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Abstract
Liquid drainage within foam is generally described by the foam drainage equation which 
admits travelling wave solutions. Meanwhile, Richards’ equation has been used to describe 
liquid flow in unsaturated soil. Travelling wave solutions for Richards equation   are 
also available using soil material property functions which have been developed by Van 
Genuchten. In order to compare and contrast these solutions, the travelling waves are 
expressed as dimensionless height, 𝜉 , versus moisture content, � . For low moisture con-
tent, 𝜉 exhibits an abrupt change away from the dry state in Richards equation compared to 
a much more gradual change in foam drainage. When moisture content nears saturation, 𝜉 
reaches large values (i.e. 𝜉 ≫ 1 ) for both Richards equation and foam drainage, implying a 
gradual approach of � towards the saturated state. The 𝜉 values in Richards equation tend, 
however, to be larger than those in the foam drainage equation, implying an even more 
gradual approach towards saturation. The reasons for the difference between foam drainage 
and Richards equation solutions are traced back to soil material properties and in particular 
a soil specific parameter “m” which is determined from the soil-water retention curve.

Article Highlights

•	 Travelling waves for groundwater flow via Richards equation are compared with 
node- and channel-dominated foam drainage.

•	 In dry systems, liquid saturation varies abruptly with spatial location in soils 
(Richards equation) compared to foam.

•	 By contrast, in wet systems, full saturation is achieved more gradually with posi-
tion in soils than in foams.
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1  Introduction

Flow in soils (and foams) involves displacing air with water (or vice versa in fluid recovery 
processes) in the domain in which flow occurs. The laws governing fluid flow are analo-
gous in both systems but may be expressed differently using different terminology depend-
ing on the medium considered. Despite similar physical laws (Celia et al. 1990; Richards 
1931; Verbist and Weaire 1994; Verbist et al. 1996), unfamiliarity in terminology has lim-
ited exchange of ideas between the flow in soil and flow in foam research fields.

Based on work of Buckingham (1907) on capillary action in soils, Richards (1931) 
showed that capillary, viscous and gravity forces affected movement of water in porous 
media. He presented data and a general equation commonly referred to as Richards equa-
tion (hereafter RE) to describe capillary conduction of water through soil (and clay). This 
equation has been used extensively in groundwater hydrology, soil science, agricultural 
and environmental engineering (Broadbridge and White 1988; Celia et al. 1990; Patel and 
Pradhan 2015; Philip 1974; Parlange 1971; Raats and Van Genuchten 2006; Zlotnik et al. 
2007).

Foam drainage which is governed by forces analogous to those in Richards equation was 
first described with an equation derived by Gol’dfarb et al. (1988). This was later advanced 
by Verbist and Weaire (1994); Verbist et  al. (1996), who developed the so-called foam 
drainage equation (hereafter FDE). Their work was also based on research done by Princen 
and Kiss (1987) who worked on an analogous system (emulsions). The FDE as originally 
formulated was based on the assumption of viscous dissipation through the Plateau border 
channels (hereafter PB), which are channels in a foam along which three bubbles meet 
(Verbist and Weaire 1994; Verbist et al. 1996). Depending on surfactant type, dissipation 
through the foam may be predominantly via the PB (Verbist and Weaire 1994; Verbist et al. 
1996), or through the nodes where PBs meet, a case treated by Koehler et al. (1999, 2000) 
leading to the formulation of another variant drainage equation. Both variants of the FDE 
are of interest in this research and both have been analysed extensively mathematically 
(Koehler et al. 2000; Verbist et al. 1996).

The FDE has been studied so extensively (Grassia et al. 2001; Koehler et al. 1999, 2000; 
Neethling et al. 2000; Verbist et al. 1996) in fact that, analysis done on it can now be used 
to gain insights into the behaviour of RE. Thus, the mathematics of flow of liquid in foams 
can be analysed alongside the flow of liquids through porous media. In particular, it is 
known that the FDEs have travelling wave solutions (sometimes loosely referred to as sol-
itons (Weaire and Phelan 1996)) which can be used to predict the spatial and temporal 
transport of fluid within the foam (Koehler et al. 1999; Grassia et al. 2001). In the context 
of RE, such solutions have been deployed extensively in hydrology (Ahuja and Swartzen-
druber 1973; Broadbridge and White 1988; Caputo and Stepanyants 2008; Raats and Van 
Genuchten 2006; van Duijn et al. 2018).

As we will explain later on, the travelling wave solutions for foams and/or soils are rel-
evant for systems with a constant liquid influx, but at sufficiently long times such that the 
liquid fraction at the top boundary has ceased to vary with time. They can be used to pre-
dict how much water is needed to irrigate a piece of land down to a certain depth, how 
rapidly water advances into the soil, as well as how rapidly an irrigation system might need 
to be switched off once a certain saturation is achieved at a specific depth.

A key novel contribution here will be to compare and contrast travelling wave solutions 
for foams and/or soils obtained over the full range of liquid contents (found numerically in 
the case of soils) with simpler asymptotic behaviours of those travelling waves, both for 
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very dry systems and for systems close to saturation. In both asymptotic limits, analytical 
approximations for the shape of the travelling wave are available and having the analytical 
formula is convenient in that limit given the numerical solutions diverge there. These ana-
lytical approximations for foams and soils and for both dry and wet systems, are particu-
larly appealing, being simple enough in their form to make it straightforward to interpret 
them physically. This paper thus seeks to bridge the gap between not only the mathematics, 
but also the physics of drainage in foams  compared to that in unsaturated soils.

 Some of the physical insights we will gain are that liquid content in soils can change 
very abruptly with position and/or time when soils are comparatively dry (contrasted with 
much more gradual changes of liquid content in foams). On the other hand, when soils 
become wetter, reaching the limit of full saturation is achieved very slowly indeed (more so 
than in foams). How abruptly or how gradually liquid content within soil changes in space 
and/or time may affect decisions on how to control a system used to irrigate that soil as we 
will explain.

This work is laid out as follows. In Sect. 2, we review concepts of liquid transport in 
soils and foams, and the underlying governing equations, namely Richards equation and 
the foam drainage equation variants. We look at the non-dimensional rescaling of the 
channel-dominated and node-dominated FDE variants, and the derivation and dimension-
less rescaling of RE. Section 3 considers material properties of the porous media that are 
required within RE. Section 4 deals with equations that govern travelling wave solutions 
for RE. Sections 5–6 present results and discussion, and Sect. 7 concludes the paper.

2 � Foam Drainage Equation and Richards Equation

As mentioned above, there is a close analogy between RE and the two FDEs. They are both 
continuity and mass conservation equations describing flow (in complex porous media). 
The forces controlling fluid flow are the same (capillary, gravity and viscous forces). In 
Or and Assouline (2013), an alternate approach to drainage in porous media was formu-
lated using a variant of the FDE called the soil foam drainage equation (SFDE). Due to the 
complexity of obtaining accurate values for the hydraulic functions, namely the so-called 
hydraulic conductivity and diffusivity (Van Genuchten 1980; Van Genuchten and Nielsen 
1985; Vogel and Cislerova 1988) in Richards equation, a variant of the FDE was consid-
ered treating the capillary network in soils as a network of foam Plateau borders (PBs). 
This is an appealing view even though unlike soils, the channels within foams expand with 
increasing moisture content until the foam breaks up into a bubbly liquid state, which is 
not the case with soils. Additionally, soils can have large local variations in their pore sizes 
unlike the typical situation with foams where capillary suction limits local variation of PB 
cross-sectional area.

Despite these structural differences, foams and soils have many similarities. In both 
cases, the capillary suction effects are strongest when the system is dry, but fall towards 
zero at full saturation. Likewise in both cases, hydraulic conduction is weakest when the 
system is dry, and strongest when the system is wet. Similarities like these can be exploited 
when comparing foam and soil systems. Solutions that have been determined for FDE 
(Koehler et  al. 1999, 2000; Verbist and Weaire 1994; Verbist et  al. 1996; Weaire and 
Phelan 1996) may therefore be extended to RE to gain insights into flow behaviours in 
soils or other porous media. This paper seeks to consider RE (Richards 1931) in close anal-
ogy to existing studies on the FDEs (Koehler et al. 1999, 2000; Verbist and Weaire 1994; 
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Verbist et al. 1996), present travelling wave solutions for RE based on those for the FDE, 
and compare and contrast travelling wave solutions from RE and FDE.

We discuss the FDEs in Sects. 2.1 and 2.2 below, and RE in Sect. 2.3. To facilitate com-
parison, typically we consider not only the original equations, but also their dimension-
less forms. We therefore consider non-dimensionalisation of the channel-dominated FDE 
and RE. The dimensionless node-dominated FDE is already available in literature (Koehler 
et al. 1999, 2000). The key dimensionless equations we obtain are Eqs. (4), (7) and (13). 
Readers familiar with derivations of these equations may wish to skip directly to Sect. 3.

2.1 � Channel‑Dominated FDE

The general form of the channel-dominated FDE proposed by Verbist and Weaire (1994); 
Verbist et al. (1996) is given as

where A is area of the PB, t is time, x is position (measured downwards), � = f �l (f is a dis-
sipation shape factor, and �l is the liquid viscosity), � is density of liquid, g is gravity, C is 
a geometric shape factor and � is surface tension. It was found by Verbist et al. (1996) that 
C ≈ 0.4016 and f ≈ 49  (this value being an upper limit for �∕�l based on the assumption 
of completely immobile film surfaces Leonard and Lemlich 1965).

In non-dimensionalising the channel-dominated FDE, a characteristic length-scale 
x0 =

√
C�∕�g and time-scale t0 = �∕

√
C��g were chosen (Verbist et al. 1996). Although 

these scales can be used to non-dimensionalise the channel-dominated FDE, the dimen-
sionless analogue of A (namely A∕x2

0
 ) would not be identical to the moisture content of the 

foam, making it less straightforward to compare with RE. However, moisture content can 
be obtained from � = �A where � is the length of PB per unit volume (Brito-Parada et al. 
2013; Neethling et al. 2001). Here, � is sensitive to bubble size (scaling as inverse square of 
bubble size), whereas 1∕x2

0
 is a continuum quantity (depending on � and � ). When we intro-

duce this factor � , the channel-dominated FDE (1) becomes

This form of the FDE given in Eq.  (2) is the more useful form for our problem. Choos-
ing to make the equation dimensionless using x = x0� and t = t0� , but now with 
x0 = (C�

√
�)∕(2�g) and t0 = (C���3∕2)∕(2�2g2) , we deduce

This is the dimensionless channel-dominated FDE used here. It differs slightly from a form 
derived by Verbist et al. (1996) (there is a factor of 2 appearing in their equation, but we 
have chosen x0 and t0 in such a fashion to scale this out to permit a fairer comparison with 
the node-dominated FDE (see Sect. 2.2 below)). Strictly speaking, the FDE is only valid in 
dry foam limit 𝜃 ≪ 1 , but it is often considered to apply all the way up to some liquid frac-
tion �s (saturated moisture content) at which foam breaks up into a bubbly liquid, although 
the geometric picture of long straight PBs leading (in the terminology of RE, see Sect. 2.3 
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below) to simple formulae for hydraulic conductivity and diffusivity, scaling like �2 and √
� , respectively, does not apply for wet foams. If we assume these simple formulae apply, 

at least approximately up to � = �s , we can define � ≡ �∕�s as a rescaled liquid fraction, 
and after rescaling � and � to new variables ( ̂𝜉 = 𝜃

1∕2
s 𝜉 and 𝜏 = 𝜃

3∕2
s 𝜏 ), we obtain

In literature, this equation is often considered up to � values as large as � = 1 , even though 
formally (relying as it does upon there being a clear network of Plateau borders through 
which drainage can occur) the equation should be restricted to rather smaller � (Weaire 
and Phelan 1996; Weaire and Hutzler 2001).

2.2 � Node‑Dominated FDE

The node-dominated FDE proposed by Koehler et al. (1999, 2000) is given as

where � is liquid fraction, t is time, L is length of a PB, �a ≡ C2 is a geometric shape factor, 
�l is fluid viscosity, �� is another geometric shape factor, I is a dimensionless number repre-
sentative of the viscous force in the nodes and is assumed to be independent of � , � is den-
sity of liquid, g is gravity, and � is surface tension. Koehler et al. (1999, 2000) reported that 
�a ≡ C2 ≈ 0.1613 , �� ≈ 0.1711 and I ≈ 400 , the value of I having been evaluated empiri-
cally, although more recent studies (Anazadehsayed et al. 2017, 2018) indicate a method to 
compute it.

The dimensionless form of the equation using length and time scales that are identified 
in Koehler et al. (1999, 2000)  (x0 = (�∕�g)�

1∕2

�
∕(2L) , t0 = (�l��I∕(4�aL

3))�∕(�g)2 ) which 
necessarily differ from the analogous channel-dominated scales, as the parameters in the 
dimensional equations (2) and (5) also differ is

As noted for the channel-dominated case, it is possible to rewrite this in terms of a new 
variable � ≡ �∕�s  setting now 𝜉 = 𝜃

1∕2
s 𝜉 and 𝜏 = 𝜃s𝜏 to obtain

Both Eqs. (4) and (7) are cast in the form of convection-diffusion equations where the con-
vection term �2 or �3∕2 and diffusivity term �1∕2 or 1 is always unity when � = 1 . This 
seems to enable a “fair” comparison between channel- and node-dominated theory (and 
compared to the formulation of Verbist and Weaire (1994); Verbist et al. (1996) is the rea-
son for eliminating the factor of 2 that would otherwise appear in the channel-dominated 
FDE (4)).
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2.3 � Richards Equation

In Sects.  2.3.1–2.3.2, we review the derivation of Richards equation (RE) and its non-
dimensionalisation, the dimensionless form facilitating comparison between RE and FDE.

2.3.1 � Derivation of Richards Equation

Richards Eq. (Richards 1931) is deduced via the continuity and Darcy equations. Here, 

 gives the continuity equation, where q is the Darcy flux which is measured downwards and 
distance z is measured upwards. This is a common sign convention for RE but differs from 
the usual convention for FDE.

Moreover, the vector flux is given as

where K is hydraulic conductivity, �̂ is the unit vector in the gravity direction and h is 
the capillary suction head (hereafter referred to as head). With our sign convention, 
q = K((�h∕�z) + 1) . This is the Darcy equation for describing fluid flow in porous media 
and it is based on a potential or pressure differential. One key component is the capillary 
head factor which is analogous to a capillary suction term in the FDE. Substituting the 
expression for q into (8) gives the originally determined RE that describes fluid flow in 
porous media:

The capillary head is strictly speaking negative (i.e. it is a suction), but we can define a 
positive value via h+ = −h . If h becomes more negative as we move downwards (i.e. as z 
decreases), then �h∕�z makes a positive contribution to the downward flux.

Richards equation as in Eq. (10) as determined above is given in a “mixed form” involv-
ing two variables, � and h. It is more convenient to give the equation in terms of a single 
variable (Celia et al. 1990). Here, we opt for a so called “moisture-based form”

where K(�) is hydraulic conductivity, while D(�) is soil-water diffusivity satisfying 
D ≡ K |dh+∕d�| . As � decreases, h+ becomes increasingly positive, i.e. h becomes more 
negative. Hence, dh+∕d� is negative, an absolute value being taken to return a positive 
quantity.

Equation (11) is in a form that is more readily solved than the mixed form. Regardless 
of the form in which the equation is written, the first term in RE represents accumulation. 
The second term represents capillary diffusivity, and the final term is the gravity conduc-
tion term.

Thus far, we have reviewed how to derive RE. We now consider its 
non-dimensionalisation.
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2.3.2 � Non‑dimensionalisation of Richards’ Equation

The moisture-based form of the RE eliminates the head h which has units of length. There 
is a characteristic length scale in the soil-water retention curve relation (for h vs � ) which 
is typically denoted as �−1 for some parameter � (Van Genuchten 1980). Meanwhile, the 
hydraulic conductivity is K ≡ KsKr(�) . The multiplier Kr(�) (relative hydraulic conduc-
tivity, hereafter RHC) is a dimensionless variable, whereas Ks has the same units as K, 
namely LT−1 in dimensional form and represents the hydraulic conductivity at saturation. 
We express z = �∕� for the length scale ( � is measured positive upwards), t = �∕(�Ks) for 
the time scale and D(�) = KsDr∗ (�)∕� for diffusivity. Here, Dr∗ (�) is relative diffusivity 
(hereafter RD).

Table 1 gives some physical properties of the soil types used in this work, helping to 
relate the dimensionless variables back to dimensional ones. As just mentioned, the length 
scale is given by �−1 , whereas Ks gives a velocity scale and hence the time scale is (�Ks)

−1.
Inserting these in Eq. (11), we obtain

Here relative diffusivity Dr (hereafter RD) is defined such that 
D = KsDr∕

(
�
(
�s − �r

))
, so that Dr =

(
�s − �r

)
Dr∗ . We may also recast this equation in the 

form

with � indicating the rescaled moisture content

where �s and �r are saturated and residual moisture contents. Note that 
Dr∗ (�) = Kr|dH+∕d�| where as Dr(Θ) = Kr|dH+∕dΘ| . Moreover, rescaled distance and 
time are 𝜏 = 𝜏(𝜃s − 𝜃r) and 𝜉 = 𝜉.

The similarity between Eq. (13) and Eqs. (4) and (7) is clear, modulo a sign change in 
the final term due to measuring 𝜉 in different directions. Comparing the above-mentioned 
equations, it is apparent that foam drainage analogue of diffusivity Dr is �1∕2 (channel-
dominated FDE) or unity (node-dominated). The analogue of hydraulic conductivity Kr is 
�2 (channel-dominated) or �3∕2 (node-dominated).
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Table 1   Soil-specific properties 
of the three example soils, 
with values as reported in 
Van Genuchten (1980). The 
parameter m will be discussed 
further in Sect. 3.1

Soil m K
s
 (cm/day) α (cm−1) �K

s
 (day−1)

Silt loam 0.5146 4.96 0.00423 0.0210
Guelph loam 0.6377 31.6 0.0200 0.6320
Hygiene Sandstone 0.9038 108 0.0079 0.8532
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3 � Properties of Porous Media Within Richards Equation

To solve Richards Eq. (13), we need the functions Kr(�) and Dr(�) which are porous media 
properties. A number of these functions are available in literature (Brooks and Corey 1964; 
Van Genuchten 1980). In particular,  Van Genuchten (1980) derived hydraulic functions, 
namely conductivity and diffusivity from predictive conductivity models (hereafter PCM) 
given by Burdine (1953) and Mualem (1976) using a soil-water retention curve (which 
describes the suction head). Van Genuchten’s analytical expressions via the Mualem PCM 
(VGM) are generally considered to be the more accurate and more widely known ver-
sions (Van Genuchten 1980; Kim et al. 2008; Patel and Pradhan 2015). The PCM relates 
capillary suction head with water content and unsaturated hydraulic conductivity, eventu-
ally leading to capillary diffusivity. The equations that are derived (Van Genuchten 1980) 
depend on a parameter m which depends on the specific soil type. This model matches 
experimental data (Van Genuchten 1980), but the functional forms it predicts for RHC and 
RD turn out to be complicated, making it difficult to solve RE analytically. We deal with 
that issue in Sect. 4: first, however, we discuss the VGM porous media properties.

3.1 � Head Function

The soil-water retention curve (SWRC) relates the rescaled water (moisture) content � to 
the suction head h (in the soil-water retention curve) expressed below

where H+ = �h+ is dimensionless head ( �−1 is a length scale and h+ = −h ), n and m are 
material parameters. Although fixed m = 1 with variable n has been used in literature (Van 
Genuchten 1980), usually m and n are related via m = 1 − 1∕n by Van Genuchten (1980) 
(using the predictive conductivity model (PCM) given by Mualem (1976)). Here, n > 1 , 
and hence, 0 < m < 1 . Clayey soils are represented by comparatively low n values (m 
significantly less than 1), while higher n values (m close to 1) represent non-clayey soils 
(Stankovich and Lockington 1995). A plot of H+ against � for three soil samples with three 
different m values as determined by Van Genuchten (1980) is presented in Fig. 1.

3.1.1 � Behaviour of Head Function in Small and Large � Limits

From Fig. 1, we observe that changes in head values are very abrupt for small changes in 
� in the limits of near residual and fully saturated moisture content limits. When head is 
significantly bigger than unity ( H+ ≫ 1 or 𝛩 ≪ 1 , i.e. in a very dry soil), we obtain analo-
gously to the capillary suction head used by Brooks and Corey (1964)

Thus, H+ is large when � becomes small, but the growth in H+ is modest if m → 1.
We observe also that for a near-saturated system ( � ≈ 1 ), the head would be much less 

than unity, i.e. H+ ≪ 1 . This implies that Eq. (14) would approximate to

(14)� =
[
1 + Hn

+

]−m
; H+ =

(
�−1∕m − 1

)1∕n
,

(15)𝛩|H+≫1 ≈ H−nm
+

; H+
||𝛩≪1

≈ 𝛩−1∕(nm) ≈ 𝛩−(1−m)∕m.

(16)𝛩|H+≪1 ≈ (1 − mH
1∕(1−m)
+ ) ; H+

||𝛩≈1
≈ ((1 − 𝛩)∕m)1−m.
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Figure  1b shows a comparison of original head (14) given by Van Genuchten (1980) and 
its asymptotic approximation (16) for � ≈ 1 . The two profiles match quite closely, and the 
approximation is more accurate as m → 1 . Note also that although H+ → 0 as � → 1 as we 
expect, the approach is not smooth: in fact, the derivative of (14) goes to infinity in that 
limit

Note that for m → 1 , this predicts a large |dH+∕d�| only at � → 1 but much smaller 
|dH+∕d�| elsewhere, i.e. a near step change in H+ as Fig. 1b shows.

3.2 � Relative Hydraulic Conductivity

Several relative hydraulic conductivity (RHC) functions have been proposed in literature 
(Brooks and Corey 1964; Van Genuchten 1980; Assouline and Tartakovsky 2001). Here, 
the more commonly used Van Genuchten–Mualem (VGM) function (Van Genuchten 1980) 
is employed, as has been done by Celia et al. (1990); Caputo and Stepanyants (2008); Patel 
and Pradhan (2015). It is given as

This is based on the aforementioned predictive conductivity model (PCM) given by 
Mualem (1976). Another PCM (Burdine 1953) for which Van Genuchten (1980) derived 
another hydraulic conductivity equation is available albeit less commonly used. For low 
moisture contents (considered in Sects.  3.2.1 and 5.2.1), the models developed by Van 
Genuchten (1980) using both the Burdine and Mualem models become equivalent to RHC 
models given by Brooks and Corey (1964), although differences appear as � grows. The 
Burdine case will not be discussed further here.

RHC values for different soils are plotted in Fig. 2a and compared against the FDE ana-
logues read off from Eqs. (4) and (7).

(17)||dH+∕d�
|| ≈ (1 − m)m−(1−m)(1 − �)−m.

(18)Kr(�) = �1∕2[1 − (1 − �1∕m)m]2.

(a) (b)

Fig. 1   a The behaviour of dimensionless suction head ( H+ = �h+ ≡ −�h ) versus moisture content based on 
Eq. (14) for three soil types (Van Genuchten 1980), i.e. three different values of the parameter m. The inset 
gives a closer view of the behaviour near full saturation. b Plot of comparison of behaviour of head Eq. (14) 
and asymptotic behaviour (16) of head near saturation ( � ≈ 1)
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Note that Kr(�) = 1 when � = 1 in all cases. However, RHC values for soils are less 
than those for foams, when 𝛩 < 1 . Also, the lower the m value, the lower is the RHC at any 
�.

3.2.1 � Behaviour of K
r
(�) in Small and Large � Limits

We examine the behaviour of the RHC function for small and large � values. From 
Eq. (18), when 𝛩 ≪ 1 , we determine

Consulting Eq. (19), matching power laws and  neglecting prefactors, we deduce that the 
node-dominated and channel-dominated FDE cases are akin to m = 2 and m = 4∕3 , respec-
tively. Comparing these m values to those for soils (which have 0 < m < 1 ), it leads to dif-
ferences in drainage behaviour between foams and soils, at least in the small � limit.

We also find the behaviour of Eq. (18) for large moisture content � ≈ 1 values is

The smaller the m value, the faster Kr(�) falls as � decreases.
Figure 2b compares true RHC Eq. (18) and its asymptotic form (20) for three different 

soils, i.e. three different m values (see Table 1). We observe that for all three m values, the 
asymptotic formula is a reasonable approximation. However, later on (see Sects. 4.3 and 
5.2.4), we will be interested not only in values of Kr(�) , but also in values of � − Kr(�) . 
The values of Kr(�) tend to be larger, and hence the values of � − Kr(�) are smaller for 
the Hygiene Sandstone (and generally for cases with m ≈ 1 ) than for the other soils, i.e. silt 
loam and Guelph loam. For m ≈ 1 then, small errors in the Kr(�) values can lead to large 
relative errors in � − Kr(�) . The implications of this will be explored further later (see 
Sect. 5.2.4 and the “Appendix”).

(19)Kr(𝛩) || 𝛩≪1
≈ m2𝛩(1∕2+2∕m).

(20)Kr(�) || �≈1
≈ (1 − 2m−m(1 − �)m).

(a) (b)

Fig. 2   a Plot of relative hydraulic conductivity (RHC) against moisture content for the two variants of the 
foam drainage equation (FDE) and three soil samples. The analogous RHC values for channel-dominated 
FDE (4) and node-dominated FDE (7) are �2 and �3∕2 , respectively. The dashed straight line plots the value 
of � , which helps to visualise the amount K

r
(�) falls below � . b Comparison of the true RHC Eq. (18) and 

its asymptotic form Eq. (20) in the � ≈ 1 region for three soil samples. The dashed straight line at the top 
plots � , so the value of � − K

r
(�) is the difference between this line and the value on each curve
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3.3 � Relative Diffusivity

The general equation for determining relative diffusivity (RD) is based on the relationship 
for relative hydraulic conductivity (RHC) and head (soil-water retention curve, SWRC),

We use Eq. (21) with Eqs. (14) and (18) to obtain the expression,

Equation (22) is plotted in Fig. 3 for three soil samples where it is compared with the anal-
ogous terms from the FDEs. We observe here that as � → 1 , Dr(�) → ∞ for the three soil 
samples (due to the behaviour of |dH+∕d�| in that limit). By contrast, diffusivity is unity 
when the medium is fully saturated for the FDE variants (i.e. Dr(�) = 1 at � = 1).

3.3.1 � Behaviour of D
r
(�) in Small and Large � Limits

We examine the behaviour of the diffusivity function for small and large � values. We 
deduce from Eqs. (15) and (19) that when 𝛩 ≪ 1

This Eq.  (23) is plotted in Fig.  4a alongside the original Eq.  (22). Hygiene Sandstone 
with higher m not only has a lower exponent, but also a lower prefactor. Thus, Dr(�) for 
Hygiene Sandstone starts off larger than for Guelph loam or silt loam, but eventually it 
is overtaken by the two loams as � increases. Note also that if we match the power law 
of Eq. (23) neglecting prefactors to the foam drainage relative diffusivities, the node- and 
channel-dominated cases now become akin to m = −2 (a value that would certainly not 
apply in the case of soils) and m → ∞.

We can also find a relationship for � ≈ 1 given Eq. (22). The RHC function approaches 
unity in this limit. Hence, via Eq. (17)

(21)Dr(�) = Kr(�)||dH+∕d�
||.

(22)Dr(�) =
(1 − m)

m

(�−1∕m − 1)−m

�(1∕2+1∕m)
[1 − (1 − �1∕m)m]2.

(23)Dr(𝛩) || 𝛩≪1
≈ m (1 − m)𝛩 (1∕2+1∕m).

Fig. 3   Profile of relative diffusiv-
ity against moisture content for 
the FDEs (4) and (7) and three 
soil samples based on Eq. (22). 
The relative (capillary) dif-
fusivity terms in (4) and (7) are 
equivalent to 

√
� and 1, respec-

tively. The functions for the soil 
samples are dependent on m for 
each soil sample
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Here, Dr(�) → ∞ as � → 1 as shown in Fig. 4b (a significant change from FDE for which 
Dr(�) → 1 as � → 1 ). Here, Hygiene Sandstone has the larger (negative) exponent but the 
smaller prefactor. Thus, it has the largest Dr(�) as � → 1 , but not as � starts to fall. This 
implies (Fig. 4 ) that Dr(�) is non-monotonic in m, depending on the � value.

This completes our presentation of soil sample material properties.
Good estimates of the SWRC are essential (Van Genuchten 1980; Vogel and Cislerova 

1988; Assouline et  al. 1998), since the SWRC is used in the Mualem (1976) predictive 
model to obtain the RHC, and then both the retention curve and RHC are used to obtain the 
RD. In what follows, this information is used to obtain moisture content profiles.

4 � Travelling Wave Solution

Various different types of solution have been studied for foam drainage, among them the 
so-called free drainage (in which an initially comparatively wet foam loses water from its 
bottom boundary) and forced drainage (in which water is added to the top of what is ini-
tially a comparatively dry foam) (Verbist et al. 1996; Koehler et al. 2000; Neethling et al. 
2001).

Given the close analogy between foam drainage and Richards equation, similar scenar-
ios are expected in soils: e.g. rainwater almost saturating soil and then draining down to the 
water table and/or irrigating an initially almost dry soil. Here we focus on travelling wave 
solutions that are relevant to the forced drainage case, as these are rather simpler to handle 
mathematically than free drainage is (Verbist et al. 1996; Cox et al. 2000).

Travelling wave solutions for RE have previously been proposed (Philip 1957a; Gilding 
1991; Witelski 1997). In this section, we consider one such travelling wave solution for 
RE, analysing it specifically in the context of mathematical models for soil material proper-
ties (Burdine 1953; Mualem 1976; Van Genuchten 1980) described in Sect. 3. We consider 

(24)Dr(�)||�≈1
≈ ||dH+∕d�

||�≈1
≈ (1 − m)mm−1(1 − �)−m.

(a) (b)

Fig. 4   Plot of relative diffusivity against moisture content for the three soil samples using Eq.  (22) and 
asymptotic Eq. (23) in a, and (22) and asymptotic Eq. (24) in b. The solid lines are the true functions and 
the dashed lines are the asymptotic forms. In b, we use a zoomed view 0.99 ≤ � ≤ 1 to facilitate compari-
son between (22) and (24)
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a general expression in Sect. 4.1 for the travelling wave obtained from RE. We then deduce 
the velocity of the travelling wave in Sect.  4.2. Finally, we determine the equation that 
describes the shape of the travelling wave in Sect. 4.3.

4.1 � General Form of Travelling Wave

From the general form of a travelling wave, supposing distance (depth) 𝜉 is positive 
upwards and velocity � is positive downwards, we search for a solution of the form

As length and time only appear in the combination of 𝜉 + 𝜐𝜏 , we can express the solution of 
RE as a function of position rather than time, derivatives being related via 𝜕∕𝜕𝜏 = 𝜐 ⋅ 𝜕∕𝜕𝜉 . 
Integrating (13) with respect to 𝜉 yields

We impose boundary conditions that a long way upstream � → �1 , and a long way down-
stream � → �2 , with 𝛩1 > 𝛩2 (i.e. high saturation at the top and low saturation at the 
bottom).

The wave velocity � now obeys the Rankine–Hugoniot condition (Philip 1957b),

After some algebra, we obtain the constant on the right hand side of (26) as

Note that in the limit of a dry system at the bottom �2 → 0 , and Eq. (28) vanishes.

4.2 � Evaluating the Travelling Wave Propagation Velocity

To study the travelling wave propagation velocity, we plot Eq.  (27) for various moisture 
contents. We use the Van Genuchten–Mualem RHC relationships in Fig. 5 and plot � vs �1 
at different initial moisture contents �2 where 𝛩2 < 𝛩1 ≤ 1 ( �2 = 0, 0.5).

In the special case �2 = 0 , Eq. (27) reduces to Kr(�1)∕�1 (as in Fig. 5a).
We see in Fig. 5 that � increases with increasing �1 (and does so abruptly near �1 = 1 in 

the case of soils). Additionally, we observe that � increases with increasing �2 . When �2 is 
non-zero (i.e. in an already wet system with Θ2 = 0.5 ), the soil samples tend to have lower 
velocity than the foam drainage cases for most �1 values, but it actually have higher veloc-
ity when �1 → 1.

4.3 � Profile of �̂ Versus �

It turns out that travelling wave solutions satisfying Eqs.  (26) and (27) only exist if 
𝛩1 > 𝛩2 . Inserting Eqs. (27) and (28) in (26), and rearranging, we obtain

(25)𝛩 = 𝛩 (𝜉 + 𝜐𝜏).

(26)𝜐𝛩 − Dr(𝛩) ⋅ 𝜕𝛩∕𝜕𝜉 − Kr(𝛩) = constant.

(27)� = (Kr(�1) − Kr(�2))∕(�1 − �2).

(28)constant = (Kr(�1)�2 − Kr(�2)�1)∕(�1 − �2).
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In a special case �1 = 1 and �2 = 0 (the upper and lower limits possible for a travelling 
wave), Eq. (29) simplifies. In this case, Kr(�1) = 1 , Kr(�2) = 0 , � = 1 , and the constant on 
the right hand side of Eq. (26) vanishes as presented by Parlange (1971); Witelski (1997). 
We deduce

Note � − Kr(�) in the denominator: the relevance of this term was stated in Sect. 3.2.1.
The special case (30) is analysed further in Sect. 5. Equation (30) applies equally well in 

the case of RE and FDE. It is only the form of the RHC and RD functions that varies. For 
certain forms of RHC and RD, analytical solutions to (30) are obtained (Verbist et al. 1996; 
Koehler et al. 2000; Cox et al. 2000). In cases for which choices of RHC and RD do not 
allow analytical solution of (30), we compute 𝜉 against � via Simpson’s rule, implemented 
in MATLAB using a � step size of 0.0001.

5 � Results for Travelling Wave Profiles

In what follows, we focus on numerical and asymptotic analytical solutions obtained from 
Eq. (30). Specifically, we compare and contrast solutions to this equation using the param-
eters from the FDEs and also using soil material properties derived by Van Genuchten 
(1980) for porous soils in RE. In Sect. 5.1, we review travelling wave solutions to the two 
variants of the FDE (Verbist et al. 1996; Koehler et al. 1999, 2000) and their asymptotic 
behaviours in the limit of small and large moisture content ( � ). These FDE solutions are 
known from literature (Verbist et  al. 1996; Koehler et  al. 1999, 2000; Cox et  al. 2000; 
Weaire and Hutzler 2001) allowing us to benchmark our approach. Subsequently, we 

(29)
d𝜉

d𝛩
=

Dr(𝛩)(𝛩1 − 𝛩2)

Kr(𝛩1)(𝛩 − 𝛩2) − Kr(𝛩2)(𝛩 − 𝛩1) − Kr(𝛩)(𝛩1 − 𝛩2)
.

(30)d𝜉∕d𝛩 = Dr(𝛩)∕
(
𝛩 − Kr(𝛩)

)
.

(a) (b)

Fig. 5   Travelling wave propagation velocity for foam drainage equations (FDE) and three soil samples from 
Eq.  (27) for a case where a moisture content at the bottom �

2
= 0 and b moisture content at the bottom 

�
2
= 0.5 , i.e. in an already wet system
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consider the travelling wave solution to RE in Sect. 5.2, comparing back to the FDE. After 
that, Sect. 5.3 then considers an integrated quantity that we call “missing moisture”.

5.1 � Foam Drainage Equations Solutions

In solving for FDE travelling wave solutions analogously to Eq. (30), we use the param-
eters describing hydraulic conductivity and capillary diffusivity for the two FDEs from 
Eqs.  (4) and (7). The solutions correspond to travelling waves previously determined in 
literature (Verbist et al. 1996; Koehler et al. 2000), remembering however from Sect. 2.1 
that there is a factor of 2 difference scaled out of Eqs. (3)–(4). Scaling out this factor gives 
a fairer comparison between the two FDEs as they have the same diffusivity and conductiv-
ity at full saturation.

The equation obtained in the case of channel-dominated FDE is given as

the solution of which is given as

where cCD is an integration constant and can be set to zero. Likewise, we obtain for the 
node-dominated case

Integrating (33), we obtain

where cND is an integration constant that again we set equal to zero.
Equations (32) and (34) are plotted in Fig. 6a assuming cCD = cND = 0 . In the case of 

the node-dominated FDE, we observed solutions exhibiting inflection points with 𝜉 extend-
ing to both positive and negative infinity. The channel-dominated solution also exhibits an 
inflection point, but the moisture content � goes to zero at finite depth unlike the node-
dominated case where � only vanishes as 𝜉 → ∞.

As � → 1 , Fig. 6a shows that ND FDE has larger 𝜉 than CD FDE does. This follows 
because d𝜉∕d𝛩 is larger according to Eq. (30). Both ND FDE and CD FDE have a com-
mon RD value as � → 1 but their � − Kr(�) value in Eq.  (30) can be approximated by 
(1 − �)(Kr

�(1) − 1) , where Kr
′ denotes dKr∕d� . Figure 2a shows that ND FDE has smaller 

Kr
�(1) than CD FDE hence larger d𝜉∕d𝛩 , leading in turn to larger 𝜉 values.

5.1.1 � Asymptotic Behaviour of the CD FDE

We analyse the FDEs in the limits of either � → 0 or � → 1 since that will form an inter-
esting contrast from RE.  Considering Eq. (31) when 𝛩 ≪ 1 , and integrating (following an 
approach of Witelski (1997)) we deduce

(31)d𝜉∕d𝛩 = 1∕
�√

𝛩 (1 − 𝛩)
�
,

(32)𝜉 = 2 arctanh
√
𝛩 + cCD

(33)d𝜉∕d𝛩 = 1∕
�
𝛩 (1 −

√
𝛩)

�
.

(34)𝜉 = 2 log
�√

𝛩∕(1 −
√
𝛩)

�
+ cND

(35)𝜉 ≈ 2
√
𝛩 + cCD,
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where we set the integration constant cCD = 0 . We note that � → 0 at finite 𝜉 but nonethe-
less d𝜉∕d𝛩 is infinite as � → 0 (so � changes only slowly as 𝜉 changes).

We can also consider the case when � ≈ 1 . Taking Eq. (31) in this limit and integrating 
(again using the approach of Witelski (1997)) we find

where the integration constant cCD1 is set to cCD1 = log 4 to match with (32). This follows 
because 2 arctanh (

√
�) within (32) asymptotes to log(4∕(1 − �)) as � approaches 1.

5.1.2 � Asymptotic Behaviour of the ND FDE

We estimate the behaviour of the node-dominated FDE when the moisture content is very 
small ( 𝛩 ≪ 1 ). Taking (33) in this limit and integrating gives

(36)𝜉 ≈ log (1∕(1 − 𝛩)) + cCD1 ≡ log (1∕(1 − 𝛩)) + log 4,

(37)𝜉 ≈ log(𝛩) + cND

(a)

(b) (c)

Fig. 6   a Profile of travelling wave solution for node-dominated and channel-dominated solutions. The inset 
shows a zoomed view of the channel-dominated case. b Profile of travelling wave solution (using Simpson’s 
rule) for Richards Eq.  (39) using the Van Genuchten soil material functions (18) and (22) for three soil 
types. c The same solution (as b) on semi-log axes
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where we can set cND = 0 . We can likewise obtain an expression for the node-dominated 
FDE in the limit � ≈ 1 , taking Eq. (33) for � ≈ 1 and integrating gives

where the value of the constant cND1 = log 4 is set to match with (34). This follows because 
2 log(

√
�∕(1 −

√
�)) within (34) asymptotes to 2 log(2∕(1 − �)) as � approaches 1.

Comparing Eq.  (38) with (36) confirms the deduction that compared to the channel-
dominated system, the moisture content in the node-dominated system makes a slower 
approach as � → 1 , i.e. it requires a larger 𝜉 to achieve a given � . Having now reviewed the 
FDE solutions from Verbist et al. (1996); Koehler et al. (2000), in what follows, we con-
trast them with solutions of RE.

5.2 � Van Genuchten Solution to Richards Equation

We seek travelling wave solutions for Richards equation (30) using soil functions derived 
by Van Genuchten (1980) (see Sect. 3). Substituting Eqs. (18) and (22) into (30) gives

which we integrate by Simpson’s rule. The solution for 𝜉 is shown in Fig. 6b. For low � , 
there is a very sharp change in � for a small change in 𝜉 (a contrast from the FDE solu-
tions). Figure 6c shows a semi-log profile of the solution to (39), making it easier to visu-
alise behaviour at small 𝜉 in particular. Looking towards larger � values ( � → 1 ), however, 
there are very large values of 𝜉 . How these behaviours come about is considered below.

5.2.1 � Asymptotic Behaviour of the Van Genuchten Solution

When 𝛩 ≪ 1 , the dominant material function affecting the profile shape is diffusivity. 
Equation (30) reduces to

where the denominator is estimated as being approximately � , neglecting Kr(�) relative 
to � in small moisture content limits. Substituting from Eq. (23) and integrating gives (as 
found by Witelski (1997))

where the constant cVGM is set to zero to ensure 𝜉 = 0 as � → 0 . This solution is shown in 
Fig. 7 via dashed lines for each soil type (m value). Noting the scale on the vertical axis, 
we observe that � changes very abruptly with 𝜉 , or equivalently 𝜉 changes only very slowly 
with � . Changes in 𝜉 are slowest when m is small (owing to the power law in �(1∕2+1∕m) 
in (41)), but are also surprisingly slow for Hygiene Sandstone ( m = 0.9038 ) compared to 
Guelph loam, owing to the prefactor (1 − m) in Eq. (41) which vanishes as m → 1 . As was 
the case in Fig. 4 for Dr(�) , the behaviour here for 𝜉 is non-monotonic in m.

(38)𝜉 ≈ 2 log (1∕(1 − 𝛩)) + cND1 ≡ 2 log (1∕(1 − 𝛩)) + log 4

(39)
d𝜉

d𝛩
=

(1 − m) ⋅ 𝛩−1∕m−3∕2[1 − (1 − 𝛩1∕m)m]2

m ⋅ (𝛩−1∕m − 1)m
(
1 − 𝛩−1∕2[1 − (1 − 𝛩1∕m)m]2

) ,

(40)d𝜉∕d𝛩
||| 𝛩≪1

≈ Dr(𝛩)∕𝛩,

(41)𝜉
||| 𝛩≪1

≈
2m2 (1 − m)

(2 + m)
𝛩(1∕2+ 1∕m) + cVGM ,
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These slow changes in 𝜉 (or equivalently abrupt changes in � ) predicted by (41) dif-
fer from what is seen in the two FDEs in the 𝛩 ≪ 1 limit. The implication for a case in 
which a sensor had been set to stop irrigating a soil when � reached some initial value, e.g. 
� = 0.1 , is that substantially higher � values � = 0.2 , � = 0.3 , etc., will follow just shortly 
thereafter.

5.2.2 � Comparison of True and Asymptotic Solution ( � ≪ 1)

In Fig.  7, we compare solutions from the true (i.e. numerical) solution in Eq.  (39) and 
its asymptotic version Eq.  (41) to verify the accuracy of our analysis in Sect. 5.2.1. We 
observe that the asymptotic solution can barely be distinguished on the scale of the graph 
for silt loam ( m = 0.5146 ) at least up to � ≈ 0.2 ,   the ratio of the true to asymptotic 
solution at � = 0.2 being 1.0256. The accuracy of the asymptotic solution reduces as m 
increases. For m = 0.6377 (Guelph loam) the ratio of the true to asymptotic solution at 
� = 0.2 becomes 1.0510, whereas for m = 0.9038 (Hygiene Sandstone) it is 1.1463. None-
theless, the scale of the graph (up to less than 𝜉 ≈ 10−3 ) shows we are dealing with tiny 𝜉 
values throughout.

5.2.3 � Asymptotic Behaviour when � ≈ 1

When we consider the case � ≈ 1 , we can approximate the behaviour of Eq. (30) as

where the numerator of (30) has been approximated by |dH+∕d�| (since Kr(�) → 1 ) 
and where the denominator � − Kr(�) is expressed as (1 − Kr(�)) − (1 − �) , with 
(1 − 𝛩) ≪ (1 − Kr(𝛩)) (see Eq. (20) with m < 1 here). It follows from (20) that dKr(�)∕d� 

(42)
d𝜉

d𝛩

||||| 𝛩≈1

≈
|dH+∕d𝛩|
1 − Kr(𝛩)

,

(a) (b)

Fig. 7   Comparison of profiles for true or numerical function (39) and the asymptotic function (41) in a; and 
between (39) and the asymptotic function (43) in b 
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diverges at � → 1 , explaining the rapid decrease in Kr(�) with decreasing � for soils in 
Fig. 2a–b.  Inserting equations (16), (20) and (24) in (42), and integrating

where cVGM1 can only be obtained by matching to the solution of Eq. (39) via Simpson’s 
rule. We have arbitrarily chosen to match at � = 0.9 . The dashed lines in Fig. 7b are the 
asymptotic solutions given in (43). Out of the soils considered, Hygiene Sandstone (with 
the largest m) has the biggest 𝜉 scaling as (1 − �)1−2m , and this is also bigger as � → 1 than 
the log (1∕(1 − �)) terms obtained in the FDEs (see Eqs. (36) and (38)).

It is interesting to understand how these differences between FDE and RE come about. 
In Eq.  (30), the denominator � − Kr(�) vanishes in both the FDE case and the RE case 
but does so more slowly for RE. On the other hand, the numerator Dr(�) is finite as � → 1 
for FDE but divergent for RE, and this more than compensates the more slowly vanishing 
numerator. The net result is that 𝜉 grows more rapidly for soils than for foams.

The implication of (43) for an irrigation system is that if a sensor were to detect when 
the saturation at a certain location reached a certain critical level (e.g. say � = 0.9 ), it 
might be quite some time in the case of Hygiene Sandstone before substantially higher sat-
urations, e.g. � = 0.99 or � = 0.999 arrive at the sensor. If the sensor reaching � = 0.9 is 
a signal that an irrigation system might eventually need to be switched off, and the higher 
level � = 0.99 or � = 0.999 is the level at which switch off is actually required, there could 
in the case of Hygiene Sandstone be a delay between the original signal and the eventual 
switch off.

5.2.4 � Comparison of True and Asymptotic Solution ( � ≈ 1)

We again compare solutions from the numerical solution of RE and its asymptotic approxi-
mation but now for � → 1 . Specifically, Fig. 7b shows a comparison of the true solution 
from (39) (obtained via Simpson’s rule) and the asymptotic solution (43) (with a value 
matched to the numerical solution at � = 0.9 ). For each m, the two profiles (true profile vs 
asymptotic) show slight differences. For m = 0.9038 (Hygiene Sandstone), the asymptotic 
profile is an underestimate, whereas for m = 0.5146 (silt loam) and m = 0.6377 (Guelph 

(43)𝜉
||| 𝛩≈1

≈
(1 − m)m(2m−1)

2(2m − 1)
(1 − 𝛩)1−2m + cVGM1,

Fig. 8   Profile of ratio of solution 
to equation for true 𝜉 (Eq. (39)) 
to approximate 𝜉 (Eq. (43))
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loam) it is an overestimate. To highlight this, we take a ratio of 𝜉 between the true (numeri-
cal) and asymptotic solutions as shown in Fig. 8.

 On the domain of � plotted, the ratio reaches a maximum value of 1.1456 in the case 
of Hygiene Sandstone and reaches minimum values of 0.7981 & 0.9072 in the case of silt 
loam and Guelph loam, respectively.

We now examine the different behaviour in Fig.  8 for different m, identifying terms 
which lead to such behaviour by decomposing the governing equations (30) and (42). Dif-
ferences could arise from the numerator ( Dr(�) itself broken down into two components, 
i.e. the product of |dH+∕d�| and Kr(�) ). Alternately, differences could arise from the 
denominators, respectively ( � − Kr(�) ) and ( 1 − Kr(�) ) as shown in (30) and (42).

Figure  9 shows considerable variation between the original and the asymptotic 
|dH+∕d�| functions. The true |dH+∕d�| obtained via (14) exceeds the asymptotic one 
given by (17), by up to 25% at some points in the domain 0.9 < 𝛩 < 1 in the case of silt 
loam. The ratio of true Kr(�) in the original Eq. (18) to the asymptotic Kr(�) (which can be 
taken equal to 1 when � → 1 ) is the same as the solid lines shown in Fig. 2b. Whereas, the 
original dH+∕d� is bigger than the asymptotic one, the original Kr(�) is smaller to com-
pensate, falling to less than half the asymptotic value in the case of silt loam at � = 0.9 . 
As |dH+∕d�| and Kr(�) are multiplied together to form Dr(�) , the dominant effect is the 
original Kr(�) being less than the asymptotic one (crudely approximated by unity here) 
and this is reflected in the 𝜉 versus � profiles for silt loam and Guelph loam in Fig.  7b 
and  also in the ratios in Fig. 8. The effect is less pertinent for Hygiene Sandstone since its 
Kr(�) does not decrease as sharply with decreasing � as happens for the other soils.

We now consider the denominators of (30) and (42). Figure  9b shows that using the 
asymptotic expression for 1 − Kr(�) in lieu of � − Kr(�) gives some deviation (about 
30% ) for the soils over the domain 0.9 < 𝛩 < 1 . It is accurate (to within 10% ) at � ≈ 0.99 
for both loams. For Hygiene Sandstone however, the asymptotic 1 − Kr(�) exceeds the 
true � − Kr(�) significantly even for � ≈ 0.99 . When m is close to 1, it appears that the 
assumption employed in (42) that 1 − 𝛩 ≪ 1 − Kr(𝛩) is no longer applicable, for reasons 
that are explained in the “Appendix”.

(a) (b)

Fig. 9   Ratio of a true dH+∕d� used in Eq. 30 (via Eq. (21)) to the approximate dH+∕d� in equation (42) 
(via Eq. 17), and b the denominator in Eq. (30) to the asymptotic version in Eq. (42) (via Eq. 20)
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The result is that for Hygiene Sandstone in particular, equation (30) has a smaller 
denominator than the asymptotic prediction even for � really close to 1, hence the pre-
dicted 𝜉 via Eq. (30) is larger as Figs. 7b and 8 show.

To summarise, numerical (i.e. Simpson’s rule) solutions generated for Richards equa-
tion have been examined. Analytical asymptotic approximations for 𝛩 ≪ 1 & 𝛩 ≈ 1  cap-
tured the true solution behaviour reasonably well within 0 < 𝛩 < 0.25 and 0.9 < 𝛩 < 1 , 
respectively, although the level of agreement is sensitive to a parameter m. This parameter 
m reflects the pore structure (capillary model) for each soil type (Van Genuchten 1980). 
Due to variability of pore structure and how it affects soil-water retention, the value of m 
can vary from one soil type to another (clayey soils have smaller m), and this is reflected in 
the moisture content profile.

5.3 � Integral of �̂

There is one final quantity we consider, namely ∫ 1

0
𝜉 d𝛩 . For a front that has reached a 

given location, setting 𝜉 = 0 at the point where � = 0 , the value ∫ 1

0
𝜉 d𝛩 is a measure of 

the amount of additional liquid that would be needed above the front to saturate fully the 
liquid above. In other words, it is the “missing” moisture that is required to saturate fully 
or flood the soil down to the current depth of the front. The integral is easily computed by 
dividing up the domain 0 ≤ � ≤ 1 into three subdomains: �′

1
≤ � ≤ 1 (for some �′

1
 close 

to unity), �′
2
≤ � ≤ �′

1
 (for some 𝛩′

2
≪ 1 ), and 0 ≤ � ≤ �′

2
 . Integration is done analyti-

cally using asymptotic formulae for 𝜉 in the first and third subdomain and numerically via 
Simpson’s rule in the second subdomain. We chose ��

1
= 0.1 and ��

2
= 0.9 . The missing 

moisture evaluates to 0.2243 for Hygiene Sandstone ( m = 0.9038 ), 0.1204 for Guelph loam 
( m = 0.6377 ) and 0.0808 for silt loam ( m = 0.5146 ). Based on this, loam is more read-
ily flooded than sandstone. By comparison for the channel-dominated FDE, the value of 
∫ 1

0
𝜉 d𝛩 is 2. Hence, the amount of missing moisture is larger for foam than for the soil.
 Even though the 𝜉 values for soils approach 𝜉 → ∞ more rapidly as � → 1 than the CD 

FDE does (i.e. a power law Eq. (43) rather than a logarithm Eq. (36)), the integral ∫ 1

0
𝜉 d𝛩 

is greater for foam. This is because the channel-dominated case has significant 𝜉 values 
even for smaller � , away from the neighbourhood of � = 1.

It is meaningless to compute ∫ 1

0
𝜉 d𝛩 for the node-dominated FDE as there is no finite 

𝜉 location at which � falls to zero so there is a degree of arbitrariness in how much 𝜉 is 
shifted up or down.

6 � Discussion

In the previous section, we studied in detail the travelling wave solutions of Richards equa-
tion and foam drainage, focussing on asymptotic behaviour in various ranges of liquid satu-
ration. We have not, however, discussed whether and if so when these solutions are rel-
evant in real world infiltration problems.

The travelling wave solutions presented in this paper are long time solutions and thus 
are by themselves insufficient to describe real infiltration problems, since travelling waves 
take some time to develop under standard boundary conditions (Broadbridge and White 
1988). In order to approach close to a travelling wave solution, depths of at least several 
dimensionless units have to be reached, or converting to dimensional lengths, several 
times �−1 (see Table 1). Additionally, infiltration needs to proceed long enough for that to 
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happen, i.e. several units of dimensionless time, which is easily related to dimensional time 
( (�Ks)

−1 being the typical time scale in Table 1). An unsteady state simulation of liquid 
infiltration into soils could be safely ceased as soon as the simulated front shape matched 
the travelling wave, and it would continue to follow the travelling wave thereafter.

Whereas, long time solutions assume a given liquid saturation moving arbitrarily far up 
from the travelling wave front, in nature, what is set is the infiltration rate (rate at which 
liquid enters the soil (Parlange 1972; Broadbridge and White 1988), or analogously (for 
the FDE) enters the foam (Brito-Parada et al. 2013)) rather than setting liquid saturation at 
the top. In the long time limit, where the gradient of liquid saturation is negligible near the 
top, all infiltration at the top is due to gravity. Hence, setting the infiltration rate at the top 
defines the liquid saturation and vice versa (in the long time limit).

For shorter times, however, when there are still significant gradients of liquid saturation 
near the top, it is not necessary to have a high liquid saturation right at the top to achieve 
the same infiltration rate, since only part of the infiltration is contributed by gravity, the rest 
being contributed by  capillarity. It is possible to consider early-time solutions to Richards 
equation, in which liquid saturation at the top grows with time, rather than being fixed. 
There turns out to be a similarity solution (Broadbridge and White 1988; Witelski 1997; 
Caputo and Stepanyants 2008) in which liquid saturation is mostly uniform with height but 
shows a slight increase near the top localised over a small height.

The amount of the slight increase in liquid saturation gradually increases over time, as 
does the height over which it is registered. However, solutions at one time can be overlain 
with solutions at a different time by a suitable rescaling. In other words, the solutions at 
different times are self-similar provided we remain within the early-time limit. Note that 
because we are dealing with just slight increases over an initial liquid saturation in this 
limit, we should not need to know soil material properties over the entire range of liquid 
saturations, just the local behaviour near the initial saturation. We will not consider early-
time similarity solutions any further in this paper having chosen to leave that aspect for 
future work, so we focussed instead on late-time travelling wave solutions for which porous 
media properties over the full range of saturations become pertinent.

We note however that early-time similarity solutions are found in broadly analogous 
multiphase flow systems (e.g. solid-liquid suspensions). Early on during gravity settling of 
a suspension, the suspension is mostly uniform, but the bottom of the suspension registers 
a small localised increase in solids fraction (Buscall and White 1987; Davis and Russel 
1989): the amount increases, and the size of the region where it occurs grow over time. 
Likewise in pressure filtration of a suspension, early on, most of the suspension is uniform, 
with spatial change in solids fraction being confined to a thin layer, albeit the thickness of 
that layer grows in extent over time (Landman and White 1994).

7 � Conclusion

We have considered solutions for Richards equation using relative hydraulic conductivity 
and relative diffusivity from Van Genuchten’s soil functions  (Van Genuchten 1980), and 
as well as the solution to two foam drainage equation variants. Specifically, we consid-
ered travelling wave behaviour which tends to set in at long times for typical infiltration 
conditions (Broadbridge and White 1988). In general, for Richards equation these solu-
tions  (Philip 1957a; Parlange 1971; Broadbridge and White 1988) have been obtained 
via Simpson’s rule, although analytic approximations are available for very low moisture 



277Comparing and Contrasting Travelling Wave Behaviour for…

1 3

content ( 𝛩 ≪ 1 ), and systems near saturation ( � → 1 ) (Witelski 1997). Analytical travel-
ling wave solutions are available for the channel- and node-dominated foam drainage cases 
for general � as originally derived by Koehler et  al. (2000); Verbist and Weaire (1994); 
Verbist et al. (1996), with further simplifications in the 𝛩 ≪ 1 and � → 1 limits.

The foam drainage travelling waves have been compared with those for Richards equa-
tion. It was found that travelling wave velocities � tend to be lower (see e.g. Fig. 5) in soils 
compared to foams. The only exceptions are for a soil that is already comparatively wet and 
then substantially more liquid is added to bring it close to full saturation. This behaviour 
follows from the shape of the soil relative hydraulic conductivity which is comparatively 
small for most moisture contents � , but which grows substantially near � = 1.

Profiles of � versus spatial coordinate 𝜉 indicate that rise in moisture content � with 
𝜉 is very abrupt (in the limit of small � values) in the case of soils (Richards equation). 
This contrasts with the FDE in which � rises much more gradually. As soon as a small � 
is detected at a certain depth, moisture contents much larger than before quickly follow. 
On the other hand, if � at a certain depth is found to be relatively large, the rate at which 
full saturation is reached in soil moving up in 𝜉 is surprisingly slow: much slower than in 
the case of foams, as indeed follows from the � → 1 analytical asymptotic formulae that 
we present. These observations suggest how rapidly an irrigation system might need to 
be switched off once a predetermined saturation is achieved at a certain depth. Moreover, 
when one evaluates the total amount of water that has entered the soil behind a travelling 
wave that has penetrated to a certain depth, it turns out that (in relative terms) more water 
is added in the case of soil than foam. In other words, the “missing” moisture needed to 
attain full saturation is less for soil than for foam: this difference between soil and foam 
results from the abrupt changes in � with position in soils in the small � limit, notwith-
standing the gradual changes seen for higher � . More generally, this shows that the solu-
tions to Richards equation based on travelling waves are useful for understanding water 
transport in soils.

Appendix: Asymptotic Form of Relative Hydraulic Conductivity

The original relative hydraulic conductivity (hereafter RHC) used in this work is given by 
Eq. (18). It is observed in Sect. 3.2 (see e.g. Fig. 2b  for Hygiene Sandstone) that the asymp-
totic function (20) obtained for � ≈ 1 overestimates RHC as m → 1 . Retaining an additional 
term in the asymptotic expansion of Eq.  (18), we deduce another expression that also esti-
mates the RHC as � → 1

Hence,

For m = 0.5146 (silt loam) or m = 0.6377 (Guelph loam), the first term on the right hand 
side of (44) is dominant and the approximation considered in this “Appendix” is not 
required. However, for m → 1 , e.g. m = 0.9038 considered here for Hygiene Sandstone, the 
term 1

2
(1 − �) could be around one quarter of the value of 2m−m(1 − �)m . Dropping the 

1

2
(1 − �) term, therefore causes � − Kr(�) to be overestimated by a factor of 4/3. If we 

(44)Kr(�)||�≈1
≈
(
1 −

2

mm
(1 − �)m −

1

2
(1 − �)

)
.

(45)� − Kr(�)||�≈1
≈

2

mm
(1 − �)m −

1

2
(1 − �).
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look at the ratio of the true � − Kr(�) to an approximation based on just the first term 
2m−m(1 − �)m , then the ratio could be around 3

4
 which is what we see for m = 0.9038 in 

Fig. 9b, where there is a range of � values for which the data stay close to 0.75. On the 
other hand, if we look at a ratio between the true � − Kr(�) and the approximate formula 
(45), values much closer to unity result (see Fig. 10). Overestimating � − Kr(�) causes us 
to underestimate d𝜉∕d𝛩 and hence 𝜉 . Including an extra term in the estimate of � − Kr(�) 
would improve the estimate of d𝜉∕d𝛩 via (30) but would also preclude us from obtaining 
an analytical formula for 𝜉 vs � close to � ≈ 1 , so we do not pursue it in this paper.
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