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Highlights:

1. We performed 2D and 3D lattice Boltzmann phase field simulations of rising drops

2. The rising drops are sliced by a knife, we study this process and the fate of the 

daughter drops 

3. We identify a critical Eotvos number that needs to be exceeded for proper slicing

4. We correlate volume ratios of asymmetrically sliced drops with off-center distances 

of the knife  
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ABSTRACT

We have performed two and three-dimensional phase field simulations using the 
lattice-Boltzmann method of liquid drops rising through a continuous phase liquid under the 
influence of buoyancy. In their upward motion the drops encounter a knife that is placed with 
the purpose of slicing the drops in two. A range of scenarios has been observed when the drop 
hits the knife and it has been investigated how the type of scenario depends on the 
dimensionless parameters governing the motion and slicing of the drop: the Eötvös number, 
the Morton number and the ratio of the droplet size and the width of the knife. We studied 
symmetric and asymmetric encounters between drop and knife and kept track of the size 
distribution of the resulting fragments.
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1. INTRODUCTION

Emulsions – systems of two or more immiscible liquids in the form of droplets dispersed 

in a continuous phase – are an essential part of many engineering processes and products. 

Controlling and influencing the drop sizes and drop size distributions often is essential for 

product quality and process efficiency. The desired direction of change of droplet size 

depends on our objectives. Increasing droplet size through coalescence could be helpful for 

gravity driven phase separation as in oil-water separation devices.[1-3] Reducing the droplet 

size increases interfacial area which would benefit mass transfer between phases in, for 

instance, extraction operations.[4-5] Another example is herbicide toxicity which will increase 

when its droplets get smaller with smaller droplets creating a larger number of contact points 

on the plant compared to larger droplets.[6]

In this paper we will be exploring size reduction of droplets by slicing them. Applications 

of slicing (or cutting) droplets are mainly found in microfluidics[7] and also – on a larger scale 

– in static mixers.[8] Forte et al[9] investigated the fundamental mechanisms of oil droplet 

breakup in static mixers. They found that the drop size decreased to a critical point, when the 

continuous phase (water) flow rate was increasing. It became difficult to reduce the oil drop 

size beyond the critical value. Additionally, Jaworski et al[10] modelled the process of droplet 

breakup in a static mixer and predicted the drop size evolution as a result of breakup. They 

found that intensive drop breakage occurred inside the inserts resulting in a decrease of the 

average drop size. Ren et al[11] investigated the droplet breakup dynamics through a bi-layer 

bifurcating microchannel by numerical and experimental method. In the works cited above 

the drop motion is the result of a pressure driven flow, bounded by walls. In our paper we 

study slicing of a freely rising drop in a periodic domain without bounding walls. This is a 

relatively simple system that, however, allows us to relate the starting point of our simulations 

(a rising drop) to extensively available on drop rise velocities and drop shapes.[12]

Since the 1970s, a computational fluid dynamics (CFD) method based on solving the 

Reynolds-averaged Navier–Stokes (RANS) equation has been widely used for computing 

fluid flow and heat transfer.[13] In the last 25 years, the lattice Boltzmann method (LBM) has 

been an efficient and powerful simulation method for various of transport phenomena and 

processes,[13-17] such as single-phase flow, multi-phase flows, turbulence, heat transfer, and 

Page 3 of 30

John Wiley & Sons

2t-S-1Ed-D-P

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

phase change, also become a numerical tool to solve nonlinear partial differential 

equations.[18-21] It has many unique benefits compared with other numerical methods.[22] 

Unlike traditional methods, LBM is based on the perspective of micro-dynamics, taking 

macro physical quantities as the result of statistical averages of micro quantities. LBM has 

both microscopic and mesoscopic characteristics. It makes the interaction between particles 

easy to resolve, and enables complex macroscopic phenomena of multiphase flow to appear 

naturally, thus providing an effective way to study the mechanism of multiphase flow under 

complex conditions.

There have been many studies using LBM to simulate droplet behaviour, including the 

droplet formation in micro-channels,[16] deformation and breakup of a droplet exposed to a 

gas stream,[23] three-dimensional binary droplet collisions[24] etc. In addition to these, Yu et 

al[25] firstly addressed the dynamics of droplets in a static mixer using obstacles and porous 

media by means of a modified LBM. They found that there is a critical obstacle size, beyond 

which an obstacle is unfavorable for generating small droplets. 

The behaviour of droplet rising through liquid driven by buoyancy has been observed by 

experiment and numerical simulations. Bertakis et al[26] studied the binary liquid system 

(n-butanol/water) by experiment and numerical simulations. Watanabe and Ebihara[27] used 

two-component two-phase LBM to simulate the process of drop rising. Komrakova et al[28] 

performed numerical simulation of n-butanol drop rising in water using the multiphase LBM, 

the simulation results they obtained agree well with the experimental data.

The focus of this study is the slicing of a rising droplet by a thin, flat plate – a knife. It is 

the aim of this study to investigate the feasibility of a knife as an efficient and controllable 

way of reducing the droplet size and to assist the design of process equipment for this purpose. 

We expect that the quality of the slicing process depends on the forces involved – buoyancy, 

surface and viscous forces – as well as the geometrical details such as the sharpness and 

length of the knife. The diffuse interface free energy LBM model will be used.[29]

2. FLOW CONFIGURATION & FLOW CONDITIONS

Numerical simulation of slicing a rising droplet is the focus of the present study. A liquid 

drop of density  and dynamic viscosity  with equivalent diameter  is suspended in 𝜌𝑑 𝜇𝑑 𝑑
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another liquid of density  and dynamic viscosity  (subscripts  and  represent 𝜌𝑐 𝜇𝑐 𝑑 𝑐

dispersed and continuous phase). The density difference between the two liquids is ∆𝜌 = 𝜌𝑐

 The interfacial tension between the liquids is . At time , the drop is ― 𝜌𝑑 > 0. 𝜎 𝑡 = 0

motionless. The droplet begins to rise driven by gravity and buoyancy and eventually attains a 

terminal rise velocity . Table 1 gives the physical parameters for binary benchmark system.𝑢

Table 1. Physical parameters for the simulated system

density 𝜌𝑐 = 1 × 103 𝑘𝑔/𝑚3

density difference 𝛥𝜌 = 1 × 102 𝑘𝑔/𝑚3

dynamic viscosity 𝜇𝑐 = 3.34 × 10 ―3 𝑃𝑎 𝑠

dynamic viscosity 𝜇𝑑 = 3.34 × 10 ―3 𝑃𝑎 𝑠

surface tension 𝜎 = 1 × 10 ―3 𝑁/𝑚

Along with gravitation acceleration g the input parameters translate in four dimensionless 

groups that fully determine the problem. In this paper we take for these dimensionless 

numbers the Eötvös number , the Morton number , the density 𝐸𝑜 =
gΔ𝜌𝑑2

𝜎 𝑀𝑜 =
gΔ𝜌𝜈4

𝑐𝜌2
𝑐

𝜎3 =
gΔ𝜌𝜇4

𝑐

𝜌2
𝑐𝜎3

ratio , and the dynamic viscosity ratio .𝜆 =
𝜌𝑑

𝜌𝑐
𝜂 =

𝜇𝑑

𝜇𝑐

Dimensionless numbers that involve the rise velocity are output parameters: the Reynolds 

number , the Weber number , and the Froude number . They 𝑅𝑒 =
𝑢𝑑𝜌𝑐

𝜇𝑐
𝑊𝑒 =

𝜌𝑐𝑢2𝑑
𝜎 𝐹𝑟 =

𝑢2

g𝑑

characterize the relative importance of inertia over viscous effects ( ), inertia and surface 𝑅𝑒

forces ( ) and inertia and gravity / buoyancy forces ( ).  quantifies the ratio of gravity 𝑊𝑒 𝐹𝑟 𝐸𝑜

/ buoyancy and surface forces.  is a constant for a given system, it does not contain the 𝑀𝑜

drop size.

An important reference point in our work is the diagram by Clift et al[12] that allows one 

to determine the Reynolds number (output parameter) as well as the drop shape and its rising 

regime (steady, wobbling…) from  and  (input parameters).𝐸𝑜 𝑀𝑜

We emphasize the importance of dimensionless numbers given that we use the LBM that 

is operated with its own “lattice units” with length and time units the lattice spacing and time 
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step respectively. Translating between physical (SI) units and lattice units makes use of the 

dimensionless numbers: if a physical system and a numerical (LBM) system have the same 

input dimensionless numbers, they represent the same system. In this paper, parameters in 

lattice units will be given a ~. For example, the drop diameter in lattice units is denoted as  𝑑

which is the number of lattice spacings covered by the drop diameter. Unit conversion / 

scaling has been discussed in detail in Section 3.3.

The base-case simulation domain was a cuboid of  (for two-dimensional 20𝑑 × 3𝑑 × 1

simulation) and  (for three-dimensional simulation). As shown in Figure 1, 20𝑑 × 3𝑑 × 3𝑑

the “knife” was placed at the top of the simulation domain. Initially it was located in the 

top-centre with the drop released on the centre line so that it was cut through the middle. Then 

the knife was moved laterally to study what happens if the drop hits the knife off-centre (see 

the details given in Section 5.2). Figure 1 also defines a Cartesian coordinate system as used 

throughout this paper.

To complete the definition of the flow system, boundary conditions have to be specified. 

Periodic conditions applied on all outer faces. No-slip conditions were imposed on the knife, 

and we assume a 90° contact angle on the surface of the knife.

Figure 1. Simulation domain with a “knife” at the top and the droplet released on the centre 

line
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3. SIMULATION METHOD

3.1. Governing equations

In this study, we use the diffuse interface model for simulation of flow and interface 

dynamics. In diffuse interface (which are also called phase field) methods,[30-32] we use a thin 

transition layer to represent the phase interface. An order parameter  is used to describe the 𝜙

composition of system. It is a function of position vector and time . The value of  is 𝒓 𝑡 𝜙

constant in the bulk phase of each fluid and varies continuously in the range [−1,1] over the 

thin interface.

Order parameter  represents the relative concentration of the two components for the 𝜙

system when describing behaviour of binary system by phase field.[33-34] Cahn and 

Hilliard[34-35] proposed that continuity, momentum and convection-diffusion equations can be 

used in combination for the simulation of fluid dynamics:

                                                 (1a)∂tρ + ∂α(ρuα) = 0

          (1b)∂t(ρuα) + ∂β(ρuαuβ) = ― ∂βPth
αβ + ∂βν(ρ∂αuβ + ρ∂βuα) + gαΔρ

                                           (1c)∂t𝜙 + ∂α(𝜙uα) = M∂2
ββμ

where  is density, and  is kinematic viscosity of the mixture, the index  stands for the 𝜌 𝜈 𝛼

Cartesian direction  or  so that  is the velocity component in  direction and  is 𝑥, 𝑦 𝑧 uα 𝛼 gα

the component of gravitational acceleration. The parameter  is the mobility parameter. 𝑀

Here  is the “thermodynamic” pressure tensor, which contains two parts[36]: an isotropic Pth
αβ

contribution  that describes the ideal gas pressure and the “chemical” pressure tensor 𝑃𝛿𝛼𝛽

 defined by the following:𝑃chem
αβ

                 (2)𝑃𝑐ℎ𝑒𝑚
𝛼𝛽 = 𝛿𝛼𝛽(𝜙

𝛿𝑉
𝛿𝜙 ― 𝑉 ― 𝜅(𝜙∂2

𝑦𝑦𝜙 +
1
2|∂𝛼𝜙|2)) + 𝜅(∂𝛼𝜙)(∂𝛽𝜙)

Phase separation is described by symmetrical double well potential, we can find this by 

the following:

                                                        (3)𝑉 =
𝐴
2𝜙2 ―

𝐴
4𝜙4

The chemical potential  in Equation (1c) can be seen as follows[37]:μ(𝜙)

                                                 (4)μ(𝜙) = A𝜙 ―A𝜙3 ― κ∂2
αα𝜙
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where, , both  and  are parameters connected with surface tension and interface 𝐴 < 0 𝐴 𝜅

thickness as explained in Section 3.2.

Given the relatively minor density difference between continuous phase and disperse 

phase liquid (10%, see Table 1) we apply the Boussinesq approximation[38] which can be 

applied for flows with relatively small density differences. This means that the density in 

Equation (1a) and (1b) is uniform ( ) and the density difference between drop and 𝜌 = 𝜌𝑐

surroundings only has an effect in the forcing term  in momentum Equation (1b).gαΔρ

3.2. LBM implementation

The free energy model was proposed by Swift et al[29] to solve the system of Equations 

(1). This model is adopted in the present study. Two particle distribution functions are 

utilized: one function is used to solve the continuity (1a) and the Navier-Stokes (1b) 𝑓(𝒓, 𝑡) 

Equations and the second one  is used for the convection-diffusion Equation (1c). The 𝑔(𝒓, 𝑡)

distribution functions evolve with discrete time steps . All simulations were performed 𝛥𝑡

using a single relaxation time collision operator (known as Bhatnagar–Gross–Krook (BGK) 

model).[39] The discretized LBEs are given as following: 

               (5a)𝑓𝑞(𝑟𝛼 + 𝑐𝛼𝑞𝛥𝑡,𝑡 + 𝛥𝑡) = 𝑓𝑞(𝑟𝛼,𝑡) ―
𝑓𝑞(𝑟,𝑡) ― 𝑓𝑒𝑞

𝑞 (𝑟,𝑡)
𝜏𝑓

+ 𝐹𝑞

                  (5b)𝑔q(𝑟𝛼 + 𝑐𝛼𝑞𝛥𝑡,𝑡 + 𝛥𝑡) = 𝑔𝑞(𝑟𝛼,𝑡) ―
𝑔𝑞(𝑟,𝑡) ― 𝑔𝑒𝑞

𝑞 (𝑟,𝑡)
𝜏𝑔

where index is discretized velocity direction;  and 𝑞 𝑓𝑞(𝑟𝛼 + 𝑐𝛼𝑞𝛥𝑡,𝑡 + 𝛥𝑡) 𝑔𝑞

 are post-collision particle distribution functions streamed from  to (𝑟𝛼 + 𝑐𝛼𝑞𝛥𝑡,𝑡 + 𝛥𝑡) (𝑟𝛼,𝑡)

 along direction ;  and  represent pre-collision (𝑟𝛼 + 𝑐𝛼𝑞𝛥𝑡,𝑡 + 𝛥𝑡) 𝑞 𝑓𝑞(𝑟𝛼,𝑡) 𝑔q(𝑟𝛼,𝑡)

particle distribution functions; ,  are the discrete Maxwell–Boltzmann distributions 𝑓𝑒𝑞
𝑞 𝑔eq

q

(or equilibrium distributions);  denotes the discrete velocity set and  is the 𝑐𝛼𝑞 𝑐 = ∆𝑥 ∆𝑡

lattice speed;  and  are dimensionless relaxation parameters, is determined by the 𝜏𝑓 𝜏𝑔 𝜏𝑓 

kinematic viscosity, as follows:

                                                       (6)𝜏𝑓(𝜙) =
𝜐(𝜙)

𝑐2
𝑠Δ𝑡 +

1
2

where  represents the square of sound speed in lattice units.𝑐2
𝑠 =

1
3
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The relationship between mobility , coefficient of mobility , and relaxation 𝑀 Γ

parameter  is given by[37]:𝜏𝑔

                                                       (7)𝑀 = Δ𝑡Γ(𝜏𝑔 ―
1
2)

where the order parameter mobility  is determined by the parameter  as well as 𝑀 Γ

relaxation parameter .  is the forcing term.𝜏𝑔 𝐹𝑞

The D3Q19 lattice is adopted here to discretize the velocity space.[40] Each site has 19 

velocity directions.

As noted above, the LBM works in dimensionless lattice units. We utilized uniform cubic 

lattices for the method described here. The mesh step  is unit of length, and the time step ∆𝑥

 is the unit of time. Here, we give the discrete velocity set:Δ𝑡

(𝑐𝑥
𝑐𝑦
𝑐𝑧

) = [0 𝑐 ―𝑐
0 0 0
0 0 0

    
0 0 0
𝑐 ―𝑐 0
0 0 𝑐

    
0 𝑐 ―𝑐
0 𝑐 𝑐
―𝑐 0 0

    
𝑐 ―𝑐 0

―𝑐 ―𝑐 𝑐
0 0 𝑐

    
0 0 0
―𝑐 𝑐 ―𝑐
𝑐 ―𝑐 ―𝑐

    
𝑐 ―𝑐 𝑐
0 0 0
𝑐 𝑐 ―𝑐

    
―𝑐
0
―𝑐]

    The local density, local fluid momentum, and local order parameter of the fluid at lattice 

point are the results of summations over all directions  at that location, these can be seen as 𝑞

follows:

                                                            (8a)∑
𝑞𝑓𝑞 = 𝜌

                                                   (8b)∑
𝑞𝒄𝑞𝑓𝑞 = 𝜌𝒖 +

𝛥𝑡
2 𝑭

                                                           (8c)∑
𝑞𝑔𝑞 = 𝜙

The forcing term is incorporated as follows:

                                                       (9)𝐹𝑞 = ω𝑞(𝒄𝑞·𝑭)

here  represents body force ,  are weight coefficients.[41] Additional weighing 𝑭 𝐠Δρ 𝜔𝑞

coefficients  are used for the equilibrium distributions, we can determine them by the 𝜔𝑞

following (see Equation (14)):

𝜔0 = 1,  𝜔1 ― 6 =
1
6,  𝜔7 ― 18 =

1
12

𝜔𝑥𝑥
1 ― 2 = 𝜔𝑦𝑦

3 ― 4 = 𝜔𝑧𝑧
5 ― 6 =

5
12,  𝜔𝑥𝑥

3 ― 6 = 𝜔𝑦𝑦
1 ― 2,5 ― 6 = 𝜔𝑧𝑧

1 ― 4 = ―
1
3

𝜔𝑥𝑥
7 ― 10 = 𝜔𝑥𝑥

15 ― 18 = 𝜔𝑦𝑦
7 ― 14 = 𝜔𝑧𝑧

11 ― 18 = ―
1

24
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                                              𝜔𝑥𝑥
11 ― 14 = 𝜔𝑦𝑦

15 ― 18 = 𝜔𝑧𝑧
7 ― 10 =

1
12

(10)

𝜔𝑥𝑦
1 ― 6 = 𝜔𝑦𝑧

1 ― 6 = 𝜔𝑧𝑥
1 ― 6 = 0,  𝜔𝑥𝑦

7,10 = 𝜔𝑦𝑧
11,14 = 𝜔𝑧𝑥

15,18 =
1
4

𝜔𝑥𝑦
8 ― 9 = 𝜔𝑦𝑧

12 ― 13 = 𝜔𝑧𝑥
16 ― 17 = ―

1
4,  𝜔𝑥𝑦

11 ― 18 = 𝜔𝑦𝑧
7 ― 10 = 𝜔𝑧𝑥

7 ― 14 = 0

The full pressure tensor  is defined by the following:𝑃𝛼𝛽

                                                    (11)𝑃𝛼𝛽 = ∑
𝑞𝑓𝑞𝑐𝑞𝛼𝑐𝑞𝛽

The equilibrium distributions must satisfy conditions (8) and  is advected by fluid, 𝜙

which can be given by the follow equation:

                                                      (12)∑
𝑞𝑔𝑒𝑞

𝑞 𝑐𝑞𝛼 = 𝜙𝑢𝛼

the pressure tensor and chemical potential at equilibrium follow:

                                           (13a)∑
𝑞𝑓𝑒𝑞

𝑞 𝑐𝑞𝛼𝑐𝑞𝛽 = 𝑃𝑡ℎ
𝛼𝛽 + 𝜌𝑢𝛼𝑢𝛽

                                        (13b)∑
𝑞𝑔𝑒𝑞

𝑞 𝑐𝑞𝛼𝑐𝑞𝛽 = Γ𝜇𝛿𝛼𝛽 + 𝜙𝑢𝛼𝑢𝛽

The equilibrium distributions[41] ,  for populations  are calculated 𝑓𝑒𝑞
𝑞 𝑔eq

q 1 ≤ 𝑞 ≤ 18

using the following equations:

 𝑓𝑒𝑞
𝑞 =

ω𝑞

𝑐2 (𝑝0 ― 𝜅𝜙(∂2
𝑥𝑥𝜙 + ∂2

𝑦𝑦𝜙 + ∂2
𝑧𝑧𝜙) + 𝑐𝛼𝑞𝜌𝑢𝛼 +

3

2𝑐2(𝑐𝛼𝑞𝑐𝛽𝑞 ―
𝑐2

3 𝛿𝛼𝛽)𝜌𝑢𝛼𝑢𝛽

+
𝜅

𝑐2

(𝜔𝑥𝑥
𝑞 ∂𝑥𝜙∂𝑥𝜙 + 𝜔𝑦𝑦

𝑞 ∂𝑦𝜙∂𝑦𝜙 + 𝜔𝑧𝑧
𝑞 ∂𝑧𝜙∂𝑧𝜙 + 𝜔𝑥𝑦

𝑞 ∂𝑥𝜙∂𝑦𝜙 +                              𝜔𝑥𝑧
𝑞 ∂𝑥𝜙∂𝑧𝜙 + ∂𝑦𝜙∂𝑧𝜙)

                                       (14)

                    (15)𝑔𝑒𝑞
𝑞 =

ω𝑞

𝑐2 (Γ𝜇 + 𝑐𝛼𝑞𝜌𝑢𝛼 +
3

2𝑐2(𝑐𝛼𝑞𝑐𝛽𝑞 ―
3

𝑐2𝛿𝛼𝛽)𝜙𝑢𝛼𝑢𝛽)
while the distributions for  are given by the following:𝑞 = 0

                                                   (16a)𝑓𝑒𝑞
0 = 𝜌 ― ∑𝑄 ― 1

𝑞 = 1 𝑓𝑒𝑞
𝑞

                                                   (16b)𝑔𝑒𝑞
0 = 𝜙 ― ∑𝑄 ― 1

𝑞 = 1 𝑔𝑒𝑞
𝑞

The bulk pressure in Equation (14) obeys: .𝑝0 = 𝑐2
𝑠𝜌 +

𝐴
2𝜙2 ―

3𝐴
4 𝜙4

The kinematic viscosity  is related to , which can be seen as follows:𝜐 𝜙

                                                 (17)𝜐(𝜙) = 𝜐𝑐
1 ― 𝜙

2 + 𝜐𝑑
1 + 𝜙

2

Page 10 of 30

John Wiley & Sons

2t-S-1Ed-D-P

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

here  and  are kinematic viscosity of the continuous and dispersed phases, respectively. 𝜐𝑐 𝜐𝑑

In this paper .𝜐𝑐 = 𝜐𝑑

For a planar interface at ,  evolves over the interface as follows:𝑥 = 0 𝜙

                                                        (18)𝜙(𝑥) = 𝑡𝑎𝑛ℎ
𝑥
𝜉

where  is the value of  in bulk phase at either side of the interface.𝜙 =± 1 𝜙

The width of diffuse interface  is given by the following[37]:𝜉

                                                          (19)𝜉 = ( 2𝜅
―𝐴)1/2

And the surface tension  follows from[37]:𝜎

                                                         (20)𝜎 =
4
3( ―𝐴

2𝑘 )1/2

We have to calculate the spatial gradients of  to determine the equilibrium distributions. 𝜙

The stencils for gradients and Laplacian calculations are[41]:

             (21)∂𝑥 =
1

12∆𝑥[( 0 0 0
―1 0 1
0 0 0),( ―1 0 1

―2 0 2
―1 0 1),( 0 0 0

―1 0 1
0 0 0)]

               (22)∇2 =
1

6∆𝑥2[(0 1 0
1 2 1
0 1 0),(1 2 1

2 ―24 2
1 2 1),(0 1 0

1 2 1
0 1 0)]

where the left, middle, and right matrices are the slices of the stencil when , and 𝑧 = Δ𝑥,0

, respectively.―∆𝑥

Solve the discretized equations (5) by two steps:

Collision step:                       (23) 𝑓′𝑞(𝑟𝛼,𝑡) = 𝑓𝑞(𝑟𝛼,𝑡) ―
1
𝜏𝑓

(𝑓𝑞 ― 𝑓𝑒𝑞
𝑞 ) + 𝐹𝑞

𝑔′𝑞(𝑟𝛼,𝑡) = 𝑔𝑞(𝑟𝛼,𝑡) ―
1
𝜏𝑔

(𝑔𝑞 ― 𝑔𝑒𝑞
𝑞 )

Streaming step:                            (24) 𝑓𝑞(𝑟𝛼 + 𝑐𝛼𝑞∆𝑡,𝑡 + ∆𝑡) = 𝑓′𝑞(𝑟𝛼,𝑡)

𝑔𝑞(𝑟𝛼 + 𝑐𝛼𝑞∆𝑡,𝑡 + ∆𝑡) = 𝑔′𝑞(𝑟𝛼,𝑡)

3.3. Scaling procedure

The LBM works in lattice space, which means the parameters should be translated into 

lattice units [lu]. Scaling factors are utilized to realize it. In this work, the parameters with ~ 

represent those in lattice units.

The scaling factor for surface tension can be written as:
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                                                               (25)𝐶𝜎 =
𝜎
𝜎

There are two numerical parameters related to surface tension,  and . The equation 𝜅 𝐴

for  is derived from Equation (20): 𝜅

                                                                (26)𝜅 =
3𝜉
4

𝜎
𝐶𝜎

In this work the interface thickness  (see Equation (19)) was 1.14 [lu] for each 𝜉

simulation.[36] The value of  can be calculated using Equation (19) once  has been 𝐴 𝜅

determined.

The density of liquid is ; and we can obtain the density of droplet according to 𝜌𝑐 = 1

density ratio: .𝜌𝑑 = 𝜆𝜌𝑐

Since the density difference is much smaller than actual densities of the liquids, the 

density differences only influence the forcing term  in Equation (1b). This is known as Δ𝜌g

the Boussinesq approximation. The scaling factors for the forcing is based on the Eötvös 

number. According to the equation of , forcing term becomes:𝐸𝑜

                                                             (27)∆𝜌𝑔 =
𝜎

𝑑2𝐸𝑜

where  is the equivalent drop diameter.𝑑

In a similar way, based on the equation of  and , the dynamic viscosity is defined 𝑀𝑜 𝜂

as:

                                          (28)𝜇𝑐 = (𝜌2
𝑐𝜎2𝑑2𝑀𝑜

𝐸𝑜)
1 4

𝜇𝑑 = 𝜂𝜇𝑐

And the kinematic viscosities are:

                                                           (29)𝜈𝑐 =
𝜇𝑐

𝜌𝑐
𝜈𝑑 =

𝜇𝑑

𝜌𝑑

From the above, the following scaling factors have been introduced and can be determined:

surface tension:  ;𝐶𝜎 =
𝜎
𝜎

density:  ;𝐶𝜌 =
𝜌
𝜌

kinematic viscosity:  ;                          (30)𝐶𝜈 =
𝜈𝑐

𝜈𝑐

forcing:  .𝐶𝑓𝑜𝑟𝑐𝑒 =
Δ𝜌g
Δ𝜌g

Utilizing the equations of , , and , as well as the scaling factors (30), other 𝐹𝑟 𝑅𝑒 𝑊𝑒
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scaling factors can be calculated as:

length:  ;𝐶𝑑 =
𝐶2

𝜈𝐶𝜌

𝐶𝜎

velocity:  ;                          (31)𝐶𝑢 =
𝐶𝜎

𝐶𝜈𝐶𝜌

time:  .𝐶𝑡 =
𝐶3

𝜈𝐶2
𝜌

𝐶2
𝜎

The other parameters can be translated from physical units into lattice units according to the 

scaling factors.

4. VERIFICATION OF SIMULATIONS

The computer code for these simulations has been developed using FORTRAN 90. It is 

based on our previous study.[42]

The objective of the present study is to investigate the behaviour of rising droplet being 

sliced by using the above described LBM model. Several factors that may affect the process 

should be checked in advance. The results of a set of test simulations facilitated determining 

the suitable input parameters ( ) as well as the associated numerical settings. In 𝐸𝑜, 𝑀𝑜, 𝜆, 𝜂

this section, results of verification computations for domain size, mesh resolution and 

dimensionality (2D versus 3D) are presented.

4.1. Domain size influence

We used fully periodic boundary conditions for describing a single drop moving through 

a large volume of fluid. We therefore need to make sure that the simulation domain is large 

enough so that the drop does not interact with itself and with the flow it creates over the 

periodic boundaries. On the other side, the domain size should be set reasonably to avoid 

excessive simulation time.

Two-dimensional simulations of system with physical properties as given in Table 1 and 

drops of  mm were performed. The heights of the computational domain were set to 𝑑 = 1.0

 to  to determine the proper height. The width is equal to , and  [lu] 8𝑑 16𝑑 𝑊 = 3𝑑 𝐷 = 1

(2D simulations). All computations were performed with a drop diameter in lattice units of 𝑑

 [lu]. The simulation parameters (in lattice units) were determined according to the = 30

scaling procedure as outlined in Section 3.3 after it was established that the physical system 
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has , , , and . 𝐸𝑜 = 1.0 𝑀𝑜 = 1.24 × 10 ―4  = 1 𝜆 = 0.90

The results are shown in Figure 2 in terms of the Reynolds numbers and the vertical 

locations towards reaching a steady speed.

Figure 2. The results for a  mm drop for different simulation domain heights in terms 𝑑 = 1.0

of the steady-state Reynolds number and rising distance. The domain width is 3d, and depth is 

1 [lu];  and . The dashed line in the left panel indicates the 𝐸𝑜 = 1.0 𝑀𝑜 = 1.24 × 10 ―4

Reynolds number as derived from Clift et al[12]

The steady state Reynolds numbers reported in Figure 2A are within 0.2% of  𝑅𝑒 = 5.6

so that the impact of height on rising velocity can be negligible, which is consistent with the 

three-dimensional simulation.[28] The flow map due to Clift et al[12] indicates a Reynolds 

number of 5.0 for the specific values for  and  where it should be noted that this map 𝐸𝑜 𝑀𝑜

is based on (three-dimensional) experimental data.

The choice for the height  in the slicing simulations is mainly determined by the 𝐻

distance it takes for the drop to reach a steady speed. Figure 2B shows that this distance is 

approximately . Because the drop is released at  and to ensure the drop 2.16𝑑 𝑧 > 0

behaviour has fully developed well before the drop hits the knife, a much larger domain 

height is used in the slicing simulations: .𝐻 = 20𝑑

The verification simulations for the domain width were carried out in the range  𝑊 = 2𝑑

to . The other domain parameters are ,  [lu] (for two-dimensional 10𝑑 𝐻 = 10𝑑 𝐷 = 1
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simulations) or  to  (for three-dimensional simulations). All computations 𝑊 = 𝐷 = 2𝑑 5𝑑

were performed with drop diameter  [lu].𝑑 = 30

Figure 3. The results for a  mm drop for different simulation domain widths in terms 𝑑 = 1.0

of the steady-state Reynolds number. The domain height is , and depth is 1 [lu] (for 𝐻 = 10𝑑

two-dimensional simulations) or  (for three-dimensional simulations);  and 𝑊 𝐸𝑜 = 1.0

. The horizontal dashed line indicates the Reynolds number as derived 𝑀𝑜 = 1.24 × 10 ―4

from Clift et al[12]

From comparing Figure 2 and 3 it is clear that the width of the domain has a much 

stronger influence on the rise velocity than the domain height. In three dimensions the rise 

velocity becomes independent of the domain width beyond . Since  in 𝑊 = 𝐷 = 4𝑑 𝐻 = 8𝑑

Figure 2, these results are also independent of domain height. The converged Reynolds 

number in the 3D results in Figure 3 is  and is close to the Reynolds number 𝑅𝑒 = 5.3

 that can be derived from the Clift et al[12] flow map.𝑅𝑒 = 5.0

Compared to the 3D results, the 2D results show a higher converged Reynolds number. 

This means the drag on a 2D (cylindrical) droplet is smaller than on a 3D (spherical) droplet. 

This has its analogy in flow around solid spheres and cylinders that for  shows 𝑅𝑒 < 30
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slightly smaller drag coefficients for cylinders than for spheres.

4.2. Mesh resolution

The drop diameter  is a measure for the spatial resolution of the simulation and 𝑑

therefore has impact on the computational effort. It may play an important role in the 

accuracy of the result. For this we here present results for a drop of  mm represented 𝑑 = 1

by  to  [lu] and with  and .𝑑 = 20 60 𝐸𝑜 = 1 𝑀𝑜 = 1.24 × 10 ―4

Changing the diameter in lattice units implies rescaling simulation parameters. The idea 

is to change the drop diameter  by a factor  ( ). It is important to keep the 𝑑 𝑓𝑚 𝑑2 = 𝑓𝑚𝑑1

dimensionless numbers constant, as well as viscosity and interface thickness: 𝜇𝑐2 = 𝜇𝑐1,  𝜇𝑑2

, . The following relations make sure the Eötvös and Morton numbers are = 𝜇𝑑1 𝜉2 = 𝜉1

unchanged upon rescaling:

                                            (32)
𝜎2

𝜎1
=

1
𝑓𝑚

(∆𝜌𝑔)2

(∆𝜌𝑔)1
=

1

𝑓3
𝑚

𝜅2

𝜅1
=

1
𝑓𝑚

𝐴2

𝐴1
=

1
𝑓𝑚

The analysis was performed with simulations of 1.0 mm droplets with domain size 10𝑑

 in 3D simulations and 1 in 2D simulations. The resulting Reynolds × 3𝑑 × 3𝑑 10𝑑 × 3𝑑 ×

numbers related to steady-state rise velocities are plotted in Figure 4. We observe good grid 

convergence behaviour for 2D as well as for 3D simulations. In the subsequent section on 

droplet slicing, a mesh resolution of  [lu] for 1 mm drops is adopted. In order to avoid 𝑑 = 30

extensive computations, 2D domains have been used in the simulation of droplets sliced by a 

knife. In Figures 3 and 4, we can see a reasonable agreement in terms of the Reynolds number 

based on the rise velocity between 2D and 3D. 
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Figure 4. The results for a  mm drop for different drop diameter  in lattice space in 𝑑 = 1.0 𝑑

terms of steady-state Reynolds number;  and 𝐸𝑜 = 1.0 𝑀𝑜 = 1.24 × 10 ―4

With  [lu] (and  mm), the scaling factor of surface tension is 𝑑 = 30 𝑑 = 1 𝐶𝜎 =

. It gives the linear dimension scale factor  m, time scale factor 1.0 𝑁/𝑚 𝐶𝑑 = 3.33 × 10 ―5

 s.𝐶𝑡 = 4.66 × 10 ―6

5. RESULTS

In this work, the parameters for simulated system are: , , 𝜆 = 0.9 𝜂 = 1 𝑀𝑜 = 1. 24 ×

, the values of  are different for different drop diameters, see Table 2. According to 10 ―4 𝐸𝑜

the diagram of Clift et al,[12] the drops are in the spherical (lower ) to ellipsoidal regime. 𝐸𝑜

Note that this diagram reflects a three-dimensional situation.

Table 2. Drop diameter  and corresponding  number considered in the present 𝑑 𝐸𝑜

simulations

 (mm)𝑑 𝐸𝑜

1.0 1.00
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2.0 3.96

3.0 8.91

4.0 15.84

5.1. The knife is at the centre

The numerical simulations of slicing rising droplets have been carried out for 

 mm droplets, in order to observe the different slicing scenarios. For each droplet, 𝑑 = 1.0–4.0

the “approach velocity”, deformation, breakage and slicing results have been analyzed. The 

“approach velocity” is the velocity at the moment the drop starts feeling the knife.

A range of scenarios has been observed when the drop hits the knife at centre and it has 

been investigated how the type of scenario depends on the dimensionless parameters 

governing the motion and slicing of the drop: the Eötvös number and the ratio of the droplet 

size and the width of knife.

The rising velocities for drops with diameter 1.0 mm to 4.0 mm as a function of the 

vertical (z) location are depicted in Figure 5. The rising velocities of drops increase rapidly 

during the accelerating regime. Then, the 1.0 and 2.0 mm drops enter steady regimes. The 

velocity of 1.0 mm drop decreases rapidly when it hits the knife and the drop finally stops 

moving. The knife hinders the 2.0 mm drop in rising, and finally slices the drop into two parts. 

A different behaviour is noticed for 3.0 mm and 4.0 mm drops: oscillations appear both for 

drop shapes (see Figure 6) and rising velocities (Figure 5) over the rising period. The 

acceleration period becomes longer with the increase of drop diameter. At the same time, the 

amplitude of velocity and shape oscillation becomes larger.
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Figure 5. The rising velocity of drops

An increase in drop diameter results in obvious deformation in early times and leads to 

the oscillation behaviour of drop rising velocity. The drop shapes are presented in Figure 6 for 

2.0, 3.0 and 4.0 mm drops. The drop deformations at initial moment are different, at  𝑡 = 0.1

s, the shapes of droplets are similar in the three cases. Whereas, at  s, the drops 𝑡 = 0.3

deform in different ways. The 2.0 mm drop changes its shape to ellipse after deformation, and 

maintains this shape until it touches the knife. At the same time, the larger drops (with 

diameter equals to 3.0 mm and 4.0 mm respectively) get convex shapes after which shape 

oscillations appear. The 4.0 mm drop develops two “tails” that then they break away and form 

two small satellite droplets. Surprisingly, during the ascent, they merge with the mother 

droplet again.
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Figure 6. The shapes of two-dimensional droplets of ,  and  mm at different 𝑑 = 2.0 3.0 4.0

moments after being released at  and before hitting the knife𝑡 = 0

The “approach velocity” is related to drop diameter (see Figure 7). The aspect ratio , 𝐸
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which can be regarded as the ratio of the two principal axes of the droplet, is a description of 

the shape deformation quantitatively.  means that the droplet has a circular shape.[43] 𝐸 = 1

According to Michaelides,[43] the droplet is a spherical if  (in this study, it is 𝐸 ≥ 0.95

circular). Among the drop diameters involved in this study, only  mm drop can be 𝑑 ≤ 1.5

considered having a circular shape when it hits the knife. Droplets with larger diameters are 

either deformed or oscillating. The drops with diameter  mm begin to deform, and 𝑑 ≥ 1.8

 mm begin to oscillate in shape and velocity. Besides, it is also found that the 𝑑 ≥ 2.8

“approach velocity” for  mm get reduced, which may be caused by deformation; the 1.8–2.6

ellipse-shaped drops are subject to greater resistance due to their greater width.

Figure 7. “Approach velocities” as a function of drop diameters

The slicing behaviour is different for different drop sizes. The smallest droplet of  𝑑 = 1.0

mm stops on the knife when sliced by knife, whether it is a sharp or a more obtuse knife 

(Figure 8A, B). Larger drops are easier to be sliced, and the slicing results do not depend 

much on the knife width (Figure 8C–G).
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Figure 8. Slicing scenarios (identified by letters (A)–(G) that are used in the text) as a 

function of drop size  and width of the knife 𝑑 𝑤𝑘

The effects of the relative sharpness of the knife  have been studied. It is defined as:𝑠𝑟

                                                              (33)𝑠𝑟 =
𝑤𝑘

𝑑

where  is the width of knife,  is the drop diameter. The simulated data are plotted in the 𝑤𝑘  𝑑

graphical correlation in Figure 9.

Figure 9 shows the relationship between  and the relative thickness of knife for 𝐸𝑜

. The results can be divided into three categories: (1) The droplet stops on 𝑀𝑜 = 1.24 × 10 ―4

the knife when sliced by relative blunt knife, this happens especially for smaller droplets (the 

lower  number). (2) The droplet passes the knife when it hits a sharp knife, and is not 𝐸𝑜

broken into two pieces. (3) The droplet is sliced into two parts for larger drop diameters / 

higher .𝐸𝑜

The main conclusion of Figure 9 is that for a slicing process to be successful we need to 

overcome a threshold value of the Eotvos number of approximately . This critical 𝐸𝑜 = 4

value does not depend on the relative knife thickness, at least for .𝑠𝑟 < 0.1
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Figure 9. Map of slicing scenarios with on the horizontal axis the relative thickness of the 

knife ( ) and on the vertical axis the Eötvös number ( )𝑠𝑟 =
𝑤𝑘

𝑑 𝐸𝑜

5.2. The knife is off-centre

In this section, the scenarios have been studied when the drops hit the knife off centre. 

The size of the simulation domain is , and the relative thickness of the knife is 20𝑑 × 3𝑑 × 1

in the range . The droplets are sliced into two unequal parts when the drop 𝑠𝑟 = 0.025 ―  0.1

hits knife off centre. The situations before and after slicing are presented in Figure 10.

In a range of off-centre distances, the volume ratios (given the 2D nature of the slicing 

simulations, the term “volume ratio” is actually a surface ratio, i.e. a ratio of volumes per unit 

length in the 3rd direction) for sliced drops increase with the deviation distances. Beyond this 

range, the drops also are sliced in two parts, but the smaller droplet remains on the knife and 

cannot escape (Figure 10,  for  mm). We note in Figure 10 that under 𝑟/𝑑 ≥ 5/12 𝑑 = 2.0

certain conditions the drops with  mm have developed satellites at the moment they 𝑑 = 4.0

interact with the knife.
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Figure 10. Slicing in case the drop approaches the knife off centre by a relative distance  𝑟/𝑑

as indicated

The volume ratio of the two drops formed after slicing (the larger volume divided by the 

smaller volume) is a function of the relative off-centre distance , see Figure 11. The data 𝑟/𝑑

points correlate well according to a quadratic relationship as can also be seen in Figure 11. 

The coefficients of the fitting equations are shown in Table 3, along with the R2 values that 

are all above 0.99.

As expected, the volume ratio monotonically increases with the off-centre distance. 

However, the trend with respect to the drop diameter is not monotonic. The largest volume 

ratios are found for  mm. Both  mm and  mm have smaller volume ratios 𝑑 = 3 𝑑 = 2 𝑑 = 4

for the same  values. This effect is related to the shape of the drops at the moment they 𝑟/𝑑

start interacting with the knife. 

Table 3. The fitting equations between volume ratio (y) versus relative off-centre distance 

 (x)𝑟/𝑑

 (mm)𝑑 Fitting equation

2.0 𝑦 = 8.32𝑥2 + 2.07𝑥 + 1.01        (𝑅² = 0.9995)

3.0 𝑦 = 11.59𝑥2 + 3.02𝑥 + 1.01       (𝑅² = 0.9999)

4.0 𝑦 = 1.11𝑥2 + 2.98𝑥 + 1.01        (𝑅² = 0.9934)
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Figure 11. Ratio of the volume of the two drops formed after slicing as a function of the 

relative off-centre distance . The dots represent individual simulations, the curves are 𝑟/𝑑

quadratic fits (see Table 3)

6. CONCLUSION

In this work, we performed numerical simulations of slicing rising droplet in liquid. 

Two-dimensional and three-dimensional simulations have been performed using free energy 

LBM method. The proposed scaling procedure is utilized to translate the parameters into 

lattice units, which is corresponding to the physical units of the simulated system.

The simulation parameters such as simulation domain size, mesh resolution, and 

dimensionality (2D versus 3D) were tested to verify the LBM model and computer code. In 

order to make sure that the drop does not interact with itself and with the flow it creates over 

the periodic boundaries, the domain width should be at least three drop diameters. The mesh 

resolution also plays an important role in the accuracy of results. A diameter  [lu] for 𝑑 = 30

1 mm is the best choice because it satisfies both accuracy and simulation time. The results of 
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2D and 3D simulations were also compared. Two-dimensional slicing simulations have been 

adopted in order to avoid extensive computations.

We studied droplets with diameters of  mm, which were distributed in regions of 1.0–4.0

circular, deformed, and oscillating. Our simulations captured shape deformation, rising 

velocity, and slicing results. The results of our numerical simulations (the rising velocity and 

Reynolds number) are consistent with the experimental data obtained by Clift et al.[12]

A range of scenarios have been observed when the drop hits the knife at the centre as well 

as off-centre. Droplet slicing requires a threshold Eotvos number. Our simulations suggest it 

to be  if . This critical Eo was independent of the thickness of the 𝐸𝑜 ≈ 4 𝑀𝑜 = 1.24 × 10 ―4

knife as long as it was less than . In case the drop hits the knife off-centre the volume 0.1𝑑

ratio of the two resulting fragments depends approximately quadratically on the off-centre 

distance.

It should be noted that the above conclusions are for a viscosity ratio of one and a density 

ratio close to one. We anticipate that the main effect of the density ratio is an effect on the rise 

velocity which, through the Eotvos number, impacts slicing. As for the viscosity ratio: its 

impact is likely to be more complex, in line with a former paper[44] on the effect of the 

viscosity ratio of drop breakage as a result of shear.
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NOMENCLATURE

                    density (kg/m3)𝜌

                    dynamic viscosity (Pa s)𝜇

                    equivalent diameter (mm)𝑑

                   density difference (kg/m3)∆𝜌

                     time (s)𝑡

                    interfacial tension (N/m)𝜎

                    rising velocity (mm/s)𝑢

                   (dimensionless) Eötvös number𝐸𝑜

                  (dimensionless) Morton number𝑀𝑜

                    density ratio𝜆

                    dynamic viscosity ratio𝜂

                   (dimensionless) Reynolds number𝑅𝑒

                  (dimensionless) Weber number𝑊𝑒

                   (dimensionless) Froude number𝐹𝑟

                    order parameter of phase field𝜙

                    position vector (mm/s)𝒓

                    kinematic viscosity (m2/s)𝜈

                   gravitational acceleration (m/s2)gα

                   mobility parameter𝑀

                    coefficient of mobilityΓ

                  “thermodynamic” pressure tensor (Pa)Pth
αβ

                “chemical” pressure tensor (Pa)𝑃chem
αβ

                  full pressure tensor (Pa)𝑃𝛼𝛽

                 chemical potential (Pa)μ(𝜙)

,          particle distribution functions𝑓(𝒓, 𝑡) 𝑔(𝒓, 𝑡)

                    discretized velocity direction𝑞

,      discrete Maxwell–Boltzmann distributions (or equilibrium distributions)𝑓𝑒𝑞
𝑞 𝑔eq

q

                discrete velocity (mm/s)𝑐𝛼𝑞

,               dimensionless relaxation parameters𝜏𝑓 𝜏𝑔
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,                parameters connected with surface tension and interface thickness𝐴 𝜅

                 speed of sound squared in lattice units (m2/s2)𝑐2
𝑠

                 forcing term ( , N)𝐹𝑞 𝐹𝑞 = gΔρ

                 mesh step (mm)∆𝑥

                 time step (s)𝛥𝑡

                 weight coefficients𝜔𝑞

                 bulk pressure (Pa)𝑝0 

                  diffuse interface ([lu])𝜉

                  scaling factor𝐶

                  parameters in lattice units~

                  equivalent drop diameter in lattice units ([lu])𝑑

                 a factor (when changing the drop diameter )𝑓𝑚 𝑑

                 the weight of simulation domain (mm)𝑊

                  the height of simulation domain (mm)𝐻

                  the depth of simulation domain (mm)𝐷

                  aspect ratio of the droplet𝐸

                 width of the knife (mm)𝑤𝑘

                  the relative sharpness of the knife ( )𝑠𝑟 𝑠𝑟 = 𝑤𝑘/𝑑

                  off-centre distance of the knife (mm)𝑟

                relative off-centre distance𝑟/𝑑
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