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Abstract. We introduce the notion of a properly ordered coloring (POC)
of a weighted graph, that generalizes the notion of vertex coloring of a
graph. Under a POC, if xy is an edge, then the larger weighted vertex
receives a larger color; in the case of equal weights of x and y, their colors
must be different. In this paper, we shall initiate the study of this spe-
cial coloring in graphs. For a graph G, we introduce the function f(G)
which gives the maximum number of colors required by a POC over all
weightings of G. We show that f(G) = `(G), where `(G) is the number
of vertices of a longest path in G.
Another function we introduce is χPOC(G; t) giving the minimum num-
ber of colors required over all weightings of G using t distinct weights.
We show that the ratio of χPOC(G; t)−1 to χ(G)−1 can be bounded by
t for any graph G; in fact, the result is shown by determining χPOC(G; t)
when G is a complete multipartite graph.
We also determine the minimum number of colors to give a POC on a
vertex-weighted graph in terms of the number of vertices of a longest
directed path in an orientation of the underlying graph. This extends a
classical result so called the Gallai-Hasse-Roy-Vitaver theorem concern-
ing the relationship between the chromatic number of a graph G and the
number of vertices of a longest directed path in an orientation of G.

Keywords: Vertex coloring · Properly ordered coloring · Vertex-weighted
graph · Gallai-Hasse-Roy-Vitaver theorem.

1 Introduction

In this paper, we consider simple graphs with no loops and no multiple edges. By
vertex coloring of a graph, one normally means assigning integers, called colors,
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from {1, 2, . . .} to graph’s vertices so that no two vertices sharing the same edge
have the same color. The smallest number of colors needed to color a graph G
is known as its chromatic number, and is often denoted by χ(G). There is an
extensive literature in graph theory dedicated to vertex coloring and its various
generalizations (e.g., see [6, 7] and references therein), and graph coloring has
many practical applications, e.g. in scheduling [8], register allocation [1], and in
several other areas.

In this paper, we introduce the notion of a properly ordered coloring of a
weighted graph, or POC, generalizing the notion of vertex coloring of a graph,
and study some of its properties.

Suppose that (G,w) is a vertex-weighted graph with the vertex set V (G)
and the edge set E(G), and a weight function w : V (G) → W , where W is a
set of positive integers. Further, let c : V (G) → C be a vertex coloring, where
C = {1, 2, . . . , θ}. A vertex coloring c on (G,w) is a properly ordered coloring
(POC) if and only if for any edge uv ∈ E(G),

– if w(u) > w(v) then c(u) > c(v);

– if w(u) = w(v) then c(u) 6= c(v).

We also let

χPOC(G,w) := min{θ| c is a POC on (G,w)}.

Note that any POC is also a proper vertex coloring on the underlying graph
G, and so χPOC(G,w) ≥ χ(G). In particular, if |W | = 1 then χPOC(G,w) =
χ(G). Also, note that for any (G,w), 1 ≤ χPOC(G,w) ≤ |V (G)|, and χPOC(G,w)
is well-defined as replacing the weakly ordered weights w1 ≤ w2 ≤ · · · ≤ w|V (G)|,
respectively, by 1, 2, . . . , |V | gives a properly ordered coloring.

Throughout this paper, we may assume that W = {1, 2, . . . , |W |} and (G,w)
contains a vertex vj such that w(vj) = j for each j = 1, . . . , |W | by the following
observation: In view of the definition of POC, note that, for any pair of vertices
u, v ∈ V (G) with w(v) < w(u), we may ignore the difference value w(u)− w(v)
unless there exists a vertex x ∈ V (G) such that w(u) < w(x) < w(v). (To see
this, suppose that u and v are such vertices of (G,w) and w(u) > w(v)+1. Let w′

be a new weight function obtained from w by changing w(u) as w′(u) = w(v)+1
(note that w′(x) = w(x) for all x ∈ V (G) − {u}). Obviously, a POC on (G,w)
can also be a POC on (G,w′).)

For example, χPOC(
2 3

1 1
) = 3 because the induced path P3 given by 1, 2,

3 makes these three vertices require three distinct colors, and the only POC of

the graph is
2 3

1 2
.

In this paper, we shall investigate a relationship between a graph G and
properly ordered coloring on its weighted graphs (G,w). In particular, we would
like to find some invariants of a graph G that can have a variety of vertex weight
functions w. Along this line, we will show that the length of a longest path of a
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graph can be described as a function in terms of properly ordered coloring. To
achieve this, for a graph G, let

f(G) := max{χPOC(G,w) | w is a weight function on G}.

Also, let `(G) be the number of vertices of a longest path in G. For a longest path
P = p1 . . . p`(G) of G, any weight function w such that w(p1) < · · · < w(p`(G))
forces χPOC(G,w) ≥ `(G). Therefore, note that any graph G satisfies f(G) ≥
`(G). Our first result is to show that, in fact the equality holds.

Theorem 1. Any graph G satisfies f(G) = `(G).

This theorem is shown in Section 2 by providing a greedy algorithm based on
vertex ordering given by non-decreasing order of their weights to give a POC on
(G,w) with at most `(G) colors (see Theorem 4 in Section 2). As an immediate
corollary of this theorem, we see that a graph has a weighting requiring the
maximum possible number of colors if and only if the graph has a Hamiltonian
path. This implies that computing f(G) is NP-hard in general.

Next we consider a POC on (G,w) with a fixed |W |. For a positive integer
t, let

χPOC(G; t) := min{p | χPOC(G,w) ≤ p for every w with |W | = t}.

Note that, by definition, χPOC(G; t) ≤ χPOC(G; t′) holds for any pair of t and
t′ with t ≤ t′ because any weight function w with |W | = t can also be regarded
as a weight function with |W | = t′ by restricting the image of w. Somewhat
surprisingly, we can show that the ratio of χPOC(G; t) − 1 to χ(G) − 1 can be
bounded by t and the bound is best possible. Indeed, as observed in Section 4,
there exist infinitely many graphs that attain the upper bound.

Theorem 2. For a positive integer t, any graph G satisfies

χPOC(G; t)− 1

χ(G)− 1
≤ t.

In other words, χPOC(G; t) has a sharp upper bound in terms of χ(G). This
theorem is shown by determining χPOC(G; t) when G is a complete multipartite
graph (see Proposition 2 in Section 3). We remark that we can easily obtain the

weaker statement that χPOC(G;t)
χ(G) ≤ t. To see this, for a (G,w) with |W | = t, let

Gi be the induced subgraph by the vertices of weight i in G for i = 1, . . . , t and
give a proper vertex coloring on each Gi so that min{c(x)|x ∈ V (G1)} = 1 and
min{c(x)|x ∈ V (Gi+1)} = max{c(x)|x ∈ V (Gi)} + 1 for every 1 ≤ i ≤ t − 1.
Among such vertex colorings, we can find a POC using colors 1, . . . , tχ(G) on
(G,w) because χ(Gi) ≤ χ(G) holds for all i. So Theorem 2 is the refinement of
this observation up to the tight bound.

In this paper, we also determine χPOC(G,w) in terms of the number of
vertices of a longest directed path for an acyclic orientation on G. To state
this, we use the following notation: for a digraph D, let `′(D) be the number of
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vertices of a longest directed path in D. For a directed path P ′ consisting of arcs
(pi, pi+1) for i = 1, . . . , |V (P ′)| − 1, we call p1 and p|V (P ′)| the tail and the head
of P ′, respectively. For a vertex weighted graph (G,w), an acyclic orientaion is
good if w(x) ≥ w(y) holds for any arc (x, y) in the orientation; we also define
`′(G,w) := min{`′(D)| D is a good acyclic orientation on (G,w)}. Our result is
following.

Theorem 3. Any weighted graph (G,w) satisfies χPOC(G,w) = `′(G,w).

This theorem can be regarded as the weighted version of the Gallai-Hasse-
Roy-Vitaver theorem [2, 3, 9, 12], which states that, for a graph G, χ(G) can be
bounded by the number of vertices of a longest directed path in D, where D is
an orientation of G and the upper bound is attained for an acyclic orientation
of G.

We now briefly mention about an application of the notion of POC to a real
world problem. In the intelligent chemical processing, graph coloring methods
can offer a better way to raise processing effectiveness. For example, there are
many stages (or procedures) for some special functions or some restrictions on
the relations between two stages in the polyethylene processes (or polymer man-
ufacturing processes) [4, 11]. Machine learning [5, 10] can help to find the relation
between stages and products and graph coloring methods can offer a lower cost
way for product. We can set up stages as vertices, relation as arcs, and weights
of vertices as the ordering (or prioritization) of all vertices. For example, there
are five stages A (stage of watching raw material), B1, B2 (stages of drying ma-
terial), C1, C2 (stages of viscosity), T (stage polymerization), and the relations
AB1, AB2, B1B2, B1C1, B2C2, C1C2, C2T and a weighted function w (the order-
ing in the processing) with w(A) < w(B1) = w(B2) < w(C1) = w(C2) < w(T ) in
a chemical processing. By POC, we have c(A) = 1, c(B1) = 2, c(B2) = c(C1) =
3, c(C2) = 4, c(T ) = 5. The coloring c can offer the minimum number of steps to
run this processing (or to control the flow of this processing).

2 Upper bounds for f(G)

In this section, we provide the following rather simple algorithm, thereby proving
Theorem 1. In what follows, the neighbourhood N(v) of a vertex v is the set of
all vertices adjacent to v.

Algorithm F

Input: (G,w), where V (G) = {v1, . . . , vn} and w(v1) ≤ . . . ≤ w(vn);

Output: a POC with at most ` := `(G) colors.

Step 1. Set c(v1) = 1.
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Step 2. For j = 2, . . . , n, if N(vj) ∩ (∪j−1i=1{vi}) = ∅, then set c(vj) = 1;
otherwise, set c(vj) = max{c(vi)|vivj ∈ E(G) and 1 ≤ i < j}+ 1.

Theorem 4. For any (G,w), where G is of order n, algorithm F indeed yields
a POC with at most ` := `(G) colors.

Proof. By the construction of algorithm F, note that, for any vertex v of G,
there exists a maximal path P = p1p2 . . . pt in G such that c(p1) = 1 and v = pt
and c(pi+1) = c(pi) + 1 for i = 1, 2, . . . , t − 1. So we have t ≤ `(G). Thus, from
algorithm F we obtain a POC with at most ` colors.

ut
Theorem 1 is an immediate corollary of Theorem 4.

3 The function χPOC(G; t) in complete multipartite
graphs

We start with the following result on χPOC(G; t) for complete bipartite graphs.

Theorem 5. For 1 ≤ m ≤ n, if t ≥ 2m + 1, then χPOC(Km,n; t) = min{m +
n, 2m+ 1}.

Proof. If m ≤ n ≤ m+ 1, then Km,n contains a Hamiltonian path. In this case,
by Theorem 1, we have χPOC(Km,n; t) = min{m+ n, 2m+ 1} = m+ n.

Thus we may assume that m + 2 ≤ n. Since Km,n has a longest path of
order 2m + 1, say P = v1 . . . v2m+1, for any (Km,n, w) such that w(v1) < · · · <
w(v2m+1), we have χPOC(Km,n, w) ≥ 2m+ 1. Thus, χPOC(Km,n; t) ≥ 2m+ 1.

To show that χPOC(Km,n; t) ≤ 2m+ 1, let (X,Y ) be the partite set of Km,n

such that |X| = m and |Y | = n. For (Km,n, w) we can assume that X and Y
can be partitioned into parts X = X1 ∪ · · · ∪Xm and Y = Y1 ∪ · · · ∪ Ym+1 such
that

– Xi 6= ∅ for all 1 ≤ i ≤ m, but some of Yi can be empty;
– max{w(x) | x ∈ Xi} ≤ min{w(x′) | x′ ∈ Xi+1} for i = 1, . . . ,m− 1;
– max{w(y) | y ∈ Yi} ≤ min{w(y′) | y′ ∈ Yi+1} for i = 1, . . . ,m; and
– max{w(y) | y ∈ Yi} ≤ min{w(x) | x ∈ Xi} ≤ max{w(x) | x ∈ Xi} ≤

min{w(y) | y ∈ Yi+1} for i = 1, . . . ,m.

Let c : V → N be the vertex coloring such that c(x) = 2i for x ∈ Xi and
c(y) = 2i− 1 for y ∈ Yi. Note that some of colors in C may not be used because
Yi can be the empty set for some i. In any case, by the construction, c is a POC
on (Km,n, w) such that |C| ≤ 2m+ 1. Hence, χPOC(Km,n; t) ≤ 2m+ 1 and the
theorem is proved.

ut
We now turn our attention to a more general case, namely, complete multi-

partite graphs. Unlike Theorem 5, it seems difficult to provide a simple formula
for χPOC(G; t) in such general cases. To state our results, we give some prelim-
inaries.
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Suppose that G is a vertex colored graph by c : V (G) → C and let S be
a subset of V (G) of s vertices. If vertices x1, . . . , xs of S can be ordered as
c(xi) = c(xi−1) + 1 for i = 2, . . . , s, then we say that S is consecutively colored ;
in particular, when we want to specify the minimum value on c, we say that S is
consecutively colored from c(x1). Also, for a consecutively colored subset S, we
sometimes want to specify x1 or xs. In that case, we say that S is consecutively
colored from x1 with color c(x1) to xs. Note that we do not need to mention c(xs)
because we can see the value as long as we know both c(x1) and |V (S)|(= s) by
the assumption that S is consecutively colored.

Now, for k ≥ 2, we consider a POC on weighted complete multipartite
graphs (Kn1,...,nk , w). To state our result precisely, we give the following no-
tation. Let (Kn1,...,nk , w) be a weighted complete multipartite graph such that
w : V (Kn1,...,nk) → {1, . . . , t}. For i = 1, . . . , t, let Hi be a complete subgraph
of Kn1,...,nk such that w(x) = i for all x ∈ Hi. The subgraphs H1, . . . ,Ht are
called maximum ordered cliques (briefly, MOCs), if H1, . . . ,Ht are chosen so that
t∑
i=1

|V (Hi)| is as large as possible in Kn1,...,nk . Note that, any MOCs H1, . . . ,Ht

satisfy Hi 6= ∅ for every 1 ≤ i ≤ t by the assumption that (G,w) contains a
vertex vj such that w(vj) = j for every 1 ≤ j ≤ t. For MOCs H1, . . . ,Ht, we
can find a subgraph S(H1, . . . ,Ht) of Kn1,...,nk (the complement of Kn1,...,nk)
having the following three properties (i)–(iii):

(i) Each component P of S(H1, . . . ,Ht) forms a path P = p1 . . . ps with s ≥
2 such that V (P ) is contained in a partite set of Kn1,...,nk (equivalently,
V (P ) forms isolated vertices in Kn1,...,nk) and w(pi) = w(pi−1) + 1 holds for
i = 2, . . . , s (equivalently, pi ∈ Hw(pi−1)+1 holds for i = 2, . . . , s). Moreover,
s can be greater than 2 only if V (Hw(pi)) = {pi} holds for every i with
2 ≤ i ≤ s − 1. (Since H1, . . . ,Ht are cliques and V (P ) is contained in
a partite set of Kn1,...,nk , note that |V (Hi) ∩ V (P )| ≤ 1 holds for every
1 ≤ i ≤ t.)

(ii) For any pair of components P, P ′ in S(H1, . . . ,Ht), there exists at most
one clique Hi among H1, . . . ,Ht such that V (P ) ∩ V (Hi) 6= ∅ and V (P ′) ∩
V (Hi) 6= ∅.

(iii) For i = 1, . . . , t, |Hi ∩ V (S(H1, . . . ,Ht))| ≤ 2.

It is possible that S(H1, . . . ,Ht) = ∅ when there is no such subgraph in
Kn1,...,nk for MOCs H1, . . . ,Ht. Thus we can take S(H1, . . . ,Ht) for any MOCs
H1, . . . ,Ht. By the construction, S(H1, . . . ,Ht) forms a union of vertex-disjoint
paths.

As observed in the proofs of Propositions 1 and 2, this special subgraph
is useful to save the number of colors needed to give a POC on the weighted
complete multipartite graph. In fact we will give a vertex coloring so that each
component of S(H1, . . . ,Ht) has the same color and this is the key idea for saving
the number of colors to obtain a desired POC.

Note that 0 ≤ |V (S(H1, . . . ,Ht))| ≤ 2t− 2, and the upper bound can be at-
tained only if |V (H1)∩V (S(H1, . . . ,Ht))| = |V (Ht)∩V (S(H1, . . . ,Ht))| = 1 and
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|V (Hi) ∩ V (S(H1, . . . ,Ht))| = 2 for i = 2, . . . , t− 1. We say that S(H1, . . . ,Ht)
is maximum (H1, . . . ,Ht)-paths if it is chosen so that |V (S(H1, . . . ,Ht))| is as
large as possible in Kn1,...,nk . For maximum (H1, . . . ,Ht)-paths S(H1, . . . ,Ht),
let q(S(H1, . . . ,Ht)) be the number of components in S(H1, . . . ,Ht).

We first prove the following proposition.

Proposition 1. Let n1, . . . , nk be positive integers with k ≥ 2 and (Kn1,...,nk , w)
be a vertex weighted graph of Kn1,...,nk such that w : V (G) → {1, . . . , t}. Also,
let H1, . . . ,Ht be a MOCs of (Kn1,...,nk , w) and S(H1, . . . ,Ht) be a maximum
(H1, . . . ,Ht)-paths of Kn1,...,nk . Then, there exists a POC on the graph (Kn1,...,nk , w)

that uses

t∑
i=1

|V (Hi)| − |V (S(H1, . . . ,Ht))|+ q(S(H1, . . . ,Ht)) colors.

Proof. Let q := q(S(H1, . . . ,Ht)) and P1 = p11 . . . p
1
|V (P1)|, . . . , Pq = pq1 . . . p

q
|V (Pq)|

be components of S(H1, . . . ,Ht) such that w(pi1) = min{w(x)| x ∈ V (Pi)} and
w(pi|V (Pi)|) = max{w(x)| x ∈ V (Pi)} for i = 1, . . . , q and w(pi|V (Pi)|) ≤ w(pi+1

1 )

for i = 1, . . . , q − 1 (so that P1, . . . , Pq appear in this order from H1 to Ht).

We now give a vertex-coloring by the following manner: For each component
Pi of S(H1, . . . ,Ht), we assign the same color to all vertices in Pi. Therefore, in
the following argument, we will only mention the color of one vertex of Pi.

We will basically give a consecutive coloring on Hi from i = 1 to t successively
so that max{c(x)| x ∈ V (Hi−1)} ≤ min{c(y)| y ∈ V (Hi)} holds for i = 2, . . . , t,
where the equality holds only if there exists a component P of S(H1, . . . ,Ht) such
that V (P ) ∩ V (Hi−1) 6= ∅ and V (P ) ∩ V (Hi) 6= ∅. Thus, we start with giving a
consecutive coloring on H1. If V (H1)∩V (P1) = ∅ then give an arbitrary consecu-
tive coloring on H1 and continue to give a consecutive coloring on H2, . . . ,Hj−1
successively until we have some Hj such that p11 ∈ V (Hj) for the component
P1 = p11 . . . p

1
|V (P1)| of S(H1, . . . ,Ht). Note that, if S(H1, . . . ,Ht) = ∅ then we

just give consecutive colorings successively on Hi from i = 1 to t and then we
are done. So we now assume that p11 ∈ V (Hj) with j ≥ 1 for P1 = p11 . . . p

1
|V (P1)|.

If V (Hj) = {p11}, then we assign color

j−1∑
i=1

|V (Hi)| + 1 on p11. Otherwise, give a

consecutive coloring on Hj from a vertex of H1 − P1 to p11. From i = j + 1 to t,
we successively give a consecutive coloring on Hi by the following manner: For
a component Pi = pi1 . . . p

i
|V (Pi)| of S(H1, . . . ,Ht), once we have assigned a color

on pij−1 for some j ≥ 2, we continue to assign the same color on pij until all the
vertices of Pi receive the same color. Keeping this coloring procedure in mind,
we only have to consider the following three cases on coloring of Hi.

• If Hi does not contain any vertex of V (S(H1, . . . ,Ht)) that has already been
colored just after the coloring procedure on Hi−1, then we give a consec-
utive coloring on Hi from a vertex v ∈ V (Hi) with color max{c(x)| x ∈
∪i−1j=1V (Hj)} + 1. In this case, if possible, choose the vertex v so that v /∈
V (S(H1, . . . ,Ht)). (Thus, we would like to color from a vertex v so that
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v /∈ V (S(H1, . . . ,Ht)) to a vertex in V (S(H1, . . . ,Ht)) if it contains a vertex
for the next path.)

• If Hi contains a vertex v of V (S(H1, . . . ,Ht)) that has already been colored
by the coloring procedure and V (Hi) ∩ V (S(H1, . . . ,Ht)) = {v}, then we
give a consecutive coloring on Hi from v.

• If Hi contains a vertex v of V (S(H1, . . . ,Ht)) that has already been colored
by the coloring procedure and V (Hi) contains another (uncolored) vertex u
from V (S(H1, . . . ,Ht)), then we give a consecutive coloring on Hi from v
to u.

Proceeding in this way, in view of the properties (i)–(iii) on S(H1, . . . ,Ht),
we can give a coloring on all the vertices of H1, . . . ,Ht. We then assign colors for
the other vertices in Kn1,...,nk . For a vertex v ∈ V (Kn1,...,nk)−V (H1∪ . . .∪Ht),
there exists a vertex u ∈ V (Hj) for some 1 ≤ j ≤ t such that (V (Hj)−{u})∪{v}
induces a clique in Kn1,...,nk since H1, . . . ,Ht are a MOCs. Assign the same color
c(u) on v.

We can easily see from the above construction that the resulting coloring is
a desired POC.

ut
For the convenience of the readers, we will now demonstrate giving a POC

on (K1,3,5, w) by the coloring procedure described in the poof of Proposition 1
in the following case: Let X = {x1}, Y = {y1, y2, y3}, Z = {z1, z2, z3, z4, z5} be
the three partite sets of K1,3,5 and suppose that w(x1) = w(y1) = w(z1) =
1, w(z2) = w(z5) = 2, w(y2) = w(z3) = 3, w(y3) = w(z4) = 4. In this case,
we can take a MOCs H1, H2, H3, H4 such that V (H1) = {x1, y1, z1}, V (H2) =
{z2}, V (H3) = {y2, z3}, V (H4) = {y3, z4}. Note that V (K1,3,5) − V (H1 ∪ H2 ∪
H3∪H4) = {z5}. Let P1 = z1z2z3, P2 = y2y3 be paths in K1,3,5. Then we can let
S(H1, H2, H3, H4) = P1 ∪ P2. According to the coloring procedure in the proof
of Proposition 1, we can color the vertices as follows: c(x1) = 1, c(y1) = 2; any
vertex of P1 receives color 3; any vertex of P2 receives color 4; c(z4) = 5, c(z5) =
2. Note that q(S(H1, H2, H3, H4)) = 2 and now we obtained a POC on (K1,3,5, w)

using
∑4
i=1 |V (Hi)|−|V (S(H1, H2, H3, H4))|+q(S(H1, H2, H3, H4)) = 8−5+2 =

5 colors.
Let (Kn1,...,nk , w) be a weighted complete multipartite graph, where w is a

weight function such that w : V (Kn1,...,nk) → {1, . . . , t}. For the fixed integers
n1, . . . , nk, we can obtain a fixed value g(n1, . . . , nk, t;w) as follows:

g(n1, . . . , nk, t;w) =

max{
t∑
i=1

|V (Hi)| − |V (S(H1, . . . ,Ht))|+ q(S(H1, . . . ,Ht)) | H1, . . . ,Ht are a

MOCs in (Kn1,...,nk , w)}.

Under this notation, we further define the following function on Kn1,...,nk :

h(n1, . . . , nk, t) := max{g(n1, . . . , nk, t;w)| w is a weight function on Kn1,...,nk

such that w : V (Kn1,...,nk)→ {1, . . . , t}}.
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Proposition 2. Let n1, . . . , nk be positive integers with k ≥ 2. Then,

χPOC(Kn1,...,nk ; t) = h(n1, . . . , nk, t).

Proof. For a weighted complete multipartite graph (Kn1,...,nk , w) such that w :
V (Kn1,...,nk) → {1, . . . , t}, let H1, . . . ,Ht be a MOCs. By the construction,

we need at least

t∑
i=1

|V (Hi)| − |V (S(H1, . . . ,Ht))| + q(S(H1, . . . ,Ht)) colors

to give a POC on the induced subgaph by ∪ti=1V (Hi) in (Kn1,...,nk , w), since
otherwise, for some i, Hi cannot be consecutively colored, or a pair of ver-
tices x and y such that V (Hi) = {x}, V (Hi+1) = {y} cannot have distinct
colors and then we cannot give a POC on (Kn1,...,nk , w). This implies that
χPOC(Kn1,...,nk ; t) ≥ h(n1, . . . , nk, t). This, together with Proposition 1, shows
that χPOC(Kn1,...,nk ; t) = h(n1, . . . , nk, t).

ut
Now we obtain the following corollary.

Corollary 1. Let n1, . . . , nk be positive integers with k ≥ 2. Then,

χPOC(Kn1,...,nk ; t) ≤ (k − 1)t+ 1.

Proof. Let H1, . . . ,Ht and S(H1, . . . ,Ht)) be as in Proposition 1. It suffices to
show that

t∑
i=1

|V (Hi)| − |V (S(H1, . . . ,Ht))|+ q(S(H1, . . . ,Ht)) ≤ (k − 1)t+ 1.

We will show a contradiction to the assumption that

t∑
i=1

|V (Hi)| > |V (S(H1, . . . ,Ht))| − q(S(H1, . . . ,Ht)) + (k − 1)t+ 1.

This implies that at least |V (S(H1, . . . ,Ht))| − q(S(H1, . . . ,Ht)) + 2 cliques
of H1, . . . ,Ht have k vertices, respectively. This assures us that we can find
maximum (H1, . . . ,Ht)-paths in Kn1,...,nk having at least |V (S(H1, . . . ,Ht))| −
q(S(H1, . . . ,Ht)) + 1 components. Recall that each component of S(H1, . . . ,Ht)
consists of at least two vertices. Therefore, it contains

2(|V (S(H1, . . . ,Ht))| − q(S(H1, . . . ,Ht)) + 1)

vertices, which is more than |V (S(H1, . . . ,Ht))| vertices. This contradicts our
assumption on the maximality of |V (S(H1, . . . ,Ht))|.

ut
The bound on χPOC(Kn1,...,nk ; t) of Corollary 1 is best possible. We will show

this in the next section (after proving Theorem 2) .
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4 Proof of Theorems 2 and 3 together with some
remarks

We are now in a position to prove our second main theorem.

Proof. Construct a complete multipartite graph Kn1,...,nχ(G)
from G by adding

edges and apply Corollary 1 toKn1,...,nχ(G)
. Then there exists a POC onKn1,...,nχ(G)

using at most (χ(G) − 1)t + 1 colors. This vertex coloring is also a POC on G.
Thus we have that χPOC(G, t) ≤ (χ(G) − 1)t + 1. This completes the proof of
Theorem 2.

ut
We remark that the upper bound on χPOC(G, t) is sharp. To see this, con-

sider the case where (G,w) is a weighted complete multipartite graph with w :
V (G)→ {1, . . . , t} such that each partite set contains vertices having t distinct
weights. Then any MOCs H1, . . . ,Ht of G satisfies |V (S(H1, . . . ,Ht))| = 2t− 2.
Therefore, in view of the coloring procedure described as in the proof of Propo-
sition 1, we can easily check that such a graph attains the upper bound.

We then provide the following two propositions concerning the relationship
between digraphs and POC coloring in vertex weighted graphs.

Proposition 3. Let (G,w) be a weighted graph. Then there exists a good acyclic
orientation of (G,w); moreover, we have χPOC(G,w) ≤ `′(G,w).

Proof. To obtain a desired orientation, we firstly look at the induced subgraph
Hi by the vertex set {v ∈ V (G)|w(v) = i} for i = 1, . . . , |W | in (G,w). For every
i, if Hi contains an edge, then we give any acyclic orientation on Hi. We then
give an orientation on other edges xy ∈ E(G) so that (x, y) is an arc if and only
if w(x) > w(y) holds.

We now claim that the resulting orientation D is a desired orientation. To
see this, suppose that the resulting digraph D contains a directed cycle C. Let
(x, y) be an arc on C and consider the directed path obtained from C by deleting
(x, y). Note that y is the tail and x is the head on this directed path and hence
w(x) ≤ w(y). By the construction, we may assume that V (C) contains two
vertices u, v such that w(u) < w(v). This implies that w(x) < w(y). However,
this contradicts the construction of D because we have (x, y) ∈ A(D). Hence
D is a good acyclic orientation. To show the second assertion, we provide the
following algorithm F′, which is a slight modification of Algorithm F for the
digraph case. Note that, N+(v) means the out-neighbour of a vertex v in D.

Algorithm F′

Input: (G,w) with a good acyclic orientationD, where V (G) = {v1, . . . , vn}
and w(v1) ≤ · · · ≤ w(vn);

Output: a POC with at most `′(D) colors.



On properly ordered coloring of vertices in a vertex-weighted graph 11

Step 1. Set c(v1) = 1.
Step 2. For j = 2, · · · , n, if N+(vj) ∩ (∪j−1i=1{vi}) = ∅, then set c(vj) = 1;

otherwise, set c(vj) = max{c(vi)|(vj , vi) ∈ A(D) and 1 ≤ i < j}+ 1.

Arguing similarly as in the proof of Theorem 4, we see that Algorithm F′ yields
a POC with at most `′(D) colors, thereby proving that χPOC(G,w) ≤ `′(D).
Thus we have χPOC(G,w) ≤ `′(G,w).

ut

Proposition 4. Let (G,w) be a weighted graph and c : V (G) → C be a POC
on (G,w) with C = {1, 2, . . . , θ}. Then there exists a good acyclic orientation D
of G such that `′(D) ≤ θ (that is, χPOC(G,w) ≥ `′(G,w)).

Proof. We give an orientation on (G,w) from the vertex coloring of c on V (G) by
the following manner: for an edge xy of G, if c(x) > c(y) then orient xy so that
x is a tail and y is a head. Let D be the resulting orientation of (G,w). Since c is
a POC on (G,w), by the construction, obviously D is a good acyclic orientaton
of (G,w) and we need at least `′(D) colors in C. Thus we have `′(D) ≤ θ.

ut
Combining Propositions 3 and 4, we obtain Theorem 3.
We finally suggest some open questions for graphs with no large clique from

the following viewpoint: Obviously, the value of χPOC(G, t) must be at least
the order of any clique contained in G. Utilizing our result concerning complete
multipartite graphs, we obtained a nontrivial upper bound on χPOC(G, t) (in
terms of the chromatic number and t) for general graphs. The situation would
change a lot if we restrict our attention to sparse graphs such as planar graphs or
graphs with large girth. What is the sharp upper bound on χPOC(G, t) for these
graph classes? This could be a challenging but interesting direction of further
research.
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