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Abstract 

This paper provides a review of the types of emerging organic groundwater contaminants 

(EGCs) which are beginning to be found in the UK.  EGCs are compounds being found in 

groundwater that were previously not detectable or known to be significant and can come 

from agricultural, urban and rural point sources. EGCs include nanomaterials, pesticides, 

pharmaceuticals, industrial compounds, personal care products, fragrances, water treatment 

by-products, flame retardants and surfactants, as well as caffeine and nicotine. Many are 

relatively small polar molecules which may not be effectively removed by drinking water 

treatment. Data from the UK Environment Agency’s groundwater screening programme for 

organic pollutants found within the 30 most frequently detected compounds a number of 

EGCs such as pesticide metabolites, caffeine and DEET. Specific determinands frequently 

detected include pesticides metabolites, pharmaceuticals including carbamazepine and 

triclosan, nicotine, food additives and alkyl phosphates. This paper discusses the routes by 

which these compounds enter groundwater, their toxicity and potential risks to drinking water 

and the environment. It identifies challenges that need to be met to minimise risk to drinking 

water and ecosystems. 
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1 Introduction 

The term emerging groundwater contaminants (EGCs) is generally used to refer to 

compounds previously not considered or known to be significant in groundwater in terms of 

distribution and/or concentration, which are now being more widely detected and which have 

the potential  to cause  known or suspected adverse ecological or human health effects. 

Synthesis of new chemicals or changes in use and disposal of existing chemicals can create 

new sources of EGCs. These will also include substances that have long been present in the 

environment but whose presence and significance are only now being elucidated (Daughton, 

2004). As analytical techniques improve, previously undetected organic micro-contaminants 

are being observed in the aqueous environment, e.g. metaldehyde. Richardson and Ternes 

(2011) review recent analytical developments in the emerging contaminant context. 

EGCs are commonly derived from a variety of municipal, agricultural, and industrial sources 

and pathways.  Many have remained unidentified presumably due to similar reasons to 

current, well-established problems. For example, Jackson (2004) ascribes the historical lack 

of recognition of chlorinated solvent contamination and its subsequent emergence to the lack 

of a technical paradigm explaining the processes of contamination and the identification of 

adverse effects.  

Many EGCs remain unregulated and Kavanaugh (2003) set out the technical and institutional 

challenges presented by unregulated contaminants. The number of regulated contaminants 

will continue to grow slowly over the coming decades. In the European context groundwater 

quality is currently regulated under the Water Framework Directive and the Groundwater 

Daughter Directive and drinking water under the Drinking Water Directive. Pesticides are 

also regulated under the Plant Protection and Biocides Directives. Some of these 

contaminants can have human or ecological health effects and there is a need for better 

understanding of their fate in environmental systems.  

The European Drinking Water Directive sets limits for a small number of organic 

micropollutants comprising aromatic hydrocarbons, chlorinated solvents and disinfection by-

products (EC, 1998).  The Priority Substances Directive establishes a number of Priority 

Substances, including benzene, octyl and nonyl phenols, specified polyaromatic 

hydrocarbons (PAH), di(2-ethylhexyl)phthalate and a range of chlorinated hydrocarbons (EC, 

2008). Proposed revisions include the emerging contaminants ibuprofen, diclofenac, α-

ethinyloestradiol, -oestradiol and perfluorooctane sulfonate (PFOS) (EC, 2011). 
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The US EPA have derived statutory guideline values for about 125 contaminants in drinking 

water of which 31 could be considered to be micro-organic pollutants excluding pesticides. 

None of these are pharmaceuticals or personal care products (PCP) (US EPA, 2010). 

Most emerging contaminant research has focussed on surface waters as these are likely to 

contain greater concentrations of contaminants from sources such as wastewater treatment 

works’ (WTWs) discharges. Surface water is also easier to monitor than groundwater in some 

respects. The approach taken in this review is that surface water data can be used to give us 

an idea of potential future groundwater problems and can provide an early warning. 

This paper provides a review of the types of EGCs which are beginning to be found in 

groundwater of the UK. This is drawn primarily from UK and European studies, 

supplemented by work from the US. It discusses the routes by which these compounds enter 

groundwater, including resistance to wastewater treatment, their toxicity and the consequent 

potential risks posed to drinking water and the environment. This provides the context to a 

UK groundwater monitoring dataset. Challenges that need to be met to minimise risk are 

identified. 

2 Types of emerging groundwater contaminants 

From their sources, physical and chemical characteristics, mobility/behaviour in the aqueous 

environment and associated hazards the following types of micro-contaminants may be 

considered to be emerging in groundwater.  The world-wide occurrence, sources and fate of a 

range of EGCs, including pharmaceuticals and personal care compounds in groundwater has 

been reviewed by Lapworth et al. (submitted).  

Much more is known about pesticides in groundwater compared to other compounds, such as 

pharmaceuticals, which are more poorly characterised.  The hazards to human health of some 

compounds are well documented, but their ability to travel through the aqueous environment 

is only just being investigated, and environmental persistence is as yet unknown. 

2.1 Pesticides 

Pesticides have been detected at trace concentrations in UK groundwater for a considerable 

period.  As those compounds which pose the greatest threat to the environment are gradually 

withdrawn, e.g. atrazine in 1993, the compounds which are substituted can in turn lead to 

problems, e.g. diuron which is itself now banned. A number of compounds have recently 
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caused problems as analytical methods have improved, for example metaldehyde (Bristol 

Water, 30/1/2009; Environment Agency, Jan 2010; Water UK, 2009). Attention has now also 

turned to pesticide metabolites, also termed degradates and reaction products (Kolpin et al., 

1998). By their nature these compounds are biologically active and many may be toxic and 

such data forms part of the pesticide registration process. Studies have shown that pesticide 

metabolites are often detected in groundwater at higher concentrations compared to parent 

compounds from both agricultural and amenity use (Kolpin et al., 2004; Lapworth and 

Gooddy, 2006). 

2.2 Pharmaceuticals 

The presence of pharmaceutical chemicals in the aquatic environment has long been 

recognised as a concern (Richardson and Bowron, 1985). The primary routes for 

pharmaceuticals into the environment are through human excretion, disposal of unused 

products and through agricultural usage (Poynton and Vulpe, 2009). A wide range of 

pharmaceutical products have been detected in surface and groundwater, associated with 

wastewater disposal (Barnes et al., 2008; Miller and Meek, 2006; Nikolaou et al., 2007; Pérez 

and Barceló, 2007; Ternes and Hirsch, 2000; Vulliet and Cren-Olivé, 2011; Watkinson et al., 

2009). These have included: 

 veterinary and human antibiotics: e.g. ciprofloxacin, erythromycin, lincomycin, 

sulfamethoxazole, tetracycline 

 other prescription drugs: codeine, salbutamol, carbamazepine 

 non prescription drugs: acetaminophen (paracetamol), ibuprofen, salicylic acid 

 iodinated X-ray contrast media: iopromide, iopamidol 

Other potential threats to surface water which have been identified are tamiflu and 

chemotherapy drugs, such as 5-fluorourcil, ifosfamide or cyclophosphamide (Buerge et al., 

2006; Johnson et al., 2008; Moldovan, 2006; Singer et al., 2007) and illicit drugs such as 

cocaine and amphetamines (Kasprzyk-Hordern et al., 2008; Zuccato et al., 2008).  

2.3  “Life-style compounds” 

Caffeine and nicotine, and the nicotine metabolite cotinine, are widely detected in 

groundwater impacted by sewage effluent (Godfrey et al., 2007; Seiler et al., 1999; Teijon et 

al., 2010). Van Stempvoort et al. (2011) found high concentrations of the artificial sweeteners 
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acesulfame, saccharine, cyclamate and sucralose in groundwater impacted by sewage 

infiltration ponds and Buerge et al. (2009) showed acesulfame to be widely detected in the 

aquatic environment due to its use, mobility and persistence.  

2.4 Personal care 

Personal care compounds are commonly transmitted to the aqueous environment through 

WTWs. These have included: 

 DEET – N,N-diethyl-meta-toluamide, the most common active ingredient in insect 

repellents 

 parabens – alkyl esters of p-hydroxybenzoic acid, used since the 1930s as 

bacteriostatic and fungistatic agents in drugs, cosmetics, and foods 

 bacteriocide and antifungal agents  – triclosan is widely used in household products, 

such as toothpaste, soap and anti-microbial sprays 

 polycyclic musks – tonalide and galaxolide are used as fragrances in a wide range of 

washing and cleaning agents and personal care products 

 UV filters/sunscreen – organic filters include the benzophenones and 

methoxycinnamates 

Lindström et al. (2002) detected triclosan and its metabolite methyl triclosan in surface water 

in Switzerland and considered the metabolite to be persistent.  

Tonalide (AHTN), galaxolide (HHCB) and HHCB-lactone have been detected in WTW 

effluents (Horii et al., 2007). These compounds have been used as markers for wastewater in 

surface water (Buerge et al., 2003; Fromme et al., 2001). Heberer (2002a) discusses the 

results from investigations of synthetic musk concentrations found in sewage, sewage sludge, 

surface water, aquatic sediment, and biota samples in terms of bioaccumulation, metabolism 

in fish, and environmental and human risk assessment. 

The majority of compounds used as sun screens are lipophilic, conjugated aromatic 

compounds, but are detected in the aqueous environment (Jeon et al., 2006).  

2.5 Industrial additives and by-products 

There are a wide range of industrial compounds which can be released to the environment. 

Many of these have led to well-established problems, such as the chlorinated solvents, 

petroleum hydrocarbons, including the polyaromatic hydrocarbons and the fuel oxygenate 



6 

 

methyl tertiary-butyl ether, and plasticisers/resins bisphenols, adipates and phthalates (Garrett 

et al., 1986; Moran et al., 2005; Moran et al., 2006; Verliefde et al., 2007). Most of these 

industrial compounds are classed as priority pollutants or now have drinking water limits and 

as such are not emerging contaminants. However, some breakdown products may be regarded 

as emerging contaminants.  

Industrial EGCs may include:  

 1,4-dioxane, a stabiliser used with 1,1,1,-trichloroethane which is highly soluble in 

groundwater, resistant to naturally occurring biodegradation processes., does not 

readily bind to soils, and readily leaches to groundwater (Abe, 1999).  In 2008, 

testing, sponsored by an independent consumers organization, found 1,4-dioxane in 

almost half of tested personal-care products.  

 Benzotriazole derivatives which are found in pharmaceuticals such as antifungal, 

antibacterial, and antihelmintic drugs. Benzotriazoles are persistent in the aqueous 

environment (Giger et al., 2006; Voutsa et al., 2006). 

 Dioxins can be produced as a consequence of degradation of other micropollutants 

e.g. from the antimicrobial additive triclosan (ENDS, 2010; Mezcua et al., 2004). 

2.6 Food additives 

Triethyl citrate is used as a food additive to stabilise foams, e.g. egg white, and is also used in 

pharmaceutical coatings and as a plasticiser. Butylated hydroxyanisole (BHA) and butylated 

hydroxytoluene (BHT) are used to prevent fat spoilage in foods. Other food additives include 

camphor, 1,8-cineole (eucalyptol), citral, citronellal, cis-3-hexenol, heliotropin, hexanoic 

acid, menthol, phenylethyl alcohol, triacetin, and terpineol. Some of these may be implicated 

as oxidants or endocrine disruptors (Jobling et al., 1995). 

2.7 Water treatment by-products 

The trihalomethanes and haloacetic acids are well established by-products of water 

disinfection (Boorman, 1999). More recent concern has focused on N-nitrosodimethylamine 

(NDMA) as a drinking water contaminant resulting from reactions occurring during 

chlorination or via direct industrial contamination. Because of the relatively high 

concentrations of this the potent carcinogen formed during wastewater chlorination, the 

intentional and unintentional reuse of municipal wastewater is a particularly important area 
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(Mitch et al., 2003). Richardson (2003) found that the change from disinfection with chlorine 

to ozone and chloramines can increase levels of other potentially toxic by-products, e.g. 

bromo- and iodo- THMs and brominated MX (3-chloro-4-dichloromethyl)-5-hydroxy-2(5H)-

furanone). Other by products of water treatment can include polyacrylamide and 

epichlohydrin.  

2.8 Flame/fire retardants 

Polybrominated diphenyl ether flame retardants are extensively used in resins for household 

and industrial use (Rahman et al., 2001) and may enter the environment via waste disposal to 

landfill and incineration. Phosphate-based retardants such tris-(2-chloroethyl) phosphate 

(TRCP) appear to work by forming a non-flammable barrier (Weil et al., 1996) are used in 

industrial and consumer products.  

2.9 Surfactants 

The priority pollutants octyl- and nonyl-phenol (OP and NP) are used in the production of 

alkyl phenol ethoxylates (APEs) which are used in the manufacture of surfactants. Both the 

parent ethoxylates and their metabolites, alkyl phenols and carboxylic degradation products, 

persist in the aquatic environment (Montgomery-Brown and Reinhard, 2003; Soares et al., 

2008).  

Perfluorinated sulfonates and carboxylic acids including perfluorooctane sulfonate (PFOS) 

and perfluorooctanoic acid (PFOA) have been used for over 50 years in food packaging and 

cookware coatings, paints and surfactants cosmetics and fire-fighting foams with consequent 

entry to the environment by run-off from sites of major fires (e.g. Buncefield, UK). They are 

found in WTW effluents and surface water and are very persistent in the environment 

(Ahrens et al., 2009; Poynton and Vulpe, 2009). Harada et al. (2003) showed PFOS to be 

present in sewage effluent in Japan and it has been detected in surface water in Japan (Harada 

et al., 2003; Saito et al., 2003). 

Siloxanes are used in many personal care products and industrial coatings and there is 

concern about potential toxicity and transport into the environment (Richardson, 2007). 

2.10 Hormones and sterols 

Sex hormones include androgens, such as androstenedione and testosterone, and oestrogens 

such as oestrone, oestriol, 17α- and 17β-oestrodiol, and progesterone. There are also synthetic 
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androgens such as oxandrolone, nandrolone and more importantly synthetic oestrogens 

(xenoestrogens) such as 17α-ethinyl oestrodiol and diethylstilbestrol, used as contraceptives. 

Some of these compounds are commonly present in wastewater and WTW effluent (Johnson 

et al., 2000; Standley et al., 2008; Vulliet and Cren-Olivé, 2011).  

A related group of compounds are cholesterol and its metabolite 5β-coprostanol, and the 

plant sterols stigmastanol, stigmasterol and β-sitosterol. Plant sterols (phyto-oestrogens) are 

ingested in edible plants and excreted to wastewater, which may be the largest source of these 

compounds in the environment (Liu et al., 2010).  

2.11 Ionic liquids 

Ionic liquids are salts with low melting point which are being considered as ‘green’ 

replacements for industrial volatile compounds (Thi et al., 2010; Richardson and Ternes, 

2011). These compounds include nitrocyclic rings (e.g. pyridinium, pyrrolidinium, 

morpholinium moieties) and quaternary ammonium salts. Ionic liquids are not yet widely 

used but current formulations have significant water solubility and are likely to be toxic and 

poorly degradable (Thi et al., 2010). 

3 Sources, pathways and receptors  

3.1 Concepts  

Significant risks to human health may result from exposure to non-pathogenic, toxic 

contaminants that are often globally ubiquitous in waters from which drinking water is 

derived.  The transport of contaminants in the aqueous environment can be described by a 

source-pathway-receptor model, which considers:  

 the source of the contaminant, e.g. sewage sludge spread on to agricultural land  

 the pathway by which it travels from the source, e.g. fracture flow through an aquifer  

 the receptor, e.g. a consumer drinking tap water 

Sources of contaminants to surface waters, groundwater, sediments, and drinking water are 

varied and include pesticide applications to agricultural land, horticulture, parks, gardens, 

golf courses, urban infrastructure, and the transport network, discharges or leaks of domestic, 

hospital or industrial wastewater containing pharmaceutical or personal care compounds, 
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sewage sludge application to land, pharmaceuticals and pesticides used to treat animals 

present in manure stores or applied to agricultural land and solid waste disposal. 

Point-source pollution originates from discrete sources whose inputs into aquatic systems can 

often be defined in a spatially explicit manner. Examples of point-source pollution include 

industrial effluents (pulp and paper mills, steel plants, food processing plants), municipal 

WTWs and combined sewage-storm-water overflows, animal waste lagoons, resource 

extraction (mining), and land disposal sites (landfill sites, industrial impoundments).  

Non-point-source pollution, in contrast, originates from poorly defined, diffuse sources that 

typically occur over broad geographical scales. Examples of non-point-source pollution 

include agricultural runoff (pesticides, pathogens, and fertilizers), storm-water and urban 

runoff, and atmospheric deposition (wet and dry deposition of persistent organic pollutants) 

(Bedding et al., 1982; Ritter et al., 2002). About 70% of land area in the UK is used for 

agricultural purposes and about 6% is urban. 

3.2 Source terms 

Potential source terms include wastewater, derived from domestic, industrial, or hospital 

premises and waste disposal sites (Bester et al., 2008; Heberer and Feldmann, 2005; 

Stangroom et al., 1998). The presence of persistent organic pollutants in wastewater, such as 

polyaromatic hydrocarbons, polychlorinated biphenyls, alkyl phenols, dioxins and furans, 

chlorinated solvents and benzene derivatives, has been long established (BGS et al., 1998; 

Rudel et al., 1998, among many others). 

The primary sources of pharmaceuticals in the environment are human excretion and disposal 

of unused products. Hospital waste water forms an important source for a range of EGCs 

including disinfectants and musks, as well as rare earth elements, heavy metals, and iodised 

contrast media (Putschew et al., 2000; Sacher et al., 2001; Ternes and Hirsch, 2000; Verlicchi 

et al., 2010; Watkinson et al., 2009). There are a large number of studies of WTW effluent 

and septic tanks (Clara et al., 2004; Drewes et al., 2003; Gasser et al., 2010; Glassmeyer et 

al., 2008; Heberer et al., 1997; Kreuzinger et al., 2004), of raw sewage (Sodré et al., 2009) 

and of artificial recharge using treated effluent (Cordy et al., 2004; Díaz-Cruz and Barceló, 

2008). Manufacturing sites may also contribute (Larsson, 2008; Larsson et al., 2007). There 

are about 9000 WTWs in the UK serving 95% of the population (Water UK, 2006). 
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The use of veterinary antibiotics in concentrated animal feeding operations is an important 

source of environmental contamination in the USA and parts of Europe and Asia (Bartelt-

Hunt et al., 2010). Veterinary antibiotics have been investigated in various environmental 

compartments including waste lagoons, groundwater below lagoons, as well as shallow 

groundwater from areas where animal waste had been applied to fields (Bartelt-Hunt et al., 

2010; Hu et al., 2010; Kim et al., 2011; Kolodziej et al., 2004; Sarmah et al., 2006; Watanabe 

et al., 2010; Watanabe et al., 2008). 

Landfill leachates contain large amounts of short and long-chain fatty acids, and can also 

contain caffeine, nicotine, phenols, sterols, PAH, chlorinated solvents and phthalates (Stuart 

and Klinck, 1998). The presence of pharmaceuticals in groundwater beneath or downgradient 

of a landfill has been confirmed by several authors (Ahel and Jelicic, 2001; Ahel et al., 1998; 

Eckel et al., 1993; Holm et al., 1995). Two recent studies (Barnes et al., 2004; Buszka et al., 

2009) investigating the occurrence of groundwater down gradient of landfills detected a range 

of industrial compounds (detergents, antioxidants, fire retardants, plasticisers) as well as 

PPCPs (antibiotics, anti-inflammatories, barbiturates) and the caffeine and the nicotine 

metabolite cotinine. 

3.3 Pathways 

For many EGCs the pathway from the source to the receptor is very unclear, since there is a 

paucity of information for most such novel contaminants. The pathway taken by a 

contaminant through the environment will depend upon its physicochemical properties, such 

as its solubility in water.  

Direct pathways for pharmaceuticals, urban and industrial contaminants to reach groundwater 

include leaking sewers, discharge of WWT effluent (directly to ground or to surface water 

which then infiltrates), landfill leachate, leaking storage tanks and other discharges to the 

ground that bypass the soil zone, such as septic tanks (Figure 1). Pathways to humans and 

groundwater from human and animal pharmaceuticals are set out by Boxall et al. (2002), 

Halling-Sørensen et al. (1998) and Jones et al. (2002). Verma et al. (2007) studied the 

behaviour of a pharmaceutical in surface and wetland waters.  

Contaminants applied to the soil surface will migrate through the soil zone, the unsaturated 

zone and the saturated zone in the well-established way. This may be the route for 

agricultural pesticides and components of sewage sludge.  The potential for organic 
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contaminants present in sewage sludge to leach following application to agricultural land was 

highlighted by Wilson et al. (1996), although in this study no problems were found using a 

screening exercise.  

Another important pathway is groundwater-surface water interaction. In many instances 

treated effluent from industrial premises and sewage works is discharged to surface water. 

This may then infiltrate to groundwater from losing reaches of rivers.  

In this review we have not highlighted the atmospheric transmission route as being 

significant but there may be mechanisms for non-volatile compounds to be mobilised. For 

example, Hamscher and Hartung (2008) suggest that dust may be a new route for veterinary 

compounds to enter the environment. 

3.4 Receptors 

Groundwater supplies about one third of public water supply in the UK rising to about 80% 

of public supply in the south and southeast of England. It also provides water for industry and 

irrigation, baseflow support to surface water and aquatic ecosystem health Under the Water 

Framework Directive (EC, 2000). Receptors, in terms of chemical status, include the 

groundwater body itself, drinking water abstractions, associated surface waters and directly 

dependent ecosystems. In parts of south east England, river baseflow from groundwater can 

be up to 90% of total flow. Receptors therefore can include human beings drinking tap water, 

other living creatures such as invertebrates and fish or the environment more widely.  

A clear connection between source terms of these contaminants as set out in section 3.2 and 

groundwater or its receptors is often not well defined enough for significant problems in 

groundwater to be anticipated. However the risks to such a valuable resource do need to be 

considered.   

4 Risk assessment for pesticides and their metabolites 

In order to assess the hazards presented by contaminants, information on usage, persistence, 

leachability and a robust sensitive analytical method is required. For many pesticides these 

requirements are fulfilled and an assessment of risk of leaching to groundwater can be made. 

However, the UK metaldehyde problem was not originally discovered due to lack of an 

analytical method and was exacerbated by recalcitrance to water treatment. For pesticide 
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metabolites this information can be sparse, and for other EGCs such as pharmaceuticals it can 

be lacking.  

4.1 Pesticides  

Pesticides can be synthetic chemical or natural substances and vary in their use, properties 

and potential impact on the environment. There are currently around 350 ingredients 

approved for use in agricultural pesticide products in the UK (BCPC and CABI, 2010).  

Agriculture and horticulture use nearly 80 per cent of all plant protection pesticides in 

England and Wales. There has been a trend towards more frequent treatments using complex 

tank mixes but using less persistent compounds and at an overall lower rate of application. 

Pesticides are also used to control weeds and pests in gardens and weeds on pavements and 

along railway lines. Pesticides used for seed dressings and biological pesticides were 

excluded from this study.  

Solubility and Kow can both give an indication of a compound’s mobility and likely sorption 

in water treatment.  Kow is commonly expressed as the log of the coefficient. It is used in 

environmental fate studies and large values (+4 or higher) are regarded as an indicator that a 

substance may tend to bioaccumulate. Conversely, low values indicate environmental 

mobility. Table 1 shows UK pesticides with the potential to persist in WTW effluent based on 

their Kow.  They may however, have other properties which are not assessed by this method; 

bipyridilium compounds such as diquat are cationic and form charge transfer complexes with 

organic matter (Gevao et al., 2000). Wells (2006) proposes Dow, a pH-dependent coefficient 

as a better measure of hydrophilicity.  

Pesticides most likely to pose a threat include those which remain difficult to analyse at low 

concentrations and also those in Table 1 which have the potential to persist in drinking water 

e.g. clopyralid.  

4.2 Pesticide metabolites 

Once released to the environment, pesticides may be degraded by both abiotic and biotic 

processes. While parent compounds are assessed in detail in many regulatory schemes, the 

requirements for the assessment of transformation products are less well developed. The 

potential issue of pesticide metabolites was highlighted by Kolpin et al. (2004) who found 

atrazine and metalochlor metabolite concentrations present in groundwaters at concentrations 

higher than the parent compounds. An initial assessment suggested that as many as 30% of 
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pesticide metabolites can be more toxic than the parent compound (Sinclair and Boxall, 

2003). Often their different properties can make them difficult to detect and quantify. 

Sinclair et al. (2010) reported measured metabolite concentrations in groundwater of the UK.  

These were all from compounds no longer licensed in the UK: DDT, heptachlor and atrazine.  

They also reported a desk study of impact on UK surface water derived drinking water based 

on potential to contaminate water for 53 pesticide metabolites based on parent compound 

usage, formation rates in soil, persistence and mobility, estimated toxicity and/or potential to 

exhibit pesticidal activity, the estimated efficiency of removal during drinking water 

treatment as well as during environmental degradation (Sinclair et al., 2010). This included 

compounds currently licensed and those which have recently been withdrawn, e.g. atrazine 

and isoproturon. About half of the compounds had been identified during environmental 

degradation as well as in mammalian toxicity testing of the parent. For five of the metabolites 

significant concentrations in surface water derived drinking water were predicted by their 

model. These were aldicarb sulphone (aldicarb metabolite), 3-carbamyl-1,2,4,5-

tetrachlorobenzoic acid (chlorothalonil metabolite), cyanazine chloroacid (cyanazine 

metabolite), desisopropyl atrazine and methomyl (thiodicarb metabolite and also parent 

compound).  

Parsons et al. (2008) carried out an assessment of risk from pesticide metabolites for both the 

US and the UK. For the UK, 54 pesticides were identified as representing 90% of all 

pesticide use. A risk index was used derived from an exposure index, depending on usage, 

fraction formed, water/organic carbon partition coefficient (Koc) and half life (DT50) together 

with acceptable daily intake. Compounds with the highest risk index were metabolites of 

cyanazine, followed by those of isoproturon, flufenacet, tebuconazole and dicamba. 

Table 2 summarises some European pesticide metabolite studies.  Other studies of pesticide 

metabolites in groundwater, have tended to be in areas where the suite of applications differs 

from that currently used in the UK (Chang and Liao, 2002; Fava et al., 2005; Giacomazzi and 

Cochet, 2004; Hancock et al., 2008; Hildebrandt et al., 2007; Kolpin et al., 2004; Montana 

Dept of Agriculture, 2006). 

Worrall et al. (2000) proposed using a probability index for predicting groundwater 

contamination risk using soil Koc and DT50 where points along a diagonal line have a similar 

estimated leaching probability. A simple assessment for pesticide metabolites for pesticides 

with UK usage >50,000 ha can be made using this method (Figure 2). Estimates of 
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persistence, physical properties and leachability data are available from the Footprint website 

(AERU, 2010) for some metabolites but these are much less comprehensive than for the 

parent compounds. The line shown is a cut-off between leachers and non-leachers. Values 

close to the line have been assessed as leachers. Compounds were assessed as non-leachers 

where Log Koc > 4 and Log DT50 <0.5. Key metabolites are shown in Table 3. This approach 

takes no account of the activity or toxicity of these metabolites and some of the metabolites 

may be trivial. 

The different approaches indicate that the metabolites of chlorothalonil, cyanazine, 

diflufenican, flufenacet, iodosulfuron-methyl, metaldehyde, metazachlor and metsulfuron-

methyl are likely to pose the greatest risk to drinking water. In many cases these metabolites 

are derived from parent compounds which have a lesser risk. 

Glyphosate is now the most widely used herbicide in the world, with dramatic increases in 

agricultural use since the introduction of glyphosate resistant crops.  Microbial degradation 

produces amino methyl phosphonic acid (AMPA) (Kolpin et al., 2000) and it has been 

anticipated that AMPA may be problematic.  The high water solubility of both the parent and 

the metabolite has meant that their analysis has been difficult. Kolpin (2006) showed AMPA 

to be detected in wastewater-impacted surface waters about four times as frequently as the 

glyphosate parent. Although AMPA has a DT50 of about 151 days and is therefore persistent 

it also has a relatively high Koc of 8087 mL/g and would not be classified as vulnerable to 

leaching by the simple method described above. Similarly for parent compounds which have 

non-agricultural applications, there will be routes to groundwater which would not be 

identified, such as routes which bypass the soil zone.  

5 Risk assessment for other emerging contaminants 

These include pharmaceuticals, personal care products, lifestyle compounds, and industrial 

compounds. Many of this group of compounds cannot as yet be assessed in the same way due 

to a lack of persistence data since the majority of studies have been directed at water 

treatment. There is a scarcity of data on human health effects at environmental levels, effects 

on aquatic organisms, and other harmful effects and therefore it is difficult to predict which 

health effects they may have on humans, terrestrial and aquatic organisms, and ecosystems. 

Studies often use a mixture of physical properties, degradation rates and monitoring case 

studies to reach an assessment. Many of these compounds are considered to be persistent in 
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the aqueous environment. However, it is characteristic of some contaminants  that they do not 

need to be persistent to cause negative effects since their high transformation/removal rates is 

compensated by their continuous introduction into the environment (EUGRIS, 2011).  

5.1 Attenuation in treatment works 

The effective operation of WTWs plays an important role in minimising the release of 

xenobiotic compounds into the aquatic environment (Byrns, 2001). A feature of some 

emerging contaminants is their recalcitrance to sewage treatment (Heberer, 2002b) or 

drinking water treatment which allows them to pass through into the treated water (Zwiener, 

2007).  

5.1.1 Wastewater treatment 

The first concerns regarding the potential adverse effects of pharmaceuticals in wastewater 

were expressed in the 1960s following a study of oestrogenic hormones in activated sludge 

(Stumm-Zollinger and Fair, 1965). A review of implications for the US water industry is 

provided by Snyder et al. (2003) starting from an analytical perspective. 

Joss et al. (2006) showed that efficiency of elimination of micro-organics depends on the 

relative rate of degradation and retention times in the plant. Maurer et al. (2007) showed that 

-blockers were incompletely removed in WTW due to both to limited sorption and 

degradation rates similar to the retention time. Many pharmaceuticals which pass through 

treatment may not be in the fully dissolved state and are often as glucuronaric acid or 

sulphate conjugates which enhances their polarity before excretion, and makes them harder to 

remove, but which can be cleaved during treatment to release further active ingredient 

(Ternes et al., 2004).  

Rosal et al. (2010) report a survey of over 70 individual pollutants in a WTW effluent using 

biological treatment followed by ozonation where several important groups of 

pharmaceuticals had typical removal efficiencies of <20%.  Ashton et al. (2004) suggested 

that most WTWs in England and Wales are likely to be routinely discharging small quantities 

(ng/L) of pharmaceuticals. A number of other studies have similar findings (Carballa et al., 

2004). A study in Sweden found diclofenac at higher concentrations in the effluent than in the 

influent (Zorita et al., 2009). 
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The oestrogenic effects of WTW effluent ascribed to ethinyl oestradiol and alkyl phenols 

have been recognised for two decades (Montagnani et al., 1996; Purdom et al., 1994). 

Rutishauser et al. (2004) showed that in-vitro tests were able to detect oestrogenic effects in 

effluents from these compounds and bisphenol A. An assessment of oestrogen removal 

efficiency for WTW in the UK (Johnson et al., 2007b) showed simple biological plants to be 

poor with only about 30% removal. Johnson and Williams (2004) were able to estimate the 

amount likely to be discharged using predictions of excretion fate and behaviour in the 

wastewater treatment system.  

Degradation of APEs in WTWs generates more persistent shorter-chain APEs and alkyl 

phenols such as NP, OP and alkylphenol mono- to tri-ethoxylates (Ying et al., 2002). The 

physicochemical properties of APE metabolites indicate that they will have a significant load 

in sediments and sludges. APE removal can be enhanced by GAC filtration, UV treatment or 

ozonolysis but these techniques do not resolve accumulation in sludge (Soares et al., 2008).   

Horii et al. (2007) showed that removal efficiencies for synthetic musks by WTWs ranged 

from 72% to 98% but concentrations of the galaxolide metabolite HHCB-lactone increased 

during treatment. Flame retardants may be present in effluent from WTWs accepting landfill 

leachate (Rahman et al., 2001). This may also be a route for other industrial compounds. 

Byrns (2001) showed that the effect of some operating parameters has an important influence 

upon the concentration of xenobiotics released in the sludges and final effluent. This may 

have significance for a wide range of ecotoxic compounds and in particular the class of 

compounds increasingly recognised as having the potential to disrupt endocrine activity in 

some aquatic invertebrates. 

5.1.2 Drinking water treatment 

For drinking water the main types of treatment processes relevant to micro-organics are: 

clarification/coagulation, granulated or powdered activated carbon (GAC or PAC) sorption, 

oxidation using ozone or chlorine and membrane filtration. In order to assess removal it is 

critical to understand their size distribution and particulate and colloidal association of micro 

contaminants in raw drinking water (Snyder et al., 2003). 

Filtration using GAC has been widely used to remove organic micropollutants from drinking 

water and is effective in removing emerging contaminants provided that it is correctly 

managed. Removal may be up to 90% for refractory compounds (Schäfer et al., 2002). Its 
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effectiveness is greatly reduced by the presence of natural organic matter which competes for 

binding sites, or particulates which block the pore spaces (Bolong et al., 2009; Snyder et al., 

2007). PAC is more efficient since it is fed as a new product and is not recycled through the 

treatment process whereas GAC can have a greater absorption capacity, particularly if steam 

treated, but needs regular replacement (Snyder et al., 2007). However, small and/or very 

polar molecules can be difficult to remove by this method. 

Membrane filtration, either by nanofiltration or reverse osmosis, has considerable potential to 

remove a wide range of emerging contaminants (Nghiem et al., 2005a; Nghiem et al., 2005b; 

Snyder et al., 2007). Membrane filtration can provide good removal except for lower 

molecular weight uncharged compounds (Snyder et al., 2007). Verliefde et al. (2007) 

assessed the application of nanofiltration to priority pollutant removal from water sources.  

Nanofiltration was particularly effective for negatively charged compounds (Zwiener, 2007). 

Membrane cleaning requires careful management (Nghiem and Schäfer, 2006). 

Chlorine and chlorine dioxide have been shown to be ineffective and also produced 

undesirable by-products (Zwiener, 2007).  Chlorine dioxide is anticipated to react particularly 

with compounds containing phenolic amino and thio functions (Snyder et al., 2003). In a 

study of 98 organic micro-compounds, Gibs et al. (2007) showed that 50% were not 

substantially degraded by combined and free chlorine. 

Reactions with ozone are reviewed by Snyder et al. (2003).  Advanced oxidation,  which uses 

a combination of ozone with other oxidation agents such as UV radiation, hydrogen peroxide 

or TiO2, generates reactive intermediates and includes electrochemical mineralisation and 

solar photocatalysis (Comninellis et al., 2008).  This is limited by the radical scavenging 

capacity of the matrix and can be expensive (Petrović et al., 2003).   

Ternes et al. (2002) investigated the elimination of selected pharmaceuticals (bezafibrate, 

clofibric acid, carbamazepine, diclofenac) during drinking water treatment processes at 

laboratory and pilot scale and in real waterworks. No significant removal of pharmaceuticals 

was observed in batch experiments with sand filtration under natural aerobic and anoxic 

conditions, thus indicating low sorption properties and high persistence with non-adapted 

microorganisms. Flocculation using iron(III) chloride in lab-scale experiments and 

investigations in waterworks exhibited no significant elimination. However, ozonation was in 

some cases very effective in eliminating the polar compounds diclofenac and carbamazepine 
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and reducing bezafibrate. Except for clofibric acid, GAC in pilot-scale experiments and 

waterworks provided a major elimination of the pharmaceuticals under investigation. 

Westerhoff et al. (2005) reviewed the effectiveness of a range of drinking water treatment 

processes for emerging contaminants on the laboratory scale. Aluminium sulphate and ferric 

chloride coagulants or chemical lime softening removed <25% of most emerging 

contaminants (ECs). PAC effectiveness was variable, from 10 to 90% depending on 

compound polarity (Kow). Ozone oxidized steroids containing phenolic moieties (oestradiol, 

ethinyloestradiol, or oestrone) more efficiently than those without aromatic or phenolic 

moieties (androstenedione, progesterone, and testosterone).  EC reactivity with oxidants were 

separated into three general groups:  (1) compounds easily oxidized (>80% reacted) by 

chlorine are always oxidized at least as efficiently by ozone; (2) 6 of the 60 compounds 

(TCEP, BHC, chlordane, dieldrin, heptachlor epoxide, musk ketone) were poorly oxidized 

(<20% reacted) by chlorine or ozone; (3) compounds (24 of 60) reacting preferentially 

(higher removals) with ozone rather than chlorine.  

In an overall assessment for 113 organic micro-compounds Stackelburg et al. (2007), 15% of 

the loading was removed by clarification, 32% by hypochlorite disinfection and 53% by GAC 

filtration. Compounds most frequently detected in finished water were carbamazepine, 

DEET, cotinine, tonalide, caffeine and camphor. 

The efficacy of drinking water treatment for pharmaceuticals was evaluated for GAC, 

oxidation and membrane filtration by Zweiner (2007).  A good correlation was found 

between the percentage removal by activated carbon and the octanol/water partition 

coefficient (Kow) for many compounds with log Kow >3. High rates of removal by ozonation 

are usually observed for compounds with double bonds, aromatic structure or heteroatoms, 

and this was the case for diclofenac, carbamazepine and sulfamethoxazole (Zwiener, 2007).  

Lower rates were observed for clofibric acid and ibuprofen which do not have reactive sites. 

These types of compounds are more readily degraded by advanced oxidation using, for 

example, the OH radical.  

Escher et al. (2009) assessed the efficiency of removal of toxicological activity by ozonation 

after secondary treatment using bioassays and compared that with removal using GAC. 

Escher et al. (2006) estimated the removal efficiency of pharmaceuticals and hormones in 

separated urine using both bioassays and chemical analysis. This approach was extended to 
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the ecotoxicological effects of polar micro-organics in effluent and receiving surface waters 

(Escher et al., 2008). 

In conclusion we can assume that there is potential for some EGCs to pass through drinking 

water treatment plants. Many such plants which treat groundwater may not have treatment 

which would remove these types of compounds as groundwater has a lower organic loading 

than surface water.  

5.2 Attenuation in the environment 

Physicochemical properties such as Kow are available for many of urban and industrial 

organic micropollutants from the SRC database (SRC, 2010). As a first pass estimate of 

recalcitrance to water treatment, of the compounds listed by Gibs et al. (2007), Stackelberg et 

al. (2007) and Glassmeyer et al. (2008), only 19 had a Kow of <1.  

Zweiner (2007) describes the processes which reduce the concentrations of pharmaceuticals 

in treated sewage effluent in the aqueous environment as biodegradation, sorption, photolysis 

and oxidation successively in surface water, bank filtration and drinking water treatment. 

Most degradation studies have been directed at degradation in surface water (Pal et al., 2010). 

Pal et al. (2010) also collated physicochemical properties reported in the literature for 14 

pharmaceuticals demonstrating their wide range. In general amines have higher sorption 

coefficients than carboxylic acids and neutral pharmaceuticals (Yamamoto et al., 2009).  Lai 

et al. (2000) showed that synthetic oestrogens were more readily removed from the aqueous 

phase in rivers and estuaries than natural compounds due to their higher Kow.  Sorption was to 

both organic carbon and iron oxides in sediments. 

Oppel et al. (2004) studied the leaching behaviour of 6 selected pharmaceuticals in different 

soils to simulate soil application. The results indicated that the leaching potential was low for 

diazepam, ibuprofen, ivermectin and carbamazepine, but clofibric acid and iopromide were 

very mobile under the experimental conditions.  

Drewes et al. (2003) showed that caffeine, gemfibrozil and many analgesics were removed 

from recharged treated effluent during groundwater recharge within six months, whereas 

carbamazepine and primidone persisted for up to 8 years. For a group of 8 pharmaceuticals 

Lam et al. (2004) showed that photolysis was much more significant than hydrolysis. Jürgens 

et al. (2002) measured the degradation of oestrodiol and ethinyl oestrodiol in English rivers 

and estimated a half-life of 10 days or less. Synthetic musks are assessed as being non-
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degradable with sorption and sedimentation being minor processes. Tonalide can be removed 

from surface water by direct photolysis but galaxolide shows negligible photochemical 

degradation (Buerge et al., 2003). 

Jones et al. (2002) made an environmental assessment for the 25 most-used prescription 

pharmaceuticals in the UK based on usage, removal in treatment works based on sorption and 

dilution.  Degradation was modelled due to lack of data and was predicted to be very limited 

for most compounds. Jones et al. (2005) assessed the potential for pharmaceuticals to enter 

the aqueous environment, reviewed the levels reported in drinking water world-wide and 

assessed the implications.  

Lindström et al. (2002) detected triclosan and its metabolite methyl triclosan in surface water 

in Switzerland and considered the metabolite to be persistent. 

Löffler et al. (2005) studied four 14C-labelled pharmaceuticals (diazepam, ibuprofen, 

iopromide, and acetaminophen) as well as six non-labelled compounds (carbamazepine, 

clofibric acid, 10,11-dihydroxycarbamazepine, 2-hydroxyibuprofen, ivermectin, and 

oxazepam) in batch studies of water/sediment. Ibuprofen, 2-hydroxyibuprofen, and 

paracetamol displayed a low persistence with DT50 values in the water/sediment system less 

<20 d and paracetamol was rapidly attenuated due to the extensive formation of bound 

residues. A moderate persistence was found for ivermectin, iopromide and oxazepam with 

DT50 values of <60 d. For diazepam, carbamazepine, 10,11-dihydroxycarbamazepine, and 

clofibric acid, system DT90 values of >365 days were found. An elevated level of sorption 

onto the sediment was observed for ivermectin, diazepam, oxazepam, and carbamazepine.  

Johnson et al. (2007a) applied an existing GIS model to predict the concentrations of the 

pharmaceuticals, diclofenac and propanalol, in surface water catchments. The model input 

parameters included consumption, excretion and fate. Concentrations predicted throughout 

the catchments were 1 ng/L under low flow except for downstream of small WTW where 

concentrations of up to 25 ng/L were predicted. 

Kavlock et al. (2008) reviews the types of model which can be used to estimate 

physicochemical properties and degradation mechanisms in the environment, and examples 

are shown in Table 4. 

The fate and transport of emerging contaminants in the aqueous environment remains poorly 

understood, particularly for groundwater. Established contaminants, such as pesticides, often 
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have persistence in groundwater of up to an order of magnitude longer than in soils and 

surface water.   

5.3 Toxicity 

5.3.1 Lifestyle and personal care products 

Pathways to humans will also include direct exposure through ingestion, inhalation or dermal 

contact and the risk posed by drinking water is likely to be considerably less. 

Caffeine and nicotine have been included in a number of studies of pharmaceutical fate (e.g. 

Debska et al., 2004; Santos et al., 2007; Schwab et al., 2005). Caffeine’s effect on the 

environment is not well understood, but does not appear to give cause for concern to 

freshwater organisms at currently detected concentrations (Moore et al., 2008). Nicotine has a 

high toxicity to humans, compared to other alkaloids and neonicotinoid pesticides, such as 

imidacloprid, are widely used. The toxicity of artificial sweeteners as food additives is 

reviewed by Grice and Goldsmith (2000) and by Whitehouse et al. (2008). 

DEET has been found to inhibit the activity of a central nervous system enzyme, 

acetylcholinesterase, in both insects and mammals (Corbel et al., 2009). Collated information 

on DEET in the aquatic environment suggested risk to aquatic biota at observed 

environmental concentrations is minimal.  

The parabens exert a weak oestrogenic activity (Oishi, 2002; Soni et al., 2002) and are 

capable of producing immunologically mediated, immediate systemic hypersensitivity 

reactions (Nagel et al., 1977). Some data on their environmental toxicity is now available 

(Bazin et al., 2010). Fatta-Kassinos et al. (2010) considered that  n-butyl and benzyl parabens 

should be classified as toxic substances whereas methyl, ethyl and n-propyl parabens are 

harmful. A synergistic oestrogenic effect was observed when other estrogenic compounds 

were also present. 

Triclosan is degraded to dioxins and is toxic to aquatic bacteria at levels found in the 

environment (Ricart et al., 2010). 

Work on toxicity of musks has mainly assumed a dermal exposure pathway (Ford et al., 

2000). They are degraded to more polar metabolites during treatment and in sediments and 

the soil. Heberer (2002a) discusses the results from investigations of synthetic musk 

concentrations found in sewage, sewage sludge, surface water, aquatic sediment, and biota 
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samples in terms of bioaccumulation, metabolism in fish, and environmental and human risk 

assessment. 

Many “lifestyle“ and PCPs which are commonly used may exhibit some toxic effects on 

humans or the environment. 

5.3.2 Industrial compounds 

The toxicological effects of many industrial compounds are long established; information is 

also available for many emerging compounds. 

Polybrominated diphenyl ether (PBDE) flame retardants have been found to bioaccumulate 

and have potential endocrine disrupting properties (Hooper and McDonald, 2000; Meerts et 

al., 2001; Rahman et al., 2001). Tris-(2-chloroethyl) phosphate (TRCP), which is used in 

industrial and consumer products, appears to be responsible for brain damage (Matthews et 

al., 1993).  There is relatively little information on PFOS toxicity (Hekster et al., 2003). 

Octyl and nonyl phenol have been long established as endocrine disruptors in fish (Petrović et 

al., 2004; White et al., 1994). The APEs can also be used as pesticide adjuvants. These can 

therefore be found in groundwater as a result of agricultural activity (Lacorte et al., 2002; 

Latorre et al., 2003). Thomas et al. (2001) used the toxicological impact of a storm event in 

an agricultural catchment near Tunbridge Wells to determine that significant components not 

being measured were present, and used this to identify the surfactant nonylphenol as well as 

the pesticides diuron, simazine endosulphan sulphate and pendimethalin.  

Both the water treatment by products NDMA and acrylamide affect the central nervous 

system and are carcinogenic (Smith and Oehme, 1991). 

Eljarrat and Barceló (2003) attempted to prioritize emerging and persistent organic pollutants 

in the environment based on their relative toxic potency. These included dioxins and 

polybrominated compounds. 

Carlsson et al. (2006) assessed 27 active ingredients, with 9 being identified as dangerous for 

the aquatic environment and only oestradiol and ethinyloestradiol considered to have possible 

aquatic environmental risks.  

Farré et al. (2008) review the fate and the ecotoxicology of emerging pollutants, especially 

focusing on their metabolites and transformation products (TPs) in the aquatic environment, 
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including pharmaceuticals, hormones, perfluorinated compounds, by-products of drinking-

water disinfection, sunscreens or UV filters, benzotriazoles and naphthalenic acids. 

Poynton and Vulpe (2009) applied an ecotoxicogenomic approach to assess the potential 

effects of a range of pharmaceuticals, endocrine disruptors, polybrominated flame retardants, 

perfluorinated compounds and nanomaterials. DNA-microarrays can be used to understand 

the effects of single compounds and mixtures, to suggest potential modes of action and 

predict exposure to pollutants in the environment.  

Schriks et al. (2010) derived provisional drinking water values for a selection of emerging 

contaminants based on toxicological literature data. Where no published values existed these 

were derived from the ADI or failing this from the LOEC/NOEC. These were compared with 

occurrence data for surface water of the Rhine and Meuse. This study identified 1,4-dioxane, 

benzene and NDMA as being found at the highest concentrations relative to the guidelines. 

PFOS and PFOA were also highlighted. For groundwater the highest concentrations were for 

the fuel-oxygenate methyl tertiary-butyl ether.  

5.4 Synergistic toxic effects 

Concern over the potential adverse health effects of groundwater contaminated by a cocktail 

of contaminants has existed for many years (Germolec et al., 1989).  The implications for 

mixtures of herbicides considered by WHO, who stated in 1987 that not these could not be 

handled in isolation (WHO, 1987).  Carpy et al. (2000) reviewed the possible effects of 

pesticide mixtures and Relyea (2009) showed how aquatic communities can be dramatically 

impacted by a cocktail of low concentrations of pesticides. Yang et al. (1989) describe the 

approaches to evaluating the toxicology of chemical mixtures. Seed et al. (1995) discuss the 

applicability and validity of the methods for the assessment of risk posed by exposure to 

environmentally relevant concentrations of chemical mixtures. Borgert et al. (2001) describe 

a set of criteria to: evaluate the quality of data and interpretations in chemical interaction 

studies said to reflect the consensus of the literature on interaction analysis which apply to 

interaction data for drugs, pesticides, industrial chemicals, food additives, and natural 

products. 

In a different approach Eljarrat and Barceló (2003) define a toxic equivalency factor (TEF) 

which provides a single number that is indicative of the overall toxicity in a mixture of 

related compounds. They used this for a mixture of dioxin and dioxin analogues. 
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Pomati et al. (2006; 2008) investigated the effects and interactions of a mixture of commonly 

used pharmaceuticals, including carbamazepine, ibuprofen and sulfamethoxazole at low 

concentrations, designed to mimic those found in the environment using in vitro tests on 

human and zebrafish cells. They concluded that a mixture of drugs at ng/L levels can inhibit 

cell proliferation by affecting their physiology and morphology and that waterborne 

pharmaceuticals may have an effect on aquatic life.  

Synergy remains an important topic with the complex mixtures of trace organic compounds 

being released to the environment. 

5.5 Risk assessment 

In their editorial to the special issue of Water Research ‘Emerging contaminants in water’ 

Ternes and von Gunten (2010) state that to elucidate the relevance of micropollutants in 

aquatic systems their (eco)toxicological potential must be addressed. Almost all studies of 

risk to the aquatic environment have been directed to surface water; risk assessment to 

humans from consumption of surface water has therefore been used as an analogue for 

groundwater accepting that groundwater itself may be less at risk from emerging 

contaminants. 

In an early review, Halling-Sørensen et al. (1998) collated concentrations of pharmaceuticals 

in the environment from human and veterinary use and also assessed their environmental fate 

and toxicity. They concluded that pharmaceuticals were present in the environment at 

concentrations similar to other xenobiotics, and highlighted the paucity of information.  

The principles of human risk assessment are set out by Lioy (1990) and these are illustrated  

using a flow diagram relating the  source of contaminant to health effects in humans. Risk 

assessments of pharmaceuticals in the aquatic environment use the comparison of predicted 

environmental concentration (PEC) and predicted no-effect concentration (PNEC) derived 

from the Acceptable Daily Intake (ADI). The process for registration of new drugs at the 

European level requires a risk assessment of the PEC using data on the volume of drug 

prescribed and the amount of dilution in the wastewater stream (EMEA, 2005). The method 

assumes “no biodegradation or retention of the drug substance in the WTW”.  This approach 

can also be used to assess existing compounds. Bound and Voulvoulis (2006) used the 

proportion of the population being treated, the dosage, the amount of wastewater generated 
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per day and an estimate of dilution to identify candidate compounds for a study of 

pharmaceuticals in UK rivers. 

Stuer-Lauridsen et al. (2000) calculated the PEC using the amount of compound used divided 

into the amount of wastewater generated both per capita diluted into the environment using a 

default value of 10, and estimating Kow and DT50 from literature values. They found limited 

ecotoxicity data to be available for calculation of PNEC and showed for the six compounds 

possible, PEC/PNEC>1 for ibuprofen, paracetamol and acetyl-salicylic acid. Webb (2000) 

made a similar assessment for drugs used in the UK in 1995. Of the 67 compounds assessed 

only 7 had PEC/PNEC>1 and only 11 had PEC/PNEC>0.1. 

Schwab et al. (2005) and Cunningham et al. (2009) presented human health risk assessments 

for a range of active pharmaceutical ingredients and/or their metabolites, representing 

different drug classes, using environmental monitoring data. ADIs were used to estimate 

PNECs for both drinking water and fish ingestion. The PNECs were compared to measured 

environmental concentrations (MECs) from the published literature and to maximum PECs 

generated using the regional assessment models PhATETM (Anderson et al., 2004) for North 

America and GREAT-ER (Feijtel et al., 1997) for Europe. The model predictions assumed 

low river flow and no depletion (no metabolism, no removal during wastewater or drinking 

water treatment, and no instream depletion). Ratios of MECs to PNECs were typically very 

low and consistent with PEC to PNEC ratios. For all 26 compounds, these low ratios indicate 

that no appreciable human health risk exists from the presence of trace concentrations in 

surface water and drinking water. 

Straub (2008) reviewed the derivation of PECs, PNECs and MECs for diazepam by both 

deterministic and probabilistic procedures and the probabilistic safety margin.  No significant 

concern was identified. In contrast, Cooper et al. (2008) ranked drugs by their potential 

environmental exposure and risk using annual prescriptions dispensed, surface water 

concentrations, effluent concentration, environmental half life, biological half life, mammal, 

fish and crustacean toxicity, Kow, solubility and ECOSAR (model used to estimate the aquatic 

toxicity of industrial chemicals). These were compiled into the PEIAR (Pharmaceuticals in 

the Environment, Information for Assessing Risk) database (CHBR, 2009). A preliminary 

assessment indicated that anti-infective, cardiovascular and central nervous system 

(analgesic, anti-inflammatory and psychotherapeutic) pharmaceuticals had the highest risks. 
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Toxicological and ecological assessments for pharmaceuticals are summarised by Pal et al. 

(2010). These used toxicity tests using freshwater invertebrates, fish, mussels and human 

embryonic cells. The sex hormones were viewed to be of the greatest concern, followed by 

cardiovascular drugs, antibiotics and anthineoplastics (chemotherapy drugs) (Sanderson et al., 

2004a). Currently, antibacterial resistance represents the most significant human health 

hazard, and potentially the largest non-target organism hazard is sex hormones acting as 

endocrine modulators in wildlife. 

In a study which did include groundwater, Schulman et al. (2002) assessed the risk to human 

health for 4 representative pharmaceuticals: acetylsalicylic acid, clofibrate, 

cyclophosphamide, and indomethacin which have been detected in aqueous environmental 

media including WTW effluent, surface water, drinking water, and groundwater. The 

toxicological and pharmacological nature, exposure assessment, and environmental fate and 

transport of each pharmaceutical were considered. The overall conclusion was that based on 

available data there was appreciable risk to humans, as the detected concentrations of each 

compounds were far below the derived safe limits. 

A number of studies have assessed the risk to aquatic organisms using species dependent 

criteria. Ferrari et al. (2003) calculated PNEC from bioassays for bacteria, algae, 

microcrustaceans, and fishes to perform an initial risk characterization against both MEC and 

PEC for carbamazepine, clofibric acid, and diclofenac. Only carbamazepine had a risk 

quotient >1. Sanderson et al. (2004b) ranked 2986 different pharmaceutical compounds in 51 

classes relative to hazard toward algae, daphnids, and fish using a quantitative structure-

activity relationship (QSAR) type model. Modifying additives were the most toxic classes. 

Cardiovascular, gastrointestinal, antiviral, anxiolytic sedatives hypnotics and antipsychotics, 

corticosteroid, and thyroid pharmaceuticals were the predicted most hazardous therapeutic 

classes.  

A review by Fent et al. (2006) found that only very little is known about long-term effects of 

pharmaceuticals to aquatic organisms, in particular with respect to biological targets. For 

investigated pharmaceuticals the chronic lowest observed effect concentrations (LOEC) in 

standard laboratory organisms are about two orders of magnitude higher than maximum 

concentrations in WTW effluents. For diclofenac, the LOEC for fish toxicity was in the range 

of wastewater concentrations, whereas the LOEC of propanolol and fluoxetine for 

zooplankton and benthic organisms were near to maximal effluent concentrations.  
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Kostich and Lazorchak (2008) used a simple approach, prioritising pharmaceuticals using 

marketing data and predicted concentrations of likely activity in wastewater to evaluate the 

risk to aquatic organisms using PECs. This approach was extended by comparison with 

regulatory data (Kostich et al., 2010).  

A preliminary risk assessment for a range of PCPs in surface water made by Brausch and 

Rand (2010), using both environmental fate data and toxicity to aquatic organisms, suggested 

that only triclosan and triclocarban presented any hazard but this did not take account of 

endocrine effects. 

Overall it is concluded that the sex hormones, PFOS and PFOA, diclofenac, carbamazepine 

and ibuprofen present the greatest risks to surface water, with possibly benzene and 1,4-

dioxane. However the risk assessment approaches available may not be adequate for the 

groundwater environment where inputs may not be the same and where environmental 

conditions controlling fate and transport may be very different from the surface.  

6 UK and European studies 

6.1 Surface water 

A possible indication of future groundwater contamination may be given by current surface 

water issues. It has long been recognised that the pollutant loading to surface waters is both 

temporally and spatially variable (Haith, 1985; Vega et al., 1998) although the risk and 

uncertainty can be modelled (Persson and Destouni, 2009). 

A summary of published work related to detection of organic micropollutants in UK surface 

waters is shown in Table 5. This demonstrates that a wide range of pharmaceuticals as well as 

industrial compounds and pesticides that have been detected.  Most of these studies have 

been associated with the impact of WTWs. It is well established that endocrine disruption in 

UK rivers is likely and due primarily to natural and synthetic oestrogens in sewage effluents 

(Johnson et al., 2007b). Mason et al. (1999) showed that point source contamination of 

surface water from pesticides was more significant than previously recognised.  

Loos et al. (2009) report an EU-wide reconnaissance of the occurrence of polar organic 

persistent pollutants in European river waters. Samples from over 100 rivers from 27 

European countries were analysed for 35 compounds, comprising pharmaceuticals, 

pesticides, PFOS, PFOA, benzotriazoles, hormones and endocrine disrupters. The compounds 
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detected most frequently and at the highest concentrations were benzotriazole, caffeine, 

carbamazepine, tolyltriazole and nonyl-phenoxy acetic acid. Only about 10% of the river 

water samples analysed could be classified as "very clean" in terms of chemical pollution. 

6.2 Groundwater 

Table 6 summarises European studies of organic micropollutants in groundwater. These 

confirm the detection of emerging contaminants such as ibuprofen, carbamazepine, 

diclofenac and sulfamethoxazole.    

Loos et al. (2010) report a pan-European reconnaissance for polar persistent organic 

pollutants in groundwater. In total, 164 individual groundwater samples from 23 European 

countries were collected and analysed (among others) for 59 selected organic compounds, 

comprising pharmaceuticals, antibiotics, pesticides (and their metabolites), perfluorinated 

acids (PFAs), benzotriazoles, hormones, alkylphenolics (endocrine disrupters), caffeine, 

DEET, and triclosan. 

Figure 3 shows the frequency of detection for compounds present in 20% or more of samples 

and the maximum concentrations detected by Loos et al. (2010). The most relevant 

compounds in terms of both frequency of detection and maximum concentrations detected 

were DEET, caffeine, PFOA, atrazine, desethylatrazine, 1H-benzotriazole 

methylbenzotriazole, desethylterbuthylazine, PFOS, simazine, carbamazepine, nonyl-

phenoxy acetic acid, bisphenol A, perfluorohexane sulfonate terbuthylazine, bentazone, 

propazine, perfluoroheptanoic acid, 2,4-dinitrophenol, diuron and sulfamethoxazole. 

In an investigation into the occurrence of perfluorinated compounds in groundwaters of 

England and Wales in 2006, perfluorinated compounds were detected in 26% (57 of 219) of 

groundwater monitoring sites, with detectable concentrations of PFOS found at about 14% of 

sites (Environment Agency, 2007; Environment Agency, 2008). 

Data from the Environment Agency’s monitoring programme for organic pollutants presented 

in this study indicates that within the 30 most frequently detected compounds are a number of 

emerging contaminants: atrazine metabolites, caffeine and DEET (Figure 4). Specific 

determinands with multiple detections include pesticides metabolites, pharmaceuticals 

including carbamazepine, triclosan, nicotine, food additives and alkyl phosphates (Table 7).  

This data set is not directly comparable with Loos (2010) since it contains non-polar 

compounds, fewer pesticides and perfluorinated compounds, has a different limit of detection 
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and is designed to capture compounds which do not form part of standard monitoring suites.  

Figure 5 shows the percentage detection for top 15 compounds from this study excluding 

hydrocarbons, PAH and chlorinated solvents compared with that reported for the same 

compounds by Loos et al. (2010).  

6.3 Comparison of river and groundwater concentrations 

These studies allow us to make a comparison between surface and groundwater. 

Concentrations of some contaminants are much higher in surface than groundwater as might 

be anticipated. For example, average concentrations of ibuprofen 100 times higher in rivers 

than groundwater, caffeine 75 times and carbamazepine 21 times.  PFOA, ketoprofen, 

sulfamethoxazole and oestrone are also relatively elevated in river water. 

However desethyl atrazine, bisphenol A, 4-octyl phenol are higher in groundwater. Clearly 

this could be related either to a different source and pathway of entry, but it could of course 

also be related to their different degradation rate in the subsurface. 

These data allow us to begin to identify important sources and routes to groundwater in the 

UK. The widespread detection of atrazine and its metabolites, and the recent problems with 

metaldehyde, show that diffuse sources such as agricultural and amenity pesticide use remain 

important. Pharmaceuticals, personal care products and lifestyle compounds are most likely 

to be derived from WTWs discharge either to the ground, or from sewer leakage, or through 

surface water/groundwater interaction. It is possible that some older compounds are the 

results of leakage from landfills which have received domestic or medical waste. PFOS and 

PFOA may have been released as the results of incidents such as fires and may both have 

infiltrated directly to groundwater or via surface water. We might conclude that all of the 

above routes need to be taken into account.  

It is clear that the risks to groundwater and its receptors are real.  Loos et al. (2010) report 

seemingly high concentrations of some compounds, but we as yet have insufficient data to be 

able to evaluate the significance of these findings. Many groundwater sources do not have 

treatment which would remove emerging contaminants and their lack of drinking water limits 

means that they are not currently being monitored. Much more research is needed to 

demonstrate whether emerging contaminants in river baseflow or groundwater dependent 

ecosystems are or could potentially have an impact. 
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7 Challenges in the management of emerging contaminants  

7.1 Identifying emerging contaminants 

The first challenge will be to identify the chemicals which potentially will become dangerous 

in the future and minimise the potential threat to groundwater, and to its receptors. To 

evaluate this threat the scientific community will need to: 

 identify possible new groundwater pollutants 

 identify possible new sources of such pollutants,  

 develop analytical methods to measure these compounds in a variety of matrices (e.g. 

water, sediment, waste) down to trace levels.  

 determine the environmental occurrence of these potential contaminants,  

 characterize the sources and source pathways that determine contaminant release to 

the aqueous environment,  

 identify possible new pathways for human exposure from contaminated groundwater, 

such as vapour intrusion. 

 define and quantify processes that determine their transport and fate through the 

environment, and  

 identify potential ecologic effects from exposure to these chemicals or 

microorganisms  

Daughton (2004) raises a number of issues relating to the management of emerging 

contaminant problems. 

 growing questions about pervasiveness and significance of low level effects, and 

awareness that there may be effects from concentrations below the toxic limit 

 issues that may occur from inadequate water infrastructure and decentralised water 

use  

 consequences of water reuse and artificial groundwater recharge 

 pollution prevention, early warning programmes, monitoring programmes, use of 

pollutants as indicators,  

 changing consumer behaviour and risk perception, communicating risk, new 

precautionary principles.  

These represent major challenges for both the science community and those with 

responsibilities for risk assessment and managing pollution.  
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7.2 Setting appropriate standards 

The Water Framework Directive (EC, 2000) and its Groundwater Daughter Directive  (EC, 

2006) require the setting of threshold values (TVs) for groundwater as part of the assessment 

of groundwater bodies. TVs have to be set for all pollutants which put the groundwater body 

at risk of failing to achieve good status. In setting TVs the following criteria must be 

considered: 

 extent of interaction of groundwater and ecosystems, 

 toxicology, dispersion tendency, persistence and bioaccumulation potential. 

For EGCs the establishment of TVs, if necessary, will be a challenging task and require much 

better understanding of key properties and their distribution and behaviour in groundwater. 

As such for individual compounds, this likely to be a lengthy process.  

Khadam and Kaluarachchi (2003) set out a multi-criteria decision analysis framework for 

environmental decision making in subsurface contamination remediation scenarios using 

probabilistic health risk assessment and economic analysis, in their case for carcinogenic 

impacts.  

The methodology uses the trade-off between:  

 population risk and individual risk by establishing a risk index  

 the residual risk and the cost of risk reduction by using cost per life saved as a 

criterion  

 cost-effectiveness as a justification for remediation.  

Three approaches to ranking the criteria for decision-making were explored: structured 

explicit decision analysis, a heuristic approach and fuzzy logic.  The results showed the 

importance of using an integrated approach for decision-making considering both costs and 

risks.  

A similar approach could be developed for establishing what levels of discharge controls and 

drinking water treatment would be appropriate to achieve an acceptable water quality at a 

realistic cost. An adaptation of the flowchart developed by Khadam and Kaluarachchi (2003) 

is shown in Figure 6. The pathway here could either be entry to the environment or migration 

in groundwater.   
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7.3 Reducing inputs 

There are a number of different areas which need to be tackled to reduce the overall input of 

emerging contaminants to groundwater. These include better handling and use, minimising 

waste product, correct disposal, reducing discharge to surface or groundwater and improved 

drinking water treatment.  

For example Kümmerer (2008) and Eckstein and Sherk (2011) set out a number of strategies 

for reducing PPCP and veterinary medicines in water resources through better control of the 

source term and minimising wastes, in addition to improved monitoring and regulating 

compounds entering water. These include:  

 product design – maintenance of effectiveness despite reduced dosage 

 delivery – more precise targeting and dosing, better delivery routes (e.g. transdermal), 

completion of course to reduce disposal 

 marketing  – guidance on disposal, broader range of package size, advertising 

 publication of environmental risk assessment data 

 dispensing  – expiry date, pharmacy inventories, database of both prescription and 

non-prescription drugs, reduction in availability of non-prescription drugs 

 restrictive prescription, and improvement in hygiene for farm animals  

 disposal/recycling – effective guidance, reverse distribution (take back programmes), 

recovery from wastewater 

 reduction of input by broken sewage/piping 

 separation of waste and rainwater to minimise necessary treatment  

 alternative products  – improved nutrition, probiotic products  

 demonstration of economic benefits of usage reduction by health insurers 

A major challenge in wastewater and drinking treatment is to improve existing processes and 

to design new ones to remove a large number of very different micropollutants in a range of 

matrices (Schwarzenbach et al., 2006). Future water treatments will require the development 

of more compact and efficient technologies. Existing strategies that predict relative removals 

of herbicides, pesticides, and other organic pollutants by activated carbon or oxidation can be 

directly applied for the removal of many ECs, but these strategies need to be modified to 

account for recalcitrant species (Westerhoff et al., 2005). Advanced oxidation and solar 

photocatalysis have the potential for further development (Comninellis, 2008; Robert and 

Malato, 2002). 
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7.4 Improved monitoring  

Techniques need to be sought to enable the wide range of potential new and existing 

contaminants to be detected in groundwater and surface water. These could include assays 

where the toxicological activity of the contaminant loading is measured rather than the 

identity of individual compounds. 

Targeted bioassays can be effective in assessing overall toxicological activity in effluents and 

surface water. Muller et al. (2007) have shown that combined passive sampling and a series 

of bioassays was effective in monitoring polar organics in effluents. 

Rodriguez-Mozaz et al. (2007) set out the advantages of using biosensors. These depend on 

recognition of antibodies, molecular sensors or DNA, or inference on enzyme functioning. 

These can be applied to pharmaceuticals and endocrine disruptors and have been applied to 

bisphenol A, oestrone, nonyl phenol, diethylstilbestrol, sulfamethazine, and tetracycline. 

Jardim et al. (in press) found that a yeast bioassay using a bioluminescent reported was more 

effective for monitoring for endocrine disruptors than analysis for the individual components.  

Bioassays can be sensitive, highly selective for compounds or activity, readily automatable 

and represent a cheap and fast way of screening for emerging contaminants.  

Biosensors are only one example of possible alternative approaches to monitoring EGCs in 

groundwater. Others which have been suggested are passive samplers (Alvarez et al., 2004; 

Stuer-Lauridsen, 2005; Vrana et al., 2001), although there are obvious 

difficulties/complexities in applying these cumulative sampling methods within a regulatory 

framework. 

8 Conclusions  

1. A wide range of organic micropollutants is now being detected in the aqueous 

environment world-wide. These include nanomaterials, pesticides, pharmaceuticals, 

industrial additives and by-products, personal care products and fragrances, water 

treatment by products, flame/fire retardants and surfactants, as well as caffeine and 

nicotine metabolites and hormones. Many of the compounds are relatively small 

and/or polar molecules which can often not be effectively removed by conventional 

drinking water treatment using activated carbon. Many of these compounds are also 

toxic or are classed as endocrine disruptors. 
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2. In order to assess the hazards presented by such compounds information on usage, 

persistence in soil and water, leachability and a robust and suitably sensitive 

analytical method is required. For many pesticides the above requirements are 

fulfilled and an assessment of risk of leaching to groundwater can be made. However, 

for pesticide metabolites this information can be sparse and for many emerging 

contaminants fate and transport data in the subsurface can be completely lacking with 

the  majority of persistence studies directed at water treatment.   A clear connection 

between source terms of these contaminants and groundwater-related receptors is 

often not well-defined to anticipate significant problems in groundwater.  For 

compounds with no regulatory limit in groundwater, risk assessments are generally 

made using a toxicological approach based on estimates of PEC and PNEC. 

Synergistic effects from mixtures of contaminants cannot yet be fully evaluated. 

3. A range of organic micropollutants from urban settings have been detected in 

European groundwater and surface water. Commonly detected compounds include: 

bisphenol A, caffeine, carbamazepine, DEET, galaxolide, ibuprofen, iopamidol, 

phthalates, phenyl ethoxylates, and sulfamethoxazole. Data presented in this study 

from the England and Wales Environment Agency’s monitoring programme for 

organic micropollutants indicates that within the 30 most frequently detected 

compounds are a number of emerging contaminants such as pesticide metabolites, 

caffeine and DEET. Specific determinands with multiple detections include pesticides 

metabolites, pharmaceuticals including carbamazepine and triclosan, nicotine, food 

additives and alkyl phosphates. 

4. Concentrations of some contaminants, such as ibuprofen and caffeine, are much 

higher in surface than groundwater but there are others, such as desethyl atrazine, 

which are higher in groundwater. This relates to different sources and pathways of 

entry, but it could of course also be related to different degradation rate in the 

subsurface. These data allow us to begin to identify important sources of emerging 

contaminants in groundwater in the UK; these include both diffuse sources and 

wastewater discharges. 

5. It is clear that the risks to groundwater and its receptors are real.  Many groundwater 

sources do not have treatment which would remove emerging contaminants and their 

lack of drinking water limits means that they are not currently being monitored. Much 

more research is needed to demonstrate whether emerging contaminants in river 
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baseflow or groundwater dependent ecosystems are or could potentially have an 

impact. 

6. Regulation of these compounds in groundwater and the wider environment will be a 

challenging task and require much better understanding of key contaminant properties 

and their distribution and behaviour in groundwater. The challenges include 

identifying new emerging compounds, setting appropriate standards, developing 

strategies to reducing inputs to the aqueous environment and applying novel 

monitoring methods.  
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Table 1 Pesticides used in the UK over more than 50,000 ha in 2008 with octanol/water 

partition coefficients lower than metaldehyde 

Compound Log Kow 

Diquat -4.6

Mepiquat chloride -3.55

Chlormequat chloride -3.47

Glyphosate -3.2

Prohexadione-calcium -2.9

Clopyralid -2.63

Picloram -1.92

Dicamba -1.88

Metsulfuron-methyl -1.7

Thifensulfuron-methyl -1.7

Amidosulfuron -1.56

Quinmerac -1.41

Propamocarb hydrochloride -1.3

Florasulam -1.22

Imazaquin -1.09

2,4-D -0.83

MCPA -0.81

Mesosulfuron-methyl -0.48

Trinexapac-ethyl -0.29

MCPP-P 0.02

Metaldehyde 0.12
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Table 2 Summaries of selected studies finding pesticide metabolites in groundwater 

Area Pesticides detected Metabolites detected Process Ref erence 

Hesse, 

Germany 

Chloridazon desphenyl-chloridazon Parent and metabolite 

in STW effluent, 

surface water and 

groundwater 

Buttiglieri et al. 

(2009) 

Rome 

province, 

Italy 

2,4-D,  bentazone,  MCPA,  8-hydroxybentazone Survey Laganà et al. 

(2002) 

Lincolnshire, 

UK 

MCPP (chiral mixture) 4-chloro-2-methylphenol Change in enantiomeric 

ratio during degradation 

Williams et al. 

(2003) 

Kent, UK Diuron, Atrazine, Simazine DCPMU, DCPU, DCA Research project Lapworth and 

Gooddy (2006) 

Denmark Atrazine, bentazone, dichlorprop, 

MCPA, MCPP, simazine  

  

2,6-dichlorobenzamide (dichlobenil) 

deethylatrazine, deisopropylatrazine, 

hydroxyatrazine, ethylenethiurea 

(mancozeb), desamino-diketo- 

metribuzin, diketo- metribuzin,  

National monitoring 

programme 

Jacobsen et al. 

(2005) 

Denmark Metribuzin desamino-diketo- metribuzin, diketo- 

metribuzin 

Research project Kjaer et al.(2005) 

Norway 27 including bentazone, clopyralid, 

dichlorprop, dimethoate, isoproturon, 

linuron, mecoprop, metalaxyl, 

metribuzin, propachlor, terbutylazine 

desethyl atrazine, 2,6-

dichlorobenzamide, AMPA 

 

Monitoring Haarstad and 

Ludvigsen (2007) 
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France Atrazine, metolachlor desethyl-atrazine, ethane sulfonic acid, 

metolachlor oxanilic acid 

Catchment monitoring Baran et al. (2008; 

2007; 2010) 
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Table 3 Key metabolites assessed as having leaching potential from  Figure 2 

Parent compound Key metabolite DT50 Koc 

Chlorothalonil 

 

2-amido-3,5,6-trichlo-4-cyanobenzenesulphonic 

acid 

121 10 

3-carbamyl-2,4,5-trichlorobenzoic acid 103 77 

Cymoxanil 

 

2-cyano-2-methoxyiminoacetic acid 2.8 9 

3-ethyl-4-(methoxyamino)-2,5-dioxoimidazolidine-

4-carboxamide 

11.2 21.6 

Cyproconazole 1H-1,2,4-triazol-1-ylacetic acid 15 8 

Diflufenican 2-(3-trifluoromethylphenoxy)nicotinic acid 10.6 13 

Florasulam 

 

5-(aminosulfonyl)-1H-1,2,4-triazole-3-carboxylic 

acid 

328 83 

N-(2,6-difluorophenyl)-8-fluoro-5-

hydroxy[1,2,4]triazolo[1,5-c]pyrimidine-2-

sulfonamide 

23 21 

Flufenacet 

 

FOE oxalate 11 11 

FOE sulphonic acid 230 10 

Fluoxastrobin HEC-5725-des-chlorophenyl 67 60 

Fluroxypyr 4-amino-3,5-dichloro-6-fluoro-2-pyridinol 37 4 

Iodosulfuron-methyl- Na 2-amino-4-methoxy-6-methyl-1,3,5-triazine 181 97.7 

Mesosulfuron-methyl 4,6-dimethoxypyrimidine-2-yl-urea 48 3 

Mesosulfuron 53 68 

Metaldehyde Acetaldehyde 18.5 1.5 

Metsulfuron-methyl Saccharin 150 5.2 

Thiram N,N dimethyl carbamosulfonic acid 38 33 

Tribenuron-methyl 

 

N-methyl triazine amine 165 89 

Saccharin 105 5.2 
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Table 4 Examples of models to calculate properties required to predict the fate and transport 

of contaminants 

Model Description Parameters predicted Reference 

EPI-Suite Fragment constant KOW, solubility, 

hydrolysis rate 

(Kavlock et al., 

2008) 

KNN Atom-centred fragments indirect photolysis, 

biodegradation, and 

hydrolysis 

(Kühne et al.,2007) 

SPARC Fundamental chemical 

structure theory 

(LFER & PMO)  

Thermodyanamic 

properties 

Physicochemical 

properties 

(Hilal et al., 2005; 

Whiteside et al., 

2006) 

CATABOL Degradation simulator using 

hierarchy  of abiotic and 

enzymatic reactions 

Biotransformation 

pathways and 

metabolites 

(Jaworska et al., 

2002) 

SAR/QSAR  

type 

Molecular connectivity 

Structural activity relationship 

Physical and chemical 

properties, 

environmental fate, 

ecological effects and 

health effects of organic 

(Sabljic, 2001; 

Walker et al., 2002; 

Cronin et al., 2003) 
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Table 5 Organic micropollutants detected in UK surface water (LOD = limit of detection; TW = wastewater treatment works) 

Site Source Compounds detected Reference

England and Wales Contaminated 

& control  sites 
polychlorinated dibenzo-p-dioxins and dibenzofurans detected in all sediments sampled Rose et al. (1994) 

Thames in south west 

London and rural river 
WTW 

 

ibuprofen, paracetamol and salbutamol quantified in all samples. 

mefenamic acid (NSAID) in 70% of samples.  
propanolol (β-blocker) <LOD 

Bound and 

Voulvoulis (2006) 

Tyne Estuary WTW 

 

clotrimazole, dextropropoxyphene, erythromycin, ibuprofen, propanalol, tamoxifen, 

trimethoprim quantified 
clofibric acid, diclofenac, mefenamic acid, paracetamol <LOD 

Roberts and Thomas 

(2006) 

Tees, Mersey, Aire 

river and estuary 
Industry? APEs detected above threshold Blackburn et al. 

(1999) 

Taff & Ely, South 

Wales 
WTW 

 

trimethoprim, erythromycin, amoxicillin, paracetamol, tramadol, codeine, naproxen, 

ibuprofen, diclofenac, carbamazepine, gabapentin most frequently detected 
41 others detected including illicit drugs  

Kasprzyk-Hordern et 

al. (2008) 

Inland streams WTW 

 

ibuprofen, mefamic acid, diclofenac, propanalol, dextropropoxyphene, erythromycin, 

trimethoprim, acetyl-sulfamethazole detected 
paracetamol, lofepramine not detected  

Ashton et al. (2004) 

Ouse, west Sussex WTW 

 

bisphenol A, oestrone, 17β-oestodiol consistently detected

propanalol, sulfamethoxazole, carbamazepine, indomethacine, diclofenac variably detected 
mebeverine, thioridazine, tamoxifen, meclofenanic acid <LOD 

Zhang et al. (2008) 

UK  Diuron Alvarez et al. (2004) 

Stream, Tunbridge 

Wells 
Storm event, 

Fruit growing 
simazine, diuron, NP, endosulfan sulphate, pendimethalin Thomas et al. (2001) 

Thames, 1988-1997  atrazine, simazine, lindane Power et al. (1999) 
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Table 6 Summary of emerging contaminant detections in European groundwater 

Location Source Compounds detected (Range of concentrations (ng L-1)) Reference 

Eastern 

England 

STW Pharmaceuticals (<20-max):  Ibuprofen (5044), erythromycin (1022), dextropropoxyphene (682), diclofenac 

(568), mefanamic acid (366), propanolol (215), acetyl-sulfamethoxazole (239), trimethoprim (42) 

Hilton et al. 

(2003) 

Berlin, 

Germany 

STW Pharmaceuticals (0-mean): clofibric acid (7300), clofibric acid derivative (2900), propyphenazone (1465), 

phenazone (1250), salicylic acid (1225),  primidone (690), genistic acid (540), N-methylphenacetin (470), 

diclofenac (380), gemfibrozil (340), ibuprofen (200), fenofibrate (45), ketoprofen (30).  

Heberer  (2002) 

Leipzig, 

Germany  

STW Bisphenol A (~7000), NP (~1000), caffeine (~140), carbamazepine (~90), tonalide (~6), galoxalide (~2.8) Musolff et 

al.(2009)  

Halle, 

Germany 

STW Bisphenol A(<1-1136), carbamazepine (<2-83), galaxolide (3-19) Osenbrück et al. 

(2007)   

Baden-

Würtemberg, 

Germany 

STW Maximum concentrations:  amidotrizoic acid (1100), carbamazepine (900), diclofenac (590), sotalol (560), 

sulfamethoxazole (410), iopamidol (300), anhydro-erythromycin (49), phenazone (25). 

Sacher et al. 

(2001) 

France Regional 

survey 

Hormones (0.4 to 4): levonorgestrel (4), progesterone (1.6), testosterone (1.4); Pharmaceuticals (0 to 14): 

oxazepam (14), carbamazepine (10.4), acetaminophen (10.3), metformin (9.9), diclofenac (9.7), salicylic acid 

(metabolite) (6.5), atenolol (5.5), sulfamethoxazole (3). 

Vulliet and Cren-

Olivé (2011) 
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Table 7 Data from UK Environment Agency Monitoring for compounds with >20 detections in groundwater  over the period 1992 to 2009 

Type Name Detects Sites Max conc (µg/L) Use 
Pharmaceuticals and 
personal care products 

DEET 280 280 6.5 Insect repellent 
Propylparaben 68 68 5.5 Personal care 
Methylparaben 44 44 5 Personal care 
Trimipramine 34 34 0.26 Antidepressant 
Carbamazepine 32 32 3.6 Antiepileptic 
Oxybenzone 32 32 70.4 Personal care 
1,3-Dicyclohexylurea 27 27 0.41 Blood pressure/hypertension 
Isopropyl myristate 22 22 0.39 Personal care 
Triclosan 22 22 2.11 Antibacterial 
Coumarin 20 20 0.42 Anticoagulant 

Lifestyle and food 
additives 

Caffeine 722 720 4.5 Coffee and tea 
Nicotine 107 107 8.07 Tobacco  ingredient 
2,6-di-t-butyl-4-methylphenol (BHT) 106 106 7.0 Food additive 
2,6-di(t-butyl)-4-hydroxy-4-methyl-2,5-
cyclohexadien-1-one (BHT analogue) 

79 79 4.2 Food additive 

1(3H)-Isobenzofuranone (phthalide) 59 56 9.3 Food additive 
Cotinine 40 40 0.4 Nicotine metabolite 
Vanillin 31 31 1.08 Food additive 
p-acetylacetophenone 30 30 9.42 Food additive 
Dimethyldisufide 22 22 9.48 Food additive 

Alkyl phosphates and 
resins 

Tributylphosphate 450 450 2.5 Solvent, plasticiser & anti-foaming 
Bisphenol A 209 206 9.3 Resin precursor 
2-ethylhexyl diphenyl phosphate 68 68 2.7 Flame retardant plasticiser 
Tris(2-dichloroethyl)phosphate 54 54 4.9 Flame retardant plasticiser 
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Figure 1Sources (bold) and pathways for emerging contaminants to reach various receptors (grey) 
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Figure 2 Classification of leaching probability of all compounds using Koc and DT50 (after 

Worrall et al, 2000).  Compounds with solid symbols assessed as leachers 
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Figure 3 Frequency of detection and maximum detected concentrations in European 

groundwater (from Loos et al., 2010) 
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Figure 4 The top 30 most frequently detected compounds in the Environment Agency 

groundwater organic micropollutant database (DEET = N.N-dimethyl-toluamide, BBSA = N-butyl 

benzene sulphonamide) 
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Figure 5 Top 15 polar compounds detected in England and Wales groundwater from this 

study compared with Loos et al 2010 
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Figure 6 Flow chart showing risk-based decision analysis (adapted from Khadam and 

Kaluarachchi, 2003) 
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