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Centralized scientific
communities are less likely to
generate replicable results
Abstract Concerns have been expressed about the robustness of experimental findings in several

areas of science, but these matters have not been evaluated at scale. Here we identify a large sample

of published drug-gene interaction claims curated in the Comparative Toxicogenomics Database (for

example, benzo(a)pyrene decreases expression of SLC22A3) and evaluate these claims by connecting

them with high-throughput experiments from the LINCS L1000 program. Our sample included 60,159

supporting findings and 4253 opposing findings about 51,292 drug-gene interaction claims in 3363

scientific articles. We show that claims reported in a single paper replicate 19.0% (95% confidence

interval [CI], 16.9–21.2%) more frequently than expected, while claims reported in multiple papers

replicate 45.5% (95% CI, 21.8–74.2%) more frequently than expected. We also analyze the subsample

of interactions with two or more published findings (2493 claims; 6272 supporting findings; 339

opposing findings; 1282 research articles), and show that centralized scientific communities, which

use similar methods and involve shared authors who contribute to many articles, propagate less

replicable claims than decentralized communities, which use more diverse methods and contain more

independent teams. Our findings suggest how policies that foster decentralized collaboration will

increase the robustness of scientific findings in biomedical research.
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Introduction
Concerns over reliability (Ioannidis, 2005) and

reproducibility (Prinz et al., 2011; Begley and

Ellis, 2012) in biomedical science call into ques-

tion the cumulative process of building on prior

published results. In a publication environment

that rewards novel findings over verifications

(Nosek et al., 2015; Alberts et al., 2015), the

replicability of research claims that biomedical

scientists assemble into biological models, drug

development trials, and treatment regimes

remains unknown (Begley and Ellis, 2012;

Yildirim et al., 2007). Exact replications of bio-

medical research (Errington et al., 2014) occur

only on small scales due to prohibitive expense

and limited professional incentive.

Replication failures are typically attributed to

systemic bias in a publication system that favors

positive results (Ioannidis, 2005). This

incentivizes questionable research choices such

as p-hacking (Head et al., 2015;

Simonsohn et al., 2014), ‘flexible’ data analysis

(Simmons et al., 2011), low statistical power

(Dumas-Mallet et al., 2017), selective reporting

(the ‘file drawer problem’) (Rosenthal, 1979),

and confirmation bias (Nuzzo, 2015). These

questionable choices, combined with incomplete

reporting of statistical methods and data

(Nosek et al., 2015), contribute to the publica-

tion of false results that are unlikely to replicate

in future experiments (Simmons et al., 2011).

Here we investigate the community that coa-

lesces around a drug-gene interaction claim. We

hypothesize that a decentralized community of

largely independent, non-overlapping teams,

which draws from a diverse pool of prior publi-

cations, using distinct methods under varying

experimental conditions, is more likely to
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produce robust results. Conversely, we expect

that a centralized community involving repeated

collaborations and using a narrow range of

methods, knowledge from prior publications

and experimental conditions is likely to produce

less robust results. Unfortunately, repeated col-

laboration (Hicks and Katz, 1996;

Guimerà et al., 2005), growing teams

(Wuchty et al., 2007), star scientists (Mer-

ton, 1968; Azoulay et al., 2014), expensive

shared equipment, and common citations

(Evans, 2008; Simkin and Roychowdhury,

2005; White et al., 2004) are defining charac-

teristics of the biomedical research enterprise

today (Hicks and Katz, 1996; Hand, 2010).

Prior simulations have suggested that inde-

pendent labs are less prone to peer pressure

than a densely connected network of scientists,

in which misleading early results can propagate

more easily (Zollman, 2007; Payette, 2012).

Related research on the ‘wisdom of crowds’

(Lorenz et al., 2011) and the exploration-exploi-

tation trade-off (Lazer and Friedman, 2007)

also found densely connected networks to be

inefficient, and suggested that networks of semi-

isolated subgroups would lead to an improve-

ment in collective performance (Fang et al.,

2010). A more recent experiment demonstrates

that decentralized networks, rather than inde-

pendence, may most improve collective

performance. In estimation tasks completed by

networks of individuals, it was found that the

dominance of central individuals in networks

tended to bias the collective estimation process

and decrease the average accuracy of group

estimates (Becker et al., 2017).

A separate body of literature attributes

robustness of scientific findings to diverse meth-

ods (Kaelin, 2017; Wimsatt, 2012) used to cor-

roborate them or distinct theories used to

motivate them. A classic example is Jean Perrin’s

use of multiple experimental techniques and

theories to precisely determine Avogadro’s

number (Salmon, 1984). Nevertheless, there has

been no comprehensive evaluation of the rela-

tionship between the way scientific communities

are networked and the robustness and replica-

bility of published findings. Moreover, when

empirical data on scientific collaboration have

been used (Guimerà et al., 2005), the outcomes

of collective performance have typically been

measured indirectly (e.g., via article or journal

citations). Similarly, literature on research

reliability has focused on methodological fea-

tures rather than the way scientific communities

are networked. Moreover, there has been rela-

tively little research of this nature in the field of

biomedical science.

Here we demonstrate a strategy for evaluat-

ing the replication likelihood for tens of thou-

sands of drug-gene interaction claims. This

strategy builds on the synergy of two advances.

First, databases of empirical claims curated from

the scientific literature in certain subject areas

such as molecular toxicology and biochemistry

(Davis et al., 2017) can be linked to databases

of scientific articles such as MEDLINE and the

Web of Science to systematically analyze fea-

tures that characterize the provenance of a sci-

entific claim (Evans and Foster, 2011) such as

authors, affiliations, and the number of experi-

ments for and against. Second, data from high-

throughput experiments (Subramanian et al.,

2017) performed by robots allow researchers to

estimate the replication likelihood for many pub-

lished claims. Here we report the results of anal-

yses performed on claims identified by

comparing the Comparative Toxicogenomics

Database (CTD; Davis et al., 2017) and the

LINCS L1000 experiment (Subramanian et al.,

2017; see Figure 1 and Materials and methods).

The CTD had recorded over 1.26 million

drug-gene interaction (DGI) claims published in

journals as of June 7, 2016, with each claim

being a ‘triple’ of a drug, a gene and an interac-

tion effect. We selected interaction effects in

which a drug either ‘increases expression’ or

‘decreases expression’ of an mRNA in human tis-

sues. This resulted in a sample of 239,713 DGI

claims curated from 11,754 scientific articles.

The LINCS L1000 experiment generated 1.3 mil-

lion gene expression profiles from 42,080 pertur-

bagens across a range of different cell lines,

time points and dosage levels. Each profile con-

sisted of a drug, a gene (mRNA) and a z-score.

The LINCS L1000 experiment consolidated mul-

tiple expression profiles to generate a moder-

ated z-score for each experimental condition,

and we combined these into a single combined

z-score for each drug and gene (mRNA). We

matched these triples from the LINCS L1000

experiments to triples in the CTD, and found

51,292 drug-gene interactions at the intersec-

tion, corresponding to 60,159 supportive find-

ings and 4253 opposing findings from the

literature, annotated from 3363 scientific articles
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(see Supplementary file 1). We use this sample

to estimate how the probability of claim replica-

tion depends on support in the literature, social

independence, methodological independence,

knowledge independence, scientist centraliza-

tion, journal prominence, and experimental vari-

ability (see Materials and methods).

Our high-throughput replication strategy

evaluates the replicability of a broad scientific

claim rather than the reproducibility of any sin-

gle experiment contributing to that claim. (The

evaluation of an individual experiment requires

the original experimental protocol to be

repeated in the new experiment

[Errington et al., 2014].) Nevertheless, collec-

tive agreement across many published findings

provides evidence for a robust claim – that is, a

claim that withstands changes in the technique

used (Wimsatt, 2012; Nosek and Errington,

2017; Kaelin, 2017), the scientists doing the

research and the experimental setting. Such

claims form a solid foundation for further

research and, potentially clinical trials based on

the claim.

Results

Distribution and agreement of
experiments

We observe a long-tailed distribution of pub-

lished findings in support of a given DGI claim

(Figure 1A). Most claims are supported by find-

ings in one (89%) or two (8%) articles, while few

appear in many articles. There is wide consensus

in the literature: the vast majority of published
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Figure 1. Alignment of drug-gene interaction (DGI) claims reported in the literature with DGI claims from high-

throughput experiments. (A) Our analysis of 51,292 DGI claims (see Supplementary file 1) in the literature

revealed 60,159 supporting findings (green) and 4253 opposing findings (pink) in aggregate. These DGI claims co-

occurred in both the CTD publication dataset and the LINCS L1000 exerimental dataset. Most claims (45,624) were

supported by just one published finding, 4127 claims were supported by two published findings, and the

remaining 1541 claims were supported by three or more published findings. Some claims (3154) were both

supported and opposed by the published findings, meaning that in addition to the supporting finding(s), there is

one or more increase/decrease interactions in the CTD dataset that propose the opposite effect: 2563 claims were

opposed by one, 376 by two, and 215 by three or more published findings. Please note that both axes in the main

graph are logarithmic. (B) We calculated experimental effect sizes with combined z-scores for the 51,292 DGI

triples in the LINCS L1000 dataset. This graph plots the probability (y-axis) versus absolute value of the combined

z-score for all triples (blue line) and those that are significant at the 0.05 level (salmon line). Significant in this

context means that the drug-gene effect is observed across a range of experiment conditions; the method used to

determine significance is described in Materials and methods.

DOI: https://doi.org/10.7554/eLife.43094.002

The following figure supplements are available for figure 1:

Figure supplement 1. Publications that share authors are more likely to agree about the direction of a drug-gene

interaction than publications with distinct authors, computed among pairs of papers reporting claims in the sub-

corpus of 2493 claims.

DOI: https://doi.org/10.7554/eLife.43094.003

Figure supplement 2. Estimates of probability density functions for variables of interest in our corpus using a

normal kernel function.

DOI: https://doi.org/10.7554/eLife.43094.004
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findings (93%) agree on the direction of DGI

claims. Among the 11% of claims supported by

two or more published findings, the agreement

increases to 94%. In contrast, only 41% (21,181/

51,292) of the DGI effect-sizes in LINCS L1000

generalize across experimental conditions

(Figure 1B). Although those two quantities –

agreement among published findings and gen-

eralizability of LINCS L1000 effect sizes – are not

directly comparable as they utilize different

measurements, the overwhelming agreement

observed in the literature compared to the

LINCS L1000 data suggests that the literature

may influence the selection and interpretation of

experimental results by scientists through confir-

mation bias. One consequence of this is that

experimental results that contradict preexisting

knowledge are ‘filed away’ rather than submit-

ted to journals (Rosenthal, 1979).

Further, we find that consensus in the bio-

medical literature is strongly and positively asso-

ciated with connections between papers arising

from overlapping authors. A pair of findings

about a DGI claim reported in papers with some

of the same authors are significantly more likely

to agree (0.989, 2486 of 2514 overlapping pairs

of papers) than findings reported in papers by

socially independent teams (0.889, 18,527 of

20,846 non-overlapping pairs of papers), with a

mean difference of 0.1001 (95% CI, 0.094–0.106,

P <.0001, 100,000 bootstrap iterations; Fig-

ure 1—figure supplement 1).

Replication rates

For a given set of claims it is possible to esti-

mate a random or baseline replication rate

RRrand and an observed replication rate RRobs

(along with 95% confidence limits for both) using

the approach outlined in ‘Measuring relative

replication increase’ (see Methods and materi-

als). For our sample we estimate RRobs to be

0.556 (95% CI, 0.553–0.558, N = 51,292 claims)

and RRrand to be 0.503 (95% CI, 0.498–0.506,

N = 51,292 claims): this corresponds to a per

centage relative replication increase (RRI =

((RRobs – RRrand)/RRrand) � 100%) of 10.6% (95%

CI, 9.3%–11.8%). Figure 2D shows that, as

expected, DGIs that generalize across experi-

mental conditions in LINCS L1000 are more

likely to replicate published DGI claims (RRobs =

0.604, 95% CI, 0.597–0.610, n = 21,181 claims)

than DGIs that do not generalize (RRobs = 0.522,

95% CI, 0.516–0.528, n = 30,111 claims). Indeed,

the replication rate for the latter group is only

marginally higher than RRrand for this group

(RRrand = 0.501, 95% CI, 0.496–

0.507, n = 30,111 claims). Encouragingly, this

suggests that some disagreement within the lit-

erature is attributable to experimental and bio-

logical variation in the experiments performed

by different scientists. In the subsequent analy-

sis, we consider generalized LINCS L1000 DGIs

because only those can serve to evaluate the

replicability of published claims.

Collective correction in science

A central concern is whether the replication

problem applies only to novel and rare claims or

if it also afflicts widely supported results, as

recently hypothesized (Nissen et al., 2016;

McElreath and Smaldino, 2015). To examine

this question, we integrated collective findings

using a binomial Bayesian model (Gelman et al.,

2013) with a uniform prior that accommodates

skewed distributions (Davidson-Pilon, 2015) like

that of findings per claim we observed. The

model allocates higher probability to scientific

claims unanimously supported in a large number

of articles and lower probability to infrequent

and disputed claims (Figure 2A). The resulting

posterior distributions of support were used to

categorize DGI claims into five classes of sup-

port: Very High, High, Moderate, Low support,

and Not Supported (see Figure 2B and Materi-

als and methods).

Figure 2E shows that claims with Very High

support in the biomedical literature

(RRI = 45.5%; 95% CI, 21.8–74.2%) with an aver-

age of 6.9 papers confirming the claim, and

claims with High support (RRI = 34.5%; 20.2–

50.3%) with an average of 3.3 confirming

papers, are substantially more likely to replicate

in high-throughput experiments than those with

Low and Moderate support (RRI = 19.0%; 16.9–

21.2% and 16.2%; 9.8–22.9%, respectively). The

replication of claims with Low and Moderate

support is consistent with reproducibility esti-

mates reported in the literature, ranging from

11% (N = 67; Begley and Ellis, 2012) to 25%

(N = 53; Prinz et al., 2011). Claims with Very

High and High support replicate at a much

higher rate, whereas Not Supported claims are

significantly less likely to replicate than random

(RRI = �28.9%; �61.9%–16.7%). They are also

associated with greater experimental variability

(Figure 2F), confirming that collective disagree-

ments among findings truthfully signal experi-

mentally unstable interactions peculiar to

specific contexts and unlikely to replicate.

Logistic models adjusting for experimental

variability confirm the positive relationship

between scientific support in the literature Lsupt
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Figure 2. Estimates of claim replication as a function of the probability of support in the literature and generalizability across high-throughput

experiments. (A) Posterior distributions of probability of support in the biomedical literature for a sample of seven DGI claims for which there are at

least two findings (supporting and/or opposing). Note that the top three claims receive only supporting findings in the literature, whereas the fourth

and fifth claims are opposites (so papers that support the fourth claim oppose the fifth claim, and vice versa), and likewise for the sixth and seventh

claims. We obtained model estimates for each claim by performing 10,000 Markov chain Monte Carlo (MCMC) sampling iterations (see Materials and

methods). For each claim, we summarize the probability of support (dashed vertical line) using the lower bound on the one-sided 95% posterior

credible interval: this value ranges from 0.84 for a claim that is supported by 16 findings and opposed by no findings, to 0.03 for a claim that is

supported by one finding and opposed by 10 findings. (B) DGI claims in the literature can be categorized into one of five classes of support (Very High;

High; Moderate; Low; Not Supported) on the basis of distributions like those in panel A; the number of claims included in each class is shown in

brackets. (C) Number of DGI claims that are significant (second row) and not significant (third row) at the 0.05 level in the LINCS L1000 dataset for the

whole corpus (second column) and for each of the five classes of support in the literature (columns 3–7). (D) Observed replication rates (RRobs) and

expected replication rates (RRrand) for claims that are significant and non-significant in the LINCS L1000 dataset for the whole corpus (left) and for each

of the five classes of support in the literature. (E) The relative replication increase rate (RRI ¼ 100� RRobs�RRrand

RRrand
) for claims that are significant in the LINCS

L1000 dataset (left) and for each of the five classes of support in the literature. (F) Variability (coefficient of variation) in the LINCS L1000 dataset across

cell lines, durations and dosages for claims that are significant in this dataset (left) and for each of the five classes of support in the literature. Statistical

significance and error bars were determined by bootstrapping (see Materials and methods). All error bars represent 95% CI.

DOI: https://doi.org/10.7554/eLife.43094.005

The following figure supplements are available for figure 2:

Figure supplement 1. Replication increases with claim’s probability of support in the literature.

DOI: https://doi.org/10.7554/eLife.43094.007

Figure 2 continued on next page
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and the probability of replication success (Fig-

ure 2—figure supplement 1). These results sug-

gest that findings reported in a single

biomedical article are likely fallible. Viewed as a

complex system of converging and diverging

findings, however, biomedicine exhibits collec-

tive correction.

We note that the process of collective correc-

tion applies to a small subset of claims as the

majority of claims (89%) in our corpus are only

reported in a single paper. Multiple factors

could account for why a large proportion of

claims in the corpus are not reported in repeat

experiments. The lower replication rate of sin-

gle-study claims indicates that many of those

novel claims were likely obtained by chance.

Even if tested further, they are less likely to pro-

duce positive results compared to multiple-stud-

ied claims, and thus more likely to be filed away

than submitted to a journal. This interpretation

is supported by our finding that single-study

claims in our corpus (ie, claims in the Low sup-

port class) have a RRobs of only 0.601, while the

first published studies about multiple-studied

claims that eventually achieve High or Very High

support have a RRobs of 0.720.

Networked scientific communities and
replicability

Independent and decentralized sources of evi-

dence should increase claim robustness. We

examine the impact of social and technical

dependencies on the replication of biomedical

claims by fitting logistic regression models to

predict replication success against our network

dependency measures for each claim. We per-

formed this analysis using subsamples of DGI

claims that simultaneously: 1) received support

from multiple papers in the literature (i.e., claims

with Moderate and above support in the litera-

ture), thereby converging on an effect direction;

and 2) generalized across conditions in LINCS

L1000. The resulting subsample consists of 2493

claims, associated with 6272 supporting and 339

opposing findings from 1282 research articles

(see Supplementary file 2). Despite the smaller

size of this subsample, our analysis represents

the largest biomedical replication of its kind to

date. We restrict our analysis of dependencies

to a subsample of published DGI claims

supported by multiple papers because single-

paper claims cannot, by definition, exhibit net-

work dependencies or centralization. By examin-

ing only interactions having significant

agreement within both the literature and LINCS

L1000, we can directly examine the effect of

social, methodological, and knowledge depen-

dencies on the replicability of published claims

in high-throughput experiments (see Figure 3

and Figure 4).

Figure 4A shows that the odds ratios (OR) of

replication increase substantially with support in

the literature Lsupt (OR 23.20, 95% CI, 9.08–

59.3), social independence Sind (OR 6.31, 95%

CI, 4.07–9.79), methodological independence

Mind (OR 6.30, 95% CI, 3.44–11.53), and knowl-

edge independence K ind (OR 5.53; 95% CI,

2.58–11.84). Consistent with this pattern, claim

replication decreases sharply with centralization

C (OR 0.36, 95% CI, 0.27–0.48). Our estimates

indicate that claim robustness, defined here as

repeated instances of confirmatory decentral-

ized evidence, increases replication success (see

also Figure 4—figure supplement 1). When all

predictors are modeled simultaneously

(Figure 4A), centralization and support in the lit-

erature largely account for all of the others. This

suggests that centralized and extensive biomedi-

cal collaboration is associated with use of the

same biomedical research techniques and atten-

tion to the same prior research (see Figure 3—

figure supplement 1).

Social dependencies could impact the com-

position of researchers studying a claim by dis-

couraging researchers outside the dense

communities of researchers who initially lay claim

to it from pursuing or reporting their findings, as

suggested in previous research (Azoulay et al.,

2015). Focusing on High and Very High support

claims with some degree of centralization

(n = 295), we found that claims originally

reported and subsequently confirmed by papers

with overlapping authors (n = 117) resulted in

much more centralized communities (mean

C = 0.6164; 95% CI, 0.5925–0.6402) compared

to claims reported and subsequently confirmed

by papers with independent authors (n = 178;

mean C = 0.4004; 95% CI, 0.3765–0.4242; two-

way ANOVA test with unbalanced design.) This

exploratory result suggests that claims

Figure 2 continued

Figure supplement 2. Description of claim types in the whole corpus of 51,292 claims.

DOI: https://doi.org/10.7554/eLife.43094.006
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exhibiting social dependencies very early in their

development likely receive limited attention and

reportage from researchers outside the commu-

nities that originated them.

An alternative explanation for replication suc-

cess is the biological tendency for some

DGI claims to generalize across conditions and

so replicate in future experiments. Figure 4A

shows that experimental variability has a nega-

tive, marginally significant effect on replication,

but support from multiple teams organized in
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Figure 3. Exemplary networks comprising social, methodological, and references dependences and centralization patterns in scientific communities.

(A) Multilayer networks for four of the claims shown in Figure 2A. The nodes in each layer are scientific papers. Pairs of papers are connected by an

unweighted edge in the top layer if they agree on the effect direction, and by a weighted edge in the other layers if there is an overlap of authors

(second layer), methodologies (third layer) or references to prior publications (fourth layer): the thickness of the weighted edges is proportional to the

overlap (Jaccard coefficient; JC); for clarity, we only plot edges above the mean JC value in the third layer. Dashed red lines in the top layer separate

supporting and opposing findings. Each layer is associated with a score: support in the literature Lsupt, social independence Sind, methodological

independence Mind, and knowledge independence Kind (see ‘Network dependencies and centralization’ in Methods and materials). Figures plotted with

Pymnet (Kivela€, 2017). (B) Bipartite network with edges connecting authors (rectangles) to the papers they published (circles) for the 10 papers that

support the claim shown in the fourth panel of Figure 3A. A small group of investigators author most of these papers, while most investigators author

only one paper, making this a centralized network. The Gini coefficient (see Materials and methods) for this network is 28.3%. (C) Bipartite network for

the six papers that support the claim shown in the third panel of Figure 3A. Here all investigators author relatively comparable numbers of papers: this

decentralized network has a Gini coefficient of 12.4%. (D, E) Lorenz curves for the examples shown in B and C.

DOI: https://doi.org/10.7554/eLife.43094.008

The following figure supplements are available for figure 3:

Figure supplement 1. Pearson correlation coefficients between network indices.

DOI: https://doi.org/10.7554/eLife.43094.009

Figure supplement 2. Papers and pairs of papers are differentiated by the number of findings they report (in the sub-corpus of 2493 claims).

DOI: https://doi.org/10.7554/eLife.43094.010

Danchev et al. eLife 2019;8:e43094. DOI: https://doi.org/10.7554/eLife.43094 7 of 18

Feature article Meta-Research Centralized scientific communities are less likely to generate replicable results

https://doi.org/10.7554/eLife.43094.008
https://doi.org/10.7554/eLife.43094.009
https://doi.org/10.7554/eLife.43094.010
https://doi.org/10.7554/eLife.43094


decentralized communities are much more infor-

mative predictors of replication success.

Our combined model also accounts for jour-

nal prominence J, which we measure with journal

eigenfactor (Bergstrom et al., 2008), a score

that credits journals receiving many citations

from highly cited journals. Claim replication

increases with journal prominence (Figure 4A

and Figure 4—figure supplement 1), but prom-

inent journals are responsible for only a tiny frac-

tion of all claims. This warrants our evaluation

strategy and the practice of extracting and

archiving findings from a wide range of journals

(Davis et al., 2017).

Figure 4B shows that by accounting for bio-

medical support and decentralization, we can

identify claims with high predicted probability of

replication. Claims supported by many

publications have about 45% higher predicted

probability to replicate when investigated by

decentralized versus centralized communities.

Even if a DGI claim garners wide support, if it is

studied exclusively by a centralized scientific

community, the claim has a predicted probability

of replication that is similar to that for a claim

reported in a single paper. It is unlikely that such

a claim will clear a clinical trial or enter medical

practice (see Figure 4—figure supplement 2).

This suggests that collective correction in sci-

ence can be undermined when one or several

scientists exercise disproportionate influence on

research across multiple investigations of a

claim. Likewise, claims robust to many, socially

independent investigations have 55% higher

predicted probability of replication than those

studied by a few overlapping collaborations
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Figure 4. Predictors of replication success. (A) Odds ratios derived from logistic regression models with claim replication as the response variable and

seven predictors modeled independently (disconnected colored dots; n = 2493) and simultaneously (connected grey triangles; n = 2491). Predictors are

rescaled xi�min xð Þ
max xð Þ�min xð Þ for comparability. P-values are adjusted for multiple comparisons using the Benjamini–Hochberg (Benjamini and Hochberg, 1995)

procedure. (B–C) Contour plots showing that the predicted probability of claim replication (derived from logistic regression models with interaction

terms, see also Figure 4—figure supplements 2,3) increases with decentralization and support in the literature (B), and with social independence and

support in the literature (C), after adjusting for variability in LINCS L1000.

DOI: https://doi.org/10.7554/eLife.43094.011

The following figure supplements are available for figure 4:

Figure supplement 1. Predictors of replication success.

DOI: https://doi.org/10.7554/eLife.43094.012

Figure supplement 2. Claims reported by centralized communities less likely replicate.

DOI: https://doi.org/10.7554/eLife.43094.014

Figure supplement 3. Claims reported by multiple socially independent teams more likely replicate.

DOI: https://doi.org/10.7554/eLife.43094.015

Figure supplement 4. Estimates of probability density functions for our variables on the sub-corpus of claims with determined direction of the drug-

gene effect in CTD and LINCS L1000.

DOI: https://doi.org/10.7554/eLife.43094.013

Figure supplement 5. Support in the literature and decentralization of scientific communities remain strong and significant predictors of claim

replication success after we account for multicollinearity.

DOI: https://doi.org/10.7554/eLife.43094.016
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(Figure 4C and Figure 4—figure supplement

3). All models adjust for experimental variability

in the LINCS L1000 data. Results are robust to

outliers and multicollinearity (see Appendix 1).

Discussion
This paper repurposes high-throughput experi-

ments to evaluate the replicability of tens of

thousands of DGI claims from the biomedical lit-

erature. It provides evidence that research repli-

cability is associated with the way scientific

collaborations are networked, after adjusting for

variability in high-throughput experiments and

the methodology of published studies. Central-

ized, overlapping communities with shared

methodologies and exposure to the same prior

knowledge are supported by extensive collabo-

ration (Hicks and Katz, 1996; Hand, 2010),

ubiquitous communication technologies, a

reward system that places a premium on pro-

ductivity, and cumulative advantage processes

that create central, star biomedical scientists

(Azoulay et al., 2014). Our results indicate that

such communities are associated with scientific

findings of lower replicability. Decentralized,

sparsely connected communities explore diverse

research methodologies and prior knowledge

(Figure 3—figure supplement 1) and are more

likely to generate replicable findings.

Our work addresses widely shared concerns

about the robustness of research results in bio-

medicine. Recent work (Nissen et al., 2016;

McElreath and Smaldino, 2015) submitted that

reliability issues uniformly impact scientific find-

ings, afflicting even widely accepted ‘facts’. Nis-

sen et al. reason that even if many studies

converge on the same finding, this may not

increase our confidence because the same sys-

tematic biases – publication bias in particular –

that made the original finding false are also

likely to affect subsequent findings, resulting in a

canonization of ‘false facts’ (Nissen et al.,

2016). Our analysis identifies conditions under

which such an argument holds, namely for

research claims studied by centralized, overlap-

ping collaborations. In the absence of social

independence, replicability is low and the likeli-

hood of a claim being revised or withdrawn is

virtually non-existent as authors and methods

reinforce agreement with themselves. Both dis-

agreement and replication increase when teams

from a decentralized or sparsely connected com-

munity provide separate confirming evidence for

a claim. Our findings allay science policy con-

cerns over a universal ‘replication crisis’ and

identify conditions – decentralized and novel col-

laborations – that facilitate collective conver-

gence on replicable findings in biomedical

science.

Our findings highlight the importance of sci-

ence policies that promote decentralized and

non-repeated collaborations. We acknowledge

that certain ‘big science’ initiatives (Hand, 2010),

such as the human genome project

(International Human Genome Sequencing

Consortium, 2001), involve large international

consortiums that require a degree of repeated

collaboration and centralization by design. It is

also the case that the current organization of sci-

ence incentivizes repeated collaborations

(Guimerà et al., 2005; Lungeanu and Contrac-

tor, 2015; Hilton and Cooke, 2015), including

centralized communities revolving around star

scientists (Azoulay et al., 2014) or prestigious

and well-endowed institutes. By reducing infor-

mation and coordination costs, repeated collab-

orations are more productive than new ones

(Hilton and Cooke, 2015). Consequently, proj-

ects that involve prior collaborators are more

likely to be funded (Lungeanu et al., 2014) and

successfully completed (Cummings and Kiesler,

2008). Such positive feedback, however, can

lead to the lock-in of rigid collaborative clusters,

which produce voluminous scientific output with

diminished value for the wider biomedical field.

Science policies supporting biomedicine should

account for the trade-off between increased pro-

ductivity and diminished reliability.

Our choice of repurposing the LINCS L1000

data to estimate the replication likelihood of

published claims places importance on unfiltered

high-throughput experiments for our results. We

note, however, that our approach does not rely

on the LINCS L1000 data being completely free

from error. Rather, we argue that the LINCS

L1000 data are: i) produced with methods repre-

sentative of DGI research; ii) free from social,

prior knowledge and narrow methodological

dependencies associated with the sequential

publication of findings by communities of

researchers. In this way, our manuscript attempts

to elucidate biases introduced by the social, cul-

tural and methodological structure of science to

noisy experimental data. From this perspective,

LINCS L1000 experiments must remain unfil-

tered by the publication system and the expect-

ations of any particular scientific community. In

the current state of the biomedical literature,

where most reported results are confirmatory,

scalable approaches for identifying uncertain

claims are in short supply. Experimental data
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such as the LINCS L1000 provides an informed

approach to evaluate published claims.

This paper demonstrates an approach to

evaluate the replicability of potentially vast num-

bers of published biomedical claims simulta-

neously. With the proliferation of high-

throughput experimental platforms and

improvements in cross-platform reproducibility

(Haibe-Kains et al., 2013), the approach we

report here could be further refined and

extended to a continuous replication system

(Goodman et al., 2016) that revises scientific

results in light of new experimental evidence,

increasing the credibility and robustness of bio-

medical knowledge.

Materials and methods

High throughput claim replication strategy

We examined a corpus of 51,292 scientific claims

about drug-gene interactions in human systems.

We compiled the corpus by using claims about

directed drug-gene interactions (DGIs) curated

from biomedical publications in the Comparative

Toxicogenomics Database (CTD) (Davis et al.,

2017). Each scientific claim is a triple of drug,

gene, and interaction effect. For comparability

with high-throughput experiments, we selected

interaction effects in which a drug ‘increases

expression’ or ‘decreases expression’ of an

mRNA in humans (effect magnitudes were not

recorded), amounting to 239,713 DGI claims

curated from 11,754 scientific articles. The CTD

provides PubMed IDs of articles in which the

finding is reported, which enabled examination

of article content (e.g., methods) and metadata

(e.g., authors, citations).

To estimate replication likelihood, we map

our corpus of DGI claims to high-throughput

experimental data from the NIH LINCS L1000

program, which was performed at the Broad

Institute of MIT and Harvard. This program gen-

erated 1.3M gene expression profiles from

42,080 chemical and genetic perturbagens

across cell lines, time points, and dosage levels

(Subramanian et al., 2017). We used profiles

induced by chemical perturbagens, amounting

to 19,811 small molecule compounds (including

FDA approved drugs). The LINCS L1000 data

have been reported to be highly reproducible

(Subramanian et al., 2017) compared to drug

screen data generated via RNA sequencing,

instances of which have been found to exhibit

inconsistencies across platforms (Haibe-

Kains et al., 2013).

The LINCS L1000 team consolidated multiple

expression profiles or replicates into signatures

corresponding to moderated

(Subramanian et al., 2017) z-scores (Level five

data in LINCS L1000). Each signature and corre-

sponding moderated z-score is a representation

of gene responses to drug perturbations under

a particular cell line, dosage, and duration. We

combined moderated z-scores for each DGI

using a bootstrapped modification of Stouffer’s

method (Whitlock, 2005; Himmelstein et al.,

2017) Z ¼
Pk

i¼1
zi

ffiffi

k
p , where zi is a moderated z-score

and k is the number of moderated z-scores for

the DGI. We bootstrapped (10,000 iterations)

each sample of moderated z-scores per DGI to

estimate confidence intervals. The samples vary

across DGIs as a function of the number of cell

lines, dosages, and durations under which the

DGI was tested (the mean and median of mod-

erated z-scores per DGI in our corpus are 143.8

and 49, respectively).

The above procedure generates triples of (i)

drug, (ii) gene (mRNA), and (iii) combined

z-score indicating experimental effect size and

direction. We matched DGI triples from the

LINCS L1000 experiments to DGI triples in CTD,

and found 51,292 DGIs at the intersection, cor-

responding to 60,159 supportive and 4253

opposing findings from the literature, annotated

from 3363 scientific articles (Appendix 1 details

data sources). To verify that published findings

have been obtained independently from the

LINCS L1000 high-throughput data, a search in

PubMed was performed using the search terms

LINCS L1000 and L1000. The search identified

no reference to the LINCS L1000 data among

the 3363 articles.

Experimental generalizability and
variability

We used the confidence intervals for the com-

bined z-scores we estimated via bootstrapping

for each of the 51,292 DGIs to differentiate gen-

eralized from context-specific interactions in

LINCS L1000. We classified DGIs as ’generalized’

those significant at the 0.05 level (i.e., the corre-

sponding 95% confidence intervals do not con-

tain the null value of 0; see Figure 2C and 2D).

For generalized/significant DGIs, we further

examine robustness to experimental conditions

(Kaelin, 2017; Goodman et al., 2016;

Van Bavel et al., 2016) by measuring variability

of each interaction in LINCS L1000 across cell

lines, dosages, and durations using the coeffi-

cient of variation (CV). For a set of z-scores
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about a DGI in LINCS L1000, CV z is defined as

the ratio of the standard deviation to the abso-

lute value of the mean CV z ¼ sz

absð�zÞ
. CV z is a nor-

malized measure of variability that allows us to

make comparisons across DGIs.

Bayesian model of scientific support

Claims about DGIs receive different proportions

of supporting and opposing published findings.

To estimate the probability of support or confir-

mation in the literature Lsupt for each DGI claim,

we design a simple Bayesian model

(Gelman et al., 2013; Davidson-Pilon, 2015;

Kruschke, 2014). We assume that the prior dis-

tribution of q is uniform on the interval [0,1]: qi
~Uniform(min = 0, max = 1). Further, we assume

that the number of supporting published find-

ings g in n findings about that claim is drawn

from a binomial distribution, p(g |q) ~ Bin(g |n, q).

We approximated the posterior density of q for

each drug-gene claim by performing 10,000

Markov chain Monte Carlo (MCMC)

sampling iterations (2,500 burn-in iterations) for

each drug-gene claim using the Metropolis–

Hastings MCMC sampler implemented in the

PyMC package (version 2.3.6) for Python. To

improve convergence, we approximate the max-

imum posterior (MAP) before running the

MCMC sampler (Davidson-Pilon, 2015).

We used the posterior distributions from our

Bayesian model of support to categorize DGI

claims into classes. For each claim, we estimated

the overlap between the posterior credible inter-

vals (PCI) and the null value of m = 0.5

(Figure 2B): Very High support claims

(95%PCI exceeds m) yield agreement from multi-

ple papers (~7 papers on average), amounting

to 325 claims supported by 2241 findings, but

only opposed by 21; High support claims

(80%PCI exceeds m) yield agreement from 3

papers on average, comprising 1083 claims, sup-

ported by 3525 and opposed by 42 findings;

Moderate support claims (68%PCI exceeds m)

yield agreement from 2 papers on

average, comprising 3743 claims, supported

by 7557 and opposed by 38 findings; Low sup-

port claims (68%PCI contains m) are overwhelm-

ingly supported by a single finding or opposed

by virtually the same number of findings that

support them such that the direction of the

effect is undetermined, comprising 46,064

claims, supported by 46,735 and opposed

by 3668 findings. Not Supported claims

(68%PCI is smaller than m) generate lower sup-

port than expected as a greater number of

papers reported findings in the opposite direc-

tion, comprising only 77 claims, supported by

101 and opposed by 484 findings (Figure 2—

figure supplement 2).

Measuring relative replication increase

A DGI is replicated, R ¼ 1; if the direction of the

effect size (i.e., positive or negative combined

z-score) in LINCS L1000 matches the direction of

the effect (i.e., increase or decrease) claimed in

literature, and R ¼ 0; otherwise. For the entire

corpus and for selected subsets of the corpus,

we created replication vectors [1, 0] and calcu-

lated observed replication rates RRobs by divid-

ing the number of replicated claims by the total

number of claims. We then bootstrapped

(100,000 iterations) the replication vectors to

estimate the 95% percentile confidence intervals

of RRobs (Figure 2D). We empirically estimated

the baseline or random replication rate RRrand

(the proportion of random matches in which

LINCS L1000 effects matched the direction of

the effects reported in the literature) for the

entire corpus and for various subsets of the cor-

pus by iteratively matching published DGI claims

to randomized combined z-scores in LINCS

L1000 (100,000 random permutations). We

then used the resulting permutation distribu-

tions to determine the 95% confidence intervals

of RRrand. The empirical baseline model corrects

for unbalanced data, which would occur if more

claims of a certain direction, either ‘increasing’

or ‘decreasing’, are present in both literature

and high-throughput experiments. The percent-

age relative replication increase RRI is defined

as: RRI ¼ 100� RRobs � RRrand=RRrandð Þð .

Network dependencies and centralization

We represent network dependencies for each

claim as a multilayer network (Kivela et al.,

2014) M ¼ ðVM;EM; LÞ (Figure 3A). In each net-

work layer L, nodes V are biomedical papers

and edges E between pairs of papers represent

either a binary relationship of agreement ðL1Þ or
the amount of overlap between the authors ðL2Þ,
methodologies ðL3Þ, and references to prior

publications ðL4Þ in the two papers. We quantify

the amount of overlap between research papers

using the Jaccard coefficient (JC). For any attri-

bute – i.e., authors, methods, or references – Ai

and Aj, JC is the size of intersection divided by

the size of the union: JCðAi;AjÞ ¼ Ai \Ajj j
Aij jþ Ajj j� Ai \Ajj j.

The resulting quantity represents the edge

weight between a pair of articles in the
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respective network layers of shared authors L2ð Þ,
methods L3ð Þ, and references L4ð Þ. Each drug-

gene claim constitutes an undirected, multilayer

network of papers connected via such weighted

edges across layers (see Figure 3A).

We define an independence score IND as the

proportion of maximum possible edges

(Wasserman and Faust, 1994) in a network layer

Emax ¼ E
n n�1ð Þ=2 not present, IND ¼ Emax� W

Emax
, where

W is the sum over all weighted edges in a claim’s

respective layer of shared authors, methods, or

references. Our independence scores can be

viewed as the probability that any two randomly

chosen findings about a claim are obtained by dis-

connected sets of authors (social independence

S ind), methods (methodological independence

Mind), and references (knowledge independence

Kind), respectively. The independence scores

approach one when most papers with findings in

support of a claim share no common authors,

methods, and references, and 0 when all papers

share all of their authors, methods, and referen-

ces, respectively (see Appendix 1).

To quantify the centralization of research

communities C for each claim, we employed the

Gini coefficient. The Gini coefficient is used to

measure the heterogeneity of distributions in

social and information networks (Kunegis and

Preusse, 2012). The coefficient ranges between

0 and 1. In the context of a bipartite author-arti-

cle network (Figure 3B–C), the coefficient

approaches 0 when all investigators author equal

numbers of articles about a claim and increases

to 0.3 and above (depending on the number of

articles), when one investigator authors all

articles and all others author only one. The Gini

coefficient can be also represented as a percent-

age ranging from 0 to 100, as in Figure 2D–E.

While other measures of network centralization

are available (e.g., Freeman’s centralization

[Freeman, 1978]), the Gini coefficient, and the

Lorenz curve on which it is based, is indepen-

dent from the underlying degree distribution,

making it suitable for comparisons among net-

works with different size and mean degree

(Kunegis and Preusse, 2012; Badham, 2013).

Replication prediction models

We fit univariate, multivariate, and interaction

logistic regression models to estimate odds

ratios, relative risk, and predicted probabilities

of claim replication as a function of support in

the literature Lsupt, social independence Sind,

methodological independence Mind, knowledge

independence Kind, centralization C, journal

prominence J, and experimental variability CV .

First, for exploratory purposes, we model each

variable independently (see Figure 4A, Fig-

ure 4—figure supplement 1, and

Supplementary file 3). Second, we model our

variables simultaneously (see Figure 4A, Fig-

ure 4—figure supplement 1, and

Supplementary file 4):

logitP R¼ 1ð Þ ¼ b0 þb1 �Lsuptþb2� Sindþ
b3 �Mindþb4 �Kindþb5 �Cþb6� Jþb7 �CV

Third, we estimate two interaction models to

examine the effect of support in the literature on

replication success as a function of social inde-

pendence and centralization, respectively (see

Figure 4B–C and Figure 4—figure supplements

2,3):

logitP R¼ 1ð Þ ¼ b0 þb1�Lsupt� Sind þb2�CV

b0 þb1 �Lsupt� Cþb2 �CV

To estimate and visualize the logistic regres-

sion models, we used the glm() function, speci-

fying binomial distribution and the canonical

logit link function, and the packages effects

(Fox, 2003), sjPlot (Lüdecke, 2019), and

ggplot2 (Wickham, 2016), all in R.

Data availability

The data and computer code associated with

this analysis are available on the Open Science

Framework at https://osf.io/xmvda/.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.43094.021

Data

High throughput drug-gene interactions

We used the Library of Integrated Network-based Cellular Signatures (LINCS) Phase I L1000

data set (Subramanian et al., 2017) to estimate claim replication. The data set measures the

expression of 978 landmark genes treated with wide range of perturbagens across cell lines,

time points, and dosage levels (concentration), resulting in approximately 1.3M profiles. The

experimental profiles are aggregated to 473,647 signatures, as represented in Level five data

we used to perform our analysis. The landmark genes are subsequently used to infer gene

expressions for the remaining genes in the human genome. In addition to the 978 landmark

genes, we consider 9196 for which the LINCS L1000 project estimated to be well inferred,

resulting in 10,174 Best INferred Genes (BING) in total. With respect to perturbagen types, we

used the set of small-molecule compounds (19,811 compounds), which includes a subset of

approximately 1,300 FDA-approved drugs. We accessed the data file

GSE70138_Broad_LINCS_Level5_COMPZ_n118050 � 12328_2017-03-06.gctx.gz and

metadata from the GEO depository at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE70138.

Published drug-gene interactions
We analysed curated data about published interactions between chemicals/drugs and genes/

mRNAs released by the Comparative Toxicogenomics Database (CTD) (Davis et al., 2017) on

June 7 2016. (The current CTD data release is available here: http://ctdbase.org/downloads/).

To align triples of drug, gene, and interaction effect in CTD to corresponding triples in the

experimental signatures from LINCS L1000, we performed the following procedures. First, we

selected drug-gene interactions about Homo sapiens, comprising approximately 40% of the

CTD data. Second, CTD reports the form of the gene (e.g., mRNA, protein) that is implicated,

and we selected only mRNA as LINCS L1000 measures gene expression at the mRNA level.

Third, we mapped chemical names and Entrez gene IDs in the CTD to perturbagen names and

Entrez gene IDs in LINCS L1000. Fourth, to ensure comparability to the LINCS L1000

signatures, we selected drug-gene interactions with a single interaction effect, either

’decreases expression’ or ’increases expression’, defining the direction of the effect that

chemical/drug manifests on a gene/mRNA. Note that we do not consider complex interactions

with multiple, nested effects in our analysis. Likewise, interactions for which the direction of

the effect is not specified, such as ’affects binding’, are not considered. The resulting corpus

at the intersection of LINCS L1000 and CTD comprises 51,292 drug-gene claim combinations

of 605 unique drugs and 9123 unique genes, annotated from 3363 scientific articles.

Variables of claim provenance extracted from article metadata and
content

Social independence and centralization

We used the MEDLINE/PubMed database to extract the set of authors for each paper. To

measure the overlap between two sets of authors, we need individual author identifiers.

Author name disambiguation is a common problem in research on scientific knowledge

production. We used the individual identifiers based on author last name and initials. We note

that because we assessed authors separately for each claim, our conservative matching

procedure is very unlikely to produce false positive author linkages, and so our author co-

paper network should be considered a lower bound for author co-paper density. For the sub-

corpus of 2493 claims, sourced from 1282 papers, we estimated a mean of 6.4 authors per

paper and a mean of 23.5 authors per scientific community defined here as the total number
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of authors that have published papers reporting a drug-gene claim. For the set of papers

supporting a claim, we used JC to measure the overlap between the authors in the various

pairs of papers in the set, and then used our independence score to calculate the social

independence Sind of the claim. Further, we applied the Gini coefficient to the bipartite author-

article network for each claim to compute community centralization.

Methodological independence
We compiled a controlled vocabulary of 3074 terms (incl. synonyms) concerning methods,

techniques, and experimental apparatus used in biomedical research using ontologies of

biomedical investigations (Bandrowski et al., 2016) and statistics (Gonzalez-Beltran et al.,

2016). We then used the RESTful API Web Service of Europe PMC to query the methods

sections from 4.4 million full text articles and extracted, on aggregate, 13,095 terms for 488

articles (38%). In parallel, for all 1282 articles that share a drug-gene claim, we applied fuzzy

matching against our vocabulary using the difflib module in Python and extracted 12,135

terms from abstracts available in MEDLINE/PubMed. We combined outputs from the two

search procedures. Then, for the set of papers supporting a claim, we again used JC to

measure the overlap between methods in the various pairs of papers in the set, and then used

our independence score to calculate the methodological independence Mind of the claim.

Prior knowledge independence
To examine whether a pair of publications is exposed to similar or dissimilar prior information,

we use the notion of bibliographic coupling (Kessler, 1963), i.e., the number of citations any

two papers share. To compute bibliographic coupling, we used the Web of Science citation

data. Out of 1282 papers sharing a drug-gene claim with at least one other paper, we

mapped 1234 PubMed IDs to Web of Science IDs and performed bibliographic coupling on

this subset using Python modules Tethne (Peirson and Erick, 2017) and NetworkX

(Hagberg et al., 2008). 880 of our 1234 papers were coupled bibliographically by at least one

paper. Consistent with the procedure we applied to measure shared authors and methods, we

used JC to measure the overlap between the citations in the various pairs of papers in the set,

and then used our independence score to calculate the prior knowledge independence Kind of

the claim.

Journal prominence
To measure journal prominence, we employed the journal eigenfactor score (Bergstrom et al.,

2008). The eigenfactor score acts like a recursively weighted degree index by rating journals

highly that receive citations from journals that are themselves highly cited. Journal eigenfactor

scores were computed using the Web of Science database. We obtained journal eigenfactor

scores for 3162 papers (94% of all 3363 papers in our corpus) published in 656 journals

between 1995 and 2016. For the sub-corpus of 1282 papers with shared drug-gene claims, we

recovered 1212 papers or 95% published in 496 journals. For each claim, we computed mean

journal eigenfactor scores by averaging over the eigenfactor score of all journals that

published a paper reporting findings in support of the claim. The distribution of mean journal

eigenfactor scores (i.e., journal prominence) per claim is highly skewed (Figure 1—figure

supplement 2 and Figure 4—figure supplement 4), indicating that claims receive

overwhelmingly support from findings published in low and medium ranked journals. This

highlights the value of archiving findings across a wide range of journals, as do CTD and other

scientific database projects, which makes possible our large-scale evaluation of scientific

output.
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Robustness analysis
Some of our variables are correlated (e.g., methodological independence and prior

knowledge independence; see Figure 3—figure supplement 1), which is to be expected as

they capture related dimensions of scientific knowledge production. We performed a

multicollinearity test using the variance inflation factor (VIF). The variance inflation factors vary

from low for variability in LINCS L1000 (VIF = 1.015), journal prominence (VIF = 1.135), and

support in literature (VIF = 1.534) to moderate for centralization (VIF = 3.162), methodological

independence (VIF = 3.752), prior knowledge independence (VIF = 4.681), and social

independence (VIF = 4.900). We observe no predictor with high variance inflation factor, i.e.,

VIF �10. We removed the two variables with the highest VIF >4 and refit our logistic

regression model. In the refitted model, both support in the literature and decentralization of

scientific communities remain strong and significant predictors of replication success

(Figure 4—figure supplement 5). Further, we verified that the effects of support from the

literature and community centralization on claim replication success are not dominated by

outliers. Recall the long-tailed distribution of findings per claim, with few claims receiving

support from many published findings (Figure 1A). We removed claims supported by 10 or

more findings, amounting to 26 claims supported by 426 findings and found that support from

the literature (OR 34.785; 95% CI, 12.518–96.662, p = 1.00e-11) and community centralization

(OR 0.335; 95% CI, 0.249–0.451, p = 5.57e-13) remain strong and significant predictors of

replication success, after adjusting for biological and experimental variability in LINCS L1000

(OR 0.726; 95% CI, 0.429–1.232; p = 0.236). Similarly, the distribution of findings per paper

and per pair of papers is heterogeneous (Figure 3—figure supplement 2). We removed the

largest set of 796 drug-gene claims reported by a pair of papers and found that the effect of

support from the literature (OR 19.512; 95% CI, 7.193–52.929, p = 5.37e-09) and centralization

(OR 0.432; 95% CI, 0.287–0.65, p = 5.71e-05) holds and is not explained by variability in LINCS

L1000 (OR 0.574; 95% CI, 0.279–1.181; p = 0.131).
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