
Contact CEH NORA team at noraceh@ceh.ac.uk

The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.
Assessing the effectiveness of scrub management at the landscape scale using rapid field assessment and remote sensing

John Redhead, Maria Cuevas-Gonzales, Geoffrey Smith, France Gerard and Richard Pywell

1NERC Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, UK.

2Corresponding author: (+44) 1491 692538; Fax: (+44) 1491 692424;
E-mail address: johdhe@ceh.ac.uk

3Present address: Institute of Geomatics, Av. Gauss 11, Castelldefels, E-08860, Spain

4Present address: Specto Natura Ltd, College Road, Impington, Cambridge, CB24 9PL, UK
Abstract

Controlling scrub encroachment is a major challenge for conservation management on chalk grasslands. However, direct comparisons of scrub removal methods have seldom been investigated, particularly at the landscape scale. Effective monitoring of grassland scrub is problematic as it requires simultaneous information on large scale patterns in scrub cover and fine-scale changes in the grassland community. This study addressed this by combining analysis of aerial imagery with rapid field surveys in order to compare the effectiveness of four scrub management strategies on Defence Training Estate Salisbury Plain, UK.

Study plots were sited within areas undergoing management and in unmanaged controls. Controls showed dramatic increases in scrub cover, with encroachment of a mean 1096 m² per hectare over ten years. Whilst all management strategies were effective in reducing scrub encroachment, they differed in their ability to influence regeneration of scrub and grassland quality. There was a general trend, evident in both the floral community and scrub levels, of increased effectiveness with increasing management intensity. The dual methodology proved highly effective, allowing rapid collection of data over a range of variables and spatial scales unavailable to each method individually. The methodology thus demonstrates potential for a useful monitoring tool.

Keywords: Calcareous grassland; habitat restoration; image analysis; condition assessment
Unchecked succession to scrub and woodland poses a serious threat to the conservation of open grassland habitats across the globe (Crofts and Jefferson 1999, Eldridge et al 2011). The calcareous grasslands of Western Europe are a habitat of high conservation value, due to their high biodiversity and large number of rare or threatened species (Bossuyt et al 2006; WallisDeVries et al 2002). Originally limited to steep slopes and outcrops, many calcareous grasslands developed after forest clearance beginning in Neolithic times, and were maintained by grazing, hay mowing and removal of woodland regrowth for firewood (Poschlod and WallisDeVries 2002). In the twentieth century, fertilization and ploughing for agriculture led to rapid declines in calcareous grasslands across Europe (Hirst et al 2000), whilst abandonment of traditional grazing and hay cutting made the remaining fragments vulnerable to degradation by scrub encroachment (Poschlod and WallisDeVries 2002). Invasion of scrub on grasslands reduces floral diversity by creating shade and enriching the underlying soil with organic debris, encouraging shade-tolerant and competitive species (Butaye et al 2005, Bossuyt et al 2006).

In temperate grasslands scrub is naturally managed by browsing and grazing (WallisDeVries et al 2002, Woodcock et al 2005) and by fire (Morris 1975). Conservation management typically involves scrub removal by mechanical means (cutting or flail mowing), herbicide application or controlled burning (Crofts and Jefferson, 1999). These approaches may be employed singly or in combination. The effects of scrub encroachment have been studied at local, ecosystem (Van Auken 2000) and, recently, global scales (Eldridge et al 2011) and there is an extensive literature demonstrating the effects of individual management techniques. However, comparisons between techniques are
considerably rarer. Often such studies are limited to small areas and rarely use a
standardised methodology (Menges and Gordon 2010), making it difficult to disentangle the
effects of scrub management actions from other site factors. As a result, most practical
guidelines for selecting scrub management methods are based on anecdotal observations
rather than long-term experimentation (Bacon 2003). If this problem is to be addressed it is
necessary to overcome the practical difficulties in monitoring accurately both the primary
effects on problem species, and the secondary effects on grassland quality (i.e. floral
community and vegetation structure in relation to species and values which typify well-
maintained examples of the habitat). Achieving these simultaneously is a particular
challenge at the large spatial scales encountered in many grassland habitats.

Remote sensing, in particular aerial imagery, has long been used to gather data over
large areas in a consistent and repeatable way (Hoffer and Johannsen 1969). Image analysis
procedures involving classification of land cover types on the basis of their spectral and
spatial characteristics has enabled the use of aerial imagery as a staple for provision of data
on the extent, pattern and distinctness of landscape features (Franklin 2001, Jensen 2005).
In some respects, grassland habitats are well suited to this approach as many features of
interest to conservation (e.g. scrub, bare ground, water bodies) are readily distinguished,
and previous studies have employed remote sensing in order to detect scrub encroachment
over large areas (Laliberte et al 2004, Mitchard et al 2009). However, remote sensing is not
always able to quantify accurately changes in floristic composition, particularly at fine
spatial scales. In many situations, detecting such detailed changes is of great importance to
informing conservation practice (Feilhauer et al 2010). Grassland floristic communities in
particular seldom have obvious real-world boundaries and are often spectrally very similar,
particularly in high summer (Peterson and Aunap 1998). Enhancing the ability of remote sensing techniques to detect change in floristic composition is currently an active area of research (Schmidtlein et al 2007, Feihauer et al 2010) but the methods involved require investment in specialist remote sensed datasets. Where scrub encroachment is concerned, the problem is also likely to be compounded by the fact that the same factor that threatens the floral community also masks it from aerial imagery.

In contrast to remote sensing, ground survey is less consistent and repeatable in mapping land cover, but is effective in measuring change in plant community composition and structure (Sutherland 2006). Comprehensive ground survey is costly and requires a high level of taxonomic expertise, restricting its use to small areas. A compromise approach is to undertake a partial ground survey focusing on a limited sub-set of or indicator species and attributes that are easy to identify. So-called ‘rapid assessment methods’ have been successfully developed and deployed for lowland grasslands (Robertson and Jefferson 2000).

Combining image analysis with rapid ground survey thus offers a complementary approach for monitoring both detailed changes in the plant community and wider landscape patterns, over a large area, at relatively low cost. This study undertook a quantitative assessment of the effectiveness of four scrub management strategies at the landscape scale using a combination of analysis of readily available aerial photographic images with a rapid ground survey method. The scrub management strategies assessed form a spectrum of management intensity; from single treatments using herbicide or mechanical management, through single applications of both types, culminating in multiple instances of both methods. The study also evaluated the monitoring methodology as a means of rapid and
accurate assessment of scrub management on chalk grasslands, and potentially other
habitats, in North West Europe and beyond.

2. Methods

2.1. Study site
This study was carried out on Defence Training Estate Salisbury Plain (DTE SP), UK (fig. 1).
This area contains 50% of remaining UK chalk grassland, and forms the largest continuous
area of this habitat in Western Europe (Walker and Pywell 2000). Military ownership since
the late 19th century has resulted in the protection of DTE SP from damage and
fragmentation by agricultural intensification. However, until recent years, military training
restricted grazing management so that extensive areas were invaded by scrub, particularly
hawthorn Crataegus monogyna and gorse Ulex europaeus (Walker and Pywell 2000),
threatening the conservation value of the calcareous grassland (Illiffe et al 2000). To
counter this threat a campaign of scrub removal and grazing has been undertaken over the
last 11 years, with around 30 km² undergoing active scrub removal.

2.2. Scrub management regimes
Using annual maps of scrub management (spring 1994 to summer 2010), we identified areas
of species rich chalk grassland (see Walker and Pywell 2000) which had undergone
management between 2004 and 2007, giving the grassland time to recover whilst keeping a
low probability of total scrub regeneration (Bobbink and Willems 1993). We selected four
management treatments for survey on the basis of their wide scale application to all
temperate grasslands: 1) herbicide spray (foliar spray of scrub < 1.5 m high with glyphosate,
360 g L⁻¹ applied as 2.5% solution), 2) cut (chainsaw cutting of scrub > 0.5 m high, followed
by stump treatment with glyphosate, 360 g L⁻¹ applied as 20% solution), 3) cut and spray
(single applications of both cutting and spraying) and 4) ‘intensive’ management (multiple
applications of both cutting and spraying). The commencement of management activities
was contemporaneous with the reintroduction of grazing to managed areas and adjacent
controls. Grazing was restricted to 10-14 days annually in temporary pennings, with no
more than 50% of each penning grazed in consecutive years. For further details of the
grazing regime see Woodcock et al (2005).

Monitoring took place within 1 hectare (10000 m2) survey plots identified as having
minimum 5% scrub cover before management began. This threshold has been previously
identified as indicative of significant threat to grassland quality (Robertson and Jefferson
2000). Paired control plots were allocated in order to control for spatial heterogeneity
(Chapman 1999) with a control located within 750 m of each managed plot, in an area which
had not undergone any scrub management between 1994 and 2010, and with similar levels
of scrub cover to the managed plot, prior to management. Seven managed-control pairs for
each management type (56 plots total) were located in geographically separate areas. All
spatial data for selecting survey plots were handled using ArcMAP (v 9.3.1 ©ESRI 2009).

2.3. Quantifying scrub cover using aerial imagery

High spatial resolution (0.25 m × 0.25 m pixels) aerial photographic imagery (i.e. true colour;
red, green and blue bands) were obtained for 1999 and 2010, representing the situation
before and after all scrub management activities on the survey plots. All images were taken
in late summer and, in the case of 2010, were contemporaneous with the field survey (30th
August 2010). We applied a pixel-based supervised maximum likelihood classification to
assign basic land cover classes (bare chalk, scrub, grassland, deep shade). The image layers
fed into the classification were 1) the first principal component from principal components
PCA reduces variability in the data by transformation into a number of uncorrelated variables (‘principal components’) providing, in this case, a metric of overall ‘darkness’ or ‘lightness’. The red band was employed for the latter two layers as green vegetation shows strong absorbance in the red end of the spectrum (Franklin 2001). Textural analyses have been shown to greatly enhance separability among cover classes with similar spectral qualities (Franklin et al 2000; Morgan et al 2010). In this case, mean texture was chosen as it showed the greatest difference between land cover classes. Mean texture was extracted from a grey-level co-occurrence matrix generated using a 9 x 9 pixel moving window. Three metrics of scrub cover were then obtained for all survey plots for both years: total scrub cover area, scrub patch number and average scrub patch size. Classification procedures were carried out in ENVI (v 4.4 © ITT VIS 2007).

2.4. Quantifying effects of scrub management using rapid field survey

Surveys were conducted from 16th to 27th August 2010, using a variant of Natural England’s rapid assessment method for tall calcareous grasslands (Robertson and Jefferson 2000). The method consisted of a visual assessment, followed by a W-shaped transect across the survey plot, recording presence of 22 positive and 6 negative indicator species within a 1m x 1m quadrat at ten intervals on the transect. We supplemented the indicator species list with 12 positive indicators of particular importance or prevalence on DTE SP (Walker and Pywell 2000), 10 scrub species and 12 shade tolerant species (see Supplementary Material S1 and S2 for details).

2.5. Statistical Analysis
Comparisons between managed and control sites employed paired T-tests whilst comparisons between management types were performed by conversion of data to difference from controls followed by T-tests or one-way ANOVA. In order to meet statistical assumptions continuous data were \log_{10} transformed prior to analysis, percentage data angular transformed and intra-pair difference data transformed by taking the square-root of the absolute value, then multiplying by ± 1 depending on the sign of the difference.

Euclidean distances were calculated within managed-control pairs to analyze differences in the total indicator species community. Euclidean distance is defined as:

$$ED_{jk} = \sqrt{\sum (X_{ij} - X_{ik})^2}$$

where $ED_{jk} =$ Euclidean distance between samples j and k; $X_{ij} =$ number of individuals of species i in sample j; $X_{ik} =$ number of individuals of species i in sample k (Krebs 1999).

3. Results

3.1. Image analysis

Scrub cover showed no significant difference between managed and control plots in 1999, due to the deliberate selection of plot pairs with similar levels of scrub prior to management ($T = 0.142$, $p = 0.888$). In 2010 managed plots showed significantly lower total scrub area and average area of scrub patches than their controls (paired T-tests, $N = 27$ in both cases; $T = 5.37$, $p < 0.001$; $T = 4.10$, $p < 0.001$ respectively). Significant scrub encroachment took place on control plots between years (mean scrub cover 1999 = 5.14 %, SE = 1.74%; 2010 = 16.11%, SE = 2.58%, see Supplementary Material S3) with a mean increase of 1096 m2 of scrub per hectare (SE = 272 m2). Not only was there an increase in the total area of scrub,
but the number and average area of scrub patches also increased (paired T-tests, N = 27 in all cases; T = 5.94, p < 0.001; T = 2.62, p = 0.011; T = 5.94, p < 0.001 respectively).

When analysed independently (fig. 2) all management types except spraying significantly reduced total scrub area relative to their controls between 1999 and 2010 (T-tests, spray; N = 7, T = 2.34, p = 0.058, cut; N = 7, T = 5.05, p = 0.002, cut-spray; N = 6, T = 3.56, p = 0.016, intensive; N = 7, T = 4.97, p = 0.003). The decrease for sprayed plots was near significant and the difference of sprayed plots from controls was significantly non-zero in 2010 (one sample T-test, T = 2.80, p = 0.031). No management type showed a significant difference in the number of scrub patches between years. However, when the count of patches was limited to those over 1m2 in area, both cut and intensive plots showed a significant reduction between years (T-tests, N = 7 in both cases, T = 3.12, p = 0.021; T = 2.68 p = 0.036 respectively). Average patch size also decreased significantly from 1999 to 2010 for intensive plots (T-test, N = 7, T = 3.74, p = 0.010), but not for other management types.

The quality of the classification was indicated by a significant correlation with the percentage scrub cover estimates derived from the field surveys (Pearson correlation, N = 53, r = 0.75, p < 0.001). This relationship remained significant when data for managed and control plots were analysed separately.

3.2. **Rapid field survey**

Estimated percentage scrub was significantly lower in managed areas than controls, as was average sward height, whilst the total number of positive indicator species was significantly higher (paired T-tests, N = 27 in all cases; T = 4.80, p < 0.001; T = 2.12, p = 0.044; T = -3.23, p = 0.003 respectively). Managed areas had significantly fewer scrub species (paired T-test,
Independent comparisons between management types and paired controls (Table 1) revealed several differences, although all showed significantly lower percentage scrub. Only intensive management significantly reduced average sward height, whilst both cut and intensive managements showed significantly higher total occurrence of positive indicator species (Table 1). Weighting positive indicator species by rarity increased significance for intensive plots whilst decreasing that for cut plots (Table 1). Total scrub species occurrence was not significantly different between any individual management type and its controls but when seedlings were excluded, a significantly lower occurrence of adult scrub species was apparent on cut-spray and intensive managements.

Analysis of Euclidean distances showed a clear trend of increased difference in the plant community with increasing intensity of management (fig. 3; one-way ANOVA, $F = 3.44, p = 0.034$). Tukey post hoc tests showed that the significance of this trend is largely attributable to the difference between spray and intensive managements ($F = 3.17, p = 0.021$).

4. Discussion

4.1. Effectiveness of scrub management

The results confirm that scrub encroachment is a serious threat to the high conservation value of grassland on DTE SP, covering an additional 10.96% land area over ten years on control plots. Controls showed associated degradation of the underlying grassland, being poorer in species indicative of well maintained chalk grassland and having a taller grass sward (Robertson and Jefferson 2000). The results also show that all scrub managements
are, to some extent, effective in reducing the rapid rate of scrub encroachment seen on controls. However, since invasive scrub species are typified by high seed set, high germination rates and produce multiple shoots and suckers in response to cutting scrub regeneration is rapid (Bacon 2003). Some plots approached pre-managed scrub levels 3-6 years after treatment, a rate comparable to previous studies (e.g. Dzwonko and Loster 2007, Maccherini et al 2007). The speed of regeneration and the resultant formation of small scrub patches comprised of seedlings and shoots is probably behind the observation that no management type showed a reduction in the total number of scrub patches, and the changes in significance seen when seedlings are excluded from the dataset.

A trend of increased efficacy in both the removal of scrub and the restoration of grassland quality was evident with increasing management intensity (fig. 2 and 3, Supplementary Material S3). The least intensive management, single application spraying, showed only slight evidence of a difference in total scrub area, evidencing almost complete scrub regeneration. A single spray of large scrub bushes is often not enough to kill them (Bacon 2003) due to the resilience of scrub species and the variability in the effect of foliar herbicides imparted by the timing of application and individual plant condition (Harrington and Miller 2005). The use of contact herbicides, such as Glyphosate, which rapidly lose phytotoxicity on contact with the soil and so limit damage to non-target plants, results in unimpaired regeneration from surviving adult scrub plants, and from the seed bank (Hurst and John 1999). Even where no part of the adult plant survives, sprayed ‘skeletons’ are left standing (evident to field surveyors 3-6 years after management) and may limit the ability of spraying to improve the quality of the underlying grassland by providing continued (albeit decreased) shade, increasing nutrient levels via decay, and restricting access for grazers.
Although skeletal bushes could also potentially inflate the metrics of scrub cover by misclassification as living scrub in the image analysis, scrub cover derived from aerial images was not significantly higher on spray plots than the estimate from the field survey (which discounted dead bushes). Since significant grassland recovery is often cited to take 3 to 5 years following scrub removal (Bobbink and Willems 1993, Zobel et al 1996, Barbaro et al 2001) it is unsurprising that near-complete scrub regeneration within the same time period, combined with persistent negative effects from scrub remnants, should swamp any beneficial effects of spraying on grassland quality. These considerations suggest caution in using foliar spraying alone especially where cutting is a viable alternative.

Where time and access constraints dictate a single treatment, cutting is likely to be the preferred option. By removing adult scrub entirely, cutting ensures that there is neither continued shading from dead scrub nor survival of adult bushes, thus increasing the likelihood of a beneficial effect on the grassland community. This was evidenced in the study by the observed higher numbers of positive indicator species. Cutting has been the management of choice for studies combining grazing with active scrub removal, and grassland species abundance and richness have previously been shown to increase rapidly after cutting of even dense scrub cover (Zobel et al 1996, Barbaro et al 2001, Maccherini et al 2007). Cutting has also been stated to be generally sufficient in preventing the local extinction of many grassland indicators, although not in maintaining a completely healthy sward structure and composition (Gibson 1986). A single cut does not affect the scrub seed bank, so seedlings are quick to return (Maccherini et al 2007) and cut stumps regenerate very rapidly (Bacon 2003). However, when compared to intact bushes or branches, seedlings and shoots are more accessible and palatable to both domestic and wild grazing
animals. Thus even though regeneration begins rapidly, cut scrub is slower to achieve pre-
treatment levels.

The reduction in adult scrub species observed on cut-spray plots was not present on
cut or sprayed plots, so it is probable that combining managements significantly slows the
regeneration of some scrub species (Bacon 2003). Aside from this effect, cut-spray
management was not consistently more effective than cutting alone. It is likely that a single
subsequent spray adds little to what is achieved by cutting for similar reasons as on sprayed-
only plots, exacerbated by a reduced surface area for herbicide uptake after cutting.

Several studies have shown that long-term benefits of scrub clearance appear only
after combined or repeated treatments (Zobel et al 1996, Barbaro et al 2001, Menges and
Gordon 2010). In this study, intensive management was most effective in both removing
scrub cover and improving the quality of the underlying grassland. The greater effect than
cut-spray management suggests that this is due to the frequency of intervention rather than
the mere combination of management types. Many invasive scrub species of European
calcareous grasslands (e.g. hawthorn, blackthorn *Prunus spinosa*, privet *Ligustrum vulgare*)
cannot persist long in the seed bank (Davies and Waite 1998), so repeated removal of
adults, seedlings and regenerating shoots depletes local sources of scrub, forcing slower
recolonisation from outside the managed area (Bossuyt et al 2006). This longer term
removal of scrub is likely to drive the improvements in grassland quality (Bacon 2003).
Species which are highly intolerant of scrub encroachment, or slow to establish after scrub
removal, will occur only where scrub levels have remained consistently low (Zobel et al
1996). Thus the success of intensive management in both removing scrub and slowing its
Further research is required into the effectiveness of grazing and other low-level managements, such as weed wiping with selective herbicides, in preventing the regeneration of scrub once the initial managements investigated in this study have taken place. Few studies have investigated the changes in management type and frequency of intervention required to prolong the initial benefits seen when simply comparing managed versus unmanaged areas. However, there is some evidence that subsequent grazing is sufficient to prolong the benefits of initially effective scrub removal (Pywell et al 2010).

4.2. Methodological considerations

The dual methodologies allowed insight into a wide range of effects of scrub management after comparatively rapid and low cost data collection. Image analysis allowed rapid extraction of detailed measures of scrub cover which would be impossible on the ground whilst field surveys collected data on grassland community and structure invisible to the imagery employed. Since photographic aerial images cannot provide the same basis for detailed distinctions between land cover classes as more specialist hyperspectral sensors, the field survey also provides a useful check for assessing the veracity of the image analysis (Morgan et al 2010). For example, field data was used in manual deletion of Juniper *Juniperus communis*, a priority species for UK calcareous grasslands and not managed as other scrub (Robertson and Jefferson 2000). Recent studies attempting to devise methods by which remote sensing can be used to gain accurate measures of the floral community have taken this approach, using field surveys in order to train or test classification procedures (Schmidtlein et al 2007, Feilhauer et al 2010).
Although the classification output was limited to readily distinguished land cover types, the resultant metrics are informative and easily interpreted. Distinct land cover features, like scrub bushes, are well suited to classification as they do not require the imposition of arbitrary boundaries between land cover types which are at best an approximation in the continuum structure of grassland floral stands, particularly where changes of interest are comparatively small (Laliberte et al 2004, Schmittein et al 2007). Although the use of continuous measures of compositional variation can be employed to avoid imposing such distinctions, they are difficult to interpret and cannot be derived from simple photographic images. When compared to specialist remote sensing datasets, aerial photographic images are both easier to handle and cheaper to obtain (Hirst et al 2000, Morgan et al 2010) and, unlike most other remote sensing datasets, possess a historic record reaching back at least 60 years in the UK (Fuller 1983). Given the existence of such a record, this work would be enhanced by a full annual time series of field data and aerial imagery, extending from immediately prior to management to several years after. Such data would allow detailed rates of scrub encroachment to be ascertained which, in conjunction with monitoring the establishment and persistence of effects on the grassland community (Kahmen et al 2002), would allow investigation into the exact frequency and type of intervention required to make intensive management effective. Whilst the pixel-based classification employed in this study has the benefit of simplicity, there is also scope to investigate the potential advantages of employing object-based classification of the aerial images, since such procedures have the potential to enhance the accuracy of classification and have been used effectively to map scrub encroachment from time-series aerial imagery (Hudak and Wessman 1998, Laliberte 2004).
4.3. Conclusions

This study has shown that all four scrub managements significantly alter the fate of calcareous grassland from otherwise rapid scrub colonisation. There is, however, a clear trend of increased efficacy with increased intensity of management - in removing scrub, retarding recolonisation and promoting grassland quality. Thus, where possible, an intensive campaign of varied treatments over several consecutive years may be of greater long term benefit than applying repeat treatments only after scrub has regenerated to problem levels.

This study has also demonstrated the advantages of combining aerial photographic imagery with rapid field assessments in order to perform rapid and efficient surveys over a large spatial scale. Simple analysis of a readily available remotely sensed resource has provided data on large scale scrub cover, whilst rapid field survey has given information on the floral community of sufficient detail to detect differences as a result of management. If the suitability of management methods is to be extrapolated beyond a single site or landscape, it is of prime importance to study both of these responses, particularly in the light of recent suggestions that the effect of scrub encroachment and removal varies considerably with local conditions and the scrub species concerned (Eldridge et al 2011). The two methods are thus complementary and together provide potential for an extremely useful, rapid and low-cost monitoring tool for scrub on grassland and for other open habitats.

Acknowledgements

The study was funded by Defence Estates and the Natural Environmental Research Council. We are grateful to D. Ash, J. Swain, L. Warman and C. Maple for supporting this work.
Supporting Information

Details of the field survey method (Appendix S1) and indicator species (Appendix S2, species nomenclature follows Stace 2010) are available online, alongside classified aerial imagery of example survey plots (Appendix S3). The authors are solely responsible for the content and functionality of these materials. Queries (other than absence of the material) should be directed to the corresponding author.

Literature Cited

Fuller, R. M. 1983. Aerial photographs as records of changing vegetation patterns. In: Fuller, R. M. (ed.) Ecological mapping from ground, air and space. Natural Environmental Research Council, Cambridge, 57-68

Fig. 1 Map of Southern UK showing the location of Defence Training Estate Salisbury Plain. Unimproved calcareous grassland is shaded grey (Walker and Pywell 2000), scrub is shaded black.

Fig. 2 Difference between managed and control plots for scrub metrics obtained from analysis of aerial imagery, in the years before and after management. (a) Total scrub area; (b) number of scrub patches; (c) number of scrub patches over 1 m² in area; (d) average area of scrub patches. Data are categorised by management type (increasing in intensity along the X axis). Negative values indicate that managed plots showed a lesser value than controls, positive values *vice versa*.
Fig. 3 Boxplot of Euclidean distance in the indicator species community from controls. Based on 40 indicator species: positive, negative and shade tolerant. A greater distance indicates a greater difference in the composition and abundance of plant species of managed sites from controls. Increased distance is evident with increased intensity of management.