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Abstract 9 
Plant health is relatively poorly funded compared to animal and human health issues. 10 
However, we contend it is at least as complex and likely more so given the number of pests 11 
and hosts and that outbreaks occur in poorly monitored open systems.  Modelling is often 12 
suggested as a method to better consider the threats to plant health to aid resource and time 13 
poor decision makers in their prioritisation of responses.  However, like other areas of science, 14 
the modelling community has not always provided accessible and relevant solutions.  We 15 
describe some potential solutions to developing plant health models in conjunction with 16 
decision makers based upon a recent example and illustrate how an increased emphasis on 17 
plant health is slowly expanding the potential role of modelling in decision making. We place 18 
the research in the Credibility, Relevance and Legitimacy (CRELE) framework and discuss 19 
the implications for future developments in co-construction of policy-linked models. 20 

21 
1. Introduction22 

23 
Pests and diseases have adversely affected humanity throughout the recorded history, either 24 
directly through infection and infestation of our bodies, or indirectly by attacking animals and 25 
plants. Pandemics, like the one caused by SARS-CoV-2 [1] and by Spanish influenza virus [2] 26 
or animal disease outbreaks like 2001 Foot-and-mouth (FMD) epidemic in the UK [3] 27 
understandably have received large attention. However, plant epidemics like the 1846 Irish 28 
potato famine [4], the 1943 Bengal Famine [5] or the Ash dieback epidemic [6], clearly 29 
demonstrate the interconnectedness between the health of humans, animals, plants and 30 
ecosystems. Policy makers increasingly look to mathematical models to predict the invasion 31 
and spread, to evaluate the economic, environmental and societal impact and to carry out the 32 
cost-benefit analysis of possible control strategies [7]. 33 

34 
The growing impacts of the of invasive plant pest and diseases introductions is well 35 
documented [8].  There is a general view that that interventions to prevent or slow the spread 36 
of plant pests and diseases have, for a variety of reasons, been too little and too late [9]. An 37 
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evaluation of the plant health regime in the European Union (EU) concluded that “In 38 
emergency situations, the limited support and lengthy decision-making process results in 39 
measures being taken too slowly, too late.” [10].   40 
 41 
Plant health dynamics take place in a complex system of interacting environmental, social and 42 
economic factors characterised by significant uncertainty across a large number of key system 43 
variables [11, 12].  Analysis of plant health risks needs to account for such complexities to 44 
inform decision and policy makers where success is invisible (environmental, social and 45 
economic losses that do not occur).  Invisible success can only be considered by the 46 
application of tools that are able to create an ex-ante baseline – that state of the system where 47 
the pest/disease is not present or where it is present but having lower impact due to mitigating 48 
responses [9].     49 
 50 
Rapidly expanding  and changing trade pathways (e.g. numbers of products and volumes, 51 
move to internet based trading) and changing trends (e.g. demand for large trees and novel 52 
foods) provide opportunities for new pests and disease to enter and establish [e.g. 13-16]. It 53 
has been estimated that 26,000 plant species have been introduced into the UK compared to 54 
a native flora of 1,600 [17]. This provides a conveyor belt pathway for non-native pests and 55 
disease.  The damages that these can lead to are potentially significant: Hill et al [6] estimated 56 
the damage caused by Ash dieback to the UK at £15bn, greater than the estimates of damage 57 
due to FMD.    58 
 59 
Despite this, plant heath generally receives less funding than animal health [9] but the 60 
“conveyor belt” and the scale of the damages are increasing pressure upon public sector 61 
capacity and budgets for plant health management. Increasingly there has been a move to 62 
prepare for likely incursions in order to reduce the risks and consequences of pest/disease 63 
outbreaks occurring in the future [18]. Such analyses need to consider key elements of the 64 
invasion and potential responses such as surveillance performance, prevalence when found, 65 
subsequent rates of spread and the performance of eradication and control options.  These 66 
analyses are often undertaken with limited or poor data which partly relate to the relatively 67 
small budgets available for plant health.  The result is that there is normally significant 68 
variability and uncertainty within the computationally complex analyses presenting a challenge 69 
when integrating these models into the policy making process [7].  Dupre et al [19] highlight 70 
the lack of involvement in the construction and use models that can form a major part of such 71 
analyses.  These difficulties are exacerbated when acknowledging that decision makers are 72 
time pressured and seldom have the luxury of long-term research [7]. Often, they are tasked 73 
with producing a response within hours, days or weeks. Such rapid action is necessary given 74 



the small window of opportunity for eradication.  As Hewitt et al [20] illustrate, decision makers 75 
preferred and adopted a simple touchscreen application and not a more complicated, research 76 
focussed spatial model.  Further, Smetschka and Gaube [21] show that participatory modelling 77 
allows the integration of the most relevant issues and for the co-development of scenarios and 78 
strategies with stakeholders. 79 
 80 
Scientific evidence can inform environmental decision making by considering ranges of 81 
options and clarify the implications of choices.  The science-policy interface literature 82 
acknowledges the issues in bringing research into policy making [22].  Scientists bemoan the 83 
lack of impact their research in policy and conversely policy makers lament the lack of context 84 
and real-world insight [23, 24].  A common factor in the literature is the degree to which 85 
scientific information is usable by policy which in itself is dependent on the perspective and 86 
capacity of those involved.  Usability is a factor of, for example, accessibility and transmission 87 
of evidence, type of knowledge, evidence standards (including uncertainty), as well as the 88 
degree to which it can lead to a response or action [24, 25] at an appropriate spatial or 89 
temporal scale [26].  Barriers to the uptake of scientific evidence include organisation culture, 90 
values and ethics, resources, and entrenched commitments.  Facilitators of useable 91 
knowledge include the co-production of knowledge [27, 28] and social learning [29]. 92 
 93 
Dun and Laing [30] like Cook et al [7] suggest that a key gap in this landscape is the lack of 94 
consideration of the demand for information in addressing the needs of policy and decision 95 
makers and how research and policy interact accounting for what policy makers themselves 96 
value most in research.  Dunn and Laing [30] consider the prominent contention that the key 97 
attributes for effective knowledge to action are credibility (adequate, authoritative, trustworthy), 98 
relevance (particularly in terms of spatial and temporal scales), and legitimacy (an unbiased 99 
and respectful process).  These attributes (often abbreviated to CRELE) are challenged by 100 
Dunn and Laing [30] given a limited empirical verification.  By conducting 72 structured 101 
interviews with policy makers in the urban water sector, they found CRELE to be a poor 102 
predictor of the concerns of policy makers over usability of research and that applicability, 103 
comprehensiveness, timing and accessibility (ACTA) better summarise the concerns of policy 104 
makers.  This in effect increases the importance of relevance in the CRELE view.  Whilst 105 
credibility and legitimacy are of great importance to the scientist’s world view, they are less 106 
important outside the research environment. Accessibility refers to knowledge that is created 107 
with the end user in mind, that avoids jargon and is communicated effectively.  108 
Comprehensiveness recognises the broader interdisciplinary environment of the decision 109 
maker and the need to contextualise ideas within a broad range of real-world considerations 110 
including the economic and financial consequences.  Timing acknowledges the cycles that 111 



policy and business decision makers work within whereby windows of opportunity for action 112 
need to be incorporated.  Finally, applicability links the research to solutions to the problems 113 
faced that guide implementation (not just concepts) that are tailored to the specific issue and 114 
variables.         115 
This view was prevalent in a recent project undertaken for UK plant health policy [31].  116 
Amongst the objectives for the work were that it should be: 117 

• flexible and transparent, be clear and simple to follow, and be readily updatable with 118 
existing assessments as new evidence becomes available.  119 

• responsive to time constraints facing decision-making 120 
Whilst close engagement was not explicit in the brief, the above objectives chime closely with 121 
elements of both the CRELE and ACTA frameworks, possibly more so for the latter.   In the 122 
following sections we describe some of the challenges of providing modelling for policy within 123 
the plant health system, the policy challenges, the role of modelling and finish with potential 124 
challenges and solutions.  125 
 126 
2. Nature of the system 127 
 128 
Although in many ways plant epidemiology is dealing with similar issues to veterinary or 129 
medical sciences, there are substantial differences that in many respects make it more 130 
challenging to predict and control. For an outbreak of plant epidemic to be initiated and for the 131 
pest or pathogen to spread, a number of conditions need to be fulfilled. Van der Plank [32] 132 
and Zadoks & Schein [33] summarised these conditions in the form of a disease triangle, with 133 
corners comprised of Host, Pest and Environment [34]; this concept can be applied across all 134 
fields of epidemiology and used to compare the different approaches. Firstly, in medical 135 
epidemiology, there is only one primary host: the human being, whereas veterinary 136 
epidemiology deals with a limited number of hosts, both domestic and wild animals. However, 137 
only a few animal species are classed as important from a societal standpoint. For plants, the 138 
situation is very different, as there is a large number of plant genera providing ecological or 139 
agricultural services. The domesticated and wild hosts for the same plant pest are often found 140 
in proximity to each other with high levels of cross-over. Although zoonotic disease, e.g. Ebola 141 
[35] and wild/domesticated crossover, e.g. bTB in badgers and livestock [36],  are important 142 
in human and animal diseases, there are many more plant examples of that type [37, e.g. 143 
wheat stem rust [38]. Secondly, the multiple plant and tree hosts are affected by a large 144 
number of pests and pathogens, many of which have a broad range of hosts, e.g., Xylella 145 
spp.is currently believed to have over 563 hosts, a number that has increased in the last few 146 
years as more is learnt about the pest [39, 40]; the UK Plant Health Risk Register [41] currently 147 
lists well over 1,000 threats, many of which are insects or fungal pathogens. Plant pests and 148 



diseases are also more difficult to detect because of the lack of obvious symptoms and long 149 
latent periods, and due to the sheer number and acreage of hosts (or large mixed species 150 
area with randomly located hosts) that would need to be monitored. Finally, plant pests often 151 
have complex life cycles driven by environmental conditions (e.g., temperature, rainfall) which 152 
make it necessary to consider factors that otherwise are less relevant in human or animal 153 
diseases. 154 
 155 
Although some plant epidemics and pest outbreaks are indeed devastating and hence draw 156 
the public and the politician attention (e.g. Ash dieback in the UK [6]), the general appreciation 157 
of them is low. This is also partly because there are usually ways to substitute the market or 158 
non-market services of plants or, for trees, the impact is over a long time period making the 159 
impact less noticeable [6]. Thus, the outbreaks might draw less publicity and less effort is often 160 
invested in surveillance or controlling movements, unlike strict controls that exist on movement 161 
of livestock or companion animals. Imports are also less regulated, as it has been relatively 162 
easy to source seeds and other plant material online [42, 43]. The lack of monitoring combined 163 
with a number and area of hosts means that lower quality data are available, although this is 164 
potentially changing with the advent of remote sensing [44 – 46]. 165 
 166 
Once the outbreak occurs, there are often fewer control options available [47], with destruction 167 
or clear-felling often the only option. The loss of chemical control due to regulatory control and 168 
increasing resistance [48] partly parallels the rise of Anti-Microbial Resistance (AMR) in 169 
medical and veterinary medicine [49], but the scale of the problem is potentially larger. In many 170 
cases there are no options but to adapt to the pest or pathogen once it becomes established, 171 
even though there are substantial losses associated with this strategy. In the short term, this 172 
strategy can be associated with “do nothing” option. However, many plant pests become fully 173 
established once they arrive, leading to long term consequences which need to be accounted 174 
for, but are highly uncertain, such as ash dieback leading to a potential collapse in the whole 175 
ecosystem supported by the host [50]. 176 
 177 
The decision how, or indeed whether, to control is often to some extent driven by economic 178 
considerations. The livestock losses are relatively easily quantifiable, although the impact of 179 
the UK FMD outbreak on animal and farmer welfare and well-being has long been 180 
underestimated [3]. The impacts of plant, and even more forest, pests and diseases are often 181 
irreversible [51], as once a keystone species is lost, the whole ecosystem can collapse [50]. 182 
Although market impacts are important in the agricultural setting and in timber production, 183 
plant pests often affect non-market ecosystem values [52, 53 and 12 for a comprehensive 184 
review of the valuation literature on values associated with woodlands]. The estimation of 185 



these is notoriously difficult but the inclusion in case of the Ash dieback epidemic in the UK 186 
shows the scale is at least comparable with the FMD outbreak [6]. 187 
 188 
3. Policy challenges 189 
 190 
There is a strong economic argument (which includes estimates for non-market impacts) for 191 

the public support of plant health policies, and this is now generally accepted at national level 192 

decision making. However, it is not always easy to define success in terms of prevention or 193 

control of diseases, as the consequences of “doing nothing” are not always apparent. This is 194 

particularly difficult for plant and even more for forest pests, where such consequences might 195 

only become apparent years or even decades after the initial incursion. The invisible (and 196 

often slow) nature of success potentially leads to two effects: firstly, the under allocation of 197 

resources to plant health; and secondly, the misallocation of resources within plant health.  198 

The extent of these effects has not been quantified   But Ward [9] provided a view on the cost-199 

effectiveness of the typical responses from those who manage plant pest and disease to a 200 

new outbreak based upon decades of managing public plant health inspection resources in 201 

the UK. Figure 1 shows a series of lagged steps that delay response to plant pests that lead 202 

to less cost effectiveness solutions.  Stakeholder response is reactive to events with 203 

awareness of the problem and willingness to respond lagging entry, spread and symptoms.   204 

The cost effectiveness illustrates the value of prevention and early detection as well as 205 

implying (where it dips below the x-axis) that there is a point at which response options 206 

(eradication and control should cease and that stakeholders should learn to live with the pest.    207 

The cost effectiveness estimation is dependent upon knowledge of the multiple host-pest 208 

system variables and uncertainties described above i.e. how to allocate scarce resources 209 

when faced with multiple threats of differing probabilities of invasion and levels of impact.   210 



 211 

Figure 1. Pest progression, willingness to respond, and cost effectiveness 212 

 213 

Cook et al [7] highlight the often short timeframes available to decision makers (ACTA – 214 

timing), particularly during outbreaks. It is not uncommon for almost all decision support 215 

people to be time-pressured and they therefore require methods to estimate the benefits and 216 

costs of response options that can be delivered rapidly. Initial decisions need to account for 217 

potential economic, environmental and social impacts (ACTA – comprehensiveness) with the 218 

decision likely to be implemented under conditions of significant uncertainty. This speed 219 

reflects the limited window of opportunity for successful eradication.  It also highlights the need 220 

for authorities to prepare for likely future pests by considering the major threats and conducting 221 

ex-ante analyses i.e. with respect to Figure 1, acting in time prior to the y-axis.   222 

 223 

Biosecurity decision makers at a national level will likely have access to a number of in-house 224 

and external experts across a wide range of disciplines that are necessary to provide the wide 225 

range of inputs required for modelling plant health related scenarios.   With respect to 226 

modelling,  this poses the question as to the degree to which the policy leads are au fait with 227 

the modelling methods and the inherent shortcomings given the data available and the full 228 

range of uncertainties and gaps (ACTA – applicability and accessibility). Cook et al [7] suggest 229 

that “Public officials and community stakeholders charged with the responsibility of making 230 

these decisions are often naive about what science can and cannot say about complex 231 

systems. In these situations, policymakers tend to rely on a limited number of “heuristic 232 

principles” [54] to help them simplify the process of judgment”. Such heuristics might, for 233 

example, give greater weight to particular locations or to economic impacts over 234 

environmental. To this end it is important that such officials are aware of inherent limitations 235 



implicit in modelling approaches in order to account for the uncertainties within the decision-236 

making process. This includes an awareness of how the decision might change as new 237 

information becomes available and, potentially, a willingness to change the decision in this 238 

light.   239 

 240 

Jones [11] identifies a number of critical factors for determining policy response options.  241 

These factors themselves involve a set of complex economic, social and environmental 242 

interactions [55]: 243 

• The prevalence of a pest when found is a function itself of the performance and 244 

scale/scope of the detection system [56].  Relating this to the Ward diagram (Figure 1) 245 

limited or poorly applied detection effort or asymptomatic characteristics make it more 246 

likely that initial detection could be at a point where any action aimed at controlling the 247 

pest is not cost effective and the response should be to adapt to its presence.  248 

• The rate of spread of the pest/disease is a function of its own lifecycle and movement 249 

capabilities as well as the degree to which human activities contribute.  250 

• The impact of the pest on the host can vary from yield/quality reduction, to mortality 251 

effects or morbidity effects that lead to mortality through other means. Knowledge of 252 

the precise impacts of the pest/disease on ecosystem services is almost always 253 

imperfect. As is the value of the host itself including the range of services it provides.  254 

There are significant uncertainties in our understanding of how pest impacts lead to 255 

changes in ecosystem services and consequently on human welfare.  256 

• The efficacy of the policy response is also uncertain particularly with gaps in 257 

information from the above factors.  For example, movement restrictions may slow the 258 

spread of pest associated with the plant trade, but it is very difficult to know whether 259 

there will be full and or effective compliance or if some actors may simply elect to flout 260 

the rules.   261 

• The decision makers also engage with a wide range of stakeholders whose objectives 262 

may be in conflict (CRELE – credibility and legitimacy).  Stakeholders include: 263 

agriculture, horticulture (food and ornamental crops), forestry, landscaping, and 264 

management of parks & gardens (including local authorities); resulting in a complex 265 

and heterogeneous set of private and public stakeholders. As pests move through the 266 

landscape, different stakeholders with different knowledge and incentives come into 267 

contact both with the pest and each other leading to an array of potential responses 268 

that have implications for policy responses.  269 

 270 

Thus, public decision makers have a particularly complex and difficult task when dealing with 271 

plant health issues.   272 



 273 
4. The application of modelling to policy  274 
 275 
Mathematical modelling has a long history in addressing challenges presented by pest and 276 
disease outbreaks [34], from predicting the temporal and spatial extend, through estimation of 277 
losses to evaluation of control measures [7]. Increasingly, the modelling is linked with 278 
economics and behavioural sciences [57], and actively used in policy making [7]. However, 279 
too often such multidisciplinary research suffers from being conducted in separate silos, rather 280 
than through a close interdisciplinary collaboration of the research team and inclusion of 281 
stakeholders at each stage of the development; effort is needed to actively break such 282 
barriers.  283 
 284 
To illustrate the use of modelling within a plant health policy setting, here we describe a 285 
decision support tool developed in Jones et al.[31] and (Kleczkowski et al.[58] to illustrate the 286 
challenges and potential solutions to address them; similar tools have been described in [7]. 287 
The aim of these two projects was to provide a generalised (ACTA – applicability), transparent 288 
(ACTA – accessibility), and quantified tool to estimate risks and impacts of plant and tree pests 289 
and diseases and to estimate the role of climate change in the potential economic losses.  The 290 
tool allows comparing the cost-effectiveness of different response options. The framework 291 
was also designed to enable decisions on whether or not to eradicate, contain or learn to live 292 
with a problem. 293 
 294 
Although not explicitly using the CRELE or ACTA frameworks, the brief addressed these 295 
attributes by requiring that the decision support system to: 296 

• Be a quantified framework that allows for economic, social, environmental, political, 297 
technical and legal considerations (CRELE - credibility, ACTA - comprehensiveness); 298 

• Include critical factors such as rate of spread, size of known distribution of threat; 299 
social, environmental and economic ‘value at risk’; sectoral / community 300 
considerations; wider environmental threat posed by the threat; public acceptability of 301 
control and management options; regulatory and legal context (CRELE - Legitimacy, 302 
ACTA - applicability); 303 

• Apply to a range of threats from the UK Plant Health Risk Register (CRELE - 304 
Relevance, ACTA - timing); 305 

• Be flexible and based on transparent assumptions, and be clear and simple to follow, 306 
applicable to other threats and provide support to readily update existing assessments 307 



as new evidence becomes available (CRELE - Credibility, Legitimacy, ACTA - 308 
accessibility).  309 

• Be responsive to the very different time constraints facing decision-making within the 310 
scenarios of eradication, containment and management (CRELE - Relevance, ACTA 311 
- timing). 312 

 313 
We responded by constructing a framework which consists of three elements: (i) the 314 
epidemiological model, (ii) the valuation and impact model, and (iii) the uncertainty evaluation. 315 
Following intensive consultation with the stakeholders and a number of workshops at which 316 
we presented different versions, the framework was implemented in R [59] using Shiny 317 
package [60]. The close interaction with stakeholders and policy makers was designed to 318 
ensure accessibility (addressing Accessibility in the ACTA framework) by involving them in co-319 
production of the system. 320 
 321 
There exists the whole range of modelling approaches that can be used, depending on the 322 
availability of data. For the decision support system to be accessible to a wide range of 323 
stakeholders it needed to be user-friendly and simple while remaining as accurate and 324 
powerful as possible (thus satisfying both Comprehensiveness and Applicability in the ACTA 325 
framework while addressing Credibility and Relevance in CRELE). In particular, the model 326 
structure needs to be adapted to the policy objectives and to the existing data; this will often 327 
limit the choice of the model structure.  328 
 329 
There exists a range of different models that could be used to predict the future of an outbreak; 330 
for a current review see [34]. At one end of the scale there are simple Risk Assessment models 331 
like those discussed in (Heikkilä J. , 2011) and (Leung, et al., 2012), which essentially follow 332 
a semi-quantitative methodology by using an algorithm that combines scores given by 333 
assessors to produce the overall risk and impact. Such approaches, whilst intuitively appealing 334 
(e.g. UK Plant Health Risk Register), are essentially static and do not account for nonlinearities 335 
inherent in epidemiological processes, like the invasion threshold described in terms of the 336 
reproductive number (Kleczkowski et al, 2019b). At the other end, are the Agent Based Models 337 
(ABMs) which attempt to represent individual dynamics of all relevant entities (either individual 338 
plants or trees, or more likely, fields or forest patches). ABMs, while very successful in 339 
predicting the course of a particular outbreak, have a limited generality as they are closely tied 340 
up to a particular host distribution and pest properties. They also have high data demand, 341 
which is not often possible, particularly in the plant health context. The choice of the model 342 
needs also to be driven by the balance between Comprehensiveness and Applicability on one 343 
hand and Accessibility and Timing on another. The first two of these factors originate in a 344 



recognition that the real-life applications are complex and require multidisciplinary approach. 345 
This often leads to inclusion of too many processes which cannot be readily and 346 
comprehensively parameterised within the time frame of the project. At the same time, the 347 
model needs to capture the essential features of the process. 348 
For pest and disease support [61] and [62] recommend that the main components of the model 349 
are (a) entry, (b) establishment, (c) spread and (d) impact (economic, social and 350 
environmental), with the considerations in terms of the probability of each step [7]. The model 351 
consisted of six elements [58]: (i) the epidemiology module describing spread, (ii) the pest 352 
arrival (entry) module, (iii) the control module, (iv) the economic module addressing the 353 
impact, (v) the weather and climate module, and (vi) the reporting module. 354 
 355 
The model is described in detail in [31] and [58]. Similar to Cook et al. [7], we found that a 356 
metapopulation approach is often an appropriate selection in a situation when data are limited. 357 
In this approach, the region is subdivided into discrete units but the host and pest distributions 358 
within each region are irrelevant. The area of infestation in our model follows a Susceptible-359 
Infected/Infested-Removed/Dead model [58] in each region, with cross-infestation 360 
representing either focal expansion or establishment of new foci [7]. Conversely, reduction in 361 
cross-infestation between regions can be interpreted as a prevention strategy; given the 362 
constraints of the project we assumed that the pest is already present in one part of the region. 363 
This assumption has been relaxed in subsequent developments of the model [58]. 364 
 365 
The modelling approach was a compromise between the need to capture key elements of the 366 
spread and the lack of detailed data and information. For example, spread within the 367 
subpopulation was assumed to be homogenous and the model did not include any spatial 368 
heterogeneity on the economic side. The population age structure was assumed to be 369 
constant. Although the key advantage of the model was the explicit inclusion of uncertainty in 370 
the parameters for spread and values at risk, there was no inclusion of the demographic 371 
stochasticity. Finally, the model did not explicitly include cryptic and latent classes.   372 
 373 
The model was parameterised using a combination of literature search, expert elicitation 374 
(including expert workshops) and rigorous parameter estimation. The exact arrival point and 375 
timing of the pest is usually unknown and can span years if not decades, particularly for tree 376 
pests. Areas and locations of host are often well established, although the role of trees outside 377 
woodlands or volunteer plants in facilitating spread is not clear. The rates of pest or pathogen 378 
spread can often be obtained from other studies or by fitting the model to existing data. Both 379 
approaches are not without problems. Papers reporting values are mostly for different 380 
locations and climatic conditions and some are for different sub-species; this is particularly 381 



difficult for rare or novel pests. The values are often model-dependent and, as different studies 382 
use different models, the results might not be transferable. Data are difficult to obtain and are 383 
often biased by observational effort. The estimation of the spread is therefore characterised 384 
by large uncertainties, structural (e.g. different models), systematic (e.g. under-reporting or 385 
different hosts) and random. 386 
 387 
We found that the impact of pests or pathogens on values is even less established. The 388 
efficacy of control beyond clear-felling is highly unknown for many forest pests and for 389 
agricultural pests there is an added complication of loss of chemical control and rise of 390 
resistance. Although there are general estimates of the market and non-market values [64], 391 
values of losses due to infestation or infection are much less well established (see [6]). So, 392 
whilst there are methods available to estimate non-market impacts, they are currently not 393 
sufficient to be able to apply to broad policy questions beyond the rather old Willis et al. [64] 394 
estimates (which are the main input to the estimates used in Defra’s Tree Health Resilience 395 
Strategy, [63]).  The non-market valuation estimates available do not fully account for the 396 
potential range of possible lost values. Some impacts will be currently unquantifiable (e.g. 397 
shared values, health and well-being) but might be dominating the discourse. 398 
 399 
One of the key elements of any decision support systems for plant or tree health is the need 400 
to account of multiple sources of uncertainty. Analysts can be encouraged to perform 401 
sensitivity analysis in order to assess how future uncertainties can affect the choice between 402 
the control policy options and deciding whether any is preferable to “do nothing”. Another key 403 
factor in ensuring the successful construction and uptake of the model is the iterative and 404 
adaptive nature of the design development. For example, we found the model to be better 405 
suited not to be used directly to make the decision but instead to be used to provide 406 
information to decision makers in evaluation of scenarios. This type of use requires the joint 407 
construction of a narrative by direct and indirect users with assistance of modellers. This 408 
underscores the importance of the Relevance in the CRELE framework in the process of 409 
balancing the Credibility and Legitimacy (essential to the scientific aspect of the modelling) 410 
with Relevance as captured by the ACTA framework (a key to usability of research).  411 
 412 
Given the balance of assumptions and scope of such decision support tools, we feel that they 413 
could be used (i) to answer broad questions concerning the future threats of different pests 414 
and pathogens in relative terms, (ii) to explore initial feasibility options for the scale of control 415 
necessary for a specific well-documented pest/pathogen, (iii) to provide rapid, early stage 416 
assessment of the likely impact of certain pests and pathogens, and (iv) to engage with 417 
stakeholders to illustrate the effects of control strategies and climate change.  418 



 419 
This approach should be treated as part of a larger framework, combined with risk analysis 420 
approaches that broadly to identify key pests and diseases. In turn, the middle-range generic 421 
models – as discussed here – can provide rapid early stage evaluation or to answer broad 422 
questions about the long-term behaviour. Subsequently, for detailed management advice for 423 
a specific pest or pathogen, a bespoke epidemiological model should be developed and 424 
carefully parameterised. 425 
 426 
5. Solutions and challenges 427 
 428 
In 2012 Ash dieback was detected for the first time in the UK.  This devastating disease of ash 429 
had a significant impact on the future direction of plant health in the UK with a Tree Health 430 
and Plant Biosecurity Expert Taskforce.  Amongst its recommendations in the final report 431 
(Defra, 2013) were a group relating to plant pest and pathogen modelling: 432 
• Capacity to model the spread of different pests and pathogens to predict their rate of 433 

spread, the effectiveness of different control measures, and to identify key epidemiological 434 
parameters and hence prioritise research needs; 435 

• Models should be developed in advance for specific known threats while generic 436 
models should be available as the basis for studying novel threats (ACTA – timing); 437 

• Models should be open to examination and testing by the research community and 438 
be as transparent as possible to all stakeholders (ACTA – accessibility); 439 

• Models should be refined and updated based on field verification data obtained 440 
whilst dealing with new or established pests and pathogens; and 441 

• Ecological and epidemiological models should be constructed so that, according to 442 
the problem, they can be easily linked to diverse models of economic and social 443 
drivers and responses (ACTA – applicability) 444 

 445 
There has been movement to varying degrees across all these recommendations.  ADB meant 446 
that plant health, and tree health in particular, moved up the policy agenda in the UK to the 447 
extent it is now directly incorporated in the stated priorities of the responsible Government 448 
department.  This increased awareness and focus on plant health can be seen, for example, 449 
in the range of UKRI calls, the development of preparedness plans for high priority pests (e.g. 450 
Xylella fastidiosa and Emerald Ash Borer).  These have increased the number of academics 451 
familiar with different aspects of the subject matter.  Further, Defra has constructed a plant 452 
health modelling framework which now has three or four academic based consortia that will 453 
respond to rapid calls for research into different policy issues.  However, the expansion of 454 
modellers familiar with this space has not increased significantly.  These calls and frameworks, 455 



in combination with the development of pest specific preparedness boards and the model 456 
described in section 4, allows for the development of models in advance of threats being 457 
realised.   458 
   459 
Of particular note from our experience when modelling plant health outbreak scenarios with 460 
Government officials responsible for developing response options was the degree to which 461 
discussion around the model assisted in understanding of the importance of evidence gaps 462 
and how these gaps translated into wide ranges in outcomes and therefore possible policy 463 
success.  This would appear to support the Dunn & Laing [30] perspective that relevant 464 
scientific research and modelling (it needs to be applicable, comprehensive, timely and 465 
accessible) is crucial for it to have traction/impact in policy development.  466 
 467 
The model in section 4 also illustrates movement towards transparency with the model code 468 
being shared.  Data remains a problem.  The relatively limited funding for plant health reduces 469 
the data that can be collected and the data that does exist is often difficult to extract or obtain.  470 
To our knowledge, the model described in section 4 remains a somewhat rare example of a 471 
model linked to economic and social impacts.  Attempts to link drivers of outbreaks remains 472 
an under researched area.       473 
 474 
Conclusions 475 
Models can only have an impact if decision makers account for their outputs in maintaining or 476 
changing a position.  Decision makers are time poor and cannot be expected to be able to 477 
assimilate all the potential interactions within a complex system.  Thus, model developers 478 
need to recognise trade-offs between addressing complexity inherent in the policy question 479 
and producing tools that will inform decision makers.  Co-design principles can begin to 480 
overcome some of the barriers to the wider use of models in decision making.  However, it is 481 
not just about using the models.  It is also about creating shared understanding of a wider set 482 
of factors: providing insights to decision makers on the effects of uncertainty in key parameters 483 
on model outcomes (and how that might effect changes in decisions) as well as the range of 484 
factors that are missing from the models e.g. political risks including social acceptability of the 485 
decision.  Elements of both the CRELE and ACTA frameworks were apparent in the case 486 
study presented. 487 
 488 
The recent outbreak of COVID-19 further illustrates the importance of the role of modelling in 489 
policy making and the stakeholders and indeed general public trust in such models [66, 67]. It 490 
is too early yet to evaluate the direct impact of the pandemic on plant health but COVID 491 
measures could lead to reduced trade and travel [68] thereby lower the risk of plant pests and 492 



diseases through trade. On the other hand, it could lead to reduced government budgets for 493 
inspections and surveillance and so increase the risk.  494 

 495 

 496 

 497 
 498 
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