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Motivated in part by the pseudo-Nambu Goldstone Boson mechanism of electroweak symmetry
breaking in Composite Higgs Models, in part by dark matter scenarios with strongly coupled origin,
as well as by general theoretical considerations related to the large-N extrapolation, we perform
lattice studies of the Yang-Mills theories with Sp(2N) gauge groups. We measure the string tension
and the mass spectrum of glueballs, extracted from appropriate 2-point correlation functions of
operators organised as irreducible representations of the octahedral symmetry group. We perform
the continuum extrapolation and study the magnitude of finite-size effects, showing that they are
negligible in our calculation. We present new numerical results for N = 1, 2, 3, 4, combine them
with data previously obtained for N = 2, and extrapolate towards N ! 1. We confirm explicitly
the expectation that, as already known for N = 1, 2 also for N = 3, 4 a confining potential rising
linearly with the distance binds a static quark to its antiquark. We compare our results to the
existing literature on other gauge groups, with particular attention devoted to the large-N limit.
We find agreement with the known values of the mass of the 0++, 0++⇤ and 2++ glueballs obtained
taking the large-N limit in the SU(N) groups. In addition, we determine for the first time the mass
of some heavier glueball states at finite N in Sp(2N) and extrapolate the results towards N ! +1
taking the limit in the latter groups. Since the large-N limit of Sp(2N) is the same as in SU(N),
our results are relevant also for the study of QCD-like theories.
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I. INTRODUCTION

Recent years have seen a resurgence of interest in gauge theories based upon symplectic groups, driven by theoretical
as well as phenomenological motivations, related to model-building in the context of physics beyond the Standard
Model (SM). In comparison with the SU(N) and (limited to (2 + 1)-dimensional) SO(N) cases [1–5], the literature
on lattice studies of Yang-Mills theories with Sp(2N) gauge groups is limited in its extent, scope and reach (see for
instance Ref. [6]). In a recent publication [7] (see also Refs. [8–11]), some of us announced the intention to carry out
a long-term, systematic lattice exploration of the strong-coupling dynamics of the theories based on Sp(2N) gauge
symmetry, and proposed a research programme that includes as one of its crucial steps the study of the dynamics of
glueballs and strings in the pure gauge theory.

In the same paper [7], we presented our first comprehensive study of the Sp(4) pure gauge theory, and computed
the spectrum of masses and decay constants of mesons consisting of two fundamental (Dirac) fermions, treated in the
quenched approximation. In the context of Composite Higgs Models (CHMs) [12–14] (see also Refs. [15–55]), that
initial step provided an important source of quantitative information about the underlying dynamics. In particular,
we started to explore and exploit the dynamical origin of low-energy Effective Field Theories (EFT) based upon
the SU(4)/Sp(4) coset, which have a prominent role in the CHM context (see for instance Refs. [56–76]), as well as
for related models of dark matter with strong-coupling origin [77–80]. More recently [81], some of us presented the
first continuum results of the lattice study of the Sp(4) theory with dynamical Wilson fermions, hence making the
treatment of the dynamics more realistic and useful in the CHM context. A first set of exploratory studies of the
quenched theory with valence fermions in multiple representations has been published in Ref. [82].

In the present paper (see also Ref. [83, 84]), we take major steps in a complementary direction, by focusing on
the pure gauge theory without matter content, but extending the analysis to different Sp(2N) gauge groups. Our
specific objective is to obtain for the Sp(2N) Yang-Mills theories in D = 3 + 1 dimensions a comparable level of
control over the spectra of strings and glueballs as achieved for the previously studied SU(N) and SO(N) gauge
theories [1–5]. On a theoretical side, this endeavour will allow us to study the approach towards the common large-N
limit via an alternative sequence of groups in respect to SU(N) and SO(N). In turn, this will provide an alternative
set of numerical tests for such conjectural behaviours as those put forwards for example in Refs. [83, 85, 86], as well as
allowing comparison to calculations performed within the context of gauge-gravity dualities (see for instance Refs. [87–
97]) or with alternative field theoretical methods [98–102]. In pragmatic terms, we will also set the stage for future
studies in quenched theories realising the SU(4)/Sp(4) coset, based upon generic Sp(2N) groups. In [82] some of us
studied the quenched meson spectrum of a theory with Sp(4) gauge group and fermions in multiple representations,
relevant for the implementation of partially composite top scenarios. The present study is a first step in the direction
of extending these results to the determination of the dependence on N of the masses and decay constants of the states
of mesonic spectrum for Sp(2N) gauge theories, both in the fundamental and in higher dimensional representations
of the gauge group.

In our investigation, we adopt a unified approach to the study of Sp(2N) gauge theories, by applying the same
heat bath (HB) algorithm exploited in Ref. [7] for the Sp(4) theory to the whole Sp(2N) sequence. In addition to
reconsidering Sp(2) ⇠ SU(2), which allows to test our algorithm and procedures by comparing to existing results in
the literature and to extending the N = 2 results discussed in Ref. [7] with new calculations, we consider the N > 2
cases. For the latter, with the exception of our study in Ref. [83] (focussing on a discussion of the two lowest-lying
glueball states and on a remarkable universality property of their ratio) and Ref. [84] (presenting some preliminary
numerical results, further discussed in the current work), no detailed calculation of the glueballs has been reported
in the literature so far. From an operational perspective, we first compute the effective string tension and glueball
masses in the large-volume limit for fixed lattice spacing and N = 1, 2, 3, 4. Then, after taking the continuum limit
of the glueball spectrum at each investigated value of N , we perform a critical analysis of the large-N extrapolation
and compare to other results in the literature, as appropriate.

The paper is organised as follows. In Section II we introduce the basic definitions and conventions adopted in
the lattice calculations. In Section III we describe the spectral observables of interest. In Section IV we present
our numerical results, including also the extrapolations to continuum and large-N limits. Section V summarises our
conclusions and suggestions for future further enquiries. We have relegated some important technical details to the
Appendices.
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II. NUMERICAL SIMULATIONS OF THE LATTICE MODEL

In four Euclidean dimensions, the Sp(2N) gauge theory is defined by the following action

SYM ⌘ � 1

2g2
0

Z
d4

x Tr Fµ⌫Fµ⌫ , (1)

where g0 is the gauge coupling, the trace is over colour indices, the field-strength tensor Fµ⌫ ⌘
P

A F
A
µ⌫⌧

A is defined
by

F
A
µ⌫ ⌘ @µA

A
⌫ � @⌫A

A
µ + f

ABC
A

B
µ A

C
⌫ , (2)

and the gauge fields are Aµ =
P

A A
A
µ ⌧

A, with the indices taking the values A, B, C = 1 , · · · , N(2N +1), for Sp(2N).
The 2N ⇥ 2N matrices ⌧

A are the generators of the algebra associated with the Sp(2N) group, written in the
fundamental representation, and normalised according to Tr ⌧

A
⌧

B = 1

2
�

AB . The structure constants of the algebra
are defined as the commutation relations

⇥
⌧

A
, ⌧

B
⇤

= i f
ABC

⌧
C

. (3)

We regularise the theory on a lattice, in which the continuum coordinates are discretised with lattice spacing a.
The four dimensional Euclidean hypercubic lattice consists of sites that are denoted by their position x in the lattice.
The sites are connected by links that are characterised by the position x and direction µ, where µ, ⌫ = 0, .., 3 label
the four space-time coordinates. The elementary variables of the lattice regularised Sp(2N) gauge theory are the link

variables, defined as

Uµ(x) ⌘ exp

 
i

Z x+µ̂

x
d�

µ
⌧

A
A

A
µ (�)

!
, (4)

with µ̂ the unit vector in direction µ. The 2N ⇥2N matrices Uµ(x) transform according to the fundamental represen-
tation of the Sp(2N) group. Gauge transformations take the form Uµ(x) ! g(x)Uµ(x)g†(x + µ̂), with g(x) a group
element.

The simplest gauge invariant operator is the trace of the product of link variables around an elementary square of
the lattice,

Pµ⌫(x) ⌘ Uµ(x)U⌫(x + µ̂)U†

µ(x + ⌫̂)U†

⌫ (x) . (5)

The matrices Pµ⌫(x) are called the elementary plaquette variables or just plaquettes for short.
The Sp(2N) lattice gauge theory (LGT) we adopt in this paper is defined by the Wilson action,

SW ⌘ �

X

x

X

µ<⌫

✓
1 � 1

2N
< Tr Pµ⌫(x)

◆
. (6)

In this expression, < Tr Pµ⌫(x) is the real part of the trace of Pµ⌫(x). The inverse coupling � is related to g0 by the
request that, when the lattice spacing a ! 0, Eq. (6) tends to the continuum Yang-Mills action in Eq. (1), at leading
order in a. From this requirement, one finds

� =
4N

g2
0

. (7)

Monte Carlo numerical evaluations of the integrals appearing in the definitions allow us to explore the long-distance
regime of the Sp(2N) (pure) Yang-Mills theories, capturing non-perturbative phenomena that are not accessible to
perturbation theory. For any quantity O(Aµ) that depends on the gauge fields, the physical observables are estimated
as ensemble averages, which are schematically given by

hO(Uµ)i ⌘
R

DUµe
�SWO(Uµ)

Z(�)
, (8)

where the denominator is

Z(�) ⌘
Z

DUµ e
�SW . (9)
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These expressions can be computed numerically by sampling the space of configurations of Uµ(x), according to
the probability distribution e

�SW . This can be achieved by defining a Markovian process that evolves a particular
configuration according to an update algorithm. The algorithm must respect detailed balance and reproduce the
correct equilibrium distribution. Then, if i labels the M configurations produced sequentially, the ensemble average
can be obtained as the simple average

hOi = lim
M!1

1

M

MX

i=1

Oi , (10)

where Oi is the value that the observable O(Uµ) takes on configuration i. The algorithm adopted in this work
to produce successive configurations is a combination of local heat bath (HB) and overrelaxation (OR) updates,
adapted to Sp(2N) from the SU(2N) implementation provided in Ref. [103] (see Appendix A for further details).
Configurations are updated sequentially, one link at a time, with one HB update followed by four OR updates. An
update of all the links on the lattice is called a lattice sweep. Successive configurations produced in this manner are
correlated; to reduce the effects of autocorrelation, the ensemble averages used for physical calculations are restricted
by sampling the history in steps that are separated by 10 lattice sweeps. Our implementation of the algorithms above
is based on the HiRep code [104], originally designed for the treatment of SU(N) theories with matter fields in general
representations.1

The lattice size being finite, we impose periodic boundary conditions in all directions. In the continuum, it is known
that resulting configurations of gauge fields are characterised by an integer topological number [105], defined as

Q ⌘ 1

32⇡2
✏µ⌫⇢�

Z
d4

xTr Fµ⌫F⇢� . (11)

The associated susceptibility can be related to the large mass of the ⌘
0 particle [106]. The configuration space is thus

divided into sectors, each characterised by an integer value of the topological number Q, and separated from each
other by potential barriers.

Because of the lattice discretisation, the topological charge Q takes nearly integer values [107–109]. There are many
microscopic lattice definitions of the topological charge that reproduce the same, correct long-distance results in the
a ! 0 limit. In this work we adopt the definition

Q ⌘
X

x

q(x) , (12)

with

q(x) ⌘ 1

32⇡2
✏µ⌫⇢�Tr {Uµ⌫(x)U⇢�(x)} , (13)

and where x runs upon all lattice sites. Since these definitions make use of the short-distance degrees of freedom,
calculations are affected by short-range fluctuations. These effects can be reduced by the use of smoothing operations
such as the Gradient (or Wilson) Flow [110], which we will introduce below.

As in the continuum, also on the lattice the different topological sectors are separated by potential barriers. If
these barriers are not too steep, in simulations a sufficient number of tunnelling events between sectors will occur,
and the resulting measured topological charge will be Gaussian distributed around zero. However, superselection of
topological sectors can be shown to emerge close to the continuum limit [107, 108]. As a consequence, Monte Carlo
update algorithms tend to become trapped inside one of the topological sectors. Hence, close to the continuum limit,
the topological charge has a long autocorrelation time. This phenomenon is referred to in the literature as topological

freezing. Due to large-N suppression of small-size instantons, which are crucial for changing the topological charge in
numerical simulations [111], topological freezing becomes more severe as N increases. We shall discuss implications
of this algorithmical trapping more extensively later in the paper, focusing on the effects of topological freezing on
the observables that are of interest to us.

To remove ultraviolet fluctuations that would otherwise dominate the signal in the extraction of the topological
charge, we employ the Gradient Flow [110, 112] of the Wilson action ( i.e. the Wilson flow). The Gradient Flow
provides a first-principles approach to the smoothening of configurations with efficiency comparable to that of the more

1 HiRep can be downloaded from https://github.com/claudiopica/HiRep.
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empirical and time-honoured cooling methods (see for instance Ref. [113]). Moreover, the evolution of observables
under the Gradient Flow can be determined with numerical procedures that can be easily implemented. For this
reason, this method has gained a prominent role in lattice studies in recent years.

With t the coordinate in an additional fifth dimension (referred to as flow time) and x a point in four-dimensional
space, the Gradient flow Bµ(t, x) is defined by the following differential equations and boundary conditions:

dBµ(t, x)

dt
= D⌫G⌫µ(t, x) , with Bµ(t = 0, x) = Aµ(x) . (14)

Here Aµ(x) is the continuum gauge field, while the covariant derivative is Dµ = @µ + [Bµ, ·], which yields the field-
strength tensor:

Gµ⌫ ⌘ [Dµ, D⌫ ] . (15)

On the lattice, the Gradient Flow for the action in Eq. (6) is defined by

@Vµ(t, x)

@t
⌘ �g

2

0

�
@x,µS

flow[Vµ]
 

Vµ(t, x) , (16)

with initial condition Vµ(t = 0, x) = Uµ(x). Here, S
flow is the Wilson plaquette action for Vµ.

The Gradient Flow describes a diffusion process with time t. At the leading order in the coupling g0, the flow to
time t acts on the gauge fields as a Gaussian spherical smoothing operation, with root-mean-square radius

p
8t, the

flow time t having the dimension of a length squared. Furthermore, to all orders in perturbations in g0, any gauge
invariant composite operator constructed from Bµ(t, x) is renormalised at t > 0, and thus directly encodes physically
observable properties. Using a value of the flow time ⌧ such that a ⌧

p
8⌧ ⌧ R, where R is a typical hadronic scale,

provides four-dimensional smoothed configurations V (⌧, x) that are not affected by ultraviolet fluctuations and still
encode the correct infrared behaviour of the theory.

III. THE SPECTRUM

Non-Abelian Yang-Mills theories confine, and their spectra consist of massive colour-neutral states called glueballs.
If a non-Abelian gauge theory is formulated on a space with one or more compact directions, wrapping torelon

states arise. The validity of the confinement picture for the specific case of Sp(4) has been confirmed explicitly in
the numerical calculations reported in Refs. [6, 7]. The main objectives of this work are to show through lattice
calculations that, as one would expect, confinement arises also in Sp(6) and Sp(8), to measure the resulting glueball
mass spectrum, and to determine the large-N limit of the latter. Before discussing our numerical results, in this
section we review the methodology we shall adopt. The methodological material presented in this section is based
upon notions that have been tested and are well established in the literature. Details beyond our exposition can be
found, e.g., in Refs. [114–119], from which we draw heavily in what follows.

A. The variational method

Let H be a Hamiltonian of the 3-dimensional system of volume L
3 defined on a lattice with Lt time slices.2 Let |ni

and En be the eigenstates and eigenvalues of H, i.e.,

H|ni = En|ni . (17)

The transfer matrix,

T ⌘ e
�aH

, (18)

is the operator that evolves one time slice of the system into the next. Note that in this section, for simplicity, we
reabsorbe � in the definition of H. In terms of T, the partition function in Eq. (9) can be expressed as

Z = Tr
�
TLt

�
. (19)

2 In our calculations, we set Lt = L/a.
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Masses of particle states can be obtained from the large time decay rate of (normalised) two-point correlators of
interpolating operators,

C(t) ⌘ h⌦|O†(0)O(t)|⌦i
h⌦|O†(0)O(0)|⌦i =

h⌦|O†(0)Tt/a
O(0)|⌦i

h⌦|O†(0)O(0)|⌦i , (20)

where |⌦i is the vacuum state, normalised so that |⌦i = T|⌦i, and O(t) is an interpolating operator that produces
the single-particle state | i by acting on the vacuum,

| i = O(t)|⌦i , (21)

with h⌦| i = 0. Inserting a complete set of eigenstates of H in Eq. (20), we obtain

C(t) =
X

n

|cn|2e�Ent
, (22)

where the coefficients cn, given by

cn =
hn|O(0)|⌦ip

h⌦|O†(0)O(0)|⌦i
, (23)

are called overlaps. If E0 < E1 < · · · , then,

C(t) ⇠ |c0|2 e
�E0t

✓
1 +

|c1|2
|c0|2

e
�(E1�E0)t + · · ·

◆
⇠ |c0|2 e

�E0t
, t � (E1 � E0)

�1
. (24)

Hence

E0 = � lim
t!1

1

a
log

C(t + a)

C(t)
. (25)

This equation implies that, in principle, E0 can be obtained by fitting an exponential to the large t values of C(t) as
measured from the lattice. When O(t) creates a zero-momentum state, the energies Ei are identified with particle
masses mi. In our calculation we will restrict to this case.

Following from Eq. (25), we define the effective mass meff (t) as

ame↵(t) ⌘ � log
C(t + a)

C(t)
. (26)

If a one-particle eigenstate of the Hamiltonian were propagating, me↵(t) would be constant with respect to t with
a value equal to the mass of that state. In the presence of other states contributing to the correlation function, we
expect this effective mass to be an upper bound for the true asymptotic mass at any finite t. In numerical studies, a
tmin can be identified such that, for t � tmin, only the ground state (or, more precisely, the smallest mass eigenstate
with non-zero overlap) contributes to C(t) within the statistical precision, and hence ameff(t) becomes constant. The
plateau value of meff(t) provides an estimate of the ground state mass m0, which can be extracted by fitting a single
exponential to the data for C(t) for t � tmin.

While this programme is at the basis of standard techniques for extracting masses from correlators, its direct
implementation is not straightforward, and requires a careful treatment of numerical data. The first difficulty one
encounters stems from the statistical noise affecting the measurements. In fact, while the statistical fluctuations
of C(t) are roughly independent of t, the magnitude of correlation functions decays exponentially. This gives an
exponentially-suppressed signal-to-noise ratio which is prohibitively hard to improve upon with an increase in the
measurement sample size alone. In addition, the value tmin of the onset of the single-exponential asymptotic regime
is not known a priori; it is a model-dependent feature, sensitive to the mass spectrum in the given channel and to the
choice of the operator O, as well as to the precision of the numerical calculation. The time tmin is extracted from the
simulations. Moreover, simple arguments based on asymptotic freedom show that for a given operator and in a given
channel, tmin grows exponentially as the continuum limit is approached.

The discussion above highlights the necessity to go to large times to isolate the ground state, but then the signal-
to-noise ratio degrades and this makes it difficult to estimate m0 in a reliable way. If one could find operators with
correlators that provide single exponential behaviours, one could perform fits at small times, when the signal is still
well visible above the noise. Although this ideal situation can not be reproduced in numerical investigations, since the
knowledge of operators giving rise to single exponential correlators would only arise from an at least partial solution
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of the theory, one can try to engineer the calculation in such a way that in each relevant channel tmin is as small as
possible. For this purpose, at each value of a we construct interpolating operators that maximize the overlaps with
the spectral states of interest. The main idea is to approximate the (unknown) exact eigenfunctions of H with an
appropriate linear combination of a set of states {| ii}, chosen on the basis of symmetry considerations, as trial wave
functions. Then, in the given channel, the mass of the lowest lying state above the vacuum can be bound as

am0  �1

⌧
log

⇢
min
{| i}

h |T⌧ | i
h | i

�
= amvar , (27)

where  denotes any linear combination of the variational basis  i, subject to the constraint h |⌦i = 0, and ⌧ is a
time chosen for minimisation, which is performed across the linear combinations of our basis operators. This bound
is saturated by the lowest-lying eigenstate of the Hamiltonian in the chosen channel, which can be obtained using
a complete set of variational states {| ii}. Since variational bases used in calculations are necessarily finite, the
bound is in general not saturated when the variational method is used in practice. Nevertheless, with a suitably large
variational basis, the extracted variational mass mvar will eventually be compatible within the statistical errors with
m0. This framework, referred henceforth as the variational technique, can be implemented algorithmically in order to
extract both the glueball and the torelon spectrum in various channels [118].

The success of this approach and the quality of the results obtained with this technique crucially depend on the
nature of the operators that we include in the variational basis. For this reason, particular attention needs to be
paid to its construction. We will review in the following two subsections the approach we followed to construct trial
states to be used in the variational calculation, by discussing how gauge invariant states are created on the lattice in
Sect. III B, and how one obtains the irreducible representations of the symmetry group of the lattice in which these
states must transform in Sect. III C. In Sect. IIID we will show how to perform the extremisation provided in Eq. (27)
in an effective way, in order to obtain robust estimates of m0. The effective description of torelon states as closed
fluxtubes will be summarised in Sect. III E. The estimates of m0 will be affected by systematic errors of different
origins, which will be discussed in Sect. III F.

B. States on the lattice

In this section we explain how to create gauge invariant states out of the vacuum and their interpretation in terms
of glueball and torelon states. Consider traced path ordered products of links, defined in Eq. (4), around closed
spacelike loops C,

U(C) = Tr
Y

(x,µ)2C

Uµ(x) , (28)

where C can be defined as a set of successive displacements,

C = [f1, f2, · · · , fL] , (29)

where each fj is one of the elementary vectors of the lattice {~ei}. The sequence f1, f2, · · · , fL is defined up to cyclic
permutations. The closeness of the path C implies that

P
i fi = 0.

A generic gauge invariant operator O such that h⌦|O|⌦i = 0 can be obtained as a sum of products of operators OC ,
each defined as

OC = U(C) � h⌦|U(C)|⌦i (30)

for specified choices of C.
Single trace operators create states called glueballs when C is contractible and torelons states when C wraps around

a spatial direction of the space-time hypertorus, and is thus non-contractible. These two classes of states transform
in different representations of the center of the group and hence do not mix. We will start our analysis from the
contractible loops. Most of our arguments are applicable also to non-contractible loops, which will be analysed more
specifically in Sect. III E.

Multitrace operators are monomials involving products of at least two of the operators in Eq. (28). Operators in
this class can be used to generate multi-particle states. Some of these states have the same quantum numbers as
single particle states we are interested in, and can thus mix with them. This mixing can result in a systematic error
in the extraction of masses of single-particle states. In our calculation, we will neglect mixing of genuine glueball
states with multi-particle states. The justification for neglecting multi-trace operators resides in the fact that matrix
elements involving them go to zero in the large-N limit.
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C. Symmetries

In the lattice theory, the Poincaré symmetry of the continuum is explicitly broken to the discrete subgroup of
symmetries of the hypercubic lattice and discrete translations by an integer number of lattice spacings. In particular,
on an infinite lattice, for a time slice, this is the semi-direct product of discretised translations Td and of the point
groups of invariance of the elementary (cubic) cell of the lattice: the Octahedral group Oh (see e.g. Ref. [120]). The
study of the representations of this symmetry group of the lattice is simplified by the fact that Td is an invariant
abelian subgroup. The one-dimensional representations of Oh (related to momentum) can thus be studied separately
from those of Td.

In a finite box of size L, and with periodic boundary conditions, the momentum is quantised in every direction as
pn = 2⇡n/L. On a lattice its value must also lie in the Brillouin zone containing ~p = ~0. Operators at fixed momentum
can be obtained as Fourier sums of their counterpart in coordinate space,

OC(t, ~p) =
X

~x

e
i~p·~x

OC(~x, t) . (31)

Zero momentum combinations (to which we restrict ourselves in this study) can be simply obtained as sums over fixed
time slices of operators of the type given in Eq. (30),

OC(t, ~p = ~0) =
X

~x

OC(~x, t) . (32)

We now briefly describe the irreducible representations of Oh and their relation with the representations of the
Poincaré group. The Octahedral group is the symmetry group of a cube. This group has 24 elements divided in 5
conjugacy classes. Accordingly, it has 5 inequivalent irreducible representations, labelled by R = A1, A2, E, T1, T2,
of dimensions 1, 1, 2, 3, 3, respectively. The spatial parity P has two eigenstates, which we label by an additional
± sign, depending on whether they remain invariant (+) or are reflected (-) under a parity transformation. We will
label the states of the lattice theory with R = R

P and their mass with mRP . Asterisks will denote excitations of the
ground state: A

+⇤

1
will denote the first excited state of A

+

1
, A

+⇤⇤

1
the second, etc.

The states generated from the vacuum by gauge invariant operators U(C) will transform in the same representation
as the paths on which they were defined according to Eq. (28). In general, single trace operators belong to reducible
representations of the octahedral group. Under the action of an element r of the group, the operators OC transform
in representation U(r) in the following way

U(r) OC U
�1(r) = OrC , (33)

where the law of transformation of C can be inferred from its definition in Eq. (29),

C0 = rC = [rf1, rf2, · · · , rfL] . (34)

The decomposition of U(r) in terms of its irreducible components can be obtained from the orthonormality property
of characters, supplemented by a choice of orthonormal bases for each of the irreducible representations R

P of Oh.
For this, the projector method borrowed from Ref. [120] has been used.

In the continuum limit, we expect the Poincaré symmetry to be recovered. The relationship between the represen-
tations of the octahedral group defined above and those of the Poincaré group enables us to decompose the former
in their continuous spin components. The representations of the Poincaré group are labelled by the mass m and the
quantum numbers J

PC , where J is associated to irreducible representations of the rotation group, P to spatial parity
and C to charge conjugation. Owing to the pseudo-reality of the representations of Sp(2N), C is always positive.
Hence, we will drop this quantum number from now on.

If we restrict the elements of the rotation group in a representation J to the discrete rotations that lie in Oh, we
obtain the subduced representation J # O. We report in Tab. I the subduced representations for the lowest values
of J , adapted from Ref. [118]. In Oh, these representations are reducible in terms of A1, A2, E, T1 and T2. Thus,
degenerate states with the same spin but different polarisation of the continuum spectrum might have a different
mass on the lattice. In the continuum limit, nevertheless, the restoration of continuum rotational invariance implies
that these states become degenerate. For instance, the E and T2 representations of the octahedral group contain
respectively two and three of the five polarisations of spin-2 particles. Hence, corresponding states extracted in the
E

± and T
±

2
channels must become degenerate in the continuum limit. The degree of degeneracy of these states at

finite lattice spacing will thus provide an important measure of the effect of lattice artefacts.
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J A1 A2 E T1 T2

0 1 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 1 0 1 1
4 1 0 1 1 1

TABLE I: Subduced representations R of the continuum rotation group and their components labelled with the spin J , up to
J = 4.

D. Extraction of masses

Let us now consider a specific irreducible representation R
P and build a generic linear combination � of basis

elements O
RP

at time t, which we denote as

�(t) =
X

i

viO
RP

i (t) . (35)

The 2-point correlation function is

h⌦|�†(0)�(t)|⌦i =
X

ij

v
?
i vjCij(t) , (36)

where, in general,

Cij(t) =
X

a

c
a?
i c

a
j e

�mat
, (37)

with c
a
i = ha|ORP

i (0)|⌦i. As a result, Eq. (26) can be rewritten as

ameff(t) = � log

P
ij v

?
i vjCij(t)P

ij v?
i vjCij(t � a)

. (38)

The matrix Cij(t) is positive-definite (see Eq. (37)), and its eigenvalues are given by �a(t) = e
�mat. Hence, extracting

the spectrum is equivalent to the diagonalisation of Cij(t). Unfortunately, due to statistical fluctuations, eigenvectors
and masses of the measured Cij(t) do depend on t. In order to resolve this dependency, we seek a solution to the
generalised eigenvalue problem

X

j

Cij(⌧)vj = �(⌧, 0)
X

j

Cij(0)vj , (39)

by diagonalising
⇥
C

�1(0)C(⌧)
⇤

for some ⌧ > 0. The eigenvectors of
⇥
C

�1(0)C(⌧)
⇤

provide us with a practical choice
�̃i of the optimal operators. The corresponding masses mi can be obtained from fits of the correlators of the �̃i

(which we refer to as C̃i) at t > t0, using the ansatz

C̃i(t) = 2|ci|2e�miLta/2 cosh mi

✓
t � Lta

2

◆
, (40)

over ranges of t for which

ame↵(t) = arccosh

 
C̃i(t + a) � C̃i(t � a)

2C̃i(t)

!
(41)

reaches a plateau value. We still denote as ame↵ the effective mass, although we adopt from now on a definition that
differs from the one in Eq. (26). The reason for the discrepancy, which is visible only away from the large volume
limit, is a consequence of adopting periodic boundary conditions in time, which allows for both forward and backward
propagating states. The mass of the ground state, m0, is obtained from a fit of the largest eigenvalue �0. The masses
of higher energy states can be obtained in the same manner from the diagonal correlators of eigenvectors associated
to the other eigenvalues computed in the generalised eigenvalue problem.
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As discussed earlier, a crucial ingredient for an efficient variational calculation is the preparation of trial states
that have an extension comparable to the target glueball state. A priori, we have no information about the physical
size characterising glueball states. To determine an efficient linear combination, we shall insert in our variational set
operators obtained from prototypical paths of different sizes and shapes, and also operators obtained from the original
basis at each of S iterations of smearing and blocking operations, with the combination obtained in Ref. [2] (to which
we refer the Reader also for the definition of the operations of blocking and smearing and for specific details on the
particular paths used to define the basis operators). In this way, we obtain a variational basis that finely scans the
propagating states from length scales corresponding to the lattice spacing all the way up to the lattice extent L.

From the technical perspective, the only procedural change to the methodology employed for Sp(4) in Ref. [7]
(to which we refer for further details) lies in the projection and cooling routines, that had to be adapted to the
case of Sp(2N). With M elementary paths and S smearing steps used for constructing the basis, our variational
basis is formed by S ⇥ M operators in total, and C̃ij(t) will accordingly have (S ⇥ M)(S ⇥ M + 1)/2 elements. In
our calculations, we perform the maximum number of blocking steps Nb allowed by the finite size, provided by the
maximisation of the l.h.s. in the inequality 2Nb  L/a. At each blocking step we perform 2 smearing steps and 15
cooling steps to reproject on the group. In general, our variational basis contains approximately 200 elements.

E. Effective String Theory

Torelon states are generated from the vacuum by path ordered products of link variables along non-contractible
paths, i.e. paths that wrap the periodic lattice along a given direction. These states have the same quantum numbers
as physical states in which a wrapping closed loop of glue with fixed length is propagating in the system. We refer to
this configuration as a fluxtube. When the fluxtube is long enough, it can be described by an effective string theory.
This classical effective theory is written in terms of a single physical parameter, the string tension �, that governs
the energy of the fluctuations. In order to extract it from the data with the highest precision, we will make use of
effective string theory, as briefly summarised in this section.

Effective string theory is based on approximating the fluxtube as a one dimensional fluctuating object — a string

— with constant energy per unit length. Classically, the mass m and the length L of the fluxtube are proportional,

m = �L . (42)

This classical string description becomes exact in the long string limit L
2
� ! 1.

At finite length, quantum corrections become relevant. The energy of the fluxtube is obtained as a power expansion
in 1/(�L

2) around the long string limit. In general

m0 = �L

 
1 +

1X

k=1

dk

(�L2)k

!
, (43)

where the dimensionless coefficients dk, which are in principle calculable, can be determined by matching the power
series to the results of numerical measurements. Universality theorems allow to fix some of these coefficients on the
basis of symmetry arguments. The formation of the fluxtube can be described as a process of spontaneous breaking of
some of the generators of Poincaré symmetry. We omit details, for which we refer the Reader to the literature [121].

The ground state mass m of a torelon wrapping along one direction of extent L is given, in a spacetime of dimension
D, by

mLO(L) = �L � ⇡(D � 2)

6L
, (44)

where we included the leading order correction in an expansion in 1/�L
2, and

mNLO(L) = �L � ⇡(D � 2)

6L
� 1

2

✓
⇡(D � 2)

6

◆2 1

�L3
, (45)

which describes m(L) up to the next-to-leading-order correction. At this order, one can show that these predictions
are universal, i.e. the coefficients are fixed by Poincaré invariance and certain geometric dualities. The only physical
parameter to consider is thus �.

In general, for the ground state, no deviations with respect to the Nambu-Goto formula

mNG(L) = �L

r
1 � (D � 2)⇡

2�L2
, (46)

are allowed up the term 1/(�2
L

5). These results will allow us to compute � from the mass of torelons, keeping under
control the effects of working at finite L.
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F. Sources of systematic errors

There are several sources of systematic errors that affect the computation of glueball and torelon masses. In this
section, we discuss the most relevant ones for our study.

As explained in Sect. III D, the variational technique depends on our choice of basis of operators. A potential
source of error is the choice to only include single trace operators in our variational set. By doing so, we are neglecting
scattering states and multitorelon states that share the quantum numbers of single glueball states of interest. In the
case of scattering, we deal with states with two or more glueballs. Neglecting the interactions (an approximation
that holds at large N), these states have masses that are about twice as large as the smallest glueball mass. Thus,
below this threshold, we can safely neglect the effect of scattering states. Even above that threshold, scattering states
decouple at large N . Multitorelon states have a mass that is in general an increasing function of L. Therefore, at
large enough values of L, they decay quickly in correlators and can hence be neglected as well. The effect of these
states can in principle be controlled by including the corresponding operators in the variational basis and evaluating
their overlaps, as done in Ref. [118].

As a consequence of the fact that we are simulating a finite lattice, all our physical estimates will be affected by
finite size effects. These effects have been reported in Ref. [122], where it is shown that they obey the relationship

m(L) = m

(
1 +

be
�

p
3

2 mL

mL

)
, (47)

with m(L) and m the masses in volume V = L
3 and at infinite volume, respectively. b is a coefficient that, a priori,

depends on the symmetry channel. Under the assumption that these corrections are independent of the lattice spacing
a, we will be able to compute them at one value of a and use the same prediction for all others. More so, we will be
able to neglect them altogether once we find that, at a certain combination of a and L, these effects are much smaller
than the statistical error.

Discretisation errors come from the dependence of the masses on the lattice spacing. A trivial dependence can
be inferred from dimensional analysis. The lattice combination ma is dimensionless. Since all masses obtained on
the lattice depend on the lattice spacing a in this way, we consider ratios of dimensionful objects where the trivial
dependence simplifies in the ratio. As a reference scale for the ratio, we use the square root of the string tension

p
�.

This choice is motivated by the fact that, thanks to the results discussed in Sect. III E, we can measure the string
tension more accurately than any other quantity of interest. Hence, the use of the string tension reduces significantly
the systematic error due to the scale setting process, which is a necessary step to provide quantities in physical units.

Beyond the overall dependence of the mass on the lattice spacing a, we know, by computing the naïve continuum
limit of the theory described by the lattice action in Eq. (6), that the leading corrections to mass ratios start at order
a
2. Therefore, close to the continuum limit, for a glueball state R

P , we approximate

mRPp
�

(a) =
mRPp

�
(0)

�
1 + cRP �a

2
�

. (48)

To conclude this overview of systematic effects, we return to mentioning topological freezing. Near the continuum
limit, the Monte Carlo updates tend to get trapped in a sector at fixed topology. This topological trapping becomes
more pronounced at larger N [111]. Restricting the gauge theory to a sector at fixed topology generates power-law
corrections in the inverse volume that delay the onset of the large volume regime [123, 124]. Both large-N reduction
arguments [125] and the large-N scaling prescription of the ✓ angle [126] suggest that finite volume corrections due to
topological freezing are suppressed at large N . The decreased severity of topological freezing as N increases has been
verified explicitly in Ref. [127]. In Sect. IV, we will show that topological freezing affects only a small subset of our
calculations. When discussing the relevant ensembles, we shall describe how topological freezing has been accounted
for in those specific cases.

IV. NUMERICAL RESULTS

In this section, we present and discuss our main numerical results. In Sect. IV A we perform calibration and
validation studies of the underlying algorithm. We also select the values of the coupling � at which to compute the
masses of torelons and glueballs for the Sp(2N) Yang-Mills theories with N = 3, 4. In Sect. IV B, we compute the
ground state mass of torelons of various lengths at fixed lattice spacing. We compare the results to the predictions
discussed in Sect. III E. We also evaluate finite size effects, alongside exposing our strategy for extracting the string
tension using one lattice size, in the asymptotic regime. In Sect. IV C we report the results of the continuum limit
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FIG. 1: The average plaquette hP i measured at varying coupling �/2N , for fixed lattice size L = 16a. The results from the
leading order expressions at weak (� ! 1) and strong (� ! 0) coupling regimes in Eqs. (50) and (51) are presented by the
solid lines for comparison purposes.

extrapolations of the glueball spectrum for N = 1, 2, 3, 4, while we cover in detail in Appendix C all pertinent
technicalities. The continuum limit values of the masses are then used to extrapolate towards the large-N limit, in
Sect. IV D.

A. Preliminary tests and calibration studies

We compute the expectation value of the plaquette P , which is defined as

hP i ⌘ 1

6L4

1

2N

X

x,µ>⌫

< Tr Pµ⌫(x) . (49)

We consider several values of �, and focus attention on N = 3 and N = 4. Independent ensembles are generated for
each chosen value of �, with either unit (cold), or random (hot) starting configurations in the Monte Carlo update
algorithm. We calculate hP i each 5 sweeps, record 104 individual measurements of this quantity out of the 5·104 sweeps
performed for each � value. By comparing the history of hP i starting separately with unit and random configurations,
we are able to identify and discard the initial transient due to thermalisation. We have verified explicitly that the
integrated autocorrelation times are less than 1.5 for all values of �. We finally bin and bootstrap the measurements of
hP i. For Sp(2N) Yang-Mills theories with N = 3, 4, the results are shown in Fig. 1 for lattices with size (L/a)4 = 164.

Our algorithm is based on a heat bath update of Sp(2) subgroups that when combined provide a covering of the
whole Sp(2N) group (see Appendix A for a detailed explanation). For validation purposes, we obtained alternative,
independent estimates for the average plaquette using the simpler (and slower) Metropolis-Hastings update algorithm.
For both N = 3 and N = 4, and at every relevant value of �, the estimates obtained with the two different algorithms
are compatible with each other, within one standard deviation. For N = 3, independent numerical results are also
available through Ref. [6], and our results are compatible with theirs within one standard deviation, when comparisons
are possible. Finally, the limits of weak (� ! 1) and strong (� ! 0) coupling can be controlled analytically [6]. It
is expected that

hP iweak = 1 � (N + 1)

8�
+ O(1/�

2) , (50)

and

hP istrong =
�

N
+ O(�5) , (51)
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Sp(6), � = 16.5 Sp(8), � = 26.7
L/a ams �2/Nd.o.f. ams �2/Nd.o.f.

8 0.1136(13) 0.82 0.2108(33) 0.54
10 0.1159(14) 0.72 0.3963(44) 0.33
12 0.1385(26) 0.52 0.5644(73) 1.0
14 0.2126(43) 0.32 0.6609(90) 1.03
16 0.3004(64) 0.08 0.815(20) 2.74
18 0.3372(72) 0.71 0.915(11) 1.84
20 0.4038(98) 0.11 1.040(30) 1.71
22 0.4423(90) 1.37 - -
24 0.503(11) 0.67 - -
28 0.594(11) 1.51 - -

TABLE II: Ground state masses of the torelon states of Sp(2N) theories for N = 3 and N = 4, at various values of L/a. Masses
are obtained from a fit to Eq. (40).

at weak and strong coupling, respectively. In Fig. 1, we compare the leading terms of these analytical predictions to
our numerical data in the relevant regime. The combination of all these tests supports the robustness of the algorithm
we are employing.

The behaviour of hP i as a function of � is also used to detect the potential presence of a bulk phase transition that
separates the weak and the strong coupling regimes of the theory. While the latter is dominated by strong lattice
artefacts, the former is relevant to continuum physics. The pseudo inflection point visible in Fig. 1 (for both N = 3
and N = 4) is a potential signature of such a phase transition. We study the nature of this change of regime in
Appendix B, where we conclude that our numerical data are compatible with a crossover, confirming the findings of
Ref. [6] for N = 3 and extending this conclusion to N = 4.

In principle, the absence of a genuine phase transition may allow extraction of physical observables by performing
an extrapolation to the continuum limit that makes use of generic values of �. Nevertheless, by restricting our choices
of � to the weak coupling regime we maintain better control over the approach to the continuum. Our choice of the
values of � for the simulations results from a pragmatic compromise aimed at reducing discretisation errors while
deploying the finite amount of available computational resources.

B. Torelons and strings

In this subsection, we discuss the methodology we use to extract the string tension from ground state mass of
torelons of length L for N = 3, 4, while also testing the predictions of Sect. III E. We first perform an analysis of the
L dependence of the mass at a fixed value of the lattice coupling, in order to identify the regime in which the string
effective description is applicable. We then extract the string tension from torelon masses measured at one asymptotic
value of L for each choice of �. This procedure allows us to obtain accurately the string tension as a function of the
finite lattice size, using the known functional form of the torelon mass. We retained 104 thermalised configurations
for post-production analysis. The variational basis we adopt includes the elementary Wilson line winding around a
compact spatial dimension, and averaged over all three spatial directions, alongside its blocked and smeared improved
versions, up to blocking level Nb such that in the inequaliy 2Nb  L/a the l.h.s. is maximised. Following Ref. [7], to
which we refer for further details, we performed either one (for the coarsest lattices) or two (for the finest lattices)
smearing steps in-between one blocking step.

For the study of the finite size dependence of the torelon mass, we generated configurations with � = 16.5 for Sp(6),
and � = 26.7 for Sp(8), on the lattice sizes listed in Tab. II. These values of � are chosen to be small enough that large
physical volumes are reached with moderate computing cost, while still remaining within the weak coupling regime.
The values of the masses thus obtained, denoted by ams, are reported in Tab. II and plotted in Fig. 2. In order to
extract ams, we performed a maximum likelihood analysis based upon Eq. (40). The value of the resulting �

2
/Nd.o.f.

is usually below or around one; exceptions to this are mostly restricted to the largest lattice studies in Sp(8), where
ams becomes of order one and as a consequence the signal decays quickly.

We now test the predictions of Sect. III E. From Fig. 2, we see that, at the largest values of L/a, msa is an
approximately linear, increasing function of the length, both in N = 3 and N = 4. This behaviour supports the
intuitive description of a torelon state as a closed fluxtube with constant energy per unit length. In order to extract
the string tension �, as a first approximation we use Eq. (42) applied to the largest value of L/a, treating the fluxtube
as a classical string. We call �cl the resulting string tension. For Sp(6), we find �cla

2 = 0.0212(4) at L/a = 28 and
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Sp(6) Sp(8)
� = 16.5, L � 16a � = 26.7, L � 12a

�a2 �2/Nd.o.f �a2 �2/Nd.o.f
linear 0.02493(92) 0.79 0.0591(20) 1.61
LO 0.02251(17) 0.74 0.05382(33) 1.48
NLO 0.02268(17) 0.89 0.05409(33) 1.55
NG 0.02271(17) 0.97 0.05412(33) 1.59

TABLE III: Measurements of the string tensions �, based upon applying Eqs. (44)-(46) and a linear form inspired by Eq. (42),
to fit the dependence of numerical results of msa on L/a.
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FIG. 2: Masses of the torelons measured on lattices of volume L4 at fixed lattice coupling �. We compare the results obtained by
adopting a linear expression (referred to as linear, blue), leading order (yellow), next to leading order (green) and Nambu-Goto
(red) effective description of the dependence of msa on L/a. In the left hand panel, we show the results for the Sp(6) theory at
coupling � = 16.5, with fits to the data in the range L/a � 16. The right hand panel displays the results for the Sp(8) theory
at coupling � = 26.7, with fits to the data in the range L/a � 12. Fit curves are displayed outside the fit range in order to
expose the short-L deviations of the data from the asymptotic string behaviour. See Tab. III for the fit results.

for Sp(8), we obtain �cla
2 = 0.0520(14) at L/a = 20. The large-L expansion is expected to be well-behaved when

�L
2 � 1. At a given value of �, the classical string in Eq. (42) should hence provide an accurate description of the

torelon when L � 7a for Sp(6) and L � 5a for Sp(8), the numerical coefficients in these two expressions coming from
the condition �L

2 ' 1 . Corrections to long string behaviour, such as those encoded in Eqs. (44)-(46), are expected
to become important as L/a is decreased.

We show in Fig. 2 our best-fit results of the numerical data, based upon Eqs. (44)-(46) and a linear form inspired
by Eq. (42), restricting the fitting region to the range L � 16a in Sp(6) and L � 12a in Sp(8). The results of the
fits are also reported in Tab. III. All the values of �

2
/Nd.o.f. are acceptable. Determinations based upon LO, NLO

and NG effective string treatments are indistinguishable from one another, but they are different from the classical
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behaviour represented by the linear approximation. We elected to adopt the NG value as our best determination of
the string tension as final result of this preliminary analysis, and hence we find

�N=3a
2 = 0.02271(17), � = 16.5 , (52)

for N = 3, and

�N=4a
2 = 0.05412(33), � = 26.7 , (53)

for N = 4.
From this analysis, we observe that at the chosen values of � the string picture provides a good description of the

torelon mass down to lattice size L = 16a for Sp(6) and L = 12a for Sp(8). These values correspond to L
p

� ' 2.4
for Sp(6) and L

p
� ' 2.8 for Sp(8), somewhat more generous than the generic, conservative estimates we anticipated.

We hence impose the bound L
p

� � 3, in order to control the extraction of the string tension through an asymptotic
large-L expansion including at the least the LO correction. This observation will be used in the following to extract
the string tension at other � values for both N = 3 and N = 4, when we will apply the NG expression to torelon
masses obtained at a single size L and test a posteriori that L/a fulfils the condition L

p
� � 3.

C. The Glueball spectrum

In this Section, we report on the the spectrum of glueballs in Sp(2N) gauge theories for N = 1, 2, 3, 4, for each
fixed value of N , focusing on the results obtained in the continuum. Calculations of the masses in units of the
lattice spacing, finite size effects studies and more technical details on the continuum extrapolation can be found in
Appendix C.

1 2 3 4 1
RP mRP /

p
� mRP /

p
� mRP /

p
� mRP /

p
� mRP /

p
�

A+
1 3.841(84) 3.577(49) 3.430(75) 3.308(98) 3.241(88)

A+⇤
1 5.22(33) 6.049(40) 5.63(32) 5.58(44) 6.29(33)

A�
1 6.20(14) 5.69(16) 5.22(23) 5.36(26) 5.00(22)

A�⇤
1 7.37(72) 7.809(79) 6.59(49) 7.76(85) 7.31(45)

A+
2 6.81(31) 7.91(16) 7.36(39) 6.5(1.0) 8.22(46)

A�
2 8.99(86) 9.30(38) 8.60(67) 7.2(1.4) 8.69(83)

T+
2 5.29(20) 5.050(88) 5.09(16) 4.73(23) 4.80(20)

T �
2 6.55(34) 6.879(88) 6.47(43) 6.36(35) 6.71(35)

E+ 5.33(18) 5.05(13) 5.03(13) 4.62(29) 4.79(19)
E� 6.61(37) 6.65(12) 6.34(40) 6.29(29) 6.44(33)
T+

1 8.58(41) 8.67(28) 7.77(59) 8.45(52) 8.33(51)
T �

1 9.63(77) 9.24(33) 9.15(69) 8.90(75) 8.76(72)
RP mRP /mE+ mRP /mE+ mRP /mE+ mRP /mE+ mRP /mE+

A+
1 0.710(33) 0.711(21) 0.674(23) 0.708(44) 0.678(32)

A+⇤
1 0.957(77) 1.199(37) 1.110(70) 1.20(11) 1.275(81)

A�
1 1.159(54) 1.123(44) 1.019(57) 1.118(87) 1.008(66)

A�⇤
1 1.40(10) 1.541(47) 1.41(11) 1.57(18) 1.55(12)

A+
2 1.264(79) 1.573(57) 1.437(97) 1.44(29) 1.66(12)

A�
2 1.66(18) 1.850(94) 1.76(14) 1.63(38) 1.79(18)

T+
2 0.968(56) 1.003(34) 1.008(41) 1.049(75) 1.046(56)

T �
2 1.223(85) 1.375(45) 1.307(94) 1.44(11) 1.454(96)

E+ - - - - 1.00(65)
E� 1.235(99) 1.330(44) 1.310(95) 1.37(12) 1.41(10)
T+

1 1.59(11) 1.707(74) 1.50(13) 1.87(16) 1.76(13)
T �

1 1.85(18) 1.820(86) 1.80(15) 2.01(20) 1.84(17)

TABLE IV: Calculations of the masses in the continuum limit for each N and each channel, in units of
p

� (top) and mE+

(bottom). For N = 2, these values have been computed as weighted means between those in Ref. [7] and those obtained in the
present work, see Appendix C 2. In the case of SU(N ! 1), we have m/

p
� = 3.307(53) for the A++

1 channel, 6.07(17) for
the A++⇤

1 channel and 4.80(14) for the E++ channel (data taken from Ref. [2]). As expected, at least for these three channels,
which are the only ones for which we can compare, the masses of Sp(N ! 1) and SU(N ! 1) theories are compatible.
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FIG. 3: Spectrum of the Sp(2N) theory in the continuum limit for N = 1, 2, 3, 4, and N = 1, in units of
p

�. Continuum
quantum numbers are reported at the top. For comparison, we have reported also the masses of the A++

1 , A++⇤
1 and E++

states for SU(1) (borrowed from Ref. [2]). The boxes represent 1 � statistical errors.

We report the glueball masses in Tab. IV, in units of
p

� (top half of the table) as well as in units of the mass
of the E

+ state (bottom half). The spectra at the various values of N are also presented in Fig. 3, where, together
with the lattice quantum numbers, we display the continuum quantum numbers of glueball states. The latter have
been obtained from the decomposition presented in Tab. I under the assumption that lighter states correspond to
lower continuum spin. For N = 1, since Sp(2) ' SU(2), results for the spectrum are already present in the literature,
see for example Ref. [2]. In this case, the results obtained in our study are useful for comparison and as a test of
our procedure. For SU(2), Ref. [2] finds the values mA+

1
/
p

� = 3.78(7) and mE+/
p

� = 5.45(11). These values are
compatible within one standard deviation with the values obtained in this work (see Tab. IV). For N = 2, some of
us already obtained first results for the spectrum in Ref. [7]. We combine our new measurements for Sp(4) with our
earlier results, and in Tab. IV we report the weighted averages of the two. The available data sets for Sp(4) are
discussed more in detail in Appendix D.

A look at Fig. 3 shows that, while specific details depend on N , there are common patterns across the investigated
values of N . As expected, the A

+

1
channel is consistently the lightest, followed by the (T+

2
, E

+) (degenerate) pair.
At a slightly larger mass we find the A

�

1
channel and the T

�

2
and E

� (degenerate) pair. As explained in Sect. III C,
the degeneracy of these pairs provides evidence that the rotation invariance of the continuum theory is recovered as
a ! 0. The remaining channels, A

±

2
and T

±

1
, are also almost degenerate in pairs and their masses are larger than

those of all other states. Since the smallest masses in the A
±

2
and T

±

1
channels are comparable with twice the ground

state mass of the lowest-lying A
+

1
state, numerical results for these masses may be affected by systematic errors due

to mixing with scattering states, as discussed in Sect. III F. An indication of this is the fact that the error bars for
the masses of those heavier states are visibly larger. Large error bars are also the result of the higher level of noise
affecting the extraction of masses of heavier states.

We were able to extract masses of excited states for the A
±

1
channels at all values of N . These masses are reported

in Tab. IV and displayed above the corresponding ground states in Fig. 3. The error bars of the A
+?
1

states are
comparable to those of the ground state in the A

�

1
channel, while for the A

�?
1

states they are similar to those found
in heavier channels.

Finally, we note that, where determined in both calculations, corresponding states obtained from a recent SU(3)
study [128] are in broad agreement with the spectrum resulting from our investigation.
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�(1) obtained from the best fit of Eq. (54) to the numerical measurements reported in this

publication. See main text for details.
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FIG. 5: Top panel: ratios defining the conjectured universal constant ⌘ for both SU(Nc = N) and Sp(Nc = 2N). Note that the
naming convention for the symplectic group has been altered, using the variable Nc = 2N , to better accomodate the data into
the plots; fits are also shown for the Sp(Nc) family, the SU(Nc) family and the combination of Sp(Nc) and SU(Nc) results.
Bottom: measured ratios m2

0++/� further divided by the fitted universality constant ⌘ plotted as a function of 1/Nc; lines
are the ratios of the quadratic Casimir operators of the adjoint representation over the corresponding ones of the fundamental
representation as Nc varies. (we note that, for the sake of the visualisation, in this figure we have represented Nc as a real
number).

D. The spectrum towards the large-N limit

As shown for instance in Ref. [129], while corresponding quantities in SU(N) and Sp(2N) Yang-Mills theories
converge to a common large-N limit, the 1/N expansions around this limit are different: in the case of SU(N), only
even powers of 1/N are present, while for Sp(2N) the power expansion is genuinely in 1/N . Following the strategy
that has been implemented in the large-N extrapolation of the SU(N) glueball masses, we shall investigate whether
the lowest order correction to the large-N limit is sufficient to describe the large-N glueball spectrum in Sp(2N) for
all the simulated values of N . Therefore, we fit the finite-N spectrum with the ansatz

mRPp
�

(N) =
mRPp

�
(1) +

cRP

N
, (54)

where cRP is a constant (expected to be of order 1 in a well-behaved expansion) that depends on the glueball channel.
If the ansatz provides a sufficiently accurate description of the data, mRP

p
�

(1) is a reliable infinite-N extrapolation of
the ratio of the mass in the channel R

P normalised to the square root of the string tension.
For each channel, we perform a separate linear fit to Eq. (54) using cRP and mRP /

p
�(1) as fittings parameters.

The results of the fits are reported in Tab. V. The fitting range includes all the values of N . From Fig. 4 we see that
Eq. (54) describes the data well in this range of N for the A

±

1
channels, the T

±

2
, E

± degenerate pairs and for the
T

±

1
channels. For the A

�⇤

1
and for the A

+

2
channels, the value of �

2
/Nd.o.f. is larger than the critical value at 5%

confidence level. For comparison, in Appendix E, the same fits are performed for a range N > 1. Although generally
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RP mRP /
p

�(N = 1) cRP �2/Nd.o.f.

A+
1 3.241(88) 1.29(29) 2.38

A+⇤
1 6.29(33) �1.6(1.2) 2.91

A�
1 5.00(22) 2.43(60) 0.63

A�⇤
1 7.31(45) 0.9(1.4) 3.5

A+
2 8.22(46) �2.5(1.3) 3.3

A�
2 8.69(83) 1.3(3.0) 0.9

T+
2 4.80(20) 1.01(69) 0.65

E+ 4.79(19) 1.15(63) 0.72
T �

2 6.71(35) 0.1(1.2) 1.97
E� 6.44(33) 0.9(1.2) 2.03
T+

1 8.33(51) 0.7(1.6) 1.15
T �

1 8.76(72) 1.7(2.6) 0.02

TABLE V: Large-N extrapolated masses of the glueball spectrum obtained from a fit of Eq. (54). Note that the left hand part
of this table is the same as the last column of Tab. IV.

Group ⌘(0+) �2/Nd.o.f.
SU(N) 5.41(10) 1.43
Sp(2N) 5.35(13) 2.02

Combined 5.388(81) 1.49

TABLE VI: Resulting values of the universal constant ⌘ for the Casimir scaling described in Eq. (55) for Sp(2N) and SU(N)
groups. The combined fit to both groups is also reported.

the �
2
/Nd.o.f. are smaller, in this latter case the parameters cRP and mRP /

p
�(1) are estimated from three data

points only and thus only one degree of freedom remains to assess the goodness of the fits. For this reason, we opt to
present the extrapolations including the (generally still acceptable) N = 1 data points, postponing to future studies
that investigate larger N the question of whether N = 1 is captured by a simple leading correction with the current
precision of the data. For the time being, in the absence of any evidence that would suggest otherwise, we assume
that indeed this is the case.

For some of the lightest states for which the continuum mass in the large-N limit is available in the literature,
we can verify that the large-N extrapolation of the Sp(2N) and of the SU(N) values are compatible. In Fig. 3 the
spectrum in the large-N limit is represented together with the finite-N one, to allow for such a comparison. Recalling
that charge conjugation is always positive in Sp(2N), for the sake of comparing corresponding states, we temporarily
reintroduce the corresponding index in the notation for glueball states for the rest of the current subsection. With
the second + superscript identifying positive charge conjugation, we borrow the values of the A

++

1
, A

++⇤

1
and E

++

channel masses for SU(1) from Ref. [2]. Fig. 3 shows that the large-N extrapolations of the A
++

1
, the A

++⇤

1
and the

E
++ in Sp(2N) and SU(N) are compatible with each other, as predicted by general large-N arguments.
Armed with the results of the mass calculation of the A

++

1
, we can provide further support to the conjecture put

forward in Ref. [86] that the quantity ⌘ in the relationship

m
2

0++

�
= ⌘

C2(A)

C2(F )
(55)

is a universal constant depending only on the dimension of space-time. In this equation, C2(F ) and C2(A) are the
quadratic Casimir operators in the fundamental and adjoint representations respectively, whose ratio in Sp(2N) is
given by

C2(A)

C2(F )
=

4(N + 1)

2N + 1
. (56)

After performing the standard identification of the A
++

1
with the lowest-lying scalar glueball, we tested this con-

jecture by performing a fit of Eq. (55) to the data, using ⌘ as a fitting parameter. The result can be found in Tab. VI
and is represented in the top panel of Fig. 5. The behaviour of ⌘ as a function of N is compatible with a constant for
both the Sp(2N) and the SU(N) sequence. Moreover, the values of ⌘ extracted in each sequence are compatible with
each other within one standard deviation, as reported in Tab. VI. As an additional test of Eq. (55), the behaviour
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of m
2

0++/(
p

�⌘) is represented in Fig. 5 for both Sp(2N) and SU(N) groups, along with the ratio of the quadratic
Casimir operators. The weighted mean of the values of m

2

0++/(
p

�⌘) obtained in each series is also reported in Tab. VI
and represented in Fig. 5. This analysis provides further indications of the validity of the conjectured Casimir scaling,
at least within current accuracy and precision.

Another remarkable universal property is the independence on the gauge group of the ratio between the mass of
the tensor glueball and the mass of the scalar glueball. This has been the subject of the investigation reported in
Ref. [83], that makes use of the measurements reported here. We do not repeat the details of that analysis, but refer
the interested Reader to Ref. [83].

V. CONCLUSIONS

We have performed a numerical study of the low-lying spectrum in Sp(2N) Yang-Mills gauge theories. We have
considered the lattice theory formulated with N = 1, 2, 3, 4 and we have measured numerically its torelon and low-lying
glueball spectrum as a function of the lattice coupling �. After estimating finite size effects on the target observables
by using effective-string-theory motivated predictions applied to torelon masses at N = 3, 4, we have extracted the
string tension as a function of � and N from the latter quantities. As a byproduct, through this calculation we have
explicitly verified the realisation of the confinement scenario in Sp(6) and Sp(8) Yang-Mills theories, by exposing
one of its most typical signatures: the presence of stringy states wrapping compact directions. While this is hardly
surprising, direct validation of the expected behaviour in these two gauge theories had never been done before in the
literature. We have then extrapolated to the continuum limit the measurements of the adimensional ratios between the
glueball masses and the square root of the string tension. Finally, we have obtained the large-N limit of the glueball
spectrum in the Sp(2N) sequence of groups through an extrapolation in a power series in 1/N . For the lowest-lying
masses, the leading corrections O(1/N) to the large-N limit appear to be sufficient to describe the N -dependence
down to the smallest value N = 1. We have assessed the size of systematic errors connected with the continuum and
the large-N extrapolations and showed that they are negligible at the level of precision of our data.

We have found that, for the states for which the large-N extrapolation in the SU(N) sequence has been measured,
their masses in the large-N limit agree with the ones we have extracted taking the same limit in the Sp(2N) sequence,
as expected. The other states we have determined in this calculation extend our knowledge of the continuum large-N
spectrum, therefore providing a more complete set of masses to compare to analytic methods that naturally work
at N = 1, such as gauge-gravity duality techniques. Through an analysis of the ratio of the lowest-lying glueball
mass squared and the string tension as a function of N , we have provided further support to the conjecture put
forward in Ref. [86], that this ratio is proportional to the ratio of the quadratic Casimir of the adjoint over that of
the fundamental representation of the gauge group. Indeed, we have verified that the m

2

0++/� ratio normalised with
the appropriate ratio of quadratic Casimir operators is constant within the Sp(2N) and the SU(N) family, and takes
compatible values in the two. Our calculation bounds possible N -dependent corrections to this constant to be less
than 10%, the latter being the minimum precision with which we have measured the ratio as a function of N .

In addition to the glueball spectrum at finite N  4, our study has also provided a preliminary investigation of the
topological charge in Sp(2N) gauge theories, in relation to systematics effects in the generation of configurations and
in the extraction of spectral masses. An extended analysis of topological observables and a more thorough analysis
of topological freezing effects at large N is currently in progress, and will be reported elsewhere.

We envision a number of possible future avenues for exploration, in order to improve and extend this study. Beside
the obvious increase in precision that can be obtained by simulating at larger N and smaller lattice spacing (both
of which, however, are affected by increased autocorrelation times near the continuum limit and as N grows), one
could investigate the effect of including double-torelon and scattering states in the operator basis, in order to have a
better resolution of genuine glueball masses. A study of glueball scattering would also provide an extension to the
physical reach of our current investigation (see for example Ref. [130, 131], for the case of scalar glueball scattering
in SU(2) lattice gauge theory). Indeed, a scenario in which Sp(2N) glueballs may play a central role is gluonic dark
matter [132, 133]. In order to assess the viability of a dark matter scenario based on Sp(2N) glueballs, one would have
to compute the cross section for the decay of the higher-spin glueballs into two scalar glueballs. This (very challenging)
calculation would require a dedicated study of multi-point glueball functions. A study of correlators describing glueball
scattering would be a natural starting point for such an investigation. As observed in the context of QCD (see, e.g.,
Ref. [134]), we expect that the presence of fundamental dynamical fermions does not shift significantly the masses in
the glueball spectrum. Moreover, the mild N dependence in the gluonic observables provides a first indication that no
large variations will emerge across corresponding relevant physical observables evaluated in different Sp(2N) gauge
theories, as long as the theory is dominated by gluon dynamics, with small numbers of matter fields.

Finally, it is worth reminding the reader that the main motivation for our work has been provided by our ongoing
investigation of the pseudo-Nambu-Goldstone-Boson mechanism of electroweak symmetry breaking based on the
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SU(4) 7! Sp(4) global symmetry breaking pattern in Sp(2N) gauge theories with two fundamental Dirac flavours,
following the programme outlined in Ref. [7]. In this context, it was shown in Ref. [81] that the meson spectrum
in the theory with dynamical fundamental fermions is well approximated by the quenched results. In principle, the
calculation of the meson spectrum of Sp(2N) gauge theories allows to probe the extent and the bounds of validity of
this similarity. The present work may be considered to contribute to this line of research, by providing a reference
energy scale for a comparison with the fermionic matter spectrum, both in the quenched and in the full theories.
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Appendix A: Cabibbo-Marinari updating for Sp(2N)

The Sp(2N) group is the subgroup of SU(2N) with elements U satisfying the relationship

U⌦U
T = ⌦ , (A1)

where the superscript T indicates the transposition operation and ⌦ is the symplectic matrix. The latter can be cast
in the form

⌦ =

✓
0 1

�1 0

◆
, (A2)

with 1 the N ⇥ N identity matrix. Eq. (A1) implies that U has the form

U =

✓
A B

�B
⇤

A
⇤

◆
, (A3)

with the N ⇥ N matrices A and B satisfying the conditions A
†
A + B

†
B = 1 and A

T
B = B

T
A.

As briefly mentioned in Sect. II, ensembles of Sp(2N) configurations distributed according to Eq. (6) are obtained
from lattice sweeps of single link heat bath (HB) and overrelaxation (OR) updates. In our implementation of these
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algorithms, we have used an adaptation of the Cabibbo-Marinari method [103] to the case of Sp(2N). The Cabibbo-
Marinari algorithm updates a group matrix via subsequent updates of SU(2) subgroups covering the whole target
gauge group. The choice of the set of SU(2) subgroups to update is crucial. For SU(N), an efficient implementation
can be obtained starting from all the Cartan generators (i, j) having 1 on the i-th diagonal element, �1 on the j-th
diagonal element (with 1  i < j  N) and 0 everywhere else, along with their eigenvectors under conjugate action.
Each generates an SU(2) subgroup of SU(N). Since Sp(2N) is a subgroup of SU(2N), the desired set of subgroups
can be obtained from the set found for SU(2N) by excluding the SU(2) subgroups that alter the block structure in
Eq. (A3) of the Sp(2N) matrices. Chosing a larger set improves the decorrelation of the algorithm. In this work, we
used N

2 subgroups.
To better understand how these subgroups are embedded in Sp(2N) matrices, we reformulate the considerations

above in the language of group representations. Each choice of Cartan generators, along with its eigenvectors,
exponentiates to a SU(2) subgroup of SU(N). The elements of the matrices of this subgroup are different from a unit
matrix only at the positions {(i, j), (j, i), (i, i), (j, j)}. A SU(2) matrix is thus embedded into a SU(N) matrix. We
denote this embedding with (i, j). The different embeddings (i, j) can be seen as completely reducible representations
of SU(2) that are unitarily equivalent to R � 1N�2,N�2, i.e. to the (1, 2) embedding, where R is the 2 ⇥ 2 irreducible
representation of SU(2). The unitary transformation that maps one embedding into another is the exchange of
rows and columns i and j with 1 and 2 respectively. If [N ]SU is the fundamental representation of SU(N), {2} the
fundamental representation of SU(2), all the embeddings above can be decomposed as

[N ]SU = {2} � (N � 2)1 . (A4)

For the Sp(2N) case, the allowed SU(2) embeddings must respect the block structure Eq. (A3). These embeddings
can be split in three classes that are not unitarily equivalent.

The embedding (1, 2) is unitarily equivalent to the embeddings (i < N, j < N). Embeddings in this class can be
denoted by

[2N ]Sp = {2} � {2} � (2N � 4)1 . (A5)

Examples are, for N = 3
0

BBBBB@

1 0 0 0 0 0
0 a b 0 0 0
0 �b

⇤
a

⇤ 0 0 0
0 0 0 1 0 0
0 0 0 0 a

⇤
b
⇤

0 0 0 0 �b a

1

CCCCCA
,

0

BBBBB@

a 0 b 0 0 0
0 1 0 0 0 0

�b
⇤ 0 a

⇤ 0 0 0
0 0 0 a

⇤ 0 b
⇤

0 0 0 0 1 0
0 0 0 �b 0 a

1

CCCCCA
, . . . (A6)

with a, b 2 C such that |a|2 + |b|2 = 1 and a
⇤
b � b

⇤
a = 0. There are N(N � 1)/2 of those embeddings.

The embedding (1, 2)0 is unitarily equivalent to the embeddings (i < N, j < N)0. Embeddings in this class can be
denoted by

[2N ]0Sp = {2}0 � {2}0 � (2N � 4)1 . (A7)

Examples are, for N = 3
0

BBBBB@

1 0 0 0 0 0
0 a 0 0 0 b

0 0 �a
⇤ 0 �b

⇤ 0
0 0 0 1 0 0
0 0 �b

⇤ 0 a
⇤ 0

0 b 0 0 0 �a

1

CCCCCA
,

0

BBBBB@

a 0 0 0 0 b

0 1 0 0 0 0
0 0 �a

⇤ �b
⇤ 0 0

0 0 �b
⇤

a
⇤ 0 0

0 0 0 0 1 0
b 0 0 0 0 �a

1

CCCCCA
, . . . (A8)

with a, b 2 C such that |a|2 + |b|2 = 1 and a
⇤
b � b

⇤
a = 0. There are N(N � 1)/2 of those embeddings.

The embedding (1, 1 + N) is unitarily equivalent to the embeddings (i, i + N). These can be denoted by

[2N ]Sp = {2} � (2N � 2)1 . (A9)

Examples are, for N = 3,
0

BBBBB@

1 0 0 0 0 0
0 a 0 0 b 0
0 0 1 0 0 0
0 0 0 1 0 0
0 �b

⇤ 0 0 a
⇤ 0

0 0 0 0 0 1

1

CCCCCA
,

0

BBBBB@

a 0 0 b 0 0
0 1 0 0 0 0
0 0 1 0 0 0

�b
⇤ 0 0 a

⇤ 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

CCCCCA
, . . . (A10)
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with a, b 2 C such that |a|2 + |b|2 = 1 and a
⇤
b � b

⇤
a = 0. There are N of those embeddings.

With our construction, we have identified N
2 embeddings that cover the whole of Sp(2N). A HB iteration on one

link consists in updating consecutively each of the embeddings belonging to classes Eqs. (A5), (A7) and (A9) with
the Creutz or Kennedy-Pendleton implementation of the SU(2) HB algorithm. An OR iteration is built in a similar
way.

For this work, we performed one HB iteration followed by 4 OR iterations for each link variable. Repeating these
iterations for all the links of the lattice is a lattice sweep. To prevent the desymplectisation and deunitarisation of
the configuration caused by the accumulation of numerical error, we reprojected each link of the configuration on the
group after each 10 lattice sweeps with a modified Gram-Schmidt algorithm that preserves the Sp(2N) structure [7].

Appendix B: Searching for the bulk phase transition

A phase transition taking place in the (d + 1)-dimensional classical canonical system defined by Eq. (9) is called
a bulk phase transition. This transition separates the strong and weak coupling regimes of the theory, limiting the
range of � that is analytically connected to the continuum limit. The identification of bulk phase transition points is
hence a crucial step for extrapolating numerical data to the a ! 0 limit in a controlled way.

In general terms, a bulk phase transition takes place at values of � for which one of the derivatives of Z(�) with
respect to � is singular (in the L ! 1 limit). For a system defined by Eq. (9), with the action in Eq. (6), the first
derivative of ln Z(�) corresponds to the expectation value of the average plaquette,

hP (�)i ⌘ 1

L4

@ ln Z(�)

@�
, (B1)

and its second derivative to the plaquette susceptibility,

�p(�) ⌘ @
2 ln Z(�)

@�2
= L

4
⇥
hP 2(�)i � hP (�)i2

⇤
. (B2)

As we observed in Section IVA, hP i(�) shows a pseudo-inflection point at some value �c of the lattice coupling.
This pseudo-inflection corresponds to a maximum �c(L) of the plaquette susceptibility. If the latter is associated to
the smoothing of a proper phase transition, we expect �c(L) ! 1, and �c(L) ! �c, as L ! 1. Conversely, if �c(L)
stays finite when L ! 1, the change from the strong coupling regime to the weak coupling one happens not through
a phase transition, but via a crossover.3

To study the scaling of the maximum of the plaquette susceptibility with the size of the system, we focused our
attention on the neighbourhood of the identified pseudocritical coupling �c, computing at various values of � near this
coupling for L/a = 8, 12, 16, and collecting measurements of hP i(�). A total of 3000 data points at each investigated
value of � and L were collected, one every five sweeps. The corresponding results for hP i(�) are reported in Tab VII.
The Monte Carlo histories of our simulations were searched for any sign of metastability, which would have signalled
a first order phase transition, with negative results. This allows us to exclude the presence of a discontinuous phase
transition for both N = 3 and N = 4. The plaquette susceptibility �p(�) was computed at each �. The results are
presented in Fig. 6. At each volume, �c and �c were estimated using the multihistogram method. The obtained values
are reported in Tab. VIII. No appreciable scaling of the peak values can be detected as L is increased. Thus, from
our data we can conclude that no phase transition is present for N = 3, 4, with the change of behaviour from strong
to weak coupling being described by a crossover. These conclusions are in agreement with the findings in Ref. [6] for
the case N = 3.

Even if a phase transition is excluded, the presence of a crossover can still affect physical observables near the
change of regime. An example of a similar effect in SU(4) Yang-Mills with a fundamental Wilson action is described
in Ref. [119], where the effect of the presence of a crossover reflects in a dip of the measured scalar glueball masses at the
corresponding values of �. Similar results emerge also in SU(2) with a mixed fundamental-adjoint action [137, 138].
Therefore, to extrapolate lattice observables to the continuum limit with a simple and controlled dependence in a

p
�,

it is still necessary to be in the weak coupling regime. We achieved this by ensuring that our data points were far
enough from the inflection points and then verifying that there was no visible signal of bulk phase contamination in
our observables.

3 In principle, higher-order (e.g., third order) phase transitions are also possible. However, the only examples known to us arise strictly
in the N ! 1 limit (e.g., Ref. [135, 136]). If a higher-order phase transition were present, it would be extremely difficult to detect it in
our data. At the same time, we expect its influence on the numerical measurements to mimic a crossover. For this reason, we use here
the expression crossover in a rather loose sense.
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�/2N hP (�)i, N = 3 hP (�)i, N = 4
1.0 0.1671559(26) 0.1251247(20)
1.5 0.2536905(26) 0.1884348(20)
2.0 0.3504599(27) 0.2540525(20)
2.5 0.538850(11) 0.3259904(23)
3.0 0.6624336(27) 0.4205164(39)
3.5 0.7205217(22) 0.6138239(25)
4.0 0.7604072(18) 0.6770339(19)
4.5 0.7899299(20) 0.7199132(19)
5.0 0.8128151(16) 0.7521754(15)
5.5 0.8311878(14) 0.7773942(16)
6.0 0.8461740(18) 0.7978683(12)
6.5 0.8586757(17) 0.8148922(11)
7.0 0.8693439(14) 0.8290391(13)
7.5 0.8784713(11) 0.8412828(11)
8.0 0.8863930(16) 0.8517954(18)
8.5 0.8933310(17) 0.86112031(93)
9.0 0.8994785(12) 0.8691295(10)

TABLE VII: Expectation values of the plaquette hP (�)i in Sp(2N) lattice theories with N = 3(left) and N = 4(right) at
L = 16a.
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FIG. 6: The plaquette susceptibility �p, as defined in Eq. (B2), as a function of � = 2N/g2, at volumes L/a = 8 (orange
squares), L/a = 16(blue triangles) for the Sp(2N) lattice gauge theory with N = 3 (left panel) and N = 4 (right panel).
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N = 3 N = 4
L/a �c �Pmax �c �Pmax
8 14.909(35) 0.0319(14) 24.45(3) 0.045(6)
12 14.909(41) 0.0315(27) 24.45(3) 0.047(6)
16 14.920(40) 0.0283(87) 24.45(3) 0.048(7)

TABLE VIII: Location of the maximum value of the susceptibility for N = 3 and N = 4 at L/a = 8, 12, 16.
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RP L/a
14 16 18 20 22 24

A+
1 0.321(14) 0.492(21) 0.419(29) 0.488(19) 0.479(18) 0.493(19)

A�
1 0.662(31) 0.766(32) 1.016(87) 0.879(52) 0.801(32) 0.778(31)

A+
2 1.122(75) 1.125(88) 1.172(78) 1.108(93) 1.282(92) 1.087(66)

A�
2 1.26(23) 1.39(21) 1.382(45) 1.351(61) 1.391(46) 1.360(41)

E+ 0.374(19) 0.496(27) 0.684(32) 0.754(28) 0.755(25) 0.731(14)
E� 0.908(58) 0.926(52) 0.911(49) 1.044(62) 0.987(48) 0.962(47)
T+

2 0.726(34) 0.782(32) 0.748(30) 0.684(30) 0.775(28) 0.740(22)
T �

2 0.960(79) 0.924(58) 0.970(47) 0.906(49) 0.900(50) 1.027(47)
T+

1 1.19(11) 1.16(11) 1.154(98) 1.091(88) 1.20(12) 1.196(26)
T �

1 0.96(12) 1.22(11) 1.28(15) 1.38(12) 1.348(29) 1.25(13)

TABLE IX: Estimates of the masses of glueballs ma in all symmetry channels RP in units of the lattice spacing at � = 16.5,
for various L/a and for N = 3.

Appendix C: Continuum and infinite volume extrapolations

As mentioned in Sect. III F, estimates of glueball and torelon masses obtained from the lattice are affected by
systematic errors. We focus on the systematic error caused by working on a lattice of finite size in Sect. C 1 and on
the error caused by the discretisation in Sect. C 2.

1. Finite-size effects (FSEs)

The spectrum of a theory defined in a finite box of linear size L with periodic boundary conditions depends on L.
The problem was studied for instance in Ref. [139], and this dependence was found to be described by Eq. (47). The
magnitude of the leading finite-size effects decays exponentially as a function of mL, where m is the lightest excitation
in the spectrum.

If ma is estimated to a given finite precision, a value Lmin/a exists such that for L > Lmin the FSEs on the
spectrum are negligible—by which we mean that their size is much smaller than the statistical error. For L > Lmin,
the measured spectral masses can thus be considered as an estimate of the infinite size spectrum at fixed lattice
spacing. In the scaling regime, mL is also a constant as a ! 0, and once Lmin/a is found for a value of a, the FSEs
will remain negligible as a is taken to 0, provided the physical volume is kept approximately constant in the process.
The precise value of Lmin/a depends on the precision of our estimates and on the theory under scrutiny, and must be
determined empirically.

To determine Lmin and obtain an estimate for the spectrum at infinite size for N = 3, 4, we used the ensembles
described in Sect. IV B. For each ensemble, we determined the glueball spectrum and the string tension. The results
are reported in Tab. IX for N = 3 and Tab. X for N = 4. In this Appendix we focus on the lightest channel, which is
consistently found to be A

+

1
and suffers from the largest FSEs. (Exceptions to this rule can be found, but they can

only occur in the small L/a regime, in which we are not interested.)
The estimates of amA+

1
are presented in Fig. 7, for N = 3 in the top panel, and N = 4 in the bottom panel. From

these figures we see that amA+
1

rapidly settles on a plateau as L/a is increased. This means that, as expected, FSEs
become negligible as L is increased. A rough estimate yields Lmin/a = 20 for Sp(6) at � = 16.5 and 10 for Sp(8) at
� = 26.7. As an a posteriori check, note that mA+

1
Lmin ⇠ 9.76 for Sp(6) and mA+

1
Lmin ⇠ 6.94 for Sp(8). The infinite

size spectrum can then be estimated by any one of the results at L > Lmin. We fitted Eq. (47) to the data using b

and m(1) as fitting parameters. The fitted curves and the related �
2
/Nd.o.f. are displayed in Fig. 7.

From the analysis above, we conclude that FSEs are negligible when L > 20a, for N = 3, and L > 10a, for N = 4.
On these lattices, the condition L

p
� � 3, which identifies the large volume regime of torelons, is also fulfilled. Hence,

we choose this condition throughout as an indicator that finite volume effects can be neglected.
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RP L/a
8 10 12 14 16 18 20

A+
1 0.2881(60) 0.694(19) 0.695(31) 0.664(29) 0.727(33) 0.685(27) 0.707(25)

A�
1 0.678(30) 1.119(42) 1.32(14) 1.296(36) 1.063(97) 1.186(35) 1.237(29)

A�
2 2.05(25) 1.98(22) 1.62(16) 1.91(23) 2.05(19) 2.05(20) 2.55(31)

A+
2 0.87(13) 1.86(13) 1.76(12) 1.90(12) 1.82(11) 1.697(94) 1.696(73)

E� 0.776(63) 1.544(70) 1.37(22) 1.446(68) 1.518(64) 1.543(47) 1.473(50)
E+ 0.298(10) 0.612(33) 1.116(31) 1.106(30) 1.044(70) 1.046(80) 1.167(76)
T �

2 1.13(20) 1.377(62) 1.564(79) 1.505(64) 0.97(14) 1.503(64) 1.412(46)
T+

2 0.644(35) 1.141(39) 0.80(19) 1.156(86) 1.200(99) 1.137(28) 1.016(60)
T �

1 1.83(19) 2.08(25) 2.09(19) 1.99(20) 2.09(20) 2.18(18) 2.12(15)
T+

1 1.03(20) 1.74(15) 1.70(11) 1.86(13) 2.01(13) 1.709(98) 1.737(82)

TABLE X: Estimates of the masses of glueballs ma in all symmetry channels RP in units of the lattice spacing at � = 26.7 for
various L/a and for N = 4.

2. Continuum limit extrapolations

The behaviour of the discretisation error was studied in Sect. III F. The dimensionless ratio mRP /
p

� behaves, at
leading order in a, as

mRPp
�

(a) =
mRPp

�

�
1 + cRP �a

2
�

, (C1)

where cRP is a constant that depends on the symmetry channel and on the excitation number. The multiplicative
term on the right hand side is the continuum limit of the ratio, while the term in �a

2 describes the deviation with
respect to this limit for sufficiently small a.

The continuum limit of the spectrum of glueballs can be obtained from sets of estimates thereof obtained at finite
lattice spacing with a fit of Eq. (C1) to the data. This is the general strategy to extract results of the continuum
spectrum from estimates at finite a, if the latter are obtained in a regime where Eq. (C1) is valid.

For each N = 1, 2, 3, 4, ensembles of 10, 000 thermalised configurations were obtained at several values of a and
L/a and stored for later analysis. The values of L/a were always chosen so that FSEs could be safely neglected. This
has been verified a posteriori from the measured values of mRP L. The glueball and torelon masses were estimated in
units of the lattice spacing, as explained in Sect. III, for each ensemble.

While not strictly related to the continuum extrapolation, a comment is in order regarding the estimation of the
uncertainty on mRP a and to guide the Reader in navigating the tables of results. To determine tmin, defined in
Sec. IIIA, the quantity meff(t)a is computed on all the available range of t/a. If a plateau can be found, the fits
of Eq. (40) over the range t > tmin provide an estimate of mRP a together with the statistical error of the fit and
the corresponding �

2
/Nd.o.f.. It is often the case, however, that the plateau is only 2a � 3a long, that an accurate

determination of its preimage in t/a is hindered by the contamination from larger mass states, or that the mass
itself is large. These difficulties in determining tmin lead to a systematic error on mRP a that can be larger than the
statistical error of the fitting procedure. In such cases, the statistical error of the fit cannot be trusted in describing
the fluctuations of mRP a. Hence, we use a safe estimate of the mass and its error from the envelope of the points
at plateau. A value for �

2
/Nd.o.f. cannot be defined and the corresponding entry in the table is left empty. Finally,

there are extreme cases for which an estimate for the mass simply cannot be found, i.e. a plateau is absent. In that
case, the corresponding entry in the table is left empty.

All our estimates are reported in Tabs. XI-XX for the ensembles with N = 1, 2, 3, 4. The values of � and L/a

are found in the first row of each table; the subsequent rows correspond to the 10 symmetry channels, until the last
row, that corresponds to the string tension. For each value of N , these estimates are plotted as a function of �a

2 in
Figs. 10-13.

In general, we found that the statistical errors and the confidence intervals are of the same order of magnitude,
the latter being slightly larger in the majority of cases. This can be taken as an indication of the correctness of the
method detailed above. In the following, we refer to the uncertainty in the determination of mRP a generically as its
“error”.

A set of representative cases for the typical behaviour of meff(t)a is shown in Fig. 8 and Fig. 9, where the final
estimate for mRP a is represented as a dotted line, and its error as the half width of the corresponding horizontal
band. In Fig. 8 the effective mass of state A

+

1
at the smallest available value of a is reported for each N = 1, 2, 3, 4.

For N = 1, 2 and 3, a plateau can be identified. It is at least t/a ⇠ 2 long and starts at tmin = a for N = 1, 3 and



29

9 12 15 18 21 24 27 30

L/a

0.2

0.4

0.6

m
A

+ 1
a

ma = 0.514(11), �
2
/Nd.o.f. = 3.4

N = 3

4 6 8 10 12 14 16 18 20 22

L/a

0.2

0.4

0.6

0.8

1.0

m
A

+ 1
a

ma = 0.702(17), �
2
/Nd.o.f. = 1.9

N = 4

FIG. 7: Mass of the lightest glueball mA+
1

a in units of a, at fixed coupling, as a function of L/a. This corresponds to the A+
1

channel for both N = 3, evaluated at � = 16.5 (top panel), and N = 4, evaluated at � = 26.7 (bottom panel). The solid line
is the best fit of Eq. (47) to the data.

tmin = 2a for N = 2. An estimate for mRP a can thus be obtained from a fit of Eq. (40) over the range tmin < t < tmax.
The value tmax was chosen to be as large as possible while still resulting in a value of �

2
/Nd.o.f. close to 1 for the

corresponding fit. In most cases of the analysis where a plateau could be identified, and in particular in all of those
depicted in Fig. 8, it was possible to set tmax = La/2. For N = 4, to the contrary, mA+

1
a is estimated from the

envelope of the quasi -plateau that starts at t/a ⇠ 1 and that is only a long. In Fig. 9, the effective mass of state T
+

1

at N = 3 is reported for a range of lattice spacings, from coupling � = 15.85 to coupling � = 17.1. In all of these
cases a plateau of length 2 � 3a cannot be found and mT+

1
a is estimated from the envelope of a quasi -plateau. At

� = 17.1, the contamination of higher mass states lasts up to t/a = 4, and a quasi -plateau can only be identified for
t/a in the interval ⇠ [3a, 5a]. Its quality progressively degrades as � takes smaller values, becoming barely visible for
� = 15.85.

In general, a plateau can be identified when a is sufficiently small that the mass of the ground state in lattice units
is well below 1/a. In principle, hierarchies between the masses in the spectrum may make their estimation difficult
for all the channels at a common value of a. This is shown for channels A

+

1
and T

+

1
at � = 17.1 in Fig. 8 and Fig. 9,

respectively, where the mass of the T
+

1
is approximately twice the mass of A

+

1
. Moreover, as discussed in Sec. III F,

the plateau may show contaminations from excited and scattering states. These may be difficult to remove even for
small a, as shown for T

+

1
in Fig. 9. Despite these difficulties, it was possible to provide reliable estimates of mRP a in

a great majority of cases.
Let us now comment on the features of these finite-a estimates that are common across all the values of N . The

fact that in every case mRP L > 3 allows us to safely neglect FSEs for all the ensembles, as anticipated. Moreover,
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FIG. 8: The effective mass meff(t)a for the channel RP = A+
1 , as a function of t/a, obtained at the smallest available lattice

spacing for each value of N = 1, 2, 3, 4. The plateau is denoted by a band. Its horizontal extent covers the t-interval of the
plateau and its half vertical width is the error of the final estimate for mA+

1
a, which is represented as a dotted horizontal line.

In this case, a plateau can be identified for all values of N other than N = 4, which corresponds to the largest value of meff(t)a
among those shown in the figure.

all the estimates satisfy mRP a  2, except for the two roughest lattices when N = 1, corresponding to � = 2.2986
and � = 2.3726. Therefore, we can assert that our choices of � are well calibrated to study the flow to the continuum
limit of the spectrum of these systems. In the glueball sector, the A

+

1
is consistently the lightest channel, followed

by the (E±
, T

±

2
) degenerate pairs. The error of the estimates is larger for larger mRP a, as is to be expected on the

basis of the discussion in Sect. III F. The E
± and T

±

2
are degenerate over the whole range of a probed at least at the

2� level, with the mass difference being below one standard deviation in most of the cases. This is a non-trivial a

posteriori test of the restoration of continuum rotational invariance and can be taken as a signal that we are in the
regime for which Eq. (48) is valid.

An additional source of systematic error, the effects of which are difficult to account for, is the autocorrelation time
of the system, which grows as the continuum limit is approached. Since the topological charge is one of the quantities
with the longest autocorrelation time, studying the evolution of this observable yields a conservative estimator of these
effects. Particular attention should be paid to cases in which the topology is (nearly-)frozen. These can be detected
by analysing the time series of the topological charge. To this end, a subset of configurations were obtained from the
N = 3 and N = 4 ensembles, by picking one configuration each 100. The Gradient flow was then used to smooth
each of the configurations, and the regularised topological charge was computed using Eq. (11) at each smoothing
step. The continuum topological charge is obtained when the regularised topological charge reaches a plateau under
further smoothing operations. The results of this analysis are visible in Fig. 14 and Fig. 15.

For both N = 3 and N = 4, there is a value �min above which the topological charge barely changes with the
Monte Carlo steps that we are able to perform. These ensembles are topologically frozen. From visual inspection of
the figures we estimate that

�min(N = 3) ' 16.5, �min(N = 4) ' 27.0 . (C2)
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FIG. 9: The effective mass meff(t)a for the channel RP = T+
1 , as a function of t/a, for N = 3, obtained on a set of lattice

spacings corresponding to couplings � = 15.85, � = 16.1, � = 16.5 and � = 17.1. In this case, only quasi-plateaux could be
identified, as a consequence of the large mass of the T+

1 state in lattice units and of contaminations from excited and scattering
states. The quasi-plateau is denoted by a band. Its horizontal extent covers the t-interval of the quasi-plateau and its half
vertical width is the error of the final estimate for mT+

1
a, which is represented as a dotted horizontal line. A similar behaviour

is observed for the other values of N .

Given that topological freezing affects only our two largest values of N , where the systematic effects it induces on
measurements of masses are expected to become less severe (as discussed in Sect. III F), we included the estimates
obtained from these frozen ensembles in the extrapolation to the continuum limit.

A related potential source of systematic error lies in the length of the initial thermalisation. Our earlier estimates
of the continuum spectrum, especially for N = 3 and N = 4, presented a visible dip in the calculated masses for
the smallest values of �a

2. This urged us to perform an overall check of the invariance of the final result under the
prolongation of the simulation trajectory. In Fig. 16, we show results of mRP /

p
� at finite lattice spacing as a function

of the initial thermalisation time. The fact that these estimates are largely independent of this initial thermalisation
time suggests that the Markov chains from which the final averages are obtained are long enough for the system to
be at statistical equilibrium.

Let us now discuss the continuum extrapolations of the ratios mRP /
p

� for given values of a. These ratios can
be easily formed for each ensemble from the estimates in Tabs. XI-XX. At each value of N , fits of Eq. (C1) using
mRP /

p
� in the continuum and cRP as fitting parameters were performed for each symmetry channel. These linear fits

are plotted as solid lines in Figs. 10-13, where the corresponding values of the �
2
/Nd.o.f. are also reported. Note that

because of the way that the error on these measurements was evaluated, the �
2
/Nd.o.f. are slightly underestimated.

These extrapolations are discussed in Sect. IV C.
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� = 2.2986 � = 2.3726 � = 2.4265 � = 2.5115
N = 1 L = 10a L = 12a L = 16a L = 20a

mRP a �2/Nd.o.f. mRP a �2/Nd.o.f. mRP a �2/Nd.o.f. mRP a �2/Nd.o.f.

A+
1 1.150(70) - 0.995(18) 0.77 0.883(32) 2.1 0.683(14) 3.36

A+⇤
1 1.99(13) 0.41 1.52(12) - 0.700(80) - 0.500(40) -

A�
1 2.11(23) 1.02 1.53(30) - 1.430(80) - 1.030(60) -

A�⇤
1 2.33(20) - 2.45(45) - 1.83(24) - 1.30(20) -

A+
2 2.05(60) - 2.25(17) 1.82 1.82(17) - 1.370(90) -

A�
2 - - - - 1.99(20) - 1.50(20) -

T+
2 2.00(30) - 1.50(20) - 1.32(12) 1.42 0.980(13) 2.78

E+ 2.00(50) - 1.24(25) - 1.229(98) 1.99 0.950(60) -
T �

2 2.30(30) - 2.14(15) 0.28 1.670(60) - 1.170(80) -
E� 2.10(40) - 2.07(14) 0.64 1.59(14) - 1.220(60) -
T+

1 - - 1.80(30) - 1.70(30) - 1.37(20) -
T �

1 - - - - 2.00(20) - 1.50(15) -
�sa

2 �sa
2 �sa

2 �sa
2

0.1284(52) - 0.0736(31) - 0.0566(10) - 0.03116(63) -

TABLE XI: Estimates of the glueball and the torelon masses for N = 1, in units of the lattice spacing a, on lattices of linear
size L and lattice spacing determined by the inverse coupling �. The error in brackets are discussed in the main text.

� = 2.6 � = 2.62 � = 2.7
N = 1 L = 24a L = 26a L = 32a

mRP a �2/Nd.o.f. mRP a �2/Nd.o.f. mRP a �2/Nd.o.f.

A+
1 0.467(24) 2.16 0.487(32) 2.82 0.356(10) 0.71

A+⇤
1 0.97(11) - 0.680(50) - 1.390(90) -

A�
1 0.810(22) 2.74 0.750(50) - 0.600(14) 3.25

A�⇤
1 0.96(10) - 0.940(90) - 0.750(30) -

A+
2 0.900(90) - 0.896(28) 2.81 0.680(50) -

A�
2 1.21(12) - 1.080(90) - 0.980(40) -

T+
2 0.690(50) - 0.660(40) - 0.490(30) -

E+ 0.702(33) 2.58 0.667(13) 2.71 0.507(28) 2.91
T �

2 0.900(50) - 0.830(50) - 0.687(65) -
E� 0.890(60) - 0.780(90) - 0.680(50) -
T+

1 1.050(80) - 1.000(70) - 0.820(40) -
T �

1 1.180(80) - 1.140(40) - 0.900(50) -
�sa

2 �sa
2 �sa

2

0.01715(26) - 0.01587(56) - 0.00938(18) -

TABLE XII: Estimates of glueball masses and string tensions for N = 1, in units of the lattice spacing a, on lattices of linear
size L and lattice spacing determined by the inverse coupling �. The error in brackets are discussed in the main text.

Appendix D: A closer look at the Sp(4) data

In Sect. III we presented the spectrum of Sp(2N) theories in the continuum and large-N limits. Two sets of
ensembles are available for N = 2. The one obtained for Ref. [7] (old ensembles) and another, independent one,
obtained for the present work (new ensembles). The estimates shown in Tab. IV, in the column N = 2, are the
weighted averages of the continuum limits obtained from the new and old ensembles. In this Appendix, we present
separately the two analysis for the new and old ensembles for N = 2.

For the new ensembles, the continuum and large-N extrapolated estimates can be found in Tab. XXI, both in
units of

p
� (top) and mE+ (bottom). The former extrapolated values, together with the corresponding large-N

extrapolated results, are displayed, in units of
p

�, in Fig. 11, and the large-N extrapolation is shown in Fig. 18.
The old ensembles have been reanalysed following the approach used in this work—see Sect. C 2. The results are

displayed in Fig. 19. The continuum and large-N extrapolated values can be found in Tab. XXII, both in units of
p

�

(top) and mE+ (bottom), and are displayed, in units of
p

�, in Figs. 20 and 21, respectively.
As expected, the estimates of the spectrum obtained from the two ensembles are statistically compatible. This

justifies taking weighted averages as our best values for N = 2. We note that, while the new ensemble provides



33

� = 7.62 � = 7.7 � = 7.85 � = 8.0
N = 2 L = 16a L = 16a L = 18a L = 20a

mRP a �2/Nd.o.f. mRP a �2/Nd.o.f. mRP a �2/Nd.o.f. mRP a �2/Nd.o.f.

A+
1 0.680(80) - 0.729(32) 1.62 0.634(22) 0.56 0.587(37) 1.42

A+⇤
1 - - 1.15(16) - 0.94(17) - 0.86(12) -

A�
1 1.21(20) - 1.190(50) - 0.980(60) - 0.880(40) -

A�⇤
1 1.57(32) - 1.64(26) - 1.39(12) - 1.230(80) -

A+
2 1.80(31) - 1.36(30) - 1.500(50) - 1.03(20) -

A�
2 - - 1.85(30) - 1.40(30) - 1.38(20) -

T+
2 - - 1.170(50) - 1.014(49) 1.87 0.760(40) -

E+ 0.96(24) - 1.160(28) 1.86 0.910(50) - 0.810(50) -
T �

2 - - 1.00(25) - 1.22(14) - 1.070(30) -
E� 1.30(35) - 1.24(20) 1.58 1.16(13) - 1.060(60) -
T+

1 - - 1.30(30) - 1.22(30) - 1.05(20) -
T �

1 1.60(40) - 2.07(17) 0.56 1.58(17) - 1.10(20) -
�sa

2 �sa
2 �sa

2 �sa
2

0.0614(22) - 0.0517(12) - 0.03526(51) - 0.02487(66) -

TABLE XIII: Estimates of glueball masses and string tensions for N = 2, in units of the lattice spacing a, on lattices of linear
size L and lattice spacing determined by the inverse coupling �. The error in brackets are discussed in the main text.

� = 8.2 � = 8.3
N = 2 L = 26a L = 32a

mRP a �2/Nd.o.f. mRP a �2/Nd.o.f.

A+
1 0.445(21) 2.31 0.402(12) 1.57

A+⇤
1 0.710(80) - 0.640(50) -

A�
1 0.700(40) - 0.600(40) -

A�⇤
1 0.970(90) - 0.860(30) -

A+
2 1.000(50) - 0.880(70) -

A�
2 1.02(14) - 0.85(20) -

T+
2 0.610(50) - 0.570(50) -

E+ 0.607(58) 2.31 0.590(20) -
T �

2 0.820(60) - 0.740(60) -
E� 0.820(30) - 0.770(30) -
T+

1 1.000(50) - 0.790(80) -
T �

1 1.160(70) - 0.82(12) -
�sa

2 �sa
2

0.01676(26) - 0.01263(62) -

TABLE XIV: Estimates of glueball masses and string tensions for N = 2, in units of the lattice spacing a, on lattices of linear
size L and lattice spacing determined by the inverse coupling �. The error in brackets are discussed in the main text.

extrapolations with good values of �
2
/Nd.o.f., in the old ensemble higher values of the reduced �

2 are present. This hints
toward slightly different systematics between the old and new simulations. This could explain the higher �

2
/Nd.o.f. for

some extrapolations presented in the analysis in Sect. III. The broad compatibility of the data, nevertheless, suggests
that the effect is not dominant.

Appendix E: On the inclusion of N = 1 in the large-N extrapolation

In Sect. III, the large-N extrapolation of the spectrum has been provided including the value N = 1 for all channels.
For a handful of channels, this gives a value of �

2
/Nd.o.f. above 2, indicative of a lower statistical significance of the

extrapolation. This may suggest that, for these specific channels, the N = 1 value is not captured by the large-N
expansion. Indeed, in previous studies of SU(N) gauge theories (e.g., Ref. [2]), the value of the �

2
/Nd.o.f. has been

used as an indication of the reliability of the truncation of the large-N series at a given order for capturing results
at some finite value of N . In our work, excluding the data for N = 1 generally improves the value of the �

2
/Nd.o.f..

However, this leaves only three points for the extrapolation, and hence creates a larger systematic bias on the latter.
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� = 15.6 � = 15.65 � = 15.7 � = 15.85
N = 3 L = 12a L = 12a L = 12a L = 14a

mRP a �2/Nd.o.f. mRP a �2/Nd.o.f. mRP a �2/Nd.o.f. mRP a �2/Nd.o.f.

A+
1 0.765(27) 0.18 0.777(26) 0.07 0.750(24) 0.56 0.720(20) -

A+⇤
1 1.43(16) 0.99 1.29(12) - 1.167(96) 1.28 1.17(12) -

A�
1 1.29(13) 0.79 1.29(17) 1.92 1.27(17) - 1.07(12) -

A�⇤
1 1.93(28) - 1.76(21) - 1.667(80) 0.68 1.24(15) -

A+
2 1.80(15) - 1.92(11) 0.51 1.64(54) 1.94 1.54(20) -

A�
2 1.80(30) - 2.08(20) - 2.00(30) - 1.60(30) -

T+
2 1.06(15) - 1.23(12) 2.05 1.213(87) 2.94 1.075(55) 0.49

E+ 1.202(83) 2.37 1.257(31) 1.65 1.203(82) 1.38 1.141(71) 3.88
T �

2 1.50(13) - 1.70(14) - 1.40(20) - 1.37(14) -
E� 1.46(15) - 1.41(30) - 1.33(18) - 1.26(12) -
T+

1 1.70(30) - 2.00(18) - 1.07(40) - 1.52(16) -
T �

1 1.37(35) - 1.90(40) - 2.25(35) - 1.70(40) -
�sa

2 �sa
2 �sa

2 �sa
2

0.06464(79) - 0.0663(11) - 0.05918(72) - 0.04879(60) -

TABLE XV: Estimates of glueball masses and string tensions for N = 3, in units of the lattice spacing a, on lattices of linear
size L and lattice spacing determined by the inverse coupling �. The error in brackets are discussed in the main text.

� = 16.1 � = 16.3 � = 16.5 � = 16.7
N = 3 L = 16a L = 20a L = 20a L = 28a

mRP a �2/Nd.o.f. mRP a �2/Nd.o.f. mRP a �2/Nd.o.f. mRP a �2/Nd.o.f.

A+
1 0.581(28) 0.25 0.536(20) 2.09 0.499(15) 0.11 0.432(10) -

A+⇤
1 0.95(12) - 0.910(80) - 0.810(60) - 0.690(90) -

A�
1 0.971(41) 0.49 0.846(36) 0.33 0.808(21) 2.62 0.610(50) -

A�⇤
1 1.16(17) - 1.031(53) 1.78 0.82(17) - 0.72(16) -

A+
2 1.488(38) 3.97 1.23(15) - 1.050(50) - 0.92(12) -

A�
2 1.48(25) - 1.50(12) - 1.28(10) - 1.12(10) -

T+
2 0.854(85) 1.14 0.780(60) - 0.700(40) - 0.636(20) 2.92

E+ 0.954(35) 0.98 0.830(50) - 0.710(30) - 0.650(30) -
T �

2 1.200(50) - 1.080(81) 3.73 0.950(60) - 0.770(60) -
E� 1.247(24) 1.94 1.090(70) - 0.974(37) 0.33 0.830(50) -
T+

1 1.50(10) - 1.380(90) - 1.12(12) - 0.920(80) -
T �

1 1.59(10) - 1.20(16) - 1.10(20) - 1.21(10) -
�sa

2 �sa
2 �sa

2 �sa
2

0.03501(59) - 0.02825(99) - 0.02303(33) - 0.01606(33) -

TABLE XVI: Estimates of glueball masses and string tensions for N = 3, in units of the lattice spacing a, on lattices of linear
size L and lattice spacing determined by the inverse coupling �. The error in brackets are discussed in the main text.

Likewise, adding a higher order correction will decrease the number of degrees of freedom and hence introduce more
noise. Being faced with the necessity to make a choice, we have opted to systematically include N = 1 in all large-N
extrapolations. This means that we interpret larger value of the �

2
/Nd.o.f. as results of fluctuations in the data or of

some unknown systematics, rather than as stemming from the fact that N = 1 is not described by the expansion. The
question is left open by this study. For completeness, we compare in Tab. XXIII our results for the extrapolations
with N = 1 systematically included and excluded. Most of the results are compatible at the two sigma level.
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� = 16.8 � = 17.1
N = 3 L = 24a L = 28a

mRP a �2/Nd.o.f. mRP a �2/Nd.o.f.

A+
1 0.441(15) - 0.360(14) 1.02

A+⇤
1 0.730(70) - 0.610(40) -

A�
1 0.66(12) - 0.550(30) -

A�⇤
1 1.49(10) - 0.970(90) -

A+
2 0.76(28) - 0.764(77) 2.14

A�
2 0.90(17) - 0.99(13) -

T+
2 0.680(30) - 0.558(19) 2.01

E+ 0.663(22) 1.93 0.560(18) 1.17
T �

2 0.840(70) - 0.730(40) -
E� 0.787(79) 3.98 0.690(50) -
T+

1 0.80(30) - 0.73(14) -
T �

1 1.16(10) - 0.85(15) -
�sa

2 �sa
2

0.01824(30) - 0.01183(52) -

TABLE XVII: Estimates of glueball masses and string tensions for N = 3, in units of the lattice spacing a, on lattices of linear
size L and lattice spacing determined by the inverse coupling �. The error in brackets are discussed in the main text.

� = 26.5 � = 26.7 � = 26.8 � = 27.0
N = 4 L = 14a L = 14a L = 14a L = 16a

mRP a �2/Nd.o.f. mRP a �2/Nd.o.f. mRP a �2/Nd.o.f. mRP a �2/Nd.o.f.

A+
1 0.705(33) 2.88 0.734(12) 0.6 0.705(22) 0.26 0.615(30) 0.08

A+⇤
1 1.22(12) - 1.262(88) 1.08 1.104(66) 2.13 0.94(11) -

A�
1 1.230(80) - 1.198(28) 1.06 1.140(60) - 1.055(59) 0.53

A�⇤
1 1.73(26) - 1.66(15) - 1.564(48) 1.51 0.900(90) -

A+
2 1.890(50) - 1.21(25) 1.97 1.720(60) - 1.500(50) -

A�
2 2.03(12) 2.56 1.99(30) - 2.06(15) 3.09 1.980(90) -

T+
2 1.15(15) - 1.081(67) 0.23 1.048(53) 1.38 1.028(15) 2.08

E+ 1.15(14) - 1.156(69) 1.3 1.210(59) 12.53 1.010(40) -
T �

2 1.60(10) - 1.46(15) - 1.370(40) - 1.310(40) -
E� 1.620(40) - 1.40(10) - 1.26(13) 1.07 1.310(60) -
T+

1 1.40(30) - 1.50(15) - 1.690(70) - 1.590(90) -
T �

1 1.50(30) - 1.95(15) - 1.94(10) - 1.750(80) -
�sa

2 �sa
2 �sa

2 �sa
2

0.06386(85) - 0.0549(15) - 0.04947(72) - 0.04362(61) -

TABLE XVIII: Estimates of glueball masses and string tensions for N = 4, in units of the lattice spacing a, on lattices of linear
size L and lattice spacing determined by the inverse coupling �. The error in brackets are discussed in the main text.
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� = 27.2 � = 27.3 � = 27.6 � = 27.9
N = 4 L = 16a L = 16a L = 18a L = 20a

mRP a �2/Nd.o.f. mRP a �2/Nd.o.f. mRP a �2/Nd.o.f. mRP a �2/Nd.o.f.

A+
1 0.610(20) - 0.565(20) 1.96 0.530(20) - 0.486(18) -

A+⇤
1 0.91(10) - 0.860(60) - 0.760(50) - 1.27(15) -

A�
1 1.025(51) 2.16 0.890(90) - 0.890(30) - 0.769(33) 1.79

A�⇤
1 1.32(17) - 1.32(16) - 1.30(12) - 1.11(14) -

A+
2 1.480(70) - 1.410(80) - 1.230(90) - 1.164(84) 1.3

A�
2 1.67(15) - 1.690(70) - 1.45(10) - 1.23(12) -

T+
2 0.946(41) 0.98 0.863(49) 0.67 0.815(26) 1.84 0.700(50) -

E+ 0.957(77) 1.94 0.870(50) - 0.839(27) 0.41 0.690(60) -
T �

2 1.200(60) - 1.160(60) - 1.100(90) - 0.972(63) 1.97
E� 1.220(50) - 1.168(36) 2.59 1.030(60) - 0.983(57) 0.94
T+

1 1.41(16) 1.36 1.480(90) - 1.290(90) - 1.230(50) -
T �

1 1.60(10) - 1.45(15) - 1.48(15) - 1.33(10) -
�sa

2 �sa
2 �sa

2 �sa
2

0.03644(56) - 0.03384(56) - 0.02728(48) - 0.02303(54) -

TABLE XIX: Estimates of glueball masses and string tensions for N = 4, in units of the lattice spacing a, on lattices of linear
size L and lattice spacing determined by the inverse coupling �. The error in brackets are discussed in the main text.

� = 28.3
N = 4 L = 22a

mRP a �2/Nd.o.f.

A+
1 0.440(10) -

A+⇤
1 0.910(50) -

A�
1 0.680(70) -

A�⇤
1 1.050(90) -

A+
2 0.940(80) -

A�
2 1.14(11) -

T+
2 0.641(22) 0.64

E+ 0.634(35) 1.78
T �

2 0.849(38) 2.91
E� 0.850(60) -
T+

1 1.020(80) -
T �

1 1.220(90) -
�sa

2

0.01869(50) -

TABLE XX: Estimates of glueball masses and string tensions for N = 4, in units of the lattice spacing a, on lattices of linear
size L and lattice spacing determined by the inverse coupling �. The error in brackets are discussed in the main text.
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FIG. 10: Glueball mass in each symmetry channel RP of the Sp(2N) theory with N = 1, in units of
p

�, as a function of �a2.
For each symmetry channel RP , the value at �a2 = 0 is the continuum limit, obtained from a best fit of Eq. (C1) to the data.
The best fits lines are represented as solid lines.
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For each symmetry channel RP , the value at �a2 = 0 is the continuum limit, obtained from a best fit of Eq. (C1) to the data.
The best fits lines are represented as solid lines.
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p

�, as a function of �a2.
For each symmetry channel RP , the value at �a2 = 0 is the continuum limit, obtained from a best fit of Eq. (C1) to the data.
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N = 2 1
RP mRP /

p
� �2/Nd.o.f. mRP /

p
� �2/Nd.o.f.

A+
1 3.73(15) 0.69 3.209(91) 1.15

A+⇤
1 5.85(56) 0.04 5.89(37) 0.14

A�
1 5.57(30) 0.22 4.91(23) 0.27

A�⇤
1 7.78(51) 0.09 6.70(52) 1.01

A+
2 7.90(56) 0.89 7.70(52) 1.1

A�
2 7.9(1.4) 0.18 8.23(91) 0.66

E+ 5.12(25) 0.71 4.77(19) 0.64
E� 6.99(37) 0.56 6.31(34) 0.98
T+

2 4.76(35) 0.82 4.78(21) 1.0
T �

2 7.24(63) 1.37 6.45(39) 0.71
T+

1 8.28(73) 0.43 8.02(55) 0.43
T �

1 8.15(77) 1.2 8.52(75) 0.75
N = 2 1

mRP /mE+ �2/Nd.o.f. mRP /mE+ �2/Nd.o.f.

A+
1 0.710(33) 0.44 0.675(33) 0.51

A+⇤
1 0.957(77) 0.03 1.230(88) 0.22

A�
1 1.159(54) 0.18 1.005(69) 0.58

A�⇤
1 1.40(10) 0.34 1.50(13) 0.28

A+
2 1.264(79) 0.17 1.56(13) 0.41

A�
2 1.66(18) 0.13 1.76(20) 0.12

E� 1.235(99) 0.45 1.40(11) 0.25
T+

2 0.968(56) 0.13 1.037(58) 0.18
T �

2 1.223(85) 0.43 1.45(11) 0.54
T+

1 1.59(11) 0.14 1.68(14) 1.58
T �

1 1.85(18) 0.01 1.82(18) 1.74

TABLE XXI: In the left column, estimates of the spectrum at N = 2, in units of
p

�a and mE+ . These are obtained from the
data generated for this work (new ensembles). In the right column, the extrapolation to N = 1 obtained from fits of Eq. (54)
to the data using the data in the left column for N = 2 and the same data as before for N = 1, 3, 4.
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N = 2 1
RP mRP /

p
� �2/Nd.o.f. mRP /

p
� �2/Nd.o.f.

A+
1 3.73(11) 0.27 3.222(90) 1.65

A+⇤
1 6.23(19) 0.64 6.29(34) 3.1

A�
1 5.94(29) 1.37 5.01(23) 1.0

A�⇤
1 8.03(29) 0.63 7.25(47) 3.45

A+
2 8.26(37) 0.35 8.14(48) 3.28

A�
2 9.34(41) 0.67 8.76(83) 1.06

E+ 5.16(20) 0.87 4.79(19) 0.71
E� 6.97(25) 3.14 6.39(33) 1.61
T+

2 5.13(21) 1.63 4.83(20) 0.69
T �

2 7.03(24) 0.41 6.67(36) 1.69
T+

1 9.14(47) 2.13 8.37(52) 1.58
T �

1 9.70(55) 1.03 8.96(74) 0.27
N = 2 1

mRP /mE+ �2/Nd.o.f. mRP /mE+ �2/Nd.o.f.

A+
1 0.707(33) 0.62 0.674(32) 0.39

A+⇤
1 1.186(55) 0.16 1.274(82) 1.07

A�
1 1.092(73) 0.82 1.010(69) 0.59

A�⇤
1 1.554(85) 0.89 1.56(13) 0.77

A+
2 1.583(90) 0.72 1.64(12) 1.38

A�
2 1.76(11) 1.0 1.80(19) 0.09

E� 1.346(73) 1.73 1.40(10) 0.14
T+

2 1.040(58) 0.57 1.050(57) 0.23
T �

2 1.354(67) 0.66 1.443(97) 0.36
T+

1 1.83(12) 1.71 1.78(14) 2.38
T �

1 1.85(13) 1.51 1.89(18) 0.35

TABLE XXII: Calculations of the masses in the continuum limit for N = 2 and each channel, in units of
p

�a and mE+ , using
only a reanalysis of the N = 2 data from Ref. [7] (old ensembles), as explained in the text.

RP mRP /
p

� cRP �2/Nd.o.f. mRP /
p

� cRP �2/Nd.o.f.
A+

1 3.241(88) 1.29(29) 2.38 2.87(19) 3.4(1.0) 0.03
A+⇤

1 6.29(33) �1.6(1.2) 2.91 4.94(66) 4.9(3.0) 0.3
A�

1 5.00(22) 2.43(60) 0.63 4.73(50) 3.9(2.5) 0.87
A�⇤

1 7.31(45) 0.9(1.4) 3.5 4.8(1.1) 12.6(4.7) 0.13
A+

2 8.22(46) �2.5(1.3) 3.3 5.5(1.2) 10.5(5.3) 0.15
A�

2 8.69(83) 1.3(3.0) 0.9 7.2(1.7) 8.4(7.5) 0.73
T+

2 4.80(20) 1.01(69) 0.65 4.72(42) 1.5(2.2) 1.26
E+ 4.79(19) 1.15(63) 0.72 4.52(42) 2.6(2.1) 0.9
T �

2 6.71(35) 0.1(1.2) 1.97 5.60(67) 5.8(3.1) 0.06
E� 6.44(33) 0.9(1.2) 2.03 5.52(57) 5.8(2.7) 0.16
T+

1 8.33(51) 0.7(1.6) 1.15 7.5(1.0) 5.2(5.0) 1.41
T �

1 8.76(72) 1.7(2.6) 0.02 8.8(1.3) 1.7(6.3) 0.03

TABLE XXIII: Large-N extrapolated masses of the glueball spectrum obtained from a fit of Eq. (54), in the case in which the
estimates at N = 1 are included (left) or excluded (right). Note that the left hand part of this table is the same as the last
column of Tab. IV and the same as Tab. V.
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