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Highlights 2 

 The attachment positions of intermediate elastic supports are optimally designed for 3 

raising the natural frequency of a plate structure.  4 

 The minimum restraint stiffness is investigated for a more economic support design 5 

with consideration of the additional support mass. 6 

 The natural frequency derivative formulation with regard to the support position 7 

variation is first derived with the inclusion of the support mass.  8 

 A typical relation is proposed between the support mass and the stiffness to 9 

demonstrate effects of the additional support mass on the minimum restraint 10 

stiffness of the support.  11 

 The researches in this work are more practical in engineering applications. 12 

13 
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Abstract 1 

The optimum position and minimum restraint stiffness of a flexible point support to 2 

raise a natural frequency of a thin bending plate is investigated, with the inclusion of the 3 

corresponding additional support mass. First the derivatives of the natural frequencies of the 4 

plate structure are derived with respect to the support movement using a finite element 5 

model. Second, the minimum support stiffness is analyzed to raise a plate’s natural 6 

frequency to a target value by solving a characteristic eigenvalue problem. Then the optimal 7 

support design is studied to find the optimal attachment point and the associated minimum 8 

stiffness. Several typical examples of plate systems are analyzed with addition of the point 9 

supports with non-negligible mass. It appears that including the support mass in the plate 10 

vibration analysis can significantly increase the minimum support stiffness required to raise a 11 

given natural frequency to its target, whereas the optimal support position remains 12 

consistent with the massless support design case. 13 

 14 

Keywords: Support additional mass; Optimal support position; Minimum support stiffness; 15 

Natural frequency increase; Plate structural system 16 

 17 

1. Introduction  18 

A flexural plate with intermediate simple or point supports is one of the most 19 

commonly used structural elements in civil, aerospace, marine, electronic and mechanical 20 

engineering applications. Usually, these supports are used to hold the plate structure 21 

statically. Often, they are also employed to improve the structural characteristics and 22 

performance by the optimal design of the supports’ stiffnesses and attachment points, 23 

especially when other structural design modifications cannot be effectively performed in 24 

practical problems [1-3]. Thus far, a great number of publications are available in the 25 

literature investigating the dynamic properties of plates with various boundary conditions 26 

resting on fixed or movable point supports. Usually, an exact solution of the transverse 27 

vibration is not available even for a thin (Kirchhoff model) plates with general (elastic or 28 

rigid) point supports. Therefore, various numerical approaches, for example based on the 29 

finite element method (FEM) or the Rayleigh-Ritz method, have been developed in order to 30 
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determine the dynamic behaviors, typically the natural frequencies, mode shapes of the 1 

plate system and its vibration response to a general excitation [1-7].  2 

It is well known that both the restraint stiffness and the attachment location of an 3 

elastic support are very important in engineering applications. Small changes to either the 4 

stiffness or position of an intermediate support can dramatically affect the dynamic 5 

properties of a beam or plate structure [5, 8-11]. Thus, these parameters are often utilized 6 

on purpose to modify the vibration characteristics or the critical buckling load of the 7 

structure [1, 4, 8, 9]. Moreover, there exists an exact optimum position for a point support, 8 

at which a certain or critical value of the stiffness can essentially raise a natural frequency of 9 

interest to a preset target value or to its upper limit [1, 12]. Olhoff and Akesson [8] 10 

highlighted that attaining the minimum stiffness of a structure gives a much more efficient 11 

design of the support in practice, because both the economic and material costs of a flexible 12 

support are directly related to its restraint stiffness. Therefore, estimating the minimum 13 

stiffness of the flexible support enables designers and engineers to obtain the minimum 14 

weight design of a structural system in practical engineering. In addition, previous studies [1, 15 

12] have shown that the optimal support position to maximize a specified natural frequency 16 

may be non-unique once the restraint stiffness of the additional support is beyond a critical 17 

or threshold value. Besides, above this minimum stiffness, the target natural frequency 18 

cannot be raised further by increasing the support restraint stiffness, but the associated 19 

mode shapes of the beam or plate structure are modified, primarily due to mode switching 20 

between two consecutive modes [9].  21 

A survey of the early literature reveals that an elastic transverse support is typically 22 

modeled as a massless translational spring simply connected at a point with a finite or 23 

infinite stiffness [2, 4, 7-9]. Thus, the mass or inertia properties of the spring support are 24 

neglected or excluded in the dynamic analyses of the beam or plate structure. The massless 25 

support assumption also means that the support stiffness is not fully correlated with its 26 

material or economic expenditure, which is not realistic in engineering practice [8]. However, 27 

it is well recognized in general that the restraint stiffness of a spring support is closely 28 

associated with its material cost or mass. Moreover, from the structural vibration theory 29 

[13], it is commonly known that part of the elastic support mass does virtually participate in 30 

the transverse vibration of the structure, and therefore affects its dynamic properties, 31 
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including its natural frequencies. In other words, the additional mass of a point support 1 

should be incorporated into the support position optimization to achieve the minimum 2 

stiffness required, or to maximize a natural frequency of interest. Such a problem has 3 

practical importance in structural designs, but to the authors’ knowledge, has not been 4 

addressed as yet in the available literature.  5 

The problem under investigation in this paper is to optimize the positions of elastic 6 

point supports in order to maximize a natural frequency, particularly the fundamental 7 

frequency, of a flexural plate structure. This is because in many cases of engineering 8 

applications, the structural dynamic behavior is highly dependent on the first few natural 9 

frequencies and the relevant mode shapes. Raising a natural frequency of a structure as far 10 

away as possible from the driving frequency of an external load can significantly reduce its 11 

vibration response. Damping is not considered in our analysis, even though the response 12 

amplitude of a structure near resonance is mainly determined by the modal damping. 13 

However, the concept here is to ensure that the natural frequencies and the excitation 14 

frequencies are well separated, and in this case the damping has little influence on the 15 

response. To obtain more realistic results, both the stiffness and mass of a simple support 16 

are considered simultaneously in the plate vibration analysis to obtain the corresponding 17 

minimum stiffness mainly due to its practical significance. To achieve this, the frequency 18 

sensitivity analysis with respect to an elastic support location is first conducted using the 19 

finite element (FE) approach [12]. Since the dynamic analysis most commonly uses FEM, 20 

such a derivation of the design sensitivity is fully consistent with the numerical modal 21 

analysis of a structure. Second, the minimum stiffness of the interior support required for a 22 

certain target natural frequency is estimated at a point of attachment to the plate. For the 23 

general bending vibration of a plate structure, the determination of the minimum stiffness 24 

of the flexible support can be simply formulated as a generalized eigenvalue problem [5, 14], 25 

and therefore the optimum stiffness may be obtained numerically as the lowest positive 26 

eigenvalue.  27 

Afterwards, a heuristic optimization procedure, called the evolutionary shift method 28 

[12], is implemented to determine the optimal support location as well as the corresponding 29 

minimum restraint stiffness for maximization of the structural natural frequency of interest. 30 

Initially, the optimization of the support location assumes that the attachment occurs only at 31 
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the nodes of the FE model, with the contribution of the support mass included. On the basis 1 

of the design sensitivity analysis, the support location will be shifted in the specified 2 

direction with a step size given by the element size, to gradually reach to the approximate 3 

optimal position for the design task. However, the optimal support position is unlikely to 4 

occur exactly at an FE node, and will usually occur within an element. To gain a more 5 

accurate estimate of the optimal position, without discretizing the local region near the 6 

solution with a very fine FE mesh, the stiffness matrix of an elastic point support located 7 

within an element is used to efficiently obtain the optimal position and make the design 8 

solution insensitive to the FE mesh [5, 15]. Finally, the feasibility and effectiveness of the 9 

proposed optimization algorithm is demonstrated by three benchmark examples of 10 

rectangular plates. The optimal results are compared to the traditional solutions that neglect 11 

the mass of the spring support [5, 12, 14] to demonstrate the effect of the support mass 12 

inclusion on the optimal design of the intermediate spring supports.  13 

 14 

2. Derivative of Natural Frequency with Respect to Support Position 15 

In structural dynamic analysis, the characteristic equation of an undamped system in 16 

the discrete form is [16] 17 
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2
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where [K] and [M] are the global stiffness and mass matrices, respectively. ωi denotes the ith 19 

natural frequency in radians and {ϕ}i is the associated vibration mode of the structure, which 20 

has been mass normalized. Notice that ωi is an implicit function of the support parameters. 21 

As is well known, design sensitivity analysis determines the effect of a design variable 22 

modification on the structural response of a vibrating system. It may play a vital role in 23 

design optimization algorithms. Generally, the derivative of the ith natural frequency with 24 

regard to a support position is given by [12, 15] 25 
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where s denotes the position or coordinate of a spring support. Generally, the movement of 1 

an elastic support will redistribute the stiffness and inertia properties of the structure. Thus, 2 

the elastic support movement will affect both the global stiffness and mass matrices, and 3 

ultimately change both the natural frequencies and the mode shapes.  4 

 5 

2.1  Modeling an Elastic Support 6 

Previously, the optimization of the stiffness or position of the additional supports has 7 

generally modeled a pinned point support as a massless linear spring acting on the 8 

translational displacement at the attachment point [1-3, 5, 12, 15]. Therefore, most of the 9 

support optimization approaches were based on neglecting the effects of the support mass. 10 

Consequently, the mass matrix of the structural system was not affected as a spring support 11 

changes its position. However, in practical engineering structures, both the stiffness and 12 

mass of an elastic support are closely related [4, 8]. Often, the additional support mass is 13 

comparable to the mass of the structure around the attachment point. Its effect becomes an 14 

important issue in the support design, and hence it should be taken into consideration in the 15 

vibration analysis. Zhou and Ji [4] investigated the coupled free vibration of a plate-support 16 

system for gaining the exact solution of the dynamic properties of the plate structure with 17 

the support mass included.  18 

For example, Figure 1 shows a schematic diagram of a discrete spring-mass system with 19 

non-negligible spring mass m. For an accurate estimation of the vibration response, it is well 20 

recognized that part of the spring mass or inertia should be included to appropriately 21 

evaluate the natural frequency ωn of the system [13]  22 

(Figure 1) 23 

 24 

3/mM

k

n


                                                 (3) 25 

This expression means that the effective spring mass ms, that participates in the primary 26 

system vibration, is one-third of the total mass of the spring support:  27 
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3

m
m

s
                                                        (4) 1 

In general, the effective mass (extra transverse inertia) of a spring is approximately 2 

proportional to the support stiffness. There will also be additional mass required to connect 3 

the support spring to the plate structure. However, within this study, to demonstrate the 4 

inclusion of the support mass, we assume that 5 

rkm
s
                                                         (5) 6 

where r is a ratio factor between the support mass and the stiffness. Note the factor r has 7 

the dimensions (units) kg·m/N = s
2, and is usually a very small positive value in many practical 8 

applications. A typical value of r = 10-6 (s2) is employed in this paper. Other functions relating 9 

the effective support mass and the stiffness may be easily incorporated into the analysis. 10 

Evidently, the location variation of a spring point support will simultaneously affect both the 11 

global stiffness and mass matrices of the structural system in Eq. (2). 12 

 13 

2.2  The Plate Element with Elastic Support 14 

In Fig. 2, a four-node flexural uniform thin rectangular element based on the classical 15 

Kirchhoff hypothesis is illustrated with a grounded elastic support attached at a point within 16 

the element. According to the FEM theory [16], the transverse displacement at the support 17 

point w(sa, sb) along the z-axis can be approximated in terms of the nodal displacements and 18 

slopes of the plate element as 19 

(Figure 2) 20 

 21 

essba
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)(                                            (6) 22 

where [N] is a row vector of the shape (or interpolation) functions of a rectangular plate 23 

element, and {u}e is a column vector of element nodal degrees of freedom, given by 24 
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T
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The following standard shape functions are regularly adopted for the transverse 2 

components wi, θxi and θyi of the plate element, respectively, [16]: 3 
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and a and b are half of the element size along the x- and y-axis, respectively, as illustrated in 7 

Fig. 2. Therefore, the total energy (both potential and kinetic), E, of the spring support due 8 

to its transverse deflection is 9 

)()( ,
2

1
,

2

1 222

basba
sswmsskwE                                       (10) 10 

Substituting the displacement expression in Eq. (6) into the above energy formulation, 11 

the total energy can be expressed in the quadratic form in terms of the associated element 12 

nodal displacements as 13 
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and 1 
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          (12b) 2 

are the equivalent stiffness and mass matrices of the point support when it is attached at 3 

Point (sa, sb) in the element. [St] is henceforth referred to as the nominal support matrix, 4 

which is an explicit function of the support location. By using the support equivalent stiffness 5 

and mass matrices, the support model is now continuous with respect to its location in FEM 6 

[15].  7 

The developed formulation in Eq. (12) allows the support to be located anywhere on 8 

the plate, and not just at the FE nodes. If an elastic support is attached at a node of the FE 9 

mesh, e.g. at Node 1 in Fig. 2, then according to the shape functions given in Eq. (9), the 10 

corresponding stiffness matrix of the spring support is:  11 
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and its mass matrix is 13 
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These are the typical results for a spring support without rotational stiffnesses that we 15 

usually apply in FEM. 16 
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 1 

2.3  Natural Frequency Derivative with Respect to Support Location 2 

Since an elastic support movement does not affect the stiffness and mass matrices of 3 

the plate structure itself, the derivative of the ith natural frequency (eigenvalue) can be 4 

readily obtained from Eq. (2) as 5 
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where {ϕe}i is the ith mode shape at the degrees of freedom of the plate element in which 8 

the spring support is located. 9 

Although these natural frequency derivatives may be calculated for any point within the 10 

plate element, here we would evaluate the derivatives only at the nodes of the FE mesh in 11 

compliance with the structural FE computation. From the standard shape functions of the 12 

thin plate element in Eq. (9), evaluation of the functions and their derivatives at Vertex 1 13 

shows 14 
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and the other shape functions and their first-order derivatives are all zero. Substituting Eqs. 17 

(12a) and (12b) into Eq. (14), we can then achieve the natural frequency derivative when a 18 

point support is attached at Vertex 1 as  19 
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where w1i, θx1i and θy1i indicate the transverse displacement and slopes along x- and y-axes, 2 

respectively, for the ith vibration mode at Vertex 1 of the element as shown in Fig. 2. 3 

The design derivatives of the ith natural frequency with respect to the support location 4 

attached at other corner vertices of the rectangular plate element can be readily derived in a 5 

similar way, and the obtained results are consistent with Eqs. (16). It is worth noting that 6 

only the nodal generalized displacements for the ith mode at the spring support location 7 

appear in the expression. Therefore, the subscripts indicating the element vertex in Eqs. (16) 8 

will be omitted subsequently, and for simplicity, the generalized displacements in the 9 

derivative formulations are just those of the point support location: 10 
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where (xs, ys) indicates the grid node of the structural FE mesh. Those terms are immediately 13 

available from computational results of FEM.  14 

Furthermore, the support reaction force, Ri, for the ith mode shape can be calculated as 15 
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and the vertical inertial force due to the effective mass is: 17 
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Thus, substituting these expressions into Eq. (17), the natural frequency derivatives become 19 
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where Fi is the resultant modal force due to the elastic support attached to the plate 1 

structure. Clearly, the derivatives are proportional to the internal force and slope of the 2 

mode shape along the direction of motion of the support position. 3 

So far, the support has assumed to move parallel to the x or y-axes of the coordinate 4 

system. In certain cases, the support may move along a specific direction, and then the 5 

directional derivative of the ith natural frequency can be calculated as  6 
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where α is the orientation angle of the specific direction s with regard to the x-axis.  8 

 9 

3. Evolutionary Procedure for Support Position Optimization 10 

Often, a structural design optimization is performed based on size, shape and topology. 11 

However, when the structural design parameters cannot be altered due to some design 12 

limitations, changes in the restraint conditions of a structure can also be utilized to 13 

effectively improve the structural static or dynamic behaviors [1]. At present, the positions 14 

of the spring point supports in the plate structure are optimally designed to raise a natural 15 

frequency of interest to a target value or to its upper limit through the economic design of 16 

the support stiffnesses as is widely accepted. The optimization problem is defined as 17 
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where kj is the translational stiffness coefficient of the jth point support, and n the total 21 

number of available supports. ωi is the ith natural frequency of a plate system that has to be 22 

increased, which is a function of the interior support positions {s}, and *

i
  is the associated 23 

prescribed value. If i = 1, then ω1 denotes the fundamental natural frequency of the system. 24 
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sj indicates the design variable, representing the jth independent support position, and Dj 1 

indicates the preset region in which the jth support position can change. 2 

Obviously, the design optimization problem described in Eqs. (22)-(24) is highly 3 

nonlinear. Consequently, an iterative procedure is required to achieve the final optimal 4 

support positions to increase the natural frequency of interest. The optimization procedure 5 

[12] has two stages: at the first stage the support locations are constrained to the FE nodes, 6 

and at the second stage the optimum locations within the element is obtained 7 

evolutionarily. Starting from an initial set of the support position variables, for the first step, 8 

the direction to move the support locations to increase the ith natural frequency ωi of the 9 

plate system can be determined from 10 

)...,,1()(sign)(sign

2

nj
s

s

j

i

j








                               (25) 11 

where Δsj is the step length in the support position change, which is taken as the associated 12 

elementary size so that the support is located at a node of the FE mesh [12]. sign (·) is the 13 

sign function. 14 

Once the location of an elastic support is specified, the governing characteristic 15 

eigenvalue equation presented in Eq. (1) for the plate with the spring support attachments is 16 

recast into 17 

  }0{}{)][]([][][
2


iSPiSP

MMKK                            (26) 18 

where the [K]P and [M]P denote the plate stiffness and mass matrices, respectively. By using 19 

Eqs. (5) and (12), the generalized eigenvalue problem of the global plate system is written as 20 

  }0{}{])[1(][][
22


itiPiP

SrkMK                            (27) 21 

For the purpose of raising the ith natural frequency ωi to the prescribed value *

i
 , a 22 

standard approach to calculate the support stiffness threshold is to solve the general 23 

eigenvalue problem 24 

 
itiiPiP

SrkMK }]{)[)(1(}{][)(][
2*2*

                        (28) 25 
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It has been shown that the minimum positive eigenvalue for k in Eq. (28) is virtually the 1 

critical or minimum support stiffness required to increase the plate natural frequency to the 2 

target value [5]. Moreover, the associated eigenvector {ϕ}i is the corresponding mode shape 3 

of the supported plate, which is also mass normalized.  4 

If *

i
  is set as a natural frequency of the unsupported plate, which is commonly 5 

adopted in many previous studies [1, 3, 5, 8], then the dynamic stiffness matrix of the plate 6 

PiPP
MKD ][)(][][

2*
  is singular. In this case, there will usually be one zero eigenvalue 7 

in Eq. (28). Furthermore, if *

i
  is set too high, there will be no eigenvalue solution which 8 

means that even the rigid support cannot raise the ith natural frequency to *

i
 . According 9 

the Courant’s maximum-minimum principle [17], n additional supports can only increase the 10 

ith structural natural frequency, ωi, to between the ith and the (i+n)th natural frequencies of 11 

the originally unsupported structure. For instance, one additional flexible or rigid support 12 

can only increase the ith structural natural frequency, to between the ith and the next larger 13 

(i+1)th natural frequencies of the original structure. 14 

In most practical problems, however, the optimal position of a point support with the 15 

minimum or critical stiffness may not be exactly at the grid node of the FE model of the plate 16 

structure, and is often located within an element. In this case, a refined FE mesh in the 17 

neighborhood of the optimal solution could be employed to find the more accurate support 18 

position. Herein, an alternative approach [5, 15] is considered to facilitate the convergence 19 

of the optimization process. According to the sign change of the frequency derivative, the 20 

particular element containing the optimal support solution can be essentially identified. 21 

Then, by using the equivalent stiffness and mass matrices of a flexible support within an 22 

element, represented in Eq. (12), the optimal position of a spring support can be estimated 23 

with ease by finding the zero value of the natural frequency derivative [18]. 24 

 25 

4. Illustrative Examples 26 

The validity of the formulation for the frequency derivative calculation and the 27 

effectiveness of the proposed optimization approach to obtain both the minimum stiffness 28 

and the optimal position of internal point supports will be demonstrated with several 29 
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examples. In this section, different boundary conditions of the rectangular plate structures 1 

are explored and the optimal results are compared with those obtained in the literature that 2 

ignore the support mass [5, 14] to illustrate the effects of including the support mass. In the 3 

following numerical examples, the plate thickness is set as h = 3.0 mm uniformly. The Young’s 4 

modulus of elasticity is E = 70.0 GPa, Poisson’s ratio ν = 0.3 and the mass density of material ρ 5 

= 2800 kg/m3. For comparison purposes, the obtained characteristic results will be presented 6 

in terms of the non-dimensional parameters of the natural frequency DhL /
2

  , 7 

support stiffness DLk
s

/
2

 , where )1(12
23

 EhD  is the constant flexural rigidity of 8 

the plate, and the optimal coordinate Lx
ss
/  along the x-axis, where L is the length of 9 

the plate in the global x-axis. The ratio of the effective support mass to the plate mass, β = ms 10 

/(ρLWh), is also given for illustration of the support mass. In these examples we assume ms = 11 

rk, as given in Eq. (5), where r is fixed. 12 

In the solution process, the support optimal position and minimum stiffness are 13 

obtained using the evolutionary method presented in Section 3. Representative vibration 14 

mode shapes of the plate supported by the additional spring support are then plotted to 15 

verify the optimal results. It will be seen that the proposed method is very effective in 16 

obtaining an efficient design for the flexible supports to increase a natural frequency of a 17 

plate structure.  18 

 19 

4.1  A rectangular plate with one edge restrained  20 

A flat rectangular plate, having one edge conventionally constrained (either simply 21 

supported or clamped) and the other edges free, together with one additional elastic 22 

support, is demonstrated schematically in Fig. 3. This is a typical model for the dynamic 23 

analysis of plate behaviors when designing a support, such as a column of a slab in civil 24 

engineering or for a printed circuit board in electrical engineering [1, 4, 5]. It is of particular 25 

interest to know exactly the optimal position and the minimum stiffness to achieve a target 26 

fundamental frequency of the whole structural system.  27 

(Figure 3) 28 
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 1 

Two geometrical shapes of the rectangular plate with aspect ratios α = L/W of 1.0 2 

(square) or 1.5 (rectangle) are investigated, and clamped and simply supported boundary 3 

conditions are modeled, respectively. Table 1 gives the dimensions and masses of the plates, 4 

the FE meshes for different aspects and the first three natural frequency parameters for the 5 

unsupported plates. The corresponding mode shapes of the square plate with the clamped 6 

edge are illustrated in Fig. 4. 7 

(Table 1 and Figure 4) 8 

 9 

4.1.1 One elastic support on the free edge  10 

In this example, a single flexible support is attached along the free edge opposite to the 11 

restrained boundary to raise the fundamental natural frequency of the plate as high as 12 

possible to improve the structure’s dynamic behavior [1]. Due to the structural symmetry 13 

about the horizontal center line (y = 0), the additional support should be located at the 14 

mid-point of the free edge, as shown in Fig. 3, where the requirement of zero slope of the 15 

fundamental mode shape in the y-direction is readily satisfied [5]. Since the support is 16 

located on the nodal line of the second mode shape (corresponding to the first torsional 17 

mode) of the unsupported plate, given in Fig. 4b, the fundamental natural frequency 18 

(corresponding to the first bending mode) can only be raised extremely to the second 19 

natural frequency of the unsupported structure [17]. Increasing the support stiffness further 20 

above the minimum value cannot raise the fundamental frequency of the supported plate 21 

anymore due to mode switching of the lowest two frequencies [1].  22 

Attached at this particular spot, the minimum stiffnesses of the point support can be 23 

directly estimated by Eq. (28), and listed in Table 2 are the optimal results, which are highly 24 

dependent on the aspect ratio and the boundary constraints of the rectangular plate. Also 25 

listed are the earlier results based on the assumption of a massless support model for 26 

comparison. As expected, by using an elastic point support, the fundamental natural 27 

frequency can be effectively raised to its upper limit and then becomes a bimodal (doubly 28 

repeated) frequency with two basis modes of purely bending and torsional deflections. 29 
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Additionally, with the inclusion of the effective support mass, which is relatively small 1 

compared to the plate mass (3.9-10.3%) on the prescribed ratio factor r = 10-6, a larger 2 

minimum stiffness of the support (increased by 7.3-22.6%) is required. This will certainly 3 

increase the cost of the support to raise the lowest natural frequency to the target value. 4 

Similar to the situation of the massless support model [5], with a single flexible support 5 

there is no solution for the simply supported boundary of the rectangular plate (α = 1.5), 6 

which means that the maximum attainable increment of the fundamental natural frequency 7 

is limited by adding a point support at the free edge the plate.  8 

(Table 2) 9 

 10 

The effect of the support mass on the third natural frequency (corresponding to the 11 

second bending mode) of the supported plate is also shown in Table 2. Although the 12 

required support stiffness has been obviously increased due to the inclusion of the 13 

additional support mass, all of the third natural frequencies are noticeably lower than their 14 

counterparts for the massless supports. Moreover, the third natural frequency for the 15 

square plate with a clamped edge is less than the original value for the unsupported plate, 16 

given in Table 1. This fact highlights that sometimes, the additional increment of the support 17 

stiffness cannot compensate for the negative effect of the support mass involvement on 18 

particular structural natural frequencies, although the additional support mass is very small 19 

compared to the plate mass, as shown in Table 2. In other words, the support influence on 20 

the dynamic characteristics of the plate is no longer monotonous when the extra support 21 

mass is considered in the vibration analysis.  22 

Furthermore, in order to move the support position along the center line and 23 

determine the moving direction, it is very crucial to compute the frequency derivative with 24 

respect to the support position. However, at present, the first two natural frequencies are 25 

repeated, and the fundamental natural frequency becomes bimodal, as seen in Table 2. 26 

Consequently, the corresponding modes are tightly coupled with each other such that the 27 

basic modes are not readily attainable. It is clear that a repeated frequency is generally not 28 

differentiable in the common sense (i.e. the Fréchet derivative does not exist). Only 29 

directional derivatives can be obtained [19-21]. In order to evaluate the directional 30 
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derivatives of the fundamental frequency of the plate system, a sub-eigenvalue problem has 1 

to be solved. For complete understanding, a brief outline of the computational procedure is 2 

presented herein. First, the Eigenspace Directional Derivative Matrix [G] [21] is formulated at 3 

the element level:  4 
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where {ϕ}1 and {ϕ}2 are the fundamental natural modes of the supported plate with the 6 

critical support stiffness. It is worth mentioning that these two modes may not be the two 7 

basis mode shapes, but should be orthogonal to each other.  8 

From the derivation of the equivalent stiffness and mass matrices for a spring support, 9 

presented in Eq. (12), the derivative expressions of the equivalent matrices can be simply 10 

obtained using the shape functions of the relevant element with the point support 11 

attachment, see the dark element in Fig. 3. Thus  12 















































 







66

33

]0[Sym.

]0[

001-

000

100

]0[]0[]0[

d

][d
k

x

K

s

S                            (30a) 13 















































 







66

33

]0[Sym.

]0[

001-

000

100

]0[]0[]0[

d

][d

s

s

S
m

x

M
                          (30b) 14 

Consequently, [G] in Eq. (29) can be estimated with the related mode shapes and then, the 15 

associated eigenvalues of [G] can be straightforwardly evaluated, which are just the 16 

directional derivatives of the bimodal fundamental frequency [19, 21].  17 

Of the two directional derivatives of the fundamental natural frequency, one is 18 

presented in Table 2 for different boundary constraints. The other is just equal to zero, 19 

which means that moving the point support in the x-direction along the plate’s symmetric 20 

line cannot change the fundamental natural frequency with the first torsional mode shape. 21 
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This can be understood physically because the horizontal center line is just the nodal line of 1 

the torsional vibration mode of the plate [1].  2 

It is worth noting that the fundamental frequency derivatives, listed in Table 2, are all 3 

negative, which implies that the mid-point of the free edge is not the most suitable position 4 

for an efficient support design. According to Eq. (25), shifting the support location inwards 5 

along the center (symmetric) line could raise the fundamental natural frequency of the first 6 

bending mode of the plate structure. In other words, the support movement toward the 7 

restrained edge of the plate can certainly reduce the support stiffnesses required so as to 8 

lead to an even more economic support design. Therefore, the optimum support location 9 

along the center line, as well as the corresponding minimum stiffness, will be investigated in 10 

the next section while preserving the lowest frequency at its extremum, which is the second 11 

natural frequency of the unsupported plate. 12 

 13 

4.1.2 One elastic support on the center line  14 

In this situation, a single elastic support is allowed to move along the axis of symmetry 15 

(y = 0) of the plate while the fundamental natural frequency is constrained to remain at its 16 

upper limit. At the same time, the optimal solution for the rectangular plate of the aspect 17 

ratio 1.5 with a simply supported edge is also explored; even a rigid point support located at 18 

the free edge is not able to sufficiently raise the fundamental frequency to the second 19 

frequency of the unsupported plate structure [5, 14]. Figure 5 shows the minimum support 20 

stiffness as well as the derivative of the first natural frequency to the support position in the 21 

x-direction, versus the change in the support location to keep the maximum fundamental 22 

natural frequency achieved by adding a single support. It is clearly demonstrated that the 23 

minimum support stiffness heavily depends on the support position. Furthermore, the 24 

fundamental frequency derivative reaches to zero at a point close to 0.90 of the rectangular 25 

plate length for the clamped plate or 0.79 for the simply-supported-edge rectangular plate. 26 

At these optimum locations the support stiffness arrives at the minimum threshold. Table 3 27 

gives the optimum solutions of the minimum support stiffness and its location for the 28 

rectangular and square plates. The optimum results with no concern of the support mass are 29 

also presented in Table 3 for comparison.  30 
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(Figure 5 and Table 3) 1 

 2 

From the optimum results in Table 3 it can be observed that the fundamental natural 3 

frequency of the plate has been successfully raised to the respective second natural 4 

frequency in all of the boundary restraint cases. Moreover, the minimum support stiffnesses 5 

are all reduced more or less from their corresponding values with a spring support located at 6 

the free end. These are the certain outcome of the negative frequency derivatives at the free 7 

boundary. Furthermore, the optimal support positions are all identical to those obtained 8 

when the effective support mass is neglected. This is not a surprise since at the given 9 

optimal support position with the minimum support stiffness, the frequency derivative 10 

should be zero along the x-direction. This can be simply achieved by the zero slope θy of the 11 

first bending mode shape, as seen in Eq. (17), which is the same criterion used to determine 12 

the optimal support position in reference [5]. Figure 6 shows respectively the fundamental 13 

bending mode shape of the rectangular plate supported by a single support with the 14 

minimum stiffness at the optimum location for illustration.  15 

(Figure 6) 16 

 17 

4.2  A rectangular plate with two spring supports  18 

A rectangular plate with one long edge simply supported and the others free is 19 

considered, as shown in the schematic diagram in Fig. 7. The plate is discretized with a 20 

regular mesh of 10 × 16 elements, and the first three natural frequency parameters of the 21 

unsupported plate are listed in Table 4. Clearly, the plate system has a zero fundamental 22 

frequency. Suppose two identical elastic supports, which are only allowed to move 23 

synchronously and symmetrically along the specified orthogonal lines, are employed to 24 

increase one of the natural frequencies of the plate structure. The representative position of 25 

the upper support is (xs, ys).  26 

(Figure 7 and Table 4) 27 

 28 

                  



 22 

In this case, although there are four position coordinates for the two elastic supports, 1 

only one, say xs of the upper support, is the independent design variable due to symmetry, 2 

and ys, is virtually a dependent coordinate when the support moves along the specified 3 

diagonal directions in the present coordinate system: 4 

      )06.0( 
ss

xy                                                (31) 5 

So, the frequency derivative is the algebraic sum from the two support position 6 

movements. In addition, by using the two grounded supports, it is theoretically possible to 7 

increase the fundamental frequency of a plate to its third natural frequency [1, 17]. But for 8 

this plate model with the elastic supports, the fundamental frequency cannot be increased 9 

up to the third natural frequency of the original plate (corresponding to the second torsional 10 

mode). Thus, we only perform the optimization support design to increase the fundamental 11 

frequency to the second natural frequency of the unsupported plate. By using Eq. (21), the 12 

fundamental frequency derivatives with regard to the locations of the supports in the 13 

specific directions can be readily calculated, and the values at different FE nodes on the 14 

specific lines are plotted in Fig. 8a together with the corresponding minimum stiffness. It is 15 

clear that the optimal support position occurs between 0.80 and 0.90 typically due to the 16 

opposite signs of the frequency derivatives. The optimal support design for achieving the 17 

target fundamental frequency is then found by means of the support equivalent stiffness 18 

and mass matrices in Eq. (12), and the results are listed in Table 4. The optimal support 19 

designs on the massless assumption are also calculated in order to make a comparison. 20 

Evidently, the minimum support stiffness required is larger than the corresponding stiffness 21 

neglecting the support mass, but the support optimal positions are identical with the two 22 

support models. 23 

(Figure 8) 24 

 25 

Alternatively, with the two elastic supports, we can also raise the second natural 26 

frequency up to the third natural frequency of the unsupported plate, and the 27 

corresponding minimum stiffness variation is illustrated in Fig. 8b, together with the 28 

frequency derivatives. The optimal support designs are also listed in Table 4. In this situation, 29 
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the obtained minimum support stiffness increases significantly by 4.98 times in comparison 1 

to the first natural frequency increment, while the corresponding increment with the 2 

exclusion of the effective support mass is only 3.02 times, although the additional support 3 

masses in the two cases are all very small compared to the plate mass. In addition, with the 4 

greater support stiffness, all of the first three natural frequencies of the plate are larger than 5 

the corresponding natural frequencies in the previous case.  6 

 7 

4.3  A free-free square plate with four elastic supports 8 

A fully free square plate [12] supported on four identical elastic supports is shown 9 

schematically in Fig. 9. The plate size is L = 0.3 m and the plate is discretized with a regular 10 

mesh of 20 × 20 flexural elements. Suppose the four identical elastic supports are located 11 

symmetrically on the particular lines so as to maximize the fundamental frequency of the 12 

plate system. The first three flexural natural frequency parameters for the unsupported 13 

plate are listed in Table 5. From the previous study [12, 14], it is well-known that the 14 

fundamental frequency can be raised to the first or ultimately the second flexural frequency 15 

of the unsupported plate with four grounded point supports.  16 

(Figure 9 and Table 5) 17 

 18 

4.3.1 Elastic supports along the diagonals  19 

In this case, the four point supports are located symmetrically along the plate 20 

orthogonal diagonals, that is, the elastic supports move synchronously along the plate 21 

diagonal directions, as shown by the solid points in Fig. 9. The representative position of the 22 

upper-right support is (xs, ys), and all of the additional support positions are linearly 23 

correlated with xs, which is the only independent position coordinate due to symmetries of 24 

the specified moving directions. First, we perform the optimization of the support design to 25 

raise the fundamental frequency to the first flexural frequency of the free-free plate. The 26 

minimum support stiffness and the fundamental frequency derivative with regard to the 27 

support movement at different FE nodes on the diagonals of the plate are plotted in Fig. 10a. 28 

It is clear that the support optimal position occurs between 0.25 and 0.30. Then the optimal 29 
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design of the support position and the associated minimum stiffness are determined and 1 

listed in Table 5. The optimal position in the present scenario is also identical to that 2 

obtained with the massless supports [14] estimated by the Rayleigh-Ritz method. 3 

Nevertheless, the minimum support stiffness is much larger when the additional support 4 

mass is included, which is now no longer small in comparison to the plate mass. This result 5 

shows apparently that consideration of the support mass in the structural vibration analysis 6 

can significantly affect the required minimum stiffness of the additional support to raise the 7 

natural frequencies of a plate.  8 

(Figure 10) 9 

 10 

Furthermore, we can employ the four elastic supports to raise the fundamental 11 

frequency to the second flexural frequency of the free-free plate. In this extreme case, the 12 

required minimum stiffness of the elastic supports increases significantly to 5175, more than 13 

44 times the required stiffness threshold for a massless support, and the additional 14 

contribution of the support mass is more than 13 times the plate mass for each of the 15 

supports, as listed in Table 5. This result means that a very big lumped mass is incorporated 16 

into the plate vibration at each of the attachment points. This is clearly a challenging optimal 17 

design problem for the plate supports in engineering practice. It is therefore understood that 18 

the addition of the support mass makes the increment of the fundamental frequency of the 19 

supported plate to the original second flexural natural frequency much more difficult in 20 

practical applications.  21 

 22 

4.3.2 Elastic supports along the two axes parallel to the plate edges 23 

Alternatively, the four flexible supports may be located symmetrically along the two 24 

orthogonal axes to increase the fundamental natural frequency of the plate, as shown by the 25 

hollow points in Fig. 9. In the present support array, the representative position of the right 26 

support is (xs, 0), and all of the support positions are linearly correlated with xs due to 27 

symmetries of the moving directions. Likewise, there is only the positive solution for Eq. (28) 28 

to raise the fundamental frequency to the first flexural natural frequency, but no positive 29 
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solution to the second one of the free-free plate [14]. Figure 10b shows the required 1 

minimum support stiffness and the fundamental frequency derivative with regard to the 2 

support location at different FE nodes on the center lines. Clearly, the support optimal 3 

position can only occur between 0.40 and 0.45 due to the opposite signs of the derivatives of 4 

the fundamental frequency. Therefore, the minimum stiffness of the optimally located 5 

supports can be evaluated, and the computational results are tabulated in Table 5. Once 6 

again, the corresponding minimum support stiffness is much greater than the corresponding 7 

stiffness of the massless support design, while the optimal position is consistent. Moreover, 8 

the minimum support stiffness is also larger than the counterpart of the support on the plate 9 

diagonals. Figure 11 shows one of the first representative vibration mode shapes of the plate 10 

resting on the four optimally designed flexible supports on the diagonals or the axes, 11 

respectively. Note that the two first mode shapes are remarkably different, even though 12 

they all correspond to the same value of the fundamental natural frequency of the 13 

supported plate structure. Comparatively, the flexural deformation of the plate in Fig 11b is 14 

larger than that in Fig 11a for a similar modal mass.  15 

(Figure 11) 16 

 17 

5. Conclusions 18 

In this work, simple translational supports are optimally designed to raise a natural 19 

frequency of the rectangular flexural plate structure to a target value or to its upper limit. 20 

For engineering applications, the effective mass of the spring support should be included in 21 

the vibration analysis of the plate structure to achieve a more practical design of the 22 

additional support. First, the frequency derivative formulation with respect to the support 23 

movement is developed using FE analysis, which is consistent with the numerical calculation 24 

of the structural dynamic characteristics by FEM. Then, an evolutionary procedure is 25 

proposed to determine the optimal position with the minimum stiffness of the support so as 26 

to produce a more economic design of the spring support.  27 

From the numerical results of typical examples, it is evident that the additional support 28 

mass has a significant influence on the minimum stiffness of the elastic point support, even 29 
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though the mass addition is sometimes very small compared to the plate mass. The 1 

minimum support stiffness is usually increases due to the inclusion of the support mass. But 2 

the optimal location remains unchanged to that obtained from the massless support model.  3 
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 11 

Figure 1  Schematic diagram of a single-spring-mass system with the non-negligible spring 12 

mass, m, which is included in the vibration analysis. 13 
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Figure 2  Schematic diagram of a thin flexural plate element with a grounded elastic 13 

support with effective mass ms. 14 
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 2 

 3 

 4 

Figure 3  A flat rectangular plate restrained on one edge is additionally supported with an 5 

elastic point support positioned at the mid-point of the free edge opposite to the 6 

restrained boundary. The dark element shows that a point support is attached at 7 

one of its four nodes. 8 
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Figure 4  The first three mode shapes of the clamped and unsupported square plate: (a) 1 

first bending (b) first torsional (c) second bending. 2 
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Figure 5  The minimum support stiffness (solid-line) and the fundamental frequency 

derivative (dashed-line) with respect to the support movement in the x-direction 

at different positions on the symmetric line of the rectangular plate (α = 1.5): (a) 

clamped boundary, (b) simply supported boundary. 
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Figure 6  The first bending mode shape of the rectangular plate (α = 1.5) with a single elastic 

support of the minimum stiffness at the optimum position on the center line: (a) 

for the clamped (b) for the simply supported boundary.  
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Figure 7  A rectangular plate simply supported in one long edge is additionally supported 

with two elastic point supports located along the orthogonal lines departing from 

the vertices of the free edge opposite to the constrained boundary 
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Figure 8  The minimum support stiffness (solid-line) and the frequency derivative 

(dashed-line) with respect to the synchronous movement of the two elastic 

supports along the specified directions on the rectangular plate: (a) for the first 

natural frequency (b) for the second natural frequency. 
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Figure 9  A free square plate is supported symmetrically by four flexible supports, along the 

diagonals (solid points) or the axes parallel to the edges (hollow points), 

alternatively.  
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Figure 10  The minimum support stiffness (solid-line) and the fundamental frequency 

derivative (dashed-line) with respect to the support synchronous movement of 

the four elastic supports: (a) along the diagonals (b) along the axes of the square 

plate. 
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Figure 11  The fundamental mode shapes of the plate supported by four elastic supports 

with the minimum stiffnesses: (a) along the orthogonal diagonals (b) along the 

axes of the square plate.  
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Table 1 The geometry dimensions and first three natural frequency parameters of an unsupported rectangular plate with one boundary edge 

clamped or simply supported. 

 

Boundary edge restrained Clamped Simply supported 

Aspect ratio α 1.0 1.5 1.0 1.5 

Length, L (m) 0.3 0.45 0.3 0.45 

Width, W (m) 0.3 0.3 0.3 0.3 

Plate mass (kg) 0.756 1.134 0.756 1.134 

Element mesh 10×10 15×10 10×10 15×10 

Natural frequency 

parameters λi 

First bending (1B) 3.4710 3.4535 0 0 

First torsional (1T) 8.5088 11.6573 6.6457 9.8461 

Second bending (2B) 21.3307 21.4889 14.9213 14.8989 
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Table 2 The optimal position with the minimum stiffness and corresponding natural frequency parameters for the rectangular plate with a 

point support at the mid-point of the free edge. 

Boundary edge restrained Clamped 
Simply 

supported 

Results without considering support mass [5] 

Clamped Simply supported 

Aspect ratio α 1.0 1.5 1.0 1.0 1.5 1.0 

Natural frequency 

parameters λi 

1 (1B) 8.5088 11.6573 6.6457 8.5088 11.6573 6.6457 

2 (1T) 8.5088 11.6573 6.6457 8.5088 11.6573 6.6457 

3 (2B) 20.8733 26.1718 16.6347 23.7338 27.6186 18.7203* 

Support minimum stiffness s 29.3695 51.3106 40.2909 23.9606 47.8070 35.7646 

Mass ratio β 0.07471 0.03867 0.1025    

Frequency derivatives to support 

position along x-direction dλ1/dxs 
-7.3801 -33.4806 -26.9908    

*This value was originally presented as 16.1827 due to a typographical error. 
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Table 3 The optimal position with the minimum stiffness of a single elastic support on the plate centre line and the corresponding natural 

frequencies for a rectangular plate with a conventional restrained edge 

Boundary edge restrained Clamped Simply supported 
Results without considering support mass [5] 

Clamped Simply supported 

Aspect ratio α 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 

Natural frequency 

parameters λi 

1 (1B) 8.5088 11.6573 6.6457 9.8461 8.5088 11.6573 6.6457 9.8461 

2 (1T) 8.5088 11.6573 6.6457 9.8461 8.5088 11.6573 6.6457 9.8461 

3 (2B) 20.9481 22.9976 15.4586 15.4959 23.3674 23.4554 16.1148 15.5690 

Support minimum stiffness s 28.9659 38.6401 29.5316 43.4123 23.6313 36.0017 26.2139 41.2976 

Support optimum position ηs 0.9734 0.9017 0.8711 0.7917 0.9734 0.9017 0.8711 0.7917 

Mass ratio β 0.07368 0.02912 0.07512 0.03272     
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Table 4 The optimal positions with the minimum stiffnesses for two identical supports in the specified directions with the corresponding 

natural frequency parameters for the rectangular plate with one long edge simply supported 

 

Support condition Unsupported With considering support mass 
Without considering support 

mass 

Frequency raised  First Second First Second 

Natural frequency 

parameters λi 

1 (1B) 0 4.2029 6.6950 4.2029 6.3408 

2 (1T) 4.2029 7.2799 11.8692 7.5106 11.8692 

3 (2T) 11.8692 12.3616 13.4369 12.5974 13.5324 

Minimum stiffness s (×2)  8.4295 50.4458 8.0508 32.3680 

Optimal position ηs  0.8575 0.8584 0.8575 0.8584 

Mass ratio β (×2)  0.0134 0.0802   
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Table 5 The optimal positions with the minimum stiffnesses for four identical supports on the diagonals or axes with the corresponding natural 

frequency parameters for a square plate. 

 

Support layout Unsupported Supports on the diagonals 
Supports on 

the axes 

Results by Rayleigh-Ritz [14] 

Supports on the diagonals 
Supports on 

the axes 

Objective frequency  First Second First First Second First 

Flexural natural 

frequency parameters λi 

1 13.4715 13.4715 19.5997 13.4715 13.4682 13.4682 13.4682 

2 19.5997 13.4715 19.5997 13.4715 13.4682 19.5961 13.4682 

3 24.2777 13.4744 19.5997 13.4715 13.4722 24.2702 13.4682 

Minimum stiffness s (×4)  91.1643 5174.7401 108.7936 48.8639 116.9779 58.3136 

Optimal position ηs  0.2901 0.2892 0.4446 0.2901 0.2892 0.4447 

Mass ratio β (×4)  0.2319 13.1633 0.2767    

 

 

                  



 50 

 

 

                  


