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Abstract—Managing and treating cardiovascular diseases can
be substantially improved by automatic detection and classifica-
tion of the heart arrhythmia. In this paper, we introduced a novel
deep learning system for classifying the electrocardiogram (ECG)
signals. The heartbeats are classified into different arrhythmia
types using two proposed deep learning models. The first model
is integrating the convolutional neural network (CNN) and long
short-term memory (LSTM) network to extract useful features
within the ECG signal. The second model combines several
classical features with LSTM in order to effectively recognize
abnormal classes. These deep learning models are trained using
a bagging model then aggregated by a fusion classifier to form
a robust unified model. The proposed system is evaluated on the
MIT-BIH arrhythmia database and produces an overall accuracy
of 95.81%, which significantly outperforms the state-of-the-art.

Index Terms—CNN, LSTM, Bagging, Deep Learning Ensem-
ble, ECG, Arrhythmia

I. INTRODUCTION

Electrocardiography (ECG) is a non-invasive diagnostic
technique for arrhythmias and conduction disorders by mea-
suring the heart rhythm and its electrical activity over a
period of time. ECG detects the electrical signals generated
by heartbeats using a set of sensors called electrodes that
are attached to the skin. Typically 12-lead configuration [1]
is used to record ECG with 10 electrodes distributed on the
patient’s limb and chest. In the case of a long-term continuous
heart monitoring, 2-lead ECG is commonly used with a Holter
monitoring device. ECG waveform is examined beat-by-beat
by a trained specialist to detect arrhythmias. This can be
a very time-consuming and tedious process, especially each
ECG recording may take several minutes to several hours.
Therefore, developing an automated system for analyzing and
diagnosing heart arrhythmias is highly desirable.

In this paper, we propose a cascade deep learning method
based on convolutional neural networks (CNN) and long short-
term memory (LSTM) for automatic heartbeat arrhythmia
classification. At the first stage, we employ a bag of LSTM
models that use both CNN for feature extraction and classical
descriptive features, i.e. the RR intervals and higher-order
statistics (HOS). The two sets of features are introduced
separately to the LSTM bagging models. In the second stage,
all the LSTM based bagging models are combined into a new
deep neural network to fuse the classification results of the
different LSTM models. In the last stage, another CNN-LSTM
model is proposed to reduce the false positives produced by

the previous stage. The method is evaluated on the MIT-
BIH arrhythmia database and follows the Association for the
Advancement of Medical Instrumentation (AAMI) [2] recom-
mendations. This arrhythmia database is highly imbalanced,
which poses a challenge to recognize minority classes. We
tackle this challenge in two ways: the use of bagging and our
weighted loss function. The bagging model is introduced to
alter the training distributions in order to tackle the level of
imbalance. The weighted loss function gives more weights for
minority classes to encourage the classifier to recognize them
correctly.

II. RELATED WORKS

Various techniques have been developed to classify ECG
heartbeats in the literature. Most of these techniques include
the following steps: pre-processing, feature extraction and
classification. Various classification techniques have been used
to label the extracted ECG features, such as support vector
machine (SVM) [3]–[6], decision tree [7], linear discriminants
(LDs) [8], and deep learning methods [9]–[11]. For example,
in [8], Chazal et al. used linear discriminants to classify
heartbeats into five classes. The method investigates a different
combination of features based on ECG morphology, heartbeat
intervals, and RR intervals. In [3], Ye et al. utilized inde-
pendent component analysis and wavelet transform to extract
morphological features and combined them with RR intervals
features to classify heartbeats into 16 classes. The features are
extracted from two ECG leads and used to train different SVM
classifiers independently, then the final classification result
was obtained by fusing the decisions of SVM classifiers. In
[5], Raj et al. proposed to extract the ECG features by using
the sparse representation technique with a Gabor dictionary.
A set of features are computed from each of the significant
atoms of the dictionary and concatenated to form a feature
vector. The authors used the least-square twin SVM model
to classify the extracted features where the particle swarm
optimization (PSO) was adopted to optimize the learning
parameters. However, the performance of these methods is still
limited.

Ensemble-based methods have been proposed in order to
improve the overall performance of the classification problem.
Zhang et al. [4] used an ensemble of SVMs to automatically
detect heart arrhythmia. Features such as ECG morphology
and interval characterization are extracted from two leads and
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trained separately on several one-vs-one SVM models. Then
the final decision is reached by using the product rule to
combine the decisions of different models. Mondéjar-Guerra
et al. [6] extended the previous method by creating a dedicated
SVM classifier for each type of features and testing a different
set of features such as local binary patterns (LBP), HOS,
wavelets, and RR intervals. Shi et al. [7] proposed a hierar-
chical classification method based on XGBoost classifiers. A
large set of features were extracted, then the method employed
a recursive feature elimination to select a subset of features
used to train the classifier. However, these methods are heavily
depending on the use of many hand-crafted features that may
not be well generalized.

Deep learning methods, e.g. CNN, have received a lot of at-
tention in recent years because of its outstanding performance
in fields such as computer vision and medical image analysis
[12], [13] compared to traditional machine learning approaches
[14], [15]. Sellami et al. [9] presented a CNN method with a
batch-weight loss to reduce the effect of imbalance between
classes. The method was trained on the raw ECG signals by
taking two consecutive heartbeats; the target heartbeat was
proceeded by its prior heartbeat. However, the accuracy of
the majority class is highly decreased and the false positive
rate is still high. Jiang et al. [16] introduced multi-module
deep learning method to handle imbalance data by over-
sampling the minority classes and using features generated
by an auto-encoder to train a CNN to classify the heartbeats
into four classes. However, the method becomes more complex
and very slow due to the over-sampling strategy, which may
also lead to overfitting. Mathews et al. [11] used restricted
Boltzmann machines (RBM) and deep belief networks (DBN)
to automatic classify ECG signals. The RBM is initially
trained on a set of hand-crafted ECG features. DBN is formed
as a stack of RBMs where each RBM is considered as a
hidden layer and learned from the output of the previous
RBM model in the stack. However, the method is still mainly
relying on the hand-crafted features which affect its overall
accuracy for recognizing patient-independent ECG data. Xu et
al. [10] proposed a similar deep learning approach, but instead
of initially modeling a set of hand-crafted ECG features, the
DBN works on the raw ECG signal. However, the method is
not exploiting the long-term time-dependencies of ECG data
to extract more meaningful features.

III. PROPOSED METHOD

First, the ECG signals are pre-processed and segmented
into heartbeats. Each heartbeat class is learned by a set of
binary classifiers using the one-vs-all scheme. The heartbeats
are fed into CNN-LSTM and RRHOS-LSTM bagging models
belonging to the first heartbeat class to get the probabilities that
the beats belong to the given class. The output of the bagging
models serves as an input to the fusion classifier to lead the
final decision. If the beat is classified as positive, then it moves
to the verification network to confirm its label. If it is classified
as negative by the fusion classifier or the verification network,

then it moves to the next bagging models for the second class
and so on.

A. Pre-processing

In the literature [4], [6], [8], there are two common pre-
processing steps: baseline removal and high-frequency noise
reduction. Since the MIT-BIH database contains ECG signals
acquired by Holter devices, the signals were susceptible to
baseline wandering and high-frequency noise. The baseline of
ECG is computed by applying two median filters one after
another of size 200-ms and 600-ms. The baseline is then
subtracted from the original ECG signal to create the baseline-
corrected signal. The second pre-processing step preforms the
high-frequency and power-line noise removal by applying 12-
order low-pass filter with cutoff frequency at 35 Hz. The
filtered ECG signals were used in all further processing. The
ECG signal comprises a sequence of heartbeats. In this paper,
the annotations of QRS complex that comes with the MIT-BIH
database were utilized to obtain the heartbeats. Here, we take
a window of 180 samples for each heartbeat, where R peak is
located at its center.

B. Bagging deep learning models

In this paper, we propose to build and train an ensemble of
two deep learning models for the classification of the heartbeat
signal. CNN-LSTM is the first deep learning model of the
proposed method, based on a combination of CNN and LSTM.
The second model is RRHOS-LSTM which integrates the RR
intervals and HOS features with LSTM. Bagging of CNN-
LSTM and RRHOS-LSTM is introduced to create an ensemble
model to improve the model robustness and tackle the data
imbalance problem.

The MIT-BIH database is a highly unbalanced dataset. Here,
we apply randomness in bagging to increase generalization
capability. First, we convert the multi-class classification prob-
lem to binary classification using the one-vs-all scheme. Then,
for each binary class model, the negative data is randomly
down-sampled while keeping the positive data the same to
create a new training dataset. The process is repeated multiple
times to create many sub-sampling training sets. These datasets
are used to train two deep learning models to get a set of
different models not only in the architecture but also in the
data-level. The weighted loss function is also employed in
each deep learning model to prevent the model from learning
only the majority class.

1) CNN-LSTM model: CNN has several useful properties,
such as local connectivity, weight sharing, and spatial pooling,
which significantly decreases the number of parameters com-
pared to the fully connected network and helps to learn local
translational invariant features. LSTM is considered one of the
main preferred neural network architecture for modeling time
series data. LSTM differs from other deep neural networks in
that neural output from the current time step is connected to
the inputs of the next time step. This enables the LSTM to
maintain the internal state to process sequential input.
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Fig. 1. The proposed CNN-LSTM architecture.

Here, CNN and LSTM are proposed to learn high-level
hierarchical features from the ECG signal. The CNN-LSTM
network consists of 3 convolutional layer, 3 max-pooling, and
2 LSTM layers, as shown in Figure 1. The network takes 5
consecutive heartbeats as an input, where the current heartbeat
is located at the center. The input size of the CNN-LSTM
network is 900 samples. Each convolutional layer has a kernel
size of 5 with stride of 1. The kernel is moving over the
input sequence one step (i.e. stride equals to 1) at a time
and convoluted with the corresponding elements of the input.
The number of output features maps (i.e. filters) of each
convolutional layer is 64. The ReLU activation function is used
for all three convolutional layers. Max-pooling is applied after
every convolutional layer with pooling size is 2 and stride is
2. This reduces the feature map size by half. After each max-
pooling layer, we add a dropout of 20% to reduce the network
over-fitting.

The final structure of the CNN-LSTM network is 2 LSTM
layers, followed by a softmax layer to predict the output class.
The temporal information is extracted by the LSTM layers
from CNN feature maps. Each LSTM unit has 100 hidden
neurons. The output of the first LSTM layer is a sequence of
the hidden units corresponding to each input time step. The
second LSTM layer returns the hidden units of the last time
step. The output of the last LSTM layer is fed to a softmax
function to produce the probabilities of each output class.

2) RRHOS-LSTM model: RR intervals are the most com-
mon classical features used to characterize ECG signals ac-
cording to the literature [3], [4], [6]–[8], [11]. RR intervals
refer to the time between R peak points of consecutive heart-
beats. There are four RR intervals: pre-RR, post-RR, local-RR,
and average-RR. HOS refers to kurtosis and skewness, which
measures asymmetry and sharpness of a given heartbeat. In
this paper, each heartbeat is segmented into 6 intervals, and
then the kurtosis and skewness are computed for each one.

The RRHOS-LSTM model combines the classical features
(i.e. RR intervals and HOS) with LSTM to classify heartbeats
arrhythmia. The RRHOS-LSTM composes of a feature extrac-
tion layer and one LSTM layer. RR intervals are extracted

to highlight local and global information about R-peak of
two consecutive heartbeats. RR intervals have 8 features that
are computed from the given heartbeat. HOS represents high-
order statistical information of the heartbeat. HOS is computed
from five consecutive heartbeats where the current heartbeat
is surrounded by four heartbeats that are equally distributed
on both sides. The number of HOS features is 60. Therefore
the total number of features fed to LSTM as input is 68.
The LSTM is processing the input features to learn temporal
dependencies. The LSTM layer produces the hidden states
output for each time step, which is then flattened and fed to
a softmax layer to classify the heartbeat signal.

C. Classifier Fusion

The fused classifier is a meta-learner that collects the output
of the bagging models to form an ensemble model. This
classifier is a deep neural network that takes its input from
the probability output of heartbeat classification generated by
CNN-LSTM and RRHOS-LSTM bagging models. Suppose we
have N bagging models of CNN-LSTM and RRHOS-LSTM
classifier, thereby the length of the input vector of the fusion
classifier is 2∗N where each bagging model has two outputs.

The fusion classifier consists of a batch normalization layer,
two fully connected layers, and a softmax layer. Each fully
connected layer has 500 hidden neurons and used ReLU as
an activation function. Dropout layer with a ratio of 20%
is applied between the two fully connected layers. In the
last layer, a softmax function is employed to produce the
arrhythmia classification of the heartbeat. The number of
output neurons is 2, one of the positive class and the other
for the rest classes, as the fusion classifier is trained using the
one-vs-all scheme.

D. Verification network

At last stage, we propose a verification deep neural network
to validate the output of the fusion classier in order to
minimize false positive. Verification network is based on CNN
and LSTM, similar to the CNN-LSTM network. Verification
network consists of 3 convolutional layers, where each one
is followed by max-pooling layer and two LSTM layer. The
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TABLE I
THE PERFORMANCE OF CNN-LSTM AND RRHOS-LSTM BAGGING MODELS INDIVIDUALLY AND AFTER COMBINING THEM USING THE FUSION

CLASSIFIER AND THEN REFINING THE FUSION MODEL USING THE VERIFICATION NETWORK.

SVEB VEB F
Se Sp PPv F1 Acc Se Sp PPv F1 Acc Se Sp PPv F1 Acc

CNN-LSTM 81.63 84.43 18.41 30.04 84.31 94.50 98.74 83.88 88.87 98.47 45.10 93.35 5.08 9.13 92.97
RRHOS-LSTM 84.27 68.58 10.35 18.43 69.22 94.62 96.32 64.08 76.41 96.21 86.60 84.51 4.22 4.22 84.52
Majority Voting 83.44 78.44 14.28 24.39 78.65 94.93 99.53 93.31 94.11 99.23 83.51 91.46 7.15 13.18 91.39
Fusion Classifier 80.12 86.67 20.55 32.71 86.40 95.62 99.38 91.41 93.47 99.13 38.40 98.18 14.26 20.80 97.71
Verification Net. 65.51 98.56 66.19 65.85 97.20 93.91 99.62 94.55 94.23 99.25 19.33 99.79 41.67 26.41 99.16

difference between the verification network and the previously
mentioned CNN-LSTM is the dropout regularization. In the
verification network, we add two dropout layers, one between
the last layer of the CNN part and first LSTM layer and
the other between the last LSTM layer and the softmax
layer. The rate of dropout sets to 50%. This order helps to
reduce the over-fitting of the network. We finally combine all
the proposed models in a cascade system to reach the final
classification decision.

IV. RESULTS AND DISCUSSION

A. MIT-BIH arrhythmia Database

The MIT-BIH database [17], [18] is widely used as a
standard ECG arrhythmia dataset for evaluating the perfor-
mance of heartbeat classification. This dataset includes 48
two-lead ECG records of roughly 30 min acquired from 47
patients. Each record is sampled at 360 Hz and characterized
by a set of labels marked at the R-peak of every beat. The
modified-lead II (MLII) signals is used here. There are 16
heartbeat types in the original database. AAMI recommends
grouping these heartbeats types into five categories: Normal
(N), Supraventricular ectopic beat (SVEB), Ventricular ectopic
beat (VEB), Fusion (F), and Unknown beat (Q). However,
the Q class has a relatively too small number of samples
(i.e. only 12 samples) especially after removing the 4 paced
records. We choose to work on the other four AAMI classes
and excluding Q class. In this paper, we use a subject-oriented
patient independent evaluation scheme. We follow Chazal
et al. [8] data division scheme to split the database to the
training set (DS1) and testing set (DS2) to maintain inter-
patient variation. Each dataset contains 22 ECG records from
different patients with roughly the same ratio of beat types.
This evaluation allows a fair comparison between different
heartbeat classification methods.

B. Classification Performance

The performance of the proposed method is evaluated
for each heartbeat category using 5 different metrics. These
metrics are accuracy (Acc %), positive predictive value (PPv
%), sensitivity (Se %), specificity (Sp %), and F1 score (F1 %).
We used 1 : 4 sampling ratio for training bagging classifiers
where the number of negative samples is four times larger than
the positive samples.

Firstly, a comparison between CNN-LSTM and RRHOS-
LSTM bagging models is performed and reported in Table

I (row 1 and 2). It shows CNN-LSTM bagging model is
better than the RRHOS-LSTM bagging model in terms of
the accuracy metric. However, the RRHOS-LSTM has better
sensitivity for all classes that would boost the overall combined
model.

Next, we compare between using the proposed fusion
classifier and using the majority voting across the different
classifiers as shown in Table I. The majority voting in Table
I (row 3) combines the results of individual bagging models
of CNN-LSTM and RRHOS-LSTM. Combining both bagging
models shows a notable improvement, especially for the VEB
and F classes. The result of the fusion classifier is reported
in row 4, Table I. The fusion classifier has a significant
improvement than the majority voting. The fusion classifier
provides high levels of accuracy, 86.40% and 97.71% for
SVEB and F classes, respectively compared to 78.65% and
91.39%. For the VEB class, the fusion classifier has a high
accuracy of 99.13% that is very close to the accuracy of
using the majority voting (99.23%). Overall, the accuracy
performance of the fusion classifier is much higher than the
individual CNN-LSTM and RRHOS-LSTM bagging models
in all classes.

The following experiment is refining the result of the
fusion classifier by using the proposed verification network, as
shown in row 5, Table I. The verification network significantly
improves the overall performance of the proposed system for
all classes and reduces the false positive rate. For class SVEB,
the positive predictive value and F1 score of the verification
network (66.19% and 65.85%) are much higher than the fusion
classifier (20.55% and 32.71%) with very high specificity
98.56% compared to 86.67% for the fusion classifier. For VEB
class, the positive predictive value and F1 score after using
the verification network is improved (94.55% and 94.23%)
compared to without using it (91.41% and 93.47%). As a result
of reducing the false positive, the sensitivity of the verification
network is decreased for all classes compared to the fusion
classifier.

The proposed method is also compared to 8 different state-
of-the-art methods that follow the same evaluation scheme
using patient independent on the MIT-BIH DS2 dataset. Table
II illustrate the comparison between the proposed method and
the following methods: ensemble SVM [6], Zhang et al [4], Shi
et al [7], Raj & Ray [5], Sellami & Hwang [9], Mathews et al
[11], Ye et al [3], and Chazal et al [8]. In Table II, the average
of sensitivity, specificity, positive predictive value, and F1

1088



TABLE II
THE AVERAGE VALUE OF THE EVALUATION METRICS OVER ALL HEARTBEAT TYPES AND THE OVERALL ACCURACY OF THE PROPOSED METHOD AND THE

STATE-OF-THE-ART METHODS.

Se Sp PPv F1 Overall Acc.
The proposed method 69.20 94.56 74.97 71.06 95.81
Ensemble SVM [6] 70.29 95.55 66.35 67.09 94.47

Zhang et al [4] 86.82 95.42 60.36 64.02 88.34
Shi et al [7] 85.07 96.98 61.89 67.89 91.87

Raj & Ray [5] 87.50 96.47 61.50 65.69 90.27
Sellami & Hwang [9] 82.72 95.04 57.01 64.25 88.35

Mathews et al [11] 83.66 93.26 51.77 54.04 75.50
Ye et al [3] 62.79 92.61 53.46 55.96 86.55

Chazal et al [8] 83.19 95.13 56.98 60.12 86.24

score over all heartbeat types is reported and also the overall
accuracy. The proposed method achieved the highest average
positive predictive value and average F1 score (74.97% and
71.06%), the highest PPv for classes SVEB, VEB, and F, the
highest specificity in SVEB, VEB, and F (98.56%, 99.62%,
and 99.79%), and the highest sensitivity for class N (98.03%)
and ranked the third for VEB class (93.91%). Overall, the
proposed method achieved much better performance compared
to all other methods, with an overall accuracy of 95.81%.

V. CONCLUSION

In this paper, an ensemble deep learning method is intro-
duced for ECG heartbeat classification. The proposed system
combines two different deep learning models. Both CNN
and LSTM are used in the first model to extract dynamic
features from the raw signal. The classical feature such as
RR intervals and HOS are used with LSTM in the second
model. The training of each model is based on the bagging
technique to handle imbalanced data. The two models are
integrated using a fusion classifier. The last step is to verify the
classification result of the fusion classifier using another deep
learning model to reduce the false positive. The experimental
results show the superior performance of the proposed method
compared to the state-of-the-art methods. In future work, we
intend to improve the verification network to enhance its
sensitivity and maintaining a very low false-positive rate.
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