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Ευχαριςτίεσ 
 

 

Πξσηίζησο ζα ήζεια λα επραξηζηήζσ ηνλ επηβιέπνληά κνπ, Καζεγεηή Μαλόιε Παπαδξαθάθε, 

γηα ηελ επθαηξία πνπ κνπ έδσζε λα αζρνιεζώ κε εξεπλεηηθά ζέκαηα αηρκήο, ηα νπνία έρνπλ 

άκεζε εθαξκνγή κέζσ ηεο Μεζόδνπ ησλ Πεπεξαζκέλσλ ΢ηνηρείσλ θαη αθνξνύλ ηελ επίιπζε 

πξαθηηθώλ πξνβιεκάησλ Πνιηηηθνύ θαη Αεξνλαππεγνύ Μεραληθνύ. Μέζσ ηεο παξαγσγηθήο 

καο ζπλεξγαζίαο θαη ηεο επηζηεκνληθήο ηνπ θαζνδήγεζεο, θαηάθεξε λα κνπ ππνδείμεη ην 

απεξηόξηζην ησλ δπλαηνηήησλ κνπ θαη λα ζέζεη ςηινύο εξεπλεηηθνύο ζηόρνπο ζηα πιαίζηα ηεο 

παξνύζαο Γηαηξηβήο. Γηα όια απηά πνπ κνπ έρεη πξνζθέξεη, ζα ήζεια λα εθθξάζσ ηελ βαζηά 

κνπ επγλσκνζύλε.  

Θα ήζεια λα εθθξάζσ έλα κεγάιν επραξηζηώ ζηνλ ζπλάδειθν αιιά θαη θίιν, Τπνςήθην 

Γηδάθηνξα Μέηζε Παλαγηώηε κε ηνλ νπνίν πεξάζακε ακέηξεηεο ώξεο ζπδεηώληαο 

επνηθνδνκεηηθά γηα δηάθνξα επηζηεκνληθά ζέκαηα. Δπηπιένλ έλα κεγάιν επραξηζηώ γηα ηελ 

αληδηνηειή βνήζεηά ηνπ ε νπνία ήηαλ πξαγκαηηθά αλεθηίκεηεο αμίαο. 

Δλ ζπλερεία, ζα ήζεια λα επραξηζηήζσ ηα άιια δύν κέιε ηεο Σξηκεινύο Δπηηξνπήο, Καζεγεηή 

Μηραήι Κνηζνβό θαη Δπίθνπξν Καζεγεηή Υξίζην Εέξε, γηα ηηο ελδηαθέξνπζεο ζπδεηήζεηο πνπ 

είρακε ζε ζέκαηα ηεο Γηδαθηνξηθήο Γηαηξηβήο αιιά θαη ηελ παξνρή βνήζεηαο ζε εξεπλεηηθό 

επίπεδν, όπνηε απηή είρε δεηεζεί. Οη ζπκβνπιέο θαη ηα ζρόιηά ηνπο βνήζεζαλ ζεκαληηθά ζηε 

βειηίσζε ηεο παξνύζαο εξγαζίαο.  

Θα ήζεια λα εθθξάζσ ηελ βαζηά κνπ εθηίκεζε ζηνπο Καζεγεηή Βιάζε Κνπκνύζε θαη 

Αλαπιεξσηή Καζεγεηή Κσλζηαληίλν ΢πειηόπνπιν, νη νπνίνη ήηαλ πάληα δηαζέζηκνη γηα 

επνηθνδνκεηηθά ζρόιηα θαη ζπκβνπιέο επί ηνπ εξεπλεηηθνύ κνπ έξγνπ. 

Δπραξηζηώ όια ηα κέιε ηεο 7-κεινύο επηηξνπήο θαη εηδηθόηεξα ηνλ θαζ. Κάππν, γηα ηα 

επνηθνδνκεηηθά ηνπο ζρόιηα θαη παξαηεξήζεηο νη νπνίεο βνήζεζαλ ζηελ βειηίσζε ηεο 

παξνύζαο Γηαηξηβήο. 

Θα ήζεια επίζεο λα επραξηζηήζσ ηνλ Γξ Γηώξγν ΢ηαπξνπιάθε γηα ηελ ζπλεξγαζία πνπ είρακε 

ζηα πιαίζηα ηεο εξεπλεηηθήο νκάδαο ηνπ Καζεγεηή Μαλόιε Παπαδξαθάθε θαη ε νπνία ήηαλ 

πάληνηε επράξηζηε θαη επνηθνδνκεηηθή. Δπίζεο ζα ήζεια λα εθθξάζσ ηελ εθηίκεζή κνπ ζηνπο 

Γξ. Μηράιε Φξαγθηαδάθε, Γξ. Γεώξγην Λπθίδε, Γξ. Αξηζηείδε Παπαρξεζηίδε θαη Τπνςήθην 

Γηδάθηνξα Κσλζηαληίλν Παπαληθνιόπνπιν γηα ηηο πνιύηηκεο ζπκβνπιέο ηνπο επί ηνπ 

εξεπλεηηθνύ κνπ έξγνπ. 

΢ηα πιαίζηα ηεο Γηδαθηνξηθήο Γηαηξηβήο εθπνλήζεθαλ δύν Γηπισκαηηθέο θαη κία 

Μεηαπηπρηαθή Δξγαζία από ηελ ΢ηεθαλία Βαζηινκηρειάθε θαη ηνλ Παλαγηώηε Καξαθίηζην, νη 

νπνίνη κέζα από ηελ ζρνιαζηηθή ηνπο δνπιεηά ζπληέιεζαλ ζεκαληηθά ζηελ εθηελή 

παξακεηξηθή δηεξεύλεζε ηνπ θώδηθα πεπεξαζκέλσλ ζηνηρείσλ πνπ αλαπηύρζεθε ζηα πιαίζηα 
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ηνπ εξεπλεηηθνύ απηνύ έξγνπ. Θα ήζεια λα ηνπο επραξηζηήζσ γηα ηελ άξηζηε θαη ζπλάκα 

επνηθνδνκεηηθή ζπλεξγαζία καο. 

Θα ήζεια λα επραξηζηήζσ ηνλ Καζεγεηή Κπξηάθν Γηαλλάθνγινπ, ηνλ Λέθηνξα Γήκν Υαξκπή, 

ηνλ Γξ. Γεκήηξε Κνπκπνγηάλλε θαη ηνλ Γξ. Εαραξία Μνπξνύηε γηα ηελ παξαγσγηθή 

ζπλεξγαζία καο ζηα πιαίζηα ηνπ εξεπλεηηθνύ έξγνπ πνπ εθηειέζηεθε ζην πξνπηπρηαθό, 

κεηαπηπρηαθό αιιά θαη ζην αξρηθό ζηάδην ηεο Γηδαθηνξηθήο Γηαηξηβήο κνπ, ζε ζέκαηα 

αιιειεπίδξαζεο ξεπζηνύ-θαηαζθεπήο. 

Δπραξηζηώ όια ηα παηδηά ηεο Δξεπλεηηθήο νκάδαο ηνπ Καζεγεηή Μαλόιε Παπαδξαθάθε γηα 

ηελ άςνγε ζπλεξγαζία θαη ηελ παξαγσγηθή δηάζεζε πνπ επέδεημαλ. 

Σέινο ζα ήζεια λα επραξηζηήζσ ηελ γπλαίθα κνπ Μαξίλα γηα ηελ ππνκνλή θαη επηκνλή πνπ 

επέδεημε θαηά ηε δηάξθεηα ηεο εθηέιεζεο ηνπ εξεπλεηηθνύ απηνύ έξγνπ, θαζώο επίζεο θαη γηα 

ηελ ακέξηζηε ζηήξημή ηεο. Σελ επραξηζηώ γηα ην γεγνλόο όηη πνηέ δελ έπαςε λα πηζηεύεη ζηηο 

δπλαηόηεηέο κνπ θαη γη’ απηό ζα ηεο είκαη παληνηηλά επγλώκσλ. 

 

 

Δπραξηζηώ! 

Γεώξγηνο Μάξθνπ, Αζήλα, Ηαλ 2011. 
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Special Reference to the Life of J. Argyris 
This article was first published in 2004 in Computer Methods in Applied Mechanics and Engineering, Vol. 193, pp. 3763-3766.  

With the permission of the authors and CMAME, I share it with you here. 

 

A person with great vision, class and persuasion, who dramatically influenced Computational 

Engineering and Science and who will be long remembered as one of the great pioneers of the 

discipline in its formative years. 

John H. Argyris passed away quietly on 2 April 2004 after respiratory complications. John 

rests in peace in Sankt Jorgens Cemetery in the city of Varberg, 60 km south of Goteborg, Sweden, 

near Argyris' summer house. 

John was born on 19 August 1913 in the city of Volos, 300 km north of Athens, Greece into a 

Greek Orthodox family. His father was a direct descendant of a Greek Independence War hero, 

while his mother came from an old Byzantine family of politicians, poets and scientists, which 

included the famous mathematician Constantine Karatheodori, Professor at the University of 

Munich. 

Volos, as it was during his childhood, remained very much alive in his memory, especially the 

house he grew up in. He vividly remembered, until the end, details of the room where, at the age 

two, he almost died from typhoid fever. In 1919 his family moved to Athens where he received his 

initial education at a Classical Gymnasium in Athens. After studying Civil Engineering for four 

years at the National Technical University of Athens, he continued his studies at the Technical 

University of Munich where he obtained his Engineering Diploma in 1936. Just after graduation 

he was employed by a private consulting organization working on the leading-edge technical 

design of highly complex structures. One of these early engineering accomplishments was that of 

designing a 320 m high radio transmitter mast with a heavy mass concentrated at the top. 

With the outbreak of World War II, John was in Berlin continuing his studies at the Technical 

University of Berlin. Just after the German invasion of Greece, John was arrested and led to a 

concentration camp, on the accusation of transferring research secrets to the Allies. His savior 

turned out to be the eminent German Admiral Kanaris, of Greek descent, who arranged his escape 

by informing the guards that the prisoner would be executed outside the camp. In 1944, Kanaris 

himself was tragically executed as one of the leaders of the assassination attempt against Hitler. 

Following his escape from prison, John managed to leave Germany soon thereafter in a very 

dramatic manner. He swam across the Rhine River during a midnight air raid, holding his 

passport in his teeth. He managed to reach Switzerland where he completed his Doctoral degree at 

ETH of Zurich in 1942 in Aeronautics. In 1943 he moved to England and worked as a technical 

officer at the Engineering Department of the Royal Aeronautical Society of London. 



Special Reference to the Life of J. Argyris Athens, Jan 2011 

 

viii 
 

John could never derive any pleasure in ordinary day-to-day work and was only attracted to 

problems that seemed unsolvable. Even when working in industry, his directors soon realized that 

the best policy towards John Argyris was to entrust him with intractable problems. At the same 

time he was fascinated by the properties of triangular and tetrahedral components that appeared 

to him as ideal elements to build up an engineering system. He could never sympathize with 

Cartesian analytical geometry that he found most inelegant. During the war, he wrote three classic 

papers in Reports and Memoranda of the then Aeronautical Research Council. These were 

concerned with the diffusion of loads into stringer-reinforced stressed skin structures of wings and 

fuselages. He developed a theory using his intuition that combined differential equations and 

finite difference calculus that was immediately successful and later confirmed by experiments 

and applied with great success to British fighter and bomber aircraft during the war. However, 

the real break-through in his way of thinking and approach to technical problems of solid 

mechanics was achieved when the first electro-mechanical computing devices emerged in 1944 in 

Britain at the National Physical Laboratory and in the United States at Harvard University. 

In those days aeronautical engineers were trying to build the first combat jet aircraft whose speed 

required swept-back wings. One such example was the flawed German fighter ME262, proof of 

its designers' failure to develop a reliable method of analyzing the non-orthogonal geometry of 

wings. In August of 1943 John spent three whole days and nights in a bold attempt to solve that 

particular problem. His only help was a rudimentary computing device capable of solving a 

system of up to 64 unknowns. It took one sudden moment of clarity, on the third evening of his 

brainstorming session for him to realize that the answer could be the application of triangular 

elements. Here his dislike of orthogonal Cartesian geometry found an ideal field. Astonishingly 

enough the deviation from preceding experimental test results proved less than 8%. This was the 

birth of the matrix force and displacement methods, the finite element method, as later named. 

Immediately, all publications on this method were declared secret. Within the triangular element 

philosophy, John did not use Cartesian direct and shear stresses and strains, but a novel 

definition of stresses, expressed in terms of these direct stresses and strains, measured parallel to 

the three sides of each triangle. This new definition of stresses and strains led to the formulation 

of the Natural Approach which possessed great computational advantages and allowed a 

simple and elegant generalization to large displacements. 

In 1949 John joined the Imperial College of the University of London as a Senior Lecturer and 

in 1955 became a Full Professor and Director of the Sub-department of Aeronautical Studies 

until 1975. After becoming an Emeritus Professor he continued his collaboration with Imperial 

College as a Visiting Professor until 1980. In 1959 he accepted an offer from the University of 

Stuttgart and became Director of the Institute for Statics and Dynamics of Aerospace Structures. 

He created the Aeronautical and Astronautical Campus of the University of Stuttgart, a focal 

point for applications of digital computers and electronics. After becoming an Emeritus Professor 

at the University of Stuttgart he continued to work until the age of 88 with the same vigor, writing 

books and scientific papers with a compelling vitality and creative thinking. 
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In 1956 John addressed the problem of stress analysis of aircraft fuselages with many cut-outs, 

openings and severe irregularities. Computers then were not capable of enabling a global 

application of the finite element method. John, again following his intuition, realized that the 

problem could be solved by a new physical device involving the application of initial stresses and 

strains and an extension of matrix methods to a higher level. This was presented at the IUTAM 

Congress in Brussels in 1956 and created a great upheaval, because the whole derivation involved 

only 20 lines of physical argument and four lines of advanced matrix algebra. Most experts in 

the United States and Europe said that the theory must be wrong on the grounds of its simple 

derivation and they did not even accept the evidence of the computational results obtained by John 

that proved the correctness of this derivation. Somewhat later, however, a Ph.D. Thesis from 

Sydney, Australia was sent to John in which the candidate proved in 124 pages of close 

mathematical argument that the formula of John Argyris was indeed correct. This approach was 

also extensively applied to the design of the Boeing 747 as early as 1960. In the 1960s and 

1970s John had applied the finite element method with great success in Aerodynamics, 

Optimization, Combustion Problems, Nonlinear Mechanics and other fields of research and 

industrial interest, among them the suspension roof of the Munich Olympic Stadium in the late 

1960s. Around that period NASA sought his knowledge on the thermal shielding of the Apollo 

spacecraft. He suggested covering the fuselage with specially formulated substances that, upon 

reentry into the atmosphere, would evaporate and cool its surface. In 1976 John was concerned 

with the theory of Chaos and introduced these theories in studying the turbulence flow around the 

European Space Vehicle Hermis. 

It is difficult to summarize the impressive accomplishments of John Argyris. Among his writings 

were over 10 books, including three important textbooks: Introduction to the Finite Element 

Method, Vols. I, II and III, 1986–88; Dynamics of Structures, 1991; An Explanation of 

Chaos, 1994. The latter was printed in English and German and in Germany alone was published 

three times in one year, a rare achievement for a scientific publication of this kind. In addition to 

these writings, he published over 500 extended scientific articles in major international journals 

and lectured extensively both within Europe and abroad. His textbooks and extensive journal 

publications are essential reading material for students, practicing engineers and researchers 

around the world and have become benchmarks for later treatises on Computational Mechanics. 

One of his most important contributions in the engineering community was the founding and 

editorship of the journal Computer Methods in Applied Mechanics and Engineering, a 

publication that has provided much of the lifeblood of Computational Methods in Applied 

Mechanics and Engineering for more than three decades. John Argyris took great interest and 

pride in this venture and insisted on running the journal meticulously and diligently, thus 

succeeding in making it one of the leading journals in Computational Mechanics available today. 

John received many honors including 18 Doctorate Degrees, "Honoris Causa", three honorary 

professorships and six academy memberships from universities and academies all over the world, 

and more than 25 other awards and distinctions, among them the Gauss–Newton Award from 

IACM, the von Karman Medal from ASCE, the Timoshenko Medal from ASME, the Laskowitz 



Special Reference to the Life of J. Argyris Athens, Jan 2011 

 

x 
 

Gold Medal from the Academy of Science of New York for "the invention of the Finite Element 

Method", the Prince Philip Gold Medal of the Royal Academy of Engineering, the Grand Cross 

of Merit of the Federal Republic of Germany and the Einstein Award from the Einstein 

Foundation for his "momentous work on the Finite Element Method and Chaos Theory". He was 

also Fellow of the Royal Society of London, Honorary Member of the Executive Council of 

IACM and Honorary President of GACM. 

John was blessed with many talents, making him a true modern Renaissance man; he was a 

scholar, a thinker, a teacher, a visionary, an orator, an elegant writer, a linguist. Deeply 

cultivated, a man with rare principles and a passionate patriot, he was also unique in blending 

his Mediterranean temperament with Western European rationalism. 

In the paper which coined the name "Finite Element Method", published in 1960, the world-

renowned author Ray Clough refers to the finite element method as "the Argyris Method". Von 

Karman's prophetic statement that Argyris' invention of the Finite Element Method entailed one 

of the greatest discoveries in Engineering Mechanics and revolutionized our thinking processes 

more than 50 years ago was proven to be absolutely true. Indeed, the Finite Element Method, 

based on John Argyris' fundamental and far-reaching contribution, has truly revolutionized 

today's engineering and scientific environments. He had the vision and intellectual capacity to 

develop the basic steps of the Finite Element Method and to make numerous contributions in the 

development of the method. His early work "Energy Theorems of Structural Analysis", published 

in 1954, is considered to be the most important series of papers ever published in the field of 

Structural Mechanics. 

During the early years at Imperial College he met his wife Inga-Lisa who provided him with 

unshakable support throughout all the difficult moments of his life. John was also fortunate to 

see his son Holger follow a successful career in engineering and bring into the world, with his wife 

Carina, two adorable grandchildren who brightened his final years. 

John, in accordance with Herakleitos' aphorism of “  ”, has joined the Pantheon of 

those enlightening personalities who, with their revolutionary ideas and contributions, have 

changed the scientific world in the 20th Century. His geometrical spirit, the elegance of his 

writings, his deep appreciation and understanding of classical ideas, his creativity and his 

epochal vision of the future initiated and defined the modern era of Engineering Analysis and set 

us all on life's path of discovery. Our Computational Mechanics Community has lost the most 

eminent member and for many of us, a devoted friend. He will be deeply missed, but his legacy 

will empower generations. 

 

By Thomas J. R. Hughes, J. Tinsely Oden, and Manolis Papadrakakis 
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Πρόλογοσ 

 

 

Μέζσ ηεο ξαγδαίαο αλάπηπμεο ησλ ππνινγηζηώλ ηηο ηειεπηαίεο δεθαεηίεο, ππήξμε κία 

γεσκεηξηθά απμαλόκελε πξόνδνο ζηελ αλάπηπμε ινγηζκηθώλ ηα νπνία δίλνπλ ζηνπο 

ρξήζηεο ηε δπλαηόηεηα αλάιπζεο θαη ζρεδηαζκνύ θαηαζθεπώλ από νπιηζκέλν 

ζθπξόδεκα κε ηε ρξήζε δηαθόξσλ αξηζκεηηθώλ πξνζνκνησκάησλ. Τα ινγηζκηθά απηά 

παθέηα (εκπνξηθά θαη εξεπλεηηθά) ρξεζηκνπνηνύλ ηε δεκνθηιή αξηζκεηηθή κέζνδν 

ησλ πεπεξαζκέλσλ ζηνηρείσλ (ΠΣ), πξνθεηκέλνπ λα δηαθνξνπνηήζνπλ ην καζεκαηηθό 

κνληέιν πνπ δηέπεη ηε ζπκπεξηθνξά ηνπ εθάζηνηε πξνζνκνηώκαηνο θαη κέζσ ηεο 

εθαξκνγήο ζπγθεθξηκέλσλ αξηζκεηηθώλ κεζόδσλ επίιπζεο λα ππνινγίζνπλ ηα 

εληαηηθά κεγέζε πνπ αλαπηύζζνληαη ζε κία θαηαζθεπή, κε απώηεξν ζθνπό ηελ 

απνηίκεζε ηεο ζπκπεξηθνξάο ηεο ππό δεδνκέλνπο ζπλδπαζκνύο θόξηηζεο θαη ηελ 

νηθνλνκηθή θαη αζθαιή δηαζηαζηνιόγεζή ηεο.  

Μεηά από ηελ αλαθάιπςε θαη δηάδνζε ηεο κεζόδνπ ησλ ΠΣ από ηνπο γλσζηνύο 

«παηέξεο» ηεο κεζόδνπ: Argyris J. H.[1], Clough R. W.[2], Turner M. J.[3] και Zienkiewicz O. 

C.[4], νη νπνίνη αλαθέξνληαη κε αιθαβεηηθή ζεηξά κε ζθνπό ηελ απνθπγή ηεξάξρεζεο 

ηεο ζπνπδαηόηεηαο ηνπ έξγνπ ηνπο, ε ρξήζε ηεο κεζόδνπ έγηλε επξέσο απνδεθηή από 

ηελ εξεπλεηηθή θνηλόηεηα θαζώο επίζεο θαη ηνπο ζπγγξαθείο επαγγεικαηηθώλ 

θσδίθσλ αλάιπζεο θαη ζρεδηαζκνύ θαηαζθεπώλ πνιηηηθνύ κεραληθνύ θαζώο θαη 

πιεζώξαο άιισλ πξνβιεκάησλ ζηηο επηζηήκεο ηνπ κεραληθνύ. Δεδνκέλεο ηεο καθξάο 

ηζηνξίαο, ηεο ιεπηνκεξνύο δηαηύπσζεο αιιά θαη ηεο παξακεηξηθήο δηεξεύλεζεο ηεο 

κεζόδνπ ησλ ΠΣ πνπ έρεη πξαγκαηνπνηεζεί από ηελ εξεπλεηηθή νκάδα ζηελ νπνία 

εληάρζεθε ν ζπγγξαθέαο ηεο παξνύζαο Δηαηξηβήο, επηιέρζεθε ε κέζνδνο απηή γηα ηελ 

αλάπηπμε βειηησκέλνπ ινγηζκηθνύ πξνζνκνίσζεο θαη εθαξκνγώλ κεγάιεο θιίκαθαο 

πνπ ζα παξνπζηαζηνύλ ζηελ παξνύζα Δηαηξηβή. 

Παξά ηηο αικαηώδεηο εμειίμεηο ησλ ινγηζκηθώλ παθέησλ πνιηηηθνύ κεραληθνύ, ε 

αλάγθε δεκηνπξγίαο ελόο ινγηζκηθνύ πξνζνκνίσζεο θαηαζθεπώλ από νπιηζκέλν 

ζθπξόδεκα ην νπνίν λα είλαη αξηζκεηηθά ζηηβαξό θαη λα κπνξεί λα πξνζνκνηώλεη κε 

απνδεθηή αθξίβεηα ηε κε-γξακκηθή απόθξηζε νπνηαζδήπνηε ηξηδηάζηαηεο θαηαζθεπήο 

νπιηζκέλνπ ζθπξνδέκαηνο απνηηκώληαο κε ξεαιηζηηθό ηξόπν ηελ αληνρή ηεο ζε 

νξηαθέο θνξηίζεηο, είλαη αθόκε ππαξθηή. Τν γεγνλόο απηό αλαδύεηαη κέζσ ησλ 

ππεξαπινπζηεπκέλσλ πξνζνκνησκάησλ ΠΣ πνπ ρξεζηκνπνηνύληαη ζηελ πξάμε γηα ηελ 

αλάιπζε θαηαζθεπώλ από νπιηζκέλν ζθπξόδεκα θαζώο επίζεο θη από ηελ αδπλακία 

ησλ πην ιεπηνκεξώλ κνληέισλ πνπ έρνπλ αλαπηπρζεί εξεπλεηηθά γηα ηελ πξνζνκνίσζε 

πξαγκαηηθώλ θαηαζθεπώλ εμαηηίαο ηεο αξηζκεηηθήο πνιππινθόηεηάο ηνπο. Πέξαλ 

απηνύ, ηα ζρεηηθά ιίγα εκπνξηθά πξνγξάκκαηα πνπ ππάξρνπλ παξνπζηάδνπλ 

αδπλακίεο θαζηζηώληαο ηα κε πξαθηηθά εξγαιεία θαηά ηνλ ζρεδηαζκό πνιύπινθσλ 

θαηαζθεπώλ. 

http://www.argyris.nu/
http://en.wikipedia.org/wiki/R._W._Clough
http://www.google.com/search?hl=&q=m.+j.+turner+fea&sourceid=navclient-ff&rlz=1B3GGLL_enCY376CY376&ie=UTF-8
http://en.wikipedia.org/wiki/Olgierd_Zienkiewicz
http://en.wikipedia.org/wiki/Olgierd_Zienkiewicz
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Τα ηξία βαζηθά πξνβιήκαηα πνπ παξνπζηάδνπλ ηα εκπνξηθά πξνγξάκκαηα ΠΣ 

αλάιπζεο θαηαζθεπώλ από νπιηζκέλν ζθπξόδεκα είλαη: 

i. Η έιιεηςε αληηθεηκεληθόηεηαο ησλ απνηειεζκάησλ,  

ii. Η έιιεηςε αξηζκεηηθήο επζηάζεηαο θαηά ηε κε-γξακκηθή αλάιπζε  

iii. Τν ππεξβνιηθό ππνινγηζηηθό θόζηνο αλάιπζεο θαηά ηε δηάξθεηα επίιπζεο ηνπ 

αξηζκεηηθνύ πξνβιήκαηνο.   

Τν πξώην πξόβιεκα απαληάηαη ζε θώδηθεο ΠΣ (θπξίσο εκπνξηθώλ ινγηζκηθώλ 

παθέησλ) νη νπνίνη ρξεζηκνπνηνύλ ζηνηρεία δνθνύ ή θειύθνπο γηα ηελ ειαζηηθή 

πξνζνκνίσζε ησλ θαηαζθεπαζηηθώλ κειώλ ελόο θηεξίνπ από νπιηζκέλν ζθπξόδεκα 

(ΟΣ), ε νπνία αγλνεί βαζηθά ραξαθηεξηζηηθά ηνπ πιηθνύ (όπσο ηε ξεγκάησζε ηνπ 

ζθπξνδέκαηνο, ηελ επίδξαζε ησλ δηαηκεηηθώλ ηάζεσλ, ηε δηαξξνή ησλ νπιηζκώλ θιπ), 

θαηαιήγνληαο ζε πξνζεγγηζηηθά απνηειέζκαηα ηα νπνία δελ αληηθαηνπηξίδνπλ ηελ 

πξαγκαηηθή απόθξηζε ησλ θαηαζθεπώλ απηώλ ζε νξηαθέο θαηαζηάζεηο θόξηηζεο. Η 

ρξήζε απηώλ ησλ ππεξαπινπζηεπκέλσλ πξνζνκνησκάησλ γίλεηαη επξέσο από πνιιά 

εκπνξηθά παθέηα πνιηηηθνύ κεραληθνύ ζηηο ρώξεο καο (Ειιάδα θαη Κύπξν) αιιά θαη 

ζην εμσηεξηθό. Σηελ αληίπεξα όρζε, θάπνηα εξεπλεηηθά, θαζώο επίζεο θαη νξηζκέλα 

εκπνξηθά ινγηζκηθά παθέηα, ρξεζηκνπνηνύλ ηξηδηάζηαηα ιεπηνκεξή πξνζνκνηώκαηα 

αλάιπζεο θαηαζθεπώλ από ΟΣ, ηα νπνία ιακβάλνπλ ππόςε ηα βαζηθά ραξαθηεξηζηηθά 

ησλ δύν πιηθώλ. Τα θύξηα πξνβιήκαηα απηώλ ησλ ινγηζκηθώλ παθέησλ εληνπίδνληαη 

ζηελ αξηζκεηηθή επζηάζεηά ηνπο (ηδίσο όηαλ παξαηεξείηαη ξεγκάησζε θαηά ηε 

δηάξθεηα ηεο κε-γξακκηθήο αλάιπζεο) θαη ζην ππεξβνιηθό ππνινγηζηηθό θόζηνο πνπ 

απαηηείηαη γηα ηελ αλάιπζε ξεαιηζηηθνύ κεγέζνπο θαηαζθεπώλ, πξνβιήκαηα 

αιιειέλδεηα κεηαμύ ηνπο, ηα νπνία νδεγνύλ ζηνπο γλσζηνύο πεξηνξηζκνύο σο πξνο ην 

κέγεζνο ησλ κνληέισλ ηα νπνία κπνξνύλ λα αλαιπζνύλ εληόο απνδεθηώλ 

ππνινγηζηηθώλ ρξόλσλ.  

Δεδνκέλσλ ησλ πην πάλσ πξνβιεκάησλ θαη κε βάζε ηηο ηξέρνπζεο αλάγθεο ηνπ 

ζύγρξνλνπ πνιηηηθνύ κεραληθνύ, ε βαζηθή πξνζπάζεηα ηεο εξεπλεηηθήο εξγαζίαο πνπ 

αλαιύζεθε ζην πιαίζην απηήο ηεο Δηδαθηνξηθήο Δηαηξηβήο, είλαη ε δεκηνπξγία ελόο 

ππνινγηζηηθνύ εξγαιείνπ ην νπνίν ζα αληηκεησπίδεη απνηειεζκαηηθά ηηο βαζηθέο απηέο 

δπζθνιίεο, κε απώηεξν ζθνπό ηε δεκηνπξγία ελόο ινγηζκηθνύ πξνζνκνίσζεο θαη 

αλάιπζεο θαηαζθεπώλ από ΟΣ, ην νπνίν λα έρεη ηε δπλαηόηεηα κέζσ ηεο ρξήζεο ελόο 

θνηλνύ ππνινγηζηή, λα αλαιύεη κε απνδεθηή αθξίβεηα, ζρεηηθή αληηθεηκεληθόηεηα, 

ππνινγηζηηθή επζηάζεηα θαη εληόο εύινγνπ ρξνληθνύ δηαζηήκαηνο, κε-γξακκηθά 

ηξηδηάζηαηα πξνζνκνηώκαηα θαηαζθεπώλ από ΟΣ ζε νξηαθέο θνξηίζεηο (ζηαηηθέο θαη 

ζην πξνζερέο κέιινλ δπλακηθέο). Η επίηεπμε ελόο ηέηνηνπ ζηόρνπ ζα δεκηνπξγήζεη 

όιεο ηηο πξνϋπνζέζεηο, πνπ ιείπνπλ ζην παξόλ ζηάδην, νύησο ώζηε λα κπνξέζεη ε 

ηξηδηάζηαηε κε-γξακκηθή αλάιπζε κε ηε ρξήζε ιεπηνκεξώλ πξνζνκνησκάησλ λα 

απνηειέζεη βαζηθό εξγαιείν ζηε δηαδηθαζία ζρεδηαζκνύ αιιά θπξίσο ζεηζκηθήο 

απνηίκεζεο ησλ θαηαζθεπώλ από ΟΣ. 
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Preface 

 

 

During the last decades a significant increase in the number of available commercial and 

research software was observed, for modeling, analysis and design of reinforced concrete 

structures. Several type of models were presented in the international literature concerning the 

prediction of the nonlinear behavior of reinforced concrete structures which have been 

incorporated in civil engineering commercial and research codes. These software packages 

(commercial and research), are based on Finite Element Method (FEM), in order to numerically 

discretize the mathematical models that are used for the simulation of their structural behavior. 

Through the use of this numerical method, the stress state and deformed shape of any given 

structure can be computed, providing the analyst with the ability of assessing the structural 

behavior for any given load combination. 

Following the discovery and dissemination of the Finite Element Method by its known 

“forefathers”: Argyris J. H.
[1]

, Clough R. W.
[2]

, Turner M. J.
[3]

 θαη Zienkiewicz O. C.
[4]

, which 

are mentioned alphabetically in order to avoid establishing any sense of priority amongst them, 

the use of the FEM for the development of research and commercial software, in order to solve 

any type of physical problem which is governed by partial differential equations, becomes a 

necessity. Given the long term involvement of the author’s supervisor research team with this 

numerical method, it was chosen as the main tool for the development of an enhanced software 

package which to be used for the large-scale numerical implementations presented in this 

research work. 

Despite the fact that civil engineering software packages have increased in number 

significantly, the need of a software package that will be able to predict, with an acceptable 

accuracy, the realistic nonlinear behavior of reinforced concrete structures, in an affordable 

computational time and with numerical stability, computational efficiency and robustness, is 

still a task that has not been fully accomplished. This is due to the fact that software developers 

(especially commercial software companies) use simple finite element formulations for the 

analysis of reinforced concrete structures that provide numerical robustness during the analysis 

procedure without the requirement for advanced numerical simulations to cope with the 

nonlinear behavior under static and dynamic loading. On the other hand, existing software that 

uses complex or advanced numerical models for the analysis of the nonlinear response of 

reinforced concrete structures, faces serious problems regarding the numerical robustness and 

computational efficiency even for relatively small-scale models. This is the main reason which 

hindered 3D detailed models from being used in the design procedure of full-scale structures. 

According to the author’s experience, the three main problems that the analysts encounter when 

using the available commercial civil engineering software, in order to realistically predict the 

behavior of reinforced concrete structures, are the following: 

http://www.argyris.nu/
http://en.wikipedia.org/wiki/R._W._Clough
http://www.google.com/search?hl=&q=m.+j.+turner+fea&sourceid=navclient-ff&rlz=1B3GGLL_enCY376CY376&ie=UTF-8
http://en.wikipedia.org/wiki/Olgierd_Zienkiewicz
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i. The lack of objectivity in the numerical results,  

ii. The lack of numerical stability and robustness during the nonlinear analysis procedure  

iii. The excessive computational demand required for the nonlinear solution of large-scale 

detailed models. 

The first problem derives from the fact that most finite element analysis software (mainly 

commercial packages) use structural type finite elements (beam-column and shell elements) to 

analyze elastically the behavior of reinforced concrete (RC) structures. This type of modeling 

does not account for nonlinear material features that affect the overall behavior, thus the 

predicted structural response deviates from reality. The use of such models has been adopted in 

many software packages used by civil engineers all over the world. On the other hand, software 

that incorporate detailed models for the three-dimensional analysis of RC structures are 

hampered by numerical problems mainly attributed to the numerical complexity and the 

excessive computational demand of these models. These numerical phenomena inhibit the 

designers from using this type of modeling in the analysis of full-scale structures and restrict 

their application to structural members or small parts of RC structures.  

Taking into account the above numerical problems and given the modern needs of civil 

engineers, the main task of the research work conducted in this Dissertation is the development 

of a software which will alleviate most of the difficulties described above, in order to predict 

the nonlinear behavior of full-scale RC structures with the use of widely available CPU 

systems. The accomplishment of such a task requires the development of the necessary tools in 

order to analyze RC structures with an acceptable accuracy but at the same time with 

computational robustness and efficiency. In order to make this task feasible, the main 

drawbacks when implementing 3D detailed models has to be deled with thus making this kind 

of modeling approach practical even when addressing the seismic nonlinear response of full-

scale RC structures. 
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Introduction 

 

I. General 

The realistic prediction of the nonlinear behavior of RC structures has been the subject of 

intensive research by many researchers thus numerous methods can be found in the literature 

that describe several numerical and theoretical approaches for the 3D detailed nonlinear 

modeling of RC structures. Nevertheless, the use of 3D detailed nonlinear analysis for assessing 

the structural response of real RC structures still remains a numerically and computationally 

complicated task. Since the present needs of the civil engineering profession require tools that 

will provide the designer with numerical “confidence” and “reliability” during the simulation 

procedure, these numerically cumbersome methods are considered to be in a developmental 

stage thus are not as widely used as they should be. The incremental static nonlinear analysis, 

also called push over analysis, is used in several cases for the seismic assessment of RC 

structures but the finite elements that are used for modeling the structural members are beam-

column or shell elements with a number of limitations in capturing the realistic nonlinear 

response of RC structures.  

When a civil engineer is called to design seismically resistant structures following the current 

code provisions (EC8, EAK etc.), the use of a commercial civil engineering software is the only 

choice available. These software tools attempt to predict the overall nonlinear behavior of the 

structure when it is excited by a strong seismic wave (design earthquake) by performing linear 

analyses with simplified finite element formulations and by following the semi-empirical 

building design codes.  

Many researchers have realized the presence of the above problems and have attempted to 

overcome these difficulties through the development of reliable software. During the last two 

decades, serious attempts were made, through the development of several finite element 

analysis (FEA) software that use nonlinear models and solution processes, by a number of 

research and commercial software development teams. The better-known research software 

packages are the following:  

a) OpenSees (http://opensees.berkeley.edu),  

b) Fedeas (http://www.ce.berkeley.edu/~filippou/Research/fedeas.htm),  

c) Feap (http://www.ce.berkeley.edu/projects/feap/),  

d) Zeus NL (http://www.ideals.illinois.edu/handle/2142/9271), 

e) BEFE-Concrete (G. Beer
[5]

, integrated by H. Hartl
[6]

) 

f) FINEL (Hitchings
[7]

, integrated by M.D. Kotsovos & M.N. Pavlovic
[8]

) 

g) FE77 (integrated by G. Lykidis
[9]

). 

h) ANSR (Maison, Bruce F., http://nisee.berkeley.edu/elibrary/getpkg?id=PCANSR) 

i) ReConAn Academic (G. Markou, http://users.ntua.gr/markgeo) 

http://opensees.berkeley.edu/
http://www.ce.berkeley.edu/~filippou/Research/fedeas.htm
http://www.ce.berkeley.edu/projects/feap/
http://www.ideals.illinois.edu/handle/2142/9271
http://nisee.berkeley.edu/elibrary/getpkg?id=PCANSR
http://users.ntua.gr/markgeo
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At international level numerous commercial software packages were developed the last decade 

which incorporate different types of finite elements and material constitutive models. 

Nonetheless, only a few incorporate nonlinear constitutive models which account for cracking 

and 3D stress-strain states, albeit they have limitations when addressing full-scale RC structure 

simulations. The most widely used commercial software packages are the following: 

a) ΑΣΔΝΑ (http://www.Červenka.cz/), 

b) ΣΝΟ DIANA (http://tnodiana.com/), 

c) ABAQUS (http://www.simulia.com/products/abaqus_fea.html), 

d) ANSYS (http://www.ansys.com/), 

e) FEMAP with NXNastran 

(http://www.plm.automation.siemens.com/en_us/products/velocity/femap/femap.shtml), 

f) ADINA (http://www.adina.com/index.shtml), 

g) GT STRUDL (http://www.gtstrudl.gatech.edu/) 

h) SAP2000 – ETABS (http://www.csiberkeley.com/), 

i) STAAD Pro (http://www.bentley.com/en-US/Products/STAAD.Pro/). 

j) LS-DYNA (http://www.lstc.com/lsdyna.htm) 

k) SEISMOSTRUCT (http://www.seismosoft.com/en/HomePage.aspx) 

Considering that the above list of software represents a small portion of the available finite 

element packages, since the list becomes much larger when accounting for the more general 

finite element oriented software codes, it is indisputable that the finite element method is the 

most frequently used numerical method worldwide when dealing with the prediction of a large 

number of physical phenomena. A second observation which derives from the above 

presentation is that, regardless of the development of powerful analysis software tools from 

several software development teams, there is no software available that is able to predict 

realistically the nonlinear behavior of full-scale RC structures with the use of standard CPU 

systems. 

Based on personal experience of the author, in order for civil engineering software to be able to 

provide the user with the ability to analyze and design RC structures with the use of advanced 

numerical methods and sophisticated material constitutive models, it has to combine the 

following features: 

i. Reliable numerical results through the use of advanced FE modeling.  

ii. Incorporation of advanced material models that take into account basic material 

characteristics that control their nonlinear response. In addition to that, the 

corresponding material models should preferably be described through a small number 

of material parameters (i.e. compressive strength, steel yielding stress).  

iii. Automation of the modeling and discretization procedure. 

iv. Automation of the nonlinear solution procedure (i.e. Newton-Raphson load steps). 

v. Numerical robustness and computational efficiency. 

It is indisputable that the automation tools provided by a software code during the pre-

processing phase of the creation of a model, the analysis procedure and the post-processing 

http://www.cervenka.cz/
http://tnodiana.com/
http://www.simulia.com/products/abaqus_fea.html
http://www.ansys.com/
http://www.plm.automation.siemens.com/en_us/
http://www.adina.com/index.shtml
http://www.gtstrudl.gatech.edu/
http://www.csiberkeley.com/
http://www.bentley.com/en-US/Products/STAAD.Pro/
http://www.lstc.com/lsdyna.htm
http://www.seismosoft.com/en/HomePage.aspx
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phase of presenting the results, characterizes the software commercial advantages (1. Portability 

2. Parallel processing 3. Inter-operability with other software 4. Error checking 5. Regularity 

etc.). The expression “user friendly” derives from the above software features, which play a 

significant role in decreasing and mainly controlling potential user-induced mistakes. This was, 

and still is, the reason why software companies invest most of their resources in the 

development of high quality pre- and post-processing environments. The previously described 

restrictions when dealing with numerically cumbersome methods, is the reason why the 

development of 3D detailed FE models addressing the design procedure of RC structures is 

limited compared to other FE models. 

In an effort to overcome the above diachronic problems, the main task of this Dissertation is an 

attempt to prove that it is feasible to use advanced nonlinear numerical methods combined with 

sophisticated material modeling for the seismic assessment of full-scale RC structures through 

advanced programming techniques and development of state-of-the-art modeling methods. In 

addition to that, this task will require the creation of a software package which will overcome 

the five limiting features described above and, through the use of standard CPU systems, to 

predict within an acceptable computational time the nonlinear response of full-scale RC 

buildings. By fulfilling such a task, the design of safer structures will be accomplished avoiding 

potential failures which may derive from the use of simplified models for the design procedure 

of RC buildings (Fig. I.1). Moreover the validity of the numerous code provisions regarding the 

design of earthquake  resistant RC structures can be assessed. 

 
                                                       (A)                                                                                       (B) 

FIGURE I.1 RC FAILURES DUE TO EARTHQUAKES. (A) FAILURE OF COLUMN, DUE TO SHORT COLUMN 

EFFECT, OF A 5-STOREY BUILDING IN ANO LIOSIA, WHICH WAS BUILT IN 1997 ACCORDING TO THE NEW 

GREEK SEISMIC CODE AND (B) BRIDGE COLLAPSE AFTER THE KOBE EARTHQUAKE IN JAPAN 1995. 

For the accomplishment of the above task, an extensive literature investigation on 3D concrete 

material constitutive models was conducted, in order to choose the most feasible and accurate 

modeling techniques, and advanced numerical methods for the modeling and analysis of RC 

structures. In addition to that, an object-oriented software code was developed which 

incorporates the above features in an attempt to accommodate the numerical methods used for 

the 3D detailed analysis of RC structures. The ReConAn FEA software (Reinforced Concrete 

Analysis) was developed from scratch during this Dissertation so as to provide a controlled 

programming environment that is based on a unified programming technique. ReConAn FEA 

software is a sophisticated numerical tool which provides the user with the ability of advanced 



Introduction Athens, Jan 2011 

 

Page 8 of 272 
 

finite element (FE) analysis options combining different types of finite elements and material 

models for an accurate, numerically robust and computationally efficient prediction of the 

nonlinear response of RC structures.  

 

ΙΙ. Dissertation Objectives 

Modeling of RC structures with beam-column type finite elements was proven to be insufficient 

and inaccurate, especially when dealing with shear dominated structural members and 

structures with complex geometries. Nevertheless, this type of finite element is used widely for 

the analysis and design of RC structures due to its computational efficiency which is attributed 

to the resulting reduced-size numerical finite element models. Based on these limitations, an 

extensive literature survey was conducted, with the intention to allocate the most promising 

beam-column FE formulation for modeling RC structures. It was concluded that one of the 

most numerically advanced beam FE type was the Natural Beam-Column Flexibility-Based 

(NBCFB) element, which was incorporated in ReConAn software code following an extensive 

parametric investigation regarding its nonlinear numerical behavior.  

The second objective of this Dissertation was the literature investigation of 2D and 3D 

nonlinear modeling methods for RC structures with the purpose of acquiring a general idea 

about the trends on more sophisticated FE models. Furthermore, the selection of the 

numerically most promising 3D modeling method was a primary objective, in order to develop 

a sophisticated software tool capable of predicting the nonlinear response of full-scale RC 

structures in an acceptable computational time. After this literature review, it was concluded 

that the existing three-dimensional modeling techniques exhibit a number of limitations for 

capturing the nonlinear behavior of RC structures and that the corresponding software with 

sophisticated models for the simulation of nonlinear phenomena, such as cracking and detailed 

rebar modeling, are very sparse. This is attributed to the numerical restrictions and difficulties 

described above, whereas the required CPU resources become excessive when dealing with 

such numerical models even for the case of small-scale FE models. 

It is well known that the analysis of multistory RC buildings is performed through the use of 

beam-column elements which allow fast simulation times without serious numerical 

instabilities. In order to be able to analyze this type of structures with three-dimensional 

constitutive material models incorporated into 3D finite elements and the use of standard CPU 

systems, the availability of a powerful software tool is not enough. This constraint derives from 

the fact that CPU processors are bounded from an upper limit which is determined from the 

hardware itself. Processing power was not and will never be enough since the demand for the 

solution of larger numerical models constantly increases. In general, this is attributed to the 

necessity of large-scale simulations with detailed models for the purpose of capturing, as 

realistically as possible, the nonlinear behavior of structural systems. Therefore, the third 

objective of this Dissertation was to determine numerical techniques which will overcome these 

limitations when dealing with full-scale RC structures. A well-known approach that is used 

widely in computational mechanics is the use of parallel solvers which in this case will become 

a subject of future work. A second approach for overcoming this numerical restriction is to use 
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models which combine different types of FE models and which will be called “hybrid models”. 

This type of modeling assumes that shear dominated structural members with an expected 

highly nonlinear behavior are modeled with 3D detailed finite elements and the rest of the 

structure is modeled with simpler beam-column finite elements. This technique leads to a 

reduction in the complexity of the model and of the required computational demand for the 

solution of the discretized model, retaining at the same time an acceptable accuracy during the 

analysis procedure. 

Finally, the last objective of this research work, was the development of an object-oriented FEA 

code, capable of easily incorporating advanced numerical techniques and modeling methods for 

the analysis of RC structures. In addition, it will have the ability to incorporate easily future 

work and simulation enhancements, which will result into a more general FEA code that will 

provide the ability of realistic and reliable predictions of the nonlinear response of any type of 

structure. For the purpose of developing an extendable and sustainable program code, modern 

programming techniques are used and new numerical methods are developed to create the 

necessary program structure which will incorporate these state of-the-art features. It is the 

author’s personal opinion that this task is of great importance, especially when dealing with the 

solution of computationally complex numerical problems. 

 

ΙΙΙ. Layout of the Thesis 

Each Chapter is constructed through a specific format which can be considered as self-

contained from the rest of the Thesis, but is indirectly connected with the other Chapters 

through the general objective that characterizes this work.  

The content of each Chapter is described as follows: 

Chapter 1: In this Chapter a literature survey on several beam like element models that are 

used for the RC structure simulation are presented, along with several nonlinear 

solution techniques. 

Chapter 2: The second Chapter deals with the theoretical and numerical aspects of the 

NBCFB element where the numerical investigation of its nonlinear behavior is 

performed. In addition, the computational robustness and efficiency between 

ReConAn FEA and OpenSees is presented. 

Chapter 3: In the third Chapter a literature survey of 2D and 3D available nonlinear concrete 

material models is presented and subsequently, the selected constitutive material 

model for concrete is presented. The smeared crack approach is discussed in 

detail, since it is the approach adopted for modeling crack formation and 

propagation, as well as the modifications proposed for the numerically improved 

concrete material model. 

Chapter 4: The fourth Chapter presents the proposed mesh generation method for the case of 

the allocation of the embedded rebar elements (reinforcement of concrete) inside 

hexahedral concrete elements. As it will be illustrated, the proposed method 
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allows the arbitrary positioning of rebar elements inside the concrete volume and 

moreover can be applied in large-scale models with many thousands of rebar 

elements. 

Chapter 5: In this Chapter the proposed modeling method for RC structures is presented. 

The concrete domain is modeled with 8-nodded hexahedral elements which treat 

cracking with the smeared crack approach and the reinforcement is considered to 

be embedded and modeled with the proposed embedded beam element. An 

extended parametric investigation is presented of the numerical behavior of the 

proposed modeling method. The accuracy of the resulting output data are 

correlated between existing experimental data. The computational performance 

of the developed code is compared with the commercial code ATENA, which is 

considered one of the most widely accepted software packages for RC structures 

incorporating 3D models. 

Chapter 6: In this Chapter, the rationale behind the use of hybrid models is explained and 

the proposed reduction level concept is presented leading to the Hybrid Modeling 

Method (HYMOD) which is tested through several numerical tests. 

Chapter 7: This Chapter describes the basic programming features of ReConAn FEA and 

discusses some automation issues which are required in order to make the use of 

3D geometrically complex models more “user friendly”. 

Chapter 8: The final conclusions derived from this research work are presented in this 

Chapter and the proposed future work is discussed. 
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Chapter 1   Modeling of RC Structures with Beam Elements 
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1.1    The Finite Element Method 

The FEM is the most widely used numerical technique for the modeling of structures. Many 

scientists tried to present their own version about the creation of the method, involving 

Egyptian mathematicians as well as Archimedes and other great scientists as inspirers of the 

method. It is the authors’ belief that the method evolved with time reaching its final form when 

the CPU systems began to mark their appearance, thus numerical methods that were used prior 

to the generation of computer systems using some concepts of FEM cannot be baptized as FEM 

as it is known in its current form. It has to be made clear that FEM is a worthless numerical 

technique without the existence of CPU systems. Therefore, a substantial acknowledge has to 

be attributed to those who have contributed to the evolution of CPU systems and of course the 

scientists and engineers that, through their work, managed to evolve and make this method one 

of the most important discoveries of the 20
th
 century in engineering science. 

Mathematically speaking, FEM involves the approximate solution of partial differential 

equations (PDE) as well as of integral equations. The solution approach is based either on 

eliminating the differential equation completely, or rendering the PDE into an approximating 

system of ordinary differential equations, which are then numerically integrated using standard 

techniques such as the Euler's method, Gauss, Runge-Kutta, etc. The FEM is the most 

appropriate choice for solving partial differential equations over complicated domains (like 

civil engineering structures, airplanes, cars, ships, oil pipelines, fluid flow, weather pattern on 

Earth, etc.). It’s worth mentioning that one of the characteristics that gave the main impulse for 

its vast development is that symmetric matrices are produced when applying this numerical 

technique, making its numerical implementation through programming, much easier. This 

numerical characteristic gave also the ability of using several solution algorithms that can be 

applied only when the system of equations is symmetric, thus saving substantial computational 

effort during the analysis process. 

 
FIGURE 1.1 TWO DIMENSIONAL TRUSS FINITE ELEMENTS. 

When modeling 3D structures, the simplest finite element that can be used is the truss element 

which consists of 2 nodes. The truss element actually acts as a spring that can only be 

compressed or tensioned and in 3D space it has 3 degrees of freedom (dof) per node. Fig. 1.1 
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illustrates the 2D formulation, which can easily be integrated to the 3D formulation by 

introducing an additional dof per node along the z direction.  

A more complex rod element is the Euler-Bernoulli beam element (Fig. 1.2b), which also 

consists of two nodes and has 6 dof per node (three translational and three rotational along the 

X, Y and Z axis). Mathematically, the main difference of beams with respect to trusses is the 

increased order of continuity required for the assumed displacement functions. These functions 

must be continuous and possess continuous first derivatives along the longitudinal direction. To 

meet this requirement both deflections and slopes must be compatible at nodal points. 

 
(A) 

 
(B) 

FIGURE 1.2 DOF AND FORCES OF THE (A) TWO AND (B) THREE DIMENSIONAL BEAM FINITE ELEMENTS. 

By far the most popular FE for modeling RC structures is the beam element which takes into 

account the axial, the bending, torsional and the shear forces providing the ability of modeling 

structural members whose main deformation is flexure-dominated. What made this element so 

popular for modeling RC structural members was the simplicity of its formulation providing the 

engineering software developers with a “computationally light” numerical tool that was also 

able to capture some of the main characteristics of any beam-like RC structural member, 

especially when the structure was assumed to behave elastically. The element stiffness matrix is 
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assumed to be constant throughout the solution procedure thus the stiffness matrix of Eq. 1.1 

remains fixed since the material nonlinearities are neglected. 
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1.1 

where A, E,G, I, J and l are the area of the section, modulus of elasticity, shear modulus, 

moment of inertia, torsional moment of inertia and the length of the beam, respectively. 

In RC frame structures designed according to current specifications of earthquake resistant 

design, forces and displacements induced by earthquakes are expected to exceed those assumed 

by the design equivalent static lateral loads specified by the codes. When these structures are 

subjected to severe earthquake excitations, they are expected to enter the inelastic range and 

dissipate the large seismic energy input into the structure through large but controllable 

inelastic deformations at critical regions. In order to predict the distribution of forces and 

deformations in these structures under the maximum possible earthquake that can occur at the 

site, accurate models of the nonlinear behavior of the structural elements are necessary, thus the 

elastic response assumption does not apply. 

A basic assumption adopted by the design codes for the design of structures is the 

transformation of the earthquake excitation inertial loads into equivalent static lateral loads. 

Therefore, it is expected that during a severe earthquake excitation the forces and displacements 

of the structures will exceed those produced by the equivalent static lateral loads which are 

prescribed by codes, due to the dissipation of the seismic energy through large but controllable 

inelastic deformations at structural regions that are assumed as critical (joints, shear walls, short 
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columns etc.). Thus, the prediction of the distribution of forces and deformations in RC 

structures under earthquake excitations requires arithmetically accurate models of the nonlinear 

behavior of the critical regions of the structure. 

In the following, a historical representation of previous work will be described, regarding the 

different attempts presented in the literature in order to create a nonlinear beam element that 

will incorporate the necessary properties for the nonlinear analysis of RC structures. 

 

1.2    Review of Nonlinear Beam Element Models 

Many models were presented the last fifty years for the prediction of the inelastic response of 

RC elements subjected to large displacements. The majority of these models incorporate 

information from experimental investigations and on-field observations of the hysteretic 

behavior of RC structural members, ranging from the simple two-component models with 

bilinear hysteretic laws to refined fiber or layer models based on more accurate descriptions of 

the cyclic stress-strain behavior of concrete and reinforcing steel. Some of the presented models 

take also into account shear strain through the Timoshenko beam theory and relatively 

advanced material models, as it is going to be presented through this literature overview.  

 
FIGURE 1.3 SIMPLE LUMPED PLASTICITY MODELS. (A) THE CLOUGH & JOHNSON MODEL AND (B) THE 

GIBERSON MODEL. 

The very first inelastic girder model was proposed by Clough et al.
[10]

. This model consisted of 

a bilinear elastic-strain hardening moment-curvature relationship, known as the two-component 

model, which is assumed along the element (Fig. 1.3a). One of the shortcomings of this model 

is the difficulty of taking into account the stiffness deterioration of RC elements during cyclic 

load reversals. In addition to that this model is applicable only to flexure-dominated structural 

members. To overcome the problem of stiffness deterioration Giberson
[11]

 proposed another 

model in 1967 known as the one-component model (Fig. 1.3b). This model consists of two 

nonlinear rotational springs which are attached at the ends of a perfectly elastic element. The 
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elemental nonlinear deformations are lumped in these two rotational springs which endows the 

model with the advantage that any kind of hysteretic law can be assigned independently to the 

nonlinear springs. 

Otani
[12]

 in 1974 proposed a different approach to the problem of modeling the seismic behavior 

of RC beams and columns (Fig. 1.4a), by dividing each into two line elements, one linearly 

elastic and one inelastic, which act in parallel. In addition, an inelastic rotational spring was 

attached at each end of the element which represented the fixed-end rotation at the beam-

column interface due to slip of the reinforcement in the joint. The main disadvantage of this 

approach was the result of a non-symmetric flexibility matrix, unless one of the following 

assumptions was made: (a) the inelastic deformations are concentrated at the beam ends, or (b) 

the contraflexure point is assumed fixed at the midspan of the member. Nevertheless, Otani's 

study recognizes for the first time the significance of fixed-end rotations in predicting the 

nonlinear seismic response of RC frame structures. 

Mahin and Bertero
[13]

 in 1976, after reviewing the various definitions of ductility factors in 

earthquake resistant design, pointed out how ductility factors for a beam represented by a two-

component model must be modified to match those for a beam in which inelastic deformations 

spread along the member. In 1977, Anderson and Townsend
[14]

 studied the effect of different 

hysteretic models on the nonlinear response of RC frames by implementing four different 

models. The study showed that the degradation of the stiffness played a significant role in the 

interstory displacements, a numerical phenomenon that affects significantly the P-δ effect. 

Soleimani
[15]

 in 1979, introduced the first model which accounts for the spread of inelastic 

deformations into the element. An inelastic deformation zone was assumed that gradually enters 

the nonlinear range through the beam-column interface into the element as a function of loading 

history. It is assumed that the rest of the element behaves elastically throughout the loading 

history. Furthermore, the fixed-end rotations at the beam-column interface are modeled through 

point hinges which are placed at the ends of the element. The connection between the point 

hinges and the curvature at the corresponding end section is implemented through an effective 

intervention length factor which remains constant during the entire loading history. 

The effect of axial force on the flexural stiffness of a member was first taken into account in the 

model presented by Takayanagi and Schnobrich
[16]

 in 1979 (Fig. 1.4b). Their study was focused 

on the seismic response of coupled wall systems where the walls and coupling beams were 

represented by one-dimensional beam elements. Otani's model was selected for modeling the 

coupling beams where the effect of shear in the coupling beams was also taken into account. 

The pinching effect was pointed out for during reloading as well as the strength degradation due 

to loss of shear resistance after cracking initiation and yielding of the reinforcement. 

Emori and Schnobrich
[17]

 studied in 1981, the seismic response of a plane frame coupled with a 

shear wall where they conducted nonlinear static analyses under cyclic loading and compared 

their results by using three different beam models. The first model was identical to Otani's
[12]

 

model, the second was an element composed of several springs acting in series and 

interconnected by rigid links and the third model, which was a modification of the concentrated 

spring model, was based on a layered element. The layered approach was applied at a length Lp 
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at the ends of the beam and was set equal to the length of the region where major inelastic 

action was expected. The authors concluded that if a detailed study of the nonlinear response of 

plastic regions in columns was desired, the layer model is the most appropriate choice.  

 
(A)                                                                                (B) 

FIGURE 1.4 MODELS PROPOSED BY (A) OTANI
[12]

 AND (B) TAKAYANAGI AND SCHNOBRICH
[16]

. 

Another researcher that investigated the applicability of point hinge models in studying the 

seismic response of structures was Anagnostopoulos
[18]

. His study, which was published in 

1981, was mainly focused on flexural members subjected to end moments and uniformly 

distributed gravity loads. Through this investigation, it was concluded that a section hinge 

model is incapable of reproducing the gradual degradation of stiffness of a member in the post-

yielding range. It was also proven that setting the strain hardening ratio equal to the ratio of the 

moment-curvature relation is incorrect, since this underestimates the post-yield stiffness of 

flexural members. This study proposed an iterative solution for determining the strain-

hardening ratio of the moment-rotation relation of section hinge models. 

Banon et al.
[19]

 proposed another model for the analysis of seismic response of RC structures 

which combined nonlinear rotational springs at the ends of the element with the hysteretic 

moment-rotation relation based on a modified Takeda
[20]

 model. Moreover, several damage 

indicators were proposed in order to quantify the performance of a structure during an 

earthquake. The main conclusions were that the one-component model is sufficiently accurate 

in modeling the inelastic response of RC members subjected to severe deformation reversals 

and that the model could predict the damage of RC members.  

Park and Ang
[21]

 in 1985 proposed a model where damage was expressed as a linear function of 

the maximum deformation and the hysteretic energy absorbed during cyclic load reversals. The 

same year, in their study of plane rectangular frames and coupled shear walls, Keshavarzian and 
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Schnobrich
[22]

 extended the spread plasticity model proposed by Soleimani
[15]

 to column 

elements. For the determination of the strength and stiffness of the column element, the 

interaction between bending moment and axial force was considered. Their numerical 

implementations showed that the one-component model is suitable and accurate enough for 

describing the inelastic behavior of RC beams and columns yielding similar results with the 

two-component model. It was also stated that the layered model was found to be 

computationally expensive. 

It is well known that the main limitation of layered or fiber elements is that they are incapable 

of simulating the nonlinear response of structural members that undergo high shear 

deformations. One of the early attempts to overcome this limitation was that of Vecchio and 

Collins
[23]

 in 1986 who proposed a model with a dual-section analysis procedure discretizing 

the element into layers where iterations are performed for each layer until the internal 

equilibrium between adjacent sections is satisfied. Nevertheless, the proposed method was 

applied only for 2D cases. Another similar attempt was introduced by Ozcebe and Saatcioglu
[24]

 

in 1989. This model was based on the experimentally observed stiffness degradation and the 

associated pinching of hysteretic loops proposing empirically derived expressions that account 

for the effect of axial load on the hysteretic behavior. 

In the 1987 study of Roufaiel and Meyer
[25]

 an extension of the spread plasticity model 

developed earlier by Meyer et al.
[26]

 (1983) was proposed. This new model, took into account 

the effect of shear and axial forces on the flexural hysteretic behavior modulated on a set of 

empirical rules. The same year, Pantazopoulou
[27]

 proposed a formulation for the prediction of 

the behavior of T beams. 

After this extensive investigation and research work with the use of displacement-based finite 

elements, researchers began to show a great interest at the force (flexibility) method of analysis 

for the formulation of beam finite elements. The Beam-Column Flexibility-Based Beam 

element is known for its numerical robustness due to its nonlinear internal state determination 

procedure which assures that the internal forces equilibrate with the nodal displacements. 

Mahasuverachai and Powell
[28]

 (1982), Kaba and Mahin
[29]

 (1984), Zeris
[30]

 (1986), Zeris and 

Mahin
[31, 32]

 (1988, 1991) suggested different formulations and identified the advantages of the 

force method in the formulation of nonlinear frame elements. The latter introduced material 

softening in the solution procedure. 

Spacone et al.
[33-35]

 presented a beam element for seismic damage analysis which was integrated 

with the flexibility-based formulation where interpolation of both displacement and force fields 

was applied and an iterative nonlinear algorithm was implemented for the determination of the 

resisting forces during the element state determination. The element was integrated with the 

fiber approach and material models that accounted the pinching phenomenon and stiffness 

degradation due to cycling loading. The effects of shear and bond-slip were neglected. These 

studies proved that the flexibility-based formulation utilizes the beam-column element with 

numerical robustness and computational efficiency. It was also concluded that the comparisons 

between the results of the proposed model and experimental data were in a good agreement for 

cases that had average damage of flexural form. This was attributed to the inability of the model 
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to account for shear deformations. It is imperative to note, that this research work gave the 

flexibility-based method the required momentum in order to be recognized and used by many 

researchers, including the author of this Dissertation . 

Petrangeli and Ciampi
[36]

 (1997), Petrangeli et al.
[37]

 (1999) and Petrangeli
[38]

 (1999) presented 

a flexibility-based, fiber element which incorporated through its formulation, shear 

deformations. The element basic concept was to model the shear mechanism at each concrete 

fiber of the cross sections, assuming the strain field of the section as given by the superposition 

of the classical plane section hypothesis for the longitudinal strain field with a predetermined 

distribution over the cross section for the shear strain field. Transverse strains are determined 

by imposing the equilibrium between the concrete and the transverse steel reinforcement. As 

the authors mention, the resulting model, although computationally more demanding than the 

conventional fiber element, has proved to be very efficient in the analysis of shear sensitive RC 

structures under cyclic loading where the full 2D and 3D models are too time-consuming. 

Mohammad and Spacone
[39]

 presented in 2001, two general formulations of one-dimensional 

structural elements with deformable interfaces. The interface accounted for the bond-slip 

between the elemental components. The first formulation was the classical displacement-based 

formulation and the second one used the flexibility-based approach. The two formulations were 

derived from the equilibrium and compatibility differential equations of the problem and a 

special force recovery procedure, based on residual deformations, was presented for the second 

formulation. The numerical tests selected for illustrating the performance of the two 

formulations were a reinforcing bar with bond slip and a steel–concrete composite beam with 

partial interaction between the steel beam and the concrete slab.  

After performing a comparison between different beam formulations
[40]

, Neuenhofer and 

Filippou
[41]

 (1998) presented a geometrically nonlinear flexibility-based element, which 

accounted for geometrical nonlinearities. Ayoub and Filippou
[42]

 (1999) presented a mixed 

formulation for problems that account for bond-slip phenomena in the cases of cyclic loading. 

Schulz and Filippou
[43]

 (2001) presented a spatial Timoshenko beam element with a total 

Lagrangian formulation, which was based on curvature interpolation that was independent of 

the rigid-body motion of the beam element in order to simulate members with hyperelastic 

materials. The section response derived from plane section kinematics, taking into account 

nonlinear material behavior. The authors stated that the proposed numerical method exhibited 

accuracy and superior numerical performance. 

Limkatanyu and Spacone
[44, 45]

 (2002) continued the work of Mohammad and Spacone
[39]

 and 

presented the theory and applications of three different formulations of RC frame elements 

accounting for bond slip in the reinforcing bars. The first was the displacement-based 

formulation, derived from the principle of stationary potential energy. The second was the 

flexibility-based formulation, which was derived from the principle of stationary 

complementary energy and the third was the two-field mixed formulation, derived from the 

principle of stationary Hellinger–Reissner potential. The final conclusion of this study was that 

the flexibility-based element is slightly more precise than the mixed element, but it is 

numerically less stable. 
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Battini and Pacoste
[46, 47]

 (2002) presented a 3D co-rotational elastic beam element including 

warping effects and through its formulation incorporated elasto-plastic deformations. In order to 

achieve this, it was assumed that the element had seven degrees of freedom at each node. The 

main purpose of this element was to model elasto-plastic instability problems. The performance 

of the element was tested through several numerical tests. The same year, Klinkel and 

Govindjee
[48]

 presented their work using finite strain 3D-material models in beam and shell 

elements, illustrating the importance of using a three-dimensional formulation in modeling 

material nonlinearities. 

 
FIGURE 1.5 FIBER ELEMENT. CONTROL SECTIONS AND DISCRETIZATION WITH FIBERS

[33]
. 

Klinkel and Govindjee
[48]

 (2002) suggested that, a J2 three-dimensional plasticity law could be 

used with the aim of assessing the inelastic response of shear-deformable steel structures and a 

3D material law was employed under the assumption of “plane-stress” conditions. The term 

“plane-stress” in a beam element is loosely adopted to denote a situation where out-of-plane 

conditions are imposed at the integration points. The verification of the computational 

efficiency of the proposed element formulation with regard to displacement-based and 

conventional force-based beam-column elements, was carried out through experimental data 

available in the literature and numerical results obtained by using detailed discretization with 

shell finite elements. 

Saritas and Filippou
[49]

 (2004) presented a force-based formulation for the seismic assessment 

of steel structures using a multi-dimensional law, where their study was limited to the two-

dimensional case of a single section type and has been numerically examined on simple 

academic examples. 

Papaioannou et al.
[50]

 (2005) presented a fiber flexibility-based beam, which incorporated the 

natural mode method proposed by Argyris et al.
[51]

. The numerical results of this study showed 

that when the flexibility-based method is combined with the natural mode method and the fiber 
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approach which accounts for material nonlinearities, an elegant formulation is derived which 

produces numerically efficient and accurate results. This element is also incorporated in 

ReConAn and will be presented in the next Chapter of this Dissertation . 

In the research work presented by Mazars et al.
[52]

 in 2006, the solutions for an enhanced 

multifiber beam element accounting for shear and torsion through the Timoshenko beam theory 

was investigated. Higher order interpolation functions were used to avoid any shear locking 

phenomena and the cross section warping kinematics was extended to nonlinear behavior using 

advanced constitutive laws. The authors reported that the numerical results were in good 

correlation with corresponding experimental data for T-shaped RC sections.  

Marini and Spacone
[53]

 (2006) presented a flexibility-based, shear-deformable beam element 

where a separate phenomenological constitutive law for the shear component was adopted. This 

was a simplifying assumption but maintains all the advantages of fiber beam elements in terms 

of robustness and simplicity of the material laws. Following, Navarro et al.
[54]

 (2007) presented 

a model for the analysis of reinforced and prestressed concrete frame elements under combined 

loading conditions, including axial force, biaxial bending, torsion and biaxial shear force. The 

proposed model was based on the simple kinematic assumptions of the Timoshenko beam 

theory and was implemented through the FEDEASLab
[55]

, a Matlab-based toolbox developed at 

the University of California, Berkeley. The control sections of the frame element were 

subdivided into regions with 1D, 2D and 3D material response. The validity of the model was 

illustrated through the numerical comparisons to flexure dominated well-known tests. 

Another resent attempt to present a flexibility-based beam element with a damage-plastic 

section constitutive law was that of Addessi and Ciampi
[56]

 (2007). In their work, both 

displacement-based and flexibility-based approaches were used and compared. With the 

intension of overcoming the analytical problems and the pathological mesh dependency of the 

numerical response in the presence of strain-softening post-peak behavior, a classical non-local 

regularization procedure was adopted. The regularization technique was based on a selected 

integration procedure along the element length, which predefines the location of the Gauss 

points in the beam region, where the localization phenomena take place.  

Mata et al.
[57]

 (2007) in continuation of the work of Simo and Vu-Quoc
[58, 59]

, presented a beam 

model for static analysis under nonlinear geometric and material behavior. The displacement-

based method was used for the solution of the resulting nonlinear equations and 

thermodynamically consistent three-dimensional constitutive laws were used for describing the 

material behavior where the simple mixing rule was applied. For describing the residual 

strength and the load carrying capacity of the beam element, they proposed a method defining 

the global damage state of a structure based on a scalar damage index. Through the numerical 

example conducted in their work on a RC cantilever beam, it was clear that the displacement 

formulation lacked the robustness and accuracy, requiring the discretization of the structural 

member with a large number of beam elements.  

Ghosh and Roy
[60]

 in 2008, investigated an isoparametric interpolation of total quaternion for 

geometrically consistent, strain-objective and path-independent finite element solutions of the 

geometrically exact beam. This interpolation was a variant of the broader class known as slerp. 
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The interpolation of rotations uses a standard finite element discretization, as adopted by Simo 

and Vu-Quoc
[58]

. 

Fardis
[61]

 (2008) presented a numerical investigation on the nonlinear response of fiber models 

when used for the nonlinear analysis of RC structures. Moreover he used a phenomenological 

model which was based on the Otani
[12]

 model to perform dynamic analysis on real RC 

buildings. The main conclusions of this research work were that the fiber approach was 

prohibitive for the analysis of real RC structures where their use is adequate as a research tool 

and the concentrated plasticity models reproduce acceptable results when used for the seismic 

assessment of real RC buildings. 

Papachristidis et al.
[62, 63]

 extended the element presented by Papaioannou et al.
[50]

 incorporating 

the Klinkel and Govindjee
[48]

 three-dimensional plasticity law to assess the inelastic response of 

shear-deformable steel and RC structures. The Timoshenko beam theory was incorporated and 

the interaction between axial, bending and shear behavior was accounted for through their 

corresponding material models. The numerical results of the proposed model were in a good 

correlation with experimental data and numerical examples. 

Kwak and Kim
[64]

 (2010), proposed a simple analytical procedure to analyze RC beams with a 

cracked section on the basis of the simplified moment-curvature relations of RC sections. The 

proposed model also considered fixed-end rotation caused by anchorage and was tested through 

numerical correlation with experimental data.  

Through his paper, Landesmann
[65]

 (2010) presented an application of a computational tool, 

named SAAFE Program, developed to analyze nonlinear inelastic steel and composite 2D 

framed structures. The proposed plastic-hinge model was formulated based on three 

characteristics which controlled the beam stiffness, the residual stresses and the structural 

member instability. The validity of the proposed formulation was refined through numerical 

examples and available experimental data. As the author stated, based on the obtained results, 

the proposed model can be used to perform inelastic analysis for 2D isolated or full frame 

members, incorporating geometric and material nonlinearity. 

Valipour and Foster
[66]

 (2010) presented an element for nonlinear analysis of RC framed 

structures subjected to torsion, using the flexibility formulation. The interaction between the 

axial force and bending moment was considered by adopting the Navier-Bernoulli assumption 

and using the fiber element approach. The torsional dofs were formulated independently and the 

effect of normal and tangential forces on the torsional stiffness of section was accounted for by 

modifying the torque-twist curve of a section under pure torsion. The authors conclude by 

stating that the model requires further development in order to be used for full-scale simulation 

of RC structures subjected to torsional deformations. 

It is very clear that a lot of effort has been devoted to create a robust, efficient, rational and 

objective beam-column model, which will be able to analyze the three-dimensional nonlinear 

response of steel and RC framed structures. It is indisputable that none of the above research-

works managed to fully succeed in this task and it is the author’s belief that, it will be difficult 

to accomplish such a task in the future, especially when dealing with shear dominated RC 
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structures. This conclusion derives from the fact that when three-dimensional nonlinear 

phenomena occur (3D shear stains, cracking, warping, increase of concrete strength due to 3D 

confinement, etc.), the beam element formulation is incapable of capturing deformations and, 

therefore, these can only be modeled with the use of 3D finite elements. As it will be presented 

in Chapter 5, the most accurate and objective numerical way of predicting the nonlinear 

response of RC structures, is by using detailed simulation with 3D solid finite elements, which 

account for most of the nonlinear phenomena, through their 3D formulation. It is inevitable that 

when 3D nonlinear FE models will become computationally efficient and the use of 3D models 

completely automatic, they will be the optimum numerical tool for the prediction of the 

inelastic response of RC structures. Until then, beam-column elements will be the main 

analytical tool for the analysis and design of full-scale RC structures.  

Through this literature review, it is easy to conclude that the flexibility-based formulation of 

beam-column elements appears to be the most accurate and efficient method when large 

amplitude nonlinearities occur, establishing equilibrium between the internal resisting forces 

and external nodal deformations. In addition to that, when combined with the fiber approach, it 

provides a numerical tool which can model with relative accuracy the inelastic response of RC 

structural members. Given that this numerical method is computationally demanding, the use of 

the natural mode method is essential for the decrease of the computational cost, as it will be 

demonstrated in the next Chapter through the presentation of the relevant algorithmic 

implementation. 

 

1.3    Solution Algorithms for Systems of Nonlinear Equations  

One of the most important numerical features of the FEM is that after the stiffness formulation 

and regardless of the nature of the problem at hand, the system of equations required to be 

solved has the simple form of 

         1.2 

where    is the global stiffness matrix of the structure,    is the array which contains the 

unknown nodal displacements and    is the corresponding array with the external loads. In 

addition to that, the stiffness of the structure is always symmetric, which permits the 

implementation of advanced solution algorithms combined with memory and storage saving 

programming techniques, optimizing the computational performance during analysis. 

It is obvious that, when dealing with nonlinearities, Eq. 1.2 cannot be solved explicitly, 

requiring iterative solution algorithms like the well-known family of Newton-Raphson type of 

methods. Early work presented by several researchers
[67-71]

 highlighted the advantages of the 

Newton-Raphson method for solving nonlinear systems of equations resulting from the finite 

element method, making it perhaps the best known incremental step method for finding 

successively better approximations to the roots of a nonlinear set of equations. Many alternative 

versions of the method were proposed in the literature for handling the incremental steps. Three 

basic Newton-Raphson (NR) iterative algorithms will be presented in this section: (1) Force-

Control, (2) Displacement-Control and (3) Arc-Length. 

http://en.wikipedia.org/wiki/Newton%27s_method
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1.3.1   Force-Control Newton-Raphson  

If in the FE formulation, it is assumed that the boundary conditions remain constant during the 

solution of Eq. 1.2, then the displacements for a given load combination       are equal to 

      for a linear static problem. If the structural problem at hand contains nonlinearities 

(material and/or geometrical) then this is not the case. In order to find the equilibrium state 

between the internal forces of the structure and the external loads, it is assumed that the applied 

loads can be expressed as a function of pseudo-time t, for static problems, and the equilibrium 

at each step can be expressed as: 

  
    

    1.3 

where   
 are the externally applied nodal forces of the structure at time t and   

  are the nodal 

forces that correspond to the internal stresses of the structure. The relation of Eq. 1.3 expresses 

the equilibrium of the system in the current deformed geometry accounting for all 

nonlinearities. It is important to note that, this relation is general and applies also for dynamic 

problems where the forces due to inertia and damping are included in the   
  array. 

Therefore, by dividing the external forces into n load steps and by using a specific load 

increment (    
 ⁄ ), the external loads are applied incrementally and at each time step a new 

load increment is added to the structure external loading. This requires the satisfaction of Eq. 

1.3 through the whole loading time history. For the case of static loads, the definition of time is 

only a convenient variable which specifies different load levels and, correspondingly, different 

structural configurations.    

Assuming that i is the current load step of the analysis, then the accepted solution can be stated 

as  

  
         1.4 

therefore, the solution of the next load increment at time      will be 

  
       

    
         

                 1.5 

For the computation of the unknown displacements at load increment      a prediction of the 

solution is obtained by using the stiffness matrix of the previous load increment. 

  
     

        
     1.6 

The next stage of the nonlinear algorithm is to compute the resisting forces at each node of the 

structure and assemble the   
  array in order to verify if Eq. 1.3 is satisfied. In nonlinear 

solution algorithms, Eq. 1.3 is never equal to zero thus a convergence criterion is applied which 

specifies if convergence is achieved. The result of Eq. 1.3 is the vector of the residual forces   
 
 

(Eq. 1.8). This vector is used in order to compute the error of the iterative procedure according 

to the adopted convergence criterion (Eqs. 1.7).  

    
‖   

 ‖

‖  
    ‖

    1.7a 

    
‖  

       
    ‖

‖  
       

 ‖
    1.7b 
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 ‖  
       

    ‖

   
 ‖  

       
 ‖

    1.7c 

  
 
   

       
     1.8 

where j is the corresponding internal iteration, eD is the displacement, eF is the force and eE is 

the energy convergence tolerance criterion, respectively. For each internal iteration j, the 

stiffness matrix of the structure is updated by using the new material properties which are 

implemented through the material constitutive matrix C of the finite element formulation. If the 

numerical problem at hand accounts for geometrical nonlinearities, then the stiffness matrix of 

the FE model is also affected by the current configuration. The updated global stiffness matrix 

is known as the tangent stiffness matrix. In the event that the convergence criterion is not 

satisfied, the residual forces are applied as external forces through Eq. 1.6 and the nonlinear 

solution algorithm proceeds with the j+1 internal iteration. 

 
FIGURE 1.6 FULL NEWTON-RAPHSON ITERATIVE SCHEME. 

When the global stiffness matrix of the structure is updated for each internal iteration, then we 

have the full NR scheme (Fig. 1.6). This is computationally demanding with respect to the 

computational effort required for the factorization and back substitution procedures of the 

stiffness matrix at each iteration, but at the same time this effort is counter balanced by the 

increased convergence properties of the method. Most researchers also state that the assemblage 

of the stiffness matrix is time consuming, a statement that is not verified in this research work. 

A reduction of the computational cost per iteration may be achieved with alternative NR 

algorithms like the “Modified” scheme or quasi-Newton scheme, where the stiffness matrix is 

updated after a specific number of internal iterations or implicitly after each iteration, 

respectively, during the solution procedure. The disadvantage of these methods is the slow 

convergence rate for cases with strong nonlinearities requiring larger number of iterations until 

convergence. This is illustrated in Figs. 1.7a and 1.7b where two NR schemes are presented.  

It is worth mentioning that the force-control NR schemes appear to be numerically less stable 

than the corresponding displacement-control schemes which are presented below. In this work 
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the full NR scheme with the force-control approach is used, which exhibited numerical 

robustness and efficiency in the numerical tests considered. 

 

                                                (A)                                                                                                      (B) 

FIGURE 1.7 (A) MODIFIED NEWTON-RAPHSON AND (B) QUASI-NEWTON SCHEMES. STIFFNESS MATRIX 

UPDATES EVERY TWO INTERNAL ITERATIONS. 

 

1.3.2   Displacement-Control Newton-Raphson  

When the inelastic branch of the P-δ curve is descending (Fig. 1.8 case: B) then it is evident 

that the force-control approach fails to converge regardless the number of internal iterations 

performed. In Fig. 1.8, two possible unstable branches (A and B) are shown. Branch A is 

followed by a stable branch until it reaches the equilibrium point Peq, while branch B is an 

unstable descending branch until failure. In both cases the force-control approach fails to 

capture the descending branch of the P-δ curve. When ultimate load analysis is performed, the 

main task is to predict the maximum carrying capacity of the structure (ultimate load). In this 

case the force-control approach still has some difficulties in computing the exact ultimate load. 

For the case where one needs to compute the unstable descending branch of a structure during a 

nonlinear analysis, the displacement-control approach has to be used. This approach, assumes 

that instead of a load incrementation, a specific displacement is imposed on a structural node 

and the corresponding nonlinear response of the structure is predicted by computing the internal 

resisting forces. Solving this kind of problems, the conversion of the Dirichlet problem into an 

equivalent Neumann through the use of Eqs. 1.9 & 1.10 is required. Fig. 1.9 illustrates the 

graphical representation of such a transformation for the case of a cantilever beam, which is 

discretized with three beam elements. 

The corresponding equation is transformed as follows: 

   {
  

  

}        {
  

  

} 1.9a 

   [
        

        

]  therefore, 
1.9b 

http://en.wikipedia.org/wiki/Dirichlet
http://en.wikipedia.org/wiki/John_von_Neumann
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FIGURE 1.8 FORCE-CONTROL NEWTON-RAPHSON. POSSIBLE SOLUTION DIVERGENCE. 

Transforming the Dirichlet problem into an equivalent Neumann problem requires the 

separation of the dof of the unknown displacements (uU) from the dof where the displacements 

are imposed (uI), rearranging the rows and columns of the displacement, force and stiffness 

matrices (Eqs. 1.9a-1.9b). After the rearrangement of the dof and with the use of Eq. 1.2, the 

transformation is carried out where Eq. 1.10 is formed, which explicitly computes the unknown 

displacements.  

        ⇒ [
        

        

] {
  

  

}  {
  

  

}⇒                    ⇒ 

       
   (          )      

    ̃  1.10 

The displacement-control method does not introduce any significant modification to the NR 

formulation since the equations remain unaltered. Assuming that the total imposed 

displacements are divided into n steps, then the implementation is straightforward, as it was 

illustrated previously. What changes here is that the imposed displacements are known and 

must remain unaltered during any internal iteration inside each load step. This requires the 

solution of the system of equations by using Eq. 1.10 predicting the unknown displacements 

due to the imposed displacement increment by setting       
 , thus Eq. 1.6 takes the form 

    
     

       ̃ 
     1.11 

Following the computation of the unknown displacements (Eq. 1.11), the state determination is 

carried out for the computation of the nodal resisting forces for each uknown dof (   
   

). At 

this point, the first internal iteration has been completed and the error criteria are implemented 

in order to check if the algorithm has converged. If this is not the case, the computed residual 

forces are applied as external forces through Eq. 1.12, in order to correct the solution and 

achieve convergence.  
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 1.12 

It is important to note, that the force resulting from the multiplication of          in Eq. 

1.10, is set to zero after the 1
st
 internal iteration, therefore the    

  displacement array is applied 

only once at the beginning of each incremental NR step. 

 
FIGURE 1.9 GRAPHICAL REPRESENTATION OF THE TRANSFORMATION OF A DIRICHLET PROBLEM INTO 

THE EQUIVALENT NEUMANN PROBLEM. 

 

1.3.3   The Arc-Length Method 

To obtain a more general technique, for capturing any type of unstable branches, the arc-length 

method for structural analysis, originally developed by Wempner
[72]

 in 1971 and Riks
[73, 74]

 

(1972, 1979) and later modified by several researchers, has been proposed. Various forms of 

the arc-length method followed the original work of Wempner and Riks making the method 

widely acceptable
[75-82]

. 

As it was mentioned above, in the load-control method the load increment remains constant 

during a load step, a strategy used also for the displacement-control method in which the 

displacement is kept constant during the increment. Unlike the load- and displacement-control 

methods, the arc-length method considers a load-factor at each iteration which is modified so 

that the iterations follow some specified path until convergence is achieved.  

Treating the load-factor as a separate variable, an additional unknown is introduced in the 

system of equations which results from the finite element procedure. If N is the number of 

unknown dof then the solution of N+1 equations is required, thus an additional constraint 
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equation expressed in terms of current displacement, load-factor and arc-length is necessary. 

For the achievement of this task, two approaches can be used, the fixed arc-length and the 

varying arc-length. For the first approach the arc-length is kept constant for the current 

increment, whereas in the second approach, a new arc-length is evaluated at the beginning of 

each load step to achieve convergence. Simplifying the constraint equation leads to a quadratic 

equation, whose roots are used for the determination of the load-factor, a procedure which is 

concerned to be a key issue of the method since the proper selection of the root is crucial. 

Concerning the initialization of the method, for the first increment a trial value is assumed for 

the load-factor, usually equal to    ⁄  of the total applied external load. For the following 

increments, the load-factor is computed according to the rate of convergence of the solution 

process. If the procedure fails to converge, the arc-length is reduced and computations are 

repeated. Another major issue, when dealing with this method, is the computation time of the 

solution process during the FEA process, thus a maximum number of internal iterations is set 

and if the solution fails to converge in the specified number then the load step is reduced and 

the process restarts. 

In order to describe the technique used in the Arc-Length method, the following equilibrium of 

nonlinear system of equations is assumed: 

gj (  )         1.13 

where    is the vector of resisting nodal forces,   is the external applied load vector, λ is the 

load-level parameter, and gj is the residual force vector. The arc-length method is aiming at 

finding the intersection of Eq. 1.13 with the arc-length constant  ̅  which can be written as: 

 ̅  ∫√               1.14 

or in incremental form 

                       1.15 

where Δu is the vector of incremental displacements, Δλ is the incremental load-factor, Γl is the 

fixed radius, and ψ is the scaling parameter of the loading terms. Eqs. 1.13 and 1.15 can be used 

to compute the iterative change of the displacement vector and the load-factor, through the 

following equation which is written in matrix form as: 

{  
  

}   [
    

            
]
  

{
    

    
} 1.16 

where δu is the iterative change of the displacement vector, δλ is the iterative change of the 

load-factor, KT is the tangential stiffness matrix and gold and sold are the previous values of the 

unbalanced loads and arc-length, respectively. After the computations of the iterative change δu 

and δλ, the displacement vector and the corresponding load-factor are updated. 

A different technique, is to introduce the constraint proposed by Baltoz and Dhatt
[75]

 for the 

displacement-control at a single point (Crisfield
[76]

). According to this study, the iterative 



Chapter 1 Athens, Jan 2011 

 

Page 30 of 272 
 

change of the displacements for the new unknown load level              can be written 

as: 

      
        

             1.17 

thus the corresponding iterative displacement increment for the next increment is written as: 

              1.18 

and by substituting Eqs.1.17 and 1.18 into the constraint Eq. 1.16, the following expression is 

dimmed 

     
            1.19 

where, 

               

                      

                              

1.20a 

1.20b 

1.20c 

The solution of Eq. 1.19 is performed for the evaluation of δλ and the definition of the iterative 

change. This equation leads to two results (roots) of δλ but only one of them is selected
[79]

. 

Fig.1.10 represents graphically the described method. 

 
FIGURE 1.10 THE ARC-LENGTH METHOD FOR A SPECIFIC ITERATION

[79]
. 
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Chapter 2   The Natural Beam-Column Flexibility-Based 

Element 
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2.1   General Characteristics of the Element 

The NBCFB element is a 2-noded three-dimensional beam FE which is shown in Fig. 2.1. The 

element has 12 dof (6 per node) and assuming that xyz represent the global coordinate system, 

they are grouped in the vector 

 1 1 1 1 1 1 2 2 2 2 2 2u v w u v w     ρ  2.1 

were u, v and w represent the translational dof, whereas  ζ, θ and ψ denote the rotational dof. 

These dof can refer either to a global or to a local Cartesian coordinate system that are related 

through transformation matrices which contain directional cosines. 

A local Cartesian coordinate system x’y’z’ is assigned to the element with the corresponding 

Cartesian dof: 

1 1 1 1 1 1 2 2 2 2 2 2u v w u v w        ρ  2.2 

A natural coordinate α is adopted spanning the beam’s axis which coincides with the local 

Cartesian axis x’. The local Cartesian dof are transformed into natural invariant rigid body and 

straining modes π0 and πΝ, respectively, so that a unique and reversible relation exists between 

the natural modes and the local and global dof: 

0 0
(12 1) (12 1) (12 1)(6 1) (6 1) (6 1) (6 1)

,        N N
x x xx x x x

   ρ ρ ρ ρ ρ ρ ρ  2.3 

In case of a fiber consideration along the cross section of the beam, an additional coordinate 

system is defined for every fiber (k), namely the 123 coordinate system with axis 1 along the 

principal reinforcement direction and axis 2 perpendicular to it. Note that material axis 3 is 

parallel to the local Cartesian axis z’. Then, for every fiber k, axis 1 forms an angle ζk with the 

local axis x’ (see Fig. 1.2). Therefore, the NBCFB element comprises 12 Cartesian dof but the 

actual number of straining modes is 6 (Eq. 2.4). 

12 Cartesian d.o.f  - 6 rigid body d.o.f  = 6 straining modes  2.4 

It is worth noting, that the number of natural modes are always the difference of the nodal dof 

and the rigid body modes
[83]

. 

 

2.2   Kinematics 

2.2.1   Natural Rigid Body Modes 

Fig. 2.2 illustrates the rigid body modes that were selected for the beam element. The first three 

modes correspond to the translations and the last three to the rotations in space 

 0 01 02 03 04 05 06     ρ  2.5 
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FIGURE 2.1 RC FIBER BEAM IN SPACE. 

Rigid body modes do not create any strains and therefore they only produce body forces and 

moments which can be written in vector form 

 0 01 02 03 04 05 06P P P P P PP  2.6 

The three translational modes can be deduced from Fig. 2.2 and are equal to 

1 01 2 01 1 02 06 2 02 06 1 03 05 2 03 05

1 1 1 1
,   ,   ,   ,   ,   

2 2 2 2
u u v v w w                    2.7a 

from which we obtain 

     

   

01 1 2 02 1 2 03 1 2

05 1 2 06 2 1

1 1 1
,    ,    

2 2 2

1 1
,   ,     L : beam's length

u u v v w w

w w v v
L L

  

 

     

   

 2.7b 

The fourth rigid body mode is a rotation with respect to the x axis, which is equal 

 04 1 2

1

2
     2.8 

The above relations can be expressed in compact matrix notation format as 

0 0
(12 1)(6 1) (6 12) xx x

ρ α ρ  2.9 
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where  is the vector of the local Cartesian dof. 

 
FIGURE 2.2 NATURAL RIGID BODY MODES. 

The matrix 0 which extracts the natural rigid body modes from the local Cartesian dof is given 

by 

0
(6 12)

1 1
. . . . . . . . . .

2 2

1 1
. . . . . . . . . .

2 2

1 1
. . . . . . . . . .

2 2

1 1
. . . . . . . . . .

2 2

1 1
. . . . . . . . . .

1 1
. . . . . . . . . .

x

L L

L L

 
 
 
 
 
 
 
 


 
 
 
 

 
 
 

  

α  2.10 
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In order to reduce the required matrix calculations, the rigid body motions are not extracted 

when the local dof are available (they are deduced from the global displacements and rotations); 

instead the element’s rigid body motions are calculated from the global dof 

04
(12 1) (12 1)(12 12)x xx

ρ T ρ  2.11 

where ρ, Τ04 represent the vector of global nodal displacements and matrix of direction cosines 

respectively. Therefore, Eq. 2.9 becomes 

0 0 0 04
(12 1) (12 1)(6 1) (6 12) (6 12) (12 12)x xx x x x

 ρ α ρ α T ρ  2.12 

In this work, the extraction of the rigid body motion is done through the global dof. 

 

2.2.2   Natural Strain Modes 

The natural strain modes are those that create internal stresses and strains which are used in 

order to calculate the beam internal forces. Fig. 2.3 illustrates the natural modes that were 

selected for the beam element and Fig. 2.4 depicts the corresponding generalized forces and 

moments. The vector that contains the 6 natural strain modes is  

 1 2 3 4 5 6N N N N N N N     ρ  
2.13 

while the corresponding work conjugate natural forces are grouped in the vector 

 1 2 3 4 5 6N N N N N N NP P P P P PP  
2.14 

The natural straining modes and forces are related via the natural stiffness matrix 

N N P k ρ  2.15 

The operations are performed on a non-dimensional coordinate δ with origin being the center of 

the beam. 

2
1 1,        ,          

2 2

x L L
x

L
         2.16 

And also 

   . . 2

x x x L



 

    
  

    
 2.17 

The natural stiffness matrix of the beam element is extracted from the natural deformations 

without considering the rigid body motions. 
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FIGURE 2.3 NATURAL STRAINING MODES. 

 

2.2.2.1   Mode 1: Extension 

The first natural strain mode is a unit extension πΝ1. Half of this extension is assigned to the left 

beam end and the other half to the right, as shown in Fig. 2.3. Consequently, the displacement 

along the beam is written as a linear function of the coordinate δ as 

  1

1

2
u    2.18 

The displacement u gives rise to the axial strain 

1
1

1
,       xx

u u
a a

x x L L


 



  


  
    
  

 2.19 
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FIGURE 2.4 GENERALIZED NATURAL FORCES. 

 

2.2.2.2   Mode 2: Symmetric Bending in the X-Z Plane 

The second natural straining mode is a symmetrical bending mode in the x-z plane and is 

denoted as πΝ2. This mode comprises a unit rotation equal to 1/2πΝ2 at the left and at the right 

node, respectively. These node rotations deform the elastic curve into a quadratic polynomial 

  2 ,     :
2 2

L L
w x x bx c x      2.20 

and by implementing the set of boundary conditions 

2 2

0,             0 ,
2 2

1 1
' ,    '

2 2 2 2
N N

L L
w w

L L
w w 

   
     
   

   
      
   

 2.21 

we get 

  2

2 2

1

2 8
N N

L
w y x      2.22 

but 
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2

L
x   2.23 

and therefore 

   2

21
8

N

L
w      2.24 

 

2.2.2.3   Mode 3: Antisymmetrical Bending and Transverse in the X-Z Plane 

The third mode consists of two different kinds of deformation, the bending and transverse 

shearing deformation 

3 3 3

b S

N N N     2.25 

 

2.2.2.3.1   Solely Antisymmetrical Bending 

For the case of antisymmetrical bending mode in the x-z plane denoted as π
b

N3, the equation of 

the displacement curve takes the form of a cubic polynomial 

  3 2w x x bx cx d     2.26 

and using the boundary conditions 

3 3 3 3

0,              0 ,
2 2

1 1
' ,      ' ,      

2 2 2 2

b

N N N N

L L
w w

L L
w w   

   
     
   

   
       
   

 2.27 

we get 

   3 2

3
8

N

L
w       2.28 

Superimposing the elastic displacement curves originated from the second and third modes we 

obtain 

     2 3 2

2 31
8 8

N N

L L
w           2.29 

The axial direct strain is equal to
 

 2

2xx

d w x
z

dx
    

2.30 

therefore 

2 33xx N N

z z

L L
     2.31 
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2.2.2.3.2   Antisymmetric Bending and Transverse Shearing 

The transverse shear strains are generated via the antisymmetric natural straining mode π
S

N3. In 

fact, equilibrium arguments substantiate the existence of the transverse shear force in order to 

equilibrate the antisymmetrical bending moments (Fig. 2.5). 

Thus 

2 AM
Q

L
  2.32 

The angle on the left beam node, due to the action of the moment MA on the same node is 

1

3

A
b

M L

EI
   2.33 

where E, I and L are the Young modulus, moment of inertia and length of the beam, 

respectively. When the same moment MA is applied to the right edge on the left node then 

2

6

A
b

M L

EI
    2.34 

Superposing the two angles, the antisymmetric bending is obtained 

1 2

6

A
b b b

M L

EI
      2.35 

For the case of transverse shear, the angle of straining is 

 3 3 3

2
2 2

6

b S A A
N N N b S

M L M

EI LGA
    

 
      

 
 2.36 

And if we want to express MA in terms of πΝ3 we deduce from Eq. 2.36 the expression 

3

2

3

12
1

A N

EI

LM
EI

L GA



 
 

  
 
 

 2.37 

or 

 
3 3 2

2

3
3 12

,       
12 1

1
A N N

EI
EI EILM

EI L L GA

L GA

  


 
  

        
 

 2.38 

where λ is the beam’s shearing coefficient. From Eq. 2.38 it can be easily observed that if 

3
0,        A

EI
GA M

L
    2.39 
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FIGURE 2.5 BENDING AND SHEAR DEFORMATIONS INDUCED BY THE ANTISYMMETRICAL MODE. 

This is an important mechanical feature of the beam element that naturally leads to the 

circumvention of the transverse shear locking phenomenon that is frequently encountered in 

classical finite element methods. 

 

2.2.2.4   Mode 4: Symmetrical Bending in the X-Y Plane 

The fourth natural straining mode πN4 is the same to the symmetrical bending mode πN2 with the 

difference that it is assigned to the x-y plane. Therefore, the equation of the elastic curve due to 

this natural straining mode is 

   2

41
8

N

L
v      

2.40 

 

2.2.2.5   Mode 5: Antisymmetrical Bending in the X-Y Plane 

The fifth natural straining mode is also similar to mode πΝ3 with the difference that it occurs in 

the x-y plane and includes only bending. This means that shear deformation is not accounted for 

which raises an equilibrium problem due to the absence of the transverse shear. The moment 

  
  is not equilibrated; however for a laminated beam   

   is small and its contribution to the 

overall deformation is negligible. Therefore, by superpositioning the displacement curves 

stemming from the fourth and fifth modes, we obtain 

     2 3

4 51
8 8

N N

L L
v           2.41 

and the strain field is equal to 

4 53xx N N

y y

L L
     2.42 
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2.2.2.6   Mode 6: Torsion about the X Axis 

The last straining mode (sixth natural straining mode) is a unit twisting angle πΝ6 which is 

illustrated in Fig. 2.4. Half of the angle is assigned to the left beam node and the other half to 

the right. Its linear variation with respect to the non-dimensional coordinate δ is 

  6

1

2
N    

2.43 

The displacement field due to this twisting angle is (Fig. 2.6) 

     

   

   

, , , ,

, ,

,

u x y z x y z

v x z x z

w x y x y







 

 



 2.44 

where Ψ(y,z) is the warping function. By substituting Eq. 2.43 in Eq. 2.44 we get 

     

 

 

6

6

6

1
, , , , ,

1
, ,

2

1
,

2

u y z y z y z
L

v z z z

w y y y

  

   

   







   

   

 

 2.45 

 
FIGURE 2.6 DISPLACEMENT FIELD DUE TO TORSION. 

Finally, the derivation of the strain field that arises from this mode in terms of the x coordinate 

is accomplished by using Eqs. 2.16 and 2.45: 

   

 

 

6

6

6

1
, , , ,

, ,

,

u x y z y z
L

x
v x z z

L

x
w x y y

L













 

 



 
2.46 
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As for the derivation of the strain field, we proceed the same way as before. Thus 

1
,      , , ,

2

ji
ij

j i

uu
i j x y z

x x


 
      

 2.47 

Being consistent with the definition of strain energy, all shear strains and stresses must be 

multiplied by √ . Therefore 

1 1 1
2 2

2 2 2

ji
ij ij ij ij ij

j i

uu
U

x x
    

 
              

 2.48 

The strain field is therefore the following 

6

6

6

0,    0,    0,

1 1 1
2 ,

2 2

1 1 1
2 ,

2 2

1 1
2 0

2 2

xx yy zz

xy

yz

yz

u v w

x y z

u v z

y x L y L

u w y

z x L z L

v w x x

z y L L

  

 

 

 







  
     
  

     
      

     

     
      

     

    
        

    

 2.49 

By grouping the non-zero strains due to the torsional natural mode we get 

6 6

1 1
0,    2 ,    2

2 2
xx xy yzz y

y zL L
     

   
       

   
 2.50 

and in matrix form 

6 6
(3 1)(3 1) (1 1)

0

1 1
2          or         

2
2

1

2

xx

xy
xx x

yz

z
L y

y
z



 





  

 
 
  
    

      
   

      
  

   

γ α ρ  2.51 

 

2.3   Natural Stiffness Matrix 

To compute the natural stiffness matrix we must have the strain operator matrix and the 

constitutive relations referred to the material coordinate system 123 (Fig. 2.1). Subsequent to 

that, by using the strain energy expression, the natural stiffness matrix is derived. 
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2.3.1   Strain Operator Matrix 

By superposing all the natural straining modes the complete strain field is arranged in the vector 

2 2

2 2

Sb Ab T

xx xx xx xx xx

xy xy

yz yz

    

 

 

     
  

   
  

      

 2.52 

where    
     

      
      

  are the strains due to the axial straining, symmetrical bending, 

antisymmetrical bending and torsional modes, respectively.  

By collecting all derived expressions for the axial strain     we have 

 1 2 3 4 5

1
3 3Sb Ab T

xx xx xx xx xx N N N N Nz z y y
L

                   2.53 

or in matrix form 

 

 

1

2

3

4

5

6

1 3 3 .

,1 1
2 . . . . .

2
2

,1
. . . . .

2

xx

xy

yz

z z y y

y z
z

L y

y z
y

z



  
























   
        
     
      
     
                 

 2.54 

and by using vector notation 

(3 1) (3 6) (6 1)x x x
 γ α ρ

 

2.55 

where    is a strain operator matrix which connects the Cartesian strains with the natural 

straining modes and is defined as 

 

 

1 3 3 .

,1 1
. . . . .

2

,1
. . . . .

2

N

z z y y

y z
z

L y

y z
y

z

 

 
 

  
 

 
   
  
 

  
    

a  2.56 

 
2.3.2   Constitutive Relation 

The material constitutive relations that refer to the material coordinate 123 (Fig. 2.1) for every 

fiber i read 

12 ,

S S S





σ κ γ

σ κ γ
 2.57 

and for an orthotropic material 
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11 1 12 2 11

22 12 2 2 22
2 2
12

212 2 12
1

12 12

1

13 13

23 23

.
1

. ,

1
2 2

. . 2 1

2 22 .

. 22 2

i i

i

ii i

E v E

v E E
E

v
EE G v
E

G

G

 

 

 

 

 

 
 

    
        
           

  

    
    
       

 2.58 

For complete isotropy                        , Eq. 2.58 reduces to 

2 2

11 11

22 222 2

12 12

13 13

23 23

.
1 1

. ,
1 1

2 2
. . 2

2 22 .

. 22 2

i i

i

ii i

E E
v

v v

E E
v

v v

G

G

G

 

 

 

 

 

 
  

    
    

     
    
    

 
 

    
    
       

 2.59 

The material stiffnesses are transformed from the material coordinate 123 to the local Cartesian 

coordinate system x’y’z’ by using the following transformations 

1 12 1

12

' ,

'

T

i

T

S S

A

A G

   

   

κ

G
 2.60 

where 

2 2

2 2

2

2 ,

2 2 2

,    cos ,    sin

i

S

i

c s s c

s c s c

s c s c G

c s
c s

s c

   

   

   

 
 

 

 

 
 

  
 
  

 
   

 

A

A

 2.61 

The angle ζ represents the angle formed between the fiber axis 1 and the local axis x’ (Fig. 2.1). 

Since in this work we take into account only the strains         and     the transformed 

Cartesian constitutive relation becomes 
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.

2 2 . 2        

. . 22 2

xx xxxx xy

xy xy xy xy

xz ixz xzi

E E

E G

G

 

 

 

    
    

      
        

σ κ γ  2.62 

 
2.3.3   Strain Energy and the Natural Stiffness Matrix 

For the derivation of the natural stiffness matrix the utilization of the expression of the strain 

energy is required. 

t

V

U dV σ γ  2.63 

By using Eqs. 2.54 and 2.62 we get 

, 



γ α ρ

σ κ γ
 2.64 

therefore 

(3 3)(1 6) (6 3) (3 6) (6 1)

 stiffness 

t t

N N
xx x x x

natural matrix

U dV 

 
  

 
ρ α κ α ρ  2.65 

It’s easy to conclude that the final natural stiffness matrix is a 6x6 matrix and its expression is 

 

 

 

 

 

   

,

2 2

,

2 2 2

,

2
(6 6) 2 2 2

,

2 2

,

2 2

, ,

3 3
2

3 3
2

9 9 31

3
2

3
. 9
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xx xx xx xx xx y

xy

xx xx xx xx y

xx xx xx xy y
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x xy

xx xx y
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xx y

xy y xz y
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E zE z E yE y E z

zE
z E z E zyE zy E z

z E zyE zy E zy E z

yEL
y E y E z

y E
symm y E z

G z G y

 

 

  







   




   

    



  



  


    


k
V
















 
 

  2.66 

The above matrix corresponds to the full natural stiffness matrix of a beam element for the most 

general stiffness formulation with an anisotropic material. Some of the entries in the above full 

stiffness matrix represent a very small to negligible contribution and therefore they can be 

eliminated. In particular, the coupling term Exy is very small and equal to zero for isotropic 

materials. In addition, we assume that some of the natural straining modes are not coupled. 
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1 3 1 5

2 3 2 5

3 4 3 5

4 5
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,    

,    

,    : no interaction
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N N N N

N N N N

N N N N

N N

E
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   

   

 



 2.67 

Thus a simplified form of the natural stiffness matrix is given by 

   
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2
2
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E zE yE
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 
 
 
 
 
 
 
 
     
 

k

 

2.6

8 

Eq. 2.68 represents the 6x6 simplified natural stiffness matrix of the NBCFB element. With this 

formulation we reduce the required stiffness data for the solution procedure from 78 double 

precision variables to 21. In ReConAn FEA, all symmetrical matrices are stored in arrays 

therefore, if we have a nxn matrix the required array size is equal to n(n+1)/2. For instance, if 

we have a 12x12 matrix the required array size is 78 which represents the 78 upper triangular 

values of the matrix. This storage type reduces significantly the required memory of our models 

and speeds up the CPU time required by the processor when performing calculations related to 

this type of arrays. In order to be able to conduct matrix operations with array type variables, 

we have developed special subroutines that perform several matrix operations such as matrix 

multiplication etc. This means that it is not required to transform the array variable into a square 

matrix, perform the required calculation and then store it again in an array format. Everything is 

done explicitly.  

As we are going to see in the numerical implementation section, software architecture, variable 

manipulation, data flow control, dynamic memory redistribution and smart programming gives 

us the ability to solve fast and accurate large-scale RC structures. 

The final step in order to compute the natural stiffness matrix is to evaluate the integrals of Eq. 

2.68
[83]

. By doing so and by taking into consideration that the material is isotropic, the above 

stiffness matrix takes its final form 
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p

EA

EI
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L

L GAL

EI

symm EI

GJ

 
 
 
 
 

      
 
 
 
 
  

k  
2.69 

where E, G, A, Iyy, Izz and Jp are the Young Modulus, the shear Modulus, the area of the section, 

the bending moment of inertia with respect to the y axis, the bending moment of inertia with 

respect to the z axis and the polar moment of inertia, respectively. 

 

2.4   Local and Global Stiffness Matrix 

In this section the transformation matrices will be presented in order to transform the natural 

stiffness matrix kN to the local and ultimately to the global Cartesian coordinates. This requires 

the connection between the natural straining modes and the local dof. The relevant matrix 

equation is 

(12 1)(6 1) (6 12)
N

xx x
ρ α ρ  2.70 

The connection matrix  ̅  contains only geometrical parameters and this is established from the 

fact that most natural straining modes are generated simply by addition or subtraction of the 

local nodal dof. The contribution of the vertical nodal displacements to the antisymmetrical 

mode is illustrated in Fig. 2.7.  

 

FIGURE 2.7 ANTISYMMETRICAL ROTATION DUE TO VERTICAL NODAL DISPLACEMENTS. 

The explicit expressions for the natural modes are 

 
 

 
 

1 2

1 2 1 2 2 1 3 1 2

1 2

4 1 2 5 1 2 6 2 1

2
,    ,    ,

2
,    ,    

N N N

N N N

w w
u u

L

v v

L

      

        


       


      

 2.71 

from which the matrix relation is deduced 
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(6 12)

1 . . . . . 1 . . . . .

. . . . 1 . . . . . 1 .

2 2
. . . 1 . . . . 1 .

. . . . . 1 . . . . . 1

2 2
. . . . 1 . . . . 1

. . . 1 . . . . . 1 . .

N
x

L L

L L

 
 


 
 

   
 

 
 
 
 
  

α  2.72 

We are now in position to connect the natural rigid body modes and the natural straining modes 

with the local Cartesian dof through the two matrices: 

0
(6 12)

(6 12)

1 1
. . . . . . . . . .

2 2

1 1
. . . . . . . . . .

2 2

1 1
. . . . . . . . . .

2 2

1 1
. . . . . . . . . .

2 2

1 1
. . . . . . . . . .

1 1
. . .   .  . . .  .   .    .......

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ..

x

N
x

L L
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
 
 
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 
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. . . . . 1 . . . . . 1

2 2
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 
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 
 
 
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2.73 

From Eq. 2.12, Eq. 2.70 and Eq. 2.73 we have 

0 0 0
(6 1) (6 12) (6 12)

04
(12 1)(12 1) (12 12)

(6 1) (6 12) (6 12)

..... ...... ......

x x x

N
xx x

N N N
x x x

     
     
      
     
     
     

ρ α α

ρ T ρ

ρ α α

 2.74 
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Conversely, 

0
(6 1)

1

04 0
(12 1) (12 12) (12 6) (12 6)

(6 1)

| .....

x

N
x x x x

N
x



 
 

        
 
 

ρ

ρ T A A

ρ

 2.75 

and therefore 

 
1
α A  2.76 

Once more, the expression for the strain energy takes the form 

(3 3)(1 6) (6 3) (3 6) (6 1)

 stiffness 

(3 3)(1 12) (12 6) (6 3) (3 6) (6 12)

 stiffness 

local Cartesian 

   

    

t

V

t t

N N
xx x x x

natural matrix

t t t

N N
xx x x x x

natural matrix

U dV

dV
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 

 



 
  

 

 
  

 







σ γ

ρ α κ α ρ

ρ α α κ α α
(12 1)

stiffness matrix

x

 
 
 
 
 
 
  

ρ

 

2.77 

The local elemental vector  ̅ is related to the global elemental vector π via 

04ρ T ρ  2.78 

where T04 is a matrix that contains submatrices of direction cosines 

0

0

04
(12 12) 0

0

. . .

. . .

. . .

. . .

x

 
 
 
 
 
 

T

T
T

T

T

 2.79 

with 

' ' '

0 ' ' '
(3 3)

' ' '

x x x y x z

y x y y y z
x

z x z y z z

c c c

c c c

c c c

 
 

  
 
 

T  2.80 

where cx’x denotes the cosine of the angle formed between the local Cartesian axis x’ and the 

global Cartesian axis x. the same convention is used for all other entries.  

Using 

04N N N N  ρ α ρ α T ρ α ρ  2.81 

the strain energy expression becomes 
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04 04
(3 3)(1 12) (12 12) (12 6) (6 3) (3 6) (6 12) (12 12)
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global Cartesian stiffness 
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 
 
 
 
  

ρ  2.82 

From which we deduce the equilibrium equations in natural, local and global coordinate 

systems as follows: 

,   natural coordinate system,

,         local coordinate system,

,         global coordinate system

N N N





P k ρ

P kρ

P kρ

 2.83 

We must note at this point that from the numerical implementation view, the most “sensitive” 

matrices are the cosine matrix     and the connection matrix  ̅ . Due to their numerical role 

and arithmetical nature they must be given special attention in order to reassure that they obey 

the same coordinate system rules (either left hand side or right hand side orientation).  

 

2.5   Flexibility-Based Formulation and Element’s State Determination Procedure 

In this section we will describe the NBCFB formulation concerning the procedure for the 

calculation of its internal forces and the modifications that are required in order to incorporate 

the natural mode method. As it was mentioned in Chapter 1, Spacone et al
[33]

 proposed a Fibre 

Beam-Column model for the nonlinear analysis of RC frames with a flexibility-based 

formulation which relied on force interpolation functions that strictly satisfy the equilibrium of 

bending moments and axial force along the element. This flexibility-based formulation requires 

an iterative procedure for calculating the internal forces during the elements state 

determination.  

 
2.5.1   Generalized Forces and Deformations 

As it was mentioned above (Fig. 2.1), the natural beam element has 12 dof (6 dof per node) and 

therefore 12 nodal forces when we refer to the global system. These work conjugate nodal 

forces and displacements when referred to the global system can be written in the following 

vectors 

 

 

1 2 11 12

1 2 11 12

... ...

... ...

T

T

P P P P

   





P

ρ
 2.84 

The connection between these nodal forces and displacements with the natural rigid body and 

straining modes is done with the use of the connecting matrices of Eqs. 2.72 and 2.79. It was 

assumed that the torsion response is linear elastic and uncoupled from the other dof. Therefore, 
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the element has five general dof: one axial extension π1 and two rotations relative to the cord at 

each node, (π2, π3) at node 1 and (π4, π5) at node 2. These five deformations (Fig. 2.8) are called 

element generalized deformations q and the corresponding generalized forces Q (Fig. 2.8): Q1 is 

the axial force and the two bending moments at each end node, (Q2, Q3) at node 1 and (Q4, Q5) 

at node 2. 

 

 

1 2 3 4 5

1 2 3 4 5

T

T

Q Q Q Q Q

q q q q q





Q

q
 2.85 

The transformation of ρ into q writes as follows 

04
(6 1) (12 1)(6 12) (12 12)

,     (6) 0N
x xx x

 q α T ρ q  2.86 

 
FIGURE 2.8 GENERALIZED DISPLACEMENTS AND FORCES OF NBCFB ELEMENT. 

The section’s force and deformation vectors have the form 
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 

  

 

 
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  
 
 

d  2.88 

ReConAn FEA is appropriately constructed with the intention of minimizing the computational 

cost during the solution procedure. In order to accomplish this task, several parameters were 

selected to be available throughout the solution procedure. These constant and non-constant 

variables are stored dynamically in array type matrices and are reachable at any time and any 
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module of the code. In the fiber formulation, the geometrical and material inputs for each type 

of section are stored including fiber strain and stress vectors 

 

 

 

 

1 1 1
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  
 
 
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 

E  2.90 

where ξ describes the natural coordinate position of the section along the beam longitudinal axis 

and yifiber, zifiber are the fiber coordinates in the section’s local coordinate system. The fiber 

strain vector e(ξ) and the section deformation vector d(ξ) are related by the matrix relation 

   ( ) .  e l d  2.91 

where l(ξ) is a linear geometric matrix 

 

1 11

1

1

ifiber ifiber

n n

z y

z y

z y



 
 
  

  
 
 

  

l  2.92 

The Bernoulli hypothesis that the plane of the section remains plane and normal to the 

longitudinal axis gives us the ability to assume this linear connection between the two strain 

matrices, something that is rather unrealistic for RC structures especially when the structural 

members are shear dominated. More complex forms of the compatibility matrix l(ξ) can be used 

to account for the effects of shear. 

 

2.5.2   Beam-Column Element Formulation 

In the two-field mixed formulation of Zienkiewicz and Taylor
[84-85]

 independent shape functions 

were used for approximating the force and deformation fields. In this work, we adopt the 

simplified mixed finite element method which is known as the flexibility or force method of 

Spacone et al.
[33]

 who proposed a deformation shape function that simplifies the standard two-

field mixed method into the flexibility method. Denoting with Γ the increments of the 

corresponding quantities, the two fields are expressed as follows: 
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   .i    d a q  2.93 

       .       and      Γ .i i i i     D b Q D b Q  
2.94 

where matrices α(ξ) and b(ξ) are the deformation and force interpolation matrices respectively. 

Parameter ξ represents the natural position of the Gauss-Lobato integration point (control-

section). Superscript i denotes the i-th iteration of the NR scheme, until equilibrium is 

satisfied
[84-85]

. 

The integral forms of equilibrium and section force-deformation relations are combined to 

obtain the relation between element force and deformation increments. The weighted integral 

form of the linearized section force-deformation relation is given by 

       1

0

. . 0

L

T i i i d           D d f D  2.95 

and the flexibility form of the section force-deformation relation writes 

     1 .i i i    d f D  2.96 

in order for the resulting element flexibility matrix f to be symmetric
[84-85]

. The superscript i-1 

indicates that the section flexibility matrix of the previous NR iteration is used. Substituting 

Eqs. 2.94 and 2.96 in Eq. 2.95 we get 

       1

0

. . . . 0

L

T T i i i d          Q b a q f b Q  2.97 

and since Eq. 2.97 must hold for any    , it follows that 

         1

0 0

. . . . . 0

L L
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where 

     1 1

0

. .

L

i T i d    
 

  
 
F b f b  2.99 

   
0

.

L

T d  
 
 
 
T = b a  2.100 

F is the element flexibility matrix and T is a matrix that depends on the interpolation functions. 

Using Eq. 2.99 and Eq. 2.100, Eq. 2.98 can be written as 

1. .i i i  T q F Q  2.101 

which is the linearized section force-deformation relation in matrix format. 
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Next, the equilibrium of the beam element must be satisfied. The classical two-field mixed 

method requires that the integral form of the equilibrium equation is derived from the virtual 

displacement principle 

     
0

. .

L

T i i T id          d D D q P  2.102 

where P
i
 is the vector of the applied forces that have to be in equilibrium with the internal 

forces D
i
(ξ)+ΓD

i
(ξ). By substituting Eqs. 2.93 and 2.94 in Eq. 2.102 results in 
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 
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
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q a b Q b Q q P

a b Q a b Q P

 2.103 

and by using Eq. 2.100 we get in matrix notation the relation 

1. .T i T i i   T Q T Q P  2.104 

which is the matrix expression of the integral form of the element equilibrium equations. The 

rearrangement and combination of Eq. 2.101 and Eq. 2.104 results in 

1

1

0
.

.0

i i

i T iT i





      
    

     

F T Q

P T QT q
 2.105 

Solving the above equation system in terms of ΓQ
i
, the following expression is derived 

1
1 1. . . - .T i i i T i


     T F T q P T Q  2.106 

At this point the selection of force and deformation interpolation functions α and b must be 

performed. Although, in the mixed FEM the deformation interpolation functions α(x) are 

completely independent of b(x) (x represents the longitudinal axis of the beam), Mahasuverachai 

and Mahasuverachai and Powell
[28]

 proposed a choice of the deformation shape functions α(x) 

which simplifies considerably (Eq. 2.106). Replacing the parameter x with the ξ we get 

     
1

1 1. .i i  


    a f b F  2.107 

These interpolation functions relate the section deformations with the corresponding element 

deformations according to 

     
1

1 1. . .i i i i  


    Δd f b F q  2.108 

where F
i-1

 is the tangent element flexibility matrix at the end of the i-1 NR iteration. This 

special selection of deformation shape functions reduces matrix T in Eq. 2.106 to 3x3 identity 

matrix I. To prove this statement we proceed with the following relation: 
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 
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   
 T = b a b f b F F F I  2.109 

The above choice of the deformation shape functions α(ξ) simplifies Eq. 2.106 into 

1
1 1. -i i i i


     F q P Q  

2.110 

and at the same time the two-field mixed finite element method reduces into the classical 

flexibility method. Eq. 2.110 expresses the linearized relation between the applied unbalanced 

forces P
i 
- Q

i-1
 and the corresponding incremental displacements Γq

i
 at the element level. 

The four main differences between the flexibility-based method and the classical stiffness 

method are a) the elements stiffness matrix is calculated by inverting the flexibility matrix, b) 

the element’s state determination begins from the elements internal forces equilibrium, c) the 

section flexibility needs to be evaluated, which involves an inversion of the section stiffness 

obtained in the classical stiffness approach and d) codes that use the direct stiffness approach 

treat deformations as the primary unknown. The flexibility formulation provides numerical 

robustness to the nonlinear solution algorithm, which is attributed to the fact that the internal 

nonlinear state determination procedure computes the exact solution of the equilibrium between 

the resisting forces and the nodal displacements of each element, inducing numerical stability in 

the nonlinear NR solution procedure of the structure. 

In order to extract the force distribution D(ξ) along the element from the generalized force 

vector Q, a selection of the interpolation functions b(ξ) is required. If we take under 

consideration that the force field was selected so that the two bending moment fields My(ξ) and 

Mz(ξ) in Eq. 2.87 are linear and the axial force N(x) is constant, the interpolation function 

becomes 

 

1 . . . .    .

. 1 . .    .

. . . 1    .

 



 
 

  
  

b  2.111 

where ξ is the natural position coordinate of the Gauss-Lobato point (corresponding control-

section) which is the integration method adopted in this work.  

When one of the sections enters for the first time into the nonlinear strain-stress field, the 

update of the sections stiffness matrix is necessary. As it was indicated above, ReConAn stores 

the geometric and material data for each type of section and therefore all area and Young 

modulus for each fiber are stored in array type matrices. By denoting the array type matrix A, 

with entries the areas Aifiber of the fibers and the array type matrix E with entries the Young 

modulus Eifiber of the fibers for each section type, then the section tangent stiffness matrix 

becomes 

      j T j

ifiber ifiber  k l E A l  2.112 

which results in 
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 
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

  

  

 k
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1 1 1

. . .

. . . . . . .

nfibers
j

ifiber ifiber ifiber ifiber

ifiber

nfibers nfibers nfibers
j j j

ifiber ifiber ifiber ifiber ifiber ifiber ifiber ifiber ifiber ifiber
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E A y E A z y E A y



  

 
 
 
 
 
 
 
 
  



  

 

2.113 

When the beam’s section is located in the elastic range, the above formulation leads to the 

classical beam’s stiffness matrix. It must be noted at this point, that when a section enters the 

nonlinear range, its fibers do not necessarily enter the plastic range, all at the same time. 

Therefore, some of the fibers can be in the nonlinear stress-strain state and the rest of them can 

still respond elastically capturing the phenomenon of the spreading plasticity.  

To obtain the updated natural stiffness matrix of the NBCFB element, we have to calculate for 

each beam section its stiffness matrix and then invert each one of them to obtain the tangent 

flexibility matrix f 
j
(ξ) and then add their contribution (Eq. 2.114) to compute the beam 

flexibility matrix F:  

     
(6 6)

(6 3) (3 3) (3 6)

. . .
nSections

T iSection iSection

x
x x xiSection

b f b w   F  2.114 

where the w parameter represents the sections integration weight factor. Finally, by inverting 

the beams natural flexibility matrix F we get the tangential (or elastic) natural stiffness matrix 

1

(6 6)(6 6)

[ ]beam

Natural beam
xx

   Κ F  2.115 

Similarly, the section internal resisting forces   
 
    cannot be obtained directly from the 

section force-deformation relation (Eq. 2.88), but are determined by summation of the axial 

force and biaxial bending contribution of the fibers as shown below 

   . .j T j

R  D l E A  2.116 

and after carrying the multiplications  

 

1

1

1

.

. .

. .

nfibers
j

ifiber ifiber

ifiber

nfibers
j j

R ifiber ifiber ifiber

ifiber

nfibers
j

ifiber ifiber ifiber

ifiber

A

A z

A y



 









 
 
 
  

  
 
 
 
  







D  2.117 

The relation that connects the section internal resisting forces   
 
    with the general forces Q 

is  
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   
(6 1) (6 3) (3 1)1

. .
nSections

T iSection iSection

R
x x xiSection

w 


Q = b D  2.118 

where w is the parameter that represents the sections Gauss-Lobato integration weight factor.  

The relation that provides the element’s internal forces in the Global Cartesian system is 

int 04
(6 1)(12 1) (12 12) (12 6)

. .T T

ernal n
xx x x

P = T a Q  2.119 

At this point, we are ready to move to the description of the modified nonlinear flexibility-

based element’s state determination procedure which is integrated with the natural mode 

method. 

 
2.5.3   Integrated Beam-Column Flexibility-Based Element with the Natural Mode Method 

In this section we are going to describe the NBCFB element’s state determination integrated 

with the natural mode method. In order to be able to describe the state determination process, a 

few words on the nonlinear solution algorithm implemented in this study are necessary. 

ReConAn code architecture is based on a general in-core object-oriented structure which gives 

the ability to use any kind of material model or solution strategy. One of the nonlinear solution 

algorithms incorporated in our code, is the standard NR scheme (Fig. 1.6) which performs the 

update of the structures stiffness matrix whenever nonlinearities occur. Therefore, the total load 

is divided into n load increments and the external load vector Pexternal is varied in an incremental 

fashion at each NR load step.  

Assuming that k stands for the k-th NR load step and i denotes the i-th NR internal iteration, 

then the incremental-iterative NR procedure can be described as follows: 

1) Initialization.  

Initialize all required variables including k = 1, i = 1. 

2) Solve the global equation system and update the structural displacement increments. 

       
1

1 1

. .
i i i i

k k k k k k

structure structure 


 

 
      
  

P = K ρ ρ K P  2.120 

If the internal iteration is greater than 1, then    
  = (  

 )
   

 where (  
 )

   
 is the 

unbalanced load vector from the previous NR iteration. The unbalanced force vector is 

obtained as the difference between the total applied loads and the internal resisting 

forces at the end of the i-1 NR iteration in step (18). A check is performed for the need 

to update the stiffness matrix before proceeding to the displacement calculation. The 

calculated structural incremental displacements         are added to the displacement 

increments          which were calculated at the previous NR iteration i-1 to obtain 

the new displacement increment        for iteration i inside the k-th load step. 

     
1i i i

k k k


    ρ ρ ρ  2.121 

 

 



Chapter 2 Athens, Jan 2011 

 

Page 58 of 272 
 

3) Compute the element’s deformation increments. 

By using the connection matrix αN and the direction cosine matrix T04 the change in the 

element deformation increments is computed from the structural displacement 

increments. 

   04
(6 12) (12 12)(6 1) (12 1)

. .
i i

k k

N
x xx x

   q a T ρ  2.122 

It must be noted here that the element displacement increments do not change during the 

element iteration loop j. 

4) Start the element state determination. 

Set j = 1. 

5) Compute the change in the element force increment. 

For j = 1, (       )
 
 is obtained from the element displacement increments         

for the current NR iteration i using the element natural stiffness matrix. 

      
1

1

(6 6) (6 1)
(6 1)

.
i i i

k k k

N

x x
x

 


  Q K q  2.123 

For j > 1, (       )
 
 is obtained from the residual element deformation (     )

   
 at 

the end of the previous element iteration j-1 and the corresponding element natural 

stiffness matrix. 

        
1 1

(6 1) (6 6) (6 1)

.
j j j

i i i
k k k

N

x x x


 

 Q K s  2.124 

6) Update the element force increments and element resisting forces 

With the change in the elements force increments (       )
 
, an update of the previous 

vector is obtained by 

        
1

(6 1) (6 1) (6 1)

j j j
i i i

k k k

x x x




    Q Q Q  2.125 

The current element resisting forces are calculated by adding the element force 

increments to the resisting force vector Q
k-1

 of the previous element iteration k-1: 

     1

(6 1)
(6 1) (6 1)

j j
i i

k k k

x
x x

  Q Q Q

 

2.126 

7) Compute the section force increments. 

In order to compute the element section force increments we must know the total 

number of Gauss-Lobato integration points. By using the interpolation functions b(ξ) the 

following equation gives the section force increments: 

        
(3 6)

(3 1)
(6 1)

.
j j

i i
k k

x
x

x

     D b Q  2.127 

           
1

(3 1) (3 1) (3 1)

j j j
i i i

k k k

x x x

   


    D D D  2.128 

and the total section forces are computed by 
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         1

(3 1)
(3 1) (3 1)

j j
i i

k k k

x
x x

    D D D  2.129 

 

8) Compute the change in section deformation increments. 

The change in the section deformation increments (          )
 
 is computed from:  

                    
1 1 1 1

(3 6)
(3 1) (3 1) (3 3) (6 6) (6 1)

.
j j j j j

i i i i i
k k k k k

N

x
x x x x x
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   

  d r f b Κ s  

then

 
2.130 

           
1

(3 1) (3 1) (3 1)

j j j
i i i

k k k

x x x

   


    d d d

 

2.131 

9) Compute the fiber deformation increments. 
The fiber deformation increments are computed by using the section compatibility 

matrix l(x) of Eq. 2.92 and the fiber deformation increments are updated as follows: 

         
(1 3)

(1 1) (3 1)

.
j j

i i
k k

x
x x

x     e l d

 

then

 
2.132 

           
1

(1 1) (1 1) (1 1)

j j j
i i i

k k k

x x x

   


    e e e  2.133 

and the fiber deformations are updated by 

         1

(1 1)
(1 1) (1 1)

j j
i i

k k k

x
x x

    e e e  2.134 

10)  Compute fiber stresses and update the tangent modulus of the fibers. 
By using the current fiber deformation of Eq. 2.134, the fiber material subroutine will 

compute the fiber normal stresses and the updated Young’s modulus of each fiber.  

11) Compute the section tangent stiffness and flexibility matrices. 
From step (10) we obtain the updated Young’s modulus for each fiber and with the help 

of Eq. 2.113 the calculation of the current section tangent (or elastic) stiffness matrix 

((     )
 

)
 

 is carried out. By inverting the computed stiffness matrix, the flexibility 

matrix is obtained. 

       
1

(3 3)
(3 3)

j j
i i

k k

x
x

 



 
  
 

f k  2.135 

12) Compute the section resisting forces. 

Eq. 2.117 determines the section internal forces which are derived explicitly from the 

fiber stresses. 
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13) Compute the sections unbalanced forces. 

The difference between applied loads and resisting forces results in the section 

unbalanced forces: 

           
(3 1) (3 1) (3 1)

j j j
i i i

k k k

U R

x x x

   D D D  2.136 

14) Compute the residual section deformations. 

           
(3 1) (3 3) (3 1)

.
j j j

i i i
k k k

U

x x x

  r f D  2.137 

15) Compute the element flexibility matrices. 
The element flexibility matrix is computed by numerical integration and more precisely 

by the Gauss-Lobato integration rule, of section flexibilities 

          
. .sec

sec sec sec sec

(6 3) (3 6)sec 1
(6 6) (3 3)

. . .
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i i
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x x

w   


 
 
 
 

F b f b  2.138 

where tot.num.sec is the total number of Gauss-Lobato integration points (total number 

of control sections), ξisec is the natural position coordinate of the section along the beam 

length and wisec is the corresponding weight factor. We must state here that in the case of 

natural modes all elements of the 6
th

 row and column of the flexibility matrix are equal 

to zero. This is attributed to the values of the 6
th

 column of the matrix b(ξ) which are 

equal to zero and therefore the corresponding values of the flexibility matrix   
j

i
kF  

become equal to zero. Finally, the element’s stiffness matrix is obtained by inverting the 

flexibility matrix   
(5 5)

j
i

k

x

F and the main diagonal stiffness coefficient   (6,6)
j

i
kK  

corresponds to the torsional stiffness: 

        
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,              (6,6)
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

 
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 

K F K  2.139 

16) Check for element convergence. 
The convergence criterion that was implemented in this work was an energy-based 

criterion given by Eq. 2.140 and its tolerance was set to 10
-16

. 

       

     
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 ( )    

. .

. .

k

k

T jj jii i
k k

iT
k k

tolerance error exit

error

 
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 

if then

s K s

q K q

 2.140 

where s
k
 is the residual element deformation 

        
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If the convergence criterion is satisfied then we proceed to the next step, otherwise we 

return to step (5) and increase j by 1. 
 

17) Compute the resisting forces of each element and the internal forces of the structure - 

Update the stiffness matrix of the structure. 

When all NBCFB elements manage to converge, the i-th NR iteration is completed 

regarding the calculation of the internal forces at structural level. The internal forces of 

the structure (  
 )

 
 are calculated by assembling all element internal forces (    

 )
 
 

according to the expression 

   04
(12 12) (12 6)(12 1) (6 1)

. . ,
i i

k T T k

ele n ele
x xx x

P = T a Q

 
then

 

2.142a 

   
.

1

num ele
i i

k k

R iele

iele

 P P

 

2.142b 

The structural stiffness matrix is updated by assembling the element stiffness matrices 

   04 04
(12 12) (12 6) (6 12) (12 12)(12 12) (6 6)

. . . . ,
i i

k T T k

ele n N n
x x x xx x
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2.143a 

then  

   
.

1

num ele
i i

k k

S ele

iele

 K K

 

2.143b 

18) Compute the unbalanced forces of the structure. 

   
i i

k k k

U E R P P P  2.144 

where k

EP  is computed from the total applied load at the current NR load step k. 

1k k k

E E E

 P P P  2.145 

19) Check for global convergence. 

If the convergence criterion at structural level is achieved, then we can proceed to the 

next load step, otherwise we increase i by 1 and return to step (2) for the i+1 NR 

iteration. In this work, an energy based convergence criterion was used to check if the 

solution converged. The convergence tolerance selected for all numerical applications 

was 10
-4

. 
 

20) Check if the prescribed load is achieved. 

If the entire external load was applied the analysis is complete, otherwise we increase k 

by 1 and proceed to the computation of the new external load vector and return to step 

(2). Spacone et al
[33]

 proposed that in this step all force and deformation vectors are 

updated by adding the vector increments of the previous load step k to the corresponding 

total forces and deformations. The proposed nonlinear state determination algorithm 

does not require something similar because the update and storage of all current 

variables is done in-core during the element’s state determination process.  
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2.5.4   Fiber Constitutive Material Models 

ReConAn material library contains several 1D material models, among them the Menegotto-

Pinto
[86]

 for the reinforcing steel bars and the Kent-Park
[87]

 for confined and unconfined 

concrete. As it was mentioned above, the NBCFB element uses the fiber approach which means 

that the nonlinear behavior of the proposed finite element derives entirely from the nonlinear 

behavior of the fibers. Consequently the accuracy of the arithmetical results depends on the 

numerical reliability of the fiber material models. It is important to note here that both material 

stress-strain models are explicit functions of strain. This means that in order to determine the 

stress field the only necessary variable is that of the strain increment which are determined from 

the section increment deformations. 

 

2.5.4.1   Steel Stress-Strain Relation 

The Menegotto-Pinto
[86]

 material model is presented in this sub-section. The steel stress-strain 

model has the form
[88] 

 

 

*

* *

1
*

1

1 R R

b
b


 



 
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 2.146 

where 

*

0

r

r

 


 





 2.147 

and 

*

0

r

r

 


 





 2.148 

 
FIGURE 2.9 MENEGOTTO – PINTO STEEL MODEL. 

Fig. 2.9 illustrates the theoretical curve of the Menegotto-Pinto
[86]

 material model and Fig. 2.10 

represents the curve for the specific values of the characteristic parameters used in this work. R0 

is the value of the parameter R during the first loading and a1, a2 are experimentally determined 
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parameters together with R0. This particular material model was also integrated with the 

Filippou et al.
[88]

 isotropic hardening 

1
0

2  

a
R R

a






 


 2.149 

where ξ is updated following a strain reversal. The definition of ξ remains valid in case that 

reloading occurs after partial unloading. 

 
FIGURE 2.10 MENEGOTTO – PINTO STEEL MODEL FOR THE SPECIFIC PARAMETERS USED IN THIS WORK 

(R0 = 20, a1 = 18.5, a2 = 0.15, fy = 500MPa). 

Regarding the simplicity of the formulation, its major drawback stems from its failure to allow 

for isotropic hardening. To account for this effect Filippou et al.
[88]

 proposed a stress shift in the 

linear yield asymptote as a function of the maximum plastic strain as follows: 

max
3 4

st

y y

 
 

 

 
   

 

 2.150 

where εmax is the absolute maximum strain at the instant of strain reversal, εy, ζy are, the strain 

and stress at yield, respectively, and α3, α4 are experimentally determined parameters which are 

set to zero in this study. 

 

2.5.4.2   Concrete Stress-Strain Relation 

The monotonic envelope curve of concrete material in compression is modeled with the use of a 

Kent-Park
[87]

 concrete material model that was later extended by Scott et al.
[89]

. The so-called 

modified Kent-Park model offers simplicity and accuracy at the same time and it is considered 

to be arithmetically one of the most efficient and convenient 1D material models. In the 

modified Kent-Park model the monotonic stress-strain relation in compression is divided into 

three regions. 
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ε0 is the concrete strain at maximum stress, K is a factor which takes account for the strength 

increase due to confinement, Z is the strain softening slope, cf   is the concrete compressive 

cylinder strength in MPa, 
 y hoopf is the yield strength of stirrups in MPa, πs is the ratio of the 

volume of hoop reinforcement to the volume of concrete core measured outside of stirrups, h is 

the width of concrete core measured outside the stirrups and sh is the center to center spacing of 

stirrups or hoop sets. 

When concrete is assumed to be inside the confinement area of the beam’s section (concrete 

located inside stirrups), Scott et al.
[89]

 suggest that εu can be computed conservatively from 

 0.004 0.9
300

s hoop
u s

f
 

 
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 
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FIGURE 2.11 KENT – PARK CONCRETE MODEL WITH TENSILE STRENGTH FOR MONOTONIC LOADING. 

In order to take into consideration the crushing of concrete, the strength is reduced to      
  and 

      
  once the compressive strain exceeds the value of εc. We must note that in the Kent-Park 

model, the tensile strength is neglected. In our model the tensile strength is accounted through 

the use of a simple linear relationship that requires only one percentile parameter. 
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tensile

u t cp f    2.156 

where pt is the tensile strength percentile parameter. Fig. 2.12 shows the arithmetical data 

retrieved from a numerical simulation that was performed from ReConAn and illustrates the 

stress-strain relationship for a single fiber during the analysis. Fig. 2.13 shows the 

corresponding fiber normal strain history. We must note here that compression is assumed to 

have a positive sign in both graphs. 

 
FIGURE 2.12 KENT – PARK CONCRETE MODEL FROM ANALYSIS DATA (fc = 30MPa, K = 1.101). 

 

FIGURE 2.13 SCHEMATIC REPRESENTATION OF THE NORMAL STRAIN HISTORY OF A CONCRETE FIBER. 
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2.6   Computational Experiments 

Many researchers use software packages such as OpenSees
[90]

 and Fedeas
[55]

 in order to 

perform several numerical simulations by using various element types and material models. 

OpenSees seems to be the most popular thanks to its simplicity, the existence of a variety of 

FEM models, its computational efficiency and numerical robustness. OpenSees, is written in 

C++ programming language and uses Tcl scripting language in order to interpret the input data 

into FEM analysis data. In addition to that it is one of the few software packages that contain 

the flexibility-based element, therefore it was chosen for the comparison tests that will be 

presented in the following sub-sections.  

We proceed with the numerical experiments by using specific models that were chosen in order 

to illustrate the numerical robustness and efficiency of the NBCFB element and consequently 

the computational superiority of ReConAn FEA. All FEM models that will be presented were 

analyzed by using the nonlinear incremental-iterative force-control NR algorithm. For the 

numerical simulations a 1.9GHz processor was used (personal laptop) with 2GB DDR2 Ram. 

 
2.6.1   Cantilever I Beam 

The first tests example is the cantilever steel I beam shown in Fig. 2.14 with a vertical load on 

its right end (P = 600 kN). Its length is equal to 3 m and the I section dimensions are illustrated 

in Fig. 2.14. The FEM model is shown in Fig. 2.15 which consists of 10 elements. The material 

model used in this numerical experiment is the Menegotto – Pinto with Young modulus, 

tangent modulus and yield stress equal to: E = 200 GPa, Et = 2 GPa and fy = 500 MPa, 

respectively. In order to make this problem computationally demanding we set the number of 

Gauss-Lobato points equal to 10 for each element, the number of fibers to 400 for each section 

and the number of loading steps equal to 1000.  

 
FIGURE 2.14 CANTILEVER I BEAM. 

As it was stated previously, OpenSees uses a Tcl scripting language so as to interpret input data 

into FEM analysis data, meaning that a txt style input file is required. For rather simple FEM 

models this type of input generation is adequate. When the FEM models become large, txt type 

input files become difficult to manipulate and especially to control. For this reason, ReConAn 

was given the ability to read and write neutral type files of the pre- and post- processing FEA 

program Femap
[91]

. Furthermore, an external program (“SMAD Custom Properties” by 

G.Stavroulakis) is used for assigning customized parameters to the required FEM properties for 

the purpose of introducing extra parameters like the number of fibers, rebar elements etc. that 

Femap does not include in its basic property types.  
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FIGURE 2.15 CANTILEVER I BEAM. FE MESH. 

 
FIGURE 2.16 CANTILEVER I BEAM. P-δ CURVE. 

Fig. 2.16 shows the P-δ curves for both software packages and as it can be seen they are 

identical. On the other hand, if we compare the required computational time ReConAn is 1.5 

times faster than OpenSees. This shows the computational efficiency of the developed code 

which results from the formulation of the natural mode method that the NBCFB element is 

integrated with. It is also clear that the P-δ curves match without any variations even after the 

cantilever beam enters the inelastic range. 

It is important to point out at this point, that an extensive sensitivity investigation was 

conducted with ReConAn (Vasilomichelaki
[92-93]

) in order to examine the numerical behavior of 

the NBCFB element. The main conclusions of this research work were the following: 

1. The results are not sensitive to load increment deviations, meaning that when the load 

increment is increased the predicted P-δ curve is not affected. This is attributed to the 
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nonlinear state determination procedure and the numerical robustness of the developed 

FEA code. 

2. The element is not affected from the degree of discretization, maintaining its accuracy 

even for the case where only a single element is used for the simulation of a structural 

member. This numerical phenomenon is attributed to the use of the nonlinear state 

determination procedure integrated with the natural mode method, Gauss-Lobato 

integration scheme and the fiber approach, utilizes the element in predicting the stiffness 

matrix degradation of the structural member accurately capturing the plasticity 

distribution during the loading history. 

3. The computational robustness and efficiency of the developed nonlinear code is very 

satisfactory. 

 
FIGURE 2.17 CANTILEVER I BEAM. DEFORMED SHAPE AT THE FINAL LOAD STEP. 

Before moving to the next test example, it is worth mentioning that, the speed of the developed 

code with regards to Fedeas
[55]

 code is obvious since the latter is a matlab code which is much 

slower.  

 

2.6.2   Cantilever RC Beam 

The second numerical test is a RC cantilever beam depicted in Fig. 2.18. The discretization and 

boundary conditions that were used in this case are the same with that of the previous test 

example. The vertical load applied to the edge of the cantilever is equal to 120 kN and the FEM 

model and analysis parameters the same as before (number of fibers, NR load steps, Gauss-

Lobato points). 

The material characteristics that were used for the concrete material model were: Ec = 30 GPa 

and fc = 30 MPa, (Young modulus and compressive strength, respectively). The corresponding 

material characteristics of the reinforcing steel bars were: Es = 210 GPa, Et = 2.1 GPa, fy = 500 
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MPa and hc = 30 mm, where E, Et, fy and hc are the Young modulus, the tangent modulus, the 

yielding stress and the concrete cover width, respectively.  

 
FIGURE 2.18 CANTILEVER RC BEAM. GEOMETRIC AND REINFORCEMENT DETAILS. 

 
FIGURE 2.19 CANTILEVER RC BEAM. DISCRETIZATION WITH RC BEAMS. 

 
FIGURE 2.20 DISCRETIZATION OF THE RECTANGULAR RC SECTION WITH FIBERS. 
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The discretization of the rectangular section with fibers is performed by dividing the section 

into two main regions. The first region is the unconfined area corresponding to the concrete 

cover width as it can be seen in Fig. 2.20 and the second region is the confined concrete area, 

which is discretized by using a finer grid as illustrated in Fig. 2.20. When the fiber 

discretization procedure is performed, the appropriate material model is assigned to each fiber 

and the geometric characteristics are properly stored, providing the required information during 

the analysis procedure.  

From the obtained results it can be seen that the NBCFB element of the ReConAn code 

manages to solve 843 load steps in 1 min with a total tip displacement of 37 cm. On the other 

hand, OpenSees ends its solution procedure at load step 733 as it was unable to converge 

beyond the load level of 88 kN. The numerical robustness of the developed code is attributed to 

the same reasons previously discussed and the improved code architectural structure which will 

be described at a later stage in this Dissertation . The incorporation of advanced numerical 

techniques, equipped ReConAn with the ability to reduce the necessary computational effort 

and converge faster in predicting the nonlinear response with accuracy and computational 

efficiency. Concerning the computational time, this can be approximately estimated and is in 

favor of ReConAn. 

 
FIGURE 2.21 CANTILEVER RC BEAM. P-δ CURVE. 

To conclude with this numerical test and illustrate the robustness of the NBCFB element, the 

same problem was solved with only a single NBCFB element. The P-δ curve can be seen in 

Fig. 2.21 and it is clear that the reproduced numerical results were the same with those obtained 

when discretizing the cantilever beam with 10 NBCFB elements. This shows that as a result of 

the element’s formulation, it is feasible to discretize structural members with one element per 

structural member and reduce significantly the computational effort without losing the required 

accuracy. 
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FIGURE 2.22 CANTILEVER RC BEAM. DEFORMED SHAPE AT THE FINAL NR LOAD STEP. DISPLACEMENT 

CONTOUR. 

As it was mentioned in the previous section, an extended parametric investigation on the 

behavior of the steel and RC NBCFB element can be found in the Diploma and M.Sc. Theses 

conducted by Vasilomichelaki
[92-93]

. One of the most interesting result of this work, was 

obtained for a similar cantilever RC beam modeled with 10 elements, 10 Gauss-Lobato per 

element, 1000 fibers per control section and the collapse load was divided into 5 and 1000 load 

increments, respectively. For both load increment scenarios ReConAn managed to predict the 

maximum capacity load (166 kN) without any numerical instabilities. Furthermore, the 

corresponding CPU times illustrate the computational superiority of the developed code (Table 

2.1). 

 
FIGURE 2.23 RC CANTILEVER BEAM

[93]
. P-δ CURVES OBTAINED BY RECONAN AND OPENSEES FOR 5 AND 

1000 LOAD STEPS. 
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Program 
Load steps 

analyzed 

Required CPU time 

(sec) 

ReConAn 1000 23.8 

Opensees 862 23.9 

TABLE 2.1 RC CANTILEVER BEAM
[93]

. CPU TIME FOR THE NONLINEAR ANALYSIS PROCEDURE. 

 

2.6.3   RC Frame 

In continuation to the above parametric investigation, a single-span RC frame is considered 

with the geometrical features illustrated in Fig. 2.24. It is assumed that the structural members 

of the frame are reinforced identically and the corresponding material properties are provided in 

Table 2.2. As can be seen from Fig. 2.24, the sections have the same rectangular geometry 

(20x40 cm) with 5Φ14 longitudinal rebar on the upper and lower sectional regions (concrete 

cover 3 cm). The RC frame span is 4.60 m, its height measures 2.80 m and is considered to be 

fixed on its base. 

 
FIGURE 2.24 RC FRAME. GEOMETRIC CHARACTERISTICS AND REINFORCING DETAILS. 

Material 
Yielding Stress 

(MPa) 

Compressive 

Strength 

 (MPa) 

Young 

Modulus E0 

(GPa) 

Hardening 

Parameter 

b = ET / E0 

Concrete - 35 28 - 

Steel 500 - 210 0.0085 

TABLE 2.2 RC FRAME. MATERIAL DETAILS. 

Two FE models were created in order to analyze this RC frame, by discretizing each structural 

member with 1 and 5 NBCFB elements, respectively. The first FE model can be seen in Fig. 

2.25, where 4 Gauss-Lobato points were applied for each element and their corresponding 

control-sections were discretized with 400 fibers. A horizontal load was applied on the upper 
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left node of the frame and the number of load increments was set to 25. The NR energy 

tolerance criterion was set to 10
-4

 and the corresponding tolerance of the state determination 

procedure was set to 10
-16

. 

 
FIGURE 2.25 RC FRAME. FE MODEL WHEN DISCRETIZING WITH 1 ELEMENT PER STRUCTURAL MEMBER. 

 
FIGURE 2.26 RC FRAME. P-δ CURVE FOR THE CASE OF DISCRETIZING WITH 1 ELEMENT PER STRUCTURAL 

MEMBER. 

Fig. 2.26 illustrates the base shear force vs. horizontal displacement of the upper left node for 

the first FE model, where it can be seen that the two curves are identical when the frame is in 

the elastic region and in the first inelastic branch of the inelastic region. When the total 

horizontal load reaches a value of 144 kN the reinforcement of the beam yields and when the 

total horizontal load reaches 176 kN the reinforcement of the columns also yields deteriorating 

even more the stiffness of the RC frame (second reduction of the slope of the P-δ curve). The 

second characteristic point is also the point where OpenSees fails to converge on elemental 

level due to high nonlinearities. On the other hand ReConAn manages to continue with the 

nonlinear steps predicting the inelastic branch of the P-δ curve without any significant 

convergence problems. Once again, the previous conclusions are confirmed through this test 

example illustrating the computational robustness of the developed FEA code.  
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As it was presented previously, the natural mode method leads to a 6x6 decreased elemental 

stiffness matrix (natural matrix) which is used during the nonlinear state determination 

procedure. This has the advantage of reducing the numerical error induced due to the precision 

of the numerical computations regarding the natural stiffness matrix during the state 

determination procedure and makes the process more stable. Additionally, the NBCFB element 

is shear lock free and computations during the state determination stage are not affected by this 

numerical phenomenon. 

The second FE model is produced by discretizing each structural member with 5 beam 

elements, considering 4 Gauss-Lobato points for each finite element and 400 fibers per control-

section (Fig. 2.27). 

 
FIGURE 2.27 RC FRAME. FE MODEL WHEN DISCRETIZING WITH 5 ELEMENTS PER STRUCTURAL MEMBER. 

 
FIGURE 2.28 RC FRAME. P-δ CURVE FOR THE CASE OF DISCRETIZING WITH 5 ELEMENTS PER 

STRUCTURAL MEMBER. 

From Fig 2.28 it can be seen that the two curves are the same when the reinforcement response 

is at the elastic range. After yielding occurs and the nonlinearities become excessive (point 

where the second reduction of the slope Fig. 2.28), OpenSees fails to converge terminating the 

analysis procedure prematurely. Despite the large nonlinearities ReConAn continues the 

numerical procedure managing to predict the entire inelastic branch without any numerical 
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instabilities. The deformed shapes of the frame are depicted in Fig. 2.29. The ZY view 

illustrates that the FE model manages to predict the in-plane deformation without producing 

out-of-plane displacements. 

 
FIGURE 2.29 RC FRAME. DEFORMED SHAPES. XY AND YZ VIEWS. 

 

2.6.4   High Rise RC Building 

A full scale 37-storey RC building with I beam shear braces was designed (Figs. 2.30 and 2.31) 

specifically for this numerical test in order to illustrate the computational capabilities of the 

proposed FEA code and how the earthquake resistant design of this structure can be improved.  

Structural 

Member Type 

Levels 

applied 

Concrete 

Compr./ 

Tensile 

Strength 

(MPa) 

Concrete 

Young 

Modulus 

(GPa) 

Steel 

Yield 

Stress 

(MPa) 

Steel Young 

and 

Hardening 

Modulus 

(GPa) 

Steel 

Failure 

Strain 

(m/m) 

Number of 

Gauss-Lobato 

Points and 

Fibers/Section 

Column100x100 - 60.0/3.0 50.0 555.0 210.0 / 2.1 0.10 5 / 400 

Column75x75 1-19 60.0/3.0 50.0 555.0 210.0 / 2.1 0.10 5 / 300 

Column60x60 19-37 60.0/3.0 50.0 555.0 210.0 / 2.1 0.10 5 / 300 

Beam40x80 1-30 60.0/3.0 50.0 555.0 210.0 / 2.1 0.10 5 / 200 

Beam35/70 31-37 60.0/3.0 50.0 555.0 210.0 / 2.1 0.10 5 / 200 

IPE600 - - - 355.0 210.0 / 2.1 0.10 5 / 200 

TABLE 2.3 RC HIGH RISE BUILDING. MATERIAL CHARACTERISTICS AND FIBER DATA FOR INITIAL 

CARCASS. 

Fig. 2.30 illustrates the initial plan views of the building carcass and as it can be seen its base 

has a total area of 1298.88 m
2
 (45.40x28.60 m). Each storey has a height of 3.50 m and the total 

height of the building is 129.50 m (37-stories x 3.50 m). At the 15
th

 and 30
th

 floors, a change in 

geometry occurs as is depicted in Fig. 2.31 where inclined steel I beam-column elements are 

placed (IPE600) for structural reasons in order to strengthen the transition areas. The same steel 

sections were used for the shear braces located at the sides and at the center of the building 

(Fig. 2.31). In Table 2.3 material characteristics and fiber data for each section used in the FE 

models can be found. 
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FIGURE 2.30 RC HIGH RISE BUILDING. PLAN VIEWS AT DIFFERENT LEVELS. 

 
                           (A)                                         (B) 

FIGURE 2.31 RC HIGH RISE BUILDING. INITIAL FEM MODEL (A) FRONT AND (B) 3D VIEW. 



Chapter 2 Athens, Jan 2011 

 

Page 77 of 272 
 

As it was mentioned 

previously, NBCFB element 

has the advantage of using one 

element per structural member 

without losing the desired 

accuracy of the nonlinear 

analysis decreasing this way 

the total dof of the FE model. 

By applying this discretization 

rule (one finite element per 

structural member) a FE model 

for this building is created 

which consists of 5,855 

NBCFB elements and 1,264 

nodes. It is also assumed that 

each slab acts as a diaphragm 

which is modeled with rigid 

elements. Regarding the boundary conditions, all nodes that are located on the base of the 

structure are considered to be fixed (Fig. 2.31) and the horizontal loads are computed by using 

the EC8 earthquake design code (Design Spectrum). 

 ( )total

base shear dP M S T   
2.157 

2

2.5
( ) ,   for 4C D

d I g D

T T
S T a S T T s

q T
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2.158 

where M and Sd(T) are the effective mass of the structure and the response spectrum 

acceleration, respectively, while γI is the importance building factor, T is the vibration period, ag 

is the design ground acceleration, S is the soil factor, q is the behavior factor, TC is the upper 

limit of the period of the constant spectral acceleration branch and TD is the value defining the 

beginning of the constant acceleration response range of the spectrum (Fig. 2.32) where the 

fundamental period of this structure is located.  

According to EC8, the distribution of the base shear force is computed as follows 

i i
 n

j j

j=1

m z
=

m z

i total

horizontal base shearP P


 2.159 

where mi, mj are the storey masses computed and zi, zj are the heights of the masses above the 

level of application of the seismic action (foundation or top of a rigid basement). The 

assumptions made regarding the several parameters of Eqs. 2.157 and 2.158 are given in Table 

2.4. 

Given that the computed fundamental period of the structure in the load direction (x axis) is 

3.25 sec, the normalized horizontal load distribution was computed according to EC8 and is 

given in Table 2.5. We must point out here that the dead loads caused from the structure’s self-

 

FIGURE 2.32 SHAPE OF THE ELASTIC RESPONSE SPECTRUM (EC8). 
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weight of the beams and columns were also accounted for during the base shear force 

computations of the building and were applied in the FE model by activating the body load 

command. The vertical load that is depicted at the end of Table 2.5 was distributed to each 

storey nodes according to the structural mass distribution.  

Parameters of EC8 Value 

Ground Type Α 

TC 0.4 sec 

TD 2.0 sec 

S 1 

q 1 

Acceleration    0.24g 

Importance Class IV 

Importance Factor    1.4 

TABLE 2.4 RC HIGH RISE BUILDING. EC8 PARAMETERS. 

Four different analyses were performed using 50, 20, 10 and 6 load steps, respectively. The P-δ 

curves can be seen in Fig. 2.34, the deformed shape prior to failure for the 10 NR load steps 

case, in Fig. 2.35 and Table 2.6 contains the computational times required for the solution of the 

four analysis cases. Regarding the size of this numerical problem, the required skyline storage 

for the stiffness matrix was 1,888,662 double precision variables and the required RAM for the 

solution procedure was approximately 800 Mb. Since the required computational times are 

affordable (Table 2.6), it is clear that the limitation when solving this kind of problems with 

ReConAn, becomes the 2 Gb maximum size (32bit system) for allocating the stiffness matrix of 

the structure, which is always the largest array of the numerical problem. This limitation can be 

alleviated by using a 64bit system or multicore computing environment. 

 
FIGURE 2.33 RC HIGH RISE BUILDING. RC SECTIONS REINFORCEMENT DETAILS. 
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Storey 
Normalized Horizontal 

Load 

 
Storey 

Normalized Horizontal 

Load 

1 0.0667 20 0.4110 

2 0.1333 21 0.4315 

3 0.2000 22 0.4521 

4 0.2667 23 0.4726 

5 0.3333 24 0.4931 

6 0.4000 25 0.5137 

7 0.4667 26 0.5342 

8 0.5333 27 0.5548 

9 0.6000 28 0.5753 

10 0.6667 29 0.5959 

11 0.7333 30 0.6164 

12 0.8000 31 0.3268 

13 0.8667 32 0.3373 

14 0.9333 33 0.3479 

15 1.0000 34 0.3584 

16 0.3288 35 0.3690 

17 0.3493 36 0.3795 

18 0.3699 37 0.3900 

19 0.3904   

Total Horizontal Load 130.35 MN 

Total Vertical Load 208.63 MN 

TABLE 2.5 RC HIGH RISE BUILDING. LOAD DISTRIBUTION ACCORDING TO EC8. 

 
FIGURE 2.34 RC HIGH RISE BUILDING. P-δ CURVES OF HIGH RISE RC BUILDING. 

As it can be seen from the P-δ curves in Fig. 2.34, the numerical procedure of the solution 

terminates for a horizontal load of 85 MN (55 cm top floor horizontal displacement) which is 

the ultimate limit state of the structure. The failure mechanism that resulted from the loading 
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history was due to rebar failure at the base of the structure (columns and beams) and therefore 

the numerical procedure could not continue due to zero diagonal values of the global stiffness 

matrix of the structure. When a NBCFB element section looses completely its bearing strength, 

ReConAn sets the natural stiffness matrix of that element to zero and proceeds with the 

computations. Thus, the solution procedure continues and a redistribution of the internal forces 

is accomplished. The solution procedure terminates when the global stiffness matrix of the 

structure becomes singular thus it is not possible to solve the system of equations. 

 
FIGURE 2.35 RC HIGH RISE BUILDING. INITIAL AND DEFORMED SHAPES PRIOR TO FAILURE – INITIAL 

CARCASS. 

Fig. 2.34 shows that the initial design of the carcass is unable to bear the seismic load computed 

according to EC8 (130.35 MN) failing prematurely for a total base shear load of 85 MN. 

Therefore, a redesign was implemented in order to reinforce the carcass of the building by 

assigning to the columns, which had the section type Column 75x75 cm, a larger section type 

(Column100x100 cm as shown in Fig. 2.33). Correspondingly the section type Column75x75 

cm was assigned to the columns that were initially discretized with the section type Column 

60x60 cm. Following the strengthening of the members, the four analyses were performed and 

the new predicted P-δ curves can be seen in Fig. 2.36. As it was expected, the predicted P-δ 

curves illustrate an increased structural capacity with a mean ultimate base shear force of 135 

MN. 
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Newton-Raphson 

Load Steps 

Computational Time  

(minutes) 

50 45 

20 25 

10 15 

6 8 

TABLE 2.6 RC HIGH RISE BUILDING. COMPUTATIONAL TIMES FOR DIFFERENT LOAD INCREMENTS. 

 
FIGURE 2.36 RC HIGH RISE BUILDING. P-δ CURVES FOR THE REDESIGNED CARCASS. 

 
FIGURE 2.37 RC HIGH RISE BUILDING. DEFORMED SHAPE PRIOR TO FAILURE. 
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An intention grabbing observation can be depicted in Fig. 2.37, where the initial and deformed 

shapes of the structure are shown. As it can be seen, the deformed shape maintains its initial 

geometry regarding the out-of-plane deformations, thus no abnormal distortion of the mesh can 

be observed. Since the loading was applied horizontally along the positive X direction and 

given the structure’s symmetry about the Z and Y axes, then no rotations of the structure should 

be produced which would have been translated through abnormal deformation of the lines when 

viewing the deformed shape in the XZ view (Fig. 2.37). Even though the predicted 

deformations are scaled by X20 in Fig. 2.37, the deformed shapes of the lines retain their initial 

thickness illustrating the numerical robustness of the developed FEA code. 

Before moving to the next Chapter, it is important to note at this time, that this numerical test 

was basically created in order to illustrate the computational robustness and efficiency of the 

developed FEA code and in no case represents a complete design procedure for this kind of 

structures, where the P-δ effect, wind loading, structure-soil interaction, time history analysis 

and other response features should be considered during the design process. Nevertheless, it is 

obvious that ReConAn is able to analyze large-scale RC and steel structures at an affordable 

computational time which is a good indicator that it can equally well be applied to the design of 

this type of structures under earthquake loading. 
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Chapter 3   3D Modeling of Concrete Materials 
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3.1   Brief Overview of the Material 

It is indisputable that concrete has been established as the most significant structural material of 

the last century. Concrete material has been used in many areas of civil engineering structures, 

especially for the construction of residential buildings, bridges, offshore platforms, containment 

structures, arc dams, nuclear power plants, high-rise buildings (Figs. 3.1), irrigation systems 

etc. 

 

(A)                                                                                       (B) 
FIGURE 3.1 BURJ KHALIFA. (A) CONSTRUCTION PROGRESS AND (B) COMPARISON WITH OTHER 

PROJECTS. 

Being a heterogeneous material, concrete consists of hardened cement paste in which 

aggregates are embedded making the numerical prediction of its behavior complex. In addition 

to that, the nonlinear stress-strain behavior and anisotropic elastic degradation during loading 

makes this task even more complex. Nevertheless, material behavior has been one of the most 

important parameters for modeling RC structures predicting the overall response. It is clear that, 

idealizing this behavior into an elasto-plastic material model is not a proper description of the 

material’s behavior that turns to be a key factor for the successful prediction of the nonlinear 

behavior of RC structures. 

The main “nonlinear” material characteristics of concrete behavior are: 

i. Elastic degradation. 

ii. Stress-strain constitutive relation. 

iii. Micro- and macro-cracking. 

iv. Fracture mechanisms. 

v. Ultimate strength and behavior at failure. 

vi. Shrinkage and Creep. 

vii. Rate of loading. 

Taking into consideration these characteristics, an extensive research work has been made in 

recent years in the area of 3D constitutive modeling, aiming at the formulation of plasticity and 

crack models that will predict objectively the response of the material. Despite the fact that 

http://www.google.com/imgres?imgurl=http://www.teluguflavours.com/politics/miscellaneous/burjdubai.jpg&imgrefurl=http://www.teluguflavours.com/politics/viewnews.php?id=61&cat=miscellaneous&n=10 Facts about World's Tallest 
http://www.google.com/imgres?imgurl=http://www.quitor.com/wp-content/uploads/2009/01/burj-dubai-tower.gif&imgrefurl=http://www.quitor.com/tag/burje-dubai&usg=__lX5RODnw6hMp7Hjtgn_NmouadIM=&h=462&w=468&sz=42&hl=en&start=2&um=1&itbs=1&tbnid=q-4f-JcLu2qZdM:&t
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several material models were presented, none of them managed to combine computational 

robustness and efficiency. 

In this Chapter, the concrete material behavior will be discussed, illustrating the main 

parameters that affect its mechanical characteristics. A discussion on whether concrete should 

be modeled with the use of a brittle or a softening branch model will be performed and the 

proposed material model adopted will be presented. In the final section of this Chapter a 

numerical investigation will be presented regarding the modeling of cylindrical concrete 

specimens under uniaxial loading.  

 

3.2   Mechanical Parameters of Concrete – Physical Interpretation and Idealization 

Several effects which alter the mechanical behavior of concrete, as observed in experiments, are 

presented in this section. The performance of concrete is dependent on numerous factors which 

will be discussed thoroughly. 

 

3.2.1   Experimental Data and Test Methods 

Over the past decades, numerous experimental results were presented in the literature, for the 

prediction of the behavior of plain concrete, producing a considerable data-base of experimental 

data. Studying these stress-strain curves, the main conclusion that has been reached is that none 

of them has the same quantitative or qualitative features especially when referring to the 

inelastic braches of these curves. Taking into consideration that most material models proposed 

in the literature are calibrated (and their parameters defined) through experimental data, a 

significant question arises: “Which material model formulation will provide realistic 

approximation of the behavior of concrete when combined with the FEM?” It is the author’s 

belief that the answer to this question lies in the numerical aspect of the problem, meaning that 

the proper selection of the corresponding material parameters accounted for in the numerical 

model, will postulate on the objectivity of its results. In search of an objective modeling method 

of RC structures, the proper concrete material model should be selected and therefore, a 

discussion on the corresponding model selected in this work is analyzed. 

It is well known that conducting and obtaining triaxial material data for the realistic modeling 

of concrete through experimental setups, is rather expensive and difficult to attain. This 

conclusion is justified through the scatter of available experimental data which proves that 

concrete material properties are not easy to obtain, especially when referring to its inelastic 

range. Numerically speaking, an inelastic branch is ideal for establishing numerical stability and 

robustness when high nonlinearities occur (Fig. 2.12). On the other hand, when considering the 

actual concrete behavior in simple compressive experiments, it is evident that this inelastic 

softening branch is clearly an outcome of the interaction between the loading system and the 

concrete specimen. 

An extensive discussion on strength, constitutive response and interaction between loading 

mechanisms and concrete specimens can be found in several articles
[94-98]

. More specifically, 

Gerstle et al.
[94, 95]

 presented the differences among test methods which vary depending on the 
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loading system type used (Fig. 3.2). The main characteristic variables of the different loading 

systems are as follows: 

i. Degree of normal boundary constraint in the direction of the applied load. 

ii. Degree of lateral boundary constraint on the plane of the boundary. 

FIGURE 3.2 MULTIAXIAL TEST METHODS
[94, 95]

. 

In Fig. 3.2, different types of loading systems for applying compression to concrete specimens 

are shown. As discussed in Gerstle et al.
[94, 95]

, devices with rigid steel plates are most common 

and permit the application of uniform normal displacements in the direction of loading. These 

types of devices create normal stresses which are non-uniformly distributed because of the 

friction between the concrete and the steel plates. Alternatively, a fluid cushion assures uniform 

normal stress free of lateral displacements thus the shear stress on the boundary conditions is 

zero. Consequently, the behavior of the other loading system types usually ranges between the 

behaviors of these two devices. Gerstle et al.
[94, 95]

 presented their results which showed a large 

scatter which can be depicted from Fig. 3.3. 

In resolving this problem and giving an answer to the question whether concrete has an inelastic 

branch and in what ways the loading mechanisms affect the specimen’s behavior, van Mier et 

al.
[96]

 (1997) presented the results of an international experimental program where 10 different 
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research labs participated in order to study the behavior of concrete during uniaxial 

compression. One of the most characteristic results of this research program is given in Fig. 3.4, 

which illustrates different stress-strain curves for the same specimens that were tested by using 

different loading mechanisms. Through this work, Zisopoulos et al.
[97]

 showed that when the 

shear stresses due to friction between the loading device and the concrete specimen tend to 

zero, then the concrete material behavior is brittle thus the inelastic branch becomes vertical 

(Fig. 3.4). Similar results were obtained by Schickert’s
[98]

 (1981) research where the 

slenderness ratio for two different loading systems was investigated (Fig. 3.5). 

 
FIGURE 3.3 FAILURE ENVELOPE FOR BIAXIAL LOADING CONDITIONS

[94, 95]
. 

 
FIGURE 3.4 STRESS-STRAIN CURVES FOR DIFFERENT TYPES OF LOADING TYPES

[97]
. 
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                                                                       (A)                                                             (B) 

FIGURE 3.5 TEST DEVICES WITH (A) HIGH AND (B) NEGLIGIBLE FRICTION ON THE LOADING DEVICE-

SPECIMEN INTERFACE
[6]

. 

Extensive analysis and discussions on the effects of loading devices influencing the material 

behavior can be found also in Kotsovos and Pavlovic
[8]

 (1995), Wesche
[99]

 (1996) and Grübl et 

al.
[100]

 (2001). In continuations to the description of the concrete material behavior, the findings 

in Kotsovos and Newman
[101-103]

 will be discussed in section 3.3.2 and the numerically 

modified Kotsovos and Pavlovic concrete material model will be presented in section 3.3.5.  

 

3.2.2   Size and Shape of Specimen 

An important issue when testing the strength of concrete is the size of the specimen, which 

affects the ultimate strength. The smaller a specimen is, it appears to develop greater strength 

than larger specimens (Fig. 3.6) of the same age (usually 28 days). Different reasons may cause 

this effect where one of them is the core moisture obtained in relation to the size at 28 days, as 

it was described in the Schickert
[98]

 (1981) and Wesche
[99]

 (1996) research works. The influence 

of moist core may decrease when the specimen becomes older and moreover, the initial stresses 

are larger for larger specimen. 

 
FIGURE 3.6 DEPENDENCE OF THE COMPRESSIVE STRENGTH ON THE SPECIMEN SIZE

[6]
. 

A second reason for obtaining higher ultimate strengths in uniaxial compression tests when 

specimens are smaller, is related to the triaxial stress field that is created from the loading 

device-concrete specimen interaction thus an additional strength is induced to the specimen due 

to triaxial stress state phenomena. This is the main reason why the cube specimens appear to 

have larger ultimate strength than the corresponding cylindrical ones. Fig. 3.7a illustrates the 

schematic representation of the effect of the boundary friction restraint τ on the state of stress 

within cylindrical specimens under uniaxial compression σο
[104]

, a figure which also shows the 
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triaxial stress state created by the loading device-specimen interaction at the ends of the 

specimen. Moreover, Fig. 3.7b shows the stress paths induced in the central and at the end 

zones of cylinders under increasing uniaxial compression as presented by Kotsovos
[104]

.  

             
                                  (A)                                                                                          (B) 

FIGURE 3.7 CYLINDERS UNDER UNIAXIAL COMPRESSION ζΟ

[104]
. SCHEMATIC REPRESENTATION OF THE 

(A) EFFECT BOUNDARY FRICTIONAL RESTRAINT (η) ON THE STATE STRESS WITHIN AND (B) STRESS PATHS 

INDUCED IN THE CENTRAL AND END ZONES OF THE CYLINDERS. 

 
FIGURE 3.8 CYLINDERS UNDER UNIAXIAL COMPRESSION ζΟ

[104]
. DEFORMED SHAPES AND 

CORRESPONDING CRACK PATTERNS 

In Fig. 3.8, the deformed shapes and corresponding crack patterns of a cylindrical specimen 

under uniaxial compression are illustrated. It can be seen that the end zones of the cylindrical 

specimen at a load level close to the maximum load-carrying capacity of the specimen, are 

inclined due to the restrain of the boundary conditions. If the height of the cylindrical specimen 
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is decreased, then the central zone of the specimen will be diminished and the stress state within 

the specimen will be governed from triaxial phenomena overestimating the ultimate strength of 

concrete. This is a third size related effect which plays a significant role on the mechanical 

behavior of concrete specimens, thus it is evident that when a cubic specimen is tested the 

compressive strength is governed by triaxial state phenomena. 

 

3.2.3   Concrete in Tension 

The tensile behavior of concrete was studied extensively by several researchers in an attempt  to 

create an objective formulation for the constitutive tensile behavior of concrete. In CEB 

1996
[105]

 it is assumed that tensile stress can be transferred even after the crack initiation. 

However, this phenomenon is attributed to the stiff experimental setup
[8, 106]

. Bažant and 

Celodin
[106]

 stated that the inelastic branch in tension is just a numerical manifestation in order 

to induce stability when tensile failure occurs. 

As it can be seen in Figs. 3.9, the tensile behavior is linear up to about two thirds of the tensile 

strength and near the ultimate tensile strength a nonlinear behavior is observed. The inelastic 

softening branch represents the remaining tensile strength after cracking
[107-109]

.  

  
                                                                  (A)                                                                                        (B) 

FIGURE 3.9 TENSILE BEHAVIOR OF CONCRETE BY (A) DUBA
[107]

 AND (B) COTTEREL AND MAI
[108]

. 

Taking into consideration the extensive experimental work conducted for the investigation of 

the fragile behavior of concrete, it is the author’s belief that a simple linear formulation, which 

has a vertical softening branch, is the most realistic numerical model for the description of the 

tensile behavior of concrete. Despite the fact that near the maximum tensile failure stress    the 

behavior is inelastic, the linearization of the branch is acceptable given the magnitude of the 

corresponding ultimate tensile stress, which is assumed approximately equal to 5% of the 

compressive strength. Therefore, the error induced by making such an assumption is negligible. 

 

3.2.4   Shrinkage and Creep 

3.2.4.1   Shrinkage 

Shrinkage of concrete material is the time-dependent volume change of concrete without any 

external loading. The shrinkage deformations can be separated into four different components: 
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1. Plastic shrinkage, which is also known as capillary shrinkage and occurs when water is 

lost from concrete while it is still in its plastic state. 

2. Carbonation shrinkage, which is caused by the reaction of hydrated cement paste with 

carbon dioxide in the air when moisture is present. Carbonation of shrinkage is limited 

to the outer zones thus its contribution is not significant in most cases.  

3. Drying shrinkage which is caused by the water reduction in concrete to the level of 

moisture that the surrounding air contains. The rate of drying shrinkage is dependent on 

the member size
[110]

 since small sections lose moisture at much higher rate than thick 

sections. Although a thick section may reach the final shrinkage value only after a 

considerable time, the final value of drying shrinkage is considered independent of 

member size. Fig. 3.10 shows different stages of a section cured at 100% moisture 

content and then exposed to 50% moisture content in the surrounding environment.  

 
FIGURE 3.10 MOISTURE, STRAIN AND STRESS DISTRIBUTION ATTRIBUTED TO DRYING SHRINKAGE

[110]
. 

4. Autogenous shrinkage, which is also known as self-desiccation shrinkage or chemical 

shrinkage. This type of shrinkage is associated with the continual hydration of cement 

where the volume of the hardened cement paste is less than the volume of water and the 

volume of cement. Member size and the moisture content in the surrounding 

environment do not affect autogenous shrinkage, which is small compared to drying 

shrinkage for normal strength concrete. However, the phenomenon of shrinkage is 

governed from this component when dealing with high-strength concrete (Fig. 3.11).  

 
FIGURE 3.11 AUTOGENOUS AND DRYING SHRINKAGE COMPONENTS

[111]
. 

 

3.2.4.1   Creep 

Creep is the physical phenomenon for the time-dependent increase of strain at constant stress 

and it is considered to be directly related to the stress state and temperature of concrete. The 

chemical activity which occurs during the creep phenomenon is that of the re-arrangement of 

water particles in consequence of internal stresses and temperature deviations, thus the creep 

behavior is mainly governed by the consistency of the cement paste. Strains due to creep also 
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increase if the ratio of cement paste is high compared to the aggregates or if the corresponding 

stiffness of the aggregate is relatively small. In addition to that, a large water/cement ratio will 

increase significantly the creep strains. 

The total creep strains εcc can be separated into different components depending on the 

phenomenological properties considered by researchers. One way is to split creep into a 

reversible component that may be recovered when unloading occurs and into an irreversible 

component as shown in Fig. 3.12, (Grübl et al.
[100]

). The reversible component is referred to as 

delayed elastic strain εcd and the irreversible component as flow εcf. 

Fig. 3.12 assumes that for a constant internal stress state and temperature around a concrete 

specimen, the rate of strains attributed to creep, decreases geometrically converging to a steady 

state which is constant (Ross et al.
[112]

, England
[113]

, Browne
[114]

, Lykidis
[115]

, Grübl et al.
[100]

).  

A second way to separate the creep strains into components is to assume that creep has a short-

time and a long-time component. Short-time creep is explained by stress-induced redistribution 

of water and long-time creep is caused by displacements of particles in the hardened cement 

paste, (Wittmann
[116]

). 

Given that in this work, we are going to study RC structures under static loadings, the 

phenomenon of creep may affect, in some cases, the accuracy of the resulting displacements, 

since this phenomenon is not accounted for in the proposed modeling method. 

 
FIGURE 3.12 CREEP STRAIN COMPONENT DEFINITIONS

[100]
. 

 

3.2.5   Rate of Loading 

Another significant effect that should be taken into consideration when modeling RC structures 

is the rate of loading which affects the material behavior. Mahin et al.
[117]

 (1972) conducted an 

experimental research on RC specimens where it was found that the effect of the rate of loading 

on strains is relatively small (0.001 and 0.25 strain/sec for high seismic excitations). In addition 

to that, when many loading cycles are applied, the behavior is similar to that of static loading 

and the phenomenon does not play a significant role
[117]

. 

Lowes
[118]

 (1999) presents a literature review of experimental tests conducted in order to study 

if the rate of loading affects the response of strain rate in concrete. As it was presented through 

Fig. 3.13, the compressive strength of concrete obtained with dynamically imposed loads, does 

not deviate from the corresponding compressive strength when the loading is performed 

statically. Therefore, when analyzing concrete material it is acceptable to assume that the 
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response can be modeled by using material characteristics obtained through statically imposed 

loads. 

 
FIGURE 3.13 INFLUENCE OF CONCRETE STRENGTH DUE TO STRAIN RATE

[118]
. 

 

3.3   Constitutive Relations of Concrete 

3.3.1   Review 

As it was presented in Chapter 1, concrete was initially modeled with the use of 1D constitutive 

relations, which were described through simple strain-stress curves. These constitutive relations 

for concrete were unable to capture the response of shear dominated structural members even 

when the new code provisions were implemented during the design process (Kotsovos and 

Pavlovic
[119]

). Researchers tried to improve the constitutive relations of concrete by combining 

them with advanced beam elements formulations in order to capture the nonlinear response of 

RC structures without any significant success. Even in cases where shear strains were 

accounted for, the modeling of three-dimensional geometries (3D RC Joints, Shear Walls, 

Slabs, etc.) with beam elements is inadequate (Fig. 3.14).  

     
FIGURE 3.14 LEFT: SHEAR WALL FAILURE (VIÑA DEL MAR) CHILE, FEB 2010. RIGHT: TYPICAL JOINT 

FAILURE. 

According to the above statements, it is obvious that for such models, a three-dimensional 

constitutive relation for the concrete material behavior is necessary, combined with the use of 

solid finite elements that discretize the exact geometry of the structure. For accomplishing such 

a task, a three-dimensional constitutive law has to be implemented according to the literature 

findings on concrete material behavior. This material law has to incorporate the basic concrete 

material characteristics thus being numerically robust and computationally efficient. 

http://www.eqclearinghouse.org/20100227-chile/wp-content/uploads/2010/03/shear_wall_failure.jpg
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As it was mentioned previously, the experimental data on concrete behavior used for the 

development of constitutive laws are obtained from tests on specimens such as cylinders, 

prisms, cubes etc. Such specimens are subjected to various load combinations, usually applied 

through rigid steel plates (pure compression or triaxial test). The obtained results are expressed 

in the form of stress-strain curves which consist of a branch of positive stiffness, gradually 

reducing, followed by a strain softening one. After an extensive research work that started at the 

early 80’s (Kotsovos
[104]

, van Mier
[120]

) and confirmed in late 90’s (van Mier et al.
[96]

), it was 

found that only strain hardening may describe material behavior under a definable state of 

stress. This means that the strain softening branch basically reflects the interaction between 

specimens and loading platens (Figs. 3.15), which is affected through the development of 

uncontrolled frictional stresses at the faces between the specimen and the loading device. 

For proving the above theory through experimental evidence, Kotsovos and Newman
[101-103]

 

conducted an experimental program, which involved the testing of two different types of 

specimens with two different concrete mixes: 

1. 250 mm height x 100 mm diameter cylinders with 50 and 29 N/mm
2
. 

2. 100 mm cubes with 60 and 37.7 N/mm
2
. 

The specimens were subjected to varying degrees of frictional restraint across their loaded 

surfaces. This was achieved by placing various types of anti-friction media at the specimen-

loading device interface. The antifriction media used were: 

a. a layer of synthetic rubber 0.45 mm thickness, 

b. a MGA pad, 

c. a brush platen, 

d. no anti-friction medium (plain steel plates), 

e. an active restraint induced by Hi-Torque hose clamps. 

During these test experiments, the strength was measured for both cubic and cylindrical 

specimens and the complete deformational behavior was recorded within the central zone of the 

cylinders. The results can be depicted in Figs. 3.15, where the diversification of the inelastic 

branches for each boundary condition type is obvious. The less friction induced on the interface 

of the specimen the more vertical softening branches occur, verifying the brittle nature of 

concrete material. It is also interesting to note here that the nonlinear behavior of the stresses 

depicted in Figs. 3.15 approximately begin between 60-80% of the ultimate strength
[8]

.  

In his Ph.D. thesis, Hartl
[6]

 (2000) used these experimental evidence and is also based on the 

research study conducted by Newman
[121]

 (1973). Hartl
[6]

 assumed that concrete behaved 

linearly elastic and isotropic up to failure which was described by the Ottosen
[122]

 (1977) 

surface. In addition to that, Hartl referred to a comment made by Gerstle et al.
[94]

 saying: 

“Concrete response to multiaxial stress states at working load level can be considered elastic for 

engineering purposes”. 
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                                                     (A)                                                                                           (B) 

FIGURE 3.15 STRESS-STRAIN CURVES FOR DIFFERENT BOUNDARY CONDITIONS
[104]

. (A) fc = 29 N / mm
2  

AND (B) fc = 50 N / mm
2  

. 

It is indisputable that concrete behaves as an elastic medium up to a certain level, but 

consequently a nonlinear branch will always evolve prior to cracking thus with the intention of 

predicting accurately the nonlinear response of RC structures a more advanced material law is 

required. Nevertheless, linear elastic behavior of concrete materials is used by several software 

codes for the analysis and design of concrete structures. 

Many papers have been published on plasticity models, smeared crack approach or combination 

of these models, specifically implemented on concrete structures (Rashid
[123]

 (1968), Červenka 

and Gerstle
[124]

 (1971), Owen et al.
[125]

 (1983), Bažant and Oh
[126]

 (1983), De Borst
[127]

 (1986), 

Simo and Ju
[128]

 (1987), Rots
[129]

 (1989), Pramono and Willam
[130]

 (1989), Kotsovos and 

Pavlovic
[8]

 (1995), Etse
[131]

 (1992), Feenstra
[132]

 (1993), Feenstra et al.
[133]

 (1998), Menetrey et 

al.
[134]

 (1997), Bažant et al.
[135]

 (2000), Bažant and Caner
[136, 137]

 (2005), Spiliopoulos and 

Lykidis
[138]

 (2006), Sato and Naganuma
[139]

 (2007), Červenka et al.
[140]

 (2008)), but a few 

researchers stated that their algorithms showed computational accuracy and numerical 

robustness. Furthermore, concerning the combination of plasticity with smeared crack models, 

none of them succeeded in providing a computationally efficient code even when dealing with 

relatively small-scale FE models. This is attributed to the increased demands of the numerical 

problem that results from a 3D FE formulation and the numerical instabilities induced from the 

smeared crack formulation when cracking occurs. 

Since many studies have been conducted on 3D concrete material laws, a brief presentation will 

follow of the different types of material formulation that have been proposed in the literature 

and following the Kotsovos and Newman
[101-103]

 experimental findings will be presented. 

Moreover, the Kotsovos and Pavlovic
[8]

 material constitutive model will be presented, together 

with the proposed numerical modifications for improving its numerical behavior during the 

nonlinear analysis of RC structures. 
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FIGURE 3.16 FAILURE PROCESS OCCURRING WHEN CONCRETE IS SUBJECTED TO INCREASED LOADING

[121, 

141]
. 

 

3.3.1.1   Models Based on Elasticity 

In this category five main models are encountered: 

1. Isotropic Linear Elastic 

2. Cauchy Elastic 

3. Hyper Elastic or Green Elastic 

4. Hypo Elastic 

5. Variable Moduli 

The first two types are the simplest to use requiring only a few parameters for their 

implementation (usually the Young Modulus E and the Poisson Ratio ν). As it was discussed 

previously, this type of material models is used extensively, as a result of its simplicity, by most 

commercial software for the analysis and design of RC structures.  

The Cauchy Elastic Model is usually of the form  

       3.1 

and its main drawback is the generation of energy under certain loading-unloading cycles, 

which is inadmissible since it violates the laws of thermodynamics. 
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In Hyper and Hypo Elastic models, the energy can be generated through any load cycle and 

thermodynamic laws are always satisfied. Their main difference is that for the Hyper Elastic 

model stresses are expressed in terms of a strain-energy density function independent from the 

loading path leading to the current state. On the other hand, Hypo Elastic models are described 

in terms of increments of stresses and strains. Such models are dependent on the deformation 

history and conceptually, such models are capable of accounting for the material anisotropy at 

high loads. The main drawback of this model is the complexity of their formulation since their 

aim is to predict the nonlinear behavior of concrete at moderately high load levels.  

The last model type is the Variable Moduli where the employment of a loading surface is 

adopted in order to make a distinction between loading and unloading. Unloading and loading 

are performed when the new stress increment gives a stress state within or outside the loading 

surface, respectively. Nevertheless, this type of models is not based on solid mechanical 

foundations. 

 

3.3.1.2   Models Based on Plasticity 

Plasticity models usually rely on the classical plasticity theory assuming that the strains can be 

separated into an elastic and a plastic component, according to Eq. 3.2. 

         
      

 
 3.2 

When the yield criterion is satisfied (von Mises, Mohr-Coulomb, Drucker-Prager, Tresca-

Guest, Huber–Mises–Hencky, Mroz multi-surface plasticity) a decrease of the elastic modulus 

is assumed (hardening modulus) resulting to the degradation of stiffness. This formula may be 

suitable for steel materials, however for concrete is not suitable since hardening is a 

phenomenon that does not occur in concrete materials as it was explained previously. In Figs. 

3.17 different yield surfaces can be seen. Lubliner et al.
[142]

 (1989) and Lubliner
[143]

 (1990) 

suggested that the yield surfaces should be readjusted according to the stress state with multiple 

criteria. 

 
                                   (A)                                                           (B)                                                           (C) 

FIGURE 3.17 DIFFERENT YIELD CRITERIA. 
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In order to capture the elastic degradation of concrete, the plastic fracturing theory is used 

which is an extension of the classical plasticity theory. It accounts for the degradation of the 

elastic material modulus with respect to the increase of deformation according to: 

 ̇    ̇  
    ̇   

   3.3 

where   is the elastic constitutive matrix,  ̇  denotes the rate of degradation of the elastic 

constitutive matrix and  ̇  
    ̇    ̇  

 
. This formulation is more accurate when modeling 

concrete materials since it accounts for the elastic degradation of the elastic branch caused by 

micro-cracking. 

A more complex plasticity-based type of model is called Endochronic (Valanis
[144]

 (1971)) and 

can be regarded as a more sophisticated type of a visco-plasticity model, which is characterized 

by the dependence of the viscosity on the strain rate. Through the endochronic theory the 

prediction of material behavior under non-proportional loading is achieved accounting for 

pronounced rotations of the principal stresses. Given its complex formulation, there are very 

few experimental data existing for such loading paths. Moreover, it is difficult to obtain the 

large number of material parameters required through experimental tests.  

 
3.3.1.3   Damage Models 

Damage models are based on the thermodynamic law and can model the internal mechanism of 

progressive propagation and concentration of micro-cracks in brittle materials like concrete. 

The damage of the material is induced through the use of a damage index       which 

causes the degree of the degradation in the stiffness matrix.  

Several studies on damage models can be found in the literature (Bažant and Kim
[145]

 (1979), 

Mazars, J.
[146]

 (1986), Lemaitre
[147]

 (1986), Chaboche
[148, 149]

 (1988), Lubliner et al.
[142]

 (1989), 

Lemaitre
[150]

 (1996), Meschke et al.
[151]

 (1998), Ragueneau et al.
[152]

 (2000), Kattan and 

Voyiadjis
[153]

 (2002), Cusatis et al.
[154]

 (2008), Benzarti et al.
[155]

 (2009), Yu et al.
[156]

 (2010)). 

 
                             (A)                                                                (B)                                                           (C) 
FIGURE 3.18 (A) ELASTOPLASTIC MODEL WITH HARDENING, (B) ELASTIC MODEL WITH DAMAGE AND (C) 

COMBINATION OF (A) AND (B). 

It is evident that damage models are widely used, due to the simplicity of their formulation and 

ability of combining them with other methods like elasticity, elastoplasticity or even debonding 
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behavior models in order to capture the nonlinear behavior of brittle materials. A schematic 

illustration of the resulted model when combining a damage model with the elastoplastic model 

with hardening is given in Fig. 3.18. 

 

3.3.1.4   Microplane Models 

This type of models, project the strain tensor of a material point to numerous spatially oriented 

planes which this point contains. The constitutive relations are formulated for each one of these 

planes where the stresses acting on them are obtained. The initial idea behind these models was 

presented by Bažant and Gambarova
[157]

 (1984), Bažant and Prat
[158]

 (1988) and in continuation 

of the latter the models were extended in Bažant et al.
[135, 159]

 (2000, 2001), Bažant and 

Caner
[136, 137]

 (2005). In Bažant and Ozbolt
[160]

 (1990) it was shown that microplane models are 

suitable for modeling brittle material in monotonic and cyclic loadings. Fig. 3.19 shows 

schematically the coupling of kinematically and statically constrained microplane systems for 

hardening and softening responses and the components of strain or stress vectors on microplane 

proposed by Bažant and Caner
[136, 137]

. 

These models have also the advantage of being able to account for time-depending material 

phenomena. According to CEB
[105]

 1996 this type of models can predict objectively the 

behavior of plain concrete for any type of loading.  

 
FIGURE 3.19 LEFT: COUPLING OF KINEMATICALLY AND STATICALLY CONSTRAINED MICROPLANE 

SYSTEMS FOR HARDENING AND SOFTENING RESPONSES. RIGHT: COMPONENTS OF STRAIN OR STRESS 

VECTORS ON MICROPLANE
[136]

. 

 

3.3.1.5   Crack Models 

All the previously mentioned models have a significant disadvantage when it comes to the 

objective and realistic modeling of brittle materials. Since brittle materials do not appear to 

have softening branches and for a specific level of loading the ultimate tensile stress is reached, 

the opening of cracks occurs initiating a significant redistribution of the internal stresses. In 

order to account for cracking and to predict the redistribution of internal stresses and strains, the 

use of crack models is necessary. Four main categories can be found in the literature for 

modeling the crack phenomena: 
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A. Discrete Crack Models 

B. Smeared Crack Models 

C. Discrete Element Methods 

D. Meshless or Meshfree Methods 

The first two models are widely used by several researchers with satisfactory results in terms of 

accuracy and experimental verification. The other two models are relatively new and appeared 

the last two decades illustrating very good characteristics but with many numerical and 

computational problems to be solved. 

A brief presentation of these four crack modeling methods will follow and a more extensive 

discussion on the smeared crack approach will be presented, since this is the method adopted in 

this research work.  

 

3.3.1.5.1   Discrete Crack Models 

The main idea behind this type of models is to create the discrete crack occurring within the FE 

mesh and separate the nodes between the two adjacent crack faces (Fig. 3.20). This way a 

discrete representation of the crack is achieved (Fig. 3.21) and the stiffness of the structure is 

regenerated accordingly. This method was used in the first FE analysis conducted by Ngo and 

Scordelis
[161]

 (1967), but the method did not become as popular as the smeared crack approach. 

This is attributed to the numerous computational issues that arise when crack opening occurs. 

 
FIGURE 3.20 SCHEMATIC REPRESENTATION OF CRACK OPENING IN 2D. 

 
FIGURE 3.21 DISCRETE CRACK MODELS. CRACK PATTERN OF A SINGLE EDGE NOTCHED BEAM

[172]
. 

Several researchers tried to improve this type of methods (Nilson
[162]

 (1968), Grootenboer et 

al.
[163]

 (1981), Feenstra et al.
[164]

 (1991), Rots
[165]

 (1991), Xie and Gerstle
[166]

 (1995), 

Bittencourt and Ingraffea
[167]

 (1995), Riddell et al.
[168]

 (1997), Ruiz et al.
[169]

 (2001), Galvez et 

al.
[170]

 (2002), Prasad and Krishnamoorthy
[171]

 (2002), Dias-da-Costa
[172]

 (2009)). Nevertheless, 

all numerical tests that are encountered in the literature are strictly limited to simple structural 
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member implementations pointing the major disadvantage of this approach when it comes to 

multi-member RC structures. 

 

3.3.1.5.2   Smeared Crack Models 

The basic idea of smeared crack models is to introduce cracked areas by modifying the stiffness 

properties and stresses at relevant integration points. This approach gives the ability of 

simulating individual cracks without the need of mesh alterations like in the case of the 

discrete-crack approach described in the previous sub-section. As it was mentioned, the first 

discrete-crack model appears to have been used by Ngo and Scordelis
[161]

. The main 

disadvantage of the discrete-crack approach is that it requires intricate programming techniques 

and even then it is restricted in use since complicated mesh refinements become necessary to 

accommodate the propagation of only a few cracks. Then again, the main advantage of the 

discrete-crack approach is the ability of modeling the crack’s tip. Even so, the heterogeneous 

nature of concrete at such microscopic scale can no longer be ignored, thus this kind of 

modeling introduces formidable problems even to the powerful analytical tools afforded by 

present-day. This is the main reason why discrete-crack approach cannot yet be used to 

simulate and analyze full-scale RC structures. 

Other methods were developed in order to model discontinuities like the discrete finite element 

method, the particle finite element method, the extended finite element method etc. The basic 

problem in implementing these methods is the computational cost due to the necessity of mesh 

refinements required when cracks open. 

Since material properties are computed and evaluated only at specific points in an element, such 

as the integration points or the nodes, the change of material properties due to cracking affects 

the contributing region from which these properties are evaluated. Hence smearing the effect of 

cracking over a greater region manages to utilize the method with the ability of modeling cracks 

without the need of remeshing. In fact, a single crack represents an infinite number of parallel 

fissures throughout that part of the element related to an integration point or a node. Therefore, 

the essence of smeared modeling is the setting up of cracked areas by modifying the stiffness 

matrix and stresses at the relevant Gauss points. In this work, an 8-noded hexahedral element 

with 8 Gauss points is used and when a crack is created, it affects only the stiffness properties 

of that specific Gauss point, thus one eighth of the element is affected. The smeared crack 

method implemented in this work is based on the Rashid
[123]

 (1968) work as described by 

Gonzalez-Vidosa et al.
[173]

 (1991). 

The non-linear analysis process considers that the external load is applied incrementally and the 

computation of the global equilibrium at each load increment is performed. At each load 

increment, the stress-increments at any Gauss point are found from the corresponding stress-

strain increments through the constitutive matrix C. 

  σ C ε  3.4 



Chapter 3 Athens, Jan 2011 

 

Page 102 of 272 
 

2 . . .

2 . . .

2 . . .

. . . . .

. . . . .

. . . . .

x x

y y

z z

xy xy

yz yz

zx zx

G

G

G

G

G

G

   

   

   

 

 

 

     
     
    
        

     
     
     
    
        

 3.5 

where 

  
2

,   Lame constant or   
1 1 2 3
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K


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 


  

 
 3.6 

Eqs. 3.4 and 3.5 refer to an uncracked Gauss point where we assume that the concrete has no 

discontinuities. Since the relations are in incremental form, the above material constants are the 

tangent ones. They may be evaluated
[8]

 by differentiation from the secant material constants and 

are functions of ζ0 and η0 as they are described in the Kotsovos and Pavlovic
[8]

 constitutive 

concrete law (section 3.3.3).  

A crack occurs when the ultimate deviatoric stress η0u at a Gauss point has been exceeded 

(usually in tension or tension-compression combinations) where a plane is formed (crack’s 

plane) which is perpendicular to the direction of the maximum tensile stress that existed before 

the cracking. This tensile stress is set to zero and transformed into unbalanced forces which are 

going to be distributed throughout the surrounding Gauss points.  

The relations between stress-strain increments, in local axes, subsequently become such that the 

third local axis is perpendicular to the plane of the crack (axis z΄), implying zero stress along 

this axis (Fig. 3.22). The shear rigidity is G in the uncracked plane and a residual shear rigidity 

βG is assumed in the other two planes (Eq. 3.7). The stress-strain incremental relationship takes 

the following form: 
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 3.7 

If a tensile state of stress is reached for the second time, then a second crack opens and its plane 

is perpendicular to the direction of the new maximum principal tensile stress which together 

with the previous plane leaves only stiffness along the intersection of the two planes (Fig. 3.22). 

Therefore, the incremental-stresses in terms of the incremental-strains along these Cartesian 

axes (x΄΄, y΄΄, z΄΄) are given by  
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FIGURE 3.22 LOCAL AXES FOR THE CASE OF TWO CRACKS AT A SPECIFIC GAUSS POINT. 

Because of the anisotropy induced from the crack openings, the expression of the stress–strain 

matrix in local axes is transformed to global axes using the standard coordinate system 

transformation laws. If a third tensile stress occurs at the same Gauss point, then we assume a 

complete loss of the carrying capacity at that specific Gauss point. This is performed by setting 

to zero the constitutive matrix C. 

 

Parameter β  

The main arithmetical problem of the smeared crack method are the ill-posed stiffness matrices 

that are produced when crack openings occur, which may result in numerical difficulties during 

the solution of the nonlinear incremental equations. For this reason, parameter β is vital when 

using the smeared crack approach due to its numerical contribution when one or more cracks 

open. This parameter is correlated to the remaining stiffness due to aggregate interlocking along 

the crack’s surface. If this parameter is neglected and set to zero, then an instability of the 

numerical solution procedure may be observed and it would have been unable to proceed after 

the opening of the first cracks. The most commonly used value for this variable is that of β = 

0.05-0.1 which was extracted through experimental data
[174]

. It is therefore assumed that 5-10% 

of the initial shear stiffness remains after the crack opening and is applied along the crack’s 

plane. In the numerical tests that will be presented in this work, the value assumed for this 

parameter was set equal to 5%. 
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3.3.1.5.3   Discrete Finite Element Methods 

The Discrete Element (DE) Methods (also called smooth Particle Hydrodynamics) are rapidly 

evolving methods that have demonstrated satisfactory results especially for impact problems 

and problems that produce high nonlinearities attributed to high deformations. The main idea of 

DE methods is to discretize the continuum media with relatively small discrete elements 

(tetrahedral, hexahedral, spheres) which are connected to each other through special boundary 

conditions. Usually these boundary conditions obey material rules that are governed by a 

yielding surface, as shown in Fig. 3.17. When for the case of two neighboring elements this 

criterion is satisfied, then the rigid connection ceases and the two elements are not connected to 

each other and a discontinuity is introduced (crack). The material can be modeled at a meso- or 

macro-scale, with the size of the DE being small enough in order for the model to be predictive. 

Nevertheless, the DE size is always restricted from the computational cost due to the large 

number of elements required when very small sizes during discretization are implemented. 

Finally, the identification process used, plays a significant role for the predictiveness of a model 

as described by Hentz et al.
[175]

. In their work, an extensive presentation of the DE model is 

attempted. 

Because of the computational demands of these models, multi-domain finite and DE method 

(Fig. 3.23) was proposed by Rousseau et al.
[176]

 (2009). Despite the decrease in the number of 

dof, this method is unable to overcome the excessive computational effort, thus 

implementations are restricted to single structural element problems. More literature and details 

about discrete models can be found in Rousseau et al.
[177]

 (2007) and Hentz et al.
[175]

 (2004). 

 
FIGURE 3.23 COMBINED FINITE AND DISCRETE ELEMENT METHODS FOR MODELING AN IMPACT 

PROBLEM
[176]

. LEFT: FULL MODEL. RIGHT: TRANSACTION AREA. 

 

3.3.1.5.4   Meshless or Meshfree Methods 

These methods are mesh free in terms of the discretization of the media and a particle-based 

concept is applied, which is particularly suitable for the analysis of fracture, due to its capacity 

to model large deformation and track the free surfaces generated. Continuum damage models 

are usually used to predict the fracture within the model and the evolution of damage can be 

predicted by using the strain history of each particle. For the case of brittle materials, damage 
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usually inhibits the transmission of tensile stress between particles and once the stress reaches 

unity it is unable to transmit tensile deformations, resulting in a macro-crack. Connected macro-

cracks lead to complete fragmentation. 

 
FIGURE 3.24 CRACK PATTERN OF THE REINFORCED CONCRETE BEAM AT FAILURE FROM TWO DIFFERENT 

VIEWING POINTS
[179]

. 

 
FIGURE 3.25 CONCRETE SLAB O1 UNDER EXPLOSIVE LOADING USING APPROXIMATELY 265,000 

PARTICLES, IN RED: CRACKED PARTICLES, IN BLUE: UNCRACKED PARTICLES
[178]

. 

As it can be seen in Figs. 3.24 and 3.25, due to the nature of the method, the cracks can be 

arbitrarily oriented and as it is stated in Rabczuk and Belytschko
[178]

 (2007) their growth is 

represented discretely by activation of crack surfaces at individual particles. 

The method also appears to be less complex than the interelement separation models
[179-181]

 and 

significantly less complex than the extended finite element method
[182]

. In the latter, the cracks 

can be modeled only along element interfaces in the mesh (Camacho and Ortiz
[179]

 (1996), Ortiz 

and Pandolfi
[180]

 (1999) and Zhou and Molinari
[181]

 (2004), Belytschko and Gracie
[182] 

(2007)). 

It is the author’s opinion that, despite the fact of the necessity for further improvement, 

concerning the assumptions made for the particle interactions and the computational excessive 

demands, which are attributed to the nature of this type of methods, they will eventually 

dominate the scientific field of crack modeling. Given the large interest shown in the detailed 
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simulation of heterogeneous materials, it is one of the most promising modeling methods, for 

the analysis of brittle heterogeneous materials. More references on meshless and meshfree 

methods can be found in Belytschko and Lu
[183]

 (1995) and Liu
[184]

 (2003). 

 

3.3.2   Kotsovos and Newman Experimental Findings 

After the review on the available material models for concrete analysis and the methods for 

modeling cracks, the Kotsovos and Pavlovic
[8]

 material model will be presented together with 

the numerical modifications performed for the purposes of this research work. The presentation 

and discussion of the experimental findings of Kotsovos and Newman
[101-103]

 (1977-1979) will 

proceed, followed by the proposed modifications. 

The experimental program conducted by Kotsovos and Newman
[101-103]

 concerned a range of 

concrete specimens with uniaxial cylinder compressive strength varying in the range 15 MPa   

fc   65 MPa. The specimens were tested under different stress state (compression, tension, 

triaxial compression, triaxial tension) and the stress-strain relationships were expressed in terms 

of normal stresses (        ) and normal strains (        ). Typical experimental stress-strain 

curves obtained for cylindrical specimens under uniaxial compression can be seen in Fig. 3.29a 

for different concrete types and in Fig. 3.26b the case of concrete with compressive strength fc 

= 31.7 MPa, which was tested for different types of triaxial compression for various values of 

hydrostatic stress   . 

 
                                                                  (A)                                                                                       (B) 

FIGURE 3.26 TYPICAL STRESS-STRAIN CURVES FOR CONCRETES OBTAINED FROM TESTS ON 

CYLINDERS
[104]

. (A) VARIOUS CONCRETES UNDER UNIAXIAL COMPRESSION AND (B) CONCRETE WITH fc = 

31.7 MPA UNDER TRIAXIAL COMPRESSION FOR VARIOUS VALUES OF HYDROSTATIC STRESSES ζ0. 

For the analysis of the experimental data (both uniaxial and multiaxial), use is made of the 

assumption that the nonlinear material behavior is governed mainly by changes in the structure. 

These structural changes occur in the form of fracture initiation and propagation processes 

which have the following two opposing effects on the material deformation: 

Effect A. Cracking causes a reduction of the high, predominantly tensile stress 

concentrations existing near the crack tips. This reduction in tensile stress can be 



Chapter 3 Athens, Jan 2011 

 

Page 107 of 272 
 

assumed to be equivalent to the application of a compressive stress that tends to 

reduce the volume of concrete. 

Effect B. Cracking produces voids, which tend to increase the volume of material. 

It is assumed that the deformation history and crack pattern evolution until complete failure can 

be divided into three main stages. These stages are illustrated schematically in Fig. 3.27 and can 

be described as follows: 

 

Stage I 

The elastic deformation is dominant from the onset of loading up to 30 ÷ 70% of fc. The 

lower limiting value applies for low strength concrete and the higher value applies for 

high strength concrete. There is only a small increase of microcracks and the material 

behavior is approximately linear. At this stage effect A is significant while effect B is 

relatively insignificant since cracking is localized. This has the result of the specimen’s 

volume decrease.  

During this stage, the microcracks remain stable and do not propagate. With increasing 

load tensile strains start to concentrate near the crack tips and the initially stable 

microcracks start to branch in the direction of the maximum principle compressive 

stress. This branching process tends to relief strain concentrations. Once strain 

redistribution has occurred, the individual crack configurations remain stable during 

further increase of the applied stress. The start of such deformational behavior is termed 

LFI (Local Fracture Initiation) by Kotsovos and Newman
[185]

, see Fig. 3.27. The 

beginning of this local fracture initiation is shown by a dotted line in the stress and the 

strain space for the triaxial loading in Fig. 3.28. 

 

Stage II 

In this stage, effects A and B are both significant, but effect A is greater than the effect 

B thus the volume continues to decrease. Analyzing this behavior, it means that the 

existing cracks propagate in the direction of the compressive load in a relatively stable 

manner. If the applied load is held constant, crack propagation does not continue. This 

behavior is termed as OSFP (Onset of Stable Fracture Propagation) which is given in 

Fig. 3.27. 

 

Stage III 

This is the final stage where for the first time effect B is more significant than effect A, 

causing a volume increase of the specimen. The degree of cracking can reach a level, at 

which the crack system becomes unstable and failure occurs even if the load remains 

constant over a relatively long time. The start of this stage is termed as OUFP (Onset of 

Unstable Fracture Propagation) in Fig. 3.27 and it is characterized from the fact that the 

volume becomes minimum. The load can still be increased beyond this point to the 

Ultimate Surface (US), but the amount of increase depends on the rate at which the load 

is applied and the loading device. 
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FIGURE 3.27 STAGES IN THE PROGRESS OF CRACK DEVELOPMENT UNDER COMPRESSIVE LOAD

[185]
. 

Based on the above description, the deformation behavior of concrete was decomposed into the 

following three components: 

1. A linear component throughout, governed by the material characteristics which is 

unaffected by the fracture process. 

2. A nonlinear component expressing the effect of the internal stresses caused by the 

fracture processes. 

3. A nonlinear component expressing the effect of void formation. 

After the gathering of the experimental results (Fig. 3.29), the analysis of the experimental data 

was performed by transforming the stress-strain curves into corresponding hydrostatic and 

deviatoric stress and strains components, i.e. in the form of normal and shear octahedral stresses 

(σο – το) and strains (εο – γο), respectively (Eqs. 3.9-3.12). For the definition of these octahedral 

parameters see Appendix A. 

   
 

 
           3.9 

   
 

 
           3.10 

   
 

 
√       

         
         

  3.11 

   
 

 
√                           3.12 
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FIGURE 3.28 TYPICAL LFI, OSFP, AND US ENVELOPES IN STRESS SPACE AND STRAIN SPACE

[185]
. 

 
                                                          (A)                                                                                              (B) 

FIGURE 3.29 TYPICAL EXPERIMENTAL  (A) ζο-εο(h) AND (B) ηο-γο(d) CURVES FOR VARIOUS CONCRETES
[95]

. 

 
                                                                                  (A)                                                                 (B) 

FIGURE 3.30 TYPICAL EXPERIMENTAL ηο-γο(d) CURVES FOR CONCRETE WITH fc = 31.7MPa, FOR TWO 

POSSIBLE STRESS PATHS. (A) ζ1 > ζ2 = ζ3 AND (B) ζ1 = ζ2 > ζ3
[95]

. 
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The results of these tests, indicated that the deformational behavior of concrete material under 

hydrostatic stress ζο can be described completely by the hydrostatic (volumetric) strain εο(h), 

since the corresponding deviatoric strain γο(h)  has been found to be insignificant
[185]

. By using 

the subscript h it is denoted that the octahedral strains result from the application of pure 

hydrostatic stress state. These relationships ζο – εο(h) depend only on the uniaxial strength fc of 

the concrete (Fig. 3.29a). 

If the specimen is deformed through the application of an external deviatoric stress    then 

both volumetric and deviatoric strains are affected. Therefore, the deformation response of 

concrete under increasing deviatoric stress is defined by both ηο – γο(d) and ηο – εο(d) 

relationships. In this case, the subscript d denotes that the octahedral strains are due to a pure 

deviatoric stress state. Typical deviatoric results are shown in Fig. 3.29b and data points for 

both ηο – γο(d) and ηο – εο(d) characteristics are given in Figs. 3.31 and 3.32 respectively. 

It is evident that both sets of curves are essentially independent of the stress path, indicating 

that the influence of the direction of   on the octahedral planes is negligible and that any 

stress-induced anisotropy is insignificant and can be ignored for practical purposes. In addition 

to that, the stress path independency was also illustrated by Gerstle et al.
[95]

 (1980) and it is 

shown in Fig. 3.32. The stress paths denoted as 1 and 3 correspond to the triaxial loading, while 

stress path 2 refers to the additional case of constant principal stress. It is obvious that these 

three paths coincide sufficiently thus it is safe to say that their differences are attributed to 

random effects.  

It is important to annotate at this point that the volumetric deformation due to deviatoric stress 

is attributed to the normal octahedral internal stress    , which is considered to be the result of 

cracking within the concrete specimen. In the next subsection, the procedure of computing this 

internal stress from the corresponding ηο – εο(d)  relationship will be shown.  

 
                                                                                  (A)                                                                 (B) 

FIGURE 3.31 TYPICAL EXPERIMENTAL ηο-εο(d) CURVES FOR CONCRETE WITH fc = 31.7MPa, FOR TWO 

POSSIBLE STRESS PATHS. (A) ζ1 > ζ2 = ζ3 AND (B) ζ1 = ζ2 > ζ3
[95]

. 
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FIGURE 3.32 DEVIATORIC STRESS-STRAIN CURVES OBTAINED FROM TRIAXIAL TESTS BY USING 

DIFFERENT LOADING PATHS
[95]

. 

 

3.3.3   The Kotsovos and Pavlovic Concrete Material Model 

Three different approaches were described by Kotsovos and Pavlovic
[8]

 for the incorporation of 

the phenomenological features and corresponding experimental findings that were presented in 

the previous subsection. 

Approach 1. Three Moduli 

Approach 2. Internal Stress 

Approach 3. Combined 

The third approach is the material model used in this work and it is a combination of the first 

two. Given the detailed description of these approaches in the literature, specific features of the 

first two approaches will be given as they will be needed in the combined approach.  

The three moduli approach adopts the octahedral representation of stresses and strains, and 

permits the decoupling of volume and distortional changes, with two natural material constants 

named bulk modulus K and shear modulus G, given by the following expressions: 

0

03 3(1 2 )

E
K



 
 


 3.13a 

0

03 2(1 )

E
G



 
 


 3.13b 

The third material modulus proposed in this approach, is the coupling modulus H (Eq. 3.14), 

which was presented for the first time by Gerstle et al.
[95]

 and modified in the combined 

approach by an equivalent superimposed stress state (   ) based on the internal stress concept. 

0

0( )d

H



  3.14 

Through the use of these three material moduli, the concrete behavior is described and the 

octahedral stress-strain relations can be computed for any given stress state (Eqs. 3.15). 
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0 0
0 0( ) 0( )

3
h d

s sK H

 
     

 

3.15a 

0
0 0( )

2
d

sG


  

 

3.15b 

The internal stress concept is described through a typical ascending branch of the stress-strain 

relations of concrete, depicted in Fig. 3.33. It is assumed that the use of this internal stress state 

in conjunction with the initial moduli Ke, Ge or Ee, ve is sufficient to describe the nonlinear 

constitutive behavior.  

When the material moduli are considered to be constant, the generalized form of Hooke’s law 

for a stress state    may be written as: 

 1 ee
ij kk ij ij

e eE E


   


  

 
or equivalently 

3.16 

3 2 1

18 2

e e
ij kk ij ij

e e e

K G

K G G
   


    

3.17 

where Ke, Ge the bulk and shear moduli, respectively. By decomposing the total strains εij and 

stresses ζij into their hydrostatic components: 

0 0,    
3 3

kk kk 
    

3.18 

and deviatoric components: 

0 0,    sij ij ij ij ij ije           3.19 

the following generalized form of Hooke’s law is obtained: 

0
0

3 2

ij

ij ij ij ij

e e

s
e

K G


        3.20 

 
FIGURE 3.33 THE INTERNAL STRESS CONCEPT USED TO ACCOUNT FOR NONLINEAR CONSTITUTIVE 

RELATIONS OF CONCRETE MATERIALS
[8]

. 
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In order for the above equations to be valid, the following expression must be satisfied: 

intext

ij ij ij     3.21 

where the subscripts ext and int denote the external applied and the internal microcracking 

stress states, respectively. By decomposing each state of stress and strain into a hydrostatic and 

a deviatoric component, the internal stress state may be quantified through the use of 

experimental data shown in Figs. 3.29-3.31. After a regression analysis of ζο – εο(h) data, the 

relation between external stress and resulting strain was found to be: 

0 0 0
0( )

3
                                                                for 2

3

b

e
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c
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K

fK
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   

3.22a 

     
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               for 2
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e

e
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 



  

3.23 

where Ke and Ge are the initial bulk and shear moduli, respectively. The expressions that 

describe these moduli are given through the following relations: 

211000 3.2e cK f    3.24 

15 8.2739224 136 3296 10e c cG f f       3.25 

where fc is the uniaxial cylinder compressive strength expressed in MPa. Parameters a, b, c, d 

depend on the material characteristics and are described through the following equations: 

8 4.4612.0 1.81 10 cb f     3.26 

2.12 0.0183                                                               for 31.7c cd f f MPa     3.27a 

2.70                                                                                   for 31.7cd f MPa   3.27b 

while parameters a and b are absorbed by parameters A and B which will be described below.  

For Eq. 3.21 to be compatible with the first term on the right-hand side of Eq. 3.20, the 

hydrostatic component of the internal state of stress must be: 

i 0 0                                                                       for 2

b

h

c
c c

A
ff f

   
   

 
 3.28a 

 1i 0 02 +2 A 1                                              for 2b bh

c
c c

Ab b
ff f

    
    

 
 3.28b 

where A is given by: 
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13 b

e cA aK f   3.29 

and with the regression analysis of the experimental data the following expressions for 

parameter A are obtained, thereby incorporating parameter a: 

0.516                                                                                for 31.7cA f MPa   3.30a 

 
2.389

0.516
                                                 for 31.7

1 0.0027 31.7
c

c

A f MPa
f

 
 

 
3.30b 

Moreover, for Eq. 3.23 to be compatible with the second term of the right-hand side of Eq. 

3.20, the shear stress ηid must be expressed as: 

i 0   

d

d

c c

C
f f

  
  

 
 3.31 

where 

12 d

e cC cG f   3.32 

Parameter C incorporates and defines the parameter c, through the following expressions that 

yield after the regression analysis on the experimental data for the ηο – γο(d) relations. 

3.573                                                                                for 31.7cC f MPa   3.33a 

 
1.414

3.573
                                                 for 31.7

1 0.0134 31.7
c

c

C f MPa
f

 
 

 3.33b 

The above relations are valid only for concrete materials with cylinder compressive strength 

ranging between15 MPa   fc   65 MPa. Outside this range, Ke and Ge remain constant and 

equal to the corresponding values obtained when fc = 15 MPa or fc = 65 MPa, depending on the 

case at hand. 

In order to classify the above stresses that are obtained from the corresponding loading type, the 

following three loading types were presented: 

i. Hydrostatic Loading. This occurs when the current external stress   
  exceeds any 

previous external stress   
   

, resulting in an increase of    . 

ii. Deviatoric loading. This occurs when the current external stress   
  exceeds any previous 

external stress   
   

, resulting in an increase of    . 

iii. Combined loading. This occurs when the current combination of external stresses   
 ,   

  

exceeds any previous combination of external stresses   
   

,   
   

, resulting in an 

increase of    . 

It is implied that various combinations of loading and unloading may take place simultaneously, 

thus the above formulation will be able to predict the correct material behavior. 

The next step is to choose whether the nonlinearities of K and G moduli should be accounted 

for in the ζο – εο(h) and ηο – γο(d) relations. The combined approach assumes that this numerical 
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feature can be accounted for through the use of the     variable which takes into consideration 

the coupling effect ηο – εο(d). In order to achieve this, Eqs. 3.15 must be rewritten to: 

0
0 0( ) 0( )
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h d

sK
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  


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3.34a 
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sG


  

 
3.34b 

where Ks and Gs are the secant bulk and shear moduli, respectively. Once more, a regression 

analysis of the experimental data similar to the one that led to expressions of Eqs 3.22 and 3.23 

is performed giving  

0 0

0 0

1 1
,    

3 2
s sK G

 

 
 

 
3.35 

The expressions that describe the relation between the secant bulk modulus and the initial bulk 

modulus write as: 
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3.37 

Similarly, the tangent bulk and shear moduli, which relate stress and strain increments, may be 

obtained by differentiating the expressions in Eqs. 3.22 and 3.23, respectively. It is worth 

noting at this point that, even for very small stress values, the moduli are affected, meaning that 

the constitutive matrix C (Eq. 3.4) is changed. During the nonlinear solution procedure, this 

results into unbalanced forces very early in the iterative procedure requiring additional 

iterations until convergence is achieved. This feature applies also for the case of the tangent 

moduli which are computed from: 
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3.39 

The above formulation for the secant and tangent moduli is schematically illustrated in Figs. 

3.34. These figures refer to a particular concrete which has a cylindrical compressive strength fc 

= 31.7 MPa. 

 
                                                          (A)                                                                                             (B) 

FIGURE 3.34 TYPICAL VARIATION OF THE (A) BULK MODULI KS, KT  WITH ζ0 AND (B) SHEAR 

MODULI GS, GT WITH η0 FOR A SPECIFIC CONCRETE (fc = 31.7MPa)
[101]

. 

At this point, the computation of the stress     is required. A regression analysis of the 

experimental data similar to those shown in Fig. 3.35 led to the following analytical expression 

that describes the stress    : 

0
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c c
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f f
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 3.40 

where 
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and parameters k, l, m, n are the material parameters which are expressed as: 

 
0.23

4.0

1 1.087 15.0c

k
f


  

 
3.42a 

20.222 0.01086 0.000122c cl f f      3.42b 

2.414                                                                              for 31.7cm f MPa    
3.42c 

3.532 0.0352                                                           for 31.7c cm f f MPa      3.42d 
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1.0                                                                                      for 31.7cn f MPa   
3.42e 

0.3124 0.0217                                                            for 31.7c cn f f MPa     3.42f 

 

Since the stress     is a pure hydrostatic 

correction, expressions in Eqs. 3.34 are 

equivalent to Eq. 3.43, which is expressed 

in the global coordinate directions.  

Eq. 3.43 is obtained by noting that the two 

terms of the strain tensor of Eq. 3.20 must 

be handled separately when the 

constitutive relations are introduced in this 

tensor relation. Given that the second term 

of this equation does not impose any 

deviation from nonlinear elasticity, the 

first term does involve the correction     

to the applied   . 
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where Es and νs are the secant Young modulus and Poison ratio, respectively. These two 

material parameters derive from Ks and Gs by the following expressions: 
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 3.44 
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Eq. 3.43 describes the expression which forms the basis for calculating global strains from 

global stresses according to the following procedure: 

 The octahedral stresses (ζ0, η0) are calculated either from the principal stresses (ζ1, ζ2, 

ζ3) - computed previously on the basis of the global stresses ζij, i.e. (ζx, ζy, ζz, ηxy, ηyz, ηzx) 

– or directly from the first and second stress invariants expressed in terms of ζij 

(Appendix A). 

 Ks, Gs and Es, νs are calculated. 

 The hydrostatic correction ζid is calculated. 

 Global strains εij are calculated. 

The computation of global strain increments from global stress increments follows the same 

procedure, with the material constants being defined in terms of the tangent values KT, GT and 

ET, νT. 

 

FIGURE 3.35 SCHEMATIC REPRESENTATION OF THE APPROACH USED 

TO EVALUATE     FOR A GIVEN    AND    COMBINATION
[8]. 
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3.3.4   The Failure Surface 

The octahedral stresses are also used to describe the failure surface of concrete, which may be 

represented in the three-dimensional principal stress space as an open and convex failure 

surface. The form of such a failure surface can be seen in Fig. 3.36, indicating the very small 

strength of concrete under tensile stresses (positive axes refer to compressive stresses). The 

projection of the failure surface on the deviatoric plane, which is normal to ζ0, results in a curve 

that represents the geometrical locus of the ultimate deviatoric stress η0u
[8]

. This ultimate stress 

may be calculated from ζ0 and ζ, where ζ is the rotational angle that the deviatoric stress vector 

forms with one of the projected stress principal axes on the deviatoric plane. 
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 3.46 

This expression describes a smooth convex curve with tangents perpendicular to the directions 

of η0e and η0c at ζ = 0
ο
 and ζ = 60

ο
 respectively (Figs. 3.37). Therefore, a full description of the 

strength surface can be established when the variants of η0e and η0c with ζ0 are determined. Once 

more, a mathematical description of the two strength envelopes may be obtained by fitting 

curves to the experimental data. Such an approach leads to the following expressions 

0.724
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 
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When the state of stress is known, then the quantities ζ0, η0, ζ may be calculated from 
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 
 3.48 

where I1 and I2 are the first and second invariants of the stress tensor, whereas J3 is the third 

invariant of the deviatoric stress tensor sij = ζij − ζ0 δij. 

It is an experimentally documented fact that when the compressive stresses reach certain values, 

concrete starts to increase its volume. As a result of concrete’s in-homogeneity, such a localized 

region under compression tends to expand against the surrounding material. The confining 

concrete therefore introduces in the localized region lateral compressive stresses, which, in turn, 

for equilibrium to be maintained, make the surrounding regions develop tensile stresses. This 

has an effect of increasing the strength of the localized region while the tensile stresses in the 

surrounding region eventually turn this state of stress into having one of its principal 

components tensile, thus leads to the reduction of the strength of the surrounding region where 

macrocracking takes place. 
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FIGURE 3.36 INTERSECTION OF FAILURE SURFACE FOR CONCRETE WITH PLANE INCLUDING SPACE 

DIAGONAL AND ONE OF PRINCIPAL AXES
[8]

. 

 
 

                                                    (A)                                                                                                       (B) 

FIGURE 3.37 SCHEMATIC REPRESENTATION OF THE ULTIMATE-STRENGTH SURFACE. (A) GENERAL VIEW 

IN STRESS SPACE (B) TYPICAL CROSS-SECTION OF THE STRENGTH ENVELOPE COINCIDING WITH A 

DEVIATORIC PLANE. 

 

3.3.5   The Numerically Modified Kotsovos and Pavlovic Concrete Material Model 

3D concrete material models combined with the smeared crack approach, produce ill-posed 

matrices, especially when the RC structure’s rebars begin to yield. In some cases convergence 

problems rise sooner when cracking appears locally before the structure enters the high 

nonlinearity zone. This results mainly from the discontinuities that are introduced through the 

modification of the constitutive matrix C (Eq. 3.4) where eventually several diagonal terms of 

the elemental stiffness matrix will have near to zero or zero values. Additionally, when the 

opening of cracks occurs, the internal stresses are converted into unbalanced forces which are 

redistributed through the calculation of the internal forces of the corresponding nonlinear 

solution procedure (NR algorithm). This numerical process induces instability especially when 

large loading steps are applied, resulting in convergence problems.  

Even though Kotsovos and Pavlovic
[8]

 used 20- and 27-noded hexahedral elements with higher 

order integration rules, they had serious convergence problems which led them to introduce a 

restriction to the maximum number of cracks that were allowed to open (within each internal 

iteration). This constraint was studied numerically and the proposed number was set to 2 or 3 
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cracks per internal iteration. By implementing such a constraint, the opening of cracks was 

restrained, thus overcoming the convergence problem. As a result of this restriction, the 

material model becomes non-objective as different values for the restriction parameter led to 

different numerical results. 

 
FIGURE 3.38 PREDICTED AND EXPERIMENTAL LOAD-DEFLECTION CURVES WITH THE USE OF DIFFERENT 

RESTRICTION PARAMETERS WITH THE KOTSOVOS AND PAVLOVIC
[8]

 MATERIAL MODEL AND ROD 

ELEMENTS AS EMBEDDED REBAR ELEMENTS. 

This numerical problem is depicted in Fig. 3.38 where the load-deflection curve is shown for 

the numerical prediction of a simply supported beam without stirrups
[186]

. Three different values 

for the allowed number of cracks per iteration were used (1, 3 and 5 respectively); the resulting 

curves had different inelastic branches, underlying the lack of objectivity of the proposed 

restriction. As it is going to be illustrated through this research work, the proposed material 

model by Kotsovos and Pavlovic
[8]

 combined with the smeared crack model works without the 

need of numerical restrictions and can become objective after some numerical modifications are 

introduced. 

Spiliopoulos and Lykidis[138], proposed a unified treatment of the crack opening (UTCA) where 

no crack opening restrictions were implemented in the Kotsovos and Pavlovic[8]. This implies 

that no restrictions are enforced on the number of cracks and all Gauss points could crack if 

their deviatoric stress strength was reached. They implemented the proposed model with 27-

noded hexahedral elements with a corresponding 3x3x3 integration rule which led to high 

computational times.  

Our proposed modeling method for the simulation of concrete uses the isoparametric 8-noded 

hexahedral element with a 2x2x2 integration rule, the numerically modified Kotsovos and 

Pavlovic material model and a unified treatment for the crack openings. As we are going to see 

through the numerical experiments that were contacted in this work, the proposed modeling 

method proves to be objective and computationally efficient. ReConAn FEA code architecture 

and programming techniques manage to further avoid the introduction of numerical errors that 

are usually induced due to the programming style of the code as will be illustrated through 

several numerical tests. 
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The Numerically Modified Concrete Material Model 

The Kotsovos and Pavlovic
[8]

 material model, assumes that the moduli Ks and Gs (Eqs. 3.36 and 

3.37) change even when the stress state is much smaller than the concrete’s compressive 

strength (η0u << max η) because their values depend nonlinearly on the hydrostatic and 

deviatoric stresses (ζ0, η0). The updating of the hexahedral stiffness matrices at the early stages 

of loading demands extra computational effort with no measured effect on the linear and 

nonlinear structural behavior. 

Additionally, numerical instability is induced to the nonlinear solution procedure, as a result of 

the unbalanced forces produced due to the update of the material constitutive matrix of the 

uncracked elements. According to the Kotsovos and Pavlovic
[8]

 material model formulation, it 

is necessary to update the material constitutive matrix of each hexahedral Gauss point 

according to the change of Ks and Gs moduli. Having to solve an ill-posed numerical problem 

when cracking occurs, the uncracked hexahedral elements induce additional numerical 

instability and increase the computational cost through their material model formulation and the 

requirement of continuously updating of their stiffness matrices. It is important to note here that 

the assemblage of the global stiffness matrix does not demand as much computational time as 

the global structural stiffness matrix triangularization process which is the most time consuming 

procedure during a FE analysis process. 

Taking into consideration these numerical difficulties, a modification to the numerical handling 

of the Kotsovos and Pavlovic
[8]

 material model is proposed. Following an extensive parametric 

investigation and according to the experimental findings of the concrete material behavior that 

were discussed in the previous sections, it was concluded that if the ultimate deviatoric stress 

η0u at any Gauss point is less than 50% of the corresponding ultimate strength (Eq. 3.46), then 

the elastic constitutive matrix Cij (Eq. 3.49) can be used. It is only when the computed 

deviatoric stress η0u exceeds the 50% of the corresponding ultimate strength, then the nonlinear 

material law is activated and the constitutive matrix is computed by updating the KT and GT 

moduli according to Eqs. 3.36 and 3.37. Fig. 3.39 illustrates the flow chart of the proposed 

numerical handling of the material model. 
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where E is the concrete’s Young modulus and ν its Poisson ratio. 

Eq. 3.49 describes the relation of the elastic constitutive matrix Cij that is used when the 

elasticity criteria is satisfied.  
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FIGURE 3.39 FLOW CHART OF THE MODIFIED CONCRETE MATERIAL MODEL. 

 

3.4   Numerical Implementation 

The constitutive relations of the Kotsovos and Pavlovic
[8]

 concrete material model, have been 

verified through several numerical tests, thus the aim of this section is to illustrate the ability of 

the numerically modified material model to predict the behavior of a uniaxial compression test 

without any significant numerical instabilities when combined with the 8-noded isoparametric 

hexahedral element, which treats the phenomenon of cracking with the smeared crack approach. 

It is going to be illustrated that, despite the fact that the 8-noded isoparametric hexahedral 
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element uses a lower order integration scheme (2x2x2 Gauss points), the model manages to 

predict the stress-strain paths without any significant numerical problems. 

Being impartial on the selection process of the experimental test which will be analyzed, a 

uniaxial compression test was chosen that was presented in Kim et al.
[187]

 (2009). The main 

reason for choosing this particular experimental test was to avoid modeling an experiment that 

was conducted by Kotsovos and Pavlovic
[8]

 in the framework of their attempt to extrapolate the 

constitutive relations of the concrete material behavior, thus a confirmation of the experimental 

findings would have resulted. Moreover, through this test the numerical robustness and 

computational efficiency of the developed code when modeling plain concrete will be 

presented. It must be pointed here that, this test was analyzed extensively by Karakitsios
[188]

 

(2009) in his Diploma Thesis, with the use of ReConAn FEA. 

The experimental setup is shown in Fig. 3.40a and the corresponding obtained stress-strain 

curves from the compressive strength test, in Fig. 3.40b. In addition, the maximum observed 

stresses and strains are given in Table 3.1. 

 
FIGURE 3.40 LEFT: EXPERIMENTAL SETUP OF A UNIAXIAL COMPRESSIVE TEST. RIGHT: OBTAINED 

STRESS-STRAIN CURVES
[187]

. 

Specimen 
Stress      

(MPa) 
Strain (x10

6
) 

N1 40.8 2,100 

N2 40.0 2,240 

N3 26.7 1,960 

TABLE 3.1 CYLINDRICAL SPECIMENS. MAXIMUM MEASURED STRESSES AND STRAINS. 

In their investigation, Kim et al.
[187]

 tested two types of specimen with different concrete 

strengths in order to derive the phase similitude law for pseudodynamic test on small scale 

reinforced concrete models. The aim of their study was to simulate a small scale reinforced 

concrete structure. As it can be seen in Fig. 3.40, three normal size specimens (10 cm diameter 

x 20 cm height) were tested and their stress-strain curves measured (N1, N2 and N3). 
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For the purpose of this work, the N2 specimen is selected and modeled using four different 

discretizations as shown in Figs. 3.41. The specimen is discretized with 8-noded hexahedral 

elements with 1, 2, 3 and 10 cm height. In order to simulate the steel plates through which the 

external load was applied, two layers of steel hexahedral elements are positioned at the base and 

at the top of the concrete model (Fig. 3.41).  

The concrete material parameters used for the four FE models are given in Table 3.2. The 

external load was divided into 50 load steps and the convergence energy criteria tolerance was 

set to 10
-4

. 

Parameter Value 

Compressive Strength fc (MPa) 40.0 

Young Modulus E0 (GPa) 30.0 

Tensile Strength (MPa) 2.0 

TABLE 3.2 CYLINDRICAL SPECIMEN N2. CONCRETE MATERIAL PARAMETERS. 

(A)                                                   (B)                                               (C)                                              (D) 

FIGURE 3.41 FE HEXAHEDRAL MESHES OF THE CYLINDRICAL SPECIMEN N2. (A) 1, (B) 2, (C) 3 AND (D) 

10 CM HEIGHT OF EACH FE LAYER. 

Fig. 3.42 shows the correlation between the experimental and the numerically predicted stress-

strain paths for the case of specimen N2 for different discretizations. It is evident that, the 

concrete material model manages to predict with an acceptable accuracy the experimental 

results. The predicted curves are linear up to the point where elastic degradation of the concrete 

material begins to be significant, introducing nonlinear behavior to the ascending branches. As 

it can be seen, the predicted branches increase up to a certain load where due to excessive 

cracking, the analysis process terminates since the force-control NR procedure fails to 

converge. The obtained curves manage to predict the ultimate failure load with a 5% accuracy 

which is an acceptable result. In addition to that, the scatter between the curves predicted by the 

four FE meshes is located inside an acceptable range (< 5%). These results illustrate the 
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accuracy of the material model in predicting realistic concrete behaviors and the numerical 

robustness of the developed nonlinear FEA code.  

 
FIGURE 3.42 CYLINDRICAL SPECIMEN N2. STRESS-STRAIN PATHS FOR DIFFERENT FE MESHES. 

 
FIGURE 3.43 CYLINDRICAL SPECIMEN N2. DEFORMED SHAPE AND VON MISES STRAIN CONTOUR. 

It is worth noting that when modeling experimental setups with three-dimensional models 

several secondary phenomena can be simulated since the accuracy of the numerical models 

enables the user to simulate with detail the experimental configuration. One of these 
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phenomena is the interaction between the steel plates and the concrete specimen as illustrated in 

Fig. 3.43. If the deformed shape figure is scaled 100 times then the outcome of the deformed 

shape will be that of Fig. 3.43. As it can be seen, the upper and lower interaction surfaces 

between the steel plates and the concrete specimen create triaxial stress states due to the stiffer 

steel plates, thus the specimen takes a shape similar to that of a barrel. The section of the 

cylinder located in the center of the specimen expands laterally and the sections located at the 

two ends of the specimen retain their initial shape. 

Finally, the computational times for the nonlinear analysis procedure for the different FE 

meshes are given in Table 3.3. The computational efficiency of the proposed model is 

demonstrated since the prediction of the nonlinear response of a FE model that combines a 

nonlinear concrete material model with the smeared crack approach, was carried out in the 

minimal time. 

FE mesh 
Number of 

Εlements 

Number of 

Νodes 

Time 

(sec) 

A (1cm) 2,592 3,125 330 

B (2cm) 384 533 6 

C (3cm) 54 120 0.5 

D (10cm) 28 60 0.3 

TABLE 3.3 CYLINDRICAL SPECIMEN N2. REQUIRED COMPUTATIONAL TIMES FOR THE NONLINEAR 

SOLUTION PROCEDURE. 
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Chapter 4   Generating Embedded Reinforcement 
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4.1   Overview 

When modeling three-dimensional RC structures with the FE method, three main approaches 

are available for the simulation of the reinforcement: (i) smeared, (ii) discrete, and (iii) 

embedded
[189-191]

. The smeared formulation is more suitable for surface-type structures and for 

sparsely located reinforcing bars, either the discrete or embedded formulation are usually 

implemented. In the case of the discrete formulation, the rebars are modeled with uniaxial 

elements, which are positioned at the boundaries of the concrete elements connecting adjacent 

nodes. This approach has the obvious restriction of having to use a concrete element mesh 

based on the rebar geometry and location. Alternatively, in order to alleviate this type of 

problem, some researchers have altered the actual arrangement of rebars to conform with the 

FE modeling
[192, 193]

. 

The most noteworthy method for the generation of reinforcement rebar elements in FE 

modeling of concrete structures is proposed by Barzegar and Maddipudi
[189]

 (1994), which is an 

extension of the work of Elwi and Hrudey
[190]

 (1989). This approach has the advantage of 

allowing arbitrary positions for the rebars inside the concrete elements and a free geometry for 

each hexahedron element. However, a nonlinear search procedure based on the Newton-

Raphson method is required in order to calculate the natural coordinates of each steel bar node. 

Despite the fact that the convergence rate of the nonlinear search is rather high, the 

computational demand for relatively large-scale structures with thousands of steel rebars 

becomes excessive. In addition to that, the method that was proposed in
[189]

 for the generation 

of reinforcement rebars assumes no geometrical constraints during the rebar search process 

making its numerical implementation computationally demanding, especially when dealing 

with large-scale structures. Nevertheless, several researchers
[8, 6, 9, 194]

 adopted this method in 

order to compute the natural coordinates of embedded rebars. 

 

4.2   Generating Reinforcement 

The method proposed in this work considers arbitrary positioning of the rebars inside the 

concrete elements, as shown in Fig. 4.1, while avoiding a nonlinear search procedure for the 

calculation of the natural coordinates of the embedded reinforcement nodes in the 

corresponding hexahedral elements that are orthogonal parallepiped.  

Femap software
[91]

 is used as the pre- and post-processing FE program, through which the 

initial mesh generation is performed. Thus, ReConAn uses the initial rebar node coordinates that 

were created with Femap software and generates the numerical model of the embedded rebar 

elements. The generation of embedded rebar elements is performed for each rebar element 

separately. This means that for each initial rebar, an independent search is conducted with the 

aim to detect all intersections of its straight part with the surrounding solid elements. The 

outcome of this arithmetic procedure is the placement of the embedded rebar elements in the 

corresponding hexahedral elements. 
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FIGURE 4.1 EMBEDDED REINFORCEMENT REBARS INSIDE HEXAHEDRAL ELEMENTS. 

 

4.2.1   Generation of Embedded Virtual Nodes 

The virtual nodes correspond to the intersections of the rebars with hexahedral faces or edges as 

shown in Fig. 4.1 (nodes i1, i2 and i3). This procedure becomes cumbersome when the FE 

model consists of a large number of hexahedral and initial rebar elements. It is obvious that if 

we attempt to compute these possible intersection points without implementing any constraint 

on the search space, the computational cost of the search algorithm will be significant. The 

problem arises from the fact that it is required to locate all possible intersections that may exist 

between hexahedral faces and initial rebar elements (Figs. 4.2 and 4.3).  

 
FIGURE 4.2 CONCRETE FE MESH AND STEEL REINFORCEMENT REBARS OF A SHEAR WALL. 

To avoid unnecessary calculations, a geometric constraint was introduced in order to restrict the 

search in the vicinity of the corresponding steel reinforcement. The geometric constraint is 

implemented with the definition of an active sphere with radius Rc: 

,   cR c L   4.1 

where 
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2 2 2   x y zL s s s    4.2 

and 

     
8 8 8

1 1 1
,   ,   

8 8 8

cen n cen n cen n
x x y y z z

n n n

x y x

s s s s s s

s s s
  

     
     
     
     

  

  

  
 

4.3 

with s
n
 and s

cen
 being the coordinates of the node n and the centroid of the hexahedron under 

consideration, respectively and parameter c defines the active volume around each hexahedron 

where the constraint is implemented. If the below relation is satisfied  

1 2   i i

n n cd or d R  4.4 

where 1 2

1 2,  i cen n i cen n

n rebar n rebard d   s s s s  are the distances of the initial rebar end nodes 1 and 

2 from the hexahedral centroid i under consideration as it is illustrated in Fig. 4.3, then the 

search is performed. 

 
                                                                (A)                                                                                                      (B) 

FIGURE 4.3 GEOMETRIC CONSTRAINT FOR THE SEARCH OF EMBEDDED REBAR NODES: (A) 
1 1

2e nR d

GEOMETRIC CONSTRAINT IS SATISFIED, (B) 
1

2 1

j j

e n nR d d   GEOMETRIC CONSTRAINT IS NOT SATISFIED. 

After a thorough parametric investigation the recommended value for the incremental 

parameter c is found to be 5, which is also the value that was used in our numerical 

implementations. Larger values for c would lead to unnecessary computations for the location 

of possible rebar-hexahedral face intersections, while smaller values would make the generation 

of the initial rebar mesh through the pre-processing software more complicated and time 

consuming. This means, that the maximum penetrated hexahedral elements by an initial rebar 

member should not exceed that of 5 in order to assure that at least one initial rebar node will be 

located inside the hexahedral active volume, as Fig. 4.3 illustrates. The proposed constraint 

reduces the computational effort because it allows less neighboring hexahedral elements to be 

checked during this allocation process, especially when dealing with large-scale problems.  
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After the satisfaction of the constraint equation (Eq. 4.4), the generation of the reinforcement 

rebar elements proceeds according to the following three cases. 

 

4.2.2   Virtual Node Allocation Cases 

Case 1 

In this case, a check is performed to detect whether one or both initial rebar nodes (1, 2) are 

located on the hexahedral face(s) (Fig. 4.4a). If this is the case, then the corresponding node(s) 

are being stored. In order to locate the position of the corresponding node local coordinates, the 

distances dX, dY and dZ between the hexahedral centroid and its first node’s coordinates located 

in the corresponding hexahedral connectivity matrix, need to be computed. By using Eqs. 4.5, 

we can calculated the required distances dX, dY and dZ. 

1 1 1,   ,  Hexa Hn cen Hexa Hn cen Hexa Hn cen

X x x Y y y Z z zd s s d s s d s s       4.5 

 
                               (A)                                                        (B)                                                                   (C) 

FIGURE 4.4 GEOMETRIC CONFIGURATION OF THE THREE CASES. (A) CASE 1: REBAR NODE ON 

HEXAHEDRAL FACE, (B) CASE 2: REBAR-HEXAHEDRAL FACE INTERSECTION, (C) REBAR NODE INSIDE 

HEXAHEDRAL VOLUME. 

Finally the natural coordinates of any given point P inside a hexahedral, are given from the 

following expressions: 

,   ,   

P cenP cen P cen
y yx x z z

P P PHexa Hexa Hexa

X Y Z

s ss s s s

d d d
  

 
    4.6 

given that the hexahedral has an orthogonal parallepiped shape. For the case where the 

hexahedral element shape is irregular, then the standard Barzegar and Maddipudi
[189]

 method is 

performed in order to allocate the natural coordinates of the corresponding virtual node. 

The Barzegar and Maddipudi
[189]

 procedure for computing the natural coordinates of a virtual 

embedded rebar element node inside hexahedral concrete elements is described bellow. 

A point P1 with global coordinates (x, y, z)P1 on the initial rebar mesh (Fig. 4.5), is contained in 

a given concrete element if its natural coordinates ξP1, εP1, δP1 satisfy the constraint 

1 1 1
, , 1P P P     4.7 

associated with this particular hexahedral element. 
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FIGURE 4.5 EMBEDDED REINFORCEMENT IN HEXAHEDRAL CONCRETE ELEMENT

[189]
. 

In the isoparametric formulation the global coordinates (x, y, z) of a generic point within a solid 

element are expressed as 

i

i

i

x

y

z

     
    

    
         

N 0 0 x

0 N 0 y

0 0 N z

 4.8 

where xi, yi, zi are the global coordinate vectors of the hexahedral nodes and N represents the 

row vector of the displacement-shape functions. 

Given that the natural coordinates (ξ, ε, δ)P1 are the roots of  

1P

x

y

z

     
    

     
         

N 0 0 x

0 N 0 y 0

0 0 N z

 4.9 

a NR iterative procedure is required in order to compute the solution of the above equation as 

follows: 

1 1 1

1 1n n n

P P P

  

  

  

 
     

     
       

          

 4.10 

Since  

 
1

T

d dx

d dy

d dz









   
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J  4.11 
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where J is the Jacobian matrix ( ij i jN x  J ), the incremental natural coordinates are 

computed from 

 
1

1

1

1

T

n n

n n

n

P P

x

y

z






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         
              

N 0 0 x

J 0 N 0 y

0 0 N z

 4.12 

with    , , ;     , ,n n n n n n n n      J J N N . 

Barzegar and Maddipudi
[189]

 found that the preceding solution scheme has a high convergence 

ratio which was also confirmed in this study. If the converged values do not satisfy (Eq. 4.7), 

the procedure proceeds to the next hexahedral element until the geometric constraint is satisfied 

(Eq. 4.4). 

For the case where both initial rebar nodes are located on the same plane of a hexahedral face, 

then the proposed algorithm searches for intersections with the hexahedral face edges and 

creates the corresponding virtual nodes. For this subcase, the stiffness matrix of the embedded 

rebar element (element ER 3 in Fig. 4.1) is distributed between the two neighboring hexahedral 

elements (Hexahedral 2 and 3 in Fig. 4.1).  

 
FIGURE 4.6 REBAR ELEMENT INTERSECTIONS WITH HEXAHEDRON FACES. NODES i1 AND i2 ARE 

RETAINED, NODE i3 IS NOT ACCEPTABLE. 

 

Case 2 

In the second case a rebar element intersects with one or two hexahedral faces (Fig. 4.4b, 4.6). 

In order to find a potential line-plane intersection the corresponding algebraic equation has to 

be solved (see Appendix B). Then, if an intersection exists, the following constraint is checked, 

which guaranties that the nodal intersection is located inside the face of the hexahedral under 

consideration: 

,  ,  1P P P     4.13 
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where ξP, εP, δP are the natural coordinates of the intersection point. If this constraint is not 

satisfied, the intersection point is not retained and the algorithm proceeds with the computation 

of the next intersection point. 

 

Case 3 

When cases 1 and 2 are not applicable then a check is performed for the satisfaction of the 

following constraint: 

,  ,  1R R R     
4.14 

where ξR, εR, δR are the natural coordinates of the initial rebar node. If the above inequality is 

satisfied, it means that the rebar node is located inside the volume of the hexahedral (Fig. 4.4c), 

otherwise the node is located outside the hexahedral volume and no action is taken. After the 

computation of the virtual nodes for each of the initial reinforcement rebars, the mesh 

generation of the embedded rebar elements is performed.  

Following the described generation algorithm, all necessary data of each hexahedral element is 

determined regarding the corresponding virtual rebar nodes that were located inside the volume 

or on its faces. At this point, the main features of the embedded rebar element are calculated 

and stored: The type of element (Beam or Rod), nodal coordinates, the type of nodes (if a node 

is virtual or a physical node of the initial mesh) and the material properties. Fig. 4.7 illustrates 

the flow chart of the proposed embedded rebar element mesh generation algorithm. It has to be 

mentioned that, in order for the nodal natural coordinate’s computations to be applicable, 

hexahedral elements must be orthogonal parallepiped. If the hexahedral shape is irregular then 

the Barzegar and Maddipudi
[189]

 method is used instead of Eq. 4.6. 

 

4.3   Numerical Implementation 

In this section, a numerical verification of the efficiency of the proposed embedded 

reinforcement generation method will be presented. For this reason, four different FE models 

have been tested. Different reinforcement properties and geometries are considered in order to 

demonstrate the capability of the proposed method to allocate and generate embedded 

reinforcement elements with numerical robustness and computational efficiency when dealing 

with large-scale models. All numerical tests were performed with a 1.9 GHz processor 

(personal laptop) with a 2GB DDR2 Ram. 
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FIGURE 4.7 FLOW CHART OF THE PROPOSED EMBEDDED REBAR ELEMENT MESH GENERATION METHOD. 

 

4.3.1   RC Shear Wall 

The first model is a RC shear wall which consists of 1,680 hexahedral elements (0.125 m x 0.10 

m x 0.0767 m) and 1,320 initial rebars (vertical reinforcement Ø12/10 and horizontal 

reinforcement Ø8/15). As can be seen in Fig. 4.8, the RC shear wall has a total length of 2.80 

m, a height equal to 2.30 m and a 0.25 m thickness. The embedded rebar mesh generation 

terminates the generation with the allocation of 3,080 rebar elements in 1.1 sec.  
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FIGURE 4.8 RC SHEAR WALL WITH 1,680 HEXAHEDRAL ELEMENTS AND 1,320 INITIAL REBAR ELEMENTS. 

 
FIGURE 4.9 RC SHEAR WALL WITH 17,080 HEXAHEDRAL ELEMENTS AND 13,192 INITIAL STEEL BAR 

ELEMENTS. 

With the intention of testing the proposed generation framework for larger topological space to 

be discretized a tenfold increase of the initial model is considered. The new FE model consists 

of 17,080 hexahedral elements and 13,192 initial rebar elements (Fig. 4.9). After the completion 

of the embedded rebar element mesh generation process, the total number of generated 

embedded rebar elements becomes 34,327 and the corresponding required computational time 

is 85 sec. The proposed algorithm managed to scan and generate all the embedded 

reinforcement elements within an affordable computational time. This is mainly attributed to 

the implementation of the geometric constraint of Eq. 4.4. The corresponding computational 

time for the embedded rebar element mesh generation process, when the geometrical constraint 

is not used, was 7 min. This shows the importance of the proposed constraint during the mesh 

generation process particularly for large-scale models. Since the required CPU time for the 

embedded mesh generation procedure cannot be explicitly measured when ATENA software is 

used, the comparison cannot be made for this case. Nevertheless, the required initiation CPU 

time, for these two numerical tests, were 3 and 25 min, respectively. The corresponding CPU 

times of ReConAn are 2 and 160 sec (including the embedded rebar mesh generation 
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procedure). This differences are to a certain extend attributed to I/O procedures that ATENA 

performs during the initialization of the models. 

 

4.3.2   RC Frame 

This model was created in order to illustrate the ability of the proposed algorithm to generate 

embedded reinforcement for more complicated reinforcement layouts. The rebar layout for each 

structural member is depicted in Fig. 4.10. The RC frame has a 5 m span and consists of a shear 

wall, a beam, a column and two foundation footings in order to make the geometry more 

complex.  

Fig. 4.11 illustrates the initial discretization with hexahedral and reinforcement rebar elements. 

The initial FE model consists of 840 hexahedral elements and 3,046 rebar elements.  

 
FIGURE 4.10 RC FRAME. GEOMETRY AND REINFORCEMENT DETAILS. 

 
FIGURE 4.11 RC FRAME. INITIAL FE MESH (HEXAHEDRAL ELEMENTS – INITIAL REINFORCEMENT MESH). 

The total number of embedded rebar elements created after the execution of the rebar element 

mesh generation process was 4,434 and the corresponding required time was 5 sec. It can be 

seen that the mesh generation is completed in a minimal computational time despite the fact 
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that the mesh of the hexahedral elements was relatively dense, especially in the foundation 

footings. 

 

4.3.3   Arch-Shaped RC Frame 

This numerical test was constructed with the purpose of creating a base for the computational 

assessment of the proposed mesh generation method, when irregular hexahedral mesh 

geometries are presented. The geometry of this benchmark problem is shown in Fig. 4.12, 

where it can be seen that it consists of a circular arch rectangular in section and 3.40 m internal 

diameter. The corresponding hexahedral and rebar element mesh is shown in Fig. 4.13 and the 

corresponding mesh details in Table 4.1. The basic feature of this FE model is the correlation 

between the number of the irregular shaped hexahedral elements and the orthogonal 

parallepiped hexahedral elements. The total number of hexahedrons is 592 and the 

corresponding number of irregular hexahedral elements (located in the volume of the arch) is 

384 which comprise 64.86% of the total hexahedral mesh. 

 
FIGURE 4.12 ARCH-SHAPED RC FRAME. GEOMETRICAL AND REINFORCEMENT DETAILS. 

 
(A)                                                              (B)                                                              (C) 

FIGURE 4.13 ARCH-SHAPED RC FRAME. MESH DETAILS OF (A) HEXAHEDRAL AND (B-C) INITIAL REBAR 

ELEMENTS. 

The embedded rebar mesh generation procedure terminates with the allocation of 2,244 rebar 

elements in 0.25 sec. For illustrational purposes, the predicted crack pattern is shown in Fig 

4.14a when a nonlinear concentrated vertical load is applied on the center of the RC arch. In 

addition to that, the corresponding deformed shape of the rebar elements’ mesh is given in Fig. 

4.14b where the displacements are magnified x50. 
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a/a Element Type Number of Elements 

1 Initial Rebar Elements 1040 

2 Irregular Hexahedral Elements 384 

3 Orthogonal Parallepiped Hexahedral Elements 208 

4 Total Hexahedral Elements 592 

TABLE 4.1 ARCH-SHAPED RC FRAME. FE MESH DETAILS. 

 
(A)                                                                             (B) 

FIGURE 4.14 ARCH-SHAPED RC FRAME. CRACK PATTERN AND DEFORMATION SHAPES OF THE (A) 

HEXAHEDRAL AND (B) REBAR ELEMENTS’ MESHES. 

To test the proposed generation framework for larger discretizations with irregular hexahedral 

shaped elements we considered a tenfold increase of the initial model. The new FE model 

consists of 5,920 hexahedral elements and 10,400 initial reinforcement rebar elements (Fig. 

4.15).  

 
FIGURE 4.15 ARCH-SHAPED RC FRAME. MESH DETAILS OF THE HEXAHEDRAL (UP) AND INITIAL REBAR 

(DOWN) ELEMENTS. 

After the completion of the embedded rebar element mesh generation process, the total number 

of generated embedded rebar elements becomes 22,440 and the corresponding required 

computational time is 26 sec.  
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4.3.4   2-Storey RC Building 

This numerical test was created for investigating the computational effort required by the 

proposed mesh generation method for the allocation of the embedded rebar elements for the 

case of a full-scale RC structure.  

The rebar layout for this numerical test is given in Chapter 6 where the details of the FE model 

are given. Fig. 4.16 shows the FE mesh of the RC building which consists of 4,382 hexahedral 

elements and 26,959 initial rebar elements. After the completion of the embedded rebar mesh 

generation procedure, the proposed method managed to allocate 51,064 embedded rebar 

elements in 69 sec. The corresponding computational time for the generation procedure when 

the geometrical constraint is not activated, is 400 sec. 

 
(A) 

 
(B) 

FIGURE 4.16 2-STOREY RC BUILDING. (A) HEXAHEDRAL AND (B) INITIAL REBAR ELEMENT MESH. 
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Chapter 5   3D Detailed Modeling of Reinforced Concrete 

Structures 
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5.1   Brief Overview 

Many numerical models have been developed for the analysis of RC structures but none of 

them has managed to provide the desired combination at an acceptable level of accuracy, 

robustness and computational efficiency in predicting the nonlinear inelastic behavior of 

different types of RC structural members when combined with the FEM. As it was mentioned 

in the first Chapter, 1D beam-column models, based on either concentrated plasticity models or 

distributed plasticity (fiber models), have difficulties in predicting the mechanical behavior of 

3D RC framed structures due to their inability in capturing shear behavior and local phenomena 

that influence the global response of the structures.  

On the contrary, the use of 2D plane-stress FE models
[195-198]

 can avoid some simplification 

assumptions that are inherent in 1D beam-column models, like the influence of shear stresses, 

but their inability of capturing the out of plane response made them inadequate for 3D full-scale 

RC analysis. Three-dimensional simulation with solid finite elements, based on triaxial stress-

strain relationships and embedded rebars
[6, 8, 9, 139, 199-205]

 provides the highest quality of 

approximation but it is hindered with high computational cost and in several cases lack of 

robustness. 

The computational complexity of such detailed models makes their use impractical for full-

scale simulations. Furthermore, with the use of numerically unstable material models (i.e. 

concrete material model combined with the smeared crack approach), the sensitivity of such 

models to various user-defined parameters, becomes more pronounced
[140]

. These difficulties 

led a number of researchers
[6, 8, 138, 199, 200, 205]

 to use higher order elements (20-noded and 27-

noded hexahedral elements) in connection with high integration rules (3x3x3). The use of this 

type of 3D elements and numerically unstable material models has a direct consequence on the 

efficiency of the numerical simulations, requiring many NR iterations per load step and thus 

considerable computational effort, even for small-scale FE models.  

8-noded hexahedral elements were used by Sato and Naganuma
[139]

 (2007), where the stiffness 

matrix was computed only at the element centroid in the interest of reducing computational 

load, while in
[202]

 the ATENA software code
[140]

 was used with the 8-noded hexahedral 

isoparametric element combined with the 2-noded rod element for the reinforcement. 

In this work, a 3D 8-noded hexahedral isoparametric element is used for the simulation of 

concrete based on an improved concrete material model originally proposed by Kotsovos and 

Pavlovic
[8]

, as was presented in the previous Chapter. The reinforcement is modeled with an 

embedded steel bar simulated with the NBCFB element. The geometric treatment of the 

embedded reinforcement presented in Chapter 4 is adopted, which allows the arbitrary rebar 

elements orientation inside the concrete solid elements and a free hexahedral mesh. 

The above features of the detailed 3D FE discretization of RC structures are incorporated into 

the proposed numerical model and the validation of the obtained numerical results is performed 

with experimental data and numerical results of different types of RC structural members, 

which are published in the literature
[186, 206, 207]

. The best-known commercial software that can 

simulate RC structures with the use of three-dimensional solid FE combined with the smeared 
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crack approach are the ATENA
[140]

 and the DIANA
[208]

. In this work the ATENA software was 

used as a comparative tool for testing the accuracy and computational efficiency of the 

proposed formulation. 

 

5.2   Proposed Modeling Method 

When modeling RC structures with detailed 3D FE four basic numerical stages have to be 

considered: 

i. FE type for concrete modeling. 

ii. 3D concrete material constitutive model. 

iii. FE type for embedded rebar modeling. 

iv. Steel material constitutive model. 

These stages will be discussed in detail in the following sections. 

 

5.2.1   FE Type for Concrete Modeling 

The hexahedral element is a 3D solid hexahedron, also known in the literature as “brick 

element”. This type of element is used in modeling not only three-dimensional solids but also 

plates and shells as well as beam elements. The construction of the hexahedral shape functions 

and the computation of its stiffness matrix depend on the isoparametric description and 

numerical integration schemes adopted. 

The natural coordinate system ξ, ε, δ is positioned in the barycenter of the hexahedron and the 

corresponding nodal coordinates are given in Table 5.1. In Fig. 5.1 the positioning of each node 

corresponding to the natural coordinate system ξ, ε, δ can be seen, for the case of the 8-noded 

hexahedral elements. This element has a total of 24 dof and therefore the size of its stiffness 

matrix is 24x24. The 8-noded hexahedral finite element (hexa8) has the simplest formulation 

regarding the hexahedron finite element family, leading to a fast computation of the stiffness 

matrix.  

The general matrix equation which describes the hexa8 formulation can be written as: 

 

5.1 

where 

 

5.2 
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are the shape functions. These eight formulas can be summarized in a single expression: 

  
   

 
 

 
                      5.3 

 
FIGURE 5.1 NATURAL COORDINATE SYSTEM OF THE 8-NODED HEXAHEDRAL ELEMENT. 

More complex hexahedral elements can be seen in Figs. 5.2 with higher order shape functions 

and which have more dof thus requiring more computational effort for the formulation of the 

stiffness matrix. In this work the hexa8 element is adopted, for its simplicity and computational 

efficiency. 

Node ξ ε δ 

1 -1 -1 -1 

2 1 -1 -1 

3 1 1 -1 

4 -1 1 -1 

5 -1 -1 1 

6 1 -1 1 

7 1 1 1 

8 -1 1 1 

TABLE 5.1 NATURAL COORDINATES OF THE HEXAHEDRAL NODES. 

 
FIGURE 5.2 HEXAHEDRAL ELEMENTS WITH 20 AND 27 NODES. 

 

5.2.2   3D Concrete Material Constitutive Model 

As it was discussed in this Dissertation , several material models were proposed for the 

modeling of concrete
[128, 142, 210-220]

. The 3D material model for concrete implemented in this 

work was based on the Kotsovos and Pavlovic
[8]

 model after a modification of its numerical 

implementation in order to improve its numerical robustness. The proposed modifications, 

which were presented in Chapter 3, ensure that the material model when combined with the 
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smeared crack approach, manage to predict the 3D nonlinear behavior of concrete material 

under any stress state conditions with computational accuracy and efficiency. 

 

5.2.3   FE Type for Embedded Rebar Modeling 

Previous simulations with the embedded rebar reinforcement used 2-noded or 3-noded rod 

elements. Hence, the reinforcement is considered to act as uniaxial element, without taking into 

consideration shear and bending stiffness. Although it is generally believed that shear and 

bending resistance of reinforcement is not significant, there are cases where the shear and 

bending resistance are important in capturing the nonlinear response of RC structural members. 

The discretization of the reinforcement is therefore performed with NBCFB element which in 

addition to the consideration of shear and bending it was found to increase the numerical 

stability of the NR iteration procedure due to its special formulation features. However, the 

choice of using 3D beam elements instead of uniaxial rod elements introduces some 

implementation issues.  

 
(A)                                                                                                 (B) 

FIGURE 5.3 EMBEDDED REBAR ELEMENTS UNDER IMPOSED TRANSVERSE DEFORMATION: (A) ROD 

ELEMENT AND (B) BEAM ELEMENT. 

When 2-noded or 3-noded rod elements are used, the compatibility conditions between the 

nodes (1 and 2) of the rod and the corresponding hexahedral nodes (n1-n8) is enforced through 

the translational dof (Fig. 5.3a) since the rotation of the rod nodes is neglected. When beam 

elements are used, the compatibility of rotation between the hexahedral nodal displacements 

and the rotation of the rebar nodes that are located on the corresponding hexahedral faces must 

be enforced. The compatibility is achieved by computing the hexahedral face rotation and 

imposing it to the corresponding rotational dof of the rebar node. 

Assuming that the angle  ̅ between the longitudinal axis of the rebar and the normal  on the 

master triangle of the hexahedral face (Fig. 5.4) remains fixed before and after deformation, the 

required rotation can be derived through kinematic constraints. The assignment of a master 

triangle at each rebar node is performed prior to the analysis by detecting the three nearest 
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hexahedral nodes of the corresponding face containing the rebar node. These three nodes n2, 

n3, n6 in Fig. 5.4 represent the master triangle of the rebar node 2 which controls the rotation of 

the corresponding rebar node.  

 
FIGURE 5.4 MASTER TRIANGLES OF BEAM ELEMENT NODES 1 AND 2. 

 

5.2.3.1   Kinematics 

Most researchers
[6, 8, 138, 189, 190, 225]

 use standard kinematic relations in order to connect the rod 

nodal displacements with the corresponding hexahedral displacements. A more recent approach 

was proposed by Jendele and Červenka
[194]

 (2009) where the solution of a multi-point constraint 

conditions problem called Complex Boundary Conditions is performed. This procedure requires 

the solution of a system of non-symmetric constraint equations, which appears to be 

computationally demanding. 

In this work, the kinematic relations that connect the beam nodal displacements with the nodal 

displacements of the corresponding hexahedral face, are given from the following expressions 

           12 1 12 24 24 1 24 1 24 12 12 1

 ,   B H H T B

x x x x x x

   u T U F T F  
5.4 

where u
B
 and U

H
 are the displacement vectors of the beam and hexahedral elements, 

respectively, while F
B
 and F

H are the corresponding internal force vectors. The transformation 

matrix T is composed of 32 (3x3) submatrices which are computed from the natural coordinates 

of the hexahedral, the beam element and the master triangle nodes 

1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

1 1 1

4 5 8

2 2 2 2 2 2 2 212 24
1 2 3 4 5 6 7 8

2 2 2

2 3 6

0 0 0 0 0
,

0 0 0 0 0

x

 
 
 
 
 
  

Τ Τ Τ Τ Τ Τ Τ Τ

R R R
T

Τ Τ Τ Τ Τ Τ Τ Τ

R R R

 5.5 

The submatrices located in rows 1 and 3 of T correspond to the translational rebar 

displacements   
 
 and those in rows 2 and 4 correspond to the rotational rebar displacements 

  
 

. Eq. 5.5 refers to the case illustrated in Fig. 5.4 where the nodes 1 and 2 of the rebar 

correspond to (n4-n8-n5) and (n2-n3-n6) master triangles, respectively. 
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Each transformation matrix T (Eq. 5.5) consists of 32 submatrices with dimension 3x3. From 

Eq. 5.5 it can be seen that the translational dof of each beam element node are transformed 

through the use of   
 
 matrices 

3 3

0 0

0 0 ,   

0 0

j

i

j j

i i
x j

i

N

N

N

 
 

  
 
 

Τ

 

5.6 

where   
 
 (i = 1, 8) correspond to the 8 hexahedral shape functions and j = 1, 2 denote the 

embedded rebar nodes. After the computation of the value of each shape function   
 
 at the 

natural coordinates of each beam node the corresponding matrices are assembled. As it can be 

seen from Eq. 5.6, submatrix   
 
 contains the shape function value   computed at the rebar 

node j.  

In order to handle the rotational dof of the embedded rebar beam element, the definition of a 

master triangle is necessary with the purpose of computing the rotation along the three global 

axεs. This master triangle is formed with the three nearest to the rebar beam element node on 

the corresponding hexahedral face (Fig. 5.4). The computation of each master triangle body 

rotations are calculated with the natural mode theory of Argyris et al.
[209]

 (1997). So as to 

estimate the translational modes π as functions of the displacements and rotations at vertices 1, 

2 and 3 of a triangle, it is assumed that the linear displacement field with respect to the local 

elemental coordinate can be described as: 

1 2 1 2,    π ,   wo o ou p p x p y q q x q y r      

 

5.7 

where           are the displacements referred to the local coordinate system. If the origin of the 

local coordinate system is placed at the element’s barycenter, Eqs. 5.7 may be written in the 

form 

1 2 3 1 2 3 1 2 33 ,    π π π 3 ,    3o o ou u u p q w w w r        

 

5.8 

The rigid body drilling rotation ξ06 is given by 

 06 1 2

1 1

2 2

u
q p

x y




  
    

  

 

5.9 

If we write Eqs. 5.7 for every vertex, the quantity in Eq. 5.9 becomes 

 06 1 1 2 1 3 3

1

2
a ax u y x u y x u y            



 

5.10 

where  

3 2 1 3 2 1 3 2 1 3 2 1,    ,    ,    ,    ,    x x x x x x x x x y y y y y y y y y                

 

5.11 

and xi, yi (i=1, 3 master triangle nodes) are the local Cartesian nodal coordinates of the triangle 

(Fig. 5.5) while Ω is the area of the triangle. Then the relation between the rigid body rotations 

π04, π05 and the Cartesian coordinates of the triangle vertices need to be defined. For this 

purpose the rotation ζ1 of the triangle along the side 23, as depicted in Fig. 5.5, is given by 
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11
1

2

a

a

w lw

h
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

 

5.12 

and its two projections on the local Cartesian axes, are given by 

1 1 1 1 1 1 1 1cos ,    sin
2 2

a a a a
x x y y

a a

x x y y
a w a w

l l
          

 

 

5.13 

Similarly, 

2 2 3 3 2 2 3 3,    ,    ,    
2 2 2 2

x x y y

x x y y
w w w w

   
      

   

 

5.14 

Therefore, the rigid-body rotations π04, π05 are simply: 

04 1 2 3 05 1 2 3,    x x x y y y            

 

5.15 

04 1 2 3 05 1 2 3,    
2 2 2 2 2 2

a a
x x y yx y

w w w w w w
   

      
       

5.16 

The above equations can be expressed in matrix form 

 

     

 

04

05 1 2 3
3 3 3 3 3 3

06

3 1 9 1

j j j

x x x

x x







   
    

    
    

   

x

R R R y

z
 

where 

5.17 
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 5.18 

and j = 1, 2 corresponds to the embedded rebar beam nodes and Ω is the area of the 

corresponding master triangle. x, y, z are the translational displacement vectors of the master 

triangle. 

 
FIGURE 5.5 ROTATION ζ1. 
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Therefore, after the computation of the three transformation matrices   
 

 in the global 

coordinate system (Eq. 5.19) for each master triangle the computation of the transformation 

matrix T (12x24) of Eq. 5.5 is completed.  

       3 3 3 3 3 3 3 3

j T j

m o m o
x x x x

R T R T

 

5.19 

where    is the known cosine matrix that transforms the local into global coordinate system 

(Eq. 2.80). 

 

5.2.3.2   Transformation of the Stiffness Matrix of the Embedded NBCFB Element 

The contribution of the rebar stiffness to the stiffness matrix of the parent hexahedral element is 

given by: 

   
 
     24 24 24 24 12 12 12 2424 121

nr
T rebar

Hexa Hexa i i i
x x x xxi

   K K T K T  5.20 

where Ti is the transformation matrix given in Eq. 5.5 for imposing the compatibility condition 

between the rebar and the corresponding hexahedral nodal displacements, HexaK is the stiffness 

matrix of the hexahedral element and nr is the number of the embedded rebars in the element.  

 

5.2.3.3   Idealization of the Rebar Element 

As can be seen in Figs. 5.6, the section of any rebar may be transformed into an equivalent 

square section which is subdivided into a number of fibers in x and y directions. The 

idealization of the rebar’s section into square is performed in order to simplify the discretization 

procedure. Given the diameter of the rebar, the dimensions of the square cross section are given 

by 

2

4

d
b h


   5.21 

 
(A) 
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(B) 

FIGURE 5.6 DISCRETIZATION OF (A) A SQUARE AND (B) A CIRCULAR SECTION WITH FIBERS. 

Numerical tests performed for both cross sections produced identical results since the stiffness 

coefficients that are mainly affected through the sectional simplification correspond to the 

bending coefficient which is by nature much smaller than the corresponding axial and shear 

coefficients of the rebar.  

 

5.2.4   Steel Material Constitutive Model 

As described in Chapter 2, the constitutive material models that are available for predicting the 

steel behavior of reinforcement are the Menegotto and Pinto
[86]

 material model, enhanced with 

the Filippou et al.
[88]

 isotropic hardening, and the standard bilinear steel material model. It is 

widely accepted that the Menegotto and Pinto material model through its simple numerical 

formulation provides the necessary tools in predicting the behavior of rebar-type steel elements 

with an acceptable accuracy. Consequently, in this work, the Menegotto and Pinto
[86]

 material 

model is adopted for all the numerical implementations. 

 

5.3   Numerical Experiments 

Many researchers have used the experimental results of Bresler and Scordelis
[186]

 (1963) on a 

series of beams, the results of Lefas
[206]

 (1988) on a series of shear walls and the experimental 

findings of Červenka
[207]

 (1970) shear panel to verify their numerical models. In general, this 

task is demanding when attempting to reproduce numerically experimental results with 

different structural characteristics. In this work, the pre-mentioned experiments have been 

examined and their numerical response is compared with the corresponding experimental data. 

The aim is to illustrate the accuracy, robustness and the computational efficiency of the 

proposed modeling. 

It has to be mentioned that, full bond between concrete and reinforcement rebars was 

considered in the numerical studies. For all the numerical simulations that were conducted in 

this work, the tensilε strength of concrete was assumed to be equal to 5% of the corresponding 

cylindrical compressive strength, the remaining shear capacity parameter β was equal to 0.05 

and the NR energy convergence criterion was set to 10
-4

. It must be also noted that, the crack 

openings can occur only at the Gauss-Points of the hexahedral elements, thus the cracks are 

ploted the same way. 
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5.3.1   RC Beams with and without Stirrups 

With these two numerical experiments, we will try to illustrate the importance of taking under 

consideration the stiffness of reinforcement by treating the rebars as beam elements instead of 

rod elements. The computational efficiency of the numerical treatment of the proposed 

formulation will also be demonstrated through the following numerical tests.  

 

5.3.1.1   RC Beam without Stirrups under Central Point Load 

The first numerical experiment consists of a simply supported beam with no stirrups
[186]

. Its 

geometrical features are depicted in Fig. 5.7. The experimental failure load was reported to be 

equal to 334 kN with a corresponding central deflection of 6.6 mm. Fig. 5.8 shows the first FE 

model which consists of 132 hexahedral elements for concrete and 88 NBCFB elements for the 

embedded reinforcement. Furthermore, two additional denser meshes were created, containing 

264 and 528 hexahedral concrete elements (Fig. 5.9) in order to investigate the mesh sensitivity 

of the proposed method. 

 
FIGURE 5.7 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. (A) MEMBER 

CHARACTERISTICS, (B) EXPERIMENTALLY OBSERVED CRACK PATTERN AT ULTIMATE LOAD
[186]

. 

The four longitudinal bars have a diameter of 28.9 mm which represents a large reinforcement 

ratio (1.52%) corresponding to the beam sectional dimensions (309.9 mm width and 556.3 mm 

height). The results obtained for different simulations are shown in Fig. 5.10. 

Curves 8 and 9 in Fig. 5.10 were reproduced using 27-noded and 8-noded hexahedral elements, 

respectively, the rod element as embedded reinforcement and the Kotsovos and Pavlovic
[8]

 

concrete material model. As it can be seen, the ultimate loads reached by lateral deflections of 

these curves are much larger than the ultimate loads computed by ATENA software (Curves 2-

4), even though the embedded reinforcement bars are modeled by rod elements. These 

differences can be attributed to the different concrete material models based on the cubic 

compressive strength instead in the cylindrical embedded in 8-noded hexahedral elements used 
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in ATENA, since the bearing capacity is well under estimated corresponding to the 

experimental results. Curves 5, 6 and 7 were obtained with the present formulation.  

 
FIGURE 5.8 BEAM WITHOUT STIRRUPS UNDER CENTRAL LOADING. FE MESH. 

The predicted failure loads with the corresponding mid-span deflections are shown in Table 5.2 

and are in good agreement compared to the experimental ones. The predicted values illustrate 

the numerical accuracy of the proposed method and its robustness with respect to the mesh 

sensitivity. The failure of the beam was initiated due to cracking of the beam compressive zone, 

as can be seen in Fig. 5.11, where the deformed shape and crack pattern of the beam prior to 

failure are illustrated. 

An analysis of the required computational effort for the 132 hexa8 elements model is shown in 

Table 5.3, where it can be seen that the required CPU time for solving this nonlinear problem 

with 30 load increments was 7 sec. 

 
                                         (A)                                                              (B)                                                            (C) 

FIGURE 5.9 BEAM WITHOUT STIRRUPS UNDER CENTRAL LOADING. FE MESHES WITH (A) 132, (B) 264 

AND (C) 528 HEXA8 CONCRETE ELEMENTS. 
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FIGURE 5.10 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. PREDICTED AND 

EXPERIMENTAL LOAD-MIDSPAN DEFLECTION CURVES FOR DIFFERENT FE MODELS. 

The required computational effort of ATENA software was approximately 9 min for the solution 

process when using 132 hexa8 elements, 24 min for the case of 264 hexa8 elements and 50 min 

for the case of 528 hexa8 elements (Table 5.2). It has to be mentioned that ATENA performs 

several graphical representation procedures during execution, which increase the required CPU 

time for the solution. Furthermore, the same problem was solved in Lykidis
[9]

, requiring 

approximately 10 min with the use of a Pentium 4 extreme processor (3.73 GHz). The increased 

computational effort is attributed to the use of higher order hexahedral elements (27-noded 

hexahedral elements). 

Model 
Failure Load 

(kN) 

Deflection 

(mm) 

CPU time (sec) 

Proposed method – 132 Hexa8 elements 338 6.7 7 

Proposed method – 264 Hexa8 elements 348 7.0 18 

Proposed method – 528 Hexa8 elements 348 7.2 55 

ATENA – 132 Hexa8 elements 240 >8 540 

ATENA – 264 Hexa8 elements 230 >8 1440 

ATENA – 528 Hexa8 elements 230 >8 3000 

TABLE 5.2 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. PREDICTED FAILURE LOAD, 
MID-SPAN DEFLECTIONS AND CPU SOLUTION TIME FOR DIFFERENT MESHES. 

Task CPU Time (sec) 

Embedded Rebar Element Mesh Generation 0.02 

Newton-Raphson Nonlinear Solution 7.00 

Writing Output Data 12.00 

Other  0.08 

Total Time 20.0 

TABLE 5.3 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. CPU TIME FOR DIFFERENT 

TASKS OF THE NONLINEAR ANALYSIS. PROPOSED METHOD WITH 132 HEXA8 ELEMENTS. 
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FIGURE 5.11 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. CRACK PATTERN AND 

DEFORMED SHAPE PRIOR TO FAILURE. PROPOSED METHOD WITH 132 HEXA8 ELEMENTS. 

Table 5.4 shows the required number of NR iterations during the solution procedure for the 

beam without stirrups for the case of 132 hexa8 concrete elements. It can be seen that most of 

the load steps when using the proposed modeling method, require less than 6-8 NR iterations 

which confirms the numerical robustness of the proposed method. However, in some load steps, 

like the 10
th

 load step, a significant number of internal iterations is required due to the large 

number of crack openings. In Fig. 5.12 the crack patterns at load steps 9 and 10 are depicted 

illustrating the additional cracks that were created in just a single load step which explains the 

increased number of iteration at this step. 

In order to illustrate the computational efficiency of the proposed modeling method, different 

loading increments are applied for the case of 264 hexa8 elements and the corresponding load-

deflection curves are depicted in Fig. 5.13. It can be seen that the variation of the predicted 

curves is negligible and it can therefore be concluded that the accuracy of the solution 

procedure is not sensitive to the size of load increment, which is a crucial numerical property 

when dealing with large scale problems. The corresponding required CPU time until failure for 

different load increments is given in Table 5.5. 

 
FIGURE 5.12 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. CRACK PATTERN AT THE 9

TH
 

AND 10
TH

 LOAD INCREMENTS. PROPOSED METHOD WITH 132 HEXA8 ELEMENTS. 
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FIGURE 5.13 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. LOAD-DEFLECTION CURVES 

FOR DIFFERENT LOAD INCREMENTS. PROPOSED METHOD WITH 264 HEXA8 ELEMENTS. 

 Newton-Raphson Iterations per load step 

Load Incr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

ATENA 1 1 1 1 8 12 23 21 18 8 17 14 8 14 9 17 40 12 15 40           

ReConAn 1 1 1 4 6 3 8 3 1 14 1 2 11 15 2 6 5 4 3 2 6 2 2 4 3 6 4 3 2 18 

TABLE 5.4 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. NEWTON-RAPHSON ITERATIONS 

PER LOAD STEP. PROPOSED METHOD WITH 132 HEXA8 ELEMENTS. 

Load Increments 
CPU Time    

(sec) 

50 25 

20 17 

10 11 

TABLE 5.5 RC BEAM WITHOUT STIRRUPS UNDER CENTRAL POINT LOAD. CPU TIMES UNTIL FAILURE FOR 

DIFFERENT LOAD INCREMENTS. PROPOSED METHOD WITH 264 HEXA8 ELEMENTS. 

 

5.3.1.2   RC Beam with Stirrups under Central Point Load 

The second numerical test refers to the same beam specimen with stirrups and compression 

reinforcement, as shown in Fig. 5.14. It must be mentioned that local stiffening is applied in the 

experimental set-up in the region of the central point load and at the support regions. The 

collapse of this beam member occurred when the central point load reached 467 kN with a 

corresponding midspan deflection of 13.8 mm
[186]

. The south face crack pattern is also depicted 

in Fig. 5.14, which was observed at the ultimate load level. 

The failure of the beam was brittle without yielding of the tension bars. Diagonal cracking 

began at the same load level as for the beam without stirrups (267 kN), but did not lead to 

failure due to the presence of stirrups and compression reinforcement. Fig. 5.15 shows the FE 

model that was used for this numerical experiment, which consists of 102 hexahedral elements 

for concrete and 354 NBCFB elements for the embedded reinforcement. 
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FIGURE 5.14 RC BEAM WITH STIRRUPS UNDER CENTRAL POINT LOAD. (A) MEMBER’S CHARACTERISTICS 

AND (B) EXPERIMENTALLY OBSERVED CRACK PATTERN AT ULTIMATE LOAD
[186]

. 

 
FIGURE 5.15 RC BEAM WITH STIRRUPS UNDER CENTRAL LOADING. FE MODEL. 

As can be seen from Fig. 5.16, the predicted failure load of the proposed modeling is equal to 

448 kN with a corresponding midspan deflection of 13.5 mm for the case where the external 

load is divided into 50 load steps (Curve 4). Similar failure loads were also obtained for 100 

and 20 load step increments (Curves 3, 4 and 5). Curve 7 shows that ATENA with rod elements 

for the reinforcement failed prematurely due to extensive cracking. 

Fig. 5.17 shows the crack pattern for several load levels up to failure. Cracking in the beam’s 

compressive zone starts for an applied load of 300 kN, but does not lead to failure of the beam 

due to stirrups confinement and the compressive contribution of the upper reinforcement. The 
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numerical solution terminates when failure of the compressive bars is manifested which is in 

good agreement with the experimental mode of failure. 

 
FIGURE 5.16 RC BEAM WITH STIRRUPS UNDER CENTRAL LOADING. LOAD-DEFLECTION CURVES FOR 

DIFFERENT LOAD INCREMENTS AND FE MODELS. 

 
FIGURE 5.17 RC BEAM WITH STIRRUPS UNDER CENTRAL POINT LOAD. CRACK PATTERNS AND 

CORRESPONDING DEFORMED SHAPES AT DIFFERENT LOAD LEVELS. 

The required NR iterations for this numerical experiment are depicted in the graph of Fig. 5.18 

for 48 load steps. The maximum required number of NR iterations occurs at load step 31 where 

the initiation of the compressive zone cracking takes place and crack opening is extensive due 

to the excessive stress redistribution. 

The required computational time for the nonlinear solution procedure is depicted in Table 5.6 

which refers to 48 incremental load steps. It can be seen that the average CPU time per load 

increment is 0.354 sec compared to 0.177 sec for the corresponding problem without stirrups. 

This is attributed to the fourfold increase of the number of rebar beam elements used for this 

discretization. The corresponding computational time when analyzing this model with ATENA 

software for 25 steps was 15 min. 
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FIGURE 5.18 RC BEAM WITH STIRRUPS UNDER CENTRAL POINT LOAD. REQUIRED NEWTON-RAPHSON 

ITERATIONS PER LOAD STEP. 

Task CPU Time (sec) 

Embedded rebar element mesh generation 0.03 

Nonlinear incremental-iterative solution 17.00 

Writing output data 25.00 

Other  0.43 

Total Time 42.46 

TABLE 5.6 RC BEAM WITH STIRRUPS UNDER CENTRAL POINT LOAD. CPU TIME FOR DIFFERENT TASKS OF 

THE NONLINEAR ANALYSIS. 

 

5.3.2   RC Shear Walls 

Lefas
[206]

 dealt with the experimental study of RC shear walls in monotonic and cyclic loading. 

Two types of reinforced structural shear walls were tested. Type I and Type II with different 

geometric characteristics given in Fig. 5.19. In all cases, the walls were monolithically 

connected at their ends to two beams. The lower beam was utilized to clamp down the 

specimens to the laboratory test floor. 

The reinforcement used in these RC shear wall types consisted of two different diameters with 

different yield stress (Table 5.7). The first was high tensile rebars of 8 mm diameter and the 

second was high tensile rebars of 6.25 mm diameter. In addition to the previously mentioned 

reinforcement, horizontal stirrups were placed at the edges of the walls (concealed columns) 

providing confinement. Mild rebars of 4 mm diameter were used for this purpose.  

The shear wall specimens were clamped to the floor by means of two transverse long steel box 

girders 10 mm thick and 4 holding-down post tensioned bolts. As it can be seen from Fig. 5.20, 

the vertical constant load was applied through a two point loading system. Taking into account 

that the proposed modeling is based on 3D material models that consider triaxial phenomena 

and have the ability to simulate the interaction between different structural members (i.e. 

interaction of steel plates and concrete), the boundary conditions and the application of the 

loads must be chosen in such a way that will realistically represent the experimental conditions.  
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FIGURE 5.19 STRUCTURAL SHEAR WALL SPECIMENS (A) TYPE I AND (B) TYPE II

[206]
. 

 
FIGURE 5.20 SCHEMATIC REPRESENTATION OF THE TEST RIG (A) ELEVATION, (B) PLAN VIEW

[206]
. 

In this work, the boundary conditions were simulated by constraining the hexahedral nodes 

located on the lower beam of the corresponding FE models at their base. Accumulating to that, 

the upper hexahedral nodes of the lower beam were also considered to be fixed in order to 

realistically simulate the experimental setup. The horizontal and vertical loads were applied 

through steel plates (Fig. 5.22) avoiding local node detachments and to assure that the loads 

were transferred to the upper beam uniformly.  

Steel Bar Type 

Yield 

Strength fsy 

(MPa) 

Ultimate 

Strength fsu               

(MPa) 

Modulus of 

Elasticity Es    

(GPa) 

8 mm - high tensile bar 470 565 159 

6.25 mm - high tensile bar 520 610 150 

4 mm - mild steel bar 420 490 - 

TABLE 5.7 MATERIAL PROPERTIES OF THE REINFORCEMENT USED FOR THE TWO TYPES OF RC SHEAR 

WALLS
[206]

. 
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In order to illustrate the objectivity and robustness of the proposed modeling method in 

simulating RC structures, six different RC shear wall models were analyzed, three for each RC 

shear wall type. The main criterion for making this choice was to simulate all three loading 

types that were used in the experimental tests for each RC shear wall type.   

 

5.3.2.1   Type I RC Shear Wall 

Six specimens (SW11-SW16) were designed
[206]

 based on the 1983 edition of the ACI code. All 

six specimens had the same reinforcement but were loaded with a different load combination. 

Three different vertical loads were used: 0, 0.1Afc and 0.2Afc, where A and fc are the shear wall 

sectional area and cylindrical concrete compressive strength, respectively. Table 5.8 and Fig. 

5.21 contain information associated with the reinforcement detailing and the level of constant 

vertical load applied on the three specimens SW14, SW15 and SW16, respectively, as well as 

with the level of maximum horizontal load attained during the experimental testing.  

Specimen 

Reinforcement Percentage Vertical Load 

Ultimate 

Horizontal 

Load 

Concrete 

Cylinder 

Strength  

Phor 

(%) 

Pver 

(%) 

Pfl 

(%) 

PS 

(%) 

Fv 

(kN) 

  
    

 
FH 

(kN) 

fc 

(MPa) 

SW14 1.1 2.4 3.1 1.2 0 0 265 34.0 

SW15 1.1 2.4 3.1 1.2 185 0.10 320 30.5 

SW16 1.1 2.4 3.1 1.2 460 0.20 355 43.6 

TABLE 5.8 TYPE I RC SHEAR WALL. REINFORCEMENT PERCENTAGES, LOAD DATA AND CONCRETE 

STRENGTH FOR THE THREE SPECIMENS
[206]

. 

 
                                                        (A)                                                                          (B) 

FIGURE 5.21 TYPE I RC SHEAR WALL. (A) REINFORCEMENT DETAILS, (B) REINFORCEMENT 

PERCENTAGES
[206]

. 

As can be seen from Table 5.8, the three specimens had the same reinforcement and geometry 

but different concrete compressive strength and loading history, thus the same FE mesh (Fig. 
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5.22) can be used for the three numerical simulations following each time the material 

properties of the concrete and the loading history according to the experimental data. 

 
FIGURE 5.22 TYPE I RC SHEAR WALL. FE MESH. 

 
 (A)                                                                                              (B) 

 
(C) 

FIGURE 5.23 TYPE I RC SHEAR WALL. EXPERIMENTAL AND PREDICTED CURVES FOR SPECIMEN (A) 

SW14, (B) SW15 AND (C) SW16. 

Fig. 5.22 shows the FE mesh for the simulations of this type of RC shear walls and its boundary 

conditions as described above. The FE mesh for this type of RC shear walls consists of 96 

hexahedral elements and 949 embedded rebar elements. The predicted numerical load-

displacement characteristics by the proposed modeling are compared with the corresponding 

experimental results in Figs. 5.23, where a satisfactory correlation can be observed. 

It is worth mentioning here that with the smeared crack approach abrupt loss of stiffness occurs 

during the analysis due to crack openings, which induces sudden increase of displacements, as 
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can be seen in Fig. 5.23a. We must also note, that due to the small global horizontal 

displacements occurring (less than 1 cm) the experimental results are sensitive to uncertainties 

that inherently exist in the experimental setup.  

Specimen 

Initiation of Cracking 

– Predicted Data 

Initiation of Cracking – 

Experimental Data 

Ultimate 

Horizontal 

Load - 

Predicted 

Ultimate 

Horizontal 

Load - 

Experimental 

FH 

(kN) 

δ 

(mm) 

FH 

(kN) 

δ 

(mm) 

FU 

(kN) 

FU 

(kN) 

SW14 35 0.34 25 0.25 275.5 265 

SW15 45 0.27 59 0.22 304.5 320 

SW16 80 0.40 80 0.31 336 355 

TABLE 5.9 TYPE I RC WALL. PREDICTED INITIATION OF CRACKING AND ULTIMATE HORIZONTAL 

LOADING. 

 

 
FIGURE 5.24 TYPE I RC SHEAR WALL. PREDICTED AND EXPERIMENTALLY OBSERVED CRACK PATTERN 

FOR DIFFERENT LOAD LEVELS OF SPECIMEN SW14. 

The obtained crack patterns at the failure load are depicted in Figs 5.24 and 5.25. The largest 

cracks appear to be the flexural cracks that are located at the base of the three specimens where 

the RC shear walls are connected to the lower beam. Fig. 5.24 shows the three characteristic 

crack patterns that were predicted with the proposed method and were also mapped in
[206]

 for 

the case of SW14. The corresponding experimental values for the three specimens are given in 

Table 5.9 where the good agreement between experimental and analytical data can be verified. 

The initiation of inclined cracking for SW14 was found experimentally to occur at a 

corresponding load of 100 kN, which is reasonably close to the numerically obtained value (87 

kN). The CPU time required for the solution of the three numerical models are given in Table 
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5.10 where it can be seen that the required CPU time for the case of SW15 specimen is larger 

than the time required for the specimen SW14 due to the increased number of NR iterations 

required for each load increment. 

 
FIGURE 5.25 TYPE I RC SHEAR WALL. PREDICTED CRACK PATTERNS OF SPECIMENS SW15 AND SW16 AT 

ULTIMATE LOADS. 

a/a Specimen Newton Raphson Load Step 
CPU Time     

(sec) 

1 SW14 86 50 

2 SW15 87 60 

3 SW16 88 35 

TABLE 5.10 TYPE I RC SHEAR WALL. CPU TIMES FOR THE NONLINEAR SOLUTION PROCEDURE 

(NEWTON-RAPHSON LOAD STEPS). 

 

5.3.2.2   Type II RC Shear Wall 

Table 5.11 and Fig. 5.26 include information associated with the percentages of reinforcement 

and the level of constant vertical load applied for the three selected specimens (SW21, SW22 

and SW25) of type II shear wall as well as the level of maximum horizontal load attained 

during the experimental testing
[206]

. Fig. 5.27 shows the FE mesh, which consists of 131 

hexahedral elements and 1,118 embedded rebar elements. 

It is important to stress that the same parameters were used for all numerical models, 

concerning the nonlinear solution process, where the horizontal load was divided into 100 load 

increments. The predicted load-capacity curves and crack distributions were compared with the 

corresponding experimental curves in Fig. 5.28 and the crack pattern in Figs. 5.29 and 5.30, 

where the close agreement between experimental results and the analysis can be verified. From 

Fig. 5.29, it can be seen that macrocracking initiates at the lower tensile edge of the wall and 

spreads progressively towards the lower compressive zone with increasing load. It is worth 

pointing out that the virtually vertical cracking observed near the failure load is in accordance 

with the corresponding patterns observed experimentally. Eventually, in this numerical model, 

the adjacent compressive state stress is transformed into a triaxial state of stress with a tensile 

component, which resulted in an immediate loss of the load-carrying capacity at the 

corresponding Gauss point.  
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                                                (A)                                                                 (B) 

FIGURE 5.26 TYPE II RC SHEAR WALL. (A) REINFORCEMENT DETAILS, (B) REINFORCEMENT 

PERCENTAGES
[206]

. 

 
FIGURE 5.27 TYPE II RC SHEAR WALL. FE MESH. 

In the case of specimen SW22 the predicted curve departs from the corresponding experimental 

curve when the horizontal load reaches the value of 60 kN and the predicted stiffness becomes 

smaller than the corresponding experimental one. However, the ultimate load and the 

corresponding horizontal displacement were predicted with a relatively good accuracy (Table 

5.13). Important observations can be derived from Fig. 5.28c, where the capacity load of 

specimen SW25 seems to be overestimated. This has to do with a premature failure of the 

experimental test, as was reported by Lefas
[206]

. Thus the numerical prediction of this 

simulation verifies the experimental findings. We must comment here that it is inevitable that 

some numerically predicted load-displacement characteristics will not fully comply with the 

experimental curves due to uncertainties involved in the experimental setups which could not 

be accurately simulated. The required CPU time is given in Table 5.13, which illustrates the 

computational efficiency of the developed FEA code. 
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                                                          (A)                                                                                             (B) 

 
(C) 

FIGURE 5.28 TYPE II RC SHEAR WALL. EXPERIMENTAL AND PREDICTED CURVES FOR SPECIMEN (A) 

SW21, (B) SW22 AND (C) SW25. 

Specimen 

Reinforcement Percentage Vertical Load 

Ultimate 

Horizontal 

Load 

Concrete’s 

Cylinder 

Strength 

Phor 

(%) 

Pver 

(%) 

Pfl 

(%) 

PS 

(%) 

Fv 

(kN) 

  
    

 
FH 

(kN) 

fc 

(MPa) 

SW21 0.8 2.5 3.3 0.9 0 0 127 34.3 

SW22 0.8 2.5 3.3 0.9 182.0 0.10 150 34.8 

SW25 0.8 2.5 3.3 0.9 324.8 0.20 150 36.6 

TABLE 5.11 TYPE II RC SHEAR WALL. REINFORCEMENT PERCENTAGES, LOAD DATA AND CONCRETE 

STRENGTH FOR SPECIMENS SW21, SW22 AND SW25
[206]

. 

Specimen 

Initiation of Cracking 

– Predicted Data 

Initiation of Cracking – 

Experimental Data 

Ultimate 

Horizontal 

Load - 

Predicted 

Ultimate 

Horizontal 

Load - 

Experimental 

FH 

(kN) 

δ 

(mm) 

FH 

(kN) 

δ 

(mm) 

FU 

(kN) 

FU 

(kN) 

SW21 8 0.20 10 0.32 128 127 

SW22 27 0.48 14 0.39 148 150 

SW25 45 0.24 25 0.60 157 150 

TABLE 5.12 TYPE II RC SHEAR WALL. PREDICTED INITIATION OF CRACKING AND ULTIMATE 

HORIZONTAL LOADING. 
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a/a Specimen Newton Raphson Load Steps 
CPU Time     

(sec) 

1 SW21 80  60 

2 SW22 83 50 

3 SW25 87 48 

TABLE 5.13 TYPE II RC SHEAR WALL. CPU TIMES FOR THE NONLINEAR SOLUTION PROCEDURE. 

 

 
FIGURE 5.29 TYPE II RC SHEAR WALL. PREDICTED CRACK PATTERN FOR DIFFERENT LOAD LEVELS OF 

SPECIMEN SW21 AND EXPERIMENTALLY OBSERVED CRACK PATTERN OF SPECIMEN SW26. 

 
FIGURE 5.30 TYPE II RC SHEAR WALL. PATTERNS OF SPECIMENS SW22 AND SW25 AT ULTIMATE 

LOADS. 
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5.3.3   RC Shear Panel Beam 

Shear panel beam W-2 tested by Červenka
[207]

 has been frequently used by many 

researchers
[196, 221-223]

 with the aim of verifying their numerical models. The panel beam 

consists of two orthogonally reinforced panels, 762 mm wide, 762 mm high and 76.2 mm thick, 

separated by three ribs (Fig. 5.31). The concrete’s compressive strength was fc = 26.8 MPa and 

the reinforcement steel material properties were Es = 190 GPa and fy = 353 MPa. The 

experimental findings showed that the ultimate load capacity of this panel beam is governed by 

yielding of the reinforcing steel following initial tensile cracking of concrete. Ultimately, the 

panel beam failed by local concrete crushing and splitting in the compressive zone of the panel.  

 
FIGURE 5.31 RC SHEAR PANEL BEAM W-2. GEOMETRY AND REINFORCEMENT DETAILS. 

 
FIGURE 5.32 RC SHEAR PANEL BEAM W-2. FE MESH WITH (A) 100 AND (B) 328 CONCRETE 

HEXAHEDRAL ELEMENTS. 
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The finite element discretization and the corresponding reinforcement ratios are shown in Figs. 

5.32 and Table 5.14, respectively. Two different models were considered, one that uses 100 

solid elements and one that uses 328 solid elements for the modeling of concrete. In both FE 

models the reinforcement geometry remains the same (Fig. 5.32). 

The experimental and predicted curves can be seen in Fig. 5.33, where good agreement between 

the results can be depicted. It can be seen that the proposed model manages to predict the 

ultimate failure load (118 kN) with an acceptable accuracy and at the same time the elastic and 

inelastic predicted branches are in a good correlation with the experimental curve. When the 

externally applied load reaches approximately 70% (80 kN), the prediction of the RC member 

stiffness is slightly overestimated as a result of the stiffness introduced through the use of the β 

parameter when excessive cracking occurs (Fig. 5.34b).  

Figs. 5.34 shows the crack patterns for both FE meshes at different load levels. It can be seen 

that the predicted failure mode is governed by flexural cracking which occurred at the load 

level of 40 kN and 35 kN for the coarse and fine FE models, respectively. As it was expected, 

the initiation of cracking occurred at a slightly lower load level for the case of the fine mesh FE 

model. Nevertheless, for both cases, the crack patterns were flexure dominated and the failure 

mechanism was initiated when the longitudinal reinforcement located at the basis of the 

specimen yielded, followed by the failure of the shear panel compressive zone.  

The computational performance of the proposed model for the required computational time for 

the nonlinear solution procedure is depicted in Table 5.15, where the computational efficiency 

of the proposed model can also be observed for this test case.  

Region Direction 
Reinforcement Ratio π 

Panel Ribs 

A x 0.0092 0.0023 

A y 0.0092 0.0047 

B x 0.0183 0.0047 

B y 0.0092 0.0047 

TABLE 5.14 RC SHEAR PANEL BEAM W-2. REINFORCEMENT RATIOS. 

Fig. 5.37 shows the magnified deformed shapes prior to failure and the von Mises strain 

contour predicted by the two FE models. The strain concentration is located on the base of the 

specimen, where the flexural cracks occur. It is clear that the differences between the fine and 

sparse models are insignificant thus the computational robustness and efficiency of the 

proposed model is verified. 

a/a Num. of Elements Newton-Raphson Load Steps CPU Time (sec) 

1 100 Hexa8 20 10 

2 100 Hexa8 50 15 

3 328 Hexa8 20 40 

4 328 Hexa8 50 60 

TABLE 5.15 RC SHEAR PANEL BEAM W-2. CPU TIMES FOR THE NONLINEAR SOLUTION PROCEDURE. 
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FIGURE 5.33 RC SHEAR PANEL BEAM W-2. EXPERIMENTAL AND PREDICTED CURVES. 

 
                                                  (A)                                                                                                  (B) 

FIGURE 5.34 RC SHEAR PANEL BEAM W-2. CRACK PATTERNS FOR VARIOUS LOAD LEVELS. (A) 100 AND 

(B) 328 HEXA8 CONCRETE ELEMENTS. 
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                                                  (A)                                                                                                            (B) 

FIGURE 5.35 RC SHEAR PANEL BEAM W-2. VON MISES STRAIN CONTOUR PRIOR TO FAILURE. (A) 100 

AND (B) 328 HEXA8 CONCRETE ELEMENTS. 

 

5.4.   Limitations of the Proposed Modeling Method 

The proposed modeling method uses the Kotsovos and Pavlovic material model which is 

presented in detail in
[8]

. It is well known that this material model is not based on a 

thermodynamic framework in order to dissipate energy with a proper loading-reloading 

behavior
[227]

. Nevertheless, its simplicity proved to be sufficient in predicting the nonlinear 

behavior of RC structural members
[8, 9, 138, 225, 226]

 and promising, as illustrated in this research 

work, for the nonlinear analysis of full-scale RC structures. On the other hand, as Jiràsek and 

Rolshoven stated in
[227]

, in nonlocal constitutive theories the local state of the material at a 

given point may not be sufficient to evaluate the stress at that point. This is physically justified 

by the fact that no real material is an ideal continuous medium, and on a sufficiently small scale 

the effects of heterogeneity and discontinuity at the microstructure level become non negligible, 

especially for the case of highly heterogeneous composite materials, like concrete. Moreover, 

convergence difficulties and failure of capturing experimental results when using relatively 

sparse meshes make this type of models prohibitive for the analysis of full-scale RC structures. 

This confirms that each numerical model has its advantages and disadvantages, thus their 

incorporation in FE algorithms requires special handling. For an overview and discussion of 

various non-local plasticity formats, see
[227]

. 

A second limitation of the proposed modeling method is the lack of taking into account the 

stiffening effect and the bond-slip phenomenon. The reason for this omission is that tension 

stiffening effect is not usually considered with detailed 3D modeling (see all relative 

references
[6, 8, 138, 139, 199-203, 205, 225, 226]

) and since the inclusion of a bond-slip model has an 

opposite effect to the tension stiffening, it was decided not to consider these phenomena at this 

stage. In addition to that, regarding the accuracy of the proposed modeling method, the bond-

slip phenomenon, plays an important role for cases where the anchorage length of the 

reinforcement is insufficient. When slippage occurs, near and after the yielding of the 

reinforcement
[224]

, it affects the elongation of the cracks’ widths and the internal strain 

redistribution at the local regions where slippage takes place. It does not however affect the 

crack distribution, since crack formation takes place when reinforcement is still located in the 
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elastic range. Nevertheless, at local level the internal redistribution of stress and strains is 

significantly affected near the ultimate state of the structure. 

As it was illustrated above, modeling of cracking with the smeared crack approach has the 

disadvantage the inaccurate modeling of the physical gap of the crack and the corresponding 

proper stress redistribution when cracking occurs. This is attributed to the fact that the same FE 

mesh is used throughout the analysis procedure thus the redistribution of the released internal 

forces is not performed in a physically correct manner. The outcome of this numerical feature is 

depicted in Figs. 5.34a and 5.34b where the predicted crack patterns differ in terms of their 

density thus the corresponding crack widths cannot be compared. Due to the nature of the 

smeared crack approach, cracks appear throughout the shear panel (Fig. 5.34b), failing to 

capture the uncracked areas in between the main flexural cracks as observed in the real 

experiment setup. A detailed discussion on the disadvantages of the smeared crack approach 

can be found in
[126, 228]

. It is important to note that the smeared crack method appears to be for 

the moment the only feasible approach
[229]

 in modeling RC full-scale structures. 

Finally, the use of parameter β after a crack opening introduces an additional stiffness in the FE 

model, especially in cases of flexural dominated RC structural members. Early work presented 

by Cedolin and Dei
[230]

 concluded that the shear retention factor has to be computed through an 

objective manner thus they proposed its connection with the crack’s width. In this research 

work it was concluded that the crack width is not the main factor that should be considered for 

the activation of the shear retention stiffness. It is obvious that when a RC structural member is 

dominated by flexural cracks, the shear stiffness along the crack’s planes should not be 

activated since no shear deformations develop. Therefore, a formulation based on the stress-

strain field is more appropriate for assessing whether this parameter will be activated or not and 

for computing its corresponding value.  
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6.1   Overview 

A Hybrid Modeling approach is presented for the 3D inelastic analysis of full-scale RC 

structures which achieves accuracy, numerical robustness and computational efficiency. The 

proposed modeling approach combines two different modeling conventions in order to predict 

the nonlinear behavior of RC structures up to ultimate loading conditions.  

Each structural component of RC buildings like foundation footings, beams, columns, 

monolithic connections, shear walls and slabs, exhibit different mechanical behavior due to 

their geometrical properties and is considerably affected by their reinforcement details. 

Modeling and simulating each type of structural component requires special consideration of 

their nonlinear behavior. 

As it was presented in Chapters 2 and 5, the level of discretization of the structural members 

controls the resulting accuracy of the numerical simulation. The NBCFB element can be 

selected for modeling beam-like structural members, achieving maximum computational 

efficiency albeit with reduced accuracy in certain cases. The ability in predicting objectively the 

nonlinear response of any RC structural member is limited, since it cannot model members 

which are shear dominated or have 3D complex geometries (dams, retaining walls, tunnels, 

etc.), while slabs can only be assumed as diaphragms that are model with rigid elements or 

kinematic constraints that control the relative displacements between the nodes located on the 

diaphragm and, moreover, monolithic connections are disregarded since beam elements are 

unable to account for local effects that take place in these critical regions. 

On the contrary, when using refined models, increased accuracy is achieved, thus any type of 

structural member can be analyzed nonlinearly, overcoming the discretization and modeling 

problems. The main issue when using this type of modeling was, is and “will be” the 

computational demand which rises because of the large number of elements that are required 

for the discretization of just a single structural member. Furthermore, the more sophisticated 3D 

material formulation of concrete combined with the numerically ill-posed smeared crack 

approach that aggravates the computational demand excessively, make the solution of such 

nonlinear system of equations impractical.  

It is evident that both FE modeling methods have their numerical advantages and disadvantages 

which cannot be overcome just by improving their numerical features and formulations. For this 

reason, the concept of Hybrid Modeling methods (HYMOD) is introduced, in an attempt to 

overcome the computational demands of the detailed modeling and improve the numerical 

accuracy of the beam-column type models. 

Research oriented to this field was initially conducted in the 1980s in research works that dealt 

with the problem of connection between plates and 3D solid elastic bodies
[231-233]

. This research 

was extended to the simulation of junctions between shells and the intersections of solid bodies 

and plates, as they were presented by Bernadou and Cubier
[234]

 (1998) and Huang
[235]

 (2004). In 

addition, Nazarov
[236, 237]

 (1996, 1999) and Kozlov and Mazya[238] (2001) in their work covered 

the asymptotic analysis for the coupling between a 3D elastic body and a dimensionally reduced 

structure.  
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It is worth noting that, to the authors’ knowledge, the previous studies which involved coupling 

between different structural models are limited to a few attempts that are mainly concerned with 

the kinematic connection of elastic bodies of a different dimensionality. Previous ideas 

regarding the coupling of models of different dimensionality from a purely kinematical point of 

view were explored in
[239-243]

. Blanco et al.
[244]

 (2008) presented a generalized approach on the 

kinematical coupling of incompatible models. The numerical implementations were limited to 

two numerical tests dealing with the kinematical coupling of three-dimensional and two-

dimensional models. It is worth noting that, in all these studies, material nonlinearities were 

neglected. 

The most notable research work using hybrid models for modeling the monolithic joints of RC 

structures simulated with two different FE models (3D solid and 1D beam like elements) was 

presented by Mata et al.
[245]

 (2008). In that work the structure was initially discretized with 

beam elements and when predefined regions entered the nonlinear state, they were assumed 

prismatic and discretized with 3D solid elements instead of beam finite elements. Complex 

kinematic compatibility and force equilibrium conditions were enforced in order to transfer 

displacements and forces to the prismatic part of the structure. Furthermore, a transformation of 

the stiffness matrix was required when a critical region entered the nonlinear range where the 

updated stiffness matrix of the prismatic part, at local level, was reduced back to the simple 

beam stiffness matrix at the global level. This approach has several disadvantages; the main one 

is that the actual local tangent stiffness matrix plays only a correctional role since its 

contribution during the solution procedure is indirect. Moreover, significant stiffness-related 

data is lost during the displacement computations since the transformation procedure simplifies 

the tangential stiffness matrix of the prismatic part into the simple beam stiffness matrix that is 

eventually used for the displacement computations. The authors reported computational times 

around 2.40 sec for each load step for the solution of a model discretized with 202 elements 

(192 linear hexahedral elements and 10 quadratic beams). This computational performance is 

considered poor compared to the detailed modeling of structures with similar size (Chapter 5). 

This will also be shown in the numerical results section of this Chapter. 

In continuation of their research work, Bournival et al.
[246, 247]

 (2010) used mixed-dimensional 

FEA models for the simulation of steel structures, combining beam, shell and 3D solid finite 

elements. They managed to reduce the computational effort at the expense of losing accuracy 

across the interface of different finite elements. 

In this study a hybrid formulation is proposed combining beam and 3D solid elements. The 

proposed HYMOD method for modeling RC structures requires minimal transformations for 

achieving the coupling between different elements, while maintaining adequate accuracy in 

predicting the nonlinearities at the critical regions of the structure. 

 

6.2   Hybrid Modeling Formulation 

The proposed HYMOD combines hexahedral and beam finite elements where the coupling 

between them is achieved with kinematic constraints. Thus, the structural members that are 

shear dominated, such as shear walls and joints are discretized with 8-node hexahedral elements 
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while the rest of the structure is discretized with beam RC elements (Chapter 2). In the 

proposed modeling method the hexahedral elements treat the opening of cracks with the 

smeared crack approach, while steel reinforcement is modeled with beam elements (Chapter 5). 

The beam elements in both cases, incorporate the so called natural method and fiber approach 

that proved to be an excellent choice for the simulation of steel reinforcement embedded into 

the 8-noded hexahedral elements for the detailed simulation of RC structures (Chapter 4). 

 

6.2.1   Kinematic Coupling of 1D and 3D FEs 

The incorporation of the Hybrid Modeling approach within the framework of the ReConAn 

FEA code, developed for the purpose of this study, requires special attention at the pre- and 

post-processing phase where the Femap
[91]

 software is implemented. When generating a hybrid 

model by using a CAD system, the node compatibility conditions must be enforced between 

deformations of the nodes at the interface through kinematic constraints. As it was described 

previously, several researchers proposed techniques in order to achieve mesh coupling of 

different type of elements. In this work the coupling between the two types of elements is 

treated as a kinematic constraint which considers that each hexahedral node, located at the 

interface between the beam and the solid elements, will displace according to the following 

kinematic relationship 

     3 1     3 6 6 1      

HEXA NBCFB

i im m
x x x

 u T u , 
6.1 

with  

 3 6

1 0 0 0

0 1 0 0

0 0 1 0

i m m i

im m i i m
x

i m m i

z z y y

z z x x

y y x x

  
 

  
 
   

T  6.2 

where
NBCFB

mu  and 
HEXA

iu  are the displacement vectors of the NBCFB node and hexahedral nodes 

at the interface, respectively. The subscript i of the global coordinates x, y, z refers to the 

hexahedral node ID located at the interface section Ωj, while subscript m refers to the NBCFB 

elemental node ID that controls the displacements (master node) of the interface section Ωj (Fig. 

6.1). The connection matrix imT is computed by using the corresponding NBCFB and 

hexahedral nodal coordinates. The compatibility between the 6 dof of the end node of the 

NBCFB element and the 3 translational dof of the nodes at the interface Ωj is maintained 

through the kinematic constraint which applies for all hexahedral nodes that are located at the 

interface. Assuming that any hexahedral node located at the interface follows the body 

movements of section Ωj, which are enforced by the NBCFB element nodal translational and 

rotational displacements (Fig. 6.1), the computation of the new position for any point on the 

interface section Ωj is obtained through a linear transformation.  

If we assume that the 8-noded hexahedral element has n1-n8 nodes as shown in Fig. 6.1, then 

the coupled kinematic constraint is expressed as follows: 
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6.4 

The only required data in order to compute the connection matrix HT  are the coordinates xi, yi, 

zi of the slave nodes that are controlled by the kinematic constraint and the xm, ym, zm 

coordinates of the corresponding master node. The resulting hybrid hexahedral element has 18 

dof, 12 corresponding to the 4 unconstraint hexahedral nodes and 6 corresponding to the master 

node dof.  

The connection matrix HT  is used with the purpose of obtaining the 18x18 hybrid stiffness 

matrix according to Eq. 6.5 and is used once again to compute the hexahedral nodal 

displacements of the slave nodes from the hybrid element displacements after the solution of 

the equilibrium equations of the structure, according to Eq. 6.3. During the global stiffness 

computation, the corresponding dof of the hexahedral nodes that are located on the interface 

section, are eliminated according to  
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6.5 

 
FIGURE 6.1 KINEMATIC CONSTRAINT IMPOSED BY THE 1D MODEL ON THE INTERFACE SECTION ΩJ. 

The calculation of the internal forces of the hybrid hexahedral elements is performed with 

     

HEXA

18 1 18 24 24 1

T

H H
x x x

 F T F  
6.6 

where 
HF  is the internal force vector of the hybrid hexahedral element, which is added to the 

global internal force vector during the nonlinear incremental iterative solution procedure. 

With the above kinematic constraint, the interface section remains undeformed throughout the 

solution process as it is controlled by the master node of the corresponding NBCFB element. As 

it is going to be illustrated through a number of numerical experiments, this local effect has an 

insignificant influence on the overall numerical behavior of the structure. In addition to that, as 

it is going to be presented in the following sections, the degree of the reduced model is 

governing the numerical behavior of the HYMOD thus the overall accuracy is not affected by 

the assumed kinematic constraints.  

One of the main issues that require further investigation and development is the automatic 

generation of hybrid models through 3D parametric and feature-based CAD models. At this 

stage, this process still remains rather cumbersome and not automatic. The required 

modifications are made directly on the 3D CAD model and the modification concerning 

parameters associated with the beam sections and interfaces are performed manually. The 

automatic generation of hybrid idealized models with the use of a 3D CAD environment would 

allow design changes directly on the 3D model and this would result into a considerable 

acceleration of the design process. This problem has been investigated by some researchers
[248, 
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249]
 who foresee an automation of this procedure. Despite the difficulty of automatically 

constructing parts of the mesh for hybrid FE models given the geometry of the RC structures, in 

this study PRG files (Programming files) were used with the aim of automatically reproducing 

specific joint types. The latter will be presented at the next Chapter of the Dissertation. 

 
FIGURE 6.2 CANTILEVER BEAM. EXAMPLE OF 1D AND 3D FE DISCRETIZATION. 

The model generation is performed with Femap
[91]

 pre-processing software for constructing the 

necessary input data for the materials, element types and geometry of the structure. Then, rigid 

elements connect the master node of the interface with the corresponding slave nodes of the 

interface section. A schematic representation of the discretization concept with HYMOD is 

given in Fig. 6.2, where the hybrid model of a cantilever beam is presented.  

 

6.2.2   Discretization with 1D and 3D FEs 

The discretization scheme that can be chosen for the simulation of any RC structure is related to 

the desired accuracy and available computational resources. In Fig. 6.3, different Reduction 

Levels (RL) are depicted for the simulation of 3D RC frame structures. A description of the 

corresponding reduction models is given in Table 6.1.  

The four main reduction models depicted in Fig. 6.3 and described in Table 6.1 represent four 

characteristic discretization schemes for a 3D RC structure with a shear wall. When using 

hybrid discretization schemes (RL 2-3 in Fig. 6.3), the selection of the proper length Li of the 

solid part (Fig. 6.4) plays a crucial role in the efficiency of the model. In order to give an 

objective answer to this question, an extensive parametric investigation was conducted with the 

purpose of creating some general rules which could be followed depending on the geometrical 

features of the structure and structural members under consideration. The results of this 

parametric investigation will be presented in the next section where characteristic FE models 

were discretized by one element type or Hybrid Models and were subjected to different loading 

levels in order to investigate the most appropriate length of the prismatic part as shown in Figs. 

6.3 and 6.4.  
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FIGURE 6.3 3D RC FRAME. DISCRETIZATION SCHEMES WITH DIFFERENT LEVELS OF MODEL REDUCTION. 

Reduction Level 

of the Model 
Description 

0 The whole structure is discretized with 3D solid elements 

1 

Shear dominated structural members (shear walls, junctions etc.) are 

discretized with solid elements and the remaining parts of the structure with 

beam elements.  

2 
Shear walls are discretized with solid elements and the rest of the structure 

with beam elements. 

3 The whole structure is discretized with beam elements. 

TABLE 6.1 DISCRETIZATION WITH BEAM AND SOLID ELEMENTS. DESCRIPTION OF THE REDUCTION 

LEVELS. 

 

6.3   Numerical Investigation on Length “Li” 

As it was mentioned above, the main reason for using the HYMOD is to reduce significantly 

the number of dof in order to be able to simulate full-scale structures with the required accuracy 

at an affordable computational time. In the case of RC structures, the FE model reduction 

requires the determination of the length Li so that the derived model will meet the objectives 

stated previously. 

In this section, a numerical investigation is performed on a series of cantilever and clamped 

beams for the determination of the proper length Li (Fig. 6.4) when discretizing framed 

structures with HYMOD. The rationale behind this parametric study is to investigate the 

influence of the adopted assumptions for the simulation of the inelastic phenomena of RC joints 

using simple benchmark problems. Furthermore, to estimate the minimum length Li for the 

adequate modeling of RC joints with solid finite elements. Accounting for the fact that cracking 

is directly determined from the stress-state of a critical region, a set of beams with homogenous 

materials are considered to illustrate the plastic hinge propagation by considering the stress 

distribution. Subsequently, the investigation of the behavior of the corresponding hybrid models 
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that derive from the modeling of these plastic hinges will be discussed. Following, the nonlinear 

behavior of RC benchmark problems will be presented verifying the investigation’s numerical 

findings. 

 
FIGURE 6.4 DISCRETIZATION OF JOINTS WITH DETAILED SOLID AND BEAM ELEMENTS. REINFORCEMENT 

DETAILS AND FIBER DISCRETIZATION OF THE BEAM-COLUMN SECTIONS. 

 

6.3.1   Cantilever Beams 

Five different models are considered based on Fig. 6.5 and the cross-sectional properties of 

Table 6.2. The concrete material characteristics of the cantilever beams are fc = 30 MPa, Ec = 

30 GPa, ET = 0, ν = 0.2 where fc, Ec, ET and ν correspond to the crushing stress, the Young 

modulus, the hardening modulus and the Poisson ratio, respectively. The material model used to 

simulate the nonlinear behavior of the cantilevers is the isotropic von Mises material which uses 

the von Mises yielding criterion without accounting for cracking. For each FE model (Figs. 6.6) 

a vertical load was placed at the end tip of the cantilevers and was applied incrementally until 

failure. 

Due to the loading type and the geometry of the cantilever beam (Fig. 6.5), a plastic hinge will 

appear at the fixed end of the cantilever, which corresponds to the critical region of the beam 

that will control the nonlinear behavior of the structural member. The length of this critical 

region will be measured and thereafter a parametric investigation based on these lengths will be 

performed in order to conclude which is the minimum required hinge length to be discretized 

with solid elements in order to maintain an acceptable accuracy in relation to the detailed 

model. 
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FIGURE 6.5 GEOMETRY OF THE CANTILEVER BEAM. 

 
 

FIGURE 6.6 CANTILEVER BEAMS. FIVE FE MESHES (A-E).                  FIGURE 6.7 CANTILEVER BEAMS. VON MISES STRESS CONTOURS 

(KPA). SCHEMATIC REPRESENTATION OF PLASTIC HINGES. 

In Figs. 6.7 the von Mises stress contour is shown for each cantilever beam model discretized 

with 3D solid elements. As it can be observed, the grid lines of the hexahedral elements are 

shown, having a constant distance between them (12.5cm) providing the ability of measuring 

any vertical or longitudinal distance manually. The shape of each plastic hinge has a similar 

geometry and it can be observed that for all cases, the plastic hinge has a V shaped geometry 

(red color). As the vertical load increases, the upper and lower regions of the fixed section enter 

the plastic range thus the initiation of the stiffness degradation begins. With a further load 

Beam bi (cm) hi (cm) hi/bi 

A 25 25 1 

B 25 37.5 1.5 

C 25 50 2 

D 25 62.5 2.5 

E 25 75 3 

TABLE 6.2 GEOMETRY OF SECTIONS. 



Chapter 6 Athens, Jan 2011 

 

Page 183 of 272 
 

increase, the plastic hinge spreads to the center of the section and at the same time it increases 

along the longitudinal axis of the beam until failure. Fig. 6.8 shows the P-δ curves that were 

computed through the analysis procedure. 

 
FIGURE 6.8 CANTILEVER BEAMS. P-δ CURVES FOR DIFFERENT GEOMETRIES. 

One question that rises when observing 

Figs. 6.7 and 6.9 is how can a plastic 

hinge length be defined in the three 

dimensional space, taking into account 

the three dimensional behavior. The 

answer to this question is not direct 

because many assumptions can be made 

on just observing this type of figures. 

For this reason, an objective way of 

answering this question is through a 

parametric investigation on the required 

hinge length that has to be discretized 

with solid elements and will be able to 

predict the overall nonlinear behavior of 

the beam. For this purpose, a set of 

hybrid models were created, assuming 

different hinge lengths discretized with 

solid elements (Figs. 6.12). The beam 

with 25x50 cm section was used in order 

to serve this purpose and the numerical 

findings are given in Fig. 6.10 where the 

P-δ curves are shown. 

 

FIGURE 6.9 CANTILEVER BEAM. 3D REPRESENTATION OF A PLASTIC 

HINGE. VON MISES CONTOUR. BEAM MODEL E (25X75). 
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As it can be seen in Fig. 6.10, the elastic branches of the 7 models which were solved with the 

use of ReConAn (first six curves) and Femap NXNastran (red curve), are identical concerning 

the solid FE models. Even though it is not clear from the graph, the elastic branch of the curve 

predicted with the use of NBCFB element is slightly stiffer. This event was expected since solid 

elements are more flexible than the corresponding beam.  

When the two model types (solid and beam) enter the nonlinear range (approximately at the 

same load level), it is evident that the beam FE model shows a softer response than the 

corresponding unreduced solid FE model. The main question is, which is the correct P-δ curve 

and subsequently, which is the correct ultimate load capacity for this structural member. So as 

to resolve this numerical phenomenon, the analytical solution when using the Euler-Bernoulli 

theory is computed. 

 

FIGURE 6.10 CANTILEVER BEAM. P-δ CURVES FOR DIFFERENT PLASTIC HINGE LENGTH ASSUMPTIONS. 

Using the Euler-Bernoulli theory and 

with the help of Fig. 6.11, the 

ultimate moment of the 

corresponding section when complete 

plastification occurs, is given by Eq. 

6.7 and the ultimate capacity load 

which corresponds to this moment is 

given by Eq. 6.8. The analytical 

failure load is PP = 156.4 kN which 

coincides with the load predicted by 

the FE model with the NBCFB elements. Since the formulation of this element adopts the 

Euler-Bernoulli theory of the undeformed section, the analytical solution coincides with the 

numerical which results from the combination of the FE method and the fiber approach. 

 

FIGURE 6.11 COMPLETE PLASTIFICATION OF A RECTANGULAR SECTION. 
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where PP and L are the plastification load and the beam’s length, respectively. These formulae, 

are valid only when the hardening modulus is equal to zero (ET = 0), meaning that the sectional 

internal stress tensor remains constant when the value of yielding stress is reached, for any 

further load increase. 

 
FIGURE 6.12 CANTILEVER BEAM 25X50. VON MISES CONTOUR AND DEFORMED SHAPES FOR DIFFERENT 

MESHES. 

Another observation that can be made, concerning the hybrid discretization, is that for all 

hybrid models the predicted inelastic branches are slightly below the corresponding inelastic 

branch predicted by the unreduced FE models. This numerical finding confirms that the 

kinematic constraints do not affect the overall response for this type of structural members with 
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the corresponding loading, since the predicted curves almost coincide with those produced by 

the unreduced FE models.  

This type of problem was bending dominated and shear strains had no effect on the ultimate 

numerical response of the computed results. To illustrate that 3D solid FE models is the most 

appropriate approximation of capturing realistically the response of any structural member, the 

same numerical experimental investigation was conducted for the case of a shear dominated 

beam. 

 

6.3.2   Clamped Beam 

Fig. 6.13 shows the geometrical details of a clamped deep beam which has a rectangular section 

of 25x100 cm and a total span of 3 m. The material characteristics are fc = 30 MPa, Ec = 30 

GPa, ET = 0, ν = 0.2 where fc, Ec, ET and ν correspond to the crashing stress, the Young 

modulus, the hardening modulus and the Poisson ratio, respectively. A vertical load is applied 

on the midspan of the beam and is applied incrementally until failure.  

 
FIGURE 6.13 CLAMPED BEAM. GEOMETRIC AND SECTION DETAILS. 

 
FIGURE 6.14 CLAMPED BEAM. P-δ CURVES FOR DIFFERENT FE MODELS. 
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Fig. 6.14 shows the computed P-δ 

curves for three different FE models 

illustrated in Figs. 6.15. The first 

model is the full FE model with solid 

elements (Fig. 6.15a), the second is the 

hybrid FE model which considers a 

characteristic length Li = h (section 

height) in the middle of the clamped 

beam and h/2 at the fixed ends Fig. 

6.15b) and finally the third FE model 

assumes that the clamped beam is 

discretized with 6 NBCFB elements 

(Fig. 6.15c). In order to evaluate the 

analytical failure loads, the bending 

moment capacity is computed using 

the Eq. 6.7 and assuming that the 

section obeys the Euler-Bernoulli 

assumption. After the necessary 

calculations, MP = 1,875 kNm and 

considering that the moment at the end 

of a clamped beam due to a 

concentrated load at the midspan is given by PL/8 then the capacity load of this beam is equal 

to 5,000 kN. This failure load coincides with the computed failure load of the NBCFB FE 

model. 

Since the adopted NBCFB model does not account for shear strains, the expected response 

when using the hexahedral elements should be softer, a numerical finding that can be seen in 

Fig. 6.14. It can be easily observed that the computed P-δ curves of the clamped beam when 

modeled with hexahedral elements (Fig. 6.15a) is much softer than the corresponding curve 

computed by the beam model, illustrating the shear effect in the stiffness degradation. 

The most noteworthy numerical finding in this parametric investigation is illustrated in Fig. 

6.14, where the hybrid model initially shows a slightly stiffer elastic response than the 

unreduced model while, following the initiation of yielding, its inelastic behavior appears to be 

softer than the unreduced model. This numerical phenomenon is attributed to the introduction 

of the two beam elements between the three plastic hinges. This results to a stiffer FE model, 

therefore a stiffer elastic branch occurs which leads to an earlier manifestation of yielding as 

depicted in Fig. 6.14 (Py). Moreover, when yielding occurs a redistribution of the internal 

strains is performed and due to the inability of the beam elements to accommodate for shear 

strains (between load levels Py - PU) they maintain their elastic stiffness while the rate of 

deformation is increased at the critical regions which are discretized with hexahedral elements. 

As Fig. 6.14 shows, the yellow hatched area that represents the initiation of yielding up to 

complete failure is located on the elastic branch of the beam model curve, verifying the above 

observation. Additionally, Fig. 6.15b shows a larger concentration of von Mises stresses at the 

FIGURE 6.15 CLAMPED BEAM. DEFORMATION SHAPES AND STRESS VON 

MISES CONTOURS OF (A) FULL SOLID FE, (B) HYBRID FE AND (C) NBCFB 

FE MODELS.  
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clamped ends of the beam confirming the above numerical phenomenon. Despite this slight 

deviation of the predicted curve, it is evident that the kinematic constraints do not affect the 

overall nonlinear response of this type of structures as well, exhibiting a robust numerical 

behavior. It is also evident that the nonlinear response when modeling the structures with 

hybrid models is mainly controlled by the formulation of each FE type and, as is shown in this 

case, the predicted ultimate load is in favor of safety. 

A basic conclusion that can be derived from this study is that shear dominated structural 

members should be modeled with hexahedral FE models thus beam elements must only be used 

for bending dominated structural members (beams and columns).  

 

6.3.3   Computational Efficiency 

One of the main reasons for using Hybrid Modeling methods, is to significantly reduce the 

computational cost of an unreduced hexahedral FE model maintaining at the same time the 

required accuracy. For this reason, the computational performance of the proposed modeling 

method is presented for the case of a clamped beam which is discretized with 5,000 hexahedral 

elements and 6,666 nodes (Fig. 6.17a). The second model corresponds to a reduced scheme 

with hexahedral elements in the midspan and the ends of the beam while the rest of the beam is 

modeled with 6 NBCFB elements (Fig. 6.17b). 

Fig. 6.16 shows the geometrical details of a simply supported beam which has a rectangular 

section of 20x40 cm and a total span of 4 m. The material characteristics are fc = 25 MPa, Ec = 

28 GPa, ET = 0, ν = 0.2 where fc, Ec, ET and ν correspond to the crashing stress, the Young 

modulus, the hardening modulus and the Poisson ratio, respectively. A vertical load is applied 

on the midspan of the beam which is implemented incrementally (50 load steps). It must be 

noted that the computed analytical ultimate vertical load is PP = 400 kN when the effect of 

shear strains is neglected. 

 
FIGURE 6.16 CLAMPED BEAM. GEOMETRIC AND SECTION DETAILS. 

 

 

 

 

TABLE 6.3 CLAMPED BEAM. DETAILS OF FE MODELS. 

 

Model 
Hexahedral 

Elements 

NBCFB 

Elements 

Total 

Nodes 

A 5,000 - 6,666 

B 2,000 6 2,846 

C - 10 11 
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As it was mentioned, the aim of this numerical 

test is to illustrate the computational efficiency 

of the proposed modeling method and the 

corresponding decrease of the computational 

demands when the reduction of a hexahedral 

model is adopted. Figs. 6.17 show the three 

models used in this numerical test and the 

corresponding details of each FE model are 

given in Table 6.3. The first FE model is the 

unreduced hexahedral model which consists of 

5,000 hexahedral elements and 6,666 nodes 

(Fig. 6.17a). The second FE model was 

derived from the unreduced model by 

assuming that the clamped ends are discretized 

with hexahedral elements over a length h 

(height of section) and the middle part of the 

beam over a length of 2h. The rest of the beam 

is modeled with NBCFB elements as shown in 

Fig. 6.17b. The last FE model is the one given 

in Fig. 6.17c, which consists of 10 NBCFB elements. 

 

FIGURE 6.18 CLAMPED BEAM. P-δ CURVES FOR DIFFERENT FE MODELS. 

Fig. 6.18 shows the computed P-δ curves for the three FE models. As it can be observed, model 

C appears to have the stiffer response since the NBCFB element does not account for shear 

strains. The predicted ultimate load is approximately 400 kN verifying the analytical 

calculations which derived from the Euler-Bernoulli assumption. The elastic branch computed 

by the unreduced hexahedral model A is below the elastic branch of the beam model. On the 

FIGURE 6.17 CLAMPED BEAM. DIFFERENT FE MODELS. 
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contrary, the predicted failure load for the case of the full model is higher than the beam’s 

model, highlighting the numerical phenomenon described in section 6.3.1. 

It is indisputable that independently from the geometry and the boundary conditions applied, 

the 3D formulation manages to predict accurately the nonlinear behavior of any structure. The 

von Mises contours and deformed shapes are shown in Figs. 6.19 where the computed plastic 

hinges can be seen. It is evident that the 3D representation of the final plastic hinge stress 

distribution describes the evolution of the phenomenon as the plasticity is spreading inside the 

volume of the structure (Fig. 6.19a). It can also be observed that the main critical regions of the 

clamped beam are its two ends and its middle “section”.  

 
FIGURE 6.19 CLAMPED BEAM. VON MISES CONTOURS AND DEFORMED SHAPES OF MODELS A, B AND C. 

Model Ultimate load (kN) Time (sec) 

A 427.35 150.0 

B 425.04 60.0 

C 399.84 0.7 

TABLE 6.4 CLAMPED BEAM. PREDICTED LOADS AND CPU TIMES FOR SOLUTION OF 49 LOAD STEPS. 

The lengths Li that were used in model B for the detailed discretization of its critical regions 

derive from the von Mises contour of model A in Fig. 6.19a. It is obvious that the main 

nonlinearities appear at a length h at the two ends of the beam and for a length 2h in the middle 

critical region. As can be observed form Fig. 6.18, the computed P-δ curve of the hybrid model 

lying between the corresponding two curves computed by models A and C. This confirms that 

the hybrid model inherent additional stiffness which is attributed to the beam element’s 

formulation. The ultimate computed loads are the same for both models (A, B) thus the 

reduction of the computational cost is indisputably a major gain when using this approach as is 

illustrated in Table 6.4. 

Table 6.4 shows the computational time required for the solution of 49 load steps for each 

model. It is evident that the beam model is the most computationally efficient from the three 

model types thus the required CPU time for the execution of the nonlinear solution procedure 

was less than 1 sec. Model A is the most computationally demanding FE model and requires 
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150 sec for the nonlinear solution process. On the other hand, the hybrid model requires only 60 

sec for the completion of the nonlinear solution process which is 60% less than the required 

computational time by the detailed model. This is attributed to the decrease of elements which 

is also 60% (2,000/5,000 elemets) thus the computational time is reduced proportionally. 

 
FIGURE 6.20 CLAMPED BEAM. INTERNAL ITERATIONS PER LOAD STEP. 

As it was mentioned above, numerical robustness is also a main issue when implementing 

connection interface between the two domains. Fig. 6.20 shows the required NR iterations per 

load step for the three models where the robustness of the proposed modeling method can be 

verified. Instead of inducing numerical instability through the hybrid implementation, 

additional stability is observed which is attributed to the simplicity of the proposed kinematic 

constraints. Moreover, the numerical behavior of model B manages to predict the nonlinear 

response of the structure but accurately and computationally efficient. 

Closing this numerical investigation, concerning the length of the plastic hinge that should be 

considered for each potential plastic hinge evidently depends on the geometry of the structural 

member. Nevertheless, a general rule may derive from these numerical tests and their numerical 

behavior. Assuming that the main structural member types that will be discretized using the 

hybrid concept are beam- or column-like members, the minimum proposed length of the 

potential plastic hinge at the ends of the members that should be considered is h (the height of 

the member’s section) and 2h for the case of a potential symmetric plastic hinge that is expected 

to appear in the middle of a member. It is apparent that the larger the assumed lengths Li, the 

closer the nonlinear responses to the unreduced model but the more computationally demanding 

the hybrid models will be. 

 

6.4   Numerical Implementation 

In this section a numerical investigation will be performed on different RC structural 

components and 3D structures in order to illustrate the efficiency of the proposed hybrid 

simulation. The 3D prismatic parts of these test examples are modeled with the 8-noded 
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hexahedral elements that treat cracking with the smeared crack approach and the steel 

reinforcement with the embedded NBCFB and rod elements (Chapter 5). The 1D parts of the 

HYMOD mesh are modeled with the RC NBCFB element (Chapter 2). 

 

6.4.1   RC Beam Supported on two Shear Walls 

This numerical test consists of a RC beam which is supported on two shear walls (Fig. 6.21). In 

order to study the nonlinear responses resulting from different simulations, three reduced 

models were considered corresponding to RL 0, 1 and 3, respectively, as indicated in Table 6.5. 

The geometrical and reinforcement details for the unreduced model are given in Fig. 6.21, 

where it can be seen that the 25x60 cm rectangular beam section is reinforced with 3Ø18 mm 

rebars placed at its upper and lower region of the beam. The diameter of the stirrups is 8 mm 

and the spacing between stirrups is considered to be constant (10 cm) throughout the structure. 

The reinforcement details of the shear walls are also given in Fig. 6.21. The walls are reinforced 

with 12 mm and 8 mm diameter rebars and considered to be fixed at their ends. The span of the 

beam is 6 m and the concrete cover was set equal to 3 cm for both structural member types. 

 
FIGURE 6.21 RC BEAM SUPPORTED ON TWO SHEAR WALLS. GEOMETRIC AND REINFORCEMENT DETAILS. 

α/α Model 
Hexahedral 

Elements 

Embedded 

Rebar Elements 

RC NBCFB 

Elements 

Total 

Number of 

Dof 

A Reduction Level 0 432 3256 - 2295 

B Reduction Level 1 368 2904 2 1869 

C Reduction Level 3 - - 22 114 

TABLE 6.5 RC BEAM SUPPORTED ON TWO SHEAR WALLS. DETAILS OF THE FOUR FE MODELS. 

The material properties considered for this numerical test are given in Table 6.6. The external 

load is applied in the midspan of the beam and is implemented incrementally until failure. The 

number of load increments was set to 50 and the convergence tolerance of the NR iterative 

solution to 10
-4

. For all FE models considered in the following numerical implementations of 
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this Chapter, concrete is assumed to have a tensional strength equal to the 5% of its 

compressive cylindrical strength. 

 
FIGURE 6.22 RC BEAM SUPPORTED ON TWO SHEAR WALLS. FE MODELS OF CONCRETE AND 

REINFORCEMENT. 

Material 
Young Modulus 

(GPa) 

Hardening 

Modulus  

(GPa) 

Yielding 

Stress   

(MPa) 

Compressive 

Strength        

(MPa) 

Poisson 

Ratio 

Concrete 30 - - 30 0,2 

Steel 210 2,1 500 - 0,3 

TABLE 6.6 RC BEAM SUPPORTED ON TWO SHEAR WALLS. MATERIAL DETAILS. 

Fig. 6.23 shows the computed P-δ curves for the three FE models and as it can be seen for all 

cases the computed curves consists of three branches. The first branch of each curve 

corresponds to the elastic range of the beam where the structural member behaves completely 

elastically. After crack initiation, degradation of stiffness is manifested in the second branch 

corresponding to the nonlinear behavior of the cracked beam whose reinforcement behaves 

elastically. The third branch corresponds to the yielding of the longitudinal reinforcement and 

the occurrence of extensive cracking until failure. The elastic response of the beam model 

coincides with the 3D detailed model up to the total vertical load of 250 kN. This is explained 

by the fact that shear strains do not have an important influence on the overall behavior of the 

structure and thus, the beam model appears to give a realistic numerical prediction. Following 

an increase in the crack pattern and the appearance of inclined cracks (Fig. 6.24), shear strains 

start to affect significantly the nonlinear behavior of the beam (Fig. 6.23), resulting into larger 

deformations. Figs. 6.24 show the computed crack pattern when the cracking is initiated (60 
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kN) and the corresponding crack pattern when inclined cracks appear due to increased shear 

strains (300 kN). 

 
FIGURE 6.23  RC BEAM SUPPORTED ON TWO SHEAR WALLS. P-δ CURVES. 

The predicted crack patterns (Figs. 6.24a and 6.24c) show that the tensile strength at the 

midspan of the beam and at the upper area of its clamped ends, is exceeded resulting to vertical 

flexural cracking. The correlation between the RL 1 is also shown and it can be seen that the 

reduced model maintains the desired accuracy, predicting the exact initiation crack load and the 

corresponding crack pattern. 

 
FIGURE 6.24 RC BEAM SUPPORTED ON TWO SHEAR WALLS. CRACK PATTERNS FOR DIFFERENT LOAD 

LEVELS. 
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FIGURE 6.25 RC BEAM SUPPORTED ON TWO SHEAR WALLS. CRACK PATTERNS AND DEFORMED SHAPES 

PRIOR TO FAILURE. 

The computed crack patterns and the corresponding deformed shapes prior to failure are 

illustrated in Figs. 6.25. Following the excessive cracking, the yielding of the longitudinal rebar 

elements at the midspan of the beam initiated the failure mechanism. The correlation between 

the crack patterns for the first two models is satisfactory where the different orientation 

cracking is observed. The deformed shape of the beam model and the computed P-δ curve 

underlines the inability of the beam element to account for shear strains and inclined cracking, 

thus the predicted ultimate load is higher than those predicted by the 3D detailed and hybrid 

models. 

The numerical phenomenon depicted in Fig. 6.14 can also be used in order to explain why the 

RL 1 model appears to be slightly softer than the corresponding unreduced model when shear 

stains begin to play an important role. As it was explained previously, the combination of two 

different FE types affect the strain redistribution when shear strains play a significant role in the 

overall response of the structure, resulting to larger strain concentrations at the domain where 

shear strains are accounted for. Nevertheless, the hybrid model manages to predict a 

satisfactory ultimate load (504 kN) in relation to the unreduced model (516 kN), whereas the 

predicted nonlinear response of the beam being in favor of safety. 

Finally, the required CPU time for the solution of 50 load steps for the three models is given in 

Table 6.7. It can be seen that the beam model requires negligible computational time in relation 

to the unreduced model completing the nonlinear analysis in only 5 sec compared to 140 sec for 

the RL 0 model and 103 sec for the RL 1 model. 
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Model Time (sec) 

A 140.0 

B 103.0 

C 5.0 

TABLE 6.7 RC BEAM SUPPORTED ON TWO SHEAR WALLS. COMPUTATIONAL TIMES FOR 50 LOAD STEPS. 

 

6.4.2   RC Frame with Shear Wall 

In order to have a more clear idea on the nonlinear behavior of hybrid models and conclude on 

the simulation of RC framed structures, a 3D RC frame is considered, where by using the four 

reduction levels the corresponding FE mesh models are derived. Fig. 6.26 shows the 

geometrical features of the frame, which has a net span of 5 m and it consists of a shear wall 

(200x25 cm), a beam (25x50 cm) and a column (50x25 cm). The frame has a total height of 3.5 

m and its reinforcement details are given in Fig. 6.26. The material properties considered for 

this numerical test are given in Table 6.8. Two types of external loads are being applied: a) A 

vertical static linear concentrated load placed at the top of the shear wall and column, 

respectively; b) a horizontal static nonlinear load on the upper left region of the frame (Fig. 

6.26). 

The vertical loads V1 and V2 were assumed to be equal to the 20% of the axial capacity of each 

structural member (SW and C in Fig. 6.26). These two vertical loads and the loads that derive 

from the self-weight of the structure are applied entirely at the first load step. The horizontal 

load H1 is divided into 25 load steps and it is applied incrementally until failure. 

 

FIGURE 6.26 RC FRAME. GEOMETRIC FEATURES AND REINFORCEMENT DETAILS. 
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FIGURE 6.27 RC FRAME. FE MESH DETAILS. 

 
FIGURE 6.28 RC FRAME. FE MESHES. 

The unreduced FE mesh is shown in Fig. 6.27, where the hexahedral brick elements and the 

initial reinforcement rebar elements are schematically presented. By performing the reduction 

process (RLs 1, 2 and 3), three additional FE meshes derive as illustrated in Fig. 6.28. As it can 

be seen from Figs. 6.27 and 6.28, the footing foundation of the RC frame was also modeled for 

the cases of RL 0, 1 and 2 to make the analysis more realistic. The four FE model details 

concerning the number of each element type and dof are given in Table 6.9.  
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It is worth mentioning that the geometrical features of this frame requires a large number of 

hexahedral elements for the discretization of the shear wall. Thus the dof of RL 1 and 2 

correspond to a decrease of 22.52% and 37.52%, respectively, compared to the initial 

unreduced model. 

Material 
Young Modulus 

(GPa) 

Hardening 

Modulus      

(GPa) 

Yielding 

Stress    

(MPa) 

Compressive 

Strength   

(MPa) 

Poisson 

Ratio 

Concrete 28 - - 30 0,17 

Steel 190 1,9 500 - 0,3 

TABLE 6.8 RC FRAME. MATERIAL DETAILS. 

a/a Model 
Hexahedral 

Elements 

Embedded 

Rebar 

Elements 

RC 

NBCFB 

Elements 

Total 

Number of 

Dof 

Dof 

Reduction 

(%) 

A Reduction Level 0 576 6,608 - 3,150 - 

B Reduction Level 1 472 5,892 2 2,436 22.67 

C Reduction Level 2 384 5,104 2 1,968 37.52 

D Reduction Level 3 - - 30 186 94.09 

TABLE 6.9 RC FRAME. FE MESH DETAILS. 

Fig. 6.29 compares the four load-displacement curves computed from the four different RL 

models. As can be seen, the obtained curve when using only beam elements is much stiffer than 

the other three, a nonlinear response attributed to the beam’s formulation which neglects shear 

effects. It is evident 

that the beam 

model fails to 

predict the response 

as well as the 

inelastic branch of 

the curve compared 

to the computed 

response by the 3D 

detailed unreduced 

model. The 

inability of 

modeling the shear 

strains, 3D crack 

propagation and the 

three-dimensional 

internal stress state 

of the structure makes the beam model inadequate to model realistically this type of structures. 

 

FIGURE 6.29 RC FRAME. P-δ CURVES. 
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On the contrary, the 

unreduced model shows a 

softer numerical behavior 

which results form the 

ability to account for 

shear strains and the 

accurate internal stress 

redistribution due to 3D 

cracking. Figs. 6.30 show 

the crack pattern of the 

RL 0 model prior to 

failure. As can be seen, 

the crack orientation is 

inclined especially at the 

shear wall region where 

shear strains are 

significant. Flexural cracks are observed at the lower left region of the base of the shear wall 

(Fig. 6.30c) and at the lower and upper regions of the left and right end sections of the beam, 

respectively (Figs 6.30a and 6.30b). 

These critical regions are governed from tensile stresses which lead to flexural cracking, thus 

decreasing the stiffness of the structure. The failure mechanism was initiated when longitudinal 

reinforcement located at the end sections of the beam reached their maximum strain capacity 

(8%). After the tensile failure of the longitudinal reinforcement, the redistribution of the 

internal stresses caused excessive cracking which eventually led to the frame failure. 

RL 1 model manages to 

predict an acceptable 

nonlinear response of 

the frame, without any 

significant deviations 

with regard to the 

unreduced model. As 

can be seen in Fig. 6.29, 

the two curves are in an 

almost absolute 

correlation, except a 

slight deviation at the 

final stage of loading 

where the hybrid model 

appears to have a 

slightly stiffer behavior. 

This numerical behavior is attributed to the inability of the beam model to account for shear 

strains, thus they are unable to capture the stiffness degradation due to the inclined cracks 

FIGURE 6.30 RC FRAME. CRACK PATTERN PRIOR TO FAILURE. REDUCTION LEVEL 0. 

FIGURE 6.31 RC FRAME. CRACK PATTERN PRIOR TO FAILUERE. REDUCTION LEVEL 1. 
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observed at the mid-span of the column and beam which can be seen in Fig. 6.30 for the RL 0 

model. On the other hand, RL 2 model, appears to have a premature failure which is attributed 

to the numerical phenomenon described in the previous section. Thus the stiffer beam model 

fails to capture the stiffness degradation retaining its initial stiffness, leading to a strain 

concentration at the domain modeled with the 3D detailed elements. This strain concentration 

led to the increased crack openings at the left end region of the beam when the loading level 

reached the ultimate capacity of RC frame where the shear strains are significant, resulting to a 

premature failure. The corresponding predicted failure loads and computational times for the 

solution of the four models are given in Table 6.10. 

 

FIGURE 6.32 RC FRAME. CRACK PATTERN PRIOR TO FAILUERE. REDUCTION LEVEL 2. 

 

Model 

Predicted 

Ultimate 

Horizontal 

Load      

(kN) 

Horizontal 

Displacement 

(cm) 

Number of 

Load 

Increments 

CPU 

Time 

(sec) 

Reduction 

in CPU 

Time   

(%) 

A Reduction Level 0 1,600 5.94 25 167 - 

B Reduction Level 1 1,600 3.87 25 110 34.1 

C Reduction Level 2 1,536 9.74 24 76 54.5 

D Reduction Level 3 1,650 3.10 25 4 > 98 

TABLE 6.10 RC FRAME. PREDICTED ULTIMATE LOADS, HORIZONTAL DISPLACEMENT AND REQUIRED 

CPU TIME FOR DIFFERENT RL MODELS. 
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FIGURE 6.33 RC FRAME. NR ITERATIONS PER LOAD STEP FOR THE UNREDUCED AND HYBRID FE 

MODELS. 

The required CPU time for the solution of 25 load increments was 167 sec for the case of the 

unreduced FE model, which demonstrates the computational efficiency of the developed FEA 

code. The corresponding computational times for the case of the RL 1 and 2 models were 110 

and 75 sec, respectively. As depicted in Table 6.10, the reduction in CPU time was greater than 

the corresponding reduction of the models’ dof. This is attributed to the required NR iterations 

for each model, thus implying the corresponding numerical stability of the reduction schemes. 

Fig. 6.33 shows the required NR iteration per load increment for the different FE models. It is 

not very clear which model display the more stable behavior. For this reason, the total NR 

iterations were counted in order to have a better perspective of the numerical overall behavior. 

As can be seen in Fig. 6.33, as the RL increases, the required NR iterations are decreased. It can 

be observed that minimum NR iterations are required when the NBCFB elements are used 

exhibiting maximum numerical stability, attributed to the internal state formulation described in 

Chapter 2. 

The von Mises strain contours between the different FE models are illustrated in Figs. 6.34 for 

two different load levels (40% and 92%, respectively). As can be seen from this Fig. 6.34, the 

different FE models are in a good agreement between them verifying the observation made 

through their computed load-displacement curves. It is noteworthy to say that, the schematic 

representation of the resulted crack patterns and deformed rebar elements as shown in Fig. 6.35 

is significant for the verification of the correctness of the output data. Dealing with thousands of 

nodes, a simple load-displacement curve may not give the proper insight into the correctness of 

the computed simulation. The corresponding deformations were increased 50 times in order to 

facilitate the detection of any inconsistency in the deformed mesh. 
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FIGURE 6.34 RC FRAME. VON MISES STRAIN CONTOURS AND DEFORMED SHAPES FOR DIFFERENT FE 

MODELS. LEFT: 40% (STEP 10) AND RIGHT: 92% (STEP 23) OF THE ULTIMATE LOAD CAPACITY. 

 
FIGURE 6.35 RC FAME. DEFORMED SHAPES OF REINFORCED REBAR ELEMENTS FOR DIFFERENT FE 

MODELS (STEP 23). DEFORMATIONS ARE SCALED X50. 

 

6.4.3   3-Storey RC Frame 

This numerical test results from an approximate fourfold increase of the RC frame described in 

section 6.4.2. As illustrated in Fig. 3.36, the RC frame has 3 stories of 3.5 m height and two 

openings with a constant span of 5 m. The material characteristics and the reinforcement details 

are shown in Fig. 3.36 and the loading conditions are considered to be as in the previous 

numerical test, a vertical fixed and a horizontal varying load sets that are distributed at each 

storey according to EC8. The horizontal loading is divided in 20 load increments which are 

implemented using the force-control NR solution scheme with the energy criterion tolerance set 
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to 10
-4

. It is important to note that the force-control NR scheme is less stable, regarding its 

convergence features. Thus, the ability of solving ill-posed numerical problems, to capture their 

nonlinear response, illustrates the numerical robustness of the proposed modeling method and 

of the developed FEA code. 

 
FIGURE 6.36 3-STROREY RC FRAME. GEOMETRIC FEATURES AND REINFORCEMENT DETAILS. 

Details concerning the FE mesh are given in Table 6.11, where it can be seen that the 

unreduced model consists of 2,298 hexahedral and 23,264 embedded elements which result into 

a total of 12,938 dof. It must be mentioned that, as a result of the embedded rebar elements’ 

formulation, no additional dof are induced due to the rebar elements. By performing the 

reduction procedure, three additional reduced FE models RL 1, RL 2, RL 3 are derived which 

are shown in Figs. 6.37. If we compare the reduction of the dof with the previous numerical 

test, it can be observed that by applying the same reduction schemes the resulting reduction is 

larger. This is attributed to the number of columns and beams which is larger corresponding to 

the number of shear walls for this FE model. Therefore, the reduction is performed to a larger 

number of structural members leading to a significant reduction of the size of the corresponding 

FE models (31.9 and 55.6% less dof for the RL 1 and 2 respectively).  

a/a Model 
Hexahedral 

Elements 

Embedded 

Rebar 

Elements 

RC 

NBCFB 

Elements 

Total 

Number of 

Dof 

Dof 

Reduction 

(%) 

A Reduction Level 0 2,298 23,264 - 12,938 - 

B Reduction Level 1 1,674 18,946 12 8,816 31.9 

C Reduction Level 2 1,122 14,372 12 5,748 55.6 

D Reduction Level 3 - - 162 936 92.8 

TABLE 6.11 3-STROREY RC FRAME. FE MESH DETAILS. 
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FIGURE 6.37 3-STOREY RC FRAME. FE MODELS. 

 
FIGURE 6.38 3-STOREY RC FRAME. P-δ CURVES. 
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Fig. 6.38 shows the computed equilibrium paths predicted from each FE model. The computed 

curves correspond to the top floor horizontal displacements (Fig. 6.38) and the corresponding 

total base shear force. As it can be observed, the beam model overestimates the initial stiffness 

of the RC frame exhibiting a stiffer behavior throughout the analysis procedure. This is 

attributed to the formulation of the beam element which does not account for the shear strain 

effects and 3D cracking of concrete, thus important features that reduce the stiffness of RC 

during its loading history are neglected. 

 
FIGURE 6.39 3-STOREY RC FRAME. CRACK PATTERN PRIOR TO FAILURE. REDUCTION LEVEL 0. 

This deficiency results from the loss of important local phenomenon which take place in critical 

regions of the structure such as cross joints. When shear stresses increase significantly at these 

regions, inclined crack patterns occur resulting in significant stiffness degradation of the overall 

structure. Even though the fiber beam takes into account cracking of concrete by setting equal 

to zero the corresponding Young modulus of the cracked fiber which is always vertical to the 

longitudinal axis of the beam, it fails to capture the local phenomena which take place in shear 

dominated critical regions (Figs. 6.39b and 6.39c) and are affected by 3D stress and strain 

states. 
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Fig. 6.39c shows the crack pattern of the shear wall and the left end of the beam which is 

supported on the shear wall. As it can be seen, the crack pattern of the beam member is vertical 

to its longitudinal axis characterizing the flexural nature of the crack evolution attributed to the 

bending moment acting on this region. A similar observation can be seen for the case of the 

shear wall which is dominated by horizontal cracks. This changes as the cracks propagate 

toward the compressive region of the shear wall section where inclined cracks can be observed. 

This local phenomenon characterizes the shear strain effect and the ability of 3D crack 

modeling which plays a significant role in modeling the nonlinear behavior of RC structures.  

 
FIGURE 6.40 3-STOREY RC FRAME. CRACK PATTERN PRIOR TO FAILURE. REDUCTION LEVEL 1. 

The horizontal cracks which initiate at the base of the shear wall spread along the shear wall’s 

height (Figs. 6.39, 6.40 and 6.41). Furthermore, a very important observation regarding local 

phenomenon that take place between steel plate-concrete interfaces can be made from Figs. 

6.39a, 6.40a and 6.41a. It can be observed that the cracks pass through the region located at the 

steel plate which was used for applying the horizontal loads at the first storey. It is evident that 

the crack openings at this region are restrained from the steel plate which induces additional 

confinement at this specific region. 
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Figs. 6.40 and 6.41 illustrate the crack patterns prior to failure, as predicted by the RL 1 and 2 

models. A good correlation is observed between the crack patterns in relation to the unreduced 

model, managing to capture the different type of local phenomenon (flexural and inclined 

cracks, crack restraint due to the steel plate). 

 
FIGURE 6.41 3-STOREY RC FRAME. CRACK PATTERN PRIOR TO FAILURE. REDUCTION LEVEL 2. 

The final observation regarding the computed nonlinear response of the 3-storey RC frame with 

the four different FE models concerns the correlation between the curves shown in Fig. 6.38. 

The FE models which derive from the implementation of the reduction schemes appear to be 

softer than the corresponding unreduced model. This is attributed to the numerical phenomenon 

observed for the clamped beam (Fig. 6.15) which is a result of the strain concentration at the 

softer domains of the FE model when the hybrid models are considered (Fig. 6.42c). The 

numerical results of this test verify the above observation and as it was stated previously are in 

favor of safety.  

The computational times for the solution procedures are given in Table 6.12, where it can be 

seen that the unreduced model requires 38 min to perform 18 load increments. It must be noted 

that a total horizontal load of 1,000 kN was applied in 20 load increments until failure. It is 

indisputable that the beam model is much faster than any type of hybrid model. In addition to 
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that, the reduction in CPU time is once more greater than the corresponding dof reduction, 

illustrating the robustness induced when the HYMOD schemes are implemented. The reduction 

in CPU time given in Table 6.12 refers to the CPU time per load increment, since the second 

and third FE models managed to reach 17 load increments instead of 18. 

 
FIGURE 6.42 3-STOREY RC FRAME. VON MISES STRAIN CONTOUR AT LOAD INCREMENT 17. 

a/a Model 

Number of 

Load 

Increments 

CPU 

Time 

(min) 

CPU Time per 

Load Increment 

(sec) 

Reduction 

in CPU 

Time     

(%) 

A Reduction Level 0 18 38 127 - 

B Reduction Level 1 17 17 60 52.6 

C Reduction Level 2 17 7 25 80.3 

D Reduction Level 3 19 10sec - >99 

TABLE 6.12 3-STOREY RC FRAME. CPU TIME FOR THE SOLUTION PROCEDURE. 
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6.4.4   Full-Scale 2-Storey RC Building 

The aim of this final numerical test is to demonstrate the ability of the proposed modeling 

method to analyze the nonlinear behavior of full-scale RC structures. A full-scale 2-storey RC 

building (Fig. 6.43) is seismically assessed after it was designed with the use of a commercial 

Civil Engineering software. The design code used by the software for the reinforcement 

computations was the Greek Seismic Code
[250]

. After the completion of the structure’s design 

process with the commercial software, the resulted reinforcement details shown in Table 6.13 

were used for the construction of four FE models shown in Figs. 6.45, 6.46 and 6.47, which are 

derived from the implementation of the four RL schemes. The details on the reinforcement of 

the beams and columns are given in Tables 6.13, 6.14 and Fig. 6.44.  

a/a 
Dimensions 

(cm) 

Rebars 
Additional 

Left 

Additional 

Right 
Rebars 

for 

Torsion 

Stirrups 

Up Down Up Down Up Down Left Middle Right 

1 25x50 2 Ø14 3Ø14 2Ø18 - - - - Ø8/10 Ø8/10 Ø8/10 

2 25x50 2 Ø14 3Ø14 - - 2Ø18 - - Ø8/10 Ø8/10 Ø8/10 

3 25x50 2 Ø14 3Ø16 2Ø18 - - - 2Ø12 Ø8/10 Ø8/10 Ø8/10 

4 25x50 2 Ø14 3Ø14 - - - - 2Ø12 Ø8/10 Ø8/10 Ø8/10 

5 25x50 2 Ø14 3Ø14 - - 2Ø18 - 2Ø12 Ø8/10 Ø8/10 Ø8/10 

6 25x50 2 Ø14 3Ø14 2Ø18 - 2Ø18 - - Ø8/10 Ø8/10 Ø8/10 

7 25x50 2 Ø14 3Ø14 2Ø20 - 2Ø20 - 2Ø12 Ø8/10 Ø8/10 Ø8/10 

8 25x50 2 Ø14 3Ø14 2Ø18 - - - 2Ø12 Ø8/10 Ø8/10 Ø8/10 

9 25x50 2 Ø14 3Ø14 - - 2Ø18 - - Ø8/10 Ø8/10 Ø8/10 

10 25x50 2 Ø14 3Ø14 2Ø18 - 2Ø18 - 2Ø12 Ø8/10 Ø8/10 Ø8/10 

11 25x50 2 Ø14 3Ø14 2Ø18 - 2Ø18 - 2Ø12 Ø8/10 Ø8/10 Ø8/10 

12 25x50 2 Ø16 3Ø16 3Ø20 - - - - Ø8/10 Ø8/10 Ø8/10 

13 25x50 2 Ø14 3Ø14 - - 2Ø18 - 2Ø12 Ø8/10 Ø8/10 Ø8/10 

14 25x50 2 Ø14 3Ø14 2Ø18 - - - 2Ø12 Ø8/10 Ø8/10 Ø8/10 

15 25x50 2 Ø14 3Ø14 - - 2Ø18 - 2Ø12 Ø8/10 Ø8/10 Ø8/10 

16 25x50 2 Ø14 3Ø14 2Ø18 - 2Ø20 1Ø14 2Ø12 Ø8/10 Ø8/10 Ø8/10 

TABLE 6.13 2-STOREY RC BUILDING. REINFORCEMENT DETAILS OF THE BEAMS. STOREY 1 AND 2. 

Footing 

ID 

Dimensions 

(cm) 

Height 

(cm) 

Rebars  

X-axis 

Rebars  

Y-axis 

1 125x150 50 Ø12/15 Ø12/15 

2 125x150 50 Ø12/15 Ø12/15 

3 125x150 50 Ø12/15 Ø12/15 

4 125x200 50 Ø12/15 Ø12/15 

5 175x125 50 Ø12/15 Ø12/15 

6 125x175 50 Ø12/15 Ø12/15 

7 125x200 50 Ø12/15 Ø12/15 

8 200x125 50 Ø12/15 Ø12/15 

9 300x275 50 Ø12/15 Ø12/15 

10 125x150 50 Ø12/15 Ø12/15 

11 225x125 50 Ø12/15 Ø12/15 

TABLE 6.14 2-STOREY RC BUILDING. REINFORCEMENT DETAILS OF THE FOOTING FOUNDATION. 
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FIGURE 6.43 2-STOREY RC BUILDING. FRAMING PLANS. 
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FIGURE 6.44 2-STOREY RC BUILDING. REINFORCEMENT DETAILS OF THE COLUMNS AND SHEAR WALLS. 

As it can be seen in Fig. 6.43, the building has an irregular shape and stiffness distribution 

resulting to a considerable deviation between the center of mass and the corresponding stiffness 

center along the Y axis. The position of the center of elastic rotation is governed by the shear 

wall core which is positioned at the lower boundary of the architectural plan view of the 

building, resulting to a considerable abnormality on the stiffness distribution. Shear walls K4, 

K7, K8 and K11 are positioned at the four boundary corners of the structure whereas the rest of 

the vertical structural members are considered to have standard column sections (Fig. 6.44). 

The height of both storeys is 3 m. Material details used in the design and analysis process are 

given in Table 6.15. 

Material 
Young Modulus 

(GPa) 

Hardening 

Modulus     

(GPa) 

Yielding Stress   

(MPa) 

Compressive 

Strength   (MPa) 

Poisson 

Ratio 

Concrete 30 - - 30 0,2 

Steel 210 2.1 500 - 0,3 

TABLE 6.15 2-STOREY RC BUILDING. MATERIAL DETAILS. 

α/α Model 
Hexahedral 

Elements 

Embedded 

Rebar 

Elements 

RC 

NBCFB 

Elements 

Total 

Number of 

Dof 

Dof 

Reduction 

(%) 

A Reduction Level 0 4,382 51,064 - 30,036 - 

B Reduction Level 1 3,398 41,235 44 21,762 27.55 

C Reduction Level 2 2,312 29,042 92 15,282 49.12 

D Reduction Level 3 - - 298 1,416 95.29 

TABLE 6.16 2-STROREY RC BUILDING. FE MESH DETAILS. 
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Table 6.16 contains the FE mesh details of the four FE models shown in Figs. 6.45 and 6.47. 

The unreduced model consists of 4,382 hexahedral elements and 51,064 embedded rebar 

elements. When the RL 1 and 2 correspond to a reduction of 27.55% and 49.12%, respectively, 

in the dof compared to the detailed model. It must be noted that all footing foundations are 

considered to be fixed. This is achieved by restraining all the nodes located at the external 

boundary of each footing (Fig. 6.48). 

 
FIGURE 6.45 2-STOREY RC BUILDING. HEXAHEDRAL FE MESH OF THE RL 0 MODEL. 

 
FIGURE 6.46 2-STOREY RC BUILDING. FE MESH OF THE REINFORCEMENT REBAR ELEMENTS. REDUCTION 

LEVEL 0. 
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Since the aim of this work is to 

illustrate the numerical behavior of 

the proposed modeling method 

under static loading, it was decided 

to compute the distribution of the 

horizontal load at each storey with 

the EC8 code
[251]

 and apply them 

along the Y axis direction of the 

structure through metallic plates that 

can be seen in Fig. 6.49. The 

assumptions made for the 

computation of the horizontal loads 

are given in Table 6.17, where it is 

assumed that the Type 1 response 

spectra is used, which corresponds 

to an anticipated surface-wave 

magnitude Ms which is greater than 

5.5 (high seismicity areas). 

As can be seen in Fig. 6.49, the 

horizontal load is applied through 

metallic plates which are positioned 

at the heads of the four structural 

members namely K8, K9, K10 and 

K11. The distribution of the 

horizontal load is performed 

according to the mass distribution of 

the structure along the Y axis 

direction in 10 load increments. 

The vertical distributed loads were 

assumed to be equal to 2 and 2.5 

kN/m
2
 for the dead and live loads, 

respectively. The self-weight of the 

structure was also taken into account 

by activating the self-weight 

command. It must be noted that the 

assumed concrete nominal weight 

was 25 kN/m
3
. For simplification 

reasons the difference between the 

reinforcement and concrete weights which derives from the volume that is occupied from the 

rebars is neglected. Nevertheless, it is evident that this numerical simplification does not alter 

the mass redistribution since the two stories of the RC building are of similar shapes. Their only 

 
FIGURE 6.47 2-STOREY RC BUILDING. FE MESH FOR DIFFERENT REDUCTION 

LEVELS. 
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difference is located at the stair case opening beside the east side of the shear wall of the lift 

(Fig. 6.43).  

 

FIGURE 6.48 2-STOREY RC BUILDING. BOUNDARY CONDITIONS. FIXED NODES ARE MARKED WITH A 

CYAN TRIANGLE. 

 
FIGURE 6.49 2-STOREY RC BUILDING. METALLIC PLATES FOR HORIZONTAL LOADING. 

Parameters of EC8 Value 

Ground Type D 

TB 0.2 sec 

TC 0.8 sec 

S 1.35 

q 3.3 

Acceleration    0.24g 

Importance Class IΙ 

Importance Factor    1 

TABLE 6.17 2-STOREY RC BUILDING. EC8 PARAMETERS. 

In Fig. 6.50 the horizontal displacement of the top floor is plotted at each load increment as it is 

shown in the corresponding figure. For all model cases, the horizontal displacement along the Y 

direction is plotted (a node located on the head of the column K2). It is obvious that all FE 

models appear to have almost identical stiffness at the first loading increment, thus the building 

is governed by bending deformations. 
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FIGURE 6.50 2-STOREY RC BUILDING. PREDICTED P-δ CURVES. 

As it is shown in Fig. 6.51, the first cracks appear at several structural members of the building 

which have a horizontal orientation confirming their flexural nature. The first cracks appear at 

the base of shear walls (K7, K4, K9) that have an orientation parallel to the Y axis which bear a 

significant part of the seismic forces. Due to their structural form, they attract larger values of 

the applied load and therefore they are the first to enter the nonlinear state. It is worth noting 

that columns K2 and K6, which have an orthogonal section of 25x75 cm and their orientation is 

also parallel to the Y axis, appear to deform at their base and develop similar cracks to the 

corresponding shear walls (Fig. 6.51). In addition to that, beams that are connected to these 

shear walls appear to crack near their end-sections. This is attributed to the deformations that 

are induced at the softer beam sectional areas of the joint since the corresponding stiffness of 

the shear wall is greater. This illustrates the importance of 3D detailed modeling since the 

realistic crack pattern and nonlinear behavior of RC structures can be predicted for a given 

loading set, thus providing the necessary data for the seismic assessment of this type of 

structures and the required information in order to guide the designing process into seismic 

resistant structures. 

The computed P-δ curves indicate that for a load level of 4,800 kN the initiation of rebar 

yielding occurs since the slope of the inelastic branch decreases significantly. The same load 

level was predicted by all three FE models which use the detailed modeling in order to 

discretize and model the shear dominated structural members and sections of the structure (RL 

0, 1 and 2). It is evident that shear dominated structural members and sections control the 

overall nonlinear behavior of this particular RC building. Fig. 6.52 shows the predicted crack 

pattern for this load level, where it can be observed that the cracking is excessive especially in 

the shear walls and the joints of the structure. Furthermore, it can be seen that many cracks 

located in the shear walls are inclined, underling the shear deformation effect on the 3D stress 

state of concrete. 
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FIGURE 6.51 2-STOREY RC BUILDING. CRACK INITIATION OF THE UNREDUCED FE MODEL. 

The failure of the 2-storey RC building is initiated when the load level exceeds the shear base 

load of 7,200 kN where the tension rebars, located at the shear wall of the lift, failed initializing 

significant internal force redistributions leading to additional reinforcement failures where 

eventually the structure was unable to bear the additional external horizontal load. Fig. 6.53 

shows the predicted crack pattern of the structure prior to failure, where it can be observed that 

the number of crack openings did not increase significantly corresponding to the crack pattern 

given in Fig. 6.52 (initiation of rebar yielding) where the elongation of the cracks can be 

observed. 
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FIGURE 6.52 2-STOREY RC BUILDING. PREDICTED CRACK PATTERN OF THE UNREDUCED FE MODEL. 

SHEAR BASE 4,800 KN. 

A correlation of the predicted crack patterns between the RL 0, 1 and 2 models, is shown in 

Figs. 6.54 and 6.55 where the crack patterns for different load levels are shown. As can be seen, 

there is a good agreement between the predicted crack patterns illustrating that hybrid models 

have the ability of retaining the required accuracy and at the same time reducing significantly 

the computational cost. The von Mises strain contours in the hexahedral elements are given in 

Fig. 6.56 prior to failure. It is evident that both hybrid and unreduced FE models lead to similar 

predictions of the structure nonlinear behavior thus underlining the superiority of hybrid 

modeling compared to the beam model in capturing significant local phenomena that affect the 

overall response of the structure.  
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FIGURE 6.53 2-STOREY RC BUILDING. PREDICTED CRACK PATTERN OF THE UNREDUCED FE MODEL 

PRIOR TO FAILURE. 

The CPU times required by the four FE models are given in Table 6.18 where the 

computational efficiency of the developed FEA code can be seen. The solution time for 9 load 

increments for the unreduced model is 95 min and the corresponding reduction in CPU times, 

when using HYMOD models, verifies the previous findings. 
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a/a Model 

Number of 

Load 
Increments 

CPU 

Time 
(min) 

Reduction 

in CPU 

Time    

(%) 

Rebar 

Yield at 
(kN) 

A Reduction Level 0 9 95 - 4,800 

B Reduction Level 1 9 65 31.57 4,800 

C Reduction Level 2 9 30 66.67 4,800 

D Reduction Level 3 25 - - 5,760 

TABLE 6.18 2-STOREY RC BUILDING. CPU TIMES FOR THE SOLUTION PROCEDURE. 

 
FIGURE 6.54 2-STOREY RC BUILDING. INITIATION OF CRACK FOR DIFFERENT FE MODELS. 
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FIGURE 6.55 2-STOREY RC BUILDING. CRACK PATTERN PRIOR TO FAILURE FOR DIFFERENT FE MODELS. 
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FIGURE 6.56 2-STOREY RC BUILDING. VON MISES STRAIN CONTOUR PRIOR TO FAILURE FOR DIFFERENT 

FE MODELS. 
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Chapter 7   Overview of the ReConAn FEA Software 
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7.1   Overview and Programming Language 

During the development of ReConAn FEA software (Reinforced Concrete Analysis), the 

necessity for the creation of a more general in-core object-oriented analysis code emerged. This 

necessity was emerged from the fact that FEA codes should be easily extendable and 

maintained (reusability). In addition to that, from the developers’ point of view, in order to be 

able to control the numerical procedures and to have the ability to check the results produced 

during the analysis phase, the structure of the code must have object oriented architecture. 

Object-Oriented Programming (OOP) can trace its roots to the 1960s. As hardware and 

software became increasingly complex, the quality was often overlooked. Researchers studied 

ways in which software quality could be maintained. OOP was deployed in part as an attempt to 

address this problem by strongly emphasizing discrete units of programming logic and re-

usability in software. Computer programming methodology focuses on data rather than 

processes, with programs composed of self-sufficient modules (objects) containing all the 

information needed within its own data structure for manipulation. OOP may be seen as a 

collection of cooperating objects, as opposed to a traditional view in which a program may be 

seen as a group of tasks to compute ("subroutines"). In OOP, each object is capable of receiving 

messages, processing data, and sending messages to other objects. Each object can be viewed as 

an independent little machine with a distinct role or responsibility. The actions or "operators" 

on the objects are closely associated with the object. For example, in OOP, the data structures 

tend to carry their own operators with them (or at least "inherit" them from a similar object or 

"class"). The traditional approach tends to view and consider data and behavior separately. 

The development of an OOP type FEA code has many advantages such as the control of the 

arithmetic flow which is a rather difficult task as the code is growing and the enrichment of the 

code with new Finite Elements, Analysis Procedures, Solvers and other numerical tools that can 

be encapsulated very fast (extendibility). Taking under consideration the above code 

development strategy, ReConAn adopted this philosophy and has all the previously mentioned 

abilities. The outcome from the adoption of this code architectural type is the evolution of 

ReConAn into a general FEA program that is able to use several Finite Elements, Material 

Models and Solution Procedures. 

Object oriented format requires the use of Data Types where, for every element, material, 

property, solution variables, etc., we create a different Data Type. With this approach, each FE 

has its own property type that tells us which material model will be used during the solution 

procedure and its characteristics. Therefore, two different types of elements can use the same 

material model or vice-versa. Material variables have their own data types which are used to 

store data that refer to material characteristics like the Young’s Modulus, Poisson Ratio, etc. 

Property data type contain information about each element and its characteristics concerning the 

material model that an element is going to use during the analysis procedure, the Integration 

Method that the stiffness procedure will use for the stiffness matrix creation etc. Taking this 

philosophy of code format under consideration, the input data file must be also grouped into 

data blocks. 
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Programming the FE method may be considered by many users as a straight forward job and it 

does not require any sophisticated code language. In reality this is partially true. Even the 

smallest in size FE simulations require a certain number of arithmetic operations between two 

dimensional matrices and arrays. These matrix operations require a certain amount of time in 

order to be carried out, depending on the number of unknowns at hand. This means, the bigger a 

FEM model is the more CPU time and virtual memory is required to be solved. Since 

commercial software use finite element modeling and there is the need, during the designing 

process, for more accurate models, more refined FE models are frequently used. CPU hardware 

limitations in performing large scale calculations were the main barriers for limitations on the 

size of the FE models. This need for large-scale simulations created advances in parallel 

processing and in optimum dynamic usage of CPU hardware abilities through optimum code 

programming. Which advance should be adopted in the FEM case? The answer is not straight 

forward. The optimum choice is a combination of these two advances in order to have optimum 

code structure and architecture which will lead to optimum performance. 

To have an optimum code programming structure, first of all we must choose an appropriate 

programming language which will provide us the necessary tools in order to create an optimally 

designed code for the problems at hand. Taking under consideration the above remarks (about 

the FEM arithmetical nature), one could easily say that we need a programming language which 

will be able to dynamically redistribute CPU virtual memory and handle optimally large 

arithmetic matrix operations.  

In computer science, dynamic memory allocation is the allocation of memory storage for use in 

a computer program during its runtime. It can be seen also as a way of distributing ownership of 

limited memory resources among many pieces of data and code. Dynamically allocated 

memory exists until it is released either explicitly by the programmer, exiting a block, or by the 

garbage collector. This is in contrast to static memory allocation, which has a fixed duration. It 

is said that an object that is allocated has a dynamic lifetime (allocate - deallocate). 

Programming languages like Java, Visual Basic, Pascal, Matlab, Apple etc. have the ability of 

memory dynamic allocation and OOP but they are deficient in speed due to their inability in 

handling large arithmetic operations. This problem immersed from the fact that the creators of 

these programming languages in order to make them more user friendly they included many 

invisible intermediate operations that reduced significantly the operations speed during the 

runtime. The best choices for our problem at hand are C++ (or C#) and Fortran 90/95. 

C++ and C# are widely used by many developers but Fortran 77 and the new Fortran 90/95 due 

to its simpler language style always dominated in the scientific research field in terms of 

preference. Fortran 77 is considered to be rather “old” and antiquated since the new features of 

Fortran 90/95 language were introduced.  

The much delayed successor to FORTRAN 77, informally known as Fortran 90, was finally 

released as an ISO standard in 1991 and an ANSI Standard in 1992. This major revision added 

many new features to reflect the significant changes in programming practice that had evolved 

since the 1978 standard: 

 Free-form source input, also with lowercase Fortran keywords 
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 Identifiers up to 31 characters in length 

 Inline comments 

 Ability to operate on arrays (or array sections) as a whole, thus greatly simplifying math 

and engineering computations.  

 whole, partial and masked array assignment statements and array expressions, 

such as   X(1:N)=R(1:N)*COS(A(1:N))) 

 WHERE statement for selective array assignment 

 array-valued constants and expressions, 

 user-defined array-valued functions and array constructors. 

 RECURSIVE procedures 

 Modules, to group related procedures and data together making them available to other 

program units, including the capability to limit the accessibility only to specific parts of 

the module. 

 A vastly improved argument-passing mechanism, allowing interfaces to be checked at 

compile time 

 User-written interfaces for generic procedures 

 Operator overloading 

 Derived/abstract data types 

 New data type declaration syntax, to specify the data type and other attributes of 

variables 

 Dynamic memory allocation by means of the ALLOCATABLE attribute and the 

ALLOCATE and DEALLOCATE statements 

 POINTER attribute, pointer assignment and NULLIFY statement to facilitate the 

creation and manipulation of dynamic data structures 

 Structured looping constructs, with an END DO statement for loop termination, and 

EXIT and CYCLE statements for "breaking out" of normal DO loop iterations in an 

orderly way 

 SELECT . . . CASE construct for multi-way selection 

 Portable specification of numerical precision under the user's control 

 New and enhanced intrinsic procedures. 

Unlike the previous revision, Fortran 90 did not delete any features. Any standard-conforming 

FORTRAN 77 program is also standard-conforming under Fortran 90 and either standard 

should be usable to define its behavior. 

A small set of features were identified as "obsolescent" and expected to be removed in a future 

standard (Table 7.1). 

Fortran 95 was a minor revision, mostly to resolve some outstanding issues from the Fortran 90 

standard. Nevertheless, Fortran 95 also added a number of extensions, notably from the High 

Performance Fortran specification: 

 FORALL and nested WHERE constructs to aid vectorization, 

 User-defined PURE and ELEMENTAL procedures, 

 Pointer initialization and structure default initialization. 

 

 

http://en.wikipedia.org/wiki/High_Performance_Fortran
http://en.wikipedia.org/wiki/High_Performance_Fortran
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Obsolescent feature Example Status / 95 

Arithmetic IF-statement 
IF (X) 10, 20, 30 

 

Non-integer DO parameters or control 

variables 

DO 9 X= 1.7, 1.6, -0.1 
Deleted 

Shared DO-loop termination or 

termination with a statement 

other than END DO or CONTINUE   

   DO 9 J= 1, 10 

   DO 9 K= 1, 10 

9  L= J + K  

Branching to END IF 

from outside a block 

66  GO TO 77 ; . . . 

    IF (E) THEN ;     . . . 

77  END IF 

Deleted 

Alternate return 
CALL SUBR( X, Y *100, *200 ) 

 

PAUSE statement 
PAUSE 600 

Deleted 

ASSIGN statement 

  and assigned GO TO statement 

100  . . .  

ASSIGN 100 TO H 

. . . 

GO TO H . . . 

Deleted 

Assigned FORMAT specifiers 
ASSIGN F TO 606 

Deleted 

H edit descriptors 
606 FORMAT ( 9H1GOODBYE. ) 

Deleted 

Computed GO TO statement 
GO TO (10, 20, 30, 40), index 

(Obso.) 

Statement functions 
FOIL( X, Y )= X**2 + 2*X*Y + 

Y**2 (Obso.) 

DATA statements 

  among executable statements 

X= 27.3 

DATA A, B, C / 5.0, 12.0. 13.0 

/. . . 

(Obso.) 

CHARACTER* form of CHARACTER 

declaration 

CHARACTER*8 STRING   ! Use 

CHARACTER(8) (Obso.) 

Assumed character length functions 
  

Fixed form source code 

* Column 1 contains * or ! or C for 

comments. 

C       Column 6 for continuation.  

TABLE 7.1 FORTRAN 77 OBSOLESCENT FEATURES. 

A number of intrinsic functions were extended (i.e. a dim argument was added to the maxloc 

intrinsic). Several features noted in Fortran 90 to be deprecated were removed from Fortran 95: 
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 REAL and DOUBLE PRECISION DO variables, 

 Branching to an END IF statement from outside its block, 

 PAUSE statement, 

 ASSIGN and assigned GOTO statement and assigned format specifiers, 

 H edit descriptor. 

An important supplement to Fortran 95 was the ISO technical report TR-15581: Enhanced Data 

Type Facilities, informally known as the Allocatable TR. This specification defined enhanced 

the use of ALLOCATABLE arrays, prior to the availability of fully Fortran 2003-compliant 

Fortran compilers. Such uses include ALLOCATABLE arrays as derived type components, in 

procedure dummy argument lists and as function return values. ALLOCATABLE arrays are 

preferable to POINTER-based arrays because ALLOCATABLE arrays are guaranteed by 

Fortran 95 to be deallocated automatically when they go out of scope, eliminating the 

possibility of memory leakage. In addition, aliasing is not an issue for optimization of array 

references, allowing compilers to generate faster code than in the case of pointers. Another 

important supplement to Fortran 95 was the ISO technical report TR-15580: Floating-point 

exception handling, informally known as the IEEE TR. This specification defined support for 

IEEE floating-point arithmetic and floating point exception handling. 

do…enddo command Assignments and Pure Procedures 

do I = 1, iSize 

   raArray (I) = 2.d0 

   raArray (I) = raArray (I)+ abs(raArray (I) - 

      (raArray (I) * (-16.d0))) + 4.d0 * raArray (I) 

      – (raArray (I) **(1.d0/3.d0)) 

enddo 

raArray (1:iSize) = 2.d0 

raArray = raArray + abs(raArray - (raArray 

   * (-16.d0))) + 4.d0 * raArray – 

   (raArray**(1.d0/3.d0)) 

 

TABLE 7.2 EXAMPLE OF COMPACTING OUR SOURCE CODE. 

One of the most significant features that Fortran 90/95 introduced was the ability to use pure 

procedures and array assignments. For example if someone wants to allocate, initialize and 

contact some arithmetical operation with a real double precision array that has a size of iSize, 

then there are two ways of implementing this. The first way is by using the standard do … 

enddo format and the second is by using assignments and pure procedures (Table 7.2). 

The first thing that comes to our attention just by looking at these two code formats is that when 

assignments and pure procedures are used the code becomes automatically more compact and it 

requires half of the lines than the do…enddo format. The second thing that we achieve by using 

these new features is that the array elements assignment utilizes the compiler for optimum 

compilation during the build procedure a feature not available when the standard do…enddo 

programming format is used. The third advantage when using this programming format is that 

there is no need for creating additional subroutines for initializing matrices (set to zero any type 

of matrix or array). 
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Another choice that the developer has to make is that of choosing the appropriate Compiler that 

will be used in order to convert the text written code into machine language. Since we chose as 

our programming language Fortran 90/95, the choices reduce to the latest and more advanced 

Fortran Compiler. 

Intel® Fortran Compiler Professional Edition offers the best support for creating multi-threaded 

applications. Only the Professional Edition offers the breadth of advanced optimization, multi-

threading, and processor support that includes automatic processor dispatch, vectorization, 

auto-parallelization, OpenMP, data prefetching, loop unrolling, substantial Fortran 2003 

support and an optimized math processing library. The Professional Edition combines a high 

performance compiler, which now includes support for Debian and Ubuntu, with Intel® Math 

Kernel Library (Intel® MKL). While this library is available separately, the Professional 

Edition creates a strong foundation for building robust, high performance parallel code. 

Finally, since we’ve made all the choices concerning the programming language and 

compile/build procedures, we need to choose a suitable developing program which will provide 

the necessary developing and debugging tools to make the developing task easier and as 

controllable as possible. The most advanced developing studio that uses .NET technology is 

considered to be Visual Studio 2008 Professional Edition. 

Visual Studio 2008 Professional Edition is a comprehensive set of tools that accelerates the 

process of turning the developer’s code into numerically robust programs. Visual Studio 2008 

Professional Edition was engineered to support development projects that target the Web 

(including ASP.NET AJAX), Windows Vista, Windows Server 2008, 2007 Microsoft Office 

system, SQL Server 2008 and Windows Mobile devices. Visual Studio 2008 Professional 

Edition provides the integrated toolset for addressing all the developer’s needs by providing a 

superset of the functionality available in Visual Studio 2008 Standard Edition. In addition to 

that, Visual Studio 2008 Professional Edition can create Fortran console applications. This is 

done by simply installing the Intel® Fortran Compiler Professional Edition after the installation 

of Visual Studio 2008 Professional Edition. By doing so, Visual Studio 2008 Professional 

Edition adds in its Project Types an additional one named Intel(R) Fortran.  

Summarizing the above features, the developmental tools of ReConAn FEA code are: 

 Programming Language: Fortran 90/95 

 Compiler: Intel® Fortran Compiler Professional Edition v11 

 Development Studio: Visual Studio 2008 Professional Edition 

 

7.2   Graphical Environment 

Visual illustration of the FE model and the corresponding results after the completion of an 

analysis, is one of the most essential features of a FEA code for the following basic reasons: 

1. Create and check the geometry of the FE model. 

2. Set or modify the material and analysis parameters. 

3. Represent visually the output data in order to verify the correctness of the computed 

results during the analysis procedure. 
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When dealing with relatively large models, the use of user friendly post-processing software is 

imperative for assessing the quality of the FE models. Many researchers use text type input file 

to provide the necessary information regarding the FE geometry, material properties and 

analysis details. Furthermore, the usual output that results from this type of analysis is 

restrained to monitoring the displacement along a specific direction of a node. It is obvious that 

this leads to many uncertainties which increase as the FE increases in terms of the dof number. 

 
FIGURE 7.1 MAIN WINDOW OF FEMAP

[91]
 FEA WITH SMAD CUSTOM PROPERTIES. 

For the above reasons, ReConAn FEA has been supplemented with the ability of reading the 

required FE geometry and features from a Femap
[91]

 neutral file and exporting its output data in 

a text file which can be imported in Femap
[91]

 post-processing software utilizing the user with 

the ability of illustrating visually the deformations and several contour options of the resulted 

stresses and strains. Additionally, ReConAn Eye post-processing software was developed 

during this Dissertation so as to visualize the predicted crack patterns when the smeared 

modeling command was activated. This software is OpenGL based and has the ability of 

animating the evolution of cracking during the load history analysis of a RC structure. The 

necessity of developing such a tool emerges from the fact that Femap
[91]

 post-processing 

software does not provide the ability of crack representation, thus all figures of this research 

work containing crack patterns were taken from ReConAn Eye post-processing software. 

Since Femap pre-processing software does not provide the user with the necessary tools for 

entering custom made properties regarding several features of the FE models (like the number 

of fibers per control section in the case of the NBCFB element), the SMAD Custom properties 

software (Fig. 7.1) was used for providing any additional parameters required by the ReConAn 

solver for the assemblage and solution of the numerical problem at hand. The SMAD Custom 
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properties software was developed by G. Stavroulakis during his Ph.D. thesis, which deals with 

soil-structure interaction problems under seismic loading with the use of the FEM. 

 

7.3   Automation Tools 

Civil engineering commercial software usually provides user-friendly pre-processing 

environment that enables the user to create the geometry of their structures and thereafter 

automatically identify the nature of each structural member given its geometry and its position 

inside the model where the discretization is performed. This ability derives from the fact that 

civil engineering commercial softwares use beam elements in order to model the structural 

members of the structures where the discretization process is performed without the need of the 

implementation of any sophisticated numerical techniques.  

In the case of HYMOD, this task cannot be implemented in a straightforward manner since the 

requirement of recognizing the geometrical features of each structural member of a RC 

structure and choosing the proper FE model to discretize it, is a rather computationally 

complicated CAD procedure. Achieving such a task, it is necessary to use advanced 

programming techniques and given the fact that this was not a goal of this work, standard CAD 

tools were used during the creation of each hybrid model. Nevertheless, in order to save 

significant amount of time in the process of the creation of the FE mesh of a structure, program 

file (prg) was used with the aim of developing simple scripts in Femap, which create the solid 

volumes of different types of joints given their geometrical characteristics. These joint volumes 

are shown in Fig. 7.2, where the required geometrical features are given. Since one of the most 

complex geometries to mesh in a building is the areas where columns and beams intersect, the 

three types of joints corresponding to different cases of beam-column connections are 

constructed. 

The Program File Dockable Pane (Fig. 7.3) allows you to dynamically record any number of 

FEMAP menu, toolbar, and keyboard commands in sequence to create "macros". Once a 

program file has been recorded, it can be "played back" as a "macro" inside FEMAP to perform 

a customized series of commands to perform a specific action or achieve a particular goal.  

When the Record button in the Program File Dockable Pane is on, the commands will be 

recorded in the main text window of the Program File Pane in the order they are chosen in 

FEMAP user interface. Once completed, the record button is toggled to off and the text in the 

window can be saved as a Program File (either a *.prg file or a *.pro file which saves the text in 

Rich Text Format).  



Chapter 7 Athens, Jan 2011 

 

Page 232 of 272 
 

 
FIGURE 7.2 DIFFERENT TYPES OF 3D CROSS SECTIONS. 

 
FIGURE 7.3 PROGRAM FILE DOCKABLE PANE. 

In their simplest form, FEMAP Program Files are essentially ASCII text files which instruct 

FEMAP to perform certain commands based on the syntax of the ASCII file. This FEMAP 

specific syntax includes unique numbered identifiers representing every FEMAP command, 

normal keystrokes (for typing values and text), and special keystrokes used to perform different 

tasks in specific dialog boxes (such as pushing buttons, choosing selection methods, and 

designating specific fields to activate). You can add logic commands, define and manipulate 

variables, stop and prompt a user for input, or send messages to the Messages Pane.  

There are three basic types of data that will be placed in program files created with the Program 

File Pane. The first type is unique numbered identifiers representing every FEMAP command. 

These identifiers tell FEMAP which menu, toolbar, or keyboard shortcut commands to use 

while the program file is running. The second is keystroke information that mimics what you 
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would type from the keyboard if you were performing the operation manually (this is how 

FEMAP knows which buttons to push, methods to select, and fields to activate). When you run 

a program file, this text essentially "pushes the keys" in dialog boxes for you to run FEMAP 

commands. You may also want to add other program file commands. These commands do not 

execute FEMAP commands, rather, they are commands themselves which control the flow of 

the program file, work with variables, print messages, or ask for input. 

Following, the program file for the case of Joint Gama is given, where the geometric features of 

the joints are requested in order to create the points, surfaces and volumes of this Joint type. 

 

PRG file for the case of Joint Gamma 

$ Joint Gamma    c12 > b12      dist1 <= c12 - b12 

$ a/a  of connection 

#MSG("Type of Joint:  Gamma") 

 

$ coord of Reference Point 

#ASK(rX,"rX coord of Reference Point") 

#ASK(rY,"rY coord of Reference Point") 

#ASK(rZ,"rZ coord of Reference Point") 

 

$ Gamma Connection Type 2 

   #ASK(cL1,"Give Column cL1 Length") 

   #ASK(c11,"Give Column c11 Width") 

   #ASK(c12,"Give Column c12 Width") 

   #ASK(bL1,"Give Beam bL1 Length") 

   #ASK(b11,"Give Beam b11 Height") 

   #ASK(b12,"Give Beam b12 Width") 

   #ASK(dist1,"Give dist1") 

   #ASK(n,"Give StartingPointID 100-999") 

 

 $ Gamma Connection Can have n28 maximum number of points) 

   #DEF(n6,!n+100+6) 
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   #DEF(n7,!n+100+7) 

   #DEF(n13,!n+100+13) 

   #DEF(n14,!n+100+14) 

   #DEF(n15,!n+100+15) 

   #DEF(n16,!n+100+16) 

   #DEF(n21,!n+100+21) 

   #DEF(n22,!n+100+22) 

   #DEF(n23,!n+100+23) 

   #DEF(n24,!n+100+24) 

   #DEF(n26,!n+100+26) 

   #DEF(n27,!n+100+27) 

 

   #DELAY(1) 

  $ Case 1: Width of Column Equals to Beams Width 

   #DEF(rZZ,!rZ+!cL1) 

   #DEF(rXX,!rX+!c11) 

   #DEF(rYY,!rY+!c12) 

   #SILENT(1) 

 

   {eP}<A-I>!n6<A-X> !rXX <A-Y> !rY   <A-Z> !rZZ <OK><Esc> 

   {eP}<A-I>!n7<A-X> !rXX <A-Y> !rYY <A-Z> !rZZ <OK><Esc> 

 

   {eP}<A-I>!n13<A-X> !rX   <A-Y> !rY   <A-Z> !rZZ-!b11 <OK><Esc> 

   {eP}<A-I>!n14<A-X> !rXX <A-Y> !rY   <A-Z> !rZZ-!b11 <OK><Esc> 

   {eP}<A-I>!n15<A-X> !rXX <A-Y> !rYY <A-Z> !rZZ-!b11 <OK><Esc> 

   {eP}<A-I>!n16<A-X> !rX   <A-Y> !rYY <A-Z> !rZZ-!b11 <OK><Esc> 

 

   {eP}<A-I>!n21<A-X> !rX  <A-Y> !rYY-!b12-!dist1 <A-Z> !rZZ-!b11 <OK><Esc> 

   {eP}<A-I>!n22<A-X> !rXX <A-Y> !rYY-!b12-!dist1 <A-Z> !rZZ-!b11 <OK><Esc> 



Chapter 7 Athens, Jan 2011 

 

Page 235 of 272 
 

   {eP}<A-I>!n23<A-X> !rXX <A-Y> !rYY-!dist1 <A-Z> !rZZ-!b11          <OK><Esc> 

   {eP}<A-I>!n24<A-X> !rX  <A-Y> !rYY-!dist1 <A-Z> !rZZ-!b11         <OK><Esc> 

 

   {eP}<A-I>!n26<A-X> !rXX <A-Y> !rYY-!b12-!dist1 <A-Z> !rZZ          <OK><Esc> 

   {eP}<A-I>!n27<A-X> !rXX <A-Y> !rYY-!dist1      <A-Z> !rZZ         <OK><Esc> 

 

   #DEF(ns1,!n*500-500+1) 

   #DEF(ns2,!n*500-500+2) 

   #DEF(ns3,!n*500-500+3) 

   #DEF(ns4,!n*500-500+4) 

  $ Draw Surface 

   {efC} <A-Y>YPT(!n13)<A-Z>ZPT(!n13)<A-X>XPT(!n13)<A-P><@11003>!ns1<OK> <OK><A-

Y>YPT(!n14)<A-Z>ZPT(!n14)<A-X>XPT(!n14)<OK> <A-Y>YPT(!n22)<A-Z>ZPT(!n22)<A-X>XPT(!n22)  

<OK><A-Y>YPT(!n21)<A-Z>ZPT(!n21)<A-X>XPT(!n21)<OK><Esc> 

   {efC} <A-Y>YPT(!n21)<A-Z>ZPT(!n21)<A-X>XPT(!n21)<A-P><@11003>!ns2<OK> <OK><A-

Y>YPT(!n22)<A-Z>ZPT(!n22)<A-X>XPT(!n22)<OK> <A-Y>YPT(!n23)<A-Z>ZPT(!n23)<A-X>XPT(!n23)         

<OK><A-Y>YPT(!n24)<A-Z>ZPT(!n24)<A-X>XPT(!n24)<OK><Esc> 

   {efC} <A-Y>YPT(!n23)<A-Z>ZPT(!n23)<A-X>XPT(!n23)<A-P><@11003>!ns3<OK> <OK><A-

Y>YPT(!n15)<A-Z>ZPT(!n15)<A-X>XPT(!n15)<OK> <A-Y>YPT(!n16)<A-Z>ZPT(!n16)<A-X>XPT(!n16)  

<OK><A-Y>YPT(!n24)<A-Z>ZPT(!n24)<A-X>XPT(!n24)<OK><Esc> 

   {efC} <A-Y>YPT(!n22)<A-Z>ZPT(!n22)<A-X>XPT(!n22)<A-P><@11003>!ns4<OK> <OK><A-

Y>YPT(!n23)<A-Z>ZPT(!n23)<A-X>XPT(!n23)<OK> <A-Y>YPT(!n27)<A-Z>ZPT(!n27)<A-X>XPT(!n27)         

<OK><A-Y>YPT(!n26)<A-Z>ZPT(!n26)<A-X>XPT(!n26)<OK><Esc> 

  $ Create Solids ..... Geometry Solid Extrude 

   #SILENT(1) 

   #DEF(len1,!cL1-!b11) 

   #DEF(len2,!b11) 

   #DEF(len3,!bL1) 

   {eSu}<@14001><PUSH><@12004><PUSH>!ns1<OK><@14101><PUSH><@12002><PUSH><A-

M>L<@10011>0<@10012>0<@10013>0<@10021>0<@10022>0<@10023>-

1<OK><@10501>!len1<OK><Esc> 

   {eSu}<@14001><PUSH><@12004><PUSH>!ns2<OK><@14101><PUSH><@12002><PUSH><A-

M>L<@10011>0<@10012>0<@10013>0<@10021>0<@10022>0<@10023>-

1<OK><@10501>!len1<OK><Esc> 
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   {eSu}<@14001><PUSH><@12004><PUSH>!ns3<OK><@14101><PUSH><@12002><PUSH><A-

M>L<@10011>0<@10012>0<@10013>0<@10021>0<@10022>0<@10023>-

1<OK><@10501>!len1<OK><Esc> 

   {eSu}<@14001><PUSH><@12004><PUSH>!ns1<OK><@14101><PUSH><@12002><PUSH><A-

M>L<@10011>0<@10012>0<@10013>0<@10021>0<@10022>0<@10023>1<OK><@10501>!len2<OK><

Esc> 

   {eSu}<@14001><PUSH><@12004><PUSH>!ns2<OK><@14101><PUSH><@12002><PUSH><A-

M>L<@10011>0<@10012>0<@10013>0<@10021>0<@10022>0<@10023>1<OK><@10501>!len2<OK><

Esc> 

   {eSu}<@14001><PUSH><@12004><PUSH>!ns3<OK><@14101><PUSH><@12002><PUSH><A-

M>L<@10011>0<@10012>0<@10013>0<@10021>0<@10022>0<@10023>1<OK><@10501>!len2<OK><

Esc> 

   {eSu}<@14001><PUSH><@12004><PUSH>!ns4<OK><@14101><PUSH><@12002><PUSH><A-

M>L<@10011>-

1<@10012>0<@10013>0<@10021>0<@10022>0<@10023>0<OK><@10501>!len3<OK><Esc> 

  $ View Autoscale 

    {VA} 

 

#MSG("3D Solids Designed Successfully") 

#EXIT() 

# (6969) 

 

$ File Program Stop 

By entering the following parameters (rX = rY = rZ = 0, cL1 = 1.5, c11 = 0.5, c12 = 0.5, bL1 

= 1, b11 = 0.5, b12 = 0.3, dist1 = 0.1) when executing the above code, the resulted geometry 

of the corresponding joint volume is that shown of Fig. 7.4a.  

It is obvious that automation tools are significant when dealing with full-scale RC structures, 

which consists of large numbers of structural members and joints. The procedure of creating the 

geometry and generating the mesh of a FE model is a time consuming task that undermines the 

risk of possible omissions since it’s performed manually. This task becomes even more 

complicated when the FE model consists of embedded rebar elements for the reinforcement 

modeling. Therefore, the need of a fully automated CAD tool for generating 3D complex 

meshing for HYMOD models through the use of simple geometrical features and standard 

reinforcement configuration is essential. 
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(A)                                                                 (B)                                                                       (C) 

FIGURE 7.4 JOINT GAMMA. (A) SOLID GEOMETRY; (B) MESH ATTRIBUTE ON SOLIDS; (C) HEXAHEDRAL 

MESH. 
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8.1   Original Contribution 

In this section the original contributions of this research work are summarized in the following 

Table. 

a/a Description 

1 A computationally efficient flexibility-based fiber element was developed (NBCFB 

element). The originality of this element lies in the computational implementation, 

which exhibits remarkable computational efficiency when modeling RC and Steel 

structures. It is also proved that the natural method of J. Argyris improves the 

computational efficiency of the high performance beam-column fiber FE. 

2 A general computationally robust and efficient mesh generation procedure was 

proposed for the allocation of embedded rebar elements inside the hexahedral 

elements used for modeling 3D concrete structures. The proposed method 

overcomes computational problems, thus it can be applied in the mesh generation 

procedure for the allocation of the embedded rebar elements for any structural 

geometry and scale. Even for real-scale structures with thousands of embedded 

rebar elements, the proposed method manages to allocate in a minimal CPU time 

the embedded rebar elements. 

3 A numerically improved concrete material model is proposed, which treats the 

concrete cracking with the smeared crack approach and manages to minimize the 

numerical instabilities induced due to the unbalanced forces released in the 

numerical system during the structural state determination. For the first time, 3D 

smeared crack  concrete material model was successfully incorporated in an 8-

noded isoparametric hexahedral element. 

4 A new modeling approach was proposed for the embedded rebar elements. A high 

performance beam-column fiber element was used for modeling the embedded 

rebar element, which is force-based, incorporates the natural method and is 

kinematically connected to the embedding hexahedral element. The proposed 

modeling method for the embedded rebar elements proved to be numerically 

robust, computationally efficient and induces, through its numerical formulation, 

additional stability in the nonlinear solution procedure. 

5 A new 3D detailed modeling method is proposed which uses the isoparametric 8-

noded hexahedral element which treats cracking with the smeared crack approach 

and models the embedded rebar elements with the NBCFB element. The 

verification of the proposed modeling method was performed through 

computations with a set of experimental data found in the literature. 
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6 A hybrid FE model which use 1D and 3D elements for the nonlinear modeling of RC 

structures was presented. The shear dominated structural members, that are 

characterized as critical regions, are modeled with 3D detailed models (hexahedral 

elements with embedded rebar elements where the smeared crack approach is 

adopted) and the rest of the structure is modeled with the RC NBCFB fiber element. 

This method was named as HYMOD and appears to be numerically robust and 

computationally efficient when implemented in real-scale RC structures. 

Moreover, different levels of reduction models to the initial 3D detailed model, 

were presented. Depending on the reduction demands that a FE model requires for 

the sufficient decrease of its dof, an appropriate reduced model may be 

implemented for the analysis of a RC structure. 

7 ReConAn is an object-oriented FEA software, which was developed during this 

research work and incorporates all the previously mentioned numerical features, 

techniques and methods. Its computational superiority, especially when dealing 

with 3D detailed FE modeling of RC structures, is verified through a number of 

demanding test examples. 

TABLE 8.1 LIST OF ORIGINAL CONTRIBUTIONS. 

 

8.2   Conclusions 

8.2.1   Natural Beam-Column Flexibility-Based Element 

A computationally robust and efficient fiber NBCFB element was developed which exhibits 

both accuracy and numerical stability. The numerical tests revealed that the natural method 

proposed by J. Argyris endows the element with additional computational efficiency attributed 

to the properties of the natural formulation. After the numerical comparison of the NBCFB 

element with the standard flexibility-based element incorporated in OpenSees, it was shown 

that the proposed element appeared to be more robust and computationally efficient. The 

numerical robustness of the element is attributed to both the natural method and the nonlinear 

iterative procedure which is performed for the determination of its internal stress-state 

equilibrium.  

The assessment of the numerical behavior of the NBCFB element was investigated in both RC 

and steel structures, illustrating the ability in capturing the overall nonlinear response with 

adequate accuracy. As it was described in Chapter 2, the natural method decomposes the 

deformed shape of a member into rigid body modes and strain modes, making easier the 

determination of the element’s stress-strain state.  

The computational efficiency that ReConAn FEA code was demonstrated in a number of test 

examples exhibiting its ability in predicting the ultimate load capacity of any type of structure 

in a minimal CPU time. This enables the user in performing nonlinear analysis for large-scale 

structures with thousands of structural members with the use of standard CPU systems. In 



Chapter 8 Athens, Jan 2011 

 

Page 242 of 272 
 

addition to that, it was shown that, through the formulation of the NBCFB element, it is feasible 

to discretize each structural member with only one element, thus reducing significantly the 

numerical model. This improved performance of the element derives from the state 

determination procedure of the element and the adopted Gauss-Lobato integration scheme 

which uses specific sections along the element to determine the stiffness matrix degradation 

during the loading history. 

A nonlinear analysis of a 37-storey RC building was performed for demonstrating the capability 

of the developed software code to perform nonlinear analysis of large-scale RC structures. 

Moreover, the computational efficiency of the code was demonstrated with the nonlinear 

solution this large-scale structure through the use of a standard CPU system (personal laptop). 

 

8.2.2   Embedded Rebar Mesh Generation Procedure 

Previous work on detailed three-dimensional models for the analysis of RC structures limit their 

numerical implementations to experimental setups that consist of simple structural members. 

Thus the need for a computationally efficient mesh generation method of the embedded rebar 

elements inside the concrete domain, has not attracted the appropriate attention. 

In this work, an embedded reinforcement mesh generation method is proposed, which can 

effectively allocate and generate embedded reinforcement elements inside hexahedral elements 

with an arbitrary positioning of the reinforcement and allowing a free geometric shape of the 

hexahedrons. The computational robustness and efficiency of the proposed mesh generation 

method, when dealing with relatively large-scale problems with arbitrary reinforcement 

geometry, were illustrated through numerical experiments. 

 

8.2.3   Concrete Material Model and Smeared Crack Approach 

An improved numerical handling of the Kotsovos and Pavlovic 3D material concrete model for 

monotonic loading combined with a smeared crack model was implemented. The material 

model was applied to an 8-noded hexahedral element with no restriction on the number of crack 

openings inside the load increment. 

The numerical behavior of the improved material model was illustrated through several 

numerical tests of plain and reinforced concrete experiments. It is worth noting that the ability 

of incorporating this fully brittle material model in an 8-noded isoparametric hexahedral 

element with a 2x2x2 Gauss integration scheme, illustrates the computational superiority of the 

developed FEA code and its numerical robustness when dealing with highly ill-posed numerical 

problems. 

Furthermore, the numerical handling of the smear crack approach appears to minimize the 

numerical instabilities induced when crack openings occur and significant unbalanced forces 

are released during the NR incremental iterative solution procedure. If the algorithmic 

implementation is not optimally applied, this numerical phenomenon can create numerical 

instabilities that could lead to the divergence of the iterative solution procedure. This is 

attributed to the additional crack openings that occur as a result of the unbalanced forces 

produced by the previous crack openings. It is evident that this numerical problem requires 
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special handling and the use of advanced programming techniques in order to control the 

numerical stability of the problem. 

 

8.2.4   Reinforced Concrete Modeling 

A detailed FE modeling of reinforced concrete structures is proposed with the following 

characteristics: 

(i) A mesh generation technique for the embedded reinforcement is implemented which can 

effectively allocate and generate embedded reinforcement elements inside hexahedral 

elements with an arbitrary positioning of the reinforcement and a free geometry of the 

hexahedral mesh. 

(ii) An improved numerical handling of a 3D material concrete model for monotonic loading 

combined with a smeared crack model. The material model was applied to an 8-noded 

hexahedral element with no restriction on the number of crack openings inside the load 

increment. 

(iii) The modeling of the reinforcement is performed with the use of a 2-noded flexibility-

based beam element, formulated with natural modes and the fiber approach. It was shown 

that the results obtained with rod elements for modeling the reinforcement does not lead 

to accurate numerical simulations especially for heavily RC members.  

The proposed NBCFB element increases the stability of the nonlinear solution procedure 

through its physical characteristics. The numerical robustness exhibited by the proposed 

modeling methodology is attributed to the following features:  

 The nonlinear procedure for the calculation of the internal forces of the NBCFB 

element.  

 The stability induced by the consideration of shear and bending stiffness of the NBCFB 

elements. 

 The modification of the concrete material model and the handling of the stress 

redistribution due to cracking. 

The proposed modeling method managed to predict with an adequate precision a number of 

experimental test results reported in the literature, illustrating its ability to predict failure loads, 

failure mechanisms and crack patterns with a high computational efficiency up to failure. This 

is an important component when dealing with large-scale structures where the sensitivity on the 

required number of load increments applied during the analysis plays a crucial role in the 

feasibility of any detailed FE simulation of real-scale RC structures. 

One of the most interesting conclusions that result from this research work is the ability of 

capturing, through the use of detailed FE models, the nonlinear response of real-world RC 

structures and furthermore, acquire a relatively detailed overview of their nonlinear behavior in 

terms of stress-strain distribution. With this ability of predicting the stress-strain distribution 

inside the concrete domain, significant conclusion can be drawn for several mechanical features 

of the RC studies. Specifically, in a series of beams (Bresler and Scordelis
[186]

) that was 

numerically investigated in this work, it was found that both type of beams (with and without 
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stirrups) exhibited high shear behavior near the limit loading state which affected significantly 

their overall behavior. As it was observed in the computed crack pattern for both beam types, 

inclined cracking was excessive, especially when the load level was near the ultimate capacity 

of the beams. This behavior was not foreseen when the experimental setup was designed, since 

the general belief that beam like structural members are flexural dominated was acceptable. 

Through this study, it is shown that shear strains and 3D crack simulation play a significant role 

in the overall behavior of RC structural members when the load level is near the ultimate state 

limit load, even for cases of simple beam-like RC structural members. 

 

8.2.5   Hybrid Modeling (HYMOD) Method  

The HYMOD method was presented in an attempt of using detailed FE modeling in the 

simulation of real-world RC structures. The basic objective for this type of modeling is the 

decrease of the dof of the FE model by using a detailed approach (hexahedral and embedded 

rebar elements) when necessary and at the same time retain an acceptable accuracy on the 

predicted displacements.  

In the scope of creating a generalized procedure when reducing the fully detailed FE model, the 

introduction of four Reduction Levels was presented. The first and last Reduction Levels (RL 0 

and 3) correspond to the unreduced and the FE model with only beam type elements, 

respectively. The RL 1 and RL 2 Reduction Levels correspond to a specific decrease in the 

number of hexahedral elements and their replacement with beam-column elements in non-

shear-dominated structural members areas of the structure. 

The basic idea behind the reduction of a detailed FE model relies on the assumption that shear 

dominated structural members should be modeled with the detailed approach, whereas the rest 

of the structure and modeled with beam-column elements. When performing this type of 

reduction scheme, the resulted model consists of elements with different dimensionality which 

requires special numerical handling at their interface. In this work, the compatibility at the 

interface is performed through kinematic constraints that are implemented at the interface of the 

detailed domain and the beam node which controls the translational and rotational 

displacements of the coupled elements. The proposed formulation was found to be 

computationally robust since it does not require any special iterative procedure for its 

implementation. 

A parametric investigation was performed for defining the required joint length which is 

adequate enough for capturing the nonlinear behavior of the hand critical region requiring 

detailed simulation. It was concluded that the corresponding length of a joint should be between 

h-2h, where h is the sectional height of the corresponding structural member (beam or column). 

It was shown through a number of numerical tests that the proposed geometric constraint 

manages to provide the adequate length for capturing the nonlinearities that occur in a critical 

region while simultaneously maximizing the reduction of the resulting dof. 

The HYMOD was applied in the case of a real-scale 2-storey RC building which was initially 

designed with the use of a Greek civil engineering software package. The geometry of the 

structure was discretized with the use of hexahedral solid elements and the resulted 
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reinforcement was modeled with embedded rebar elements. The previously mentioned four 

Reduction Levels were implemented and the resulted FE models where analyzed for comparing 

the results and their corresponding numerical performance. As it was illustrated, the predicted 

curves when using the RL 0, 1 and 2 FE models are in a good agreement in between them thus 

the reduction of the initial FE model does not affect the accuracy of the predicted behavior of 

the structure.  

A second observation that was made through the resulted curves is that the simulation with the 

NBCFB Euler-Bernoulli fiber element overestimates the ultimate load of the structure and 

underestimates the corresponding interstory drift demand. This would provide an 

unconservative estimation of the demand if it is used for the seismic damage assessment of RC 

buildings that consist of shear dominated structural members.  

A third very important observation is the inability of the beam-column element formulation to 

capture the numerous local effects which play a significant role in the overall behavior of a RC 

structure. Even if the beam element is equipped with a shear material model, the ability to 

predict the influence of local effects is highly questionable.  

Concluding with a general remark: It is evident that 3D detailed modeling is the most 

numerically sufficient method for predicting the nonlinear behavior of any type of RC structure, 

especially when dealing with highly nonlinear behaviors, where the prediction of the 3D stress 

state is the only adequate way for capturing the numerical behavior of physical phenomena such 

as yielding, cracking, stiffness degradation, etc. It is also evident that through the outcome of 

this research work, the seismic assessment of RC structures should be performed using 3D 

detailed FE models which account for most of the basic concrete material features that govern 

the overall nonlinear behavior of the structures. This can be done through the implementation of 

performance-based design procedures. The main restriction for this type of implementations is 

the automation of the whole process and moreover, the numerical handling of the different 

structural members in a 3D detailed model and particularly the enforcement of the compatibility 

constant at the interface when the Hybrid Modeling approach is implemented. It is a 

complicated task which requires extensive research work. 

 

8.2.6   ReConAn FEA Software 

As a final remark in this work, an object-oriented software package was developed to 

incorporate the previously mentioned state of the art numerical methods and techniques for 

modeling and analysing of RC and steel structures. The outcome of this attempt was named 

ReConAn FEA software and it was demonstrated that it can predict accurately the nonlinear 

behavior of RC and steel structures with computational efficiency and robustness. The 

computational superiority of the developed software was demonstrated though numerous 

numerical tests and computational comparison between commercial and research software 

codes. 

ReConAn is a practical proof that through the implementation of an intelligent programming 

technique, the future prospects in FE modeling can widen even more, providing the common 
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user with almost endless abilities in modeling complicated physical phenomena through the use 

of standard CPU systems. 

 

8.3   Future Work 

In this research work, the nonlinear behavior of RC structures under monotonic loading was 

investigated. It was shown that the developed software code constitutes an objective and 

accurate modeling method for the realistic prediction of the nonlinear behavior of RC structures 

under monotonic loading. Given the results presented in the present Dissertation, this task has 

been accomplished and therefore the cyclic loading solution procedure has to be implemented 

and numerically investigated in order to conduct any type of static and dynamic-cyclic analysis. 

For accomplishing such a task the following numerical features have to be incorporated in 

ReConAn FEA software: 

1. Opening and closing of cracks for the cyclic concrete material model. 

2. Displacement-control NR iterative solution procedure. 

3. Dynamic solution algorithm. 

The most important part when dealing with cyclic loading conditions is to manage the 

numerical implementation regarding the material model of concrete. Since the monotonic 

loading problem is ill-posed especially when cracking initiates, the closing and opening of 

cracks will introduce additional implementation issues which require special attention. The 

main algorithmic integrations towards this aim have been made, thus further development is 

required in order to accomplish this task.  

The numerical feature that has to do with the displacement-control solution strategy is already 

under development and numerical tests remain to be carried out in order to verify the 

correctness of the algorithmic implementation. Finally, the dynamic solution algorithm is under 

development. 

An important feature that is considered to play a significant role in RC structure modeling is the 

bond-slip mechanism between the concrete and reinforcement. This feature was taken into 

account through an indirect method with the consideration of three additional dof per embedded 

rebar element and by considering that the bond-slip mechanism is triggered near the yielding of 

the rebar elements, a phenomenon proved by several experimental research projects. However, 

by adding 3 additional dof per rebar element the computational demand of such a modeling 

method would have led to higher computational demands with no particular gain in terms of 

accuracy. This is attributed to the fact that slip initiates near the rebar yielding where the 

concrete at this stage is excessively cracked. In addition to that, in order for the bond-slip to 

play an important role, the anchorage length has to be small enough for the mechanism to be 

activated during the loading procedure, a geometric constraint that does not characterize real 

structures. Nevertheless, incorporating an efficient bond-slip model is in the future task list, 

which will be developed. 

Regarding the NBCFB element, it was shown that the Euler-Bernoulli formulation appears to 

have serious disadvantages when modeling structural members that are shear dominated. To 
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improve the numerical accuracy of the predicted behavior of RC and Steel structures, the 

extension of the element to incorporate shear effects can improve its numerical performance. 

At this point let us draw the attention back to the forest instead of looking at the trees thus 

missing the whole picture. Assuming that the ability of realistic simulations of the nonlinear 

behavior of RC structures is established, it is the author’s belief that the basic feature that was 

neglected, throughout this research work, is the interaction of the RC structure foundation with 

the soil (Fig. 8.1) which is the media that plays the most significant role for bearing the 

superstructure loads.  

Given the object-oriented code structure of ReConAn FEA, it is rather easy to incorporate new 

material models in the code without the need of radical alterations in the code. Therefore, the 

integration of ReConAn with a soil material model for monotonic and cyclic loading will be 

performed in the immediate future in order to investigate Soil-Structure Interaction problems 

for the prediction of the static and dynamic nonlinear behavior of these coupled systems.  

It is evident that when referring to algorithmic implementations in terms of possible future 

tasks, it is impossible to cover all the subjects that a FE program can incorporate. Nevertheless, 

when referring to algorithmic implementations the parallel solution of the numerical problem 

cannot be neglected, thus it is one of the main future tasks of this research work.  

 
FIGURE 8.1 5-STOREY RC BUILDING. HEXAHEDRAL FINITE ELEMENT MESH OF THE CONCRETE AND SOIL 

DOMAINS. 
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Appendix A: Formulation of the Octahedral Stresses and 

Strains 
 

In order to describe the octahedral formulation of the corresponding stresses and strains, the 

representation of the Cartesian stress space has to be defined. Considering a Cartesian space, as 

shown in Fig. A.1a, the principal stresses (ζ1, ζ2, ζ3) which correspond to the coordinate axes, 

are used to define any given state of stress at any point P. The octahedral coordinates (z, r, ζ΄), 

refer to a cylindrical coordinate system having its z axis coincide with the space diagonal (ζ1 = 

ζ2 = ζ3), while r and ζ΄ represent the radius and rotational variables, respectively. Fig. A.1a 

represents schematically this type of system. Furthermore, the cylindrical system may be 

transformed along the space diagonal or z axis, as illustrated in Fig. A.1b, which lies in the 

plane normal to z (known as the deviatoric plane). The following relations results from standard 

algebra computations, thus the octahedral and Cartesian coordinates are connected through: 

 1 2 3

1

3
z       A1 

     
2 2 2
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 
 A2 

 1 2 3

1
2

6
cos ΄

r
     


 A3 

 
(A)                                                                   (B) 

FIGURE A.1 STRESS (A) CARTESIAN AND CYLINDRICAL COORDINATES; (B) TRANSFORMED IN THE 

DEVIATORIC PLANE. 

The octahedral stress, ζoct, acts on a plane orthogonal to the line that equally trisects the sets of 

axes defined by principal stress directions. Such a plane is known as the deviatoric plane (Fig. 

A.2), which is shown as a triangle. Given that uz is the unit vector along the z axis that is given 

by  √ ⁄        , the octahedral stress is obtained through the following formula: 

1 1

2 2

3 3

. . 1
1 1

. . 1
3 3

. . 1

oct

 

  

 
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 
     
          

 A4 

The octahedral stress is fully defined by its direct and shear components, ζ0 and η0 as well as the 

angle ζ that the shear octahedral stress vector forms with the projection of any given principal 

direction on the deviatoric plane (Fig. A.2b). the magnitudes of these parameters are denoted by 

ζ0, η0 and ζ which are known as hydrostatic stress, deviatoric stress and the rotational angle, 

respectively. The relation of the octahedral and quantities and the principal stresses through the 
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use of the octahedral coordinate system derives from standard vector operations and has the 

form: 

 1 2 3

1 1

3 3
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(A)                                                                                       (B) 

FIGURE A.2 OCTAHEDRAL STRESS (A) ζoct = ζ0 + η0; (B) TRANSFORMED IN THE DEVIATORIC PLANE. 

The search for the principal stresses (ζ1, ζ2, ζ3) and the associated principal directions 

corresponding to an arbitrary stress state (ζx, ζy, ζz, ηxy, ηyz, ηzx) is performed by solving the 

standard eigenvalue problem which can be written in the cubic equation format as follows: 

3 2

1 2 3 0I I I       A8 

Eq. A8 always gives three real roots (ζ1, ζ2, ζ3). Given that these three quantities represent the 

corresponding principal stresses, they are independent from the coordinate system orientation 

which was assumed originally (x, y, z) thus it follows that the coefficients I1, I2 and I3 must be 

also independent from the coordinate system orientation. This is the reason why these three 

quantities are known as the first, second and third invariants of the stress tensor. In order to 

connect the two coordinate systems defined by the arbitrary orientation of the arbitrary (x, y, z) 

axes and the principal directions, the following formula are provided: 

   1 1 2 3x y zI             A9 

   2 2 2

2 1 2 2 3 3 1x y y z z x xy yz zxI                         A10 

   2 2 2
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The relations that connect the principal invariants the octahedral stresses can be verified that 

they are given from the following expressions: 

0 1
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3
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   A14 

where J3 is the third invariant of the deviatoric stress tensor sij = ζij – ζ0δij. 

Since all octahedral stress variables were defined in the component quantities of (ζ0, η0, ζ) the 

corresponding strain counterparts need to be expressed in an identical mathematical nature. 

Therefore, denoting the three principal strains by (ε1, ε2, ε3), the following definitions for the 

hydrostatic and deviatoric strains ε0 and γ0, respectively, as well as the angle (δ) between the 

vector γ0 and the projection of the ε3 axis, hold: 
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What remains is to define the elastic constitutive relations in terms of octahedral stresses and 

strains which derive from the standard elastic constitutive principal elastic relations: 
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where K and G are the bulk and shear moduli, respectively and they are defined as: 
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Appendix B: Algebraic Algorithm for the Computation of a 

Line-Plane Intersection 
 

The algebraic algorithm for the computation of a line-plane intersection will be presented. A 

plane can be represented by the equation: 

0Ax By Cz D     B1 
where (x, y, z) represent the coordinates of any point that lies on the plane. 

Assuming that point P1 and P2 with coordinates (x1, y1, z1) and (x2, y2, z2), are two points 

defining the line, then the equation of the line can be written as: 

 1 2 1P P P P    B2 

By substituting Eq. B2 into Eq. B1 results: 

         1  2  1 1   2  1 1   2  1 0A x x x B y y y C z z z D             B3 

and by solving for λ: 

     
1 1 1

1  2 1  2 1  2

A x B y C z D

A x x B y y C z z


     


    
 B4 

There are two cases that we have to take under consideration regarding the value of λ. The first 

case is when this value is equal to zero which means that the normal of the plane is 

perpendicular to the line, therefore there is no intersection between them (Fig. B1b). If λ is not 

equal to zero then there is an intersection between the line and the plane which is computed by 

substituting the expression of λ into Eq. B2 (Fig. B.1a). 

 
(A)                                                        (B)                                                      (C) 

FIGURE B.1 LINE-PLANE HAVE (A) AN INTERSECTION, (B) NO INTERSECTION AND (C) LINE IS LOCATED 

ON THE PLANE. 

In addition to that, we have to check if the line is located on the plane. This can be easily 

performed by substituting the coordinates of the two points of the line into the equation of the 

plane (Eq. B1). If both coordinates satisfy the equation of the plane it means that the line is 

located on the plane (Fig. B1c). 
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Επίλογοσ 

 

“Μια εκτενόσ παρουςύαςη πολύχρωμων διαγραμμϊτων και πανϋμορφων ςχημϊτων, με 
απώτερο ςκοπό την ςύνδεςη του αριθμητικού αποτελϋςματοσ που προκύπτει μϋςα από 
αναρύθμητεσ υπολογιςτικϋσ πρϊξεισ, με την αντύςτοιχη μηχανικό ςυμπεριφορϊ μύασ 
καταςκευόσ η οπούα προκύπτει από την τελειότερη οντότητα που υπόρξε ποτϋ, τη 
«φύςη».” 

 

Εύναι γενικώσ αποδεκτό ότι η φύςη δεν μπορεύ να αναπαραχθεύ από κανϋναν ϊλλο πϊρα 
μόνο από την ύδια τη φύςη. Συνεπώσ, εύναι αδιαμφιςβότητο ότι η ςύνδεςη των 
αριθμητικών αποτελεςμϊτων τα οπούα προκύπτουν μϋςα από κϊποιεσ αριθμητικϋσ 
πρϊξεισ με την αντύςτοιχη απόκριςη των φυςικών φαινομϋνων που προκύπτουν μϋςω 
τησ πραγματικόσ ςυμπεριφορϊσ των καταςκευών ςτη φύςη, εύναι εγγενώσ ϊτοπη και 
ςυνυφαςμϋνη με την ϋννοια τησ προςεγγιςτικόσ λύςησ. 

Πϊρα ταύτα, ϋχει διαπιςτωθεύ ότι η ανϊπτυξη λογιςμικών προγραμμϊτων ϋχει αλλϊξει 
τον τρόπο με τον οπούο ςκεφτόμαςτε αλλϊ και κατ’ επϋκταςη τον τρόπο με τον οπούο 
αφομοιώνουμε νϋα γνώςη. Εϊν αναλογιςτεύ κανεύσ ότι οι υπολογιςτϋσ αποτελούν το 
νούμερο ϋνα εργαλεύο το οπούο χρηςιμοποιούν ςόμερα οι επιςτόμονεσ για να παρϊγουν 
νϋα γνώςη και θεωρύεσ, τότε εύναι αδιαμφιςβότητο ότι η μεγαλύτερη ανακϊλυψη του 
20ου αιώνα ϋχει ειςβϊλει για τα καλϊ ςτισ ζωϋσ μασ επηρεϊζοντασ ϊμεςα την ύδια την 
κοινωνύα. Μϋςα από τη διατριβό αυτό και κυρύωσ μϋςα από την εμπειρύα που εύχα με 
επαγγελματύεσ Πολιτικούσ Μηχανικούσ, η ϋννοια “Computer Educated Civil Engineer 
(CECE)” εύναι πλϋον πραγματικότητα.  

Όςο υπϊρχει αναβϊθμιςη και εξϋλιξη των λογιςμικών πακϋτων Πολιτικού Μηχανικού, ςε 
μύα προςπϊθεια υλοπούηςησ τησ λογικόσ που προςπαθούν να προωθόςουν τα Windows: 
“Anyone can use it!”, τότε όλο ϋνα και περιςςότερο θα αυξϊνονται οι CECE, με 
αποτϋλεςμα να ακούγονται με μεγαλύτερη ςυχνότητα ςχόλια του τύπου: 

«Μα το ϋβγαλε το πρόγραμμα… Τότε πρϋπει να εύναι ςωςτό!!!» 

Το πιο πϊνω φαινόμενο πρϋπει να ςταματόςει μϋςω τησ ςωςτόσ εκπαύδευςησ και 
ενημϋρωςησ των νϋων φοιτητών και εν δυνϊμει Πολιτικών Μηχανικών, για το πόςο 
επικύνδυνοι εύναι οι υπολογιςτϋσ όταν χρηςιμοποιούνται ωσ υπολογιςτικϊ μϋςα κατϊ τη 
διϊρκεια εκτϋλεςησ μύασ ςτατικόσ μελϋτησ.  

Υπϊρχουν αναρύθμητα γνωμικϊ για το τι εύναι ϋνα computer ό για το πώσ αυτό επηρεϊζει 
τη ζωό των ανθρώπων όπωσ: 

“Computers are useless. They can only give you answers.” Pablo Picasso 

“Computers have enabled people to make more mistakes faster than almost any invention in 

history, with the possible exception of tequila and hand guns.” Mitch Ratcliffe 

“A computer will do what you tell it to do, but that may be much different from what you had in 

mind.” Joseph Weizenbaum 

και ςτην αντύπερα όχθη: 

 “I do not fear computers. I fear the lack of them.” Isaac Asimov 
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“Computing is not about computers any more. It is about living.” Nicholas Negroponte 

και το τελευταύο αλλϊ όχι ϋςχατο 

“Computers shape the theory.” John Argyris 

Συνοψύζοντασ τα πιο πϊνω μϋςα από το βλϋμμα του Πολιτικού Μηχανικού, αποδεχόμαςτε 
την αναγκαιότητα τησ χρόςησ των υπολογιςτών ςτην επιςτόμη μασ, αλλϊ ποτϋ δεν 
αποδεχόμαςτε τα αποτελϋςματα που μασ δύνουν χωρύσ την αντιπαρϊθεςη αυτών με την 
επιςτημονικό γνώςη και την αντύληψη που ϋχουμε η οπούα περιγρϊφεται ςχεδόν 
απόλυτα από την ακόλουθη «λαώκό παραβολό»: 

«Καθόντουςαν ςε μύα καφετϋρια τρεισ κύριοι οι οπούοι αςκούςαν τα εξόσ επαγγϋλματα: 
Μαθηματικόσ, Φυςικόσ και Πολιτικόσ Μηχανικόσ. Καθώσ απολϊμβαναν τον καφϋ τουσ, 
προςπαθούςαν παρϊλληλα να λύςουν το εξόσ θεμελιώδεσ μαθηματικό πρόβλημα: 
Δεδομϋνησ τησ ύπαρξησ μύασ καλλύγραμμησ και ςυνϊμα πανϋμορφησ ξανθιϊσ γυναύκασ και 
του γεγονότοσ ότι τουσ χώριζε μύα απόςταςη 10 μϋτρων, θα κατϊφερνε κϊποιοσ από τουσ 
τρεισ να φτϊςει ςε αυτό, με την υπόθεςη ότι κϊθε φορϊ ο καθϋνασ τουσ θα προχωρούςε 
διανύοντασ την μιςό απόςταςη από αυτό που τουσ χώριζε από την γυναύκα? Όπωσ εύναι 
κοινώσ γνωςτό, ο μαθηματικόσ ϊρχιςε να περιγρϊφει το μαθηματικό πρόβλημα μϋςω 
πολύπλοκων μαθηματικών ςυναρτόςεων όπου κατϋληξε ςτην απόδειξη του μαθηματικού 
θεωρόματοσ το οπούο προϋβλεπε ότι πϊντα θα υπόρχε μύα απόςταςη μεταξύ αυτού και τησ 
γυναύκασ, ϊρα ποτϋ δεν θα μπορούςε να την φτϊςει. Στη ςυνϋχεια ο Φυςικόσ ϊρχιςε να 
περιγρϊφει τη φύςη του προβλόματοσ μϋςω τησ παρϊθεςησ τησ μαθηματικόσ διατύπωςησ 
με βαρυτικϊ πεδύα και μαγνητικϋσ δυναμικϋσ γραμμϋσ, όπου εν τϋλη κατϋληξε ςτο 
ςυμπϋραςμα ότι θα υπόρχε μύα μικρό πιθανότητα δεδομϋνων εξωγενών παραγόντων και 
ςτρϋβλωςησ τησ παραλληλύασ, να φτϊςει τελικϊ ςτη γυναύκα. Τϋλοσ, μετϊ από ςοβαρό περύ-
ςυλλογιςμό και ςκϋψη, ο Πολιτικόσ Μηχανικόσ ϋδωςε την εξόσ απϊντηςη: Ξεκινώντασ την 
πορεύα μου προσ τον ποθητό ςτόχο, η απόςταςη θα μειώνετε με ςταθερό ρυθμό, όπου ςε 
κϊποια χρονικό ςτιγμό αυτό θα εύναι μικρότερη των 10 εκατοςτών, απόςταςη επαρκόσ 
μϋςα ςτην οπούα θα εφαρμόςω την γνωςτό κύνηςη πιαςύματοσ, αγκαλιϊζοντασ τον ποθητό 
ςτόχο!» 
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