compression tends to expand against the surrounding material. The confining
concrete therefore introduces in the localized region lateral compressive stresses, which, in turn,
for equilibrium to be maintained, make the surrounding regions develop tensile stresses. This
has an effect of increasing the strength of the localized region while the tensile stresses in the
surrounding region eventually turn this state of stress into having one of its principal
components tensile, thus leads to the reduction of the strength of the surrounding region where
macrocracking takes place.

Page 118 of 272



Chapter 3 Athens, Jan 2011

alfl
FIGURE 3.36 INTERSECTION OF FAILURE SURFACE FOR CONCRETE WITH PLANE INCLUDING SPACE
DIAGONAL AND ONE OF PRINCIPAL AXES[B].

Deviatoric Plane

(A) (B)
FIGURE 3.37 SCHEMATIC REPRESENTATION OF THE ULTIMATE-STRENGTH SURFACE. (A) GENERAL VIEW
IN STRESS SPACE (B) TYPICAL CROSS-SECTION OF THE STRENGTH ENVELOPE COINCIDING WITH A
DEVIATORIC PLANE.

3.3.5 The Numerically Modified Kotsovos and Pavlovic Concrete Material Model

3D concrete material models combined with the smeared crack approach, produce ill-posed
matrices, especially when the RC structure’s rebars begin to yield. In some cases convergence
problems rise sooner when cracking appears locally before the structure enters the high
nonlinearity zone. This results mainly from the discontinuities that are introduced through the
modification of the constitutive matrix C (Eq. 3.4) where eventually several diagonal terms of
the elemental stiffness matrix will have near to zero or zero values. Additionally, when the
opening of cracks occurs, the internal stresses are converted into unbalanced forces which are
redistributed through the calculation of the internal forces of the corresponding nonlinear
solution procedure (NR algorithm). This numerical process induces instability especially when
large loading steps are applied, resulting in convergence problems.

Even though Kotsovos and Pavlovic®® used 20- and 27-noded hexahedral elements with higher
order integration rules, they had serious convergence problems which led them to introduce a
restriction to the maximum number of cracks that were allowed to open (within each internal
iteration). This constraint was studied numerically and the proposed number was set to 2 or 3
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cracks per internal iteration. By implementing such a constraint, the opening of cracks was
restrained, thus overcoming the convergence problem. As a result of this restriction, the
material model becomes non-objective as different values for the restriction parameter led to
different numerical results.

450
400
350
300
250

200

Load (kN)

w—Experiment

150 :
w1 Crack / Internal Iteration

100 ++++ 3 Cracks/ Internallteration

5 Crack / Internal Iteration

50 ASDAPX (UTCA)

o 1
0 5 10 15 20 25

Midspan Displacement (mm)

FIGURE 3.38 PREDICTED AND EXPERIMENTAL LOAD-DEFLECTION CURVES WITH THE USE OF DIFFERENT
RESTRICTION PARAMETERS WITH THE KOTSOVOS AND PAVLOVICE! MATERIAL MODEL AND ROD
ELEMENTS AS EMBEDDED REBAR ELEMENTS.

This numerical problem is depicted in Fig. 3.38 where the load-deflection curve is shown for
the numerical prediction of a simply supported beam without stirrups*®®. Three different values
for the allowed number of cracks per iteration were used (1, 3 and 5 respectively); the resulting
curves had different inelastic branches, underlying the lack of objectivity of the proposed
restriction. As it is going to be illustrated through this research work, the proposed material
model by Kotsovos and Pavlovic®® combined with the smeared crack model works without the
need of numerical restrictions and can become objective after some numerical modifications are

introduced.

Spiliopoulos and Lykidis'**®], proposed a unified treatment of the crack opening (UTCA) where
no crack opening restrictions were implemented in the Kotsovos and Pavlovic®®. This implies
that no restrictions are enforced on the number of cracks and all Gauss points could crack if
their deviatoric stress strength was reached. They implemented the proposed model with 27-
noded hexahedral elements with a corresponding 3x3x3 integration rule which led to high
computational times.

Our proposed modeling method for the simulation of concrete uses the isoparametric 8-noded
hexahedral element with a 2x2x2 integration rule, the numerically modified Kotsovos and
Pavlovic material model and a unified treatment for the crack openings. As we are going to see
through the numerical experiments that were contacted in this work, the proposed modeling
method proves to be objective and computationally efficient. ReConAn FEA code architecture
and programming techniques manage to further avoid the introduction of numerical errors that
are usually induced due to the programming style of the code as will be illustrated through
several numerical tests.
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The Numerically Modified Concrete Material Model

The Kotsovos and Pavlovict® material model, assumes that the moduli Ks and Gs (Egs. 3.36 and
3.37) change even when the stress state is much smaller than the concrete’s compressive
strength (wou << max 7) because their values depend nonlinearly on the hydrostatic and
deviatoric stresses (oo, 70). The updating of the hexahedral stiffness matrices at the early stages
of loading demands extra computational effort with no measured effect on the linear and
nonlinear structural behavior.

Additionally, numerical instability is induced to the nonlinear solution procedure, as a result of
the unbalanced forces produced due to the update of the material constitutive matrix of the
uncracked elements. According to the Kotsovos and Pavlovic®® material model formulation, it
IS necessary to update the material constitutive matrix of each hexahedral Gauss point
according to the change of Ks and Gs moduli. Having to solve an ill-posed numerical problem
when cracking occurs, the uncracked hexahedral elements induce additional numerical
instability and increase the computational cost through their material model formulation and the
requirement of continuously updating of their stiffness matrices. It is important to note here that
the assemblage of the global stiffness matrix does not demand as much computational time as
the global structural stiffness matrix triangularization process which is the most time consuming
procedure during a FE analysis process.

Taking into consideration these numerical difficulties, a modification to the numerical handling
of the Kotsovos and Pavlovic'® material model is proposed. Following an extensive parametric
investigation and according to the experimental findings of the concrete material behavior that
were discussed in the previous sections, it was concluded that if the ultimate deviatoric stress
oy at any Gauss point is less than 50% of the corresponding ultimate strength (Eq. 3.46), then
the elastic constitutive matrix Cjj (Eq. 3.49) can be used. It is only when the computed
deviatoric stress 7o, exceeds the 50% of the corresponding ultimate strength, then the nonlinear
material law is activated and the constitutive matrix is computed by updating the K; and Gt
moduli according to Egs. 3.36 and 3.37. Fig. 3.39 illustrates the flow chart of the proposed
numerical handling of the material model.

C B B
B C B
B B C .
C. = A A._E g AV ~_a.B 3.49
L Y My By
A
%)
Y

where E is the concrete’s Young modulus and v its Poisson ratio.

Eq. 3.49 describes the relation of the elastic constitutive matrix Cj; that is used when the
elasticity criteria is satisfied.
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FIGURE 3.39 FLOW CHART OF THE MODIFIED CONCRETE MATERIAL MODEL.

3.4 Numerical Implementation

The constitutive relations of the Kotsovos and Pavlovicl® concrete material model, have been
verified through several numerical tests, thus the aim of this section is to illustrate the ability of
the numerically modified material model to predict the behavior of a uniaxial compression test
without any significant numerical instabilities when combined with the 8-noded isoparametric
hexahedral element, which treats the phenomenon of cracking with the smeared crack approach.
It is going to be illustrated that, despite the fact that the 8-noded isoparametric hexahedral
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element uses a lower order integration scheme (2x2x2 Gauss points), the model manages to
predict the stress-strain paths without any significant numerical problems.

Being impartial on the selection process of the experimental test which will be analyzed, a
uniaxial compression test was chosen that was presented in Kim et al.l¥1 (2009). The main
reason for choosing this particular experimental test was to avoid modeling an experiment that
was conducted by Kotsovos and Pavlovic®®! in the framework of their attempt to extrapolate the
constitutive relations of the concrete material behavior, thus a confirmation of the experimental
findings would have resulted. Moreover, through this test the numerical robustness and
computational efficiency of the developed code when modeling plain concrete will be
presented. It must be pointed here that, this test was analyzed extensively by Karakitsios™®®!
(2009) in his Diploma Thesis, with the use of ReConAn FEA.

The experimental setup is shown in Fig. 3.40a and the corresponding obtained stress-strain
curves from the compressive strength test, in Fig. 3.40b. In addition, the maximum observed
stresses and strains are given in Table 3.1.

507 [——N1 ——N2 ---N3
----- M1 ====-M2 —-—-- M4 ------ M5
40
& 304
E‘ ----------
2 527 e p T
£ 204 pererivea,
& Z
o] f

0 1000 2000 3000 4000 5000
Strain [microstrain]

FIGURE 3.40 LEFT: EXPERIMENTAL SETUP OF A UNIAXIAL COMPRESSIVE TEST. RIGHT: OBTAINED
STRESS-STRAIN CURVES!™,

Specimen (Sl\t/lrszs) Strain (x10°)
N1 40.8 2,100
N2 40.0 2,240
N3 26.7 1,960

TABLE 3.1 CYLINDRICAL SPECIMENS. MAXIMUM MEASURED STRESSES AND STRAINS.

In their investigation, Kim et al.*®") tested two types of specimen with different concrete
strengths in order to derive the phase similitude law for pseudodynamic test on small scale
reinforced concrete models. The aim of their study was to simulate a small scale reinforced
concrete structure. As it can be seen in Fig. 3.40, three normal size specimens (10 cm diameter
x 20 cm height) were tested and their stress-strain curves measured (N1, N2 and N3).
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For the purpose of this work, the N2 specimen is selected and modeled using four different
discretizations as shown in Figs. 3.41. The specimen is discretized with 8-noded hexahedral
elements with 1, 2, 3 and 10 cm height. In order to simulate the steel plates through which the
external load was applied, two layers of steel hexahedral elements are positioned at the base and
at the top of the concrete model (Fig. 3.41).

The concrete material parameters used for the four FE models are given in Table 3.2. The
external load was divided into 50 load steps and the convergence energy criteria tolerance was
set to 10™.

Parameter Value
Compressive Strength f. (MPa) 40.0
Young Modulus E, (GPa) 30.0
Tensile Strength (MPa) 2.0

TABLE 3.2 CYLINDRICAL SPECIMEN N2. CONCRETE MATERIAL PARAMETERS.

inEnEEEEEEE|
nIEEEEEEEN
(A) (B) © (D)

FIGURE 3.41 FE HEXAHEDRAL MESHES OF THE CYLINDRICAL SPECIMEN N2. (A) 1, (B) 2, (C) 3 AND (D)
10 CM HEIGHT OF EACH FE LAYER.
Fig. 3.42 shows the correlation between the experimental and the numerically predicted stress-
strain paths for the case of specimen N2 for different discretizations. It is evident that, the
concrete material model manages to predict with an acceptable accuracy the experimental
results. The predicted curves are linear up to the point where elastic degradation of the concrete
material begins to be significant, introducing nonlinear behavior to the ascending branches. As
it can be seen, the predicted branches increase up to a certain load where due to excessive
cracking, the analysis process terminates since the force-control NR procedure fails to
converge. The obtained curves manage to predict the ultimate failure load with a 5% accuracy
which is an acceptable result. In addition to that, the scatter between the curves predicted by the
four FE meshes is located inside an acceptable range (< 5%). These results illustrate the
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accuracy of the material model in predicting realistic concrete behaviors and the numerical
robustness of the developed nonlinear FEA code.
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FIGURE 3.42 CYLINDRICAL SPECIMEN N2. STRESS-STRAIN PATHS FOR DIFFERENT FE MESHES.
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FIGURE 3.43 CYLINDRICAL SPECIMEN N2. DEFORMED SHAPE AND VON MISES STRAIN CONTOUR.

It is worth noting that when modeling experimental setups with three-dimensional models
several secondary phenomena can be simulated since the accuracy of the numerical models
enables the user to simulate with detail the experimental configuration. One of these

Page 125 of 272



Chapter 3 Athens, Jan 2011
phenomena is the interaction between the steel plates and the concrete specimen as illustrated in
Fig. 3.43. If the deformed shape figure is scaled 100 times then the outcome of the deformed
shape will be that of Fig. 3.43. As it can be seen, the upper and lower interaction surfaces
between the steel plates and the concrete specimen create triaxial stress states due to the stiffer
steel plates, thus the specimen takes a shape similar to that of a barrel. The section of the
cylinder located in the center of the specimen expands laterally and the sections located at the
two ends of the specimen retain their initial shape.

Finally, the computational times for the nonlinear analysis procedure for the different FE
meshes are given in Table 3.3. The computational efficiency of the proposed model is
demonstrated since the prediction of the nonlinear response of a FE model that combines a
nonlinear concrete material model with the smeared crack approach, was carried out in the
minimal time.

FE mesh Number of Number of Time
Elements Nodes (sec)
A (1cm) 2,592 3,125 330
B (2cm) 384 533 6
C (3cm) 54 120 0.5
D (10cm) 28 60 0.3

TABLE 3.3 CYLINDRICAL SPECIMEN N2. REQUIRED COMPUTATIONAL TIMES FOR THE NONLINEAR
SOLUTION PROCEDURE.
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Chapter 4 Generating Embedded Reinforcement
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4.1 Overview

When modeling three-dimensional RC structures with the FE method, three main approaches
are available for the simulation of the reinforcement: (i) smeared, (ii) discrete, and (iii)
embedded!®***, The smeared formulation is more suitable for surface-type structures and for
sparsely located reinforcing bars, either the discrete or embedded formulation are usually
implemented. In the case of the discrete formulation, the rebars are modeled with uniaxial
elements, which are positioned at the boundaries of the concrete elements connecting adjacent
nodes. This approach has the obvious restriction of having to use a concrete element mesh
based on the rebar geometry and location. Alternatively, in order to alleviate this type of
problem, some researchers have altered the actual arrangement of rebars to conform with the
FE modeling%% 1%,

The most noteworthy method for the generation of reinforcement rebar elements in FE
modeling of concrete structures is proposed by Barzegar and Maddipudi*®® (1994), which is an
extension of the work of Elwi and Hrudey™® (1989). This approach has the advantage of
allowing arbitrary positions for the rebars inside the concrete elements and a free geometry for
each hexahedron element. However, a nonlinear search procedure based on the Newton-
Raphson method is required in order to calculate the natural coordinates of each steel bar node.
Despite the fact that the convergence rate of the nonlinear search is rather high, the
computational demand for relatively large-scale structures with thousands of steel rebars
becomes excessive. In addition to that, the method that was proposed in*®*! for the generation
of reinforcement rebars assumes no geometrical constraints during the rebar search process
making its numerical implementation computationally demanding, especially when dealing
with large-scale structures. Nevertheless, several researchers!® ® % 194 adopted this method in
order to compute the natural coordinates of embedded rebars.

4.2 Generating Reinforcement

The method proposed in this work considers arbitrary positioning of the rebars inside the
concrete elements, as shown in Fig. 4.1, while avoiding a nonlinear search procedure for the
calculation of the natural coordinates of the embedded reinforcement nodes in the
corresponding hexahedral elements that are orthogonal parallepiped.

Femap software®™ is used as the pre- and post-processing FE program, through which the
initial mesh generation is performed. Thus, ReConAn uses the initial rebar node coordinates that
were created with Femap software and generates the numerical model of the embedded rebar
elements. The generation of embedded rebar elements is performed for each rebar element
separately. This means that for each initial rebar, an independent search is conducted with the
aim to detect all intersections of its straight part with the surrounding solid elements. The
outcome of this arithmetic procedure is the placement of the embedded rebar elements in the
corresponding hexahedral elements.
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FIGURE 4.1 EMBEDDED REINFORCEMENT REBARS INSIDE HEXAHEDRAL ELEMENTS.

4.2.1 Generation of Embedded Virtual Nodes

The virtual nodes correspond to the intersections of the rebars with hexahedral faces or edges as
shown in Fig. 4.1 (nodes i1, i2 and i3). This procedure becomes cumbersome when the FE
model consists of a large number of hexahedral and initial rebar elements. It is obvious that if
we attempt to compute these possible intersection points without implementing any constraint
on the search space, the computational cost of the search algorithm will be significant. The
problem arises from the fact that it is required to locate all possible intersections that may exist
between hexahedral faces and initial rebar elements (Figs. 4.2 and 4.3).

Steel Bar Element #25

FH

()

B

FE Hexahedral Mesh
Hexahedral Element #305

/

i Steel Bar Element #25 Hexahedral Element #305
X Steel Reinforcement Mesh

FIGURE 4.2 CONCRETE FE MESH AND STEEL REINFORCEMENT REBARS OF A SHEAR WALL.

To avoid unnecessary calculations, a geometric constraint was introduced in order to restrict the
search in the vicinity of the corresponding steel reinforcement. The geometric constraint is
implemented with the definition of an active sphere with radius Rc:

R =c-L,

where
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L=4/s§+s§+sz2 4.2

and
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_\n=l n=1 _\n=l
T 8 Y 8 S 8
with s" and s**" being the coordinates of the node n and the centroid of the hexahedron under
consideration, respectively and parameter c¢ defines the active volume around each hexahedron
where the constraint is implemented. If the below relation is satisfied

d ord, <R 4.4

cen nl
S

cen n2
— Srebar S

~ Srepar

,d = are the distances of the initial rebar end nodes 1 and

2 from the hexahedral centroid i under consideration as it is illustrated in Fig. 4.3, then the
search is performed.

where d, =

(B)

FIGURE 4.3 GEOMETRIC CONSTRAINT FOR THE SEARCH OF EMBEDDED REBAR NODES: (A) R} >d?,

GEOMETRIC CONSTRAINT IS SATISFIED, (B) R} < d/, < d), GEOMETRIC CONSTRAINT IS NOT SATISFIED.

After a thorough parametric investigation the recommended value for the incremental
parameter ¢ is found to be 5, which is also the value that was used in our numerical
implementations. Larger values for ¢ would lead to unnecessary computations for the location
of possible rebar-hexahedral face intersections, while smaller values would make the generation
of the initial rebar mesh through the pre-processing software more complicated and time
consuming. This means, that the maximum penetrated hexahedral elements by an initial rebar
member should not exceed that of 5 in order to assure that at least one initial rebar node will be
located inside the hexahedral active volume, as Fig. 4.3 illustrates. The proposed constraint
reduces the computational effort because it allows less neighboring hexahedral elements to be
checked during this allocation process, especially when dealing with large-scale problems.
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After the satisfaction of the constraint equation (Eq. 4.4), the generation of the reinforcement
rebar elements proceeds according to the following three cases.

4.2.2 Virtual Node Allocation Cases
Case1l

In this case, a check is performed to detect whether one or both initial rebar nodes (1, 2) are
located on the hexahedral face(s) (Fig. 4.4a). If this is the case, then the corresponding node(s)
are being stored. In order to locate the position of the corresponding node local coordinates, the
distances dX, dY and dZ between the hexahedral centroid and its first node’s coordinates located
in the corresponding hexahedral connectivity matrix, need to be computed. By using Egs. 4.5,
we can calculated the required distances dX, dY and dZ.

Hexa _ ~Hnl cen Hexa _ o Hnl cen Hexa _ ~Hnl cen
dy " =s," =8, d, =8 =87, d =8, =5, 4.5
n8 n7
ns / n§
i
/&Sf/
ndi| - 1 n3
/I
nl - n2|
() (B) (©

FIGURE 4.4 GEOMETRIC CONFIGURATION OF THE THREE CASES. (A) CASE 1: REBAR NODE ON
HEXAHEDRAL FACE, (B) CASE 2: REBAR-HEXAHEDRAL FACE INTERSECTION, (C) REBAR NODE INSIDE
HEXAHEDRAL VOLUME.

Finally the natural coordinates of any given point P inside a hexahedral, are given from the

following expressions:

P cen P «cen P cen
é: — Sy — Sy — Sy Sy é/ — S, =S, 4.6
P Hexa '’ e Hexa ' P Hexa
dX dY dZ

given that the hexahedral has an orthogonal parallepiped shape. For the case where the
hexahedral element shape is irregular, then the standard Barzegar and Maddipudi™® method is
performed in order to allocate the natural coordinates of the corresponding virtual node.

The Barzegar and Maddipudil®®® procedure for computing the natural coordinates of a virtual
embedded rebar element node inside hexahedral concrete elements is described bellow.

A point P; with global coordinates (X, y, z)p: 0n the initial rebar mesh (Fig. 4.5), is contained in
a given concrete element if its natural coordinates &pi, 7p1, {p1 Satisfy the constraint

§P1177P1’§P1

associated with this particular hexahedral element.

<1 4.7
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z
[ o
¥ Intersecting Faces

FIGURE 4.5 EMBEDDED REINFORCEMENT IN HEXAHEDRAL CONCRETE ELEMENTI®),

In the isoparametric formulation the global coordinates (X, y, z) of a generic point within a solid
element are expressed as

X IN 0 O0][x

yr=0 N 0|4V 4.8
z| |10 0 NJ||z

where X;, Vi, zi are the global coordinate vectors of the hexahedral nodes and N represents the
row vector of the displacement-shape functions.

Given that the natural coordinates (¢ #, )1 are the roots of
X N 0 O0]fx
y¢ |0 N 0 ]qy;=0 4.9
2y 0 0 N||z

a NR iterative procedure is required in order to compute the solution of the above equation as
follows:

5 n+l gg n Af n+l

n =in¢ +1An 4.10
¢y 1<)y o),

Since

dé dx

dy t=(3") "y 411
¢ dz
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where J is the Jacobian matrix ( J; =0N,/dx; ), the incremental natural coordinates are
computed from

n+1

A& AR N 0 0 |[x
A7 :(J”T) yb =0 N 0 |y 412
AC), z),, |0 0 N"||z

with 3" =J(&"7".¢"); N"=N(&"5".¢").

Barzegar and Maddipudit*®®! found that the preceding solution scheme has a high convergence
ratio which was also confirmed in this study. If the converged values do not satisfy (Eq. 4.7),
the procedure proceeds to the next hexahedral element until the geometric constraint is satisfied
(Eq. 4.4).

For the case where both initial rebar nodes are located on the same plane of a hexahedral face,
then the proposed algorithm searches for intersections with the hexahedral face edges and
creates the corresponding virtual nodes. For this subcase, the stiffness matrix of the embedded
rebar element (element ER 3 in Fig. 4.1) is distributed between the two neighboring hexahedral
elements (Hexahedral 2 and 3 in Fig. 4.1).

/]
d
.

AN

£
ANEAVAN
/

[t

FIGURE 4.6 REBAR ELEMENT INTERSECTIONS WITH HEXAHEDRON FACES. NODES i1 AND i2 ARE
RETAINED, NODE i3 IS NOT ACCEPTABLE.

Case 2

In the second case a rebar element intersects with one or two hexahedral faces (Fig. 4.4b, 4.6).
In order to find a potential line-plane intersection the corresponding algebraic equation has to
be solved (see Appendix B). Then, if an intersection exists, the following constraint is checked,
which guaranties that the nodal intersection is located inside the face of the hexahedral under
consideration:

&0 70, Go[<1 413
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where &, np, {p are the natural coordinates of the intersection point. If this constraint is not
satisfied, the intersection point is not retained and the algorithm proceeds with the computation
of the next intersection point.

Case 3

When cases 1 and 2 are not applicable then a check is performed for the satisfaction of the
following constraint:

‘gR’ ULY §R‘<1

where &g, 7r, (r are the natural coordinates of the initial rebar node. If the above inequality is
satisfied, it means that the rebar node is located inside the volume of the hexahedral (Fig. 4.4c),
otherwise the node is located outside the hexahedral volume and no action is taken. After the
computation of the virtual nodes for each of the initial reinforcement rebars, the mesh
generation of the embedded rebar elements is performed.

4.14

Following the described generation algorithm, all necessary data of each hexahedral element is
determined regarding the corresponding virtual rebar nodes that were located inside the volume
or on its faces. At this point, the main features of the embedded rebar element are calculated
and stored: The type of element (Beam or Rod), nodal coordinates, the type of nodes (if a node
is virtual or a physical node of the initial mesh) and the material properties. Fig. 4.7 illustrates
the flow chart of the proposed embedded rebar element mesh generation algorithm. It has to be
mentioned that, in order for the nodal natural coordinate’s computations to be applicable,
hexahedral elements must be orthogonal parallepiped. If the hexahedral shape is irregular then
the Barzegar and Maddipudi™®” method is used instead of Eq. 4.6.

4.3 Numerical Implementation

In this section, a numerical verification of the efficiency of the proposed embedded
reinforcement generation method will be presented. For this reason, four different FE models
have been tested. Different reinforcement properties and geometries are considered in order to
demonstrate the capability of the proposed method to allocate and generate embedded
reinforcement elements with numerical robustness and computational efficiency when dealing
with large-scale models. All numerical tests were performed with a 1.9 GHz processor
(personal laptop) with a 2GB DDR2 Ram.
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FIGURE 4.7 FLOW CHART OF THE PROPOSED EMBEDDED REBAR ELEMENT MESH GENERATION METHOD.

4.3.1 RC Shear Wall

The first model is a RC shear wall which consists of 1,680 hexahedral elements (0.125 m x 0.10
m x 0.0767 m) and 1,320 initial rebars (vertical reinforcement @12/10 and horizontal
reinforcement @8/15). As can be seen in Fig. 4.8, the RC shear wall has a total length of 2.80
m, a height equal to 2.30 m and a 0.25 m thickness. The embedded rebar mesh generation
terminates the generation with the allocation of 3,080 rebar elements in 1.1 sec.
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FIGURE 4.8 RC SHEAR WALL WITH 1,680 HEXAHEDRAL ELEMENTS AND 1,320 INITIAL REBAR ELEMENTS.
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FIGURE 4.9 RC SHEAR WALL WITH 17,080 HEXAHEDRAL ELEMENTS AND 13,192 INITIAL STEEL BAR
ELEMENTS.
With the intention of testing the proposed generation framework for larger topological space to
be discretized a tenfold increase of the initial model is considered. The new FE model consists
of 17,080 hexahedral elements and 13,192 initial rebar elements (Fig. 4.9). After the completion
of the embedded rebar element mesh generation process, the total number of generated
embedded rebar elements becomes 34,327 and the corresponding required computational time
is 85 sec. The proposed algorithm managed to scan and generate all the embedded
reinforcement elements within an affordable computational time. This is mainly attributed to
the implementation of the geometric constraint of Eq. 4.4. The corresponding computational
time for the embedded rebar element mesh generation process, when the geometrical constraint
is not used, was 7 min. This shows the importance of the proposed constraint during the mesh
generation process particularly for large-scale models. Since the required CPU time for the
embedded mesh generation procedure cannot be explicitly measured when ATENA software is
used, the comparison cannot be made for this case. Nevertheless, the required initiation CPU
time, for these two numerical tests, were 3 and 25 min, respectively. The corresponding CPU
times of ReConAn are 2 and 160 sec (including the embedded rebar mesh generation
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procedure). This differences are to a certain extend attributed to 1/0 procedures that ATENA
performs during the initialization of the models.

4.3.2 RCFrame

This model was created in order to illustrate the ability of the proposed algorithm to generate
embedded reinforcement for more complicated reinforcement layouts. The rebar layout for each
structural member is depicted in Fig. 4.10. The RC frame has a 5 m span and consists of a shear
wall, a beam, a column and two foundation footings in order to make the geometry more
complex.

Fig. 4.11 illustrates the initial discretization with hexahedral and reinforcement rebar elements.
The initial FE model consists of 840 hexahedral elements and 3,046 rebar elements.

50
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FIGURE 4.10 RC FRAME. GEOMETRY AND REINFORCEMENT DETAILS.
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FIGURE 4.11 RC FRAME. INITIAL FE MESH (HEXAHEDRAL ELEMENTS — INITIAL REINFORCEMENT MESH).

The total number of embedded rebar elements created after the execution of the rebar element
mesh generation process was 4,434 and the corresponding required time was 5 sec. It can be
seen that the mesh generation is completed in a minimal computational time despite the fact
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that the mesh of the hexahedral elements was relatively dense, especially in the foundation
footings.

4.3.3 Arch-Shaped RC Frame

This numerical test was constructed with the purpose of creating a base for the computational
assessment of the proposed mesh generation method, when irregular hexahedral mesh
geometries are presented. The geometry of this benchmark problem is shown in Fig. 4.12,
where it can be seen that it consists of a circular arch rectangular in section and 3.40 m internal
diameter. The corresponding hexahedral and rebar element mesh is shown in Fig. 4.13 and the
corresponding mesh details in Table 4.1. The basic feature of this FE model is the correlation
between the number of the irregular shaped hexahedral elements and the orthogonal
parallepiped hexahedral elements. The total number of hexahedrons is 592 and the
corresponding number of irregular hexahedral elements (located in the volume of the arch) is
384 which comprise 64.86% of the total hexahedral mesh.
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FIGURE 4.12 ARCH-SHAPED RC FRAME. GEOMETRICAL AND REINFORCEMENT DETAILS.

PN

_\\\\ﬁr ’ SO0
= L. =
(A) (B)

FIGURE 4.13 ARCH-SHAPED RC FRAME. MESH DETAILS OF (A) HEXAHEDRAL AND (B-C) INITIAL REBAR
ELEMENTS.

The embedded rebar mesh generation procedure terminates with the allocation of 2,244 rebar
elements in 0.25 sec. For illustrational purposes, the predicted crack pattern is shown in Fig
4.14a when a nonlinear concentrated vertical load is applied on the center of the RC arch. In

addition to that, the corresponding deformed shape of the rebar elements’ mesh is given in Fig.
4.14b where the displacements are magnified x50.
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ala Element Type Number of Elements
1 Initial Rebar Elements 1040
2 Irregular Hexahedral Elements 384
3 Orthogonal Parallepiped Hexahedral Elements 208
4 Total Hexahedral Elements 592

TABLE 4.1 ARCH-SHAPED RC FRAME. FE MESH DETAILS.
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FIGURE 4.14 ARCH-SHAPED RC FRAME. CRACK PATTERN AND DEFORMATION SHAPES OF THE (A)
HEXAHEDRAL AND (B) REBAR ELEMENTS’ MESHES.

To test the proposed generation framework for larger discretizations with irregular hexahedral
shaped elements we considered a tenfold increase of the initial model. The new FE model
consists of 5,920 hexahedral elements and 10,400 initial reinforcement rebar elements (Fig.

4.15).
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FIGURE 4.15 ARCH-SHAPED RC FRAME. MESH DETAILS OF THE HEXAHEDRAL (UP) AND INITIAL REBAR
(DOWN) ELEMENTS.

After the completion of the embedded rebar element mesh generation process, the total number
of generated embedded rebar elements becomes 22,440 and the corresponding required

computational time is 26 sec.
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4.3.4 2-Storey RC Building

This numerical test was created for investigating the computational effort required by the
proposed mesh generation method for the allocation of the embedded rebar elements for the
case of a full-scale RC structure.

The rebar layout for this numerical test is given in Chapter 6 where the details of the FE model
are given. Fig. 4.16 shows the FE mesh of the RC building which consists of 4,382 hexahedral
elements and 26,959 initial rebar elements. After the completion of the embedded rebar mesh
generation procedure, the proposed method managed to allocate 51,064 embedded rebar
elements in 69 sec. The corresponding computational time for the generation procedure when
the geometrical constraint is not activated, is 400 sec.

(B)

FIGURE 4.16 2-STOREY RC BUILDING. (A) HEXAHEDRAL AND (B) INITIAL REBAR ELEMENT MESH.
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5.1 Brief Overview

Many numerical models have been developed for the analysis of RC structures but none of
them has managed to provide the desired combination at an acceptable level of accuracy,
robustness and computational efficiency in predicting the nonlinear inelastic behavior of
different types of RC structural members when combined with the FEM. As it was mentioned
in the first Chapter, 1D beam-column models, based on either concentrated plasticity models or
distributed plasticity (fiber models), have difficulties in predicting the mechanical behavior of
3D RC framed structures due to their inability in capturing shear behavior and local phenomena
that influence the global response of the structures.

On the contrary, the use of 2D plane-stress FE models®™*% can avoid some simplification
assumptions that are inherent in 1D beam-column models, like the influence of shear stresses,
but their inability of capturing the out of plane response made them inadequate for 3D full-scale
RC analysis. Three-dimensional simulation with solid finite elements, based on triaxial stress-
strain relationships and embedded rebars!® & 9 139 1992031 nrgyides the highest quality of
approximation but it is hindered with high computational cost and in several cases lack of
robustness.

The computational complexity of such detailed models makes their use impractical for full-
scale simulations. Furthermore, with the use of numerically unstable material models (i.e.
concrete material model combined with the smeared crack approach), the sensitivity of such
models to various user-defined parameters, becomes more pronounced™®. These difficulties
led a number of researchers!® & 138 199.200. 2031 v ;se higher order elements (20-noded and 27-
noded hexahedral elements) in connection with high integration rules (3x3x3). The use of this
type of 3D elements and numerically unstable material models has a direct consequence on the
efficiency of the numerical simulations, requiring many NR iterations per load step and thus
considerable computational effort, even for small-scale FE models.

8-noded hexahedral elements were used by Sato and Naganuma™® (2007), where the stiffness
matrix was computed only at the element centroid in the interest of reducing computational
load, while in®®4 the ATENA software code™” was used with the 8-noded hexahedral
isoparametric element combined with the 2-noded rod element for the reinforcement.

In this work, a 3D 8-noded hexahedral isoparametric element is used for the simulation of
concrete based on an improved concrete material model originally proposed by Kotsovos and
Pavlovic®, as was presented in the previous Chapter. The reinforcement is modeled with an
embedded steel bar simulated with the NBCFB element. The geometric treatment of the
embedded reinforcement presented in Chapter 4 is adopted, which allows the arbitrary rebar
elements orientation inside the concrete solid elements and a free hexahedral mesh.

The above features of the detailed 3D FE discretization of RC structures are incorporated into
the proposed numerical model and the validation of the obtained numerical results is performed
with experimental data and numerical results of different types of RC structural members,
which are published in the literature!® 2%-207] The pest-known commercial software that can
simulate RC structures with the use of three-dimensional solid FE combined with the smeared
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crack approach are the ATENAMY and the DIANAZ®. In this work the ATENA software was
used as a comparative tool for testing the accuracy and computational efficiency of the
proposed formulation.

5.2 Proposed Modeling Method

When modeling RC structures with detailed 3D FE four basic numerical stages have to be
considered:

I.  FE type for concrete modeling.

ii. 3D concrete material constitutive model.
iii.  FE type for embedded rebar modeling.
iv.  Steel material constitutive model.

These stages will be discussed in detail in the following sections.

5.2.1 FE Type for Concrete Modeling

The hexahedral element is a 3D solid hexahedron, also known in the literature as “brick
element”. This type of element is used in modeling not only three-dimensional solids but also
plates and shells as well as beam elements. The construction of the hexahedral shape functions
and the computation of its stiffness matrix depend on the isoparametric description and
numerical integration schemes adopted.

The natural coordinate system & #, ' is positioned in the barycenter of the hexahedron and the
corresponding nodal coordinates are given in Table 5.1. In Fig. 5.1 the positioning of each node
corresponding to the natural coordinate system ¢& #, { can be seen, for the case of the 8-noded
hexahedral elements. This element has a total of 24 dof and therefore the size of its stiffness
matrix is 24x24. The 8-noded hexahedral finite element (hexa8) has the simplest formulation
regarding the hexahedron finite element family, leading to a fast computation of the stiffness
matrix.

The general matrix equation which describes the hexa8 formulation can be written as:

1 ] r1 1 1 | 1 1 1 1 7 - a@ -
Nl
X X1 X2 X3 X4 X5 X6 X7 Xg N(e)
y , 2
y o Y2 Vs Ya Vs Ve V71 B
z = Z Z2 Z3 Z4 Zs Z6 Z7 Zs . 5.1
Ux Uxi Ux2z VUx3 Uxq4 Uxs Uxg Ux7 Uxg
Uy Uyl Uyz Uy3 Uy4 Uy5 Uy6 Uy7 Uyg N(e)
L Uz LVz1 VU2 Vg Uzg VUzs Vz¢ Uz7 Uzgd =78 =
where

NO=la-51-mn1-¢), NP=la+&a-np1-9)
N =11 +HU+nA-¢), NP =11-HA+nA-¢)
NO=la-5)a-ma+¢), NP=la+680-n1+9)
NP =a4+6)A+mA+¢), NP =11-80+nd+¢)

5.2
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Ni(e)are the shape functions. These eight formulas can be summarized in a single expression:

Ni(e) = %(1+ffi)(1+7777i)(1+<<i) >

FIGURE 5.1 NATURAL COORDINATE SYSTEM OF THE 8-NODED HEXAHEDRAL ELEMENT.

More complex hexahedral elements can be seen in Figs. 5.2 with higher order shape functions
and which have more dof thus requiring more computational effort for the formulation of the
stiffness matrix. In this work the hexa8 element is adopted, for its simplicity and computational

efficiency.

Node ¢ n ¢

FIGURE 5.2 HEXAHEDRAL ELEMENTS WITH 20 AND 27 NODES.

5.2.2 3D Concrete Material Constitutive Model

As it was discussed in this Dissertation , several material models were proposed for the
modeling of concretel'?® 142210220 The 3D material model for concrete implemented in this
work was based on the Kotsovos and Pavlovic®® model after a modification of its numerical
implementation in order to improve its numerical robustness. The proposed modifications,
which were presented in Chapter 3, ensure that the material model when combined with the
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smeared crack approach, manage to predict the 3D nonlinear behavior of concrete material
under any stress state conditions with computational accuracy and efficiency.

5.2.3 FE Type for Embedded Rebar Modeling

Previous simulations with the embedded rebar reinforcement used 2-noded or 3-noded rod
elements. Hence, the reinforcement is considered to act as uniaxial element, without taking into
consideration shear and bending stiffness. Although it is generally believed that shear and
bending resistance of reinforcement is not significant, there are cases where the shear and
bending resistance are important in capturing the nonlinear response of RC structural members.
The discretization of the reinforcement is therefore performed with NBCFB element which in
addition to the consideration of shear and bending it was found to increase the numerical
stability of the NR iteration procedure due to its special formulation features. However, the
choice of using 3D beam elements instead of uniaxial rod elements introduces some
implementation issues.
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FIGURE 5.3 EMBEDDéD)REBAR ELEMENTS UNDER IMPOSED TRANSVERSE éE)FORMAHON: (A) RoD

ELEMENT AND (B) BEAM ELEMENT.
When 2-noded or 3-noded rod elements are used, the compatibility conditions between the
nodes (1 and 2) of the rod and the corresponding hexahedral nodes (n1-n8) is enforced through
the translational dof (Fig. 5.3a) since the rotation of the rod nodes is neglected. When beam
elements are used, the compatibility of rotation between the hexahedral nodal displacements
and the rotation of the rebar nodes that are located on the corresponding hexahedral faces must
be enforced. The compatibility is achieved by computing the hexahedral face rotation and
imposing it to the corresponding rotational dof of the rebar node.

Assuming that the angle 8 between the longitudinal axis of the rebar and the normal It on the
master triangle of the hexahedral face (Fig. 5.4) remains fixed before and after deformation, the
required rotation can be derived through kinematic constraints. The assignment of a master
triangle at each rebar node is performed prior to the analysis by detecting the three nearest
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hexahedral nodes of the corresponding face containing the rebar node. These three nodes n2,
n3, n6 in Fig. 5.4 represent the master triangle of the rebar node 2 which controls the rotation of
the corresponding rebar node.

4

nl o
Master triangles of
beam element nodes:
1: n4-n8-n5
2:n2-n3-n6

FIGURE 5.4 MASTER TRIANGLES OF BEAM ELEMENT NODES 1 AND 2.

5.2.3.1 Kinematics

Most researchers!® & 138189, 190.223] ;q0 standard kinematic relations in order to connect the rod
nodal displacements with the corresponding hexahedral displacements. A more recent approach
was proposed by Jendele and Cervenkal™®¥ (2009) where the solution of a multi-point constraint
conditions problem called Complex Boundary Conditions is performed. This procedure requires
the solution of a system of non-symmetric constraint equations, which appears to be
computationally demanding.

In this work, the kinematic relations that connect the beam nodal displacements with the nodal
displacements of the corresponding hexahedral face, are given from the following expressions

=T .U", F'=T" .F®

(12x1)  (12x24) (24x1)  (24x1)  (24x12) (12x1)

5.4

where u® and U" are the displacement vectors of the beam and hexahedral elements,
respectively, while F® and F™ are the corresponding internal force vectors. The transformation
matrix T is composed of 32 (3x3) submatrices which are computed from the natural coordinates
of the hexahedral, the beam element and the master triangle nodes

T, T, T, T, T: T: T: T,
0 0 0 RR R 0 0 R;
sal|T T T T T T T T >
0O R R 0 0 R 0 0
The submatrices located in rows 1 and 3 of T correspond to the translational rebar
displacements Tij and those in rows 2 and 4 correspond to the rotational rebar displacements
an. Eqg. 5.5 refers to the case illustrated in Fig. 5.4 where the nodes 1 and 2 of the rebar
correspond to (n4-n8-n5) and (n2-n3-n6) master triangles, respectively.
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Each transformation matrix T (Eq. 5.5) consists of 32 submatrices with dimension 3x3. From
Eqg. 5.5 it can be seen that the translational dof of each beam element node are transformed

through the use of T{ matrices

N 0 0
T'=| 0 N/ 0|, 5.6
3x3 O O NIJ

where Nij (i = 1, 8) correspond to the 8 hexahedral shape functions and j = 1, 2 denote the

embedded rebar nodes. After the computation of the value of each shape function N/ at the
natural coordinates of each beam node the corresponding matrices are assembled. As it can be
seen from EqQ. 5.6, submatrix T{ contains the shape function value N; computed at the rebar
node j.

In order to handle the rotational dof of the embedded rebar beam element, the definition of a
master triangle is necessary with the purpose of computing the rotation along the three global
axes. This master triangle is formed with the three nearest to the rebar beam element node on
the corresponding hexahedral face (Fig. 5.4). The computation of each master triangle body
rotations are calculated with the natural mode theory of Argyris et al.”%! (1997). So as to
estimate the translational modes p as functions of the displacements and rotations at vertices 1,
2 and 3 of a triangle, it is assumed that the linear displacement field with respect to the local
elemental coordinate can be described as:

Uu=p,+pxX+p,y, v=0,+0x+0q,y, w=r, 5.7

where p;, q;,; are the displacements referred to the local coordinate system. If the origin of the
local coordinate system is placed at the element’s barycenter, Eqs. 5.7 may be written in the
form

U +U, +U, =3p,, v, +v,+v,=3q,, W +W,+W,=3r 5.8

The rigid body drilling rotation pos is given by

1(ov ou) 1
Pos ZE(&_EJZE(%_ pz) 5.9
If we write Egs. 5.7 for every vertex, the quantity in Eq. 5.9 becomes
Dos :—%( Uy Va0 Xgly + Y0+ X U + Y 0, ) 5.10
where
Xo =X =Xy Xg=X=X5, X, =X =X, Y,=Y3= Yoy Yp=Y1"Ys Y, =Y2— W 5.11

and x;, yi (i=1, 3 master triangle nodes) are the local Cartesian nodal coordinates of the triangle
(Fig. 5.5) while Q is the area of the triangle. Then the relation between the rigid body rotations
poa, pos and the Cartesian coordinates of the triangle vertices need to be defined. For this
purpose the rotation 6; of the triangle along the side 23, as depicted in Fig. 5.5, is given by
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1 h, 20 5.12
and its two projections on the local Cartesian axes, are given by
Xa Xa 1 ya ya
91x=910033x=6’1t=ﬁw1’ 91y=613|nay=91E=29W1 5.13
Similarly,
X X y y
_s _ _JB _
Gumgat Bnmag G =g G a" i
Therefore, the rigid-body rotations pos, pos are simply:
Pos =0+ 05, +6,,, pos = ely +'92y 'H93y 5.15
X Xﬁ' X}' Yy yﬂ y7
=2 W, + 2w, + —Lw, =22 W + =L w, + =L w 5.16
Poa 20 1T oq 2 THa s Pos 00 1T oq 2 THa s
The above equations can be expressed in matrix form
Poa X
Pos (= { R\ R R } y
(3x3) (3x3) (3x3) 5.17
Pos
(3x1) (9x1)
where
i 1 i X, | i X |
0 0 a 0o o0 L 0 0 =
2Q 2Q 20
Ri<l o o |RrR- 0o o Z|R-|o0o o X £ 18
(3x3) 2Q | (3x3) 2Q2 | (3x3) 2Q
XY g X% Y, XY
20 20 | 20 20 20 20

and j = 1, 2 corresponds to the embedded rebar beam nodes and & is the area of the
corresponding master triangle. X, y, z are the translational displacement vectors of the master
triangle.

FIGURE 5.5 ROTATION 0.
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Therefore, after the computation of the three transformation matrices R{n in the global
coordinate system (Eqg. 5.19) for each master triangle the computation of the transformation
matrix T (12x24) of Eq. 5.5 is completed.

R, =T, R, T,

(3x3)  (3x3)(3x3)(3x3) 519

where T, is the known cosine matrix that transforms the local into global coordinate system
(Eqg. 2.80).

5.2.3.2 Transformation of the Stiffness Matrix of the Embedded NBCFB Element

The contribution of the rebar stiffness to the stiffness matrix of the parent hexahedral element is
given by:

nr

KHexa = KHexa+Z (Tl ) ! ’ Kimbar ’ Ti 520

(24x24)  (24x24) i=1 (24x12)  (12x12) (12x24)
where T; is the transformation matrix given in Eq. 5.5 for imposing the compatibility condition
between the rebar and the corresponding hexahedral nodal displacements, K,,. . is the stiffness

Hexa

matrix of the hexahedral element and nr is the number of the embedded rebars in the element.

5.2.3.3 Idealization of the Rebar Element

As can be seen in Figs. 5.6, the section of any rebar may be transformed into an equivalent
square section which is subdivided into a number of fibers in x and y directions. The
idealization of the rebar’s section into square is performed in order to simplify the discretization
procedure. Given the diameter of the rebar, the dimensions of the square cross section are given

by

2
b=h= /ﬂ 5.21
4

3 Gauss-Lobatto
Integration Points

7'

q:D 2
_T_ / L i: number of fiber
b
A b=vrd’4
£ o d: Rebar Diameter
x v z : global coordinates
x'y'z' :local coordinates
(»)
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FIGURE 5.6 DISCRETIZATION OF (A) A SQUARE AND (B) A CIRCULAR SECTION WITH FIBERS.
Numerical tests performed for both cross sections produced identical results since the stiffness
coefficients that are mainly affected through the sectional simplification correspond to the
bending coefficient which is by nature much smaller than the corresponding axial and shear
coefficients of the rebar.

5.2.4 Steel Material Constitutive Model

As described in Chapter 2, the constitutive material models that are available for predicting the
steel behavior of reinforcement are the Menegotto and Pinto®® material model, enhanced with
the Filippou et al.®® isotropic hardening, and the standard bilinear steel material model. It is
widely accepted that the Menegotto and Pinto material model through its simple numerical
formulation provides the necessary tools in predicting the behavior of rebar-type steel elements
with an acceptable accuracy. Consequently, in this work, the Menegotto and Pinto"®! material
model is adopted for all the numerical implementations.

5.3 Numerical Experiments

Many researchers have used the experimental results of Bresler and Scordelisi*®®! (1963) on a
series of beams, the results of Lefas!®® (1988) on a series of shear walls and the experimental
findings of Cervenkal®” (1970) shear panel to verify their numerical models. In general, this
task is demanding when attempting to reproduce numerically experimental results with
different structural characteristics. In this work, the pre-mentioned experiments have been
examined and their numerical response is compared with the corresponding experimental data.
The aim is to illustrate the accuracy, robustness and the computational efficiency of the
proposed modeling.

It has to be mentioned that, full bond between concrete and reinforcement rebars was
considered in the numerical studies. For all the numerical simulations that were conducted in
this work, the tensile strength of concrete was assumed to be equal to 5% of the corresponding
cylindrical compressive strength, the remaining shear capacity parameter $ was equal to 0.05
and the NR energy convergence criterion was set to 10™. It must be also noted that, the crack
openings can occur only at the Gauss-Points of the hexahedral elements, thus the cracks are
ploted the same way.
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5.3.1 RC Beams with and without Stirrups

With these two numerical experiments, we will try to illustrate the importance of taking under
consideration the stiffness of reinforcement by treating the rebars as beam elements instead of
rod elements. The computational efficiency of the numerical treatment of the proposed
formulation will also be demonstrated through the following numerical tests.

5.3.1.1 RC Beam without Stirrups under Central Point Load

The first numerical experiment consists of a simply supported beam with no stirrupst ¢!, Its
geometrical features are depicted in Fig. 5.7. The experimental failure load was reported to be
equal to 334 kN with a corresponding central deflection of 6.6 mm. Fig. 5.8 shows the first FE
model which consists of 132 hexahedral elements for concrete and 88 NBCFB elements for the
embedded reinforcement. Furthermore, two additional denser meshes were created, containing
264 and 528 hexahedral concrete elements (Fig. 5.9) in order to investigate the mesh sensitivity
of the proposed method.

‘ j
Tension steel
L 3657.6
1 1
r 3099 |
Maximum aggregate size: 19

al fc=225MPa
4 § fy = 555 MPa 4 bars 28 9mm diameter

o LI L DN

. B — 8
Noth face
(b)

FIGURE 5.7 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. (A) MEMBER
CHARACTERISTICS, (B) EXPERIMENTALLY OBSERVED CRACK PATTERN AT ULTIMATE LOAD!¢],

The four longitudinal bars have a diameter of 28.9 mm which represents a large reinforcement
ratio (1.52%) corresponding to the beam sectional dimensions (309.9 mm width and 556.3 mm
height). The results obtained for different simulations are shown in Fig. 5.10.

Curves 8 and 9 in Fig. 5.10 were reproduced using 27-noded and 8-noded hexahedral elements,
respectively, the rod element as embedded reinforcement and the Kotsovos and Pavlovic!®
concrete material model. As it can be seen, the ultimate loads reached by lateral deflections of
these curves are much larger than the ultimate loads computed by ATENA software (Curves 2-
4), even though the embedded reinforcement bars are modeled by rod elements. These
differences can be attributed to the different concrete material models based on the cubic
compressive strength instead in the cylindrical embedded in 8-noded hexahedral elements used
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in ATENA, since the bearing capacity is well under estimated corresponding to the
experimental results. Curves 5, 6 and 7 were obtained with the present formulation.

Rebar Elements
4 physical longitudinal rebars Q 28.9mm

<

Metallic Plate

FIGURE 5.8 BEAM WITHOUT STIRRUPS UNDER CENTRAL LOADING. FE MESH.

The predicted failure loads with the corresponding mid-span deflections are shown in Table 5.2
and are in good agreement compared to the experimental ones. The predicted values illustrate
the numerical accuracy of the proposed method and its robustness with respect to the mesh
sensitivity. The failure of the beam was initiated due to cracking of the beam compressive zone,
as can be seen in Fig. 5.11, where the deformed shape and crack pattern of the beam prior to
failure are illustrated.

An analysis of the required computational effort for the 132 hexa8 elements model is shown in
Table 5.3, where it can be seen that the required CPU time for solving this nonlinear problem
with 30 load increments was 7 sec.

(A) (B) (©)
FIGURE 5.9 BEAM WITHOUT STIRRUPS UNDER CENTRAL LOADING. FE MESHES WITH (A) 132, (B) 264
AND (C) 528 HEXA8 CONCRETE ELEMENTS.

Page 152 of 272



Chapter 5
400

300

=]
w
o

Load (kN)
g

100

50 4

0 1 2 3 4 5

Midspan Deflection (mm)

FIGURE 5.10 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. PREDICTED AND
EXPERIMENTAL LOAD-MIDSPAN DEFLECTION CURVES FOR DIFFERENT FE MODELS.
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9 — Hexa8 - Rod elements
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The required computational effort of ATENA software was approximately 9 min for the solution
process when using 132 hexa8 elements, 24 min for the case of 264 hexa8 elements and 50 min
for the case of 528 hexa8 elements (Table 5.2). It has to be mentioned that ATENA performs
several graphical representation procedures during execution, which increase the required CPU
time for the solution. Furthermore, the same problem was solved in Lykidis®, requiring
approximately 10 min with the use of a Pentium 4 extreme processor (3.73 GHz). The increased
computational effort is attributed to the use of higher order hexahedral elements (27-noded

hexahedral elements).

Failure Load Deflection | CPU time (sec)
Model
(kN) (mm)
Proposed method — 132 Hexa8 elements 338 6.7 7
Proposed method — 264 Hexa8 elements 348 7.0 18
Proposed method — 528 Hexa8 elements 348 7.2 55
ATENA — 132 Hexa8 elements 240 >8 540
ATENA — 264 Hexa8 elements 230 >8 1440
ATENA — 528 Hexa8 elements 230 >8 3000

TABLE 5.2 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. PREDICTED FAILURE LOAD,
MID-SPAN DEFLECTIONS AND CPU SOLUTION TIME FOR DIFFERENT MESHES.

Task CPU Time (sec)
Embedded Rebar Element Mesh Generation 0.02
Newton-Raphson Nonlinear Solution 7.00
Writing Output Data 12.00
Other 0.08
Total Time 20.0

TABLE 5.3 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. CPU TIME FOR DIFFERENT
TASKS OF THE NONLINEAR ANALYSIS. PROPOSED METHOD WITH 132 HEXA8 ELEMENTS.

Page 153 of 272




Chapter 5 Athens, Jan 2011

South face
Cracked Compressive Zone

North face

FIGURE 5.11 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. CRACK PATTERN AND

DEFORMED SHAPE PRIOR TO FAILURE. PROPOSED METHOD WITH 132 HEXA8 ELEMENTS.
Table 5.4 shows the required number of NR iterations during the solution procedure for the
beam without stirrups for the case of 132 hexa8 concrete elements. It can be seen that most of
the load steps when using the proposed modeling method, require less than 6-8 NR iterations
which confirms the numerical robustness of the proposed method. However, in some load steps,
like the 10" load step, a significant number of internal iterations is required due to the large
number of crack openings. In Fig. 5.12 the crack patterns at load steps 9 and 10 are depicted
illustrating the additional cracks that were created in just a single load step which explains the
increased number of iteration at this step.

In order to illustrate the computational efficiency of the proposed modeling method, different
loading increments are applied for the case of 264 hexa8 elements and the corresponding load-
deflection curves are depicted in Fig. 5.13. It can be seen that the variation of the predicted
curves is negligible and it can therefore be concluded that the accuracy of the solution
procedure is not sensitive to the size of load increment, which is a crucial numerical property
when dealing with large scale problems. The corresponding required CPU time until failure for
different load increments is given in Table 5.5.

10th Newton Raphson Load Step

FIGURE 5.12 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. CRACK PATTERN AT THE 9™
AND 10™ LOAD INCREMENTS. PROPOSED METHOD WITH 132 HEXA8 ELEMENTS.
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FIGURE 5.13 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. LOAD-DEFLECTION CURVES
FOR DIFFERENT LOAD INCREMENTS. PROPOSED METHOD WITH 264 HEXA8 ELEMENTS.

Newton-Raphson Iterations per load step

Load Incr. |1|2(3|4|5|6|7|8|9|10{11]|12]13|14|15(16|17|18|19|20|21|22|23|24|25|26|27|28|29|30

ATENA 111]11|1|8/12|23|21|18|8 |17|14|8|14|9 (17]40(12|15/40

ReConAn 1/1/1[416(3[8|3|1[14{1|211]15/]2|6|5]|4(3]2|6|2|2]|4|3|6[4|3]2][18

TABLE 5.4 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. NEWTON-RAPHSON ITERATIONS
PER LOAD STEP. PROPOSED METHOD WITH 132 HEXA8 ELEMENTS.

Load Increments CPU Time
(sec)
50 25
20 17
10 11

TABLE 5.5 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. CPU TIMES UNTIL FAILURE FOR
DIFFERENT LOAD INCREMENTS. PROPOSED METHOD WITH 264 HEXA8 ELEMENTS.

5.3.1.2 RC Beam with Stirrups under Central Point Load

The second numerical test refers to the same beam specimen with stirrups and compression
reinforcement, as shown in Fig. 5.14. It must be mentioned that local stiffening is applied in the
experimental set-up in the region of the central point load and at the support regions. The
collapse of this beam member occurred when the central point load reached 467 kN with a
corresponding midspan deflection of 13.8 mm™®®. The south face crack pattern is also depicted
in Fig. 5.14, which was observed at the ultimate load level.

The failure of the beam was brittle without yielding of the tension bars. Diagonal cracking
began at the same load level as for the beam without stirrups (267 kN), but did not lead to
failure due to the presence of stirrups and compression reinforcement. Fig. 5.15 shows the FE
model that was used for this numerical experiment, which consists of 102 hexahedral elements
for concrete and 354 NBCFB elements for the embedded reinforcement.
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FIGURE 5.14 RC BEAM WITH STIRRUPS UNDER CENTRAL POINT LOAD. (A) MEMBER’S CHARACTERISTICS
AND (B) EXPERIMENTALLY OBSERVED CRACK PATTERN AT ULTIMATE LOAD! ],

Hexahedral Elements

FIGURE 5.15 RC BEAM WITH STIRRUPS UNDER CENTRAL LOADING. FE MODEL.

As can be seen from Fig. 5.16, the predicted failure load of the proposed modeling is equal to
448 kN with a corresponding midspan deflection of 13.5 mm for the case where the external
load is divided into 50 load steps (Curve 4). Similar failure loads were also obtained for 100
and 20 load step increments (Curves 3, 4 and 5). Curve 7 shows that ATENA with rod elements
for the reinforcement failed prematurely due to extensive cracking.

Fig. 5.17 shows the crack pattern for several load levels up to failure. Cracking in the beam’s
compressive zone starts for an applied load of 300 kN, but does not lead to failure of the beam
due to stirrups confinement and the compressive contribution of the upper reinforcement. The
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numerical solution terminates when failure of the compressive bars is manifested which is in
good agreement with the experimental mode of failure.

500 -
3 1
450 - “""'-
........ g a
400 -
350
7

300 -
g 250 4 1 ===Experiment
; .
@ o < 2 Hexa8 with Rod elements - No Slippage
4200 .

3 Proposed model - 100 load steps
150
4 Proposed model- 50 load steps
100 -
£ 5 «-++ Proposed model- 20 load steps
50 7 6 = - Hexa20-Rodelements [16]
0 . . . . 7 —IATENA—SOIIoad steps .
0 2 a 6 8 10 12 14 16

Midspan Deflection {(mm)

FIGURE 5.16 RC BEAM WITH STIRRUPS UNDER CENTRAL LOADING. LOAD-DEFLECTION CURVES FOR
DIFFERENT LOAD INCREMENTS AND FE MODELS.

Load Step 20 (200kN)

Load Step 48 (480KN)
FIGURE 5.17 RC BEAM WITH STIRRUPS UNDER CENTRAL POINT LOAD. CRACK PATTERNS AND
CORRESPONDING DEFORMED SHAPES AT DIFFERENT LOAD LEVELS.

The required NR iterations for this numerical experiment are depicted in the graph of Fig. 5.18
for 48 load steps. The maximum required number of NR iterations occurs at load step 31 where
the initiation of the compressive zone cracking takes place and crack opening is extensive due

to the excessive stress redistribution.

The required computational time for the nonlinear solution procedure is depicted in Table 5.6
which refers to 48 incremental load steps. It can be seen that the average CPU time per load
increment is 0.354 sec compared to 0.177 sec for the corresponding problem without stirrups.
This is attributed to the fourfold increase of the number of rebar beam elements used for this
discretization. The corresponding computational time when analyzing this model with ATENA
software for 25 steps was 15 min.
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FIGURE 5.18 RC BEAM WITH STIRRUPS UNDER CENTRAL POINT LOAD. REQUIRED NEWTON-RAPHSON
ITERATIONS PER LOAD STEP.

Task CPU Time (sec)
Embedded rebar element mesh generation 0.03
Nonlinear incremental-iterative solution 17.00
Writing output data 25.00
Other 0.43
Total Time 42.46

TABLE 5.6 RC BEAM WITH STIRRUPS UNDER CENTRAL POINT LOAD. CPU TIME FOR DIFFERENT TASKS OF
THE NONLINEAR ANALYSIS.

5.3.2 RC Shear Walls

Lefas?®® dealt with the experimental study of RC shear walls in monotonic and cyclic loading.
Two types of reinforced structural shear walls were tested. Type | and Type Il with different
geometric characteristics given in Fig. 5.19. In all cases, the walls were monolithically
connected at their ends to two beams. The lower beam was utilized to clamp down the
specimens to the laboratory test floor.

The reinforcement used in these RC shear wall types consisted of two different diameters with
different yield stress (Table 5.7). The first was high tensile rebars of 8 mm diameter and the
second was high tensile rebars of 6.25 mm diameter. In addition to the previously mentioned
reinforcement, horizontal stirrups were placed at the edges of the walls (concealed columns)
providing confinement. Mild rebars of 4 mm diameter were used for this purpose.

The shear wall specimens were clamped to the floor by means of two transverse long steel box
girders 10 mm thick and 4 holding-down post tensioned bolts. As it can be seen from Fig. 5.20,
the vertical constant load was applied through a two point loading system. Taking into account
that the proposed modeling is based on 3D material models that consider triaxial phenomena
and have the ability to simulate the interaction between different structural members (i.e.
interaction of steel plates and concrete), the boundary conditions and the application of the
loads must be chosen in such a way that will realistically represent the experimental conditions.
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In this work, the boundary conditions were simulated by constraining the hexahedral nodes
located on the lower beam of the corresponding FE models at their base. Accumulating to that,
the upper hexahedral nodes of the lower beam were also considered to be fixed in order to
realistically simulate the experimental setup. The horizontal and vertical loads were applied
through steel plates (Fig. 5.22) avoiding local node detachments and to assure that the loads
were transferred to the upper beam uniformly.

Yield Ultimate Modulus of
Steel Bar Type Strength fs, Strength fy, Elasticity E
(MPa) (MPa) (GPa)
8 mm - high tensile bar 470 565 159
6.25 mm - high tensile bar 520 610 150
4 mm - mild steel bar 420 490 -

TABLE 5.7 MATERIAL PROPERTIES OF THE REINFORCEMENT USED FOR THE TWO TYPES OF RC SHEAR

WALLS?2%],
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In order to illustrate the objectivity and robustness of the proposed modeling method in
simulating RC structures, six different RC shear wall models were analyzed, three for each RC
shear wall type. The main criterion for making this choice was to simulate all three loading
types that were used in the experimental tests for each RC shear wall type.

5.3.2.1 TypelRC Shear Wall

Six specimens (SW11-SW16) were designed®® based on the 1983 edition of the ACI code. All
six specimens had the same reinforcement but were loaded with a different load combination.
Three different vertical loads were used: 0, 0.1Af. and 0.2Af., where A and f are the shear wall
sectional area and cylindrical concrete compressive strength, respectively. Table 5.8 and Fig.
5.21 contain information associated with the reinforcement detailing and the level of constant
vertical load applied on the three specimens SW14, SW15 and SW16, respectively, as well as
with the level of maximum horizontal load attained during the experimental testing.

Ultimate Concrete
Reinforcement Percentage Vertical Load Horizontal Cylinder
Phor Per P Ps Fv E, Fh fc
%) | %) | ) | ) | &N) | bif, (kN) (MPa)
SW14 1.1 24 31 1.2 0 0 265 34.0
SW15 1.1 24 31 1.2 185 0.10 320 30.5
SW16 1.1 24 31 1.2 460 0.20 355 43.6

TABLE 5.8 TYPE | RC SHEAR WALL. REINFORCEMENT PERCENTAGES, LOAD DATA AND CONCRETE
STRENGTH FOR THE THREE SPECIMENS?°®,

2R | DIMENSIONS
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FIGURE 5.21 TYPE | RC SHEAR WALL. (A) REINFORCEMENT DETAILS, (B) REINFORCEMENT
PERCENTAGES?®!,

As can be seen from Table 5.8, the three specimens had the same reinforcement and geometry
but different concrete compressive strength and loading history, thus the same FE mesh (Fig.
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5.22) can be used for the three numerical simulations following each time the material
properties of the concrete and the loading history according to the experimental data.
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FIGURE 5.22 TYPE | RC SHEAR WALL. FE MESH.
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FIGURE 5.23 TYPE | RC SHEAR WALL. EXPERIM(EI\?TAL AND PREDICTED CURVES FOR SPECIMEN (A)
SW14, (B) SW15 AND (C) SW16.
Fig. 5.22 shows the FE mesh for the simulations of this type of RC shear walls and its boundary
conditions as described above. The FE mesh for this type of RC shear walls consists of 96
hexahedral elements and 949 embedded rebar elements. The predicted numerical load-
displacement characteristics by the proposed modeling are compared with the corresponding
experimental results in Figs. 5.23, where a satisfactory correlation can be observed.

It is worth mentioning here that with the smeared crack approach abrupt loss of stiffness occurs
during the analysis due to crack openings, which induces sudden increase of displacements, as
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can be seen in Fig. 5.23a. We must also note, that due to the small global horizontal
displacements occurring (less than 1 cm) the experimental results are sensitive to uncertainties
that inherently exist in the experimental setup.

Ultimate Ultimate
Initiation of Cracking Initiation of Cracking — Horizontal Horizontal
] — Predicted Data Experimental Data Load - Load -
Specimen Predicted | Experimental

Fu 2 Fn ) Fu Fu
(kN) (mm) (kN) (mm) (kN) (kN)
SWi14 35 0.34 25 0.25 275.5 265
SW15 45 0.27 59 0.22 304.5 320
SW16 80 0.40 80 0.31 336 355

TABLE 5.9 TYPE | RC WALL. PREDICTED INITIATION OF CRACKING AND ULTIMATE HORIZONTAL

LOADING.

He RN\

e S8 S NN
= =4 NN N

Load Step 7 - Crack Initiation
Horizontal Load 25kN

Load Step 25 - Initiation of Inclined Cracking
Horizontal Load 87kN

Load Step 87 - Crack Pattern Prior to Failure
Horizontal Load 275kN

FIGURE 5.24 TY-PE I RC SHEAR WALL. PREDICTED AND EXPERIMENTALLY OBSERVED CRACK PATTERN
FOR DIFFERENT LOAD LEVELS OF SPECIMEN SW14.

The obtained crack patterns at the failure load are depicted in Figs 5.24 and 5.25. The largest
cracks appear to be the flexural cracks that are located at the base of the three specimens where
the RC shear walls are connected to the lower beam. Fig. 5.24 shows the three characteristic
crack patterns that were predicted with the proposed method and were also mapped int?%! for
the case of SW14. The corresponding experimental values for the three specimens are given in
Table 5.9 where the good agreement between experimental and analytical data can be verified.
The initiation of inclined cracking for SW14 was found experimentally to occur at a
corresponding load of 100 kN, which is reasonably close to the numerically obtained value (87
kN). The CPU time required for the solution of the three numerical models are given in Table
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5.10 where it can be seen that the required CPU time for the case of SW15 specimen is larger
than the time required for the specimen SW14 due to the increased number of NR iterations
required for each load increment.

Crack Pattern Prior Failure Crack Pattern Prior Failure

FIGURE 5.25 TYPE | RC SHEAR WALL. PREDICTED CRACK PATTERNS OF SPECIMENS SW15 AND SW16 AT
ULTIMATE LOADS.

ala | Specimen Newton Raphson Load Step CP(L:eI)lme
1 SwWi14 86 >0
2 | Swis 87 60
3| Swie 83 33

TABLE 5.10 TYPE | RC SHEAR WALL. CPU TIMES FOR THE NONLINEAR SOLUTION PROCEDURE
(NEWTON-RAPHSON LOAD STEPS).

5.3.2.2 Type Il RC Shear Wall

Table 5.11 and Fig. 5.26 include information associated with the percentages of reinforcement
and the level of constant vertical load applied for the three selected specimens (SW21, SW22
and SW25) of type Il shear wall as well as the level of maximum horizontal load attained
during the experimental testing’®®. Fig. 5.27 shows the FE mesh, which consists of 131
hexahedral elements and 1,118 embedded rebar elements.

It is important to stress that the same parameters were used for all numerical models,
concerning the nonlinear solution process, where the horizontal load was divided into 100 load
increments. The predicted load-capacity curves and crack distributions were compared with the
corresponding experimental curves in Fig. 5.28 and the crack pattern in Figs. 5.29 and 5.30,
where the close agreement between experimental results and the analysis can be verified. From
Fig. 5.29, it can be seen that macrocracking initiates at the lower tensile edge of the wall and
spreads progressively towards the lower compressive zone with increasing load. It is worth
pointing out that the virtually vertical cracking observed near the failure load is in accordance
with the corresponding patterns observed experimentally. Eventually, in this numerical model,
the adjacent compressive state stress is transformed into a triaxial state of stress with a tensile
component, which resulted in an immediate loss of the load-carrying capacity at the
corresponding Gauss point.
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FIGURE 5.27 TYPE Il RC SHEAR WALL. FE MESH.

In the case of specimen SW22 the predicted curve departs from the corresponding experimental
curve when the horizontal load reaches the value of 60 kN and the predicted stiffness becomes
smaller than the corresponding experimental one. However, the ultimate load and the
corresponding horizontal displacement were predicted with a relatively good accuracy (Table
5.13). Important observations can be derived from Fig. 5.28c, where the capacity load of
specimen SW25 seems to be overestimated. This has to do with a premature failure of the
experimental test, as was reported by Lefas’?®®. Thus the numerical prediction of this
simulation verifies the experimental findings. We must comment here that it is inevitable that
some numerically predicted load-displacement characteristics will not fully comply with the
experimental curves due to uncertainties involved in the experimental setups which could not
be accurately simulated. The required CPU time is given in Table 5.13, which illustrates the
computational efficiency of the developed FEA code.
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FIGURE 5.28 TYPE Il RC SHEAR WALL. EXPERIMENTAL AND PREDICTED CURVES FOR SPECIMEN (A)
SW21, (B) SW22 AND (C) SW25.

Ultimate | Concrete’s
Reinforcement Percentage Vertical Load Horizontal | Cylinder
I:)hor I:)ver I:)fl I:)S I:v FV I:H fc
%) | (%) | (%) | (%) | (N) blf, (kN) (MPa)
SW21 0.8 2.5 3.3 0.9 0 0 127 34.3
SW22 0.8 2.5 3.3 0.9 182.0 0.10 150 34.8
SW25 0.8 2.5 3.3 0.9 324.8 0.20 150 36.6

TABLE 5.11 TYPE Il RC SHEAR WALL. REINFORCEMENT PERCENTAGES, LOAD DATA AND CONCRETE
STRENGTH FOR SPECIMENS SW21, SW22 AND SW25[2%],

Ultimate Ultimate
Initiation of Cracking | Initiation of Cracking — | Horizontal Horizontal
) — Predicted Data Experimental Data Load - Load -
Specimen Predicted | Experimental

Fy ) Fu ) Fu Fu
(kN) (mm) (kN) (mm) (kN) (kN)
SW21 8 0.20 10 0.32 128 127
SW22 27 0.48 14 0.39 148 150
SW25 45 0.24 25 0.60 157 150

TABLE 5.12 TYPE Il RC SHEAR WALL. PREDICTED INITIATION OF CRACKING AND ULTIMATE

HORIZONTAL LOADING.

Page 165 of 272




Chapter 5 Athens, Jan 2011

ala Specimen Newton Raphson Load Steps CP(LSJe'(I:')Ime
1 SW21 80 60

2 SW22 83 >0

3 SW25 87 18

TABLE 5.13 TYPE Il RC SHEAR WALL. CPU TIMES FOR THE NONLINEAR SOLUTION PROCEDURE.

Load SIE!J 5- Crack Illili{“iﬂll Load Step 22 - Initiation of Inclined Cracking Toad Step 80 - Crack Pattern Prior Failure
Horizontal Load 8kN Horizontal Load 35.2kN Horizontal Load 128kN

FIGURE 5.29 TYPE || RC SHEAR WALL. PREDICTED CRACK PATTERN FOR DIFFERENT LOAD LEVELS OF
SPECIMEN SW21 AND EXPERIMENTALLY OBSERVED CRACK PATTERN OF SPECIMEN SW26.

SW22 SW25
Crack Pattern Prior Failure Crack Pattern Prior Failure
FIGURE 5.30 TYPE Il RC SHEAR WALL. PATTERNS OF SPECIMENS SW22 AND SW25 AT ULTIMATE
LOADS.
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5.3.3 RC Shear Panel Beam

Shear panel beam W-2 tested by Cervenka®” has been frequently used by many
researcherst™®® 2212331 \ith the aim of verifying their numerical models. The panel beam
consists of two orthogonally reinforced panels, 762 mm wide, 762 mm high and 76.2 mm thick,
separated by three ribs (Fig. 5.31). The concrete’s compressive strength was f, = 26.8 MPa and
the reinforcement steel material properties were Es = 190 GPa and f, = 353 MPa. The
experimental findings showed that the ultimate load capacity of this panel beam is governed by
yielding of the reinforcing steel following initial tensile cracking of concrete. Ultimately, the
panel beam failed by local concrete crushing and splitting in the compressive zone of the panel.

‘ZP
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L
t P 864mm 864mm ’ P
e —
76.2mm
= T 0
g) L f L L
AJ __||_-_0-95m"” 762mm ‘ ‘ 762mm
101.5rmm 101.6mm 101.6mm

FIGURE 5.31 RC SHEAR PANEL BEAM W-2. GEOMETRY AND REINFORCEMENT DETAILS.
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FIGURE 5.32 RC SHEAR PANEL BEAM W-2. FE MESH WITH (A) 100 AND (B) 328 CONCRETE
HEXAHEDRAL ELEMENTS.
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The finite element discretization and the corresponding reinforcement ratios are shown in Figs.
5.32 and Table 5.14, respectively. Two different models were considered, one that uses 100
solid elements and one that uses 328 solid elements for the modeling of concrete. In both FE
models the reinforcement geometry remains the same (Fig. 5.32).

The experimental and predicted curves can be seen in Fig. 5.33, where good agreement between
the results can be depicted. It can be seen that the proposed model manages to predict the
ultimate failure load (118 kN) with an acceptable accuracy and at the same time the elastic and
inelastic predicted branches are in a good correlation with the experimental curve. When the
externally applied load reaches approximately 70% (80 kN), the prediction of the RC member
stiffness is slightly overestimated as a result of the stiffness introduced through the use of the g
parameter when excessive cracking occurs (Fig. 5.34b).

Figs. 5.34 shows the crack patterns for both FE meshes at different load levels. It can be seen
that the predicted failure mode is governed by flexural cracking which occurred at the load
level of 40 kN and 35 kN for the coarse and fine FE models, respectively. As it was expected,
the initiation of cracking occurred at a slightly lower load level for the case of the fine mesh FE
model. Nevertheless, for both cases, the crack patterns were flexure dominated and the failure
mechanism was initiated when the longitudinal reinforcement located at the basis of the
specimen yielded, followed by the failure of the shear panel compressive zone.

The computational performance of the proposed model for the required computational time for
the nonlinear solution procedure is depicted in Table 5.15, where the computational efficiency
of the proposed model can also be observed for this test case.

. .. Reinforcement Ratio p
Region Direction Pancl Ribs
A X 0.0092 0.0023
A Yy 0.0092 0.0047
B X 0.0183 0.0047
B \Y 0.0092 0.0047

TABLE 5.14 RC SHEAR PANEL BEAM W-2. REINFORCEMENT RATIOS.

Fig. 5.37 shows the magnified deformed shapes prior to failure and the von Mises strain
contour predicted by the two FE models. The strain concentration is located on the base of the
specimen, where the flexural cracks occur. It is clear that the differences between the fine and
sparse models are insignificant thus the computational robustness and efficiency of the
proposed model is verified.

ala Num. of Elements | Newton-Raphson Load Steps | CPU Time (sec)
1 100 Hexa8 20 10
2 100 Hexa8 50 15
3 328 Hexa8 20 40
4 328 Hexa8 50 60

TABLE 5.15 RC SHEAR PANEL BEAM W-2. CPU TIMES FOR THE NONLINEAR SOLUTION PROCEDURE.
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FIGURE 5.33 RC SHEAR PANEL BEAM W-2. EXPERIMENTAL AND PREDICTED CURVES.

Initiation of cracking (35kN)

% |

,-’I Hi \ |'|.+" \ )
PO L A T

xlIIHH HH|1|I

vy
ﬂ'“/ \* 5 )\\\\\‘!\\\
rainnny uf ”\I\{\‘\\\"H\\\\

A FELE AT DR N : ,;,,’,;Z’,,‘,i’%((mm R aw '
VA ZEZE IR ARV VHHELR DA il Lpicdyded e " kbl
Crack pattern prior to failure (118kN) Crack pattern prior to failure (118kN)
(») (8)

FIGURE 5.34 RC SHEAR PANEL BEAM W-2. CRACK PATTERNS FOR VARIOUS LOAD LEVELS. (A) 100 AND
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5.4. Limitations of the Proposed Modeling Method

The proposed modeling method uses the Kotsovos and Pavlovic material model which is
presented in detail in®®. It is well known that this material model is not based on a
thermodynamic framework in order to dissipate energy with a proper loading-reloading
behavior®". Nevertheless, its simplicity proved to be sufficient in predicting the nonlinear
behavior of RC structural memberst® ® 138 2252268 ang promising, as illustrated in this research
work, for the nonlinear analysis of full-scale RC structures. On the other hand, as Jirasek and
Rolshoven stated in'?*!, in nonlocal constitutive theories the local state of the material at a
given point may not be sufficient to evaluate the stress at that point. This is physically justified
by the fact that no real material is an ideal continuous medium, and on a sufficiently small scale
the effects of heterogeneity and discontinuity at the microstructure level become non negligible,
especially for the case of highly heterogeneous composite materials, like concrete. Moreover,
convergence difficulties and failure of capturing experimental results when using relatively
sparse meshes make this type of models prohibitive for the analysis of full-scale RC structures.
This confirms that each numerical model has its advantages and disadvantages, thus their
incorporation in FE algorithms requires special handling. For an overview and discussion of
various non-local plasticity formats, seel?*”).

A second limitation of the proposed modeling method is the lack of taking into account the
stiffening effect and the bond-slip phenomenon. The reason for this omission is that tension
stiffening effect is not usually considered with detailed 3D modeling (see all relative
referencest® & 138 139, 199-203, 205, 225, 2261y 3 since the inclusion of a bond-slip model has an
opposite effect to the tension stiffening, it was decided not to consider these phenomena at this
stage. In addition to that, regarding the accuracy of the proposed modeling method, the bond-
slip phenomenon, plays an important role for cases where the anchorage length of the
reinforcement is insufficient. When slippage occurs, near and after the vyielding of the
reinforcement[224], it affects the elongation of the cracks’ widths and the internal strain
redistribution at the local regions where slippage takes place. It does not however affect the
crack distribution, since crack formation takes place when reinforcement is still located in the
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elastic range. Nevertheless, at local level the internal redistribution of stress and strains is
significantly affected near the ultimate state of the structure.

As it was illustrated above, modeling of cracking with the smeared crack approach has the
disadvantage the inaccurate modeling of the physical gap of the crack and the corresponding
proper stress redistribution when cracking occurs. This is attributed to the fact that the same FE
mesh is used throughout the analysis procedure thus the redistribution of the released internal
forces is not performed in a physically correct manner. The outcome of this numerical feature is
depicted in Figs. 5.34a and 5.34b where the predicted crack patterns differ in terms of their
density thus the corresponding crack widths cannot be compared. Due to the nature of the
smeared crack approach, cracks appear throughout the shear panel (Fig. 5.34b), failing to
capture the uncracked areas in between the main flexural cracks as observed in the real
experiment setup. A detailed discussion on the disadvantages of the smeared crack approach
can be found in™?%228] |t is important to note that the smeared crack method appears to be for
the moment the only feasible approach®?®®! in modeling RC full-scale structures.

Finally, the use of parameter f after a crack opening introduces an additional stiffness in the FE
model, especially in cases of flexural dominated RC structural members. Early work presented
by Cedolin and Dei'**! concluded that the shear retention factor has to be computed through an
objective manner thus they proposed its connection with the crack’s width. In this research
work it was concluded that the crack width is not the main factor that should be considered for
the activation of the shear retention stiffness. It is obvious that when a RC structural member is
dominated by flexural cracks, the shear stiffness along the crack’s planes should not be
activated since no shear deformations develop. Therefore, a formulation based on the stress-
strain field is more appropriate for assessing whether this parameter will be activated or not and
for computing its corresponding value.
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Chapter 6 Hybrid Modeling of RC Structures
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6.1 Overview

A Hybrid Modeling approach is presented for the 3D inelastic analysis of full-scale RC
structures which achieves accuracy, numerical robustness and computational efficiency. The
proposed modeling approach combines two different modeling conventions in order to predict
the nonlinear behavior of RC structures up to ultimate loading conditions.

Each structural component of RC buildings like foundation footings, beams, columns,
monolithic connections, shear walls and slabs, exhibit different mechanical behavior due to
their geometrical properties and is considerably affected by their reinforcement details.
Modeling and simulating each type of structural component requires special consideration of
their nonlinear behavior.

As it was presented in Chapters 2 and 5, the level of discretization of the structural members
controls the resulting accuracy of the numerical simulation. The NBCFB element can be
selected for modeling beam-like structural members, achieving maximum computational
efficiency albeit with reduced accuracy in certain cases. The ability in predicting objectively the
nonlinear response of any RC structural member is limited, since it cannot model members
which are shear dominated or have 3D complex geometries (dams, retaining walls, tunnels,
etc.), while slabs can only be assumed as diaphragms that are model with rigid elements or
kinematic constraints that control the relative displacements between the nodes located on the
diaphragm and, moreover, monolithic connections are disregarded since beam elements are
unable to account for local effects that take place in these critical regions.

On the contrary, when using refined models, increased accuracy is achieved, thus any type of
structural member can be analyzed nonlinearly, overcoming the discretization and modeling
problems. The main issue when using this type of modeling was, is and “will be” the
computational demand which rises because of the large number of elements that are required
for the discretization of just a single structural member. Furthermore, the more sophisticated 3D
material formulation of concrete combined with the numerically ill-posed smeared crack
approach that aggravates the computational demand excessively, make the solution of such
nonlinear system of equations impractical.

It is evident that both FE modeling methods have their numerical advantages and disadvantages
which cannot be overcome just by improving their numerical features and formulations. For this
reason, the concept of Hybrid Modeling methods (HYMOD) is introduced, in an attempt to
overcome the computational demands of the detailed modeling and improve the numerical
accuracy of the beam-column type models.

Research oriented to this field was initially conducted in the 1980s in research works that dealt
with the problem of connection between plates and 3D solid elastic bodies®*%*3]. This research
was extended to the simulation of junctions between shells and the intersections of solid bodies
and plates, as they were presented by Bernadou and Cubiert®*! (1998) and Huang™®®! (2004). In
addition, Nazarovi®* 27 (1996, 1999) and Kozlov and Mazya®*® (2001) in their work covered
the asymptotic analysis for the coupling between a 3D elastic body and a dimensionally reduced
structure.
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It is worth noting that, to the authors’ knowledge, the previous studies which involved coupling
between different structural models are limited to a few attempts that are mainly concerned with
the kinematic connection of elastic bodies of a different dimensionality. Previous ideas
regarding the coupling of models of different dimensionality from a purely kinematical point of
view were explored inf?**2?%%1, Blanco et al.?*? (2008) presented a generalized approach on the
kinematical coupling of incompatible models. The numerical implementations were limited to
two numerical tests dealing with the kinematical coupling of three-dimensional and two-
dimensional models. It is worth noting that, in all these studies, material nonlinearities were
neglected.

The most notable research work using hybrid models for modeling the monolithic joints of RC
structures simulated with two different FE models (3D solid and 1D beam like elements) was
presented by Mata et al.?**! (2008). In that work the structure was initially discretized with
beam elements and when predefined regions entered the nonlinear state, they were assumed
prismatic and discretized with 3D solid elements instead of beam finite elements. Complex
kinematic compatibility and force equilibrium conditions were enforced in order to transfer
displacements and forces to the prismatic part of the structure. Furthermore, a transformation of
the stiffness matrix was required when a critical region entered the nonlinear range where the
updated stiffness matrix of the prismatic part, at local level, was reduced back to the simple
beam stiffness matrix at the global level. This approach has several disadvantages; the main one
is that the actual local tangent stiffness matrix plays only a correctional role since its
contribution during the solution procedure is indirect. Moreover, significant stiffness-related
data is lost during the displacement computations since the transformation procedure simplifies
the tangential stiffness matrix of the prismatic part into the simple beam stiffness matrix that is
eventually used for the displacement computations. The authors reported computational times
around 2.40 sec for each load step for the solution of a model discretized with 202 elements
(192 linear hexahedral elements and 10 quadratic beams). This computational performance is
considered poor compared to the detailed modeling of structures with similar size (Chapter 5).
This will also be shown in the numerical results section of this Chapter.

In continuation of their research work, Bournival et al.**® 21 (2010) used mixed-dimensional
FEA models for the simulation of steel structures, combining beam, shell and 3D solid finite
elements. They managed to reduce the computational effort at the expense of losing accuracy
across the interface of different finite elements.

In this study a hybrid formulation is proposed combining beam and 3D solid elements. The
proposed HYMOD method for modeling RC structures requires minimal transformations for
achieving the coupling between different elements, while maintaining adequate accuracy in
predicting the nonlinearities at the critical regions of the structure.

6.2 Hybrid Modeling Formulation

The proposed HYMOD combines hexahedral and beam finite elements where the coupling
between them is achieved with kinematic constraints. Thus, the structural members that are
shear dominated, such as shear walls and joints are discretized with 8-node hexahedral elements
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while the rest of the structure is discretized with beam RC elements (Chapter 2). In the
proposed modeling method the hexahedral elements treat the opening of cracks with the
smeared crack approach, while steel reinforcement is modeled with beam elements (Chapter 5).
The beam elements in both cases, incorporate the so called natural method and fiber approach
that proved to be an excellent choice for the simulation of steel reinforcement embedded into
the 8-noded hexahedral elements for the detailed simulation of RC structures (Chapter 4).

6.2.1 Kinematic Coupling of 1D and 3D FEs

The incorporation of the Hybrid Modeling approach within the framework of the ReConAn
FEA code, developed for the purpose of this study, requires special attention at the pre- and
post-processing phase where the Femap™®"! software is implemented. When generating a hybrid
model by using a CAD system, the node compatibility conditions must be enforced between
deformations of the nodes at the interface through kinematic constraints. As it was described
previously, several researchers proposed techniques in order to achieve mesh coupling of
different type of elements. In this work the coupling between the two types of elements is
treated as a kinematic constraint which considers that each hexahedral node, located at the
interface between the beam and the solid elements, will displace according to the following
kinematic relationship

uiHEXA — Tim . urlT\]lBCFB ’
(3x1) (3x6) (6x1) 6.1
with

100 0 Li—=Zy Yo Y
T.,=/0 1 0 z, -z 0 X — X, 6.2
(29 001 Yi=¥Yn X0 X% 0
where u’°“"® and u™* are the displacement vectors of the NBCFB node and hexahedral nodes

at the interface, respectively. The subscript i of the global coordinates X, y, z refers to the
hexahedral node 1D located at the interface section ©;, while subscript m refers to the NBCFB
elemental node ID that controls the displacements (master node) of the interface section Q; (Fig.
6.1). The connection matrix T,, is computed by using the corresponding NBCFB and

hexahedral nodal coordinates. The compatibility between the 6 dof of the end node of the
NBCFB element and the 3 translational dof of the nodes at the interface ©; is maintained
through the kinematic constraint which applies for all hexahedral nodes that are located at the
interface. Assuming that any hexahedral node located at the interface follows the body
movements of section ;, which are enforced by the NBCFB element nodal translational and
rotational displacements (Fig. 6.1), the computation of the new position for any point on the
interface section Q; is obtained through a linear transformation.

If we assume that the 8-noded hexahedral element has n1-n8 nodes as shown in Fig. 6.1, then
the coupled kinematic constraint is expressed as follows:
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U HEXA — T . U hybrid
(24x1) (24:(-:1.8) (18x1)
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Vg 1 Vg
W, 1 : W,
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We . 1 Yo = Ym X =% ' WlNBCFB
U, 1. L= Ym— Y7 HlNBCFB
V7 1 Lo~ 1y : X=X ||
W, I Yr=Ym Xm—% : i
U, 1.

Vg 1

Wl | 1 ]

The only required data in order to compute the connection matrix T,, are the coordinates X;, Vi,

z; of the slave nodes that are controlled by the kinematic constraint and the Xm, Ym, Zm
coordinates of the corresponding master node. The resulting hybrid hexahedral element has 18
dof, 12 corresponding to the 4 unconstraint hexahedral nodes and 6 corresponding to the master
node dof.

The connection matrix T,, is used with the purpose of obtaining the 18x18 hybrid stiffness

matrix according to Eg. 6.5 and is used once again to compute the hexahedral nodal
displacements of the slave nodes from the hybrid element displacements after the solution of
the equilibrium equations of the structure, according to Eq. 6.3. During the global stiffness
computation, the corresponding dof of the hexahedral nodes that are located on the interface
section, are eliminated according to

Page 177 of 272

6.3

6.4



Chapter 6 Athens, Jan 2011
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FIGURE 6.1 KINEMATIC CONSTRAINT IMPOSED BY THE 1D MODEL ON THE INTERFACE SECTION £,.

The calculation of the internal forces of the hybrid hexahedral elements is performed with
FH — T|:||' . F HEXA

(18x1)  (18x24) (24x1)

6.6

where F,, is the internal force vector of the hybrid hexahedral element, which is added to the
global internal force vector during the nonlinear incremental iterative solution procedure.

With the above kinematic constraint, the interface section remains undeformed throughout the
solution process as it is controlled by the master node of the corresponding NBCFB element. As
it is going to be illustrated through a number of numerical experiments, this local effect has an
insignificant influence on the overall numerical behavior of the structure. In addition to that, as
it is going to be presented in the following sections, the degree of the reduced model is
governing the numerical behavior of the HYMOD thus the overall accuracy is not affected by
the assumed kinematic constraints.

One of the main issues that require further investigation and development is the automatic
generation of hybrid models through 3D parametric and feature-based CAD models. At this
stage, this process still remains rather cumbersome and not automatic. The required
modifications are made directly on the 3D CAD model and the modification concerning
parameters associated with the beam sections and interfaces are performed manually. The
automatic generation of hybrid idealized models with the use of a 3D CAD environment would
allow design changes directly on the 3D model and this would result into a considerable
acceleration of the design process. This problem has been investigated by some researchers?*
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2991 who foresee an automation of this procedure. Despite the difficulty of automatically
constructing parts of the mesh for hybrid FE models given the geometry of the RC structures, in
this study PRG files (Programming files) were used with the aim of automatically reproducing
specific joint types. The latter will be presented at the next Chapter of the Dissertation.

"master" and "slave" nodes
of an interface section

FIGURE 6.2 CANTILEVER BEAM. EXAMPLE OF 1D AND 3D FE DISCRETIZATION.

The model generation is performed with Femap®™ pre-processing software for constructing the

necessary input data for the materials, element types and geometry of the structure. Then, rigid
elements connect the master node of the interface with the corresponding slave nodes of the
interface section. A schematic representation of the discretization concept with HYMOD is
given in Fig. 6.2, where the hybrid model of a cantilever beam is presented.

6.2.2 Discretization with 1D and 3D FEs

The discretization scheme that can be chosen for the simulation of any RC structure is related to
the desired accuracy and available computational resources. In Fig. 6.3, different Reduction
Levels (RL) are depicted for the simulation of 3D RC frame structures. A description of the
corresponding reduction models is given in Table 6.1.

The four main reduction models depicted in Fig. 6.3 and described in Table 6.1 represent four
characteristic discretization schemes for a 3D RC structure with a shear wall. When using
hybrid discretization schemes (RL 2-3 in Fig. 6.3), the selection of the proper length L; of the
solid part (Fig. 6.4) plays a crucial role in the efficiency of the model. In order to give an
objective answer to this question, an extensive parametric investigation was conducted with the
purpose of creating some general rules which could be followed depending on the geometrical
features of the structure and structural members under consideration. The results of this
parametric investigation will be presented in the next section where characteristic FE models
were discretized by one element type or Hybrid Models and were subjected to different loading
levels in order to investigate the most appropriate length of the prismatic part as shown in Figs.
6.3 and 6.4.
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- Z7

I
D = 777 77 77
Discretization with solid Discretization with solid Discretization with solid Dis cretization with beam
elements. and beam elements. and beam elements. elements.
Reduction Lewvel 0. Reduction Level 1. Reduction Level 2. Reduction Level 3.

FIGURE 6.3 3D RC FRAME. DISCRETIZATION SCHEMES WITH DIFFERENT LEVELS OF MODEL REDUCTION.

Er

0 The whole structure is discretized with 3D solid elements
Shear dominated structural members (shear walls, junctions etc.) are

1 discretized with solid elements and the remaining parts of the structure with
beam elements.

5 Shear walls are discretized with solid elements and the rest of the structure
with beam elements.

3 The whole structure is discretized with beam elements.

TABLE 6.1 DISCRETIZATION WITH BEAM AND SOLID ELEMENTS. DESCRIPTION OF THE REDUCTION

LEVELS.

6.3 Numerical Investigation on Length “L;”

As it was mentioned above, the main reason for using the HYMOD is to reduce significantly
the number of dof in order to be able to simulate full-scale structures with the required accuracy
at an affordable computational time. In the case of RC structures, the FE model reduction
requires the determination of the length L; so that the derived model will meet the objectives
stated previously.

In this section, a numerical investigation is performed on a series of cantilever and clamped
beams for the determination of the proper length L; (Fig. 6.4) when discretizing framed
structures with HYMOD. The rationale behind this parametric study is to investigate the
influence of the adopted assumptions for the simulation of the inelastic phenomena of RC joints
using simple benchmark problems. Furthermore, to estimate the minimum length L; for the
adequate modeling of RC joints with solid finite elements. Accounting for the fact that cracking
is directly determined from the stress-state of a critical region, a set of beams with homogenous
materials are considered to illustrate the plastic hinge propagation by considering the stress
distribution. Subsequently, the investigation of the behavior of the corresponding hybrid models
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that derive from the modeling of these plastic hinges will be discussed. Following, the nonlinear
behavior of RC benchmark problems will be presented verifying the investigation’s numerical
findings.
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FIGURE 6.4 DISCRETIZATION OF JOINTS WITH DETAILED SOLID AND BEAM ELEMENTS. REINFORCEMENT
DETAILS AND FIBER DISCRETIZATION OF THE BEAM-COLUMN SECTIONS.

6.3.1 Cantilever Beams

Five different models are considered based on Fig. 6.5 and the cross-sectional properties of
Table 6.2. The concrete material characteristics of the cantilever beams are f. = 30 MPa, E; =
30 GPa, Er = 0, v = 0.2 where f;, E¢, Er and v correspond to the crushing stress, the Young
modulus, the hardening modulus and the Poisson ratio, respectively. The material model used to
simulate the nonlinear behavior of the cantilevers is the isotropic von Mises material which uses
the von Mises yielding criterion without accounting for cracking. For each FE model (Figs. 6.6)
a vertical load was placed at the end tip of the cantilevers and was applied incrementally until
failure.

Due to the loading type and the geometry of the cantilever beam (Fig. 6.5), a plastic hinge will
appear at the fixed end of the cantilever, which corresponds to the critical region of the beam
that will control the nonlinear behavior of the structural member. The length of this critical
region will be measured and thereafter a parametric investigation based on these lengths will be
performed in order to conclude which is the minimum required hinge length to be discretized
with solid elements in order to maintain an acceptable accuracy in relation to the detailed
model.
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P 7 Beam | b; (cm) | h; (cm) hi/b;
e A 25 25 1
3 ! I B 25 37.5 1.5
N i C 25 50 2
D 25 62.5 2.5
E 25 75 3

FIGURE 6.5 GEOMETRY OF THE CANTILEVER BEAM.

TABLE 6.2 GEOMETRY OF SECTIONS.

30000.
28285. -
-

26570, =

FIGURE 6.6 CANTILEVER BEAMS. FIVE FE MESHES (A-E). FIGURE 6.7 CANTILEVER BEAMS. VON MISES STRESS CONTOURS
(KPA). SCHEMATIC REPRESENTATION OF PLASTIC HINGES.

In Figs. 6.7 the von Mises stress contour is shown for each cantilever beam model discretized
with 3D solid elements. As it can be observed, the grid lines of the hexahedral elements are
shown, having a constant distance between them (12.5cm) providing the ability of measuring
any vertical or longitudinal distance manually. The shape of each plastic hinge has a similar
geometry and it can be observed that for all cases, the plastic hinge has a V shaped geometry
(red color). As the vertical load increases, the upper and lower regions of the fixed section enter
the plastic range thus the initiation of the stiffness degradation begins. With a further load
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increase, the plastic hinge spreads to the center of the section and at the same time it increases
along the longitudinal axis of the beam until failure. Fig. 6.8 shows the P-o curves that were

computed through the analysis procedure.
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FIGURE 6.8 CANTILEVER BEAMS. P-J CURVES FOR DIFFERENT GEOMETRIES.

One question that rises when observing
Figs. 6.7 and 6.9 is how can a plastic
hinge length be defined in the three
dimensional space, taking into account
the three dimensional behavior. The
answer to this question is not direct
because many assumptions can be made
on just observing this type of figures.
For this reason, an objective way of
answering this question is through a
parametric investigation on the required
hinge length that has to be discretized
with solid elements and will be able to

predict the overall nonlinear behavior of e
the beam. For this purpose, a set of
hybrid models were created, assuming
different hinge lengths discretized with .

solid elements (Figs. 6.12). The beam s
with 25x50 cm section was used in order

o erve s purpos ard the rumerical "L SO AT

indings are given in Fig. 6.10 where the

P-0 curves are shown.
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As it can be seen in Fig. 6.10, the elastic branches of the
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7 models which were solved with the

use of ReConAn (first six curves) and Femap NXNastran (red curve), are identical concerning
the solid FE models. Even though it is not clear from the graph, the elastic branch of the curve
predicted with the use of NBCFB element is slightly stiffer. This event was expected since solid

elements are more flexible than the corresponding beam.

When the two model types (solid and beam) enter the nonlinear range (approximately at the
same load level), it is evident that the beam FE model shows a softer response than the
corresponding unreduced solid FE model. The main question is, which is the correct P-¢ curve
and subsequently, which is the correct ultimate load capacity for this structural member. So as
to resolve this numerical phenomenon, the analytical solution when using the Euler-Bernoulli

theory is computed.
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FIGURE 6.10 CANTILEVER BEAM. P-d CURVES FOR DIFFERENT PLASTIC HINGE LENGTH ASSUMPTIONS.
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FIGURE 6.11 COMPLETE PLASTIFICATION OF A RECTANGULAR SECTION.

Using the Euler-Bernoulli theory and
with the help of Fig. 6.11, the
ultimate moment of the
corresponding section when complete
plastification occurs, is given by Eq.
6.7 and the ultimate capacity load
which corresponds to this moment is
given by Eqg. 6.8. The analytical
failure load is Pp = 156.4 kN which
coincides with the load predicted by

the FE model with the NBCFB elements. Since the formulation of this element adopts the
Euler-Bernoulli theory of the undeformed section, the analytical solution coincides with the
numerical which results from the combination of the FE method and the fiber approach.
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My =F,-h,, where F, = f -

N =
o

i 6.7

M
P = % 6.8

where Pp and L are the plastification load and the beam’s length, respectively. These formulae,
are valid only when the hardening modulus is equal to zero (Er = 0), meaning that the sectional
internal stress tensor remains constant when the value of yielding stress is reached, for any
further load increase.

Unreduced Model

30000,
) = 28264 =
Hinge Length=25h :

= -}
Hinge Length=2.0 h s

5 10905
) 9169,

7433,

Hinge Length=1.5h *l 5697.

3961.

!_ 2225,
Hinge Length=1.0h —l

123456

NBCFB Elements \1

FIGURE 6.12 CANTILEVER BEAM 25X50. VON MISES CONTOUR AND DEFORMED SHAPES FOR DIFFERENT
MESHES.

Another observation that can be made, concerning the hybrid discretization, is that for all
hybrid models the predicted inelastic branches are slightly below the corresponding inelastic
branch predicted by the unreduced FE models. This numerical finding confirms that the
kinematic constraints do not affect the overall response for this type of structural members with
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the corresponding loading, since the predicted curves almost coincide with those produced by
the unreduced FE models.

This type of problem was bending dominated and shear strains had no effect on the ultimate
numerical response of the computed results. To illustrate that 3D solid FE models is the most
appropriate approximation of capturing realistically the response of any structural member, the
same numerical experimental investigation was conducted for the case of a shear dominated
beam.

6.3.2 Clamped Beam

Fig. 6.13 shows the geometrical details of a clamped deep beam which has a rectangular section
of 25x100 cm and a total span of 3 m. The material characteristics are f. = 30 MPa, E; = 30
GPa, Er = 0, v = 0.2 where f;, E;, Er and v correspond to the crashing stress, the Young
modulus, the hardening modulus and the Poisson ratio, respectively. A vertical load is applied
on the midspan of the beam and is applied incrementally until failure.

p bi= 25c:mT
L 3.00m ol <
v

FIGURE 6.13 CLAMPED BEAM. GEOMETRIC AND SECTION DETAILS.
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FIGURE 6.14 CLAMPED BEAM. P-0 CURVES FOR DIFFERENT FE MODELS.
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Fig. 6.14 shows the computed P-o

curves for three different FE models

illustrated in Figs. 6.15. The first

model is the full FE model with solid
oo | elements (Fig. 6.15a), the second is the

hybrid FE model which considers a
characteristic length Li = h (section
height) in the middle of the clamped
beam and h/2 at the fixed ends Fig.
6.15b) and finally the third FE model
assumes that the clamped beam is
discretized with 6 NBCFB elements
(Fig. 6.15c). In order to evaluate the
analytical failure loads, the bending
moment capacity is computed using
the Eg. 6.7 and assuming that the
section obeys the Euler-Bernoulli
(©) assumption.  After the necessary

14635,
13238.
11841,
10444,
2048,
7651,

FIGURE 6.15 CLAMPED BEAM. DEFORMATION SHAPES AND STRESS VON calculations, MP = 11875 kNm and
MISES CONTOURS OF (A) FuLL soLID FE, (8) HYBRID FE AND (C)NBCFB  considering that the moment at the end

FE MODELS.
of a clamped beam due to a
concentrated load at the midspan is given by PL/8 then the capacity load of this beam is equal
to 5,000 kN. This failure load coincides with the computed failure load of the NBCFB FE
model.

Since the adopted NBCFB model does not account for shear strains, the expected response
when using the hexahedral elements should be softer, a numerical finding that can be seen in
Fig. 6.14. It can be easily observed that the computed P-o curves of the clamped beam when
modeled with hexahedral elements (Fig. 6.15a) is much softer than the corresponding curve
computed by the beam model, illustrating the shear effect in the stiffness degradation.

The most noteworthy numerical finding in this parametric investigation is illustrated in Fig.
6.14, where the hybrid model initially shows a slightly stiffer elastic response than the
unreduced model while, following the initiation of yielding, its inelastic behavior appears to be
softer than the unreduced model. This numerical phenomenon is attributed to the introduction
of the two beam elements between the three plastic hinges. This results to a stiffer FE model,
therefore a stiffer elastic branch occurs which leads to an earlier manifestation of yielding as
depicted in Fig. 6.14 (P,). Moreover, when yielding occurs a redistribution of the internal
strains is performed and due to the inability of the beam elements to accommodate for shear
strains (between load levels Py - Py) they maintain their elastic stiffness while the rate of
deformation is increased at the critical regions which are discretized with hexahedral elements.
As Fig. 6.14 shows, the yellow hatched area that represents the initiation of yielding up to
complete failure is located on the elastic branch of the beam model curve, verifying the above
observation. Additionally, Fig. 6.15b shows a larger concentration of von Mises stresses at the
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clamped ends of the beam confirming the above numerical phenomenon. Despite this slight
deviation of the predicted curve, it is evident that the kinematic constraints do not affect the
overall nonlinear response of this type of structures as well, exhibiting a robust numerical
behavior. It is also evident that the nonlinear response when modeling the structures with
hybrid models is mainly controlled by the formulation of each FE type and, as is shown in this
case, the predicted ultimate load is in favor of safety.

A basic conclusion that can be derived from this study is that shear dominated structural
members should be modeled with hexahedral FE models thus beam elements must only be used
for bending dominated structural members (beams and columns).

6.3.3 Computational Efficiency

One of the main reasons for using Hybrid Modeling methods, is to significantly reduce the
computational cost of an unreduced hexahedral FE model maintaining at the same time the
required accuracy. For this reason, the computational performance of the proposed modeling
method is presented for the case of a clamped beam which is discretized with 5,000 hexahedral
elements and 6,666 nodes (Fig. 6.17a). The second model corresponds to a reduced scheme
with hexahedral elements in the midspan and the ends of the beam while the rest of the beam is
modeled with 6 NBCFB elements (Fig. 6.17b).

Fig. 6.16 shows the geometrical details of a simply supported beam which has a rectangular
section of 20x40 cm and a total span of 4 m. The material characteristics are f. = 25 MPa, E; =
28 GPa, Er = 0, v = 0.2 where f;, E;, Er and v correspond to the crashing stress, the Young
modulus, the hardening modulus and the Poisson ratio, respectively. A vertical load is applied
on the midspan of the beam which is implemented incrementally (50 load steps). It must be
noted that the computed analytical ultimate vertical load is P, = 400 kN when the effect of
shear strains is neglected.

bi = 20cm

2.00m |

hi= 40cm

4.00m

FIGURE 6.16 CLAMPED BEAM. GEOMETRIC AND SECTION DETAILS.

Model Hexahedral NBCFB Total
Elements Elements Nodes
A 5,000 - 6,666
B 2,000 6 2,846
C - 10 11

TABLE 6.3 CLAMPED BEAM. DETAILS OF FE MODELS.
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FIGURE 6.17 CLAMPED BEAM. DIFFERENT FE MODELS.
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As it was mentioned, the aim of this numerical
test is to illustrate the computational efficiency
of the proposed modeling method and the
corresponding decrease of the computational
demands when the reduction of a hexahedral
model is adopted. Figs. 6.17 show the three
models used in this numerical test and the
corresponding details of each FE model are
given in Table 6.3. The first FE model is the
unreduced hexahedral model which consists of
5,000 hexahedral elements and 6,666 nodes
(Fig. 6.17a). The second FE model was
derived from the wunreduced model by
assuming that the clamped ends are discretized
with hexahedral elements over a length h
(height of section) and the middle part of the
beam over a length of 2h. The rest of the beam
is modeled with NBCFB elements as shown in
Fig. 6.17b. The last FE model is the one given

in Fig. 6.17c, which consists of 10 NBCFB elements.
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FIGURE 6.18 CLAMPED BEAM. P-0 CURVES FOR DIFFERENT FE MODELS.

Fig. 6.18 shows the computed P-¢ curves for the three FE models. As it can be observed, model
C appears to have the stiffer response since the NBCFB element does not account for shear
strains. The predicted ultimate load is approximately 400 kN verifying the analytical
calculations which derived from the Euler-Bernoulli assumption. The elastic branch computed
by the unreduced hexahedral model A is below the elastic branch of the beam model. On the
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contrary, the predicted failure load for the case of the full model is higher than the beam’s
model, highlighting the numerical phenomenon described in section 6.3.1.

It is indisputable that independently from the geometry and the boundary conditions applied,
the 3D formulation manages to predict accurately the nonlinear behavior of any structure. The
von Mises contours and deformed shapes are shown in Figs. 6.19 where the computed plastic
hinges can be seen. It is evident that the 3D representation of the final plastic hinge stress
distribution describes the evolution of the phenomenon as the plasticity is spreading inside the
volume of the structure (Fig. 6.19a). It can also be observed that the main critical regions of the
clamped beam are its two ends and its middle “section”.

) o ezl 25000,
—L— : " Ee = F os5aq, !
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Model B 8049, =
7489,
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4571 ||
ENEREEEEEE  F
1852. L
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FIGURE 6.19 CLAMPED BEAM. VON MISES CONTOURS AND DEFORMED SHAPES OF MODELS A, B AND C.

Model Ultimate load (kN) Time (sec)
A 427.35 150.0
B 425.04 60.0
C 399.84 0.7

TABLE 6.4 CLAMPED BEAM. PREDICTED LOADS AND CPU TIMES FOR SOLUTION OF 49 LOAD STEPS.

The lengths L; that were used in model B for the detailed discretization of its critical regions
derive from the von Mises contour of model A in Fig. 6.19a. It is obvious that the main
nonlinearities appear at a length h at the two ends of the beam and for a length 2h in the middle
critical region. As can be observed form Fig. 6.18, the computed P-o curve of the hybrid model
lying between the corresponding two curves computed by models A and C. This confirms that
the hybrid model inherent additional stiffness which is attributed to the beam element’s
formulation. The ultimate computed loads are the same for both models (A, B) thus the
reduction of the computational cost is indisputably a major gain when using this approach as is
illustrated in Table 6.4.

Table 6.4 shows the computational time required for the solution of 49 load steps for each
model. It is evident that the beam model is the most computationally efficient from the three
model types thus the required CPU time for the execution of the nonlinear solution procedure
was less than 1 sec. Model A is the most computationally demanding FE model and requires
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150 sec for the nonlinear solution process. On the other hand, the hybrid model requires only 60
sec for the completion of the nonlinear solution process which is 60% less than the required
computational time by the detailed model. This is attributed to the decrease of elements which
is also 60% (2,000/5,000 elemets) thus the computational time is reduced proportionally.
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FIGURE 6.20 CLAMPED BEAM. INTERNAL ITERATIONS PER LOAD STEP.

As it was mentioned above, numerical robustness is also a main issue when implementing
connection interface between the two domains. Fig. 6.20 shows the required NR iterations per
load step for the three models where the robustness of the proposed modeling method can be
verified. Instead of inducing numerical instability through the hybrid implementation,
additional stability is observed which is attributed to the simplicity of the proposed kinematic
constraints. Moreover, the numerical behavior of model B manages to predict the nonlinear
response of the structure but accurately and computationally efficient.

Closing this numerical investigation, concerning the length of the plastic hinge that should be
considered for each potential plastic hinge evidently depends on the geometry of the structural
member. Nevertheless, a general rule may derive from these numerical tests and their numerical
behavior. Assuming that the main structural member types that will be discretized using the
hybrid concept are beam- or column-like members, the minimum proposed length of the
potential plastic hinge at the ends of the members that should be considered is h (the height of
the member’s section) and 2h for the case of a potential symmetric plastic hinge that is expected
to appear in the middle of a member. It is apparent that the larger the assumed lengths L;, the
closer the nonlinear responses to the unreduced model but the more computationally demanding
the hybrid models will be.

6.4 Numerical Implementation

In this section a numerical investigation will be performed on different RC structural
components and 3D structures in order to illustrate the efficiency of the proposed hybrid
simulation. The 3D prismatic parts of these test examples are modeled with the 8-noded
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hexahedral elements that treat cracking with the smeared crack approach and the steel
reinforcement with the embedded NBCFB and rod elements (Chapter 5). The 1D parts of the
HYMOD mesh are modeled with the RC NBCFB element (Chapter 2).

6.4.1 RC Beam Supported on two Shear Walls

This numerical test consists of a RC beam which is supported on two shear walls (Fig. 6.21). In
order to study the nonlinear responses resulting from different simulations, three reduced
models were considered corresponding to RL 0, 1 and 3, respectively, as indicated in Table 6.5.
The geometrical and reinforcement details for the unreduced model are given in Fig. 6.21,
where it can be seen that the 25x60 cm rectangular beam section is reinforced with 3278 mm
rebars placed at its upper and lower region of the beam. The diameter of the stirrups is 8 mm
and the spacing between stirrups is considered to be constant (10 cm) throughout the structure.
The reinforcement details of the shear walls are also given in Fig. 6.21. The walls are reinforced
with 12 mm and 8 mm diameter rebars and considered to be fixed at their ends. The span of the
beam is 6 m and the concrete cover was set equal to 3 cm for both structural member types.
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FIGURE 6.21 RC BEAM SUPPORTED ON TWO SHEAR WALLS. GEOMETRIC AND REINFORCEMENT DETAILS.

Total

o Model Hexahedral Embedded RC NBCFB Number of
Elements Rebar Elements Elements Dof
A | Reduction Level 0 432 3256 - 2295
B | Reduction Level 1 368 2904 2 1869
C | Reduction Level 3 - - 22 114

TABLE 6.5 RC BEAM SUPPORTED ON TWO SHEAR WALLS. DETAILS OF THE FOUR FE MODELS.

The material properties considered for this numerical test are given in Table 6.6. The external
load is applied in the midspan of the beam and is implemented incrementally until failure. The
number of load increments was set to 50 and the convergence tolerance of the NR iterative
solution to 10™. For all FE models considered in the following numerical implementations of
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this Chapter, concrete is assumed to have a tensional strength equal to the 5% of its
compressive cylindrical strength.

FE Models for Concrete

(A) Reduction Level 0

(B) Reduction Level 1

[ ] L. [ ]
— L
- ‘ -

(C) Reduction Level 3

FE Model for Reinforcement

[ R=pts
| Wep]
| Reas

CEE AR ERE

FIGURE 6.22 RC BEAM SUPPORTED ON TWO SHEAR WALLS. FE MODELS OF CONCRETE AND
REINFORCEMENT.

Hardenin Yieldin Compressive .
Material Youn(gel\lélg)d ulus Modulusg Stressg Strrt)angth P;:istsign
(GPa) (MPa) (MPa)
Concrete 30 - - 30 0,2
Steel 210 2,1 500 - 0,3

TABLE 6.6 RC BEAM SUPPORTED ON TWO SHEAR WALLS. MATERIAL DETAILS.

Fig. 6.23 shows the computed P-o curves for the three FE models and as it can be seen for all
cases the computed curves consists of three branches. The first branch of each curve
corresponds to the elastic range of the beam where the structural member behaves completely
elastically. After crack initiation, degradation of stiffness is manifested in the second branch
corresponding to the nonlinear behavior of the cracked beam whose reinforcement behaves
elastically. The third branch corresponds to the yielding of the longitudinal reinforcement and
the occurrence of extensive cracking until failure. The elastic response of the beam model
coincides with the 3D detailed model up to the total vertical load of 250 kN. This is explained
by the fact that shear strains do not have an important influence on the overall behavior of the
structure and thus, the beam model appears to give a realistic numerical prediction. Following
an increase in the crack pattern and the appearance of inclined cracks (Fig. 6.24), shear strains
start to affect significantly the nonlinear behavior of the beam (Fig. 6.23), resulting into larger
deformations. Figs. 6.24 show the computed crack pattern when the cracking is initiated (60
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kN) and the corresponding crack pattern when inclined cracks appear due to increased shear
strains (300 kN).

600
———————————————— g — |- 171 3
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z ity
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-§3DO f_.' WAL RS Iryy. P
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00 ya A
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4
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0 0,5 1 1,5 2 2,5 3 3,5

Displacement (cm)

FIGURE 6.23 RC BEAM SUPPORTED ON TWO SHEAR WALLS. P-§ CURVES.

The predicted crack patterns (Figs. 6.24a and 6.24c) show that the tensile strength at the
midspan of the beam and at the upper area of its clamped ends, is exceeded resulting to vertical
flexural cracking. The correlation between the RL 1 is also shown and it can be seen that the
reduced model maintains the desired accuracy, predicting the exact initiation crack load and the
corresponding crack pattern.

(A) Crack Initiation - Load 60kN (C) Crack Initiation - Load 60kN

(B) Crack Pattern - Load 300kN voE ] (D) Crack Pattern - Load 300kN

FIGURE 6.24 RC BEAM SUPPORTED ON TWO SHEAR WALLS. CRACK PATTERNS FOR DIFFERENT LOAD
LEVELS.
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(A) Reduction Level 0

(B) Reduction Level 1

= [ ]
"y

(C) Reduction Level 3

FIGURE 6.25 RC BEAM SUPPORTED ON TWO SHEAR WALLS. CRACK PATTERNS AND DEFORMED SHAPES

PRIOR TO FAILURE.
The computed crack patterns and the corresponding deformed shapes prior to failure are
illustrated in Figs. 6.25. Following the excessive cracking, the yielding of the longitudinal rebar
elements at the midspan of the beam initiated the failure mechanism. The correlation between
the crack patterns for the first two models is satisfactory where the different orientation
cracking is observed. The deformed shape of the beam model and the computed P-J curve
underlines the inability of the beam element to account for shear strains and inclined cracking,
thus the predicted ultimate load is higher than those predicted by the 3D detailed and hybrid
models.

The numerical phenomenon depicted in Fig. 6.14 can also be used in order to explain why the
RL 1 model appears to be slightly softer than the corresponding unreduced model when shear
stains begin to play an important role. As it was explained previously, the combination of two
different FE types affect the strain redistribution when shear strains play a significant role in the
overall response of the structure, resulting to larger strain concentrations at the domain where
shear strains are accounted for. Nevertheless, the hybrid model manages to predict a
satisfactory ultimate load (504 kN) in relation to the unreduced model (516 kN), whereas the
predicted nonlinear response of the beam being in favor of safety.

Finally, the required CPU time for the solution of 50 load steps for the three models is given in
Table 6.7. It can be seen that the beam model requires negligible computational time in relation
to the unreduced model completing the nonlinear analysis in only 5 sec compared to 140 sec for
the RL 0 model and 103 sec for the RL 1 model.
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Model Time (sec)
A 140.0
B 103.0
C 5.0

TABLE 6.7 RC BEAM SUPPORTED ON TWO SHEAR WALLS. COMPUTATIONAL TIMES FOR 50 LOAD STEPS.

6.4.2 RC Frame with Shear Wall

In order to have a more clear idea on the nonlinear behavior of hybrid models and conclude on
the simulation of RC framed structures, a 3D RC frame is considered, where by using the four
reduction levels the corresponding FE mesh models are derived. Fig. 6.26 shows the
geometrical features of the frame, which has a net span of 5 m and it consists of a shear wall
(200x25 cm), a beam (25x50 cm) and a column (50x25 cm). The frame has a total height of 3.5
m and its reinforcement details are given in Fig. 6.26. The material properties considered for
this numerical test are given in Table 6.8. Two types of external loads are being applied: a) A
vertical static linear concentrated load placed at the top of the shear wall and column,
respectively; b) a horizontal static nonlinear load on the upper left region of the frame (Fig.
6.26).

The vertical loads Vi and V, were assumed to be equal to the 20% of the axial capacity of each
structural member (SW and C in Fig. 6.26). These two vertical loads and the loads that derive
from the self-weight of the structure are applied entirely at the first load step. The horizontal
load Hj is divided into 25 load steps and it is applied incrementally until failure.

l\ﬁ le

I Hi 1 1
i B 2l 8012 «
D) q SW section
= 4 24016
200 50 0] *4 u 1
c| ¢ 0
§E SW 18 - .
Dimensions in cm. | 184 208710 |
35—t ) —
— [ B section gl_ C section
g F1l F2 7 # [4o18 10222
- L dlst. @810 2| St.@12/10
LT . L Tl [ed =
Om -
Materials:
ollSup = i Steel fy = 500MPa
7 | ] = | Concretefc = 30MPa T
% i a
Ol215dovn - =
300
F1

FIGURE 6.26 RC FRAME. GEOMETRIC FEATURES AND REINFORCEMENT DETAILS.
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(A) Reduction Level 0 (B) Reduction Level 1
Rigid Element Rigid Element
123456 123436 123436
(C)Reduction Level 2 (D) Reduction Level 3

FIGURE 6.28 RC FRAME. FE MESHES.

The unreduced FE mesh is shown in Fig. 6.27, where the hexahedral brick elements and the
initial reinforcement rebar elements are schematically presented. By performing the reduction
process (RLs 1, 2 and 3), three additional FE meshes derive as illustrated in Fig. 6.28. As it can
be seen from Figs. 6.27 and 6.28, the footing foundation of the RC frame was also modeled for
the cases of RL 0, 1 and 2 to make the analysis more realistic. The four FE model details
concerning the number of each element type and dof are given in Table 6.9.
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It is worth mentioning that the geometrical features of this frame requires a large number of
hexahedral elements for the discretization of the shear wall. Thus the dof of RL 1 and 2
correspond to a decrease of 22.52% and 37.52%, respectively, compared to the initial
unreduced model.

Hardenin Yieldin Compressive .
Material Youn%l\F/)Iodulus Modulusg Stressg Str%ngth Pglsts_,on
(GPa) (GPa) (MPa) (MPa) atio
Concrete 28 - - 30 0,17
Steel 190 1,9 500 - 0,3
TABLE 6.8 RC FRAME. MATERIAL DETAILS.
y Hexahedral Embedded RC Total Dof_
a Model Elements Rebar NBCFB Number of | Reduction
Elements Elements Dof (%)
A Reduction Level 0 576 6,608 - 3,150 -
B Reduction Level 1 472 5,892 2 2,436 22.67
C Reduction Level 2 384 5,104 2 1,968 37.52
D Reduction Level 3 - - 30 186 94.09

TABLE 6.9 RC FRAME. FE MESH DETAILS.

Fig. 6.29 compares the four load-displacement curves computed from the four different RL
models. As can be seen, the obtained curve when using only beam elements is much stiffer than
the other three, a nonlinear response attributed to the beam’s formulation which neglects shear

effects. It is evident
that the  beam
model  fails to
predict the response
as well as the
inelastic branch of
the curve compared
to the computed
response by the 3D
detailed unreduced
model. The
inability of
modeling the shear
strains, 3D crack
propagation and the
three-dimensional

internal stress state

Load (kN)

1800 -
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1400 -
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800 - .
600 1 1
400 + !

200 -

Hil

——Reduction Level 0
-------- Reduction Level 1
— —Reduction Level 2

- - —Reduction Level 3

Hi

0,5 1

2

Horizontal Displacement (cm)

FIGURE 6.29 RC FRAME. P-0 CURVES.

of the structure makes the beam model inadequate to model realistically this type of structures.
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FIGURE 6.30 RC FRAME. CRACK PATTERN PRIOR TO FAILURE. REDUCTION LEVEL 0.

Athens, Jan 2011

On the contrary, the
unreduced model shows a
softer numerical behavior
which results form the
ability to account for
shear strains and the
accurate internal stress
redistribution due to 3D
cracking. Figs. 6.30 show
the crack pattern of the
RL 0 model prior to
failure. As can be seen,
the crack orientation is
inclined especially at the
shear wall region where
shear strains are

significant. Flexural cracks are observed at the lower left region of the base of the shear wall
(Fig. 6.30c) and at the lower and upper regions of the left and right end sections of the beam,

respectively (Figs 6.30a and 6.30b).

These critical regions are governed from tensile stresses which lead to flexural cracking, thus
decreasing the stiffness of the structure. The failure mechanism was initiated when longitudinal
reinforcement located at the end sections of the beam reached their maximum strain capacity
(8%). After the tensile failure of the longitudinal reinforcement, the redistribution of the
internal stresses caused excessive cracking which eventually led to the frame failure.

FIGURE 6.31 RC FRAME. CRACK PATTERN PRIOR TO FAILUERE. REDUCTION LEVEL 1.

RL 1 model manages to
predict an acceptable
nonlinear response of
the frame, without any
significant  deviations
with regard to the
unreduced model. As
can be seen in Fig. 6.29,
the two curves are in an
almost absolute
correlation, except a
slight deviation at the
final stage of loading
where the hybrid model
appears to have a
slightly stiffer behavior.

This numerical behavior is attributed to the inability of the beam model to account for shear
strains, thus they are unable to capture the stiffness degradation due to the inclined cracks
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observed at the mid-span of the column and beam which can be seen in Fig. 6.30 for the RL 0
model. On the other hand, RL 2 model, appears to have a premature failure which is attributed
to the numerical phenomenon described in the previous section. Thus the stiffer beam model
fails to capture the stiffness degradation retaining its initial stiffness, leading to a strain
concentration at the domain modeled with the 3D detailed elements. This strain concentration
led to the increased crack openings at the left end region of the beam when the loading level
reached the ultimate capacity of RC frame where the shear strains are significant, resulting to a
premature failure. The corresponding predicted failure loads and computational times for the
solution of the four models are given in Table 6.10.

FIGURE 6.32 RC FRAME. CRACK PATTERN PRIOR TO FAILUERE. REDUCTION LEVEL 2.

Predicted Reduction
Ultimate Horizontal | Number of CPU .
Model Horizontal | Displacement Load Time " .CPU
Time
Load (cm) Increments (sec) (%)
(kN)
A | Reduction Level 0 1,600 5.94 25 167 -
B | Reduction Level 1 1,600 3.87 25 110 34.1
C | Reduction Level 2 1,536 9.74 24 76 54.5
D | Reduction Level 3 1,650 3.10 25 4 >98

TABLE 6.10 RC FRAME. PREDICTED ULTIMATE LOADS, HORIZONTAL DISPLACEMENT AND REQUIRED
CPU TIME FOR DIFFERENT RL MODELS.
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FIGURE 6.33 RC FRAME. NR ITERATIONS PER LOAD STEP FOR THE UNREDUCED AND HYBRID FE
MODELS.
The required CPU time for the solution of 25 load increments was 167 sec for the case of the
unreduced FE model, which demonstrates the computational efficiency of the developed FEA
code. The corresponding computational times for the case of the RL 1 and 2 models were 110
and 75 sec, respectively. As depicted in Table 6.10, the reduction in CPU time was greater than
the corresponding reduction of the models’ dof. This is attributed to the required NR iterations
for each model, thus implying the corresponding numerical stability of the reduction schemes.

Fig. 6.33 shows the required NR iteration per load increment for the different FE models. It is
not very clear which model display the more stable behavior. For this reason, the total NR
iterations were counted in order to have a better perspective of the numerical overall behavior.
As can be seen in Fig. 6.33, as the RL increases, the required NR iterations are decreased. It can
be observed that minimum NR iterations are required when the NBCFB elements are used
exhibiting maximum numerical stability, attributed to the internal state formulation described in
Chapter 2.

The von Mises strain contours between the different FE models are illustrated in Figs. 6.34 for
two different load levels (40% and 92%, respectively). As can be seen from this Fig. 6.34, the
different FE models are in a good agreement between them verifying the observation made
through their computed load-displacement curves. It is noteworthy to say that, the schematic
representation of the resulted crack patterns and deformed rebar elements as shown in Fig. 6.35
is significant for the verification of the correctness of the output data. Dealing with thousands of
nodes, a simple load-displacement curve may not give the proper insight into the correctness of
the computed simulation. The corresponding deformations were increased 50 times in order to
facilitate the detection of any inconsistency in the deformed mesh.
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FIGURE 6.34 RC FRAME. VON MISES STRAIN CONTOURS AND DEFORMED SHAPES FOR DIFFERENT FE
MODELS. LEFT: 40% (STEP 10) AND RIGHT: 92% (STEP 23) OF THE ULTIMATE LOAD CAPACITY.

(B) Reduction Level 1 (C) Reduction Level 2

FIGURE 6.35 RC FAME. DEFORMED SHAPES OF REINFORCED REBAR ELEMENTS FOR DIFFERENT FE
MODELS (STEP 23). DEFORMATIONS ARE SCALED X50.

6.4.3 3-Storey RC Frame

This numerical test results from an approximate fourfold increase of the RC frame described in
section 6.4.2. As illustrated in Fig. 3.36, the RC frame has 3 stories of 3.5 m height and two
openings with a constant span of 5 m. The material characteristics and the reinforcement details
are shown in Fig. 3.36 and the loading conditions are considered to be as in the previous
numerical test, a vertical fixed and a horizontal varying load sets that are distributed at each
storey according to EC8. The horizontal loading is divided in 20 load increments which are
implemented using the force-control NR solution scheme with the energy criterion tolerance set
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to 10™ It is important to note that the force-control NR scheme is less stable, regarding its
convergence features. Thus, the ability of solving ill-posed numerical problems, to capture their
nonlinear response, illustrates the numerical robustness of the proposed modeling method and
of the developed FEA code.
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FIGURE 6.36 3-STROREY RC FRAME. GEOMETRIC FEATURES AND REINFORCEMENT DETAILS.

Details concerning the FE mesh are given in Table 6.11, where it can be seen that the
unreduced model consists of 2,298 hexahedral and 23,264 embedded elements which result into
a total of 12,938 dof. It must be mentioned that, as a result of the embedded rebar elements’
formulation, no additional dof are induced due to the rebar elements. By performing the
reduction procedure, three additional reduced FE models RL 1, RL 2, RL 3 are derived which
are shown in Figs. 6.37. If we compare the reduction of the dof with the previous numerical
test, it can be observed that by applying the same reduction schemes the resulting reduction is
larger. This is attributed to the number of columns and beams which is larger corresponding to
the number of shear walls for this FE model. Therefore, the reduction is performed to a larger
number of structural members leading to a significant reduction of the size of the corresponding
FE models (31.9 and 55.6% less dof for the RL 1 and 2 respectively).

SW section

Hexahedral Embedded RC Total Dof_
a/a Model Elements Rebar NBCFB Number of | Reduction
Elements Elements Dof (%)
A Reduction Level 0 2,298 23,264 - 12,938 -
B Reduction Level 1 1,674 18,946 12 8,816 31.9
C Reduction Level 2 1,122 14,372 12 5,748 55.6
D Reduction Level 3 - - 162 936 92.8

TABLE 6.11 3-STROREY RC FRAME. FE MESH DETAILS.
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FIGURE 6.37 3-STOREY RC FRAME. FE MODELS.
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FIGURE 6.38 3-STOREY RC FRAME. P-J CURVES.
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Fig. 6.38 shows the computed equilibrium paths predicted from each FE model. The computed
curves correspond to the top floor horizontal displacements (Fig. 6.38) and the corresponding
total base shear force. As it can be observed, the beam model overestimates the initial stiffness
of the RC frame exhibiting a stiffer behavior throughout the analysis procedure. This is
attributed to the formulation of the beam element which does not account for the shear strain
effects and 3D cracking of concrete, thus important features that reduce the stiffness of RC
during its loading history are neglected.

FIGURE 6.39 3-STOREY RC FRAME. CRACK PATTERN PRIOR TO FAILURE. REDUCTION LEVEL 0.

This deficiency results from the loss of important local phenomenon which take place in critical
regions of the structure such as cross joints. When shear stresses increase significantly at these
regions, inclined crack patterns occur resulting in significant stiffness degradation of the overall
structure. Even though the fiber beam takes into account cracking of concrete by setting equal
to zero the corresponding Young modulus of the cracked fiber which is always vertical to the
longitudinal axis of the beam, it fails to capture the local phenomena which take place in shear
dominated critical regions (Figs. 6.39b and 6.39c) and are affected by 3D stress and strain
states.

Page 205 of 272



Chapter 6 Athens, Jan 2011

Fig. 6.39c shows the crack pattern of the shear wall and the left end of the beam which is
supported on the shear wall. As it can be seen, the crack pattern of the beam member is vertical
to its longitudinal axis characterizing the flexural nature of the crack evolution attributed to the
bending moment acting on this region. A similar observation can be seen for the case of the
shear wall which is dominated by horizontal cracks. This changes as the cracks propagate
toward the compressive region of the shear wall section where inclined cracks can be observed.
This local phenomenon characterizes the shear strain effect and the ability of 3D crack
modeling which plays a significant role in modeling the nonlinear behavior of RC structures.

FIGURE 6.40 3-STOREY RC FRAME. CRACK PATTERN PRIOR TO FAILURE. REDUCTION LEVEL 1.

The horizontal cracks which initiate at the base of the shear wall spread along the shear wall’s
height (Figs. 6.39, 6.40 and 6.41). Furthermore, a very important observation regarding local
phenomenon that take place between steel plate-concrete interfaces can be made from Figs.
6.39a, 6.40a and 6.41a. It can be observed that the cracks pass through the region located at the
steel plate which was used for applying the horizontal loads at the first storey. It is evident that
the crack openings at this region are restrained from the steel plate which induces additional
confinement at this specific region.
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Figs. 6.40 and 6.41 illustrate the crack patterns prior to failure, as predicted by the RL 1 and 2
models. A good correlation is observed between the crack patterns in relation to the unreduced
model, managing to capture the different type of local phenomenon (flexural and inclined
cracks, crack restraint due to the steel plate).

C—————

FIGURE 6.41 3-STOREY RC FRAME. CRACK PATTERN PRIOR TO FAILURE. REDUCTION LEVEL 2.

The final observation regarding the computed nonlinear response of the 3-storey RC frame with
the four different FE models concerns the correlation between the curves shown in Fig. 6.38.
The FE models which derive from the implementation of the reduction schemes appear to be
softer than the corresponding unreduced model. This is attributed to the numerical phenomenon
observed for the clamped beam (Fig. 6.15) which is a result of the strain concentration at the
softer domains of the FE model when the hybrid models are considered (Fig. 6.42c). The
numerical results of this test verify the above observation and as it was stated previously are in
favor of safety.

The computational times for the solution procedures are given in Table 6.12, where it can be
seen that the unreduced model requires 38 min to perform 18 load increments. It must be noted
that a total horizontal load of 1,000 kN was applied in 20 load increments until failure. It is
indisputable that the beam model is much faster than any type of hybrid model. In addition to
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that, the reduction in CPU time is once more greater than the corresponding dof reduction,
illustrating the robustness induced when the HYMOD schemes are implemented. The reduction
in CPU time given in Table 6.12 refers to the CPU time per load increment, since the second
and third FE models managed to reach 17 load increments instead of 18.

0.00445
0.00333
0.00222
0.00111

FIGURE 6.42 3-STOREY RC FRAME. VON MISES STRAIN CONTOUR AT LOAD INCREMENT 17.

Number of | CPU | CPU Time per andg(glgn
ala Model Load Time | Load Increment .
Increments | (min) (sec) Time
(%)
A Reduction Level 0 18 38 127 -
B Reduction Level 1 17 17 60 52.6
C Reduction Level 2 17 7 25 80.3
D Reduction Level 3 19 10sec - >99

TABLE 6.12 3-STOREY RC FRAME. CPU TIME FOR THE SOLUTION PROCEDURE.

Page 208 of 272



6.4.4 Full-Scale 2-Storey RC Building

Chapter 6

Athens, Jan 2011

The aim of this final numerical test is to demonstrate the ability of the proposed modeling
method to analyze the nonlinear behavior of full-scale RC structures. A full-scale 2-storey RC
building (Fig. 6.43) is seismically assessed after it was designed with the use of a commercial
Civil Engineering software. The design code used by the software for the reinforcement
computations was the Greek Seismic Code®™". After the completion of the structure’s design
process with the commercial software, the resulted reinforcement details shown in Table 6.13
were used for the construction of four FE models shown in Figs. 6.45, 6.46 and 6.47, which are
derived from the implementation of the four RL schemes. The details on the reinforcement of
the beams and columns are given in Tables 6.13, 6.14 and Fig. 6.44.

Additional

Additional

Rebars

a/a Dirrzirr:]s)ions Rebars Left Right for Stirrups
Up Down Up | Down | Up | Down | Torsion Left Middle | Right
1 25x50 2014 | 314 | 2¢18 - - - - @8/10 | #8/10 | ©8/10
2 25x50 2014 | 3014 - - 2018 - - @8/10 | @8/10 | ©@8/10
3 25x50 2014 | 3¢16 | 2018 - - - 2012 @8/10 | @8/10 | ©@8/10
4 25x50 2014 | 3¢14 - - - - 2012 @8/10 | @8/10 | ©@8/10
5 25x50 2014 | 3¢14 - - 2018 - 2012 @8/10 | @8/10 | ©@8/10
6 25x50 2014 | 3¢14 | 218 - 2018 - - @8/10 | @8/10 | ©@8/10
7 25x50 2014 | 3¢14 | 2020 - 2020 - 2012 @8/10 | #8/10 | ©¥8/10
8 25x50 2014 3914 | 2018 - - - 2(12 @8/10 | ©8/10 | ®8/10
9 25x50 2014 3P14 - - 2018 - - @8/10 | ©8/10 | ®8/10
10 25x50 2014 3914 | 2018 - 2018 - 2(12 @8/10 | ©8/10 | ®8/10
11 25x50 2014 3914 | 2018 - 2018 - 2(12 @8/10 | ©8/10 | ®8/10
12 25x50 2016 3¢16 | 3@20 - - - - @8/10 | ©8/10 | ®8/10
13 25x50 2014 3P14 - - 2018 - 2(12 @8/10 | ©8/10 | ®8/10
14 25x50 2014 3914 | 2018 - - - 2(12 @8/10 | ©8/10 | ®8/10
15 25x50 2014 3P14 - - 2018 - 2(12 @8/10 | ©8/10 | ®8/10
16 25x50 2014 3914 | 2018 - 2020 | 1914 2012 @8/10 | ©8/10 | ®8/10
TABLE 6.13 2-STOREY RC BUILDING. REINFORCEMENT DETAILS OF THE BEAMS. STOREY 1 AND 2.

Footing Dimensions | Height Rebars Rebars

ID (cm) (cm) X-axis Y-axis

1 125x150 50 ©12/15 ©12/15

2 125x150 50 ®12/15 ©12/15

3 125x150 50 ®12/15 ©12/15

4 125x200 50 ®12/15 ©12/15

5 175x125 50 ®12/15 ©12/15

6 125x175 50 ©12/15 ©12/15

7 125x200 50 ®12/15 ®12/15

8 200x125 50 ®12/15 @12/15

9 300x275 50 ®12/15 ©12/15

10 125x150 50 ®12/15 ®12/15

11 225x125 50 ©12/15 ©12/15

TABLE 6.14 2-STOREY RC BUILDING. REINFORCEMENT DETAILS OF THE FOOTING FOUNDATION.

Page 209 of 272




Chapter 6 | Athens, Jan 2011
385 350 200 525
B K1 g B ks
2550 25150
g 2 2
] 2575 =
-
e ¥ E Ke
- g K 4 25115 K7
P 251100 25100
~ Ks
T52Z5
Ka K11
10025 25125
== 7 55;-}0“ T
500 2.00 250 550
15,00
Plan View 0 - Footing Foundation
325 350 300 L 525
::._:]'('1 a1 '|:(2 bz 1 K3
2550 o s [ s R
2 % 4 N B, s
oF ko = i ¥ o & s i [ p
13 2N R
. = Ksl{ & HKe & K,
- TH2S [ - i 255 251100 |
. wlle ~%> |
= al z
o m i = m%s Ho=
- B | e =
; _— ; ' 1=
Kg : _.
2001175025 EaKiréluﬂ gr;‘zlls
AT A8 A9
500 200 250 5 Q)
15.00
® Center of Mass .
@ Center of Elastic Rotation Plan View 1

Page 210 of 272

FIGURE 6.43 2-STOREY RC BUILDING. FRAMING PLANS.




Chapter 6

Athens, Jan 2011

K1 250 [F K2 2575 [ 7 K3 25/50 K4 251100 T F T Ke 2575
4020+4916 8@20+6@16 || 4@20+4D16 | —i| 8318+4G14 J : 1 80320+6@16
{st@s10 | __|st.@8/o .| St. @8/10 St. @810  K575/25 .| st.@8/10
“ 4 || 80120+6016
' 2010 St. @8/10 y
" ke 4
- o @14
2310 + 916
K7 25/100 i © @18
| 80318+4@14 I .
. | St.@8/10 E 1 qu '. j @20
ool K8 100/25 L = @222 L
2010 80118+43314 7 7
s St. @8/10
L L | K9200175/25 P—
6@1 0% 52@22 61 o% -
== St. @8/10 =
20110 i —
K a
57 78 K10 25/50 N TV T 7
I IR A 6210
16218 P
St. @810 K11 125/25 =
af 8@20+4016 VAR
St. @8/10

FIGURE 6.44 2-STOREY RC BUILDING. REINFORCEMENT DETAILS OF THE COLUMNS AND SHEAR WALLS.

As it can be seen in Fig. 6.43, the building has an irregular shape and stiffness distribution
resulting to a considerable deviation between the center of mass and the corresponding stiffness
center along the Y axis. The position of the center of elastic rotation is governed by the shear
wall core which is positioned at the lower boundary of the architectural plan view of the
building, resulting to a considerable abnormality on the stiffness distribution. Shear walls Ky,
K7, Kg and Kj; are positioned at the four boundary corners of the structure whereas the rest of
the vertical structural members are considered to have standard column sections (Fig. 6.44).
The height of both storeys is 3 m. Material details used in the design and analysis process are
given in Table 6.15.

Material Young Modulus Hﬁgtjjir;hnsg Yielding Stress Compressive Poiss_,on
(GPa) (MPa) Strength (MPa) | Ratio
(GPa)
Concrete 30 - - 30 0,2
Steel 210 2.1 500 - 0,3
TABLE 6.15 2-STOREY RC BUILDING. MATERIAL DETAILS.
a/ Hexahedral Embedded RC Total Dof_
a Model Elements Rebar NBCFB Number of | Reduction
Elements Elements Dof (%)
A Reduction Level 0 4,382 51,064 - 30,036 -
B Reduction Level 1 3,398 41,235 44 21,762 27.55
C Reduction Level 2 2,312 29,042 92 15,282 49.12
D Reduction Level 3 - - 298 1,416 95.29

TABLE 6.16 2-STROREY RC BUILDING.
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Table 6.16 contains the FE mesh details of the four FE models shown in Figs. 6.45 and 6.47.
The unreduced model consists of 4,382 hexahedral elements and 51,064 embedded rebar
elements. When the RL 1 and 2 correspond to a reduction of 27.55% and 49.12%, respectively,
in the dof compared to the detailed model. It must be noted that all footing foundations are
considered to be fixed. This is achieved by restraining all the nodes located at the external
boundary of each footing (Fig. 6.48).

FIGURE 6.45 2-STOREY RC BUILDING. HEXAHEDRAL FE MESH OF THE RL 0 MODEL.

T

\¥iR\Y

FIGURE 6.46 2-STOREY RC BUILDING. FE MESH OF THE REINFORCEMENT REBAR ELEMENTS. REDUCTION
LEVEL 0.
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Since the aim of this work is to
illustrate the numerical behavior of
the proposed modeling method
under static loading, it was decided
to compute the distribution of the
horizontal load at each storey with
the EC8 code™" and apply them
along the Y axis direction of the
structure through metallic plates that
can be seen in Fig. 6.49. The
assumptions  made  for  the
computation of the horizontal loads
are given in Table 6.17, where it is
assumed that the Type 1 response
spectra is used, which corresponds
to an anticipated surface-wave
magnitude M which is greater than
5.5 (high seismicity areas).

As can be seen in Fig. 6.49, the
horizontal load is applied through
metallic plates which are positioned
at the heads of the four structural
members namely Ks, Ko, Kjo and
Ki1.  The distribution of the
horizontal load is  performed
according to the mass distribution of
the structure along the Y axis
direction in 10 load increments.

The vertical distributed loads were
assumed to be equal to 2 and 2.5
kN/m? for the dead and live loads,
respectively. The self-weight of the
structure was also taken into account
by activating the self-weight

command. It must be noted that the
FIGURE 6.47 2-sTOREY RC BUILDING. FE MESH FOR DIFFERENT REDUCTION assumed concrete nominal Weig ht
LEVELS.

(C) Reduction Level 3

was 25 kN/m®. For simplification
reasons the difference between the
reinforcement and concrete weights which derives from the volume that is occupied from the
rebars is neglected. Nevertheless, it is evident that this numerical simplification does not alter
the mass redistribution since the two stories of the RC building are of similar shapes. Their only
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difference is located at the stair case opening beside the east side of the shear wall of the lift
(Fig. 6.43).

FIGURE 6.48 2-STOREY RC BUILDING. BOUNDARY CONDITIONS. FIXED NODES ARE MARKED WITH A
CYAN TRIANGLE.

o Y‘j_,x I Metallic Plates
FIGURE 6.49 2-STOREY RC BUILDING. METALLIC PLATES FOR HORIZONTAL LOADING.
Parameters of EC8 Value
Ground Type D
Tg 0.2 sec
Te 0.8 sec
S 1.35
q 3.3
Acceleration a, 0.24g
Importance Class Il
Importance Factor y; 1

TABLE 6.17 2-STOREY RC BUILDING. EC8 PARAMETERS.

In Fig. 6.50 the horizontal displacement of the top floor is plotted at each load increment as it is
shown in the corresponding figure. For all model cases, the horizontal displacement along the Y
direction is plotted (a node located on the head of the column Kj). It is obvious that all FE
models appear to have almost identical stiffness at the first loading increment, thus the building
is governed by bending deformations.
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FIGURE 6.50 2-STOREY RC BUILDING. PREDICTED P-0 CURVES.

As it is shown in Fig. 6.51, the first cracks appear at several structural members of the building
which have a horizontal orientation confirming their flexural nature. The first cracks appear at
the base of shear walls (K7, Ks, Kg) that have an orientation parallel to the Y axis which bear a
significant part of the seismic forces. Due to their structural form, they attract larger values of
the applied load and therefore they are the first to enter the nonlinear state. It is worth noting
that columns K; and Kg, which have an orthogonal section of 25x75 c¢cm and their orientation is
also parallel to the Y axis, appear to deform at their base and develop similar cracks to the
corresponding shear walls (Fig. 6.51). In addition to that, beams that are connected to these
shear walls appear to crack near their end-sections. This is attributed to the deformations that
are induced at the softer beam sectional areas of the joint since the corresponding stiffness of
the shear wall is greater. This illustrates the importance of 3D detailed modeling since the
realistic crack pattern and nonlinear behavior of RC structures can be predicted for a given
loading set, thus providing the necessary data for the seismic assessment of this type of
structures and the required information in order to guide the designing process into seismic
resistant structures.

The computed P-¢ curves indicate that for a load level of 4,800 kN the initiation of rebar
yielding occurs since the slope of the inelastic branch decreases significantly. The same load
level was predicted by all three FE models which use the detailed modeling in order to
discretize and model the shear dominated structural members and sections of the structure (RL
0, 1 and 2). It is evident that shear dominated structural members and sections control the
overall nonlinear behavior of this particular RC building. Fig. 6.52 shows the predicted crack
pattern for this load level, where it can be observed that the cracking is excessive especially in
the shear walls and the joints of the structure. Furthermore, it can be seen that many cracks
located in the shear walls are inclined, underling the shear deformation effect on the 3D stress
state of concrete.
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FIGURE 6.51 2-STOREY RC BUILDING. CRACK INITIATION OF THE UNREDUCED FE MODEL.

The failure of the 2-storey RC building is initiated when the load level exceeds the shear base
load of 7,200 kN where the tension rebars, located at the shear wall of the lift, failed initializing
significant internal force redistributions leading to additional reinforcement failures where
eventually the structure was unable to bear the additional external horizontal load. Fig. 6.53
shows the predicted crack pattern of the structure prior to failure, where it can be observed that
the number of crack openings did not increase significantly corresponding to the crack pattern
given in Fig. 6.52 (initiation of rebar yielding) where the elongation of the cracks can be
observed.
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FIGURE 6.52 2-STOREY RC BUILDING. PREDICTED CRACK PATTERN OF THE UNREDUCED FE MODEL.
SHEAR BASE 4,800 KN.

A correlation of the predicted crack patterns between the RL 0, 1 and 2 models, is shown in
Figs. 6.54 and 6.55 where the crack patterns for different load levels are shown. As can be seen,
there is a good agreement between the predicted crack patterns illustrating that hybrid models
have the ability of retaining the required accuracy and at the same time reducing significantly
the computational cost. The von Mises strain contours in the hexahedral elements are given in
Fig. 6.56 prior to failure. It is evident that both hybrid and unreduced FE models lead to similar
predictions of the structure nonlinear behavior thus underlining the superiority of hybrid
modeling compared to the beam model in capturing significant local phenomena that affect the
overall response of the structure.
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FIGURE 6.53 2-STOREY RC BUILDING. PREDICTED CRACK PATTERN OF THE UNREDUCED FE MODEL
PRIOR TO FAILURE.
The CPU times required by the four FE models are given in Table 6.18 where the
computational efficiency of the developed FEA code can be seen. The solution time for 9 load

increments for the unreduced model is 95 min and the corresponding reduction in CPU times,
when using HYMOD models, verifies the previous findings.
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Number of | CPU andtécgﬁn Rebar

ala Model Load Time ) Yield at
Increments | (min) Time (kN)

(%)

A | Reduction Level 0 9 95 - 4,800
B | Reduction Level 1 9 65 31.57 4,800
C | Reduction Level 2 9 30 66.67 4,800
D | Reduction Level 3 25 - - 5,760

TABLE 6.18 2-STOREY RC BUILDING. CPU TIMES FOR THE SOLUTION PROCEDURE.

(A) Reduction Level 0

(B) Reduction Level 1

(C) Reduction Level 2

FIGURE 6.54 2-STOREY RC BUILDING. INITIATION OF CRACK FOR DIFFERENT FE MODELS.

Page 219 of 272



Chapter 6 Athens, Jan 2011

(A) Reduction Level 0

(B) Reduction Level 1
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(C) Reduction Level 2

FIGURE 6.55 2-STOREY RC BUILDING. CRACK PATTERN PRIOR TO FAILURE FOR DIFFERENT FE MODELS.
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(C) Reduction Level 2

FIGURE 6.56 2-STOREY RC BUILDING. VON MISES STRAIN CONTOUR PRIOR TO FAILURE FOR DIFFERENT
FE MODELS.
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Chapter 7 Overview of the ReConAn FEA Software
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7.1 Overview and Programming Language

During the development of ReConAn FEA software (Reinforced Concrete Analysis), the
necessity for the creation of a more general in-core object-oriented analysis code emerged. This
necessity was emerged from the fact that FEA codes should be easily extendable and
maintained (reusability). In addition to that, from the developers’ point of view, in order to be
able to control the numerical procedures and to have the ability to check the results produced
during the analysis phase, the structure of the code must have object oriented architecture.

Object-Oriented Programming (OOP) can trace its roots to the 1960s. As hardware and
software became increasingly complex, the quality was often overlooked. Researchers studied
ways in which software quality could be maintained. OOP was deployed in part as an attempt to
address this problem by strongly emphasizing discrete units of programming logic and re-
usability in software. Computer programming methodology focuses on data rather than
processes, with programs composed of self-sufficient modules (objects) containing all the
information needed within its own data structure for manipulation. OOP may be seen as a
collection of cooperating objects, as opposed to a traditional view in which a program may be
seen as a group of tasks to compute ("subroutines™). In OOP, each object is capable of receiving
messages, processing data, and sending messages to other objects. Each object can be viewed as
an independent little machine with a distinct role or responsibility. The actions or “operators"
on the objects are closely associated with the object. For example, in OOP, the data structures
tend to carry their own operators with them (or at least "inherit" them from a similar object or
"class™). The traditional approach tends to view and consider data and behavior separately.

The development of an OOP type FEA code has many advantages such as the control of the
arithmetic flow which is a rather difficult task as the code is growing and the enrichment of the
code with new Finite Elements, Analysis Procedures, Solvers and other numerical tools that can
be encapsulated very fast (extendibility). Taking under consideration the above code
development strategy, ReConAn adopted this philosophy and has all the previously mentioned
abilities. The outcome from the adoption of this code architectural type is the evolution of
ReConAn into a general FEA program that is able to use several Finite Elements, Material
Models and Solution Procedures.

Object oriented format requires the use of Data Types where, for every element, material,
property, solution variables, etc., we create a different Data Type. With this approach, each FE
has its own property type that tells us which material model will be used during the solution
procedure and its characteristics. Therefore, two different types of elements can use the same
material model or vice-versa. Material variables have their own data types which are used to
store data that refer to material characteristics like the Young’s Modulus, Poisson Ratio, etc.
Property data type contain information about each element and its characteristics concerning the
material model that an element is going to use during the analysis procedure, the Integration
Method that the stiffness procedure will use for the stiffness matrix creation etc. Taking this
philosophy of code format under consideration, the input data file must be also grouped into
data blocks.
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Programming the FE method may be considered by many users as a straight forward job and it
does not require any sophisticated code language. In reality this is partially true. Even the
smallest in size FE simulations require a certain number of arithmetic operations between two
dimensional matrices and arrays. These matrix operations require a certain amount of time in
order to be carried out, depending on the number of unknowns at hand. This means, the bigger a
FEM model is the more CPU time and virtual memory is required to be solved. Since
commercial software use finite element modeling and there is the need, during the designing
process, for more accurate models, more refined FE models are frequently used. CPU hardware
limitations in performing large scale calculations were the main barriers for limitations on the
size of the FE models. This need for large-scale simulations created advances in parallel
processing and in optimum dynamic usage of CPU hardware abilities through optimum code
programming. Which advance should be adopted in the FEM case? The answer is not straight
forward. The optimum choice is a combination of these two advances in order to have optimum
code structure and architecture which will lead to optimum performance.

To have an optimum code programming structure, first of all we must choose an appropriate
programming language which will provide us the necessary tools in order to create an optimally
designed code for the problems at hand. Taking under consideration the above remarks (about
the FEM arithmetical nature), one could easily say that we need a programming language which
will be able to dynamically redistribute CPU virtual memory and handle optimally large
arithmetic matrix operations.

In computer science, dynamic memory allocation is the allocation of memory storage for use in
a computer program during its runtime. It can be seen also as a way of distributing ownership of
limited memory resources among many pieces of data and code. Dynamically allocated
memory exists until it is released either explicitly by the programmer, exiting a block, or by the
garbage collector. This is in contrast to static memory allocation, which has a fixed duration. It
is said that an object that is allocated has a dynamic lifetime (allocate - deallocate).
Programming languages like Java, Visual Basic, Pascal, Matlab, Apple etc. have the ability of
memory dynamic allocation and OOP but they are deficient in speed due to their inability in
handling large arithmetic operations. This problem immersed from the fact that the creators of
these programming languages in order to make them more user friendly they included many
invisible intermediate operations that reduced significantly the operations speed during the
runtime. The best choices for our problem at hand are C++ (or C#) and Fortran 90/95.

C++ and C# are widely used by many developers but Fortran 77 and the new Fortran 90/95 due
to its simpler language style always dominated in the scientific research field in terms of
preference. Fortran 77 is considered to be rather “old” and antiquated since the new features of
Fortran 90/95 language were introduced.

The much delayed successor to FORTRAN 77, informally known as Fortran 90, was finally
released as an I1SO standard in 1991 and an ANSI Standard in 1992. This major revision added
many new features to reflect the significant changes in programming practice that had evolved
since the 1978 standard:

» Free-form source input, also with lowercase Fortran keywords
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Identifiers up to 31 characters in length

Inline comments

Ability to operate on arrays (or array sections) as a whole, thus greatly simplifying math
and engineering computations.

e whole, partial and masked array assignment statements and array expressions,
suchas X(1:N)=R(1:N)*COS(A(1:N)))

e WHERE statement for selective array assignment

e array-valued constants and expressions,

e user-defined array-valued functions and array constructors.

RECURSIVE procedures

Modules, to group related procedures and data together making them available to other
program units, including the capability to limit the accessibility only to specific parts of
the module.

A vastly improved argument-passing mechanism, allowing interfaces to be checked at
compile time

User-written interfaces for generic procedures

Operator overloading

Derived/abstract data types

New data type declaration syntax, to specify the data type and other attributes of
variables

Dynamic memory allocation by means of the ALLOCATABLE attribute and the
ALLOCATE and DEALLOCATE statements

POINTER attribute, pointer assignment and NULLIFY statement to facilitate the
creation and manipulation of dynamic data structures

Structured looping constructs, with an END DO statement for loop termination, and
EXIT and CYCLE statements for "breaking out” of normal DO loop iterations in an
orderly way

SELECT ... CASE construct for multi-way selection

Portable specification of numerical precision under the user's control

New and enhanced intrinsic procedures.

Unlike the previous revision, Fortran 90 did not delete any features. Any standard-conforming
FORTRAN 77 program is also standard-conforming under Fortran 90 and either standard
should be usable to define its behavior.

A small set of features were identified as "obsolescent” and expected to be removed in a future
standard (Table 7.1).

Fortran 95 was a minor revision, mostly to resolve some outstanding issues from the Fortran 90
standard. Nevertheless, Fortran 95 also added a number of extensions, notably from the High
Performance Fortran specification:

>
>
>

FORALL and nested WHERE constructs to aid vectorization,
User-defined PURE and ELEMENTAL procedures,
Pointer initialization and structure default initialization.
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Obsolescent feature Example Status / 95
Arithmetic IF-statement e 0 10, 20,30
Non-integer DO parameters or control DO 9 X= 1.7, 1.6, -0.1
variables Deleted
o DO 9 J= 1, 10
Shared DO-loop termination or
termination with a statement DO 9 K= 1, 10
other than END DO or CONTINUE 9 L=J+K
Branching to END IF 66 GO TO 77
IF () THEN ; Deleted
from outside a block 77 END IF '
Alternate return CALL SUBR( X, Y *100, *200 )
PAUSE statement FAUSE 600 Deleted
100
ASSIGN statement Deleted
and assigned GO TO statement ASSICN 100 TO H
GO TO H .
Assigned FORMAT specifiers ASSIGN F TO 606 Deleted
H edit descriptors 606 FORMAT ( SHLGOODBYE. ) Deleted
Computed GO TO statement GO 1O (10, 20, 30, 40), index (Obso.)
FOIL( X, Y )= X**2 + 2*X*Y +
Statement functions Y**2 (Obso.)
X= 27.3
DATA statements (Obso)
among executable statements DATA A, B, C / 5.0, 12.0. 13.0 '
/. .
CHARACTER* form of CHARACTER |CHARACTER”™S8 STRING 1 Use
declaration CHRRACTER (8) (Obso.)
Assumed character length functions | [
* Column 1 contains * or ! or C for
Fixed form source code comments.
C  Column 6 for continuation.

TABLE 7.1 FORTRAN 77 OBSOLESCENT FEATURES.

A number of intrinsic functions were extended (i.e. a dim argument was added to the maxloc
intrinsic). Several features noted in Fortran 90 to be deprecated were removed from Fortran 95:
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REAL and DOUBLE PRECISION DO variables,

Branching to an END IF statement from outside its block,

PAUSE statement,

ASSIGN and assigned GOTO statement and assigned format specifiers,
H edit descriptor.

YVVVYVYYV

An important supplement to Fortran 95 was the 1SO technical report TR-15581: Enhanced Data
Type Facilities, informally known as the Allocatable TR. This specification defined enhanced
the use of ALLOCATABLE arrays, prior to the availability of fully Fortran 2003-compliant
Fortran compilers. Such uses include ALLOCATABLE arrays as derived type components, in
procedure dummy argument lists and as function return values. ALLOCATABLE arrays are
preferable to POINTER-based arrays because ALLOCATABLE arrays are guaranteed by
Fortran 95 to be deallocated automatically when they go out of scope, eliminating the
possibility of memory leakage. In addition, aliasing is not an issue for optimization of array
references, allowing compilers to generate faster code than in the case of pointers. Another
important supplement to Fortran 95 was the ISO technical report TR-15580: Floating-point
exception handling, informally known as the IEEE TR. This specification defined support for
IEEE floating-point arithmetic and floating point exception handling.

do...enddo command Assignments and Pure Procedures

dol=1,iSize
raArray (1:iSize) = 2.d0
raArray (1) = 2.d0
raArray = raArray + abs(raArray - (raArray
raArray (1) = raArray (1)+ abs(raArray (1) -

*(-16.d0))) + 4.d0 * raArray -
(raArray (1) * (-16.d0))) + 4.d0 * raArray (1)

(raArray**(1.d0/3.d0))
- (raArray (1) **(1.d0/3.d0))

enddo

TABLE 7.2 EXAMPLE OF COMPACTING OUR SOURCE CODE.

One of the most significant features that Fortran 90/95 introduced was the ability to use pure
procedures and array assignments. For example if someone wants to allocate, initialize and
contact some arithmetical operation with a real double precision array that has a size of iSize,
then there are two ways of implementing this. The first way is by using the standard do ...
enddo format and the second is by using assignments and pure procedures (Table 7.2).

The first thing that comes to our attention just by looking at these two code formats is that when
assignments and pure procedures are used the code becomes automatically more compact and it
requires half of the lines than the do...enddo format. The second thing that we achieve by using
these new features is that the array elements assignment utilizes the compiler for optimum
compilation during the build procedure a feature not available when the standard do...enddo
programming format is used. The third advantage when using this programming format is that
there is no need for creating additional subroutines for initializing matrices (set to zero any type
of matrix or array).
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Another choice that the developer has to make is that of choosing the appropriate Compiler that
will be used in order to convert the text written code into machine language. Since we chose as
our programming language Fortran 90/95, the choices reduce to the latest and more advanced
Fortran Compiler.

Intel® Fortran Compiler Professional Edition offers the best support for creating multi-threaded
applications. Only the Professional Edition offers the breadth of advanced optimization, multi-
threading, and processor support that includes automatic processor dispatch, vectorization,
auto-parallelization, OpenMP, data prefetching, loop unrolling, substantial Fortran 2003
support and an optimized math processing library. The Professional Edition combines a high
performance compiler, which now includes support for Debian and Ubuntu, with Intel® Math
Kernel Library (Intel® MKL). While this library is available separately, the Professional
Edition creates a strong foundation for building robust, high performance parallel code.

Finally, since we’ve made all the choices concerning the programming language and
compile/build procedures, we need to choose a suitable developing program which will provide
the necessary developing and debugging tools to make the developing task easier and as
controllable as possible. The most advanced developing studio that uses .NET technology is
considered to be Visual Studio 2008 Professional Edition.

Visual Studio 2008 Professional Edition is a comprehensive set of tools that accelerates the
process of turning the developer’s code into numerically robust programs. Visual Studio 2008
Professional Edition was engineered to support development projects that target the Web
(including ASP.NET AJAX), Windows Vista, Windows Server 2008, 2007 Microsoft Office
system, SQL Server 2008 and Windows Mobile devices. Visual Studio 2008 Professional
Edition provides the integrated toolset for addressing all the developer’s needs by providing a
superset of the functionality available in Visual Studio 2008 Standard Edition. In addition to
that, Visual Studio 2008 Professional Edition can create Fortran console applications. This is
done by simply installing the Intel® Fortran Compiler Professional Edition after the installation
of Visual Studio 2008 Professional Edition. By doing so, Visual Studio 2008 Professional
Edition adds in its Project Types an additional one named Intel(R) Fortran.

Summarizing the above features, the developmental tools of ReConAn FEA code are:
» Programming Language: Fortran 90/95
» Compiler: Intel® Fortran Compiler Professional Edition v11
» Development Studio: Visual Studio 2008 Professional Edition

7.2 Graphical Environment

Visual illustration of the FE model and the corresponding results after the completion of an
analysis, is one of the most essential features of a FEA code for the following basic reasons:

1. Create and check the geometry of the FE model.

2. Set or modify the material and analysis parameters.

3. Represent visually the output data in order to verify the correctness of the computed
results during the analysis procedure.
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When dealing with relatively large models, the use of user friendly post-processing software is
imperative for assessing the quality of the FE models. Many researchers use text type input file
to provide the necessary information regarding the FE geometry, material properties and
analysis details. Furthermore, the usual output that results from this type of analysis is
restrained to monitoring the displacement along a specific direction of a node. It is obvious that
this leads to many uncertainties which increase as the FE increases in terms of the dof number.
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FIGURE 7.1 MAIN WINDOW OF FEMAP®Y FEA WITH SMAD CUSTOM PROPERTIES.

For the above reasons, ReConAn FEA has been supplemented with the ability of reading the
required FE geometry and features from a Femap!®* neutral file and exporting its output data in
a text file which can be imported in Femap™ post-processing software utilizing the user with
the ability of illustrating visually the deformations and several contour options of the resulted
stresses and strains. Additionally, ReConAn Eye post-processing software was developed
during this Dissertation so as to visualize the predicted crack patterns when the smeared
modeling command was activated. This software is OpenGL based and has the ability of
animating the evolution of cracking during the load history analysis of a RC structure. The
necessity of developing such a tool emerges from the fact that Femap®! post-processing
software does not provide the ability of crack representation, thus all figures of this research
work containing crack patterns were taken from ReConAn Eye post-processing software.

Since Femap pre-processing software does not provide the user with the necessary tools for
entering custom made properties regarding several features of the FE models (like the number
of fibers per control section in the case of the NBCFB element), the SMAD Custom properties
software (Fig. 7.1) was used for providing any additional parameters required by the ReConAn
solver for the assemblage and solution of the numerical problem at hand. The SMAD Custom
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properties software was developed by G. Stavroulakis during his Ph.D. thesis, which deals with
soil-structure interaction problems under seismic loading with the use of the FEM.

7.3 Automation Tools

Civil engineering commercial software usually provides user-friendly pre-processing
environment that enables the user to create the geometry of their structures and thereafter
automatically identify the nature of each structural member given its geometry and its position
inside the model where the discretization is performed. This ability derives from the fact that
civil engineering commercial softwares use beam elements in order to model the structural
members of the structures where the discretization process is performed without the need of the
implementation of any sophisticated numerical techniques.

In the case of HYMOD, this task cannot be implemented in a straightforward manner since the
requirement of recognizing the geometrical features of each structural member of a RC
structure and choosing the proper FE model to discretize it, is a rather computationally
complicated CAD procedure. Achieving such a task, it is necessary to use advanced
programming techniques and given the fact that this was not a goal of this work, standard CAD
tools were used during the creation of each hybrid model. Nevertheless, in order to save
significant amount of time in the process of the creation of the FE mesh of a structure, program
file (prg) was used with the aim of developing simple scripts in Femap, which create the solid
volumes of different types of joints given their geometrical characteristics. These joint volumes
are shown in Fig. 7.2, where the required geometrical features are given. Since one of the most
complex geometries to mesh in a building is the areas where columns and beams intersect, the
three types of joints corresponding to different cases of beam-column connections are
constructed.

The Program File Dockable Pane (Fig. 7.3) allows you to dynamically record any number of
FEMAP menu, toolbar, and keyboard commands in sequence to create "macros”. Once a
program file has been recorded, it can be "played back" as a "macro” inside FEMAP to perform
a customized series of commands to perform a specific action or achieve a particular goal.

When the Record button in the Program File Dockable Pane is on, the commands will be
recorded in the main text window of the Program File Pane in the order they are chosen in
FEMAP user interface. Once completed, the record button is toggled to off and the text in the
window can be saved as a Program File (either a *.prg file or a *.pro file which saves the text in
Rich Text Format).
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FIGURE 7.3 PROGRAM FILE DOCKABLE PANE.

In their simplest form, FEMAP Program Files are essentially ASCII text files which instruct
FEMAP to perform certain commands based on the syntax of the ASCII file. This FEMAP
specific syntax includes unique numbered identifiers representing every FEMAP command,
normal keystrokes (for typing values and text), and special keystrokes used to perform different
tasks in specific dialog boxes (such as pushing buttons, choosing selection methods, and
designating specific fields to activate). You can add logic commands, define and manipulate
variables, stop and prompt a user for input, or send messages to the Messages Pane.

There are three basic types of data that will be placed in program files created with the Program
File Pane. The first type is unique numbered identifiers representing every FEMAP command.
These identifiers tell FEMAP which menu, toolbar, or keyboard shortcut commands to use
while the program file is running. The second is keystroke information that mimics what you
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would type from the keyboard if you were performing the operation manually (this is how
FEMAP knows which buttons to push, methods to select, and fields to activate). When you run
a program file, this text essentially "pushes the keys" in dialog boxes for you to run FEMAP
commands. You may also want to add other program file commands. These commands do not
execute FEMAP commands, rather, they are commands themselves which control the flow of
the program file, work with variables, print messages, or ask for input.

Following, the program file for the case of Joint Gama is given, where the geometric features of
the joints are requested in order to create the points, surfaces and volumes of this Joint type.

PRG file for the case of Joint Gamma

$Joint Gamma c¢12>b12 distl <=c12-b12
$a/a of connection

#MSG("Type of Joint: Gamma")

$ coord of Reference Point
#ASK(rX,"rX coord of Reference Point")
#ASK(rY,"rY coord of Reference Point")

#ASK(rZ,"rZ coord of Reference Point")

$ Gamma Connection Type 2
#ASK(cL1,"Give Column cL1 Length")
#ASK(c11,"Give Column c11 Width")
#ASK(c12,"Give Column c12 Width")
#ASK(bL1,"Give Beam bL1 Length")
#ASK(b11,"Give Beam b11 Height")
#ASK(b12,"Give Beam b12 Width")
#ASK(dist1,"Give dist1")

#ASK(n,"Give StartingPointID 100-999")

$ Gamma Connection Can have n28 maximum number of points)

#DEF(n6,'n+100+6)
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#DEF(n7,!n+100+7)

#DEF(n13,!n+100+13)
#DEF(n14,!In+100+14)
#DEF(n15,!n+100+15)
#DEF(n16,!n+100+16)
#DEF(n21,!In+100+21)
#DEF(n22,In+100+22)
#DEF(n23,!n+100+23)
#DEF(n24,!In+100+24)
#DEF(n26,!n+100+26)

#DEF(n27,!n+100+27)

#DELAY(1)

$ Case 1: Width of Column Equals to Beams Width
#DEF (rZZ,'rZ+!cL1)

#DEF (rXX,!rX+!c11)

#DEF(rYY,!IrY+!c12)

#SILENT(1)

{eP}<A-I>In6<A-X> IrXX <A-Y> IrY <A-Z>IrZZ <OK><Esc>

{eP}<A-I>In7<A-X> IrXX <A-Y> IrYY <A-Z> IrZZ <OK><Esc>

{eP}<A-1>In13<A-X> IrX <A-Y>!rY <A-Z>!rZZ-'b11 <OK><Esc>
{eP}<A-I>In14<A-X> IrXX <A-Y> IrY <A-Z>!rZZ-'b11 <OK><Esc>
{eP}<A-I>In15<A-X> IrXX <A-Y> IrYY <A-Z> IrZZ-'b11 <OK><Esc>

{eP}<A-I>In16<A-X> IrX <A-Y>IrYY <A-Z> IrZZ-b11 <OK><Esc>

{eP}<A-I>In21<A-X> IrX <A-Y>IrYY-Ib12-Idistl <A-Z> rZZ-b11 <OK><Esc>

{eP}<A-I>In22<A-X> IrXX <A-Y> IrYY-Ib12-Idistl <A-Z> IrZZ-b11 <OK><Esc>
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{eP}<A-1>In23<A-X> IrXX <A-Y> IrYY-Idistl <A-Z> IrZZ-b11 <0OK><Esc>

{eP}<A-I>In24<A-X> IrX <A-Y> IrYY-Idistl <A-Z> IrZZ-b11 <0OK><Esc>

{eP}<A-I1>In26<A-X> IrXX <A-Y> IrYY-1b12-!dist1l <A-Z> IrZZ <OK><Esc>

{eP}<A-I>In27<A-X> IrXX <A-Y> IrYY-Idistl  <A-Z>IrZZ <OK><Esc>

#DEF(ns1,!In*500-500+1)
#DEF(ns2,!In*500-500+2)
#DEF(ns3,!n*500-500+3)
#DEF (ns4,!In*500-500+4)

$ Draw Surface

{efC} <A-Y>YPT(In13)<A-Z>ZPT(In13)<A-X>XPT(In13)<A-P><@11003>!ns1<0K> <OK><A-
Y>YPT(!n14)<A-Z>ZPT(In14)<A-X>XPT('n14)<0K> <A-Y>YPT(In22)<A-Z>ZPT(!In22)<A-X>XPT(!n22)
<OK><A-Y>YPT(In21)<A-Z>ZPT(In21)<A-X>XPT(!n21)<0K><Esc>

{efC} <A-Y>YPT(In21)<A-Z>ZPT(In21)<A-X>XPT(In21)<A-P><@11003>!ns2<0K> <OK><A-
Y>YPT(In22)<A-Z>ZPT(In22)<A-X>XPT(!n22)<0K> <A-Y>YPT(In23)<A-Z>ZPT('n23)<A-X>XPT(!n23)
<OK><A-Y>YPT(In24)<A-Z>ZPT(In24)<A-X>XPT(!n24)<OK><Esc>

{efC} <A-Y>YPT(!In23)<A-Z>ZPT(In23)<A-X>XPT(In23)<A-P><@11003>!ns3<0K> <OK><A-
Y>YPT(!n15)<A-Z>ZPT(In15)<A-X>XPT('n15)<O0K> <A-Y>YPT(In16)<A-Z>ZPT('n16)<A-X>XPT(!n16)
<OK><A-Y>YPT(!n24)<A-Z>ZPT(!In24)<A-X>XPT(!n24)<OK><Esc>

{efC} <A-Y>YPT(!In22)<A-Z>ZPT('n22)<A-X>XPT(In22)<A-P><@11003>!ns4<0K> <OK><A-
Y>YPT(In23)<A-Z>ZPT(In23)<A-X>XPT(!n23)<0K> <A-Y>YPT(In27)<A-Z>ZPT(In27)<A-X>XPT(In27)

<OK><A-Y>YPT(!n26)<A-Z>ZPT(In26)<A-X>XPT(In26)<OK><Esc>
$ Create Solids ... Geometry Solid Extrude
#SILENT(1)
#DEF(len1,!cL1-b11)
#DEF(len2,!b11)
#DEF (len3,!bL1)

{eSu}<@14001><PUSH><@12004><PUSH>Ins1<0K><@14101><PUSH><@12002><PUSH><A-
M>L<@10011>0<@10012>0<@10013>0<@10021>0<@10022>0<@10023>-
1<0K><@10501>!len1<0OK><Esc>

{eSu}<@14001><PUSH><@12004><PUSH>!ns2<0K><@14101><PUSH><@12002><PUSH><A-

M>L<@10011>0<@10012>0<@10013>0<@10021>0<@10022>0<@10023>-
1<0K><@10501>!len1<OK><Esc>
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{eSu}<@14001><PUSH><@12004><PUSH>!ns3<0K><@14101><PUSH><@12002><PUSH><A-
M>L<@10011>0<@10012>0<@10013>0<@10021>0<@10022>0<@10023>-
1<0OK><@10501>!len1<OK><Esc>

{eSu}<@14001><PUSH><@12004><PUSH>Ins1<0K><@14101><PUSH><@12002><PUSH><A-
M>L<@10011>0<@10012>0<@10013>0<@10021>0<@10022>0<@10023>1<0K><@10501>!len2<0K><
Esc>

{eSu}<@14001><PUSH><@12004><PUSH>Ins2<0K><@14101><PUSH><@12002><PUSH><A-
M>L<@10011>0<@10012>0<@10013>0<@10021>0<@10022>0<@10023>1<0K><@10501>!len2<0K><
Esc>

{eSu}<@14001><PUSH><@12004><PUSH>Ins3<0K><@14101><PUSH><@12002><PUSH><A-
M>L<@10011>0<@10012>0<@10013>0<@10021>0<@10022>0<@10023>1<0K><@10501>!len2<0K><
Esc>

{eSu}<@14001><PUSH><@12004><PUSH>!ns4<0K><@14101><PUSH><@12002><PUSH><A-
M>L<@10011>-
1<@10012>0<@10013>0<@10021>0<@10022>0<@10023>0<0K><@10501>!len3<0K><Esc>

$ View Autoscale

{vA}

#MSG("3D Solids Designed Successfully")
#EXIT()

# (6969)

$ File Program Stop

By entering the following parameters (rX =rY =rZ =0, cL1 =15, ¢l11 =0.5,¢c12 = 0.5, bL1
=1, b1l = 0.5, bl2 = 0.3, distl = 0.1) when executing the above code, the resulted geometry
of the corresponding joint volume is that shown of Fig. 7.4a.

It is obvious that automation tools are significant when dealing with full-scale RC structures,
which consists of large numbers of structural members and joints. The procedure of creating the
geometry and generating the mesh of a FE model is a time consuming task that undermines the
risk of possible omissions since it’s performed manually. This task becomes even more
complicated when the FE model consists of embedded rebar elements for the reinforcement
modeling. Therefore, the need of a fully automated CAD tool for generating 3D complex
meshing for HYMOD models through the use of simple geometrical features and standard
reinforcement configuration is essential.
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(A) (B) (©)
FIGURE 7.4 JOINT GAMMA. (A) SOLID GEOMETRY; (B) MESH ATTRIBUTE ON SOLIDS; (C) HEXAHEDRAL
MESH.

Page 237 of 272



Page 238 of 272



Chapter 8 Athens, Jan 2011

Chapter 8 Conclusions and Future Work

Contents of Chapter 8
8.1 Original CONtIIBULION .......oiiiiiiiiie e 240
8.2 CONCIUSIONS ...ttt ettt ekt et e et ettt e b e e nnne s 241
8.2.1 Natural Beam-Column Flexibility-Based Element.............cccoooeiiiiiiiiieiiicec e 241
8.2.2 Embedded Rebar Mesh Generation ProCedUre............cocveiviiiiiiiieiiiie e 242
8.2.3 Concrete Material Model and Smeared Crack Approach ..........cccccooeveiiiiieciienn, 242
8.2.4 Reinforced Concrete MOAEIING. ........uieiiiiiiiiiiere s 243
8.2.5 Hybrid Modeling (HYMOD) MEethod...........cccveiiiiiiiiiieiieiie e 244
8.2.6 RECONAN FEA SOTIWAIE. ......ooiiiiiiieiii ettt 245
8.3 FULUIE WWOTK ..ttt ettt ettt nb et 246

Page 239 of 272



Chapter 8 Athens, Jan 2011

8.1 Original Contribution

In this section the original contributions of this research work are summarized in the following
Table.

A computationally efficient flexibility-based fiber element was developed (NBCFB
element). The originality of this element lies in the computational implementation,
which exhibits remarkable computational efficiency when modeling RC and Steel
structures. It is also proved that the natural method of ]. Argyris improves the
computational efficiency of the high performance beam-column fiber FE.

A general computationally robust and efficient mesh generation procedure was
proposed for the allocation of embedded rebar elements inside the hexahedral
elements used for modeling 3D concrete structures. The proposed method
overcomes computational problems, thus it can be applied in the mesh generation
procedure for the allocation of the embedded rebar elements for any structural
geometry and scale. Even for real-scale structures with thousands of embedded
rebar elements, the proposed method manages to allocate in a minimal CPU time
the embedded rebar elements.

A numerically improved concrete material model is proposed, which treats the
concrete cracking with the smeared crack approach and manages to minimize the
numerical instabilities induced due to the unbalanced forces released in the
numerical system during the structural state determination. For the first time, 3D
smeared crack concrete material model was successfully incorporated in an 8-
noded isoparametric hexahedral element.

A new modeling approach was proposed for the embedded rebar elements. A high
performance beam-column fiber element was used for modeling the embedded
rebar element, which is force-based, incorporates the natural method and is
kinematically connected to the embedding hexahedral element. The proposed
modeling method for the embedded rebar elements proved to be numerically
robust, computationally efficient and induces, through its numerical formulation,
additional stability in the nonlinear solution procedure.

A new 3D detailed modeling method is proposed which uses the isoparametric 8-
noded hexahedral element which treats cracking with the smeared crack approach
and models the embedded rebar elements with the NBCFB element. The
verification of the proposed modeling method was performed through
computations with a set of experimental data found in the literature.
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A hybrid FE model which use 1D and 3D elements for the nonlinear modeling of RC
structures was presented. The shear dominated structural members, that are
characterized as critical regions, are modeled with 3D detailed models (hexahedral
elements with embedded rebar elements where the smeared crack approach is
adopted) and the rest of the structure is modeled with the RC NBCFB fiber element.
This method was named as HYMOD and appears to be numerically robust and
computationally efficient when implemented in real-scale RC structures.

Moreover, different levels of reduction models to the initial 3D detailed model,
were presented. Depending on the reduction demands that a FE model requires for
the sufficient decrease of its dof, an appropriate reduced model may be
implemented for the analysis of a RC structure.

ReConAn is an object-oriented FEA software, which was developed during this
research work and incorporates all the previously mentioned numerical features,

techniques and methods. Its computational superiority, especially when dealing
with 3D detailed FE modeling of RC structures, is verified through a number of

demanding test examples.

TABLE 8.1 LIST OF ORIGINAL CONTRIBUTIONS.

8.2 Conclusions

8.2.1 Natural Beam-Column Flexibility-Based Element

A computationally robust and efficient fiber NBCFB element was developed which exhibits
both accuracy and numerical stability. The numerical tests revealed that the natural method
proposed by J. Argyris endows the element with additional computational efficiency attributed
to the properties of the natural formulation. After the numerical comparison of the NBCFB
element with the standard flexibility-based element incorporated in OpenSees, it was shown
that the proposed element appeared to be more robust and computationally efficient. The
numerical robustness of the element is attributed to both the natural method and the nonlinear
iterative procedure which is performed for the determination of its internal stress-state
equilibrium.

The assessment of the numerical behavior of the NBCFB element was investigated in both RC
and steel structures, illustrating the ability in capturing the overall nonlinear response with
adequate accuracy. As it was described in Chapter 2, the natural method decomposes the
deformed shape of a member into rigid body modes and strain modes, making easier the
determination of the element’s stress-strain state.

The computational efficiency that ReConAn FEA code was demonstrated in a number of test
examples exhibiting its ability in predicting the ultimate load capacity of any type of structure
in a minimal CPU time. This enables the user in performing nonlinear analysis for large-scale
structures with thousands of structural members with the use of standard CPU systems. In
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addition to that, it was shown that, through the formulation of the NBCFB element, it is feasible
to discretize each structural member with only one element, thus reducing significantly the
numerical model. This improved performance of the element derives from the state
determination procedure of the element and the adopted Gauss-Lobato integration scheme
which uses specific sections along the element to determine the stiffness matrix degradation
during the loading history.

A nonlinear analysis of a 37-storey RC building was performed for demonstrating the capability
of the developed software code to perform nonlinear analysis of large-scale RC structures.
Moreover, the computational efficiency of the code was demonstrated with the nonlinear
solution this large-scale structure through the use of a standard CPU system (personal laptop).

8.2.2 Embedded Rebar Mesh Generation Procedure

Previous work on detailed three-dimensional models for the analysis of RC structures limit their
numerical implementations to experimental setups that consist of simple structural members.
Thus the need for a computationally efficient mesh generation method of the embedded rebar
elements inside the concrete domain, has not attracted the appropriate attention.

In this work, an embedded reinforcement mesh generation method is proposed, which can
effectively allocate and generate embedded reinforcement elements inside hexahedral elements
with an arbitrary positioning of the reinforcement and allowing a free geometric shape of the
hexahedrons. The computational robustness and efficiency of the proposed mesh generation
method, when dealing with relatively large-scale problems with arbitrary reinforcement
geometry, were illustrated through numerical experiments.

8.2.3 Concrete Material Model and Smeared Crack Approach

An improved numerical handling of the Kotsovos and Pavlovic 3D material concrete model for
monotonic loading combined with a smeared crack model was implemented. The material
model was applied to an 8-noded hexahedral element with no restriction on the number of crack
openings inside the load increment.

The numerical behavior of the improved material model was illustrated through several
numerical tests of plain and reinforced concrete experiments. It is worth noting that the ability
of incorporating this fully brittle material model in an 8-noded isoparametric hexahedral
element with a 2x2x2 Gauss integration scheme, illustrates the computational superiority of the
developed FEA code and its numerical robustness when dealing with highly ill-posed numerical
problems.

Furthermore, the numerical handling of the smear crack approach appears to minimize the
numerical instabilities induced when crack openings occur and significant unbalanced forces
are released during the NR incremental iterative solution procedure. If the algorithmic
implementation is not optimally applied, this numerical phenomenon can create numerical
instabilities that could lead to the divergence of the iterative solution procedure. This is
attributed to the additional crack openings that occur as a result of the unbalanced forces
produced by the previous crack openings. It is evident that this numerical problem requires
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special handling and the use of advanced programming techniques in order to control the
numerical stability of the problem.

8.2.4 Reinforced Concrete Modeling

A detailed FE modeling of reinforced concrete structures is proposed with the following
characteristics:

(1) A mesh generation technique for the embedded reinforcement is implemented which can
effectively allocate and generate embedded reinforcement elements inside hexahedral
elements with an arbitrary positioning of the reinforcement and a free geometry of the
hexahedral mesh.

(if) An improved numerical handling of a 3D material concrete model for monotonic loading
combined with a smeared crack model. The material model was applied to an 8-noded
hexahedral element with no restriction on the number of crack openings inside the load
increment.

(iii) The modeling of the reinforcement is performed with the use of a 2-noded flexibility-
based beam element, formulated with natural modes and the fiber approach. It was shown
that the results obtained with rod elements for modeling the reinforcement does not lead
to accurate numerical simulations especially for heavily RC members.

The proposed NBCFB element increases the stability of the nonlinear solution procedure
through its physical characteristics. The numerical robustness exhibited by the proposed
modeling methodology is attributed to the following features:

» The nonlinear procedure for the calculation of the internal forces of the NBCFB
element.

» The stability induced by the consideration of shear and bending stiffness of the NBCFB
elements.

» The modification of the concrete material model and the handling of the stress
redistribution due to cracking.

The proposed modeling method managed to predict with an adequate precision a number of
experimental test results reported in the literature, illustrating its ability to predict failure loads,
failure mechanisms and crack patterns with a high computational efficiency up to failure. This
is an important component when dealing with large-scale structures where the sensitivity on the
required number of load increments applied during the analysis plays a crucial role in the
feasibility of any detailed FE simulation of real-scale RC structures.

One of the most interesting conclusions that result from this research work is the ability of
capturing, through the use of detailed FE models, the nonlinear response of real-world RC
structures and furthermore, acquire a relatively detailed overview of their nonlinear behavior in
terms of stress-strain distribution. With this ability of predicting the stress-strain distribution
inside the concrete domain, significant conclusion can be drawn for several mechanical features
of the RC studies. Specifically, in a series of beams (Bresler and Scordelis™®®) that was
numerically investigated in this work, it was found that both type of beams (with and without
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stirrups) exhibited high shear behavior near the limit loading state which affected significantly
their overall behavior. As it was observed in the computed crack pattern for both beam types,
inclined cracking was excessive, especially when the load level was near the ultimate capacity
of the beams. This behavior was not foreseen when the experimental setup was designed, since
the general belief that beam like structural members are flexural dominated was acceptable.
Through this study, it is shown that shear strains and 3D crack simulation play a significant role
in the overall behavior of RC structural members when the load level is near the ultimate state
limit load, even for cases of simple beam-like RC structural members.

8.2.5 Hybrid Modeling (HYMOD) Method

The HYMOD method was presented in an attempt of using detailed FE modeling in the
simulation of real-world RC structures. The basic objective for this type of modeling is the
decrease of the dof of the FE model by using a detailed approach (hexahedral and embedded
rebar elements) when necessary and at the same time retain an acceptable accuracy on the
predicted displacements.

In the scope of creating a generalized procedure when reducing the fully detailed FE model, the
introduction of four Reduction Levels was presented. The first and last Reduction Levels (RL 0
and 3) correspond to the unreduced and the FE model with only beam type elements,
respectively. The RL 1 and RL 2 Reduction Levels correspond to a specific decrease in the
number of hexahedral elements and their replacement with beam-column elements in non-
shear-dominated structural members areas of the structure.

The basic idea behind the reduction of a detailed FE model relies on the assumption that shear
dominated structural members should be modeled with the detailed approach, whereas the rest
of the structure and modeled with beam-column elements. When performing this type of
reduction scheme, the resulted model consists of elements with different dimensionality which
requires special numerical handling at their interface. In this work, the compatibility at the
interface is performed through kinematic constraints that are implemented at the interface of the
detailed domain and the beam node which controls the translational and rotational
displacements of the coupled elements. The proposed formulation was found to be
computationally robust since it does not require any special iterative procedure for its
implementation.

A parametric investigation was performed for defining the required joint length which is
adequate enough for capturing the nonlinear behavior of the hand critical region requiring
detailed simulation. It was concluded that the corresponding length of a joint should be between
h-2h, where h is the sectional height of the corresponding structural member (beam or column).
It was shown through a number of numerical tests that the proposed geometric constraint
manages to provide the adequate length for capturing the nonlinearities that occur in a critical
region while simultaneously maximizing the reduction of the resulting dof.

The HYMOD was applied in the case of a real-scale 2-storey RC building which was initially
designed with the use of a Greek civil engineering software package. The geometry of the
structure was discretized with the use of hexahedral solid elements and the resulted
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reinforcement was modeled with embedded rebar elements. The previously mentioned four
Reduction Levels were implemented and the resulted FE models where analyzed for comparing
the results and their corresponding numerical performance. As it was illustrated, the predicted
curves when using the RL 0, 1 and 2 FE models are in a good agreement in between them thus
the reduction of the initial FE model does not affect the accuracy of the predicted behavior of
the structure.

A second observation that was made through the resulted curves is that the simulation with the
NBCFB Euler-Bernoulli fiber element overestimates the ultimate load of the structure and
underestimates the corresponding interstory drift demand. This would provide an
unconservative estimation of the demand if it is used for the seismic damage assessment of RC
buildings that consist of shear dominated structural members.

A third very important observation is the inability of the beam-column element formulation to
capture the numerous local effects which play a significant role in the overall behavior of a RC
structure. Even if the beam element is equipped with a shear material model, the ability to
predict the influence of local effects is highly questionable.

Concluding with a general remark: It is evident that 3D detailed modeling is the most
numerically sufficient method for predicting the nonlinear behavior of any type of RC structure,
especially when dealing with highly nonlinear behaviors, where the prediction of the 3D stress
state is the only adequate way for capturing the numerical behavior of physical phenomena such
as yielding, cracking, stiffness degradation, etc. It is also evident that through the outcome of
this research work, the seismic assessment of RC structures should be performed using 3D
detailed FE models which account for most of the basic concrete material features that govern
the overall nonlinear behavior of the structures. This can be done through the implementation of
performance-based design procedures. The main restriction for this type of implementations is
the automation of the whole process and moreover, the numerical handling of the different
structural members in a 3D detailed model and particularly the enforcement of the compatibility
constant at the interface when the Hybrid Modeling approach is implemented. It is a
complicated task which requires extensive research work.

8.2.6 ReConAn FEA Software

As a final remark in this work, an object-oriented software package was developed to
incorporate the previously mentioned state of the art numerical methods and techniques for
modeling and analysing of RC and steel structures. The outcome of this attempt was named
ReConAn FEA software and it was demonstrated that it can predict accurately the nonlinear
behavior of RC and steel structures with computational efficiency and robustness. The
computational superiority of the developed software was demonstrated though numerous
numerical tests and computational comparison between commercial and research software
codes.

ReConAn is a practical proof that through the implementation of an intelligent programming
technique, the future prospects in FE modeling can widen even more, providing the common
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user with almost endless abilities in modeling complicated physical phenomena through the use
of standard CPU systems.

8.3 Future Work

In this research work, the nonlinear behavior of RC structures under monotonic loading was
investigated. It was shown that the developed software code constitutes an objective and
accurate modeling method for the realistic prediction of the nonlinear behavior of RC structures
under monotonic loading. Given the results presented in the present Dissertation, this task has
been accomplished and therefore the cyclic loading solution procedure has to be implemented
and numerically investigated in order to conduct any type of static and dynamic-cyclic analysis.
For accomplishing such a task the following numerical features have to be incorporated in
ReConAn FEA software:

1. Opening and closing of cracks for the cyclic concrete material model.
2. Displacement-control NR iterative solution procedure.
3. Dynamic solution algorithm.

The most important part when dealing with cyclic loading conditions is to manage the
numerical implementation regarding the material model of concrete. Since the monotonic
loading problem is ill-posed especially when cracking initiates, the closing and opening of
cracks will introduce additional implementation issues which require special attention. The
main algorithmic integrations towards this aim have been made, thus further development is
required in order to accomplish this task.

The numerical feature that has to do with the displacement-control solution strategy is already
under development and numerical tests remain to be carried out in order to verify the
correctness of the algorithmic implementation. Finally, the dynamic solution algorithm is under
development.

An important feature that is considered to play a significant role in RC structure modeling is the
bond-slip mechanism between the concrete and reinforcement. This feature was taken into
account through an indirect method with the consideration of three additional dof per embedded
rebar element and by considering that the bond-slip mechanism is triggered near the yielding of
the rebar elements, a phenomenon proved by several experimental research projects. However,
by adding 3 additional dof per rebar element the computational demand of such a modeling
method would have led to higher computational demands with no particular gain in terms of
accuracy. This is attributed to the fact that slip initiates near the rebar yielding where the
concrete at this stage is excessively cracked. In addition to that, in order for the bond-slip to
play an important role, the anchorage length has to be small enough for the mechanism to be
activated during the loading procedure, a geometric constraint that does not characterize real
structures. Nevertheless, incorporating an efficient bond-slip model is in the future task list,
which will be developed.

Regarding the NBCFB element, it was shown that the Euler-Bernoulli formulation appears to
have serious disadvantages when modeling structural members that are shear dominated. To
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improve the numerical accuracy of the predicted behavior of RC and Steel structures, the
extension of the element to incorporate shear effects can improve its numerical performance.

At this point let us draw the attention back to the forest instead of looking at the trees thus
missing the whole picture. Assuming that the ability of realistic simulations of the nonlinear
behavior of RC structures is established, it is the author’s belief that the basic feature that was
neglected, throughout this research work, is the interaction of the RC structure foundation with
the soil (Fig. 8.1) which is the media that plays the most significant role for bearing the
superstructure loads.

Given the object-oriented code structure of ReConAn FEA, it is rather easy to incorporate new
material models in the code without the need of radical alterations in the code. Therefore, the
integration of ReConAn with a soil material model for monotonic and cyclic loading will be
performed in the immediate future in order to investigate Soil-Structure Interaction problems
for the prediction of the static and dynamic nonlinear behavior of these coupled systems.

It is evident that when referring to algorithmic implementations in terms of possible future
tasks, it is impossible to cover all the subjects that a FE program can incorporate. Nevertheless,
when referring to algorithmic implementations the parallel solution of the numerical problem
cannot be neglected, thus it is one of the main future tasks of this research work.

FIGURE 8.1 5-STOREY RC BUILDING. HEXAHEDRAL FINITE ELEMENT MESH OF THE CONCRETE AND SOIL
DOMAINS.
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Appendix A: Formulation of the Octahedral Stresses and
Strains

In order to describe the octahedral formulation of the corresponding stresses and strains, the
representation of the Cartesian stress space has to be defined. Considering a Cartesian space, as
shown in Fig. A.1a, the principal stresses (o1, o2, o3) which correspond to the coordinate axes,
are used to define any given state of stress at any point P. The octahedral coordinates (z, », 6°),
refer to a cylindrical coordinate system having its z axis coincide with the space diagonal (o1 =
o2 = o03), While r and 6" represent the radius and rotational variables, respectively. Fig. A.la
represents schematically this type of system. Furthermore, the cylindrical system may be
transformed along the space diagonal or z axis, as illustrated in Fig. A.1b, which lies in the
plane normal to z (known as the deviatoric plane). The following relations results from standard
algebra computations, thus the octahedral and Cartesian coordinates are connected through:

1

Z=ﬁ(01+02+03) Al
1

p:ﬁ\/[(O'l—GZ)Z-F(GZ—G?’)Z+(G3—Gl)2j| A2
. 1

cost = ﬁ(q +0o,—20;) A3

G,

(A) (B)
FIGURE A.1 STRESS (A) CARTESIAN AND CYLINDRICAL COORDINATES; (B) TRANSFORMED IN THE
DEVIATORIC PLANE.

The octahedral stress, oo, acts on a plane orthogonal to the line that equally trisects the sets of
axes defined by principal stress directions. Such a plane is known as the deviatoric plane (Fig.
A.2), which is shown as a triangle. Given that u, is the unit vector along the z axis that is given

by 1/4/3 (1,1,1), the octahedral stress is obtained through the following formula:

o, . . 1 o,
1 1
Ot =| + O A 1= \/g O, A4
o, 1 o,

The octahedral stress is fully defined by its direct and shear components, oo and zo as well as the
angle @ that the shear octahedral stress vector forms with the projection of any given principal
direction on the deviatoric plane (Fig. A.2b). the magnitudes of these parameters are denoted by
oo, o and 6 which are known as hydrostatic stress, deviatoric stress and the rotational angle,
respectively. The relation of the octahedral and quantities and the principal stresses through the
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use of the octahedral coordinate system derives from standard vector operations and has the
form:

c :£(01+02+0'3):i2 A5
3 J3
1 1
TO=§\/|:(01—O'2)2+(02—O'3)2+(03—(71)2i|=ﬁl’ A6

cosé = A7

To 61

G2 o3

\ o,

(A) (B)
FIGURE A.2 OCTAHEDRAL STRESS (A) Goct = 00 + 70; (B) TRANSFORMED IN THE DEVIATORIC PLANE.
The search for the principal stresses (o1, 02, o3) and the associated principal directions
corresponding to an arbitrary stress state (oy oy, 05, 7z, Ty, T) IS performed by solving the
standard eigenvalue problem which can be written in the cubic equation format as follows:

o’—1o’+1,0-1,=0 A8

Eqg. A8 always gives three real roots (a1, a2, 63). Given that these three quantities represent the
corresponding principal stresses, they are independent from the coordinate system orientation
which was assumed originally (x, y, z) thus it follows that the coefficients I4, 1, and I3 must be
also independent from the coordinate system orientation. This is the reason why these three
quantities are known as the first, second and third invariants of the stress tensor. In order to
connect the two coordinate systems defined by the arbitrary orientation of the arbitrary (X, y, z)
axes and the principal directions, the following formula are provided:

|1:<O'X+O'y+dz):(0'1+0'2+0'3) A9
_ 2 2 2\ _

I, = (O'Xdy +0,0, +GZO'X)—(er +7, +sz) = 0,0, + 0,0, +0,0; A10
_ 2 2 2\ _

I, = (O'XGyO'Z +27,,7,7, ) —(eryz +0,7, +0,7, ) =0,0,0, Al1

The relations that connect the principal invariants the octahedral stresses can be verified that
they are given from the following expressions:

1
GO :§|1 A12
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T, = 20'5—%[2 Al3
c053¢9:—£32\]3 Al4
%o

where Js is the third invariant of the deviatoric stress tensor sj; = aij — 6odij.

Since all octahedral stress variables were defined in the component quantities of (oo, 70, 0) the
corresponding strain counterparts need to be expressed in an identical mathematical nature.
Therefore, denoting the three principal strains by (&1, &2, ¢3), the following definitions for the
hydrostatic and deviatoric strains gg and vyo, respectively, as well as the angle (J) between the
vector yo and the projection of the ¢3 axis, hold:

&, Z%(81+82+6‘3) A15
1
}/0:é\/[(81—82)2+(82—6‘3)2+(6‘3—81)2:| Al6
1
COS5:\/§—%(€O —83) A17

What remains is to define the elastic constitutive relations in terms of octahedral stresses and
strains which derive from the standard elastic constitutive principal elastic relations:

1
SIZEI:Gl—V(O'2+63):| A18
1
&, :El:az—v(0'3+al):| A19
1
€3=E|:G3—V(Gl+02):| A20
therefore
g =5 - A21
E K
1+v T
Yo="g To=%g A22
where K and G are the bulk and shear moduli, respectively and they are defined as:
E
K=——
3(1-2v) A23
E
G=
2(1+v) Azd
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Appendix B: Algebraic Algorithm for the Computation of a
Line-Plane Intersection

The algebraic algorithm for the computation of a line-plane intersection will be presented. A
plane can be represented by the equation:

Ax+By+Cz+D=0 B1
where (X, Y, z) represent the coordinates of any point that lies on the plane.

Assuming that point P1 and P2 with coordinates (x1, y1, z1) and (x2, y2, z2), are two points
defining the line, then the equation of the line can be written as:

P =P1+(P2-P1) B2
By substituting Eq. B2 into Eq. B1 results:
A (X1+2 (x2 = x1))+B(yL + 4 (y2 - y1))+C(z + 2 (22 - 21))+ D=0 B3

and by solving for A:

A-x1+B-yl+C-z1+D

2/:
A(X1 — x2)+B(yl — y2)+C(z1 - z2) B4

There are two cases that we have to take under consideration regarding the value of 1. The first
case is when this value is equal to zero which means that the normal of the plane is
perpendicular to the line, therefore there is no intersection between them (Fig. B1b). If A is not
equal to zero then there is an intersection between the line and the plane which is computed by
substituting the expression of 4 into Eq. B2 (Fig. B.1a).

Pl

o
o

P2
\ . Pl \ o5
, | n &, |1
(») (8) ©

FIGURE B.1 LINE-PLANE HAVE (A) AN INTERSECTION, (B) NO INTERSECTION AND (C) LINE IS LOCATED
ON THE PLANE.
In addition to that, we have to check if the line is located on the plane. This can be easily
performed by substituting the coordinates of the two points of the line into the equation of the
plane (Eq. B1). If both coordinates satisfy the equation of the plane it means that the line is
located on the plane (Fig. B1c).
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ETtidoyog

“Mia €KTEVIG TTPOVGIAOT] TTOAVXPWUWV SLAYPAUUATWY KAl TIAVELOPPWY CYXNUATWV, HE
ATWTEPO OKOTO TNV OVVSEDT] TOU APLOUNTIKOV ATTOTEAECUATOS IOV TIPOKUTITEL LECA ATIO
avoplOUNTEG UTIOAOYLOTIKEG TIPAEELS, HE TNV AVTIOTOLXN HNXQAVIKY) CUUTEPLYOPA Uiag
KATAOKELNG 1 OTOlXt TPOKVUTITEL ATIO TNV TEAELOTEPN OVTIOTNTA TIOU VLTNPEE TOTE, TN
«Lon».”

Eivat yevikwg amodekto 0TL ) @uom Sev pmopel va avamapoaxBel amd kavévav GAro Tapa
uovo amd TNV Bl TN @Uom. Zuvemwg, elval adlap@ofimmrto OTL 1 oLVVSEoT TwWV
APOUNTIKOV ATOTEAECUATWV TA OTOX TIPOKUTITOUV HECH OTO KATOLEG APLOUNTIKES
TPAEEL UE TNV AVTIOTOLYN ATOKPLOT] TWV PUOIK®OV @ALVOUEV®WV TIOV TPOKVTITOUV UECW
NG TMPAYUATIKIG CUUTIEPLPOPAS TWV KATACKEVWVY OTI (PUOT], Elval EYYEVWG ATOTT Kal
OUVU@QAGHEVT IE TNV EVVOLA TNG TIPOCEYYLOTIKN G AVOTG.

[Mapa TavTa, €xel StamoTwOel OTL N AVATITUEN AOYIOUIK®OV TIPOYPAUUATWV EXEL AAAGEEL
TOV TPOTIO L€ TOV OTO(0 OKEPTOUNOTE QALK KAL KAT EMEKTAON TOV TPOTIO LLE TOV OTO(0
AOUOLWVOVNE VEX Yvwor. Edv avadoylotel kavelg OTL ol UTTOAOYLOTEG AmOTEAOVV TO
VOUUEPO VA EPYNAEIO TO OTIO(O XPNOLUOTIOLOVV OTJLEPA OL ETILOTIIUOVES YLK VX TIALPAYOUV
VEx yvwon Kol Bewpleg, TOTE elval adlap@ofnTnto OTL 1 HEYAAVTEPT avakAALYm Tov
20°v alwva €xel eloBAAeL yia Ta KaAQ 0TI {wEG pag emnpedlovtag aueca Ty Sl v
Kowwvia. Méoa amd ™ Swatpn auty Kot kKupilwg péca amd TV eumelpla mov elya pe
emayyeApaties IMoAttikovg Mnyavikolg, 1 évvolax “Computer Educated Civil Engineer
(CECE)” eiva TAé0V TTpayaTIKOTNTAL.

‘0Oco vapyel avaBaduion kat eEEAEN TwV AoyLopKWY TakETWY [ToArtikoy Mnyaviko, o€
ula Tpoomabela vAoToinong TG AoYLKNS Tov TpooTabolv va mpowbcovv Ta Windows:
“Anyone can use it!”, T0te 0A0 éva Kol meploootepo Ba avavovtat ot CECE, pe
ATMOTEAECUA VA AKOVYOVTAL UE HEYAAVTEPT) CLUYXVOTNTA OXOALX TOV TUTIOV:

«Ma to éfyale To mpoypauua... Tote mpémel va eivat cwoto!!l»

To o MAvw @ALVOUEVO TIPETEL VA OTAUATNOEL HECW TNG OWOTNG eKMAiSevong Kal
EVNUEPWOTNG TWV VEWV POLTNTWV Kol &v duvauel MoAtikwv Mnyavikowv, yia to moco
EMIKIVOLVOL €lval 0L UTTOAOYLOTEG OTAV XPTNOLUOTIOLOVVTAL WG VTTOAOYLOTIKA HECK KATA TN
SLApKELX EKTEAEONG UIAG OTATIKNG LEAETNG.

YTapxouv avapiBunta yvwuIKa yla To TL elval éva computer 1) Yo TO TwG aUTO eMNPedlel
™ N TV avepOTwV OTWG:
“Computers are useless. They can only give you answers.” Pablo Picasso

“Computers have enabled people to make more mistakes faster than almost any invention in
history, with the possible exception of tequila and hand guns.” Mitch Ratcliffe

“A computer will do what you tell it to do, but that may be much different from what you had in
mind.” Joseph Weizenbaum

KoL oTnVv avtinepa oxOn:
“l do not fear computers. | fear the lack of them.” Isaac Asimov
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“Computing is not about computers any more. It is about living.” Nicholas Negroponte
KQL TO TEAEUTAIO XAAGL O)L £0)XATO

“Computers shape the theory.” John Argyris

Yuvoyifovtag Ta o Tavw peca amo to BAEpua Tov [ToAttikov Mnyavikol, amodexopaote
TNV QVOYKALOTNTA TNG XPNIONG TWV UTOAOYLOTWV OTNV EMOTHUN MAG, XAA& TOTE Sev
ATOSEXOUAOTE TA ATOTEAETUATA TIOU HAG S{VOUV YwpI(§ TNV avTimapABeon auTwV He TV
EMIOTNHOVIKY] YVWOT Kol TNV ovTiAnym Touv €XYOUME 1 omola TEPLYpA@ETAL OXESOV
amoOALTA ATIO TNV aKOAOLOT «AaikT) TTapafoAn»:

«KaOBovtovoav oc pla kapetépla tpels kUplol oL omolol ackovoav Ta £€N¢ EmAyyéAuQTA:
Mabnuatikog, Pvoikos kat Iohitikdos Mnyavikog. KaBw¢ amoldufavav tov ka@é Toug,
npootafovoav mapdAAnAa va Avoovv To €€1j¢ Oguehwdes uabnuatikd mpofAnua:
Aedouévne ¢ vmapéng uiag kaAllypauunc kat ovvaua mavéuoppns Eavoias yvvaikag kat
TOV YEYOVOTOG OTL TOUS Ywplle ula amootaon 10 pétpwv, Oa KATAPEPVE KATOLOG ATIO TOUS
TPELS VA PTAOEL OE AUTH, UE TNV VTOOean OTL kabe popa o kabévag Tous Ba TpoywpoUoe
Slavuovtag TNV ULoY amocTAcy amd auTy] OV TOUS Ywplle amo tnv yvvaika? Omws eival
KOLVWG YVWOTO, 0 UAONUATIKOS APYLOE VA TEPLYPAPEL TO UAONUATIKO TPOPANUa UEow
TOAVTIAOKWV UAONUATIKWYV OUVAPTIOEWY OOV KATEANEE 0TV amddelén Tov uadnuatikou
Oswpnuatog To omoio mpoéPfAeme 0TI Tavta Oa vINpye pla ardotaon ueTaé avtov Kat TG
yvvaikag, apa moté dev Oa umopovoe va THV QTAOEL 2T OVVEXELX 0 PUOLKOS dpyloe va
TEPLYPAPEL TN PUOT TOU TPOPANUATOS UECW TN TAPAOETNS THG HAONUATIKTIC SIATUTTWONG
ue Papuvtika medla kAl UAYVNTIKEG SUVAULIKES YPAUUES, OTOU €V TEAN KatéAnée oTo
ovumépaoua 0tL Oa vmnpye uia utkpn mlavoTnTA SedoUEVWY EWYEVWV TAPAYOVTWV KAl
otpéPfAwaonc ¢ mapariniiag, va tacel tedika otn yvvaika. TEAoG, UETE amo cofapo mepi-
ovAdoytouo kat ok€Yn, o MoAtikog Myyavikos édwae TV €&1¢ amavTnon: ZEKIVOVTAS THV
mopela ov mpog Tov moONTO 0TO)0, N amooTaon Oa UELWVETE e aTabepo pvBud, oMoV o€
Kamola ypovikn oTiyun avty Oa eivatl utkpotepn twv 10 EKATOOTWY, AMOOTACY EMAPKNS
uéoa otnv omoia Oa eQapPUOCTW THY YVWOTH Kivhon maciuatog, aykaialovtag Tov moonto
oToxYo!»
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