
Engineering Com
putations

Nonlocal plasticity based damage modeling in

quasi-brittle materials using an Isogeometric approach

A. Rawat1, P. Raghu1, A. Rajagopal ∗1, and M. Hossain2

1Indian Institute of Technology Hyderabad, India
2College of Engineering, Swansea University, UK.

Abstract

Continuum damage mechanics allows us to define the micro damage associated
with diffused fracture or damage processes in quasibrittle materials. In such strain
softening materials the nonlocal and gradient enhanced approaches help to over come
the effects of mesh dependednt results which are observed in local models. In this work
we propose a nonlocal elastic plastic damage model. The nonlocal nature of the strain
field provides a regularization to overcome the analytical and computational problems
induced by softening constitutive laws. An additive decomposition of strains in to elastic
and inelastic or plastic part is considered. In order to obtain stable damage, a higher
gradient order is considered for an integral equation, which is obtained by the Taylor
series expansion of the local inelastic strain around the point under consideration.The
higher order continuity of NURBS functions used in Isogeometric analysis are adopted
here to implement in a numerical scheme. To demonstrate the validity of the proposed
model, numerical examples in one and two dimensions are presented.

Keywords: Nonlocal plasticity, Gradient damage model, Damage Mechanics.

1 Introduction

In continuum damage mechanics the development of micro-structural material damage is
represented in continuum sense by a field variable ( [1] and [2]). A crack gets initiated
when this local damage variable at a material point reaches a critical value and all the
strength is lost at that point. The point experiences a transition from initial smooth strain
to a highly localized one. The evolution depends upon the type of loading. Typically, this
strain evolution occurs in a narrow band along with the coalesce of micro cracks. With
progress in loading, this damage variable propagates by a process of damage growth and
stress redistrbution. The rate of propagation and its direction are governed by the damage
growth in a relatively small process zone in front of the crack [3]. This process of crack
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modelling is termed as a local approach to modeling fracture. Numerical analysis based on
local damage models result in mesh dependendent non- physical inconsistent results, that the
localization of damage happens over a vanishing volume [4]. In the limit of an infinite spatial
resolution, the predicted damage band has a thickness zero and the crack growth becomes
instantaneous. The response is then perfectly brittle, i.e., no work is needed to complete the
fracture process. These are over come by nonlocal models.

Nonlocal approaches involve a finite neighborhood volume integral of the damage vari-
able at a material point [5]. Such an approach of spatially averaging the quantities results in
smooth damage fields [6], in which the localization of damage is limited to the length scale
introduced by the averaging. As a consequence, premature initiation of cracks is avoided
and predicted crack growth rates remain finite. There are several notable works on nonlo-
cal continuum theories (see works by Eringen [7] and [8], Jirasek [9], Reddy [10], and [11]).
An alternative to nonlocal formulations is considering gradients of the nonlocal variable by
making use of Taylor series approximations (see [12], [13], [14] and [15]). Such theories are
called gradient continuum theories (for instance see [16], [17], [18] and [19]). A comparison
of various higher order gradient theories can be found in [20]. Closely related to the gradient
approaches are the phase field models. Phase-field method has become an efficient framework
for heterogeneous systems by introducing diffuse interface concept into micro-structural sim-
ulation. This method provides an excellent tool for studying the effects of the micro-structure
evolution without the necessity of tracking the sharp interface. The advantage of using this
method is that it is relatively simple for implementation. In this method, damage is measured
by a scalar field (phase field) [21]. Phase field method has been extensively used for studying
crack propagation and fracture models (see [22], [23]). This technique has also been used to
study the evolution of damage in the material (see [24]).

Models based on pure damage or pure plasticity models although yield a satisfactory
result for concrete in monotonic loading conditions but fail to capture the responses under
reloading and unloading conditions (see [44] and [45]). There has been a recent works with
the goal of simulating the evolution of the stimulated volume during hydraulic fracturing [25]
in rocks. This was achieved by introducing an equivalent continuum non-local poro-elastic-
plastic zone of enhanced permeability for the stimulated region, characterized by an internal
length scale [26]. Hence, it is crucial to incorporate the damage while studying the softening
behavior in concrete [27] and are able to more precisely model crack propagation in concrete
( see [28], [29] and [30]). There are nonlocal models which deal with either fracture energy
dissipated in active cracks or with a dimension of damage in active cracks [31]. Non local
elastic plastic models are able to precisely capture the damage and sotening behavior more
accurately (see [32] and [33] and [34]).

Isogeometric approach (IGA) [35] is employed for higher order gradient damage models.
There are significant advantages from the very smooth B - spline functions, especially for
solving higher order differential equations [36]. The present work includes the formulation
and implementation of a nonlocal damage plasticity model using an isogeometric discretiza-
tion (IGA), which is the novel contribution of this paper. An implicit gradient enhancement
is considered to make the approximation simpler. During inelastic deformations, the pro-
posed strain tensor partitioning allows the use of a distinct potential surface and distinct
failure criterion for both damage and plasticity models [37]. The outline of this paper is
as follows. In Section 2, we present the isotropic nonlocal damage formulation followed by
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a coupled elastoplastic nonlocal damage model and its numerical integration in Section 3.
Finite element models and the details of the Arc-length algorithm to solve the system of
nonlinear equations are presented in Appendix. Few numerical examples in one- and two
dimensions are presented in Section 6.

2 Isotropic nonlocal damage formulation

Let us consider a body in a real number space such that Ω ∈ R3 and let u be the infinitesimal
displacement vector defined in rectangular coordinate system. The displacements satisfy
Dirichlet boundary conditions, u = ug on Γu. The Cauchy stress tensor, σ are used as the
corresponding stress measure, and a traction t that acts on the Neumann boundary Γt, and
t is equal to the projection of the σ on the outward pointing normal vector n, and is given
by σ ·n = t. In isotropic continuum damage mechanics, relation between σ and infinitesimal
strain tensor εe is given by

σ = [1−D]E : εe (1)

where D is the scalar damage variable, and E is the fourth order tensor of elastic moduli.
The value of D is varying from 0 to 1, i.e., 0 ≤ D ≤ 1. D = 0 implies an undamaged
material, while D = 1 depicts a fully damaged material. This damage variable positively
depends on the history parameter κ, which is positively related to the nonlocal strain ē, so
as the ē is increasing, we can conclude that D would also be increasing. As D is a function of
κ, D(κ) would be referred to as the damage law. However, in local formulations, D depends
on the local strain, which provides an unstable result due to ill-conditioning of equations,
see [38], [39], and [40]. According to the Kuhn-Tucker conditions for a nonlocal measure,

κ̇ ≥ 0, κ− ē ≤ 0, κ̇[κ− ē] = 0 (2)

The motivation behind the nonlocal theory is to obtain a stable solution since it accounts for
averaging by interacting with the neighbor elements at the micro-level. Nonlocal equivalent
strain is obtained through a Taylor expansion of local strain. We can avoid the higher-order
terms as they do not contribute significantly.

ē = e+ a1∇
2e+ a2∇

4e (3)

where, a1, a2, ... are the coefficients and ∇
2 is the Laplacian operator, for more details

see [41]. These coefficients a1 and a2 are of the order of the square and quartic of the
length, respectively. In this model, we are approaching Galerkin formulation to obtain the
analytical solution of the nonlinear equations. As the Eq.(3) has comprised higher order
partial differential terms, it requires C1 continuous approximation. An implicit form of
Eq.(3) is given by,

ē− a1∇
2ē + a2∇

4ē = e. (4)

To translate the partial differential equations to the boundary value problem, we need addi-
tional information on the boundary. This requires to specify ē itself or the normal derivative
of ē, that is ∇ē.n = 0, where n is unit normal vector to the boundary.

3

Page 3 of 29

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering Com
putations

3 Coupled elasto-plastic nonlocal damage model

The coupled damage and plasticity constitutive equations are arrived by following an additive
decomposition of the total strain field into elastic and plastic parts, i.e., ε = εe + εp. The
plastic deformation shows the material has yielded while the damage depicts the crack pattern
in a body, so the stored strain energy during deformation can be written as the sum of elastic
strain energies and inelastic strain energy due to plastic deformation and damage deformation,
and with an appropriate yield criteria one can determine the inelastic deformation. For
this purpose, the onset of plastic deformation and damage would describe the entire loading
process. In this model, a nonlocal plasticity model with kinematic hardening is introduced. A
plastic yield function F (σ, q) which depends on the stress σ and dissipative thermodynamic
force q is considered. The back stress q is associated with the internal hardening variable α
by the relation,

q = [1−D]H : α (5)

where, H is the 4th-order tensor of plastic moduli. The evolution in stress is given by

σ̇ = [1−D]E : [ε̇− ε̇p]− ḊE : [ε− εp]. (6)

Similarly, the evolution of the back stress is given by

q̇ = [1−D]H : α̇− ḊH : α (7)

The flow and hardening rules, respectively, are given by

ε̇p = λ̇
∂F (σ, q)

∂σ
(8)

α̇ = λ̇
∂F (σ, q)

∂q
. (9)

where, λ is a internal variable.
Kuhn-Tucker complementary conditions are given by

λ̇ ≥ 0, F (σ, q) ≤ 0, λ̇F (σ, q) = 0. (10)

In order to solve Eq.(8) and Eq.(9), a standard predictor-corrector solution procedure is
adopted. In the predictor phase, Eq.(8) and Eq.(9) will be solved by freezing the plastic
process, while in the corrector phase, the plastic field increment is evaluated. The total
time interval is discretized as [0, T ] = UN

i=1[ti−1, ti]. It is assumed that the yield function at
any time t = ti satisfies the Kuhn-Tucker conditions and represents an admissible state of
stress [42]. Following an operator split concept, a stress equilibrium Eq.(1) is decomposed
into elastic and inelastic parts, leading to the corresponding numerical algorithm including
an elastic-predictor and a plastic-corrector [43].
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3.1 Numerical integration of nonlocal plasticity model

As stated above, in the corrector phase, the plastic part is frozen, but this assumption does
not correspond to any actual admissible state of stress unless the incremental process is
entirely elastic. So the resultant equation would be,

εp,triali = εpi−1 (11)

and
σtrial

i = [1−Di−1]E : [εi − εp,triali−1 ] = σi−1 + [1−Di−1]E : ∆εpi

In order to verify the corrector phase assumption, the trial stress is substituted into the
yield function F (σ, q), and if F (σ, q) ≤ 0, the process is elastic and there would not be any
increment in plastic process. For example,

αi = αi−1, qi = qi−1, εpi = εpi−1.

However, if F (σ, q)> 0, the trial state would violate the Kuhn-Tucker loading/unloading
conditions by lying outside the yield surface. In that case, the consistency condition would
be applied to rectify the trial state by return-mapping/plastic-corrector step. Thus, we
require ∆λ > 0.

By using the consistency condition and return mapping algorithm ∆λ can be determined
as

Ḟ (σ, q) =
∂F (σ, q)

∂σ
: σ̇ +

∂F (σ, q)

∂q
: q̇ = 0 (12)

σ̇i = [1−Di−1]E :

[

ε̇i − λ̇i
∂Fi

∂σi

]

− Ḋi−1E : εei−1 (13)

q̇i = [1−Di−1]H : α̇i − Ḋi−1H : αi−1 (14)

By substituting Eqs. (13) and (14) in Eq.(12), it will lead to

λ̇i =
∂σF : [1−Di−1]E : ε̇i − ∂σF : Ḋi−1E : εei−1 − ∂qF : Ḋi−1H : αi−1

∂σF : [1−Di−1]E : ∂σF + ∂qF : [1−Di−1]H : ∂qF
(15)

Substitution of Eq.(15) into Eq.(13) leads to Eq.(16)

σ̇i = [1−Di−1]Eep : ε̇i − Ḋi−1Hep : εei−1 −E :
[∂qF : Ḋi−1H : αi−1] · ∂σF

∂σF : E : ∂σF + ∂qF : H : ∂qF
(16)

From Eq.(16), an elasto-plastic moduli is given by

Eep =
[

E −
[∂σF : E] · ∂σF

∂σF : E : ∂σF + ∂qF : H : ∂qF

]

(17)

The term Hep is given as

Hep =
[

E −
E : [∂σF : E] · ∂σF

∂σF : E : ∂σF + ∂qF : H : ∂qF

]

. (18)
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For the one-dimensional case, the above Eq.(16) reduces to the form,

σ̇i = [1−Di−1]Eep ε̇i − Ḋi−1Hep εei−1 − Ḋi−1

[ EH

E +H

]

αi−1∂σF (19)

where the elastic-plastic moduli is given by,

Eep = E
[

1−
E ∂σF

E +H

]

. (20)

and Hep is given by,

Hep = E
[

1 +
1

E +H

]

. (21)

4 Isogeometric approach for nonlocal plasticity

A higher-order approximation has been used in Eq.(4). The order of approximation in a for-
mulation can be reduced by considering an implicit formulation. Therefore, to implement this
formulation in a computational framework, we require a numerical method that inherently
has higher-order approximations, such as the isogeometric analysis (IGA). The governing
equation is given in Eq.(22) while the weak form of the equation is given in Eq.(23)

∇ · σ + fb = 0 (22)

The continuous weak form of Eq.(22) is given by
∫

Ω

∇wu : σ dΩ =

∫

Ω

wu · fb dΩ +

∫

Tt

wu · t dT (23)

where w(x) is a weighting function. The weak form of the nonlocal strain Eq.(4) is given by
a similar way,

∫

Ω

wh
ē ēdΩ +

∫

Ω

∇wē.c∇ēdΩ −
∫

Ω

∇
2wē · d∇2ēdΩ =

∫

Ω

wēe dΩ (24)

To solve the Eq.(23) and Eq.(24), a Galerkin method is approached, and to solve these
equations, we approached B-spline approximation due to the presence of the higher-order
element. These equations have been linearized and solved by an arc-length method. After
making the above-mentioned implementation, stiffness matrix K and force vector f is given
by (for more details see [41]),

Kuu
i−1 =

∫

Ωe

BT
u[1−Di−1]Ẽ : Bu dΩe

Kuē
i−1 = −

∫

Ωe

BT
u

{

∂D

∂κ

}

i−1

{

∂κ

∂ē

}

i−1

N ēẼ : εi−1 dΩ
e

K ēu
i−1 = −

∫

Ωe

NT
ē

{

∂e

∂εi−1

}T

Bu dΩe

K ēē
i−1 =

∫

Ωe

NT
ē N ē dΩ

e +

∫

Ωe

BT
ē a1Bē dΩ

e −
∫

Ωe

GT
ē a2GēēdΩ

e (25)
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(fu
int)i−1 =

∫

Ωe

BT
uσi−1 dΩe

(f ē
int)i−1 =

∫

Ωe

NT
ē ei−1dΩ

e −
∫

Ωe

NT
ē N ēēi−1dΩ

e −
∫

Ωe

BT
ē a1Bēēi−1 dΩe (26)

However, in case of C0 continuity, there would be a change in K ēē

K ēē
i−1 =

∫

Ωe

NT
ē N ē dΩ

e +

∫

Ωe

BT
ē a1Bē dΩ

e

5 B-spline Basis functions and NURBS

In this section, we present the details of construction of B - spline basis and NURBS basis
functions. Let K be a vector containing a non-descending sequence in parameter space,
K ∈ P, which is defined as

K = {ξ1, ξ2, ..., ξnk
}, ξi ∈ R

such that ξi ! ξi−1 i = 2, 3, ..., nk
(27)

The vector K and scalar ξi are often termed as knot vector and knots, respectively, in com-
putational geometry. Once we define the knot vector, the B-spline basis Np

i (ξ) of order p > 0
are computed from constant basis using a recursive subdivision method.

for p = 0 ; N0
i (ξ) =

{

1 if ξ ∈ [ξi, ξi+1)

0 otherwise

}

for p > 0 ; Np
i (ξ) =







(ξ−ξi)
(ξi+p−ξi)

Np−1
i (ξ) + (ξi+p+1−ξ)

(ξi+p+1−ξi+1)
Np−1

i+1 (ξ) if ξ ∈ [ξi, ξi+p+1)

0 otherwise







(28)

The B-spline basis for an arbitrary knot vector does not contain interpolation functions. In
order to obtain interpolation functions, knots are required to be repeated, which is referred to
as the knot multiplicity. In this regard, we introduce an open knot vector containing the end
knot with knot multiplicity equal to p+ 1. Further, B-spline basis includes other important
properties such as:

• Partition of unity
∑ncp

i=1 N
p
i (ξ) = 1 ∀ ξ ∈ [0, 1)

• Non Negative Np
i (ξ) ! 0 ∀ ξ ∈ [0, 1)

• Kronecker delta Np
i (ξj) = δij ξj ∈ [ξi, ξi+p+1)

iff the knot multiplicity of ξj equal to order of curve

The standard geometries, such as a circle or ellipse, are best represented using ratio-
nal functions. In this regard, we generalize the B-spline to rational polynomial referred as
nonuniform rational B-splines (NURBS):

NP
i (ξ) =

Np
i (ξ)wi

∑ncp

j=0N
p
j (ξ)wj

(29)
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Figure 1: (a) B-spline basis functions of order 2 (b) B-spline basis functions of order 2 in
two dimensions for a knot vector K = {0, 0, 0, 1/4, 2/4, 2/4, 3/4, 1, 1, 1} (c) Control net and
B-spline curve
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Where wi are the weights associated with the control points; we note that the number of
weights and control points must match. We also note that the B-spline functions are recovered
from NURBS by taking all weights equal to unity. A piecewise B-spline curve is constructed
by taking a linear combination of the basis vectors Np

i (ξ) and the coefficients Pi, referred to
as the control points:

P (x) =

ncp
∑

i=1

Np
i (ξ) Pi (30)

The B-spline polynomials of order p have Cp−1 continuous derivatives. If k represents knot
multiplicity at knot ξi, then continuous derivative of polynomial gets reduced by Cp−1−k

at that knot. Figure 1 shows the quadratic B-spline basis and polynomial curve for an
assumed knot vector. The basis functions associated with control points P1, P4, and P7 are
interpolation functions as knots are repeated. It can also be seen in continuous derivative
of B-spline polynomial. Polynomial have C1-continuous derivative except at control points
where knots are repeated making the continuity C0, that is, at control point P4. Using the
knowledge of univariate B-spline basis helps to define the basis in multi-dimension by making
use of tensor product. Let dp represent dimension of parametric space, Pdp . A knot vector
defined in Pdp is expressed as:

Ki = {ξ#1, ξ#2, ..., ξ#n!
k+p!+1

} for ) = 1, 2, ..., dp (31)

where n#
k and p# are the knot vector dimension and basis order in )th parametric direction. Let

NP !

i , i = 1, 2, ldots, n#
cp, be the univariate basis function defined in )th parametric direction.

Multivariate basis function are then defined through tensor product and expressed as

BP

i (ξ) =

dp
∏

#=1

Np!

i (ξ#) (32)

where i, ξ and P are the multi-index in parameter space. Finally, for a given control net
Pi ∈ Rd, Pi = {p#1, p#2, . . . , p#n!

cp
}, the B-spline surface is defined as

P (x) =

n!
cp

∑

i=1

BP

i (ξ)Pi (33)

5.1 Numerical Implementation to solve the equilibrium equations

Following the Galerkin approach, the displacement vector u and the weight function w are
discretized by the interpolation matrix N containing the shape functions; the columns u and
wu contain the nodal displacement and weight vector components, respectively

u = Nuu and ∇u = Buu (34)

Therefore,
wu = Nuwu and ∇wu = Buwu (35)

9
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where, Nu and Bu are the basis function and derivative of the basis function associated
with displacement, respectively. Substituting Eq.(34) and Eq.(35) into Eq.(23), the final
discretized form of integral equations are obtained as

∫

Ωe

BT
u σ dΩe =

∫

Ωe

NT
u fb dΩe +

∫

T e
t

NT
u t dT e

fu
ext
. (36)

fu
int = fu

ext (37)

Let N ē and B ē are the basis function and derivative of the basis function associated with
nonlocal equivalent strain ē, respectively. The final form of the Eq.(24) in terms of forces
can be written as

ē = N ēē, ∇ē = Bēē and ∇
2ē = Gēē (38)

wē = N ēwē, ∇wē = Bēwē and ∇wē = Gēwē (39)
∫

Ωe

NT
ē N ēē dΩe +

∫

Ωe

a1B
T
ē Bēē dΩe −

∫

Ωe

a2G
T
ē dGēē dΩe −

∫

Ωe

eNT
ē dΩe = 0 (40)

f ē
int = f ē

ext (41)

Initial and final values of κ can be derived from experimental study.

{

∂D

∂κ

}

i−1

=







0 iff ēi1 ≤ κ0,
{

∂D
∂κ

}

i−1

iff ēi−1 > κ0,
(42)

{

∂κ

∂ē

}

i−1

=

{

1 iff ēi1 ≤ κ0,

0 iff ēi−1 > κ0,
(43)

By estimating the value of yield function, we can easily calculate the constitutive matrix

Ẽ =

{

E iff F (σ, q) < 0,

Eep iff F (σ, q) = 0,
(44)

Then, the linearization of primary and secondary variables at ith step with respect to previous
step i− 1 is given by

ui = ui−1 + δui (45)

ei = ei−1 +

{

∂e

∂ε

}T

i−1

Buδui (46)

εi = εi−1 + Buδui (47)

σi = σi−1 + δσi (48)

where

δσi = [1−Di−1]Ẽ : Buδui −
{∂D

∂κ

}

i−1

{∂κ

∂ē

}

i−1
N ēδēiẼ : εi−1 (49)
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Substituting Eq.(45) to Eq.(49) in Eq.(36) and Eq.(40), we derive the stiffness matrix
and force vectors as follows

[

Kuu
i−1 Kuē

i−1

K ēu
i−1 K ēē

i−1

]{

δui

δēi

}

=

{

fu
ext

f ē
ext

}

−
{

(fu
int)i−1

(f ē
int)i−1

}

(50)

where

Kuu
i−1 =

∫

Ωe

BT
u[1−Di−1]Ẽ : Bu dΩe

Kuē
i−1 = −

∫

Ωe

BT
u

{

∂D

∂κ

}

i−1

{

∂κ

∂ē

}

i−1

N ēẼ : εi−1 dΩ
e

K ēu
i−1 = −

∫

Ωe

NT
ē

{

∂e

∂εi−1

}T

Bu dΩe

K ēē
i−1 =

∫

Ωe

NT
ē N ē dΩ

e +

∫

Ωe

BT
ē a1Bē dΩ

e −
∫

Ωe

GT
ē a2GēēdΩ

e (51)

and

(fu
int)i−1 =

∫

Ωe

BT
uσi−1 dΩe

(f ē
int)i−1 =

∫

Ωe

NT
ē ei−1dΩ

e −
∫

Ωe

NT
ē N ēēi−1dΩ

e −
∫

Ωe

BT
ē a1Bēēi−1 dΩe (52)

5.2 Arc-length method

To represent the post peak softening behavior, we adopt the arc-length or the modified Riks
method. This method is found to be more suitable to solve system of highly nonlinear
equations and the stiffness matrix terms are all not positive definite. The following steps
have been considered for solving the nonlinear equations. At the first, the step and increment
values are initialized. The incremental displacement is set as u=0. The load incremental
factor γ and initial applied load P0 are user defined. The applied load is then calculated as
γP0. For subsequent steps, γ, u, and ē are updated by estimating the values of ∆γ, ∆u,
and ∆ē respectively. As and when, the force residual, R occurs to be greater than given
tolerance, crisfield arc-length approach is invoked. The value of incremental load multiplier
∆γ is computed using ∆γi = (dS)2−[ui−ui−1]′[∆ui−1+duR]

[ui−ui−1]′duP
, where dS is computed as dS =

∆γi−1

√

duP
′duP . The incremental values duR and duP are given as duR = [K]−1[R],

duP = [K]−1[P ]. With the help of ∆γi, updated ∆ui is calculated as ∆ui = duR +∆γiduP

and the updated displacement and load are given by ui = ui−1 +∆ui, P = γi ∗ P0, where γi
is calculated as γi = γi−1 +∆γi. The updated tangent stiffness matrix [K] and Residual [R]
are then computed. The normx of the residual [R] is then calculated. If this value if found
to be less than the given tolerance value, the displacement ui is considered to be converged.
If not then the above steps are repeated till the convergence is reached. The same steps have
been applied to calculate ē.
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6 Numerical results and discussions

6.1 A bar under uniaxial tension with a linear damage

An axially deforming bar of length L = 100mm fixed at one end and subjected to an uniaxial
pure tensile load is considered for the analysis. The cross-sectional area A has been reduced
by a factor of 0.1 between x = − l

2 and x = + l
2 . The bar has uniform material properties along

the length and these are taken as Elastic modulus E = 20GPa, plastic modulus H = 0.2GPa,
κ0 = 1×10−4, κc = 12×10−4, and characteristics length l = 1mm. Two cases are considered
for the analysis, first a linear softening model and seconf an exponential softening model.

6.2 Case A: Linear damage

A linear damage evolution law is given by

D =

{

κc[κ−κ0]
κ[κc−κ0]

iff, κ0 < κ ≤ κc

1 iff, κ > κc

(53)

An Isogeometric FE analysis is performed for the bar. Fig.2 shows the variation of damage
with respect to the length of the bar. Here, the damage is accounting for the deterioration
in material properties, equivalent of some physical mechanisms such as microcracking in the
material at different stages of loading. At every increment of the load step, the probability
of failure is increasing, and if it is observed closely, the width of damage zone in Fig.2 has
been increased by a significant amount.
In Figs.3 and 4, plastic and total strains measured have been plotted along the length of
the bar for 198 elements. These figures are plotted to compare the amount of plastic strain
accumulated in the body with respect to the total strain. Generally, quasi-brittle materials
show very less inclination towards plastic behavior. However, in this example, the amount
of plastic strain accumulated is more than the elastic strain. Furthermore, the peak value
of the strain in a reduced area delineates about the coalescing of a micro-crack to a macro-
crack, whereas in other sections, there is no evidence of coalescing. Finally, a propagation of
macro-crack is leading to the failure of the material.
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Figure 2: Damage curve at various load steps in axial bar with a central notch subjected to
tensile loading
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Figure 3: Plastic strain curve at various load steps for axial bar under tensile loading
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Figure 4: Total strain curve at various load steps
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Figure 5: Stress-linear deformation curve for the axial bar under tensile loading
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Figure 6: Damage curve at various characteristics length scales
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Figure 7: Plastic strain curve at various characteristics length scales
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Figure 8: Stress-linear deformation curve at various characteristics length scales
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Figure 9: Stress-linear deformation curve at various elements
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The stress-linear deformation curve in Fig.5 is presented to demonstrate that the damage
and plasticity are causing softening behavior in the body. The following graphs compare the
behavior of the body concerning the variation in characteristics length scales for 498 elements.
The damage evolution (Fig.6), plastic strain evolution (Fig.7), and the load-elongation curve
(Fig.8) are obtained by considering various characteristics lengths for 498 elements. It con-
cludes that an increased characteristic length in material leads to a higher deformation since
the micro deformation finds number of ways to grow over a large area. Fig.9 summaries that,
while unloading, a higher number of elements accumulated less amount of inelastic strain.
Here, the characteristic length scale is kept constant at 1mm2 to demonstrate the effects of
the number of elements. In all these cases the trends in distribution of damage and strain
with length scale parameter and with iterations are similar to those presented in litreature.
In linear elastic cases of present model the results were matching with those in litreature [41].

6.3 Case B: Exponential damage law

An exponential damage evolution law is given by

D =











[

κc

κ

]0.5[

(κ−κ0)
(κc−κ0)

]2

iff, κ0 < κ ≤ κc

1 iff, κ > κc

(54)

For the same bar example presented above, an exponential law in damage is considered for
analysis to compare the accumulated strain, stress, and damage zone. Figs.10 to 13 represent
the behavior of a body consisting of 198 elements with lc = 1mm2. Fig.10 concludes that
with an exponential damage law, a crack in the body starts propagating sharply instead of
coalescing the micro-cracks.
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Figure 10: Damage curve at various load steps
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Figure 11: Evolution of elastic strain at various load steps
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Figure 12: Total strain curve at various load steps
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Figure 13: Stress-linear deformation curve

Fig.11 shows that the accumulated elastic strain is higher than the plastic strain. It
concludes that the failure in a body is governed by the damage in the case of an exponential
damage law. Figs.14 to 17 represent the behavior of a body with 498 elements. With an
exponential damage law, Fig.14 concludes that with higher elements, crack in a body starts
coalescing sharply instead of propagation of the macro-cracks. However, with a linear damage
law, the same behavior is not observed, see Fig.6. In all these cases the trends in distribution
of damage and strain with length scale parameter and with iterations are similar to those
presented in litreature. In linear elastic cases of present model the results were matching
with those in litreature [41].
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Figure 14: Damage curve at various characteristics length scales
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Figure 15: Elastic strain curve at various characteristics length scales

From Fig.15, it is observed that with an increase in the number of elements, accumulated
plastic strain is higher which concludes that the failure is governed by plasticity.
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Figure 16: Total strain curve at various characteristics length scales
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Figure 17: Stress-Linear deformation curve at various characteristic length scales
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6.4 A plate with hole under tension

 

 

 

 

 

 

 

L=5 Units 

Figure 18: Geometry of the plate with circualr hole considered for the analysis

I PI,1 PI,2 PI,3 wI,1 wI,2 wI,3

1 (0, 1) (0, 3) (0, 5) 1 1 1
2 (

√
2− 1, 1) (0.75, 3) (5, 5) (1 + 1/

√
2)/2 1 1

3 (1,
√
2− 1) (3, 0.75) (5, 5) (1 + 1/

√
2)/2 1 1

4 (1, 0) (3, 0) (5, 0) 1 1 1

Table 1: Control points and weights for plate with circular hole

(a) (b)

Figure 19: Knot vectors defined in (a) Index space and (b) Parameter space

A square plate with a central circular hole as shown in Fig. 18 is considered for the
analysis. The plate is subjected to a uniform displacement of 0.2mm at both edges up
to 0.26mm. The material properties taken are youngs modulus E = 20GPa, Hardening
modulus h = 0.2GPa, length scale l = 1mm2, and Poisson’s ratio ν = 0.2. The purpose of
this example is to demonstrate the applicability of the method to two dimensional problems.
Due to its symmetry, one fourth of the plate is modeled. A rational quadratic basis is used to
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describe NURBS described square plate with circular hole. Knot vectors ξ×ζ of coarse mesh
with two quadratic elements are defined as ξ = {0, 00, 0.5, 1, 1, 1} and ζ = {0, 0, 0, 1, 1, 1}
which define the index space and parameter space as shown in Fig.19.

(a) (b) (c)

Figure 20: Coarse mesh and Control net for the plate with the hole example (a) Quadratic
(b) Cubic (c) Quartic

Figure 21: Meshing of the quarter plate. 16× 8elements are considered

The coarse mesh and possible control nets for this case are as shown in Fig.20. The
control point locations and their respective weights are given in Table 1. The control point
connectivity and knot vector connectivity can be suitably defined based on choice of control
points and non zero knot spans. Using this information the meshes are generated. The
meshing of the domain is obtained using 16 × 8 elements as shown in Fig.21. Following
the standard procedure of isogemetric analsyis, as discussed in earlier sections, the NURBS
approximation in 2D and their mapping are obtained. Gauss quadratue rule of 3 × 3 is
adopted for numerical integration. The geometry and approximation are accurately modeled
with the same approximation.An exponential damage evolution law of the following form is
considered.

D = 1−
κ0

κ

[

1− α + αeβ(κ−κ0)
]

(55)
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where, κ0 = 2.1e− 04, α = 0.96 and β = 350 are the damage parameters, and e is the local
equivalent strain,

e =
K − 1

2K[1− 2ν]
I1 +

1

2K

{

[K − 1]2

[1 − 2ν]2
I21 −

12K

[1 + ν]2
J2

}1/2

. (56)
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Figure 22: Load-elongation curve for the plate with central hole example

Damage 

Figure 23: Distribution of damage for the plate with central hole example

where, K, i.e., the compression to tensile strength ratio, is taken as 10. An exponential
damage law ensures damage value never reaches 1; hence, this implies that material will not
be completely fractured. The local equivalent strain is evaluated using Von-Mises equation.
A plot of load elongation curve and damage is shown in Fig.22 and Fig.23. It is evident that
damage in the plate is high since quasi-brittle materials dissipate the energy through damage
process.
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7 Conclusion

In this paper, we have presented a nonlocal gradient plasticity damage model to predict a
crack pattern in quasi-brittle materials. To validate the utility of model, a few examples
have been solved. This model account for the elastic and inelastic deformation, however,
it limits to provide a relation between temperature rise and energy dissipation. To capture
the post-peak behavior of the material, we have implemented an Arc-length method. With
the solved examples in one and two dimensions, it can be concluded that the present model
allows a successful description of several aspects of the nonlocal elastoplastic behavior of the
quasi-brittle materials. It also permits a successful evaluation of the size effects based on the
simulations conducted by varying the number of elements in the system.
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