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Abstract 

The transitional properties of equimolar mixtures consisting of a hydrogen bond donor, a 4-

alkoxybenzoic acid (nOBA), and one of two different stilbazole-based hydrogen bond 

acceptors, either 4-[(E)-2-(4-{[6-(4’-methoxy[1,1’-biphenyl]-4-yl)hexyl]oxy}phenyl)-

ethenyl]-pyridine (1OB6OS) or 4-[(E)-4'-(6-{4-[(E)-2-(pyridin-4-yl)ethenyl]phenoxy}hexyl)-

[1,1'-biphenyl]-4-carbonitrile (CB6OS) are reported. Neither hydrogen bond acceptor exhibits 

liquid crystal behaviour whereas the nOBA series shows smectic and / or nematic behaviour 

depending on the length of the alkyloxy chain. For the mixtures containing either hydrogen 

bond acceptor and an nOBA with n=1-5, both conventional nematic and twist-bend nematic 

phases were observed. On increasing n smectic phases emerged and the twist-bend nematic 

phase was extinguished. The CB6OS-nOBA mixtures may exhibit the heliconical smectic CTB 

phase. The local molecular arrangement in the two sets of mixtures are similar and changes on 

increasing n but this is not reflected in the nematic-isotropic transition temperatures. 

Birefringence studies of the mixtures are reported. In general the behaviour of the hydrogen-

bonded mixtures is similar to that of their covalently bonded counterparts, 

 

Introduction 

The spontaneous emergence of chirality in systems composed of achiral molecules is of 

fundamental importance in both physical and biological sciences and thought to play a pivotal 

role in the origin of biological homochirality. In this context the study of liquid crystalline 

systems has greatly enhanced our understanding of symmetry breaking in fluids 1. Indeed, the 

first example of spontaneous chiral symmetry breaking in a fluid with no spatial ordering was 

provided by the twist-bend nematic, NTB, phase in which the director maps out a conical helix 
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and is tilted at a constant angle with respect to the helical axis 2. In this system consisting of 

achiral molecules, chirality forms spontaneously and so an equal number of left- and right-

handed helices would be expected. The pitch of the helix is strikingly small, of the order of 10 

nm, which corresponds to just a few molecular lengths. 3. The introduction of intrinsic or 

molecular chirality removes the degeneracy of the helices and the chiral NTB phase is observed 

4. Prior to its experimental discovery, the NTB phase had been predicted first by Meyer 5 and 

later and independently by Dozov 6. In these models the director modulations arose from 

flexoelectric couplings, or from an elastic instability equivalent to a sign change of the bend 

elastic constant (K33), respectively. Within Dozov’s framework, bent molecules are required to 

obtain the necessary low values of K33 and the vast majority of twist-bend nematogens are odd-

membered liquid crystal dimers 7–14. These consist of molecules containing two mesogenic 

units attached through a flexible alkyl spacer, and if the parity of the spacer is odd then the 

molecule, on average, is bent 15. The NTB phase is most often preceded by a conventional 

nematic phase with uniform director structure but having an anomalously low bend elastic 

constant, and such materials can be exploited in new applications 16,17. However, direct NTB-

isotropic transitions have been observed 18,19. In addition, Dozov predicted that bent achiral 

molecules would form chiral twist-bend smectic phases 6 and these have also been observed 

experimentally 11,20,21.  

The NTB phase has been found for a range of other structures including bent-core liquid crystals 

22, and higher liquid crystal oligomers such as trimers and tetramers 22– 24. In each of these 

systems molecular curvature is thought to be the essential structural requirement for the 

formation of the NTB phase. Hydrogen bonding has also been employed in the design of twist-

bend nematogens, and the first example was 4-[6-(4’-cyanobiphenyl-4-yl)hexyloxy]-benzoic 

acid (CB6OBA), see Figure 1.{REF} The observation of NTB behaviour was attributed to the 

formation of hydrogen-bonded complexes between pairs of acids yielding bent supramolecular 

complexes 26. In this system, however, there is no element of molecular recognition given that 

two identical molecules form the complexes. In order to extend this design approach and build 

in an aspect of molecular recognition, we reported recently the behaviour of mixtures 

containing unlike hydrogen bond acceptors and donors, namely 4-[(E)-2-(4-{[6-(4’-

methoxy[1,1’-biphenyl]-4-yl)hexyl]oxy}phenyl)ethenyl]-pyridine (1OB6OS) and 

alkoxybenzoic acids (nOBA) with n = 4 and 5 27, respectively, see Table 1, and showed that 

these systems do indeed exhibit the NTB phase providing examples of the formation of 

spontaneous chirality driven by hydrogen bonding between unlike and achiral components. To 
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further investigate this fascinating behaviour, here we report the behaviour of mixtures 

containing a wider range of the hydrogen bond donors nOBA in which the length of the 

terminal chain has been varied, n=1-10 and 1OB6OS, and also mixtures containing a different 

stilbazole-based hydrogen bond acceptor, 4-[(E)-4'-(6-{4-[(E)-2-(pyridin-4-

yl)ethenyl]phenoxy}hexyl)[1,1'-biphenyl]-4-carbonitrile (CB6OS), see Table 1. These 

particular systems have been chosen for study because the hydrogen bond acceptors both 

contain a hexyloxy spacer which has been shown to impart the required molecule curvature for 

the observation of twist-bend behaviour 7 and both the methoxy and cyano terminal groups 

have been shown to promote the NTB phase 28–30. Furthermore, the hydrogen bond between 

pyridyl-based fragments and benzoic acids has been shown to be sufficiently strong to promote 

liquid crystalline complexes 31–33. By analogy with covalently assembled systems 10,11, the 

extension of the terminal chain associated with the hydrogen bond donor may drive the 

formation of smectic as well as nematic phases. 

 

 

Figure 1. 4-[ω-(4’-Cyanobiphenyl-4-yl)alkyloxy]-benzoic acid (CB6OBA) 26. 

 

Table 1. Hydrogen bond acceptors and hydrogen bond donors used in this study. 

H-bond Acceptors H-bond Donors 

  

1OB6OS nOBA (n = 1-10) 

 

 

CB6OS  

  

  

 

 

Experimental 

Synthesis 

nOBAs 

CB6OBA 
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The synthesis of the n-alkoxybenzoic acids (nOBAs) followed a standard procedure adapted from that 

reported by Jensen et al. 34 and is shown in Scheme 1.  

 

Scheme 1. Synthesis of the n-alkoxybenzoic acid (nOBA) series, where R = CnH2n+1 (n = 1-10). 

Full synthetic details and analytical data for nOBA with n = 1-10 are given in the ESI. 

1OB6OS 

The synthesis of 4-[(E)-2-(4-{[6-(4'-methoxy[1,1'-biphenyl]-4-yl)hexyl]oxy}phenyl)-ethenyl]pyridine 

(1OB6OS) followed the procedure outlined in Scheme 2. A Friedel-Crafts acylation and subsequent 

ketone reduction gave 1OB6Br. The alcoholic stilbazole 4-[(E)-2-(pyridin-4-yl)ethenyl]phenol (HOS) 

was prepared through the base-catalysed condensation of 4-hydroxybenzaldehyde and 4-

methylpyridine. 35 1OB6Br and HOS were combined in a Williamson ether synthesis to give the title 

compound. 

Full synthetic details and analytical data for 1OB6OS and its intermediates are given in the ESI. 

 

 

Scheme 2. Synthesis of 1OB6OS. 

 

CB6OS 
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The synthesis of CB6OS followed the procedure outlined in Scheme 3. The synthesis of 4'-[6-(4-

formylphenoxy)hexyl][1,1'-biphenyl]-4-carbonitrile, CB6OAH, and its intermediates was performed as 

described in an earlier work.11 The condensation of CB6OAH and 4-methylpyridine gave the title 

compound. Full synthetic details and analytical data for CB6OS and its intermediates are given in the 

ESI. 

 

 

Scheme 3. Synthesis of CB6OS. 

 

Materials and Methods 

Materials All reagents and solvents available commercially were purchased from Sigma Aldrich, Alfa 

Aesar, ACROS Organics or TCI Chemicals and used as received unless stated otherwise. 

Purity Analysis The proposed structures of all final products and their intermediates were characterised 

using a combination of 1H and 13C NMR, and FTIR spectroscopies. 1H and 13C NMR spectra were 

recorded on either a 400 MHz Varian Unity INOVA, or a 300 MHz Bruker Ultrashield NMR 

spectrometer. Infrared spectra were recorded on a Thermal Scientific Nicolet IR100 FTIR spectrometer 

with an ATR diamond cell. The purities of the final products were verified using C, H, N microanalysis 

performed by the Micro Analytical Laboratory in the School of Chemistry at the University of 

Manchester or Sheffield Analytical and Scientific Services Elemental Microanalysis Service at the 

University of Sheffield.  

Polarised Optical Microscopy Phase characterisation was performed using an Olympus BH2 

polarising light microscope equipped with a Linkam TMS 92 hot stage (University of Aberdeen) or a 

Zeiss AxioImager A2m polarizing microscope equipped with Linkam heating stage (University of 

Warsaw). Glass cells were obtained from Warsaw Military University of Technology (WAT) having 

1.6 or 3 micron thicknesses, and ITO conducting and 60 polymer aligning layers were used. 

Differential Scanning Calorimetry The phase behaviour of the dimers was studied by differential 

scanning calorimetry using a Mettler-Toledo DSC1 fitted with an intracooler and calibrated using 
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indium and zinc as standards. Heating and cooling rates were 10 ̊ C min-1 and all samples were measured 

under a nitrogen atmosphere. Transition temperatures and associated enthalpy changes were extracted 

from the second heating trace unless otherwise noted. For each sample, two aliquots were measured 

and the data listed are the average of the two sets of data. 

X-ray Diffraction Wide angle diffractograms (WAXS) were obtained with a Bruker D8 GADDS 

system (CuKα line, Goebel mirror, point beam collimator, Vantec2000 area detector). Samples were 

prepared as droplets on a heated surface. 

Birefringence Birefringence was measured with a set-up based on a photoelastic modulator (PEM-90, 

Hinds) working at a modulation frequency f = 50 kHz; as a light source, a halogen lamp (Hamamatsu 

LC8) was used equipped with a narrow bandpass filters (633 nm and 690 nm). The signal from a 

photodiode (FLC Electronics PIN-20) was deconvoluted with a lock-in amplifier (EG&G 7265) into 1f 

and 2f components to yield a retardation induced by the sample. Knowing the sample thickness, the 

retardation was recalculated into optical birefringence. Prior to analysis, the samples were placed in 

glass cells provided by Warsaw Military University of Technology (WAT) having 3 micron thickness, 

and ITO conducting and 60 polymer aligning layers. The alignment quality was checked prior to 

measurement by inspection under the polarised optical microscope. 

Binary Mixture Studies Binary mixtures were prepared by co-dissolving pre-weighed amounts of each 

compound in dichloromethane or chloroform and allowing the solvent to evaporate slowly at room 

temperature. The mixtures were further dried in a vacuum oven at 50 °C for ~16 h. 

 

Results and Discussion 

The transitional properties of the equimolar 1OB6OS:nOBA complexes are listed in Table 2, 

and those of the individual components are given in Tables S1-3 in the ESI. 1OB6OS melts 

into the isotropic phase at 143 °C, and on cooling crystallisation precluded any observable liquid 

crystallinity. All ten complexes show a conventional enantiotropic nematic, N, phase assigned 

on the basis of the observation of a characteristic schlieren texture containing two- and four-

point brush singularities in untreated cells, and a uniform texture in cells with planar anchoring, 

see Figure 2. For the 1OB6OS:nOBA complexes with n = 1-5, a transition to a lower 

temperature, monotropic nematic phase was apparent by the development of a striped texture, 

characteristic of the NTB phase, see Figure 2. The N-NTB phase transition was accompanied by 

the cessation of optical flickering associated with director fluctuations in the higher 

temperature N phase. For the 1OB6OS:5OBA complex, the temperature range of the NTB phase 

narrows to only ca. 4 K, insufficient for the striped texture to develop prior to a transition to a 
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smectic A, SmA, phase. The N-NTB transition was detected using DSC as a very small jump in 

the heat capacity, in accord with the general observation that as the temperature range of the 

preceding nematic phase increases, the N-NTB transition tends towards becoming second order 

in nature, i.e. ΔH ≈ 0 30. 

In the equimolar 1OB6OS:nOBA complexes with n > 5, the NTB phase is no longer observed 

and instead the nematic phase cools directly into a SmA phase. The SmA phase is assigned on 

the basis of the observation of a truncated focal conic fan texture, indicative of smectic layer 

ordering, in coexistence with homeotropic regions indicating that the director is orthogonal to 

the layer planes. The entropy change associated with the SmA-N transition increases as the 

temperature range of the N phase decreases in accord with McMillan theory and the values 

observed are consistent with the phase assignment.36 In thin cells sample crystallisation is 

suppressed, and cooling from either the NTB phase (n = 3-4) or the SmA phase (n = 5-10) 

revealed a reversible transition to another smectic phase, SmX, having a mosaic-like texture, 

see Figure 2. The monotropic nature of the SmX phase precluded its study using X-ray 

diffraction but given the large enthalpy change associated with its formation, it is presumably 

a highly ordered smectic phase. 

 

Table 2. Transition temperatures and associated entropy changes for the 1OB6OS:nOBA equimolar 

mixtures. All data extracted from DSC heating traces unless stated otherwise. *Temperature obtained 

from DSC cooling trace. †Temperature obtained using POM. ‡ Peak overlapped with crystallisation 

exotherm. 

 

n 
TCr- 

/ °C 

TSmASmX 

/ °C 

TSmAN 

/ °C 

TNTBN 

/ °C 

TNI   

/ °C 

ΔSCr- /  

R 

ΔSSmASmX / 

R 

ΔSSmAN / 

R 

ΔSNTBN / 

R 

ΔSNI / 

R 

1 132   104† 173 15.59   ≈ 0 0.70 

2 120   98† 168 10.94   ≈ 0 0.66 

3 115 77*  99† 164 10.94 ‡  ≈ 0 0.63 

4 122 86*  102† 166 14.22 2.42  ≈ 0 0.65 

5 112 85* 94* 98† 158 12.26 1.41 0.08 ≈ 0 0.57 

6 119 86* 102*  155 8.54 1.40 0.08  0.59 

7 97 89* 114  152 10.31 1.10 0.04  0.73 

8 101 96* 127  155 8.82 1.61 0.11  0.65 

9 95 92* 127  149 5.82 1.32 0.15  0.71 

10 106 99* 138  153 9.71 2.17 0.21  0.71 
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Figure 2. POM textures of the 1OB6OS:3OBA equimolar mixture in a cell with planar anchoring in 

the N and NTB phases, and for 1OB6OS:5OBA in the SmA and SmX phases.  

The phase behaviour of the equimolar 1OB6OS:nOBA complexes was studied further using 

X-ray diffraction. The N and NTB phases show essentially identical X-ray patterns with broad 

signals indicative of the liquid-like arrangement of the molecules. Table 3 lists the periodicities 

measured along the director in the liquid crystal phases of these mixtures along with the 

estimated molecular lengths of the complexes. The very weak reflections seen in the X-ray 

scattering patterns of the complexes with n < 4 did not allow for the molecular distance along 

the director to be estimated. For 1OB6OS:nOBA complexes with n = 4 and 5, the X-ray 

patterns contained small angle signals corresponding to approximately 1 and 1/3 of the 

complex’s length, indicating an unusual head-to-tail arrangement of the complexes discussed 

in detail elsewhere. 27. The layer periodicity in the SmA phase for the 1OB6OS:nOBA 

complexes with n = 7-10 corresponds to the estimated complex length indicating a monolayer 

arrangement, see Table 3. 

 

Table 3. Layer thickness (smectic phases) or end-to-end separation between molecules (nematic 

phases) obtained from integrated X-ray signals for the equimolar 1OB6OS:nOS mixtures. For some 

mixtures and phases, the observed pattern was too weak to determine the signal position. 

n 
Molecular 

Length, l / Å 

Phase Layer Thickness/Longitudinal 

Distance, d / Å 

d/l 

4 37.9 NTB 38.6, 12.8 1.02, 0.34 

5 39.4 

N 39.0, 13.0 0.99, 0.33 

NTB 39.0, 13.0 0.99, 0.33 

SmA 42.9 1.09 

7 42.5 SmA 43.8 1.03 

N N
TB

 SmA SmX 

131 °C 89 °C 83 °C 91 °C 
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8 44.0 SmA 45.6 1.04 

9 45.6 SmA 47.2 1.04 

10 47.1 SmA 48.2 1.02 

 

Figure 3 shows the dependence of the transition temperatures on the length of the terminal 

alkyloxy chain, n, for the 1OB6OS:nOBA complexes. TNI falls on increasing the terminal chain 

length reflecting the increased dilution of the interactions between the mesogenic units which 

promote the formation of the nematic phase. TNTBN shows only a weak dependence on n 

reflecting the predominantly shape driven nature of this transition, and that the spacer largely 

determines molecular curvature for complexes having similar values of n. On increasing the 

terminal chain length microphase separation is promoted and TSmAN increases rapidly. We will 

discuss this later together with the behaviour of the CB6OS:nOBA complexes. 

 

 

Figure 3. Dependence of phase behaviour of the equimolar 1OB6OS:nOBA complexes on the length 

of the terminal alkyl chain, n, where ✕ represents TNI, ◼ TSmAN, ⯅ TNTBN and ● TNTB/SmASmX. 

 

The transitional properties of the equimolar CB6OS:nOBA mixtures are listed in Table 4. 

CB6OS melts directly into the isotropic phase at 129 ˚C and on cooling, crystallisation 

precludes the observation of liquid crystallinity. Similar to the behaviour seen for the 

70

80

90

100

110

120

130

140

150

160

170

180

1 2 3 4 5 6 7 8 9 10

T
e

m
p

e
r
a

tu
r
e

/ 
°C

n

I

NTB

N

SmX

SmA



 10 

1OB6OS:nOBA mixtures (Table 2), CB6OS:nOBA complexes with n = 1-5 exhibit two 

nematic phases, an enantiotropic conventional N phase and a monotropic NTB phase. The N 

and NTB phases were assigned as described earlier: specifically, in planar aligned cells, the N 

phase has a uniform texture with a strong degree of flickering and on cooling to the NTB phase 

a distinct stripe texture develops and the flickering ceases.  

CB6OS:nOBA complexes with n>5 do not show the NTB phase and instead exhibit up to three 

smectic phases and an enantiotropic conventional N phase. The smectic phase which appears 

first on cooling the nematic phase for complexes with n = 6-10 showed a uniform texture with 

no optical flickering in planar aligned cells (Figure 4b) and if viewed using untreated glass 

slides with one surface free, a largely non-birefringent texture was seen (Figure 4f). This phase 

is therefore assigned as a SmA phase. On further cooling complexes with n≥7 in untreated 

slides, a schlieren texture containing two- and four-point brush defects developed from the 

homeotropically aligned regions, suggesting the formation of a tilted smectic phase (Figure 

4g). Two-brush defects are characteristic of phases in which the mesogenic units are arranged 

in an anticlinic fashion, suggesting this is the SmCA phase. In the planar aligned cell, a striped 

texture is seen (Figure 4c) and such stripes are indicative of a low bend elastic constant 37. This 

texture resembles that reported for the heliconical smectic phase denoted the SmCTB phase 20,21. 

However, the emergence of a schlieren texture from homeotropic regions in the preceding SmA 

phase is not consistent with a heliconical phase in which consecutive layers rotate according to 

an ideal clock model. In such a system the molecular orientations are averaged over the helix 

and a homeotropic texture may observed even though the phase is tilted. Recently, however, 

we have shown that a variant of the heliconical smectic C phase may be described using a 

distorted clock model in which the molecular orientations are not averaged over the helix and 

hence a schlieren texture may be observed. To distinguish between a conventional SmCA phase 

and a distorted clock smectic CTB phase requires a detailed resonant X-ray diffraction study but 

the monotropic nature of these phases precludes this possibility. The two lowest temperature 

smectic phases are strongly monotropic. On cooling from the SmC phase, the schlieren pattern 

becomes a somewhat smudged, plate-like texture (Figure 4h) and this has been denoted SmX 

but the texture resembles the that of the SmI phase 36. In the planar aligned cell, the striped 

texture of the SmC phase is replaced with a mosaic texture containing domains resembling 

arrowheads pointing in opposite directions (Figure 4d). On cooling the SmX phase, the 

grey/blue-coloured ‘plates’ undergo a marked change in birefringence to orange/brown 

accompanied by the appearance of additional scratch-like defects. This transition tends to be 
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simultaneous with crystallisation, and hence was difficult to study. We tentatively assign this 

as a highly ordered, crystal-type phase such as the J phase 36. 

 

Table 4. Transition temperatures and associated entropy changes for the CB6OS:nOBA complexes. 

All data are extracted from heating DSC traces unless stated otherwise. *Temperature obtained from a 

DSC cooling trace. †Temperature obtained using POM. 

 

n TCr- / °C TSmX-/ °C TSmCSmA/ °C TSmAN/ °C TNTBN / °C TNI  / °C 

1 126    110† 178 

2 104    106† 179 

3 110    102† 169 

4 107    95† 167 

5 104 72*   94† 161 

6 105 75*  86†  158 

7 103 77* 91* 95*  155 

8 122 78* 90† 101†  155 

9 129 76* 99* 114  152 

10 117 78* 102* 122  151 

n ΔSCr-/ R ΔSSmX-/ R ΔSSmCSmA / R ΔSSmAN/ R ΔSNTBN / R ΔSNI / R 

1 15.09    ≈ 0 0.61 

2 12.64    ≈ 0 0.79 

3 8.38    ≈ 0 0.78 

4 9.08    ≈ 0 0.79 

5 11.98 1.87   ≈ 0 0.66 

6 10.17 1.19  -  0.59 

7 10.99 0.93 0.03 0.004  0.47 

8 13.76 0.50 - -  0.47 

9 13.54 0.94 0.03 0.03  0.66 

10 11.84 0.55 0.02 0.04  0.59 
 

 

 

 



 12 

Figure 4. POM textures of CB6OS:9OBA in the N, SmA, SmCA and SmX phases in a planar aligned 

cell (top) and untreated glass slides (bottom). 

 

The assignments of the nematic phases were confirmed by the observation of broad, diffuse 

signals in the small- and wide-angle regions in their X-ray diffraction patterns, indicating 

liquid-like positional ordering of the complexes, see Figure 5. The periodicities in the nematic 

phases estimated from the position of the broad signal in the small angle region, d, are listed in 

Table 5 along with the calculated molecular length, l, for each complex. For the complex with 

n=1, d/l≈0.5 suggesting a locally intercalated arrangement of the complexes. On increasing n, 

for the nematic phases of CB6OS:5OBA d/l≈1 and 0.33 and similar values obtained for 

1OB6OS:5OBA have been interpreted in terms of a local head-to-tail arrangement of the 

complexes 27. For CB6OS:6OBA, d/l≈0.9 indicating a local monolayer packing. Thus the local 

structure of the nematic phases changes as n is increased and we will return to this observation 

later.  

N SmA SmC
A

 SmX 

N SmA SmC
A

 SmX 

130 °C 98 °C 78 °C 74 °C 

a. b. c. d. 

e. f. g. h. 
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The XRD patterns of the SmA and SmCA phases contain a sharp reflection in the low angle 

region indicating a lamellar structure, and diffuse wide-angle scattering characteristic of liquid-

like ordering within the layers (Figure 5). The values of d/l in these phases suggest monolayer 

packing, see Table 5. On cooling into the SmX phase, the reflection in the wide-angle region 

narrows, indicating an increase in the molecular translational ordering within the smectic layer 

suggesting a hexatic smectic phase; the unambiguous assignment of this would require 

characterisation of an aligned sample. The position of the small angle reflection remains 

unchanged (Table 5). The similarities in textures between this phase and that found at low 

temperatures for the 1OB6OS:5OBA complexes suggest these are the same phases. 

Crystallisation of the sample precluded the investigation of the lowest temperature smectic 

phase by X-ray diffraction. 

 

Figure 5. XRD patterns obtained for CB6OS:10OBA in (left to right) the N (126 °C), SmA (107 °C), 

SmCA (85 °C) and SmX (45 °C) phases. 

 

The temperature dependence of the layer spacings, d, in the SmA, SmCA, and SmX phases was 

measured for the n = 10 complex, see Figure 6. In the SmA phase, the layer spacing increases 

slightly with decreasing temperature, i.e., a negative temperature layer expansion. At the 

transition to the SmCA phase d begins to sharply decrease as the molecules tilt.  There is no 

discontinuity in layer spacing at the transition and this is consistent with the weak first-order 

nature of the transition. The maximum tilt can be estimated from the decrease in the layer 

thickness using: 

 cos 𝜃 =  
𝑑𝑆𝑚𝐶

𝑑𝑆𝑚𝐴
⁄   

For the decyl complex θ was found to be approximately 20° if we compare the actual layer 

thickness in the smectic CA phase with the value extrapolated from the temperature dependence 
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in the SmA phase. A slight increase in layer thickness is observed at the transition to the hexatic 

SmX phase. The value of d remains lower throughout the SmX phase than in the SmA phase 

suggesting the SmX phase is a tilted phase. Cooling the sample into the Cr phase results in a 

marked decrease in layer spacing, although it is not clear whether this is the transition to a 

reversible soft crystal-type phase or crystallisation.  

 

Table 5. Layer thickness (smectic phases) or end-to-end separation between molecules (nematic 

phases) and lateral spacings obtained from X-ray diffraction patterns of the CB6OS:nOBA series. For 

some complexes and phases the observed pattern was too weak to determine the signal position.  

n 
Phase Molecular 

Length / l 

End-to-end separation/Layer 

Thickness, d / Å 

Distance Between 

Mesogens / Å 

d/l 

1 NTB 33.0 15.6 4.5 0.47 

5 
N 

39.2 
37.2, 12.0 4.5 0.95, 0.31 

NTB  37.1, 12.5 4.5 0.95, 0.32 

6 N 40.7 36.0 4.9 0.88 

7 
SmC 

42.2 
39.9 4.3 0.95 

SmX 42.5 4.3 1.01 

8 SmA 43.8 45.3 4.3 1.03 

10 

SmA 

45.3 

46.8 4.4 1.03 

SmC 45.4 4.3 1.00 

SmX 44.5 4.3 0.98 

 

  

Figure 6. Dependence of the layer spacing on temperature for CB6OS:10OBA. 
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The dependence of the transition temperatures on n for the CB6OS:nOBA complexes is shown in 

Figure 7. The behaviour observed is qualitatively the same as that seen for the 1OB6OS:nOBA 

complexes in Figure 3. The principal difference is the insertion of the SmCA phase for long terminal 

chain lengths for the CB6OS:nOBA complexes. It would be tempting to attribute this difference in 

behaviour to a stabilisation of the anticlinic arrangement of the molecules by antiparallel associations 

of the cyanobiphenyl fragments. Such a view, however, is not supported by the similar values of d/l 

observed in the SmA phase for these two sets of materials. It is apparent that both sets of complexes 

show a progression in terms of the local arrangement of the complexes in the nematic phases but this is 

not reflected in the transition temperatures which show a regular dependence on n. Similar behaviour 

has been observed for covalently assembled liquid crystal dimers in which the length of the terminal 

chain is varied 10,11 and thought to suggest that the importance of the local arrangement of the molecules 

in the nematic phase, specifically their tendency to intercalate, has been overstated in considering the 

stability of the NTB phase. Both sets of complexes show a strong tendency to exhibit smectic phases 

rather then the NTB phase on increasing n, and this is seen also for a covalently assembled series of non-

symmetric dimers containing a cyanobiphenyl unit and a three-ring mesogenic moiety 20. By 

comparison, non-symmetric dimers consisting of a cyanobiphenyl unit and a two-ring mesogenic 

moiety have a much weaker tendency to show smectic phases over the same range of terminal chain 

lengths 10,11. This behaviour may be attributed to the enhanced interaction strength parameter between 

the mesogenic units on increasing the length of one. Thus it appears that the hydrogen-bonded 

complexes behave similarly to their covalently assembled counterparts. 
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 Figure 7. Dependence of phase behaviour of the CB6OS:nOBA on the length of the terminal alkyl 

chain, n, where ✕ represents TN*I, ◼ TSmAN, ⯅ TNTBN, ◆ TSmCSmA, ✳ TSmXSmC and ● TSmCrSmX. 

 

In order to establish to what extent other physical properties of the hydrogen bonded complexes 

resemble those of covalently assembled dimers, optical birefringence measurements were performed 

for a selection of materials in the CB6OS:nOBA series. Representative plots of the temperature 

dependence of the birefringence for those complexes exhibiting nematic to twist-bend nematic phase 

transitions, n = 1-5, and those for longer homologues with a sequence of smectic phases, n = 6-10, are 

shown in Figures 8 and 9, respectively. The measured optical birefringence, Δn, sharply rises at the 

transition from the isotropic to the nematic phase and on further cooling follows a critical dependence, 

∆𝑛0 = ∆𝑛𝑚𝑎𝑥 (
𝑇𝑁𝐼 − 𝑇

𝑇𝑁𝐼
)
𝛽

 

where TNI is the nematic-isotropic transition temperature and Δnmax is the theoretical birefringence for 

the material with an ideal orientational order (order parameter, S = 1).38 The departure of the 

birefringence from the critical dependence several degrees above the N-NTB transition temperature is 

attributed to the presence of strong fluctuations of the director in the nematic phase caused by the 

instantaneous formation of local heliconical states, a pre-transitional effect on approaching the helical 

twist-bend nematic phase (Figure 8). Such behaviour is consistent with previous reports on the optical 

birefringence at the N-NTB transition in covalently bonded liquid crystal dimers 39. In the NTB phase, 
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we observe a decrease in birefringence which relates to the tilting and averaging of the molecular 

positions around the helical axis. Furthermore, the birefringence data were also used to determine the 

conical angle ϴsat in the NTB phase (inset Figure 8), following a procedure described by Meyer et al. 40 

in which the tilt was calculated using, 

𝜃𝑠𝑎𝑡 = 𝑐𝑜𝑠
−1

(

 √
∆𝑛
∆𝑛0

∗ 2 + 1

3

)

  

An essentially linear increase of the conical angle on decreasing temperature was found below the N-

NTB phase transition, and in all cases ϴsat was calculated as approximately 20°. 

 

 

Figure 8. Birefringence vs. temperature for CB6OS:5OBA. The red line is the fitted curve obtained 

assuming critical temperature dependence. Inset shows a plot of conical angle vs. temperature. 

 

In longer homologues, the SmA-N transition is marked by a small increase in birefringence, due to the 

increase of orientational order at the onset of layer formation (Figure 9). The subsequent transition to 

the tilted anticlinic SmCA phase lowers the birefringence. The change in tilt angle with temperature in 

the SmC phase can be fit to the dependence: 𝜃 =  𝜃𝑠𝑎𝑡 (
𝑇𝑆𝑚𝐶−𝑆𝑚𝐴−𝑇

𝑇𝑆𝑚𝐶−𝑆𝑚𝐴
) and again, a linear increase of 

conical angle with decreasing temperature is seen. Values of θsat in the SmCA phase were 
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calculated by the simple estimation: cos 2𝜃 =  
∆𝑛𝑆𝑚𝐶𝐴
∆𝑛𝑆𝑚𝐴

 and were also found to be ~20°. This 

value is completely in accord with the magnitude of the tilt angle found by X-ray 

measurements. 

Figure 9. Birefringence vs. temperature for CB6OS:10OBA. The red line is the fitted curve obtained 

assuming critical temperature dependence. Inset shows a plot of conical angle vs. temperature. 

 

 

Conclusion 
In summary, we report the synthesis, thermal and optical characterisation of two series of 

supramolecular liquid crystal dimers formed by molecular recognition between unlike H-bond 

donors and acceptors. The hydrogen bonded complexes of 1OB6OS or CB6OS and nOBA (n 

= 1-5) exhibit twist-bend nematic phases providing further examples of the spontaneous 

formation of chirality in mixtures of achiral compounds. Mixtures of CB6OS and nOBA with 

n=7-10 may exhibit the heliconical smectic C phase. In general, the properties of these 

hydrogen bonded mixtures strongly resemble those of their covalently bonded counterparts. 
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