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Spatial Analysis for Political Scientists 
 

 
 
 
 
 
 
How does space matter in our analysis? Is space just about geography? How can we 
evaluate diffusion or interdependence between units? How biased can be our analysis 
if we do not consider spatial clustering? All above questions are critical theoretical 
and empirical issues for political scientists belonging to several subfields from 
Electoral Studies, passing to Comparative Politics, and also for International 
Relations. In this special issue on methods, our article introduces political scientists to 
conceptualizing interdependence between units and how to empirically model these 
interdependencies using spatial regression. First, the article presents the building 
blocks of any feature of spatial data (points, polygons, raster) and the task of 
georeferencing. Second, the article discusses what is an interdependence matrix (W), 
its importance and variations. Third, the article introduces how to investigate spatial 
clustering trough visualizations (e.g., maps) but also statistical tests (e.g., Moran’s 
Index). Finally, the article explains how to analyse data with geographic 
interdependences, but also non-geographic spatial interdependencies, using spatial 
error and spatial lags models. We conclude inviting researchers to carefully consider 
space in their analysis and reflect on the need (and lack of thereof) for spatial models. 
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1. Introduction 

 The metaphor of contagion has been used by social scientists to describe a variety of 

phenomena that diffuse in space.1 Technological innovations, policy adoption, norms 

and ideas, political regimes, conflict, criminal behaviours and political preferences are 

some of the numerous examples of issues that spread across geographic space and 

networks. In its conciseness, this list illustrates how spatial interdependence is 

ubiquitous to social phenomena, but also how spatial diffusion can occur among 

different subjects, or nodes in a network. Policies diffuse across countries and 

innovations across firms, norms are spread via international organizations or non-

governmental organizations, crime and violence travel across regions, and political 

opinions spread through personal networks. It is important to point out that diffusion 

processes are not simple clustering of similarity (or dissimilarity) among proximate 

units; rather, interdependence is the key feature of all diffusion processes. As we will 

see, this is the fundamental difference between spatial autocorrelation and spatial 

interdependence. 

 

Suppose, for example, that in a survey a group of individuals reports similar levels of 

religiosity. It turns out that these individuals are friends. We could start wondering 

whether their religiosity is independent from each others’ or there is a peer-group 

effect at play. One could conclude that the clustering of preference within this group 

is the result of a diffusion process, where each individual’s preference has influenced 

other friends’ preferences, ultimately leading to convergent attitudes toward religion. 

However, alternative explanations, that would not imply interdependent decisions, are 

equally plausible. For example, individuals can self-select into groups that share 

similar views a priori. Alternatively, friends may share similar views because they had 

been exposed to similar external stimuli (e.g., they all had religious parents), or they 

just grew up in the same neighbourhood or village where all had the same religious’ 

attitude. Homophily and common exposure would then explain the observed 

clustering, rather than any spatial interdependence underpinning diffusion processes.  

                                                 
1 Diffusion and contagion are often used interchangeably, and we do the same in this article. However, some have 

used them to refer to slightly different processes. See, for example, Midlarsky et al (1980) and Koktsidis (2014).   
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But let’s suppose what we see is true interdependence and friends’ attitudes 

are simultaneously affecting each other’s. Even if we were able to show that the 

similarity of attitudes is not due merely by clustering but to diffusion, we do not know 

yet what mechanism lead to diffusion. Hence, we could move this even further and 

start wondering whether the mechanism behind this diffusion process is one of 

emulation or learning. Are individuals changing their views in response to each other 

to intentionally become closer to their friends? Or are they adapting their attitudes 

because, after observing their friends, they see that religiosity brings some benefits, 

for instance going to the church every Sunday reinforces ties with community. Finally, 

and more importantly, the same clustering could be detected among citizens living in 

the same neighbourhood, beyond the group of friends we initially focused on. All 

above questions and necessary reflections would apply to this case as well. Notice, 

however, that one key difference would concern how individuals are connected 

spatially. In the case of friends, connections are based, by definition, on existing 

friendship ties. In the case of neighbours, connected individuals are geographically 

proximate and live in the same neighbourhood, without being necessarily part of the 

same friends’ network. 

  

This introduction illustrates how complex spatial interdependence can be, and why it 

is not just a simple inferential problem that needs to be fixed in a statistical model. 

Spatial interdependence offers nuance and insights to the theories we formulate to 

explain social phenomena. First, not all spatial clustering is spatial interdependence. 

Spatial interdependence implies that an outcome in a unit directly affects the same 

outcome in another unit. Second, geographic proximity is only one way to define the 

web of connections through which diffusion processes unfold. Third, once spatial 

interdependence is detected, there are different plausible underlying mechanisms that 

would explain such interdependence, such as spill-over, mimicry or learning.2 This 

article cannot comprehensively discuss all three issues, and only focuses on first two. 

It begins discussing what spatial data is and the broad notion of proximity, which is 

                                                 
2 We will not cover the specific mechanisms of diffusion, but for an example of learning leading to spatial 

autocorrelation see Di Salvatore (2018). 
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used to define connections among units (i.e., the spatial weights matrix). We then 

discuss spatial autocorrelation and the distinction between clustering and 

interdependence. We present a step-wise strategy based on commonly used statistical 

tests (and software)3 to distinguish between the two different data generating 

processes. Finally, we present the main modelling strategies in presence of spatial 

interdependence.  Overall this article should be understood as a teaser  more than an 

introduction (Darmofal 2015; Ward and Gleditsch 2018).4 It puts forward a way to 

think about spatial interdependence as a norm rather than an exception. This does not 

mean all our models should also be spatial; on the contrary, it invites a more thorough 

reflection about the theoretical needs behind spatial models that presume a non-trivial 

knowledge of the data generating process. In its attempt to provide an overview of 

types of spatial data, exploratory spatial analysis and some spatial models, this article 

- in a special issue on methods in Political science- differs from other excellent work 

on space in social sciences5 . This article should be understood as a practical guide for 

political scientists who want to get a sense of where to get started with spatial data, 

which is the frontier of spatial analysis and the methodological opportunities that it 

can offer. Hence, this is a short introduction for non (yet) expert in spatial analysis 

and, we hope, it will provide a steppingstone for future researches based on spatial 

analysis.  

 

2. What are the core elements for spatial analysis?  

Political scientists work with two main data structure, namely cross-sectional and 

time-series cross-sectional observational data. Hence, our datasets often focus on 

several units of observation (e.g., countries), which sometimes we can observe at time 

intervals (e.g., yearly).  In most introductory courses to quantitative methods, dealing 

with temporal dependencies (i.e., serial autocorrelation) is a standard learning 

                                                 
3 We will refer to ArcGIS, R, and Stata in this article. ArcGIS is a good choice for processing, creating, and 

mapping spatial data; Stata also allows some simple mapping, but is preferred for spatial statistical analysis. R 

allows users to perform both data management and data analysis tasks.  
4 Maps, like all other types of data visualization, can be misleading or simply inefficient and uninformative. For 

a recent guidance on visualization principles and general guidelines (in R), see for example Healy (2018). 
5 See for e.g. Gleditsch and Weidmann (2012) and Harbers and Ingram (2019). 
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objective. However, rarely the relational nature of the observations across space is 

addressed, possibly with the exception of considering each unit within a larger spatial 

unit (e.g., province, regions, continents). In other words, at best, spatial relations and 

interdependence are model as nuisance and left to corrections of the standard errors 

(Franzese and Hays 2008).  In order to start approaching the possible spatial 

interdependence in our data, we first need to present the building blocks of spatial 

data and spatial relationships: first, we discuss different spatial data formats, and 

second, we explain how to define and declare the spatial interdependence between 

observations using a so-called spatial matrix (also referred to as W matrix).  

 

Spatial data comes in two main formats: vector and raster data. The key difference 

between vector and raster data is that the former is used for discrete representations 

of spatial data (e.g., population in a country), while the latter is used for continuous 

representations (e.g., terrain elevation or surface temperature). Vector data includes 

three types of features: points, lines, or polygons. These features are part of so-called 

shapefile. Notice that a shapefile can only contain one of these three types of feature 

at a time. While the unit of a vector can be a point, a polygon or a line, in raster data a 

unit is represented by pixels. As we will discuss later, neither vector features or raster 

pixels are necessary the observational units of our analysis, but it is necessary to know 

their existence and differences in order to link this spatial data to our observational 

unit.  

 

In general, event data usually come as point shapefiles, while information on 

administrative units (e.g., the population of a district or the GDP of a country) are 

available as polygon shapefiles. Starting from vectors, points are the most basic form 

of spatial data, and often these types of data are those we tend to deal the most. Points 

are defined by pairs of coordinates, x and y, and can represent events (e.g., protests, 

conflict events), buildings (e.g., military barracks, pooling stations), individuals (e.g., 

respondents in a survey), towns or any other discrete object defined in space. To 

provide a more concreate example, if you want to study the local onset of conflict and 

the presence of natural resources such as diamonds, you will need data points on 
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where the conflicts are (Eck 2012) but also the location of diamonds’ mines (Gilmore 

et al. 2005). Hence these data will come with data points and relative coordinates but 

also with information, for instance, on the intensity of the conflict (e.g., number of 

killed soldiers) or types of diamonds in that specific location. Notice that also a 

temporal information is often attached to spatial data point, especially when we deal 

with data events (Ruggeri, Gizelis, and Dorussen 2011). Important to note here is that 

spatial points are often available as list of coordinates (i.e., in Excel formats rather than 

shapefiles), that can be easily imported in statistical software and transformed into 

actual spatial data.6 

Lines and polygons can be thought of as sequences of connected points, where 

the first point is the same as the last for the polygons, whereas lines are open polygons 

where the sequence of points does not result in a closed shape with a defined area. 

Being based on points, lines and polygons also are ultimately based on groups of 

coordinates. Lines may represent roads (Zhukov 2012), railroads (Ferwerda and 

Miller 2014; Kocher and Monteiro 2016), rivers (Toset, Gleditsch, and Hegre 2000) or 

other physical barriers (e.g., checkpoints). Line data will be useful to provide, for 

instance, information on infrastructures or demarcations among our analytical units. 

Polygons are a widely used spatial feature as well. Countries in the world can be 

represented spatially as polygon or, geographic space can be represented with fixed 

polygon units. For instance, the PRIO-grid project (Tollefsen, Strand, and Buhaug 

2012) provides a standardized spatial grid structure with global coverage at a 

resolution of 0.5 x 0.5 decimal degrees (approximately 50x50 km at the equator).  

Finally, the raster data represent continuous surfaces, such as forests or 

mountains. Raster data are created dividing an entire space into equal-sized cells, 

                                                 
6 One fundamental point to make in this regard is that geographical coordinates and projected coordinates are 

two different things. In the simplest terms, one’s position on a 3D model of the Earth (e.g., a globe) is a 

geographical coordinate and it usually comes in decimal degrees; one’s position on a 2D model of the Earth (e.g. 

a map) is a projected coordinate and it usually comes in linear units (e.g. feet or kilometers). There are many 

geographic coordinate systems and many projected coordinate systems. There is not direct conversion from 

geographical to projected coordinate systems as the move from the 3D to the 2D model of the Earth can be 

achieved in different ways. It is of utmost importance that researchers make sure that when combining different 

spatial data these have the same coordinate system, be it geographic or projected. We recommend researchers 

interested in spatial data to familiarize with the basics of Geographic Information System (GIS). This is essential 

for those who aim to work with spatial data. For beginners, we strongly recommend Gleditsch and Weidmann 

(2012).  
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often represented by pixels, and the value of the variable of interest is measured for 

each of these cells. An increasingly popular raster data among political scientist is 

nightlight emissions, gathered via satellite imagery and used as a proxy to measure 

state reach or local-level economic activity (Harbers 2015; Weidmann and Schutte 

2017). Interestingly, it is possible to transform digital images into raster data. Software 

such as ArcGIS allows to import images and georeference them by assigning it 

geographical information (i.e., linking points in the image to their actual position on 

the globe). This function is particularly useful to extract information from historical 

maps that are usually not already available as spatial data formats.7 

 

To clarify an issue that often arises among those who are in their first steps of spatial 

analysis, namely the fact that spatial data points are rarely the unit of observation of 

our dataset. Similarly, lines and raster data are spatial data but are rarely our unit of 

analysis.  Indeed,  among geographers the data points analysis is common (Bivand et 

al. 2008), but political scientists more often merge information of the data points into 

their analytical units (e.g. provinces, countries) spatially. For example, it is possible to 

assign the characteristics of a data point (e.g., a conflict event) to a country in the world 

if the point is spatially contained in the polygon defining the country.8 This operation 

is called spatial merge (or also spatial join). The issue about the match between 

analytical versus geographic units would deserve a longer discussion (see for example 

Arjona 2019; Harbers and Ingram 2017), and we cannot fully address it in this article. 

Ultimately, the answer, is not methodological but theoretical. In most cases, 

researchers need to combine different types of data and transform it to make it 

consistent with the most theoretically meaningful unit of analysis. For example, 

                                                 
7 Notice that georeferencing and geocoding are different tasks. Geocoding involves assigning coordinates (e.g. 

latitude and longitude) to a location (e.g. a village) or events; Costalli and Ruggeri (2015b) provide an example 

of events’ geocoding about violent clashes between partisans and Nazi forces during the Italian civil war. 

Georeferencing involves assigning coordinate systems (e.g. WGS1984) to an image, raster or vector. Event data 

are usually geocoded; Di Salvatore (2016) provides an example of georeferencing of a census map. She uses 

digital maps of settlements in Bosnia-Herzegovina to extract information on the ethnic composition of villages 

where most violence occurred. 
8 It is also important the level of precision of the geocoded event data. If events are geocoded at the country level, 

this usually implies that countries centroids have been used to assign coordinates. This means such data should 

not be spatially joined to subnational units. Most geocoded data indicate the level of precision of the assigned 

coordinates. 
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Daxecker, Di Salvatore, and Ruggeri (2019) were interested in individuals’ perceptions 

of fraudulent elections; hence, they used respondents as unit of analysis that were 

spatially represented as data points within Nigerian states. Then, they linked state’s 

characteristics to each respondent spatially and calculated the distance from each 

individual to polling stations reporting electoral irregularities. In another study, 

Costalli and Ruggeri (2015) opted for geographically fixed units (e.g. grid cells) to 

study the effect of violence on voting preferences because administrative units 

changed over time and, more importantly, were possible endogenous to the previous 

regime and  conflict.  Exactly because grid-cells may be too arbitrary, the authors also 

evaluated the robustness of their findings using grid-cells with alternative sizes.9 

We now move on to the discussion of one of the most critical choices we make when 

we analyse spatial data: which units are close (or connected) to other units? 

 

3. How are things connected?  

Once our data contains spatial information, we can start thinking about how units in 

our data are connected with each other. The final output of this is a spatial connectivity 

matrix that usually is defined as a weight matrix W. The spatial weight matrix W is an 

NxN matrix representing the connections between all units in the data and is used for 

any type of spatial analysis, from exploratory analysis to statistical modelling and tests 

of spatial autocorrelation. Anselin et al. (2008, 627) define spatial autocorrelation as 

being present “whenever correlation across cross-sectional units is non-zero, and the 

pattern of non-zero correlations follows a certain spatial ordering”. Of course, the first 

intuition about the structure of the spatial connections in our data is geographic and 

physical space.  In fact, as the Tobler’s first law of geography suggests, “all places are 

related but nearby places are more related than distant places” (Tobler 1970, 236). 

However, we will discuss how cross-units connections can be defined in different 

ways and, moreover,  spatial linkages are not uniquely a geographic matter (Beck, 

Gleditsch, and Beardsley 2006). 

                                                 
9 In fact, related to this, another issue that is important to mention, but not fully discuss, is the “modifiable areal 

unit problem” (MAUP). It is a source of statistical bias that can radically affect the results of statistical hypothesis 

tests. It affects results when point-based measures of spatial phenomena are aggregated into districts and, 

therefore, also the size or type of spatial unit can affect the results (Fotheringham and Wong 1991). 
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Figure 1: Contiguities and Distances 

 

 

So, how do we define a unit’s neighbourhood? How many neighbours do we need to 

include, and should this be based on distance? Neighbourhoods can be defined in a 

number of ways, such as contiguity (i.e., units sharing a boundary), distance or on a 

certain number of closest units (k-nearest neighbours’ criteria). 

In Figure 1, we show different ways to represent proximity and, therefore, possible 

channels of spatial interdependence. Let’s suppose that we are analysing an area, and 

this is composed by 16 squares (they could be polygons of different shapes, of course). 

Each square can be defined by a combination of a letter and a number. Let’s focus on 

square {B; 2}. If we ask to which squares is {B; 2} connected to, our answer depends on 

how we defined proximity. Suppose we want to use the contiguity criteria. 

Contiguity-wise, we could think about first-order proximity, that is the eight squares 

immediately surrounding {B; 2} will be its neighbours.  This is usually defined as 

Queen-based contiguity, because in the game of chess the Queen can move in all 

direction. A rook or bishop-based contiguity criteria will identify only four 

neighbours, only those squares that share a full side. But we could also decide that we 
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need to account for second-order proximity as well. In other words, not just those 

squares directly at the borders, but also the immediate neighbours’ neighbours. In this 

case {B; 2} would be connected to all squares in Figure 1.   

Connectivity matrices’ elements are usually binary (two units are either connected or 

not). However, we can define the connectivity matrix based on distance rather than 

binary contiguity.  For instance, for {B; 2} the squares {D; 2} and {D; 4} if proximity was 

defined in term of first-order proximity are not connected, but if we consider second-

order they are equally connected to {B; 2}. However, if we were using as connectivity 

rule the distance from the centre of {B; 2} to the other squares, then {D; 2} would be 

closer than {D; 4}.  Distance-based connectives can be also transformed into binary 

values by defining a distance threshold (e.g., 100 km) beyond which units are not 

considered as neighbouring (Ward and Gleditsch 2018). 

 

Figure 2: Example of binary spatial matrix W. 
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As it is clear, defining a connectivity matrix is not a trivial task and it involves several 

operational decisions.10 Once we have decided what is our definition of proximity, 

how does a W matrix look like?  Figure 2 provides an example of a connectivity matrix 

based on our Figure 1. In this case, W is defined as a Queen-based first-order binary 

contiguity matrix.  As there are 16 units in the data, W is a 16x16 matrix based on the 

possible connection of the 16 units. Since it is binary and based on contiguity, if a 

square is connected to another - for instance {B;2} and {A;2} – the value is 1. Notice 

that the diagonal elements of W (from top right to bottom left) of the matrix is always 

a zero diagonal. This is because the spatial matrix excludes the connection of a unit 

with itself. On top of all the possible choices to define W, row-standardization should 

also be considered. A row-standardized W transforms the element in the matrix so 

that each row sums up to a 1 (this in not the case of our example in Figure 2). If a unit 

has two contiguous neighbours, a row-standardized matrix will assign 0.5 to each 

rather than 1. Intuitively, this may make sense if we believe all units in the 

neighbourhood j have the same influence over the unit i. However, it has been argued 

that this assumption may be contradicting most theories of spatial dependence: 

“unless homogenous exposure is theoretically warranted, W should not be row 

standardized. If researchers are uncertain, the assumption of homogenous exposure 

can be tested against the assumption of heterogeneous exposure” (Neumayer and 

Plümper 2016, 191). 

 

Moreover, as put by Beck and co-authors space is more than geography. If we believe 

that the outcomes in a certain unit are affected by outcomes in other units, those other 

units may be the geographic neighbours – or something else. Interconnected units 

may be units with dense trade relationships, with shared membership in regional 

organizations or even units with similar political institutions. Beck, Gleditsch, and 

Beardsley (2006) look into how trade interdependencies could define a W rather than 

a mere W based on geographic distance. Another example can be found in Böhmelt 

and co-authors (2017), where they show how leaders adjust their anti-coup polices 

                                                 
10 It is advisable to consider alternative connectivity matrices to ensure results are not based on arbitrary 

definitions of W. 
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based on what other countries with similar coup’s history have implemented, hence 

conceptualizing and operationalizing the W as shared history rather than shared 

geography. 

 

Concluding this section on the W matrix, we want to recall some central questions a 

researcher should consider when defining and creating a W: i. Is the main criterion to 

define the W merely geographic? Or another form of interdependence should be 

considered? ii.  Is the proximity defined on contiguity or distance? iii. What is the 

order of proximity? Should the neighbour’s neighbours be considered?  

Moreover,  Neumayer and Plümper (2016), in their article succinctly titled “W”, 

elaborate some further points that should be considered: first, W needs to capture the 

causal mechanism through which spatial dependence works. Hence, theory is the 

essence to define connectivity.  Second, W determines whether total exposure to spatial 

dependence is specified as homogeneous or not (thinking critically therefore about 

row-standardization). Third, researchers specify the dimensionality of spatial 

dependence, whether there is a unique causal channel or multiple ones, hence 

thinking whether there are different Ws at play. 

 

4. Do we need to model spatial feature?  
 

The growing availability of spatial data and increasing awareness of the risks that 

interdependence poses for statistical inferences, has pushed researchers to test and 

model spatial interdependence. In some cases, spatial interdependence is an empirical 

nuisance researcher want to account for or get rid of. For example, Griffith’s 

eigenvector spatial filtering (Griffith, 2003) can be used to remove the spatially 

interdependent component of a variable by splitting it into a spatial and a non-spatial 

component; the latter is filtered out of the original variable by regressing some linear 

combination of different connectivity matrices on the variable (Griffith 2003; Thayn 

2017). However, in many other cases, we do want to model spatial interdependence: 

we do want to see whether it explains variation in the outcome of interest and how. 

Any theoretical account that involves interdependent actors is also interested in 

empirically modelling and estimating that interdependence. It can be the case, 
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however, that the spatial dynamics of some social phenomenon are negligible and 

ultimately do not require sophisticated modelling nor filtering. How do we know 

whether we need to model spatial interdependence? What if our data present some 

hotspot (i.e., localized clustering) but overall do not exhibit spatial interdependence? 

In other words, how do we know that spatial clustering is due to interdependence 

rather than exposure to common shocks? 

 

In this section, we illustrate a stepwise approach to spatial analysis. We first highlight 

the value of mapping spatial data, and then introduce the two main statistics for global 

and local for spatial autocorrelation, i.e., Moran’s I and Geary’s G. While these tests 

can tell whether a variable is spatially autocorrelated, they do not imply we should 

model that interdependence. To this aim, we show two ways of detecting 

interdependence, namely checking for autocorrelation in the residual of a simple OLS 

and the use of the LaGrange Multiplier tests.   

 

4.1 Detecting Spatial Autocorrelation: Map it and test it 

In their seminal article on “Contagion or Confusion?”, Buhaug and Gledtisch (2008) 

start from a very simple observation. If you map armed conflict around the world 

(they focus on the years 2001-2005), you will see how violence clusters in space. 

Countries experiencing armed conflict are often surrounded by other countries having 

the same experience. It suffices to think about countries in the Sahel region and the 

Middle East. This pattern of similarity among neighbouring countries would suggest 

that conflict spreads across national boundaries; in other words, violence is 

contagious. Buhaug and Gleditsch, however, also show a map of GDP per capita in 

2000, which seems to describe a very similar pattern in the same regions. Now, the 

association between civil war onset and poverty is probably one of the most robust 

findings of the civil war literature, and the two maps certainly corroborate this 

finding. This preliminary mapping exercise is very helpful, of course, as most of us 

unable to mentally map data and identify clusters of values. Mapping gives us the 

first quick glance into the spatial structure of the data we use as we can see 

immediately the geographic variation. Notably, mapping data to detect clusters 
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implies that we expect the spatial structure to be geographic. This is often the most 

intuitive structure that country-level data exhibit, though as we have discussed, it is 

by no means the only one. An alternative mapping of a non-geographical structure 

would require a network, where connections can be defined in different ways. For 

simplicity, we will assume we are sure that the only relevant spatial connection in our 

data is geographic. 

 

The maps presented by Buhaug and Gleditsch raise two important questions. The first 

one concerns our own ability to spot clusters. It is clear that some countries with armed 

conflict are close to each other in some regions, but those this mean that the data is 

globally spatially autocorrelated?  Second, if conflict and GDP both clusters in the same 

regions and GDP is a plausible cause of armed conflict, is GDP explaining the spatial 

autocorrelation rather than conflict spreading across countries? Put differently, is 𝑦𝑖 

(i.e. conflict in a country 𝑖) caused by 𝑦𝑗 (i.e. conflict in neighbouring countries) or by 

𝑥𝑖 (i.e. GDP in country 𝑖, independent of 𝑗) which just happen to cluster in space? 

Notice that in the first instance, we have spatial interdependence, thus an issue of 

endogeneity; in the second instance, the spatial autocorrelation does not introduce 

interdependence in the observations and is usually solved by controlling for 𝑥𝑖. But 

we now begin addressing the first question, namely, how to test for spatial 

autocorrelation.  

 

Tests of spatial autocorrelation aim at detecting non-randomness in the spatial 

distribution of a variable. Data may exhibit positive or negative spatial 

autocorrelation. Positive spatial autocorrelation implies that similar values cluster in 

space. For example, rich countries are close to rich countries, while poor countries are 

close to poor countries. Notice that positive autocorrelation is only concerned with the 

similarity of neighbouring units and can be driven by either high-high or low-low 

clustering. Negative spatial autocorrelation, on the other hand, describes a pattern in 

the data where nearby values are systematically dissimilar, such as a democratic 

country surrounded by mostly autocratic countries. In this case, the pattern is of high-

low or low-high. While we can spot these patterns by looking at maps, we are bad at 
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assessing how serious autocorrelation is; and sometimes, we might simply not be able 

to spot any autocorrelation even when it is present. There are two types of indicators 

that can help us to identify statistically significant spatial autocorrelation, namely 

global indicators and local indicators. The main difference between these two is that 

global indicators provide one single statistics for spatial autocorrelation across 

observations; local indicators will produce one score for each observation, allowing 

us to identify exactly where the spatial clustering occurs. 

 

The most used global test for spatial autocorrelation is Moran’s 𝐼. Intuitively, Moran’s 

𝐼 calculates the correlation between the values of a variable in unit 𝑖 and the values of 

the variable in all other locations. Notice that, however, Moran’s 𝐼 is not exactly a 

correlation coefficient, as we will see. The formula of Moran’s 𝐼 is: 

 

𝐼 =  
𝑁

𝑆0
 
∑ ∑ 𝑤𝑖,𝑗

𝑁
𝑗=1

𝑁
𝑖=1   (𝑦𝑖 − 𝑌̅)(𝑦𝑗 − 𝑌̅)

∑ (𝑦𝑖 − 𝑌̅)2𝑁
𝑖=1  

 

The numerator is the covariance between values in 𝑦𝑖 and 𝑦𝑗. Notice that 𝑦𝑗 is the 

“neighborhood” of 𝑦𝑖 as defined by the spatial matrix 𝑤𝑖,𝑗. 𝑆0 is the sum of all 𝑤𝑖,𝑗. It 

is sometimes erroneously believed that Moran’s 𝐼 ranges from -1 to 1, as other 

correlation coefficients. In fact, this is a key difference as 𝐼 does not equal 0 under the 

null hypothesis. The null hypothesis of the Moran’s 𝐼 test is that in absence of spatial 

autocorrelation the expected value  𝐼0 =
−1

(𝑁−1)
. If the observed value of 𝐼 > 𝐼0, the data 

exhibit positive spatial autocorrelation; on the other hand, an observed  𝐼 < 𝐼0 

indicates negative spatial autocorrelation. Statistical software (R and Stata) report the 

expected and observed value 𝐼, the correspondent z-score and its p-value that allows 

us to reject (or not) the null hypothesis of random spatial distribution. There are two 

important points to keep in mind when using Moran’s test. First, the test will report 

different results depending on how we define the spatial matrix 𝑤𝑖𝑗; as 𝑤𝑖𝑗 changes, 

𝑦𝑖 will be compared to different 𝑦𝑗. It is useful to explore how Moran’s 𝐼 changes as 

the number of spatial lags or distance vary. Correlograms are helpful for this purpose 

as they plot the estimated Moran’s score as a function of distance or lags on the x-axis.  
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Second, the Moran’s test work under the assumption that the variable of interest is 

normally distributed. This assumption usually holds when continuous variables are 

used. When dealing with count variables, it is often possible to transform them in 

ratios, for example by dividing the count by population or area. In turn, such 

transformed variable can be used for the Moran’s test. When the variable under 

scrutiny is not continuous, however, spatial autocorrelation can be tested using join 

counts. In presence of a binary variable 0/1, 𝑦𝑖 and 𝑦𝑗 can either take values (0,0), (1,1) 

or (0,1). Clustering of similar values (0,0 or 1,1) would indicate positive 

autocorrelation, while a higher number if dissimilar combinations (0,1) would indicate 

negative autocorrelation.  

 

Suppose that we have performed a Moran’s test for global spatial autocorrelation and 

have failed to reject the null hypothesis, i.e., there is no evidence of global spatial 

interdependence in our variable of interest. Does this mean that we can be confident 

that there is no spatial interdependence in our data? It is possible, in fact, that the 

Moran’s test does not report a significant test statistic even if some local clustering 

exists in the data. This is because such clustering may be not significant enough to be 

picked up by the global statistics. As pointed out by Anselin “it is quite possible that 

the local pattern is an aberration that the global indicator would not pick up, or it may 

be that a few local patterns run in the opposite direction of the global spatial trend” 

(Anselin 1995, 97). Local indexes of spatial autocorrelations (LISAs) can be used to 

detect such clusters of similar or dissimilar values. Notice that LISAs are worth 

exploring not only when the Moran’s global statistics is not significant; even when we 

do detect global autocorrelation, LISAs help detect exactly where the correlation may 

be occurring among our units.  

As with global statistics, there are several available tests. Here, we will keep our focus 

on Moran’s statistics and illustrate the local version of Moran’s 𝐼. The formula for the 

Local Moran’s 𝐼 can be written as: 

𝐼𝑖 =   
 (𝑦𝑖 − 𝑌̅)  ∑ 𝑤𝑖,𝑗

𝑁
𝑗=1 (𝑦𝑗 − 𝑌̅)

1
𝑁

∑ (𝑦𝑖 − 𝑌̅)
2𝑁

𝑖=1  
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Local Moran’s statistics is estimated for each unit  𝑖, in contrast with the global 

statistics that returns one single statistics for the entire sample. Thus, for each unit we 

can obtain the observed local statistics of spatial autocorrelation, its expected value, 

its z-score and its p-value. In fact, it is also possible to map the z-scores for each unit 

to visualize the location of clusters and hotspot that are statistically significant. The 

interpretation is not dissimilar to the global test, so that an observed statistic greater 

than the expected statistic in a unit is suggestive of local clustering (i.e., the unit is 

surrounded by similar units), and vice versa for a smaller observed statistic. The 

Moran’s scatterplot is an extremely useful visualization tool summarizing both global 

and local Moran’s tests. Figure 3 shows the Moran’s scatterplot using data on poverty 

rates in Ohio’s counties in 2015. The scatterplot visualizes the poverty rate in each 

county against poverty rate in the county’s neighbourhood. In the first and third 

quadrants (high-high and low-low), there are counties that are surrounded by 

counties with similar levels of poverty rates; in quadrants two and four (low-high and 

high-low), on the other hand, there are counties that are dissimilar from their 

neighbours. Most observations fall in quadrants one and three, thus suggesting 

overall a positive spatial autocorrelation summarizes by the positive slope of the 

linear fit. In fact, the slope of the linear trend corresponds to the global Moran’s I with 

row-standardized spatial matrix. 

 

Figure 3. Moran’s Scatterplot on poverty rate (source: (Wu and Kemp 2019)) 
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Importantly, neither global indicators or LISAs can ascertain whether the spatial 

association is due to clustering of other factors associated with 𝑦𝑖 or to the 

interdependence between 𝑦𝑖 and 𝑦𝑗. Once we find evidence for spatial autocorrelation, 

we can use two main strategies to assess whether such autocorrelation is likely 

interdependence that would make an OLS estimate biased and inconsistent. A first 

simple check is to run an OLS with all relevant control variables and then test for 

spatial autocorrelation in the residuals using global and local tests. If the spatial 

clustering in the outcome is the result of covariates’ clustering, likely controlling for 

them should remove the spatial pattern and we should see not spatial autocorrelation 

in the residuals. The LaGrange Multiplier test (LM test) is an alternative approach that 

compares our OLS with two other models, namely the spatial lag and the spatial error 

models. Rejecting the null hypothesis of the LM test means that the alternative model 

(spatial lag or spatial error) is preferred to the non-spatial OLS. The LM test compares 

the OLS to each alternative spatial specification but does not allow to pick between 

the two when both have a significant test statistic. When this happens, one can 

estimate a Robust LM test to identify the most appropriate spatial model.11 

 
5. How to model spatial interdependence? 

Suppose that you have used the tests for spatial autocorrelation and found that there 

seem to be local and/or global autocorrelation in your data, and the LaGrange 

Multiplier tests also suggests this is due to spatial interdependence. More specifically, 

the test would likely indicate that a spatial lag model or a spatial error models are 

superior to a simple OLS model. What is the difference between these two 

alternatives? Which other spatial model can be used to estimate interdependence 

among observation? 

 

Elhorst (2014) outlines the relationship between different spatial models (and non-

spatial OLS) starting from what he calls the General Nesting Spatial model (GNS). The 

                                                 
11 See (Darmofal 2006, chap. 6) discussion of the differences between robust and non-robust LM tests and the 

decision rule proposed by Anselin (2005). 
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GNS includes, as the OLS, a parameter 𝜷 that is the effect of 𝑿 on 𝒀 and a constant 

term 𝜶, but also: 

- the spatial autoregressive coefficient 𝜹 that is the effect of 𝒀 in neighbouring 

units (defined by the spatial matrix 𝑾). This parameter is often also indicated 

as 𝝆. 

- the spatial spillover parameter 𝜽 that is the effect of 𝑿  in neighbouring units 

(defined by the spatial matrix 𝑾) 

- the spatial autocorrelation coefficient 𝝀 in the error term 𝒖  

 

Each of these parameters has a very clear practical interpretation. In the first case, we 

are assuming that, for example, when estimating the likelihood of a civil war in a 

country, we need to account for civil war onset in neighbouring units as well as 

conflict may be “contagious”. In the second case, we are assuming that, for example, 

regime types (democracies vs autocracies) may influence the likelihood of civil wars, 

but it is likely that regime types cluster in space. Hence, we may want to control not 

only for the type of regime in each country, but also in its neighbourhood. Notice that 

in both examples the spatial clustering we observe is due to observable factors and their 

spatial structure (either in the outcome or in the covariates) (Cook, Hays, and Franzese 

2015). In the third case, the clustering is due to unobservable factors that are spatially 

interdependent. 

 

Figure 4. Spatial Models classification presented by (Elhorst 2014) 
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There are two additional important things to note here. First, the spatial 

autoregressive coefficient is what is commonly (though sometimes inaccurately) 

referred to as a spatial lag. This should not be confused with the spatial 

autocorrelation coefficient, which is also sometimes referred to the spatial error term. 

The former is autoregressive because values of a variable in unit i depends on values 

of the same variable on units j (and vice versa); the latter concerns autocorrelation in 

the error terms for observations linked in the spatial matrix 𝑾, similarly to what serial 

autocorrelation is in time-series models. Finally, notice that parameters 𝜷 and 𝜽 are 

(assumed to be) both exogenous. We will see that this implies less estimation problems 

for models where 𝜹 = 0, as reverberation effects due to the global spillover need to be 

accounted for. In the GSN model, all parameters are non-zero; Elhorst classification is 

very useful as it shows how the combination of each coefficient results in a specific 

spatial model. It follows that when parameters 𝜹, 𝜽, and 𝝀 are zero, our model is just 

an OLS. 

 

In the Spatial Autoregressive Combined model (SAC), both the outcome variable 𝒀 

and the error term 𝒖 exhibit spatial interdependence. The Spatial Lag model (or 

Spatial Autoregressive, SAR) is a nested version of the SAC model where the spatial 

autocorrelation parameter 𝝀 is zero. In the Spatial Durbin model (SD), both 𝒀 and 𝑿 

are spatially correlated and the model includes the terms 𝜽𝑾𝑿 for the spillover effect 

and 𝜹𝑾𝒀 for the spatial intercedence. When spatial autocorrelation is only in the 

vector of 𝑿, the model becomes a Spatial Lag of X model (SLX). The Spatial Durbin 

Error model (SDEM), intuitively, includes again the spatial lag of 𝑿 but instead of the 

spatial lag of 𝒀, it includes the spatial autocorrelation in the error term. An SDEM 

without the spatial lag of 𝑿 is a Spatial Error model (SEM). 

  

As mentioned, the LaGrange Multiplier test, particularly its robust version, helps us 

to identify which spatial model we should use in presence of spatial interdependence. 

But the spatial lag and the spatial error model are two out of the six possible spatial 

models illustrated above and in Elhorst’s classification. As Cook and co-authors put 

it (2015, 10) put it, these models assume “that the spatial heterogeneity in the outcomes 
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arises from a single source, constraining the other possibilities to zero”. Ideally, theory 

should help researchers identifying the type of model that more closely allows to test 

an expectation. In their review of the literature, Wimpy and co-authors (2020) claim 

that most researchers have focused on SAR models, even if this particular model does 

not match the theoretical expectations regarding the existing spatial relationships 

among the units. Cook and co-authors (2015) provide a useful guiding principle 

according to which researchers should first of all identify the sources of spatial 

clustering as observable and unobservable. Moreover, they add: 

 

“where researchers are principally interested in obtaining unbiased estimates of the 

non-spatial parameters, the spatial Durbin model should be preferred. This should 

provide the most insurance against possible omitted variable bias by explicitly 

introducing both forms of observable spillovers into the systematic component of the 

model. However, where researchers are explicitly interested evaluating spatial 

theories, we believe one of the other two-source models (SAC or SDEM) are best. Each 

frees one parameter to capture spillovers in observables (either 𝛿 or 𝜃) while 

accounting for spatial effects in the unobservables (𝜆).” (Cook, Hays, and Franzese 

2015, 16) 

 

At this point, one might wonder why we should care about spatial interdependence 

in a statistical model, and how ignoring it affects our inferences. Suppose we want to 

establish the relationship between civil wars and regime type, more specifically 

whether autocratic regimes are more likely to experience civil unrest. We can think of 

this as a simple OLS model with no spatial component in it. In this non-spatial OLS 

we are assuming that 𝑦𝑖 is independent of 𝑦𝑗 (𝑖  𝑗). However, this assumption does 

not hold if the probability of conflict in a country 𝑖 is affected by the probability that 

conflict also erupts in country 𝑗. Ignoring this spatial interdependence when it exists 

means the OLS will exhibit omitted variable bias, which means it will produce 

inefficient and biased coefficients (Franzese and Hays 2008). More specifically, as 

reported by Franzese and Hays, the OLS will overestimate the impact of the non-

spatial covariates. We could address this omitted variable problem by including the 

spatial lag of the dependent variable in the right-hand side of the equation as in a 
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spatial OLS. This, however, introduces an endogeneity problem due to the 

simultaneity between 𝑦𝑖 and 𝑦𝑗, which will be affecting each other at the same time 

and thus make the estimates inconsistent. In this case, the spatial lag is likely to be an 

overestimation of the actual spatial interdependence, and coefficient of non-spatial 

covariates will likely exhibit a downward bias12. At higher levels of spatial 

interdependence, we need to model spatial relationships more accurately than the 

OLS can do. Franzese and Hays here suggest two options. First, one could estimate a 

spatial two-stage least square where the spatial lag of other non-spatial covariates 

(𝑾𝑿) is used as instrument for the spatial lag of the outcome variable 𝑾𝒀. Second, 

one could estimate a spatial lag model (or SAR model) with a maximum likelihood 

estimator. Franzese and Hays (2008) find the latter to weakly dominate the former. 13 

In the remaining of this section, we discuss the challenges in estimating effects from 

spatial models. More specifically, we first discuss the (relatively) simpler SEM, SDEM 

and SLX models and then move to spatial models with an autoregressive component 

(SAR, SDM and SAC models). The challenges stemming from the latter should push 

researchers to think about the nature of the expected spatial effects and the extent to 

which models with more assumptions and less straightforward interpretations (SAR, 

SDM and SAC) are necessary. 

 

5.1 SEM, SDEM and SLX models 

As probably the second most popular spatial model, we begin presenting the Spatial 

Error Model (SEM). A SEM can be written as: 

𝑦 = 𝑿𝛽 +  𝑢   

where  𝑢 =  𝜆𝑾𝑢 +  𝜀 

So, the SEM can also be re-written as: 

𝑦 = 𝑿𝛽 +  𝜆𝑾𝑢 +  𝜀 

 

                                                 
12 It should be noted, though, that Franzese and Hays conclude that the simultaneity bias is less 
concerning than the omitted variable bias when the magnitude of the spatial interdependence is below 
0.3 (Franzese and Hays 2008). 
13 Stata 16 now allows to estimate spatial models using both the instrumental variable approach and the maximum 

likelihood estimator. The R package spdep includes the lagsarlm function that uses the maximum likelihood 

approach. 
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As mentioned, the SEM allows to estimate the spatial dependence of the error for 

observations that are connected via the W matrix. Ward and Gleditsch (2018) point 

out that the presence of spatial autocorrelation in the disturbances may well be the 

result of some mispecifications in the model, such as the omission of variable that 

clusters in space. One can also imagine the case of model that incorporate a spatial lag, 

but the connectivity matrix is defined in a way that does not reflect the actual spatial 

connections among units. This type of misspecification may result in the LaGrange 

Multiplier test to support the use of a SEM. 

Compared to the models we discuss in the next section, presenting the effects in an 

SEM model is straightforward because there is no feedback effect to account for. If we 

are interested in the impact of a covariate on the outcome, we can simply interpret the 

coefficient from the regression table and ignore the parameter of the spatial 

autocorrelation 𝜆. The effect of a covariate on an outcome does not travel in space 

because the only spatial component of the equation is in the error term. Hence, the 

interpretation of coefficient in a SEM model is ultimately the same as in a non-spatial 

model. The SDEM has the same parameters of the SEM, plus the spatial lag of 

covariates (𝜽𝑾𝑿). This additional term captures the so-called local spillovers, namely 

the effect of covariates in neighbouring units j on a specific unit i. This effect, however, 

does not further spillover to other neighbouring units in a cascade effect; it stops at 

unit i. What this imply is that the spatial lag of covariates does not introduce feedback 

effects that, as we will see, are responsible for the global spillovers in the SAR, SAC and 

SDM models and require spatial econometric techniques. For the same reasons, the 

estimates of a SLX model do not present particular challenges and coefficients can be 

interpreted as in classic linear models. 

 

5.2 The problem of Global Spillovers: Spatial Effects in SAR, SAC and SDM 

We begin this discussion with the SAR model, also known as the spatial lag model. 

This is one of the most used spatial models among those available to researchers. As 

indicated in Figure 4, the SAR model can be written as 

𝑦 = 𝑿𝛽 +  𝛿𝑾𝑦 +  𝜀 
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In turn, this can be rewritten as: 

(𝑰 −  𝛿𝑾)𝑦 = 𝑿𝛽 +  𝜀 

 

This means that the expected value of 𝑦 is 

𝐸(𝑦) = (𝑰 −  𝛿𝑾)−1 𝑿𝛽 

 

In absence of spatial interdependence, the expected outcome would be predicted by 

the exogenous covariates and their estimated coefficient; in presence of spatial 

interdependence, however, the term  𝑿𝛽 is multiplied by (𝑰 −  𝛿𝑾)−1. Indeed, the term 

(𝑰 −  𝛿𝑾)−1 is also known as the spatial multiplier and it “tells us how much of the 

change in 𝑥𝑖 will spill over onto other states j and in turn affect 𝑦𝑖 through the impact 

of 𝑦 in the spatial lag” (Ward and Gleditsch 2018, 59). In other words, this implies that 

a change in a covariate in one single observation will affect the outcome in other units, 

depending on the degree of connectivity defined by W. If the change occurs in a unit 

that has no neighbour (so-called islands), there is no spill over. Conversely, a small 

change in a very connected unit is likely to reverberated throughout the cluster of 

neighbours. Because of this reverberation, the spatial effects of the SAR model are also 

called global spillovers because any change in any unit will affect other units. It follows 

that the impact of the change will depend on the specific unit where the change itself 

takes place. Now, researchers can estimate three main effects of interests: 

 

1. Direct effect (∆𝑿)𝛽:  that is the effect of a change in 𝑥𝑖 on 𝑦𝑖. Notice the average 

direct effect concerns changes occurring in the same unit i, so this is intuitively 

similar to the standard interpretation of 𝛽. However, notice that in a spatial 

model the effect of 𝑥𝑖 on 𝑦𝑖 and then on 𝑦𝑗 which feedbacks to 𝑦𝑖 is accounted 

for. 

2. Indirect effect of 𝑥𝑗 on 𝑦𝑖  [(𝑰 −  𝛿𝑾)−1 − 𝑰] (∆𝑿)𝛽, or in other words the average 

impact of a change of a covariate in the neighbourhood j on the outcome in i. 

3. Total effect (𝑰 −  𝛿𝑾)−1 (∆𝑿)𝛽, which is the sum of the average direct and 

indirect effects. 
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Statistical software nowadays allows researchers to easily estimate these effects, but it 

is worth reminding that these spatial effects are not straightforward to interpret from 

standard regression tables. Also, differently from effects in non-spatial models, spatial 

effects are different for each unit of the sample, simply because the composition of the 

W matrix changes for each unit (i.e., each unit has different neighbours). This is the 

reason why LeSage and Pace suggest to report the three spatial effects above as 

averages (LeSage and Pace 2014), as some statistical software already do. It is also 

possible, however, to explore how a change in one specific unit (which may be of 

particular interest for theoretical reason) affects other units. Or, to rank different units 

in terms of their impact on another specific unit of interest. For interested readers, 

Ward and Gleditsch (2018) illustrate a step-by-step procedure to present these effects 

in R. 

 

Now that we have discussed the problem of how to interpret and report direct and 

indirect effects in SAR due to the spatial multiplier, one can easily understand how 

the same issues apply to the case of the SAC and the SDM. Both models include a 

spatial lag of the dependent variable, hence suggesting that outcomes across the 

sample will affect each other, and so will changes in their covariates. The direct and 

indirect effects for the SAC and SAR have the same interpretation, as the inclusion of 

the spatial interdependence in the disturbances of the SAC (𝜆𝑾𝑢 ) does not introduce 

additional feedbacks to account for in the model as we also discussed in the previous 

section. It is slightly different for the SDM case, which includes the spatial lag of the 

dependent variable y and the spatial lag of x (𝜃𝑾𝑋) at the same time. This inclusion 

means that there are not only global spillovers due to the spatially lagged outcome, 

but also local spillovers. Again, while global spillovers affect all units’ outcomes via 

other units, local spillovers only affect the immediate neighbours of the unit where 

the change occurs.  This means that the total average effect (see above) in the SDM 

will need to include another term, that is 𝜃𝑾(∆𝑿). 

 

 
6. Conclusions 
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In this article we have introduced some intuitions on spatial interdependence and how 

political scientists could start thinking about modelling it rather than filtering it out 

and treating as a residuals’ nuisance.  

 

Concluding and going back to our warning about the theoretical need for some spatial 

models, the initial fascination with sophisticated spatial econometrics seem to have 

been replaced by more careful evaluation of the appropriateness of such models. 

Elhorst and Vega (2013) suggests a “revision” in the way researchers select statistical 

models that does not uniquely rely on statistical tests (Moran’s, LaGrange, etc) but 

more on theory and context. One interesting conclusion they draw is that “global 

spillover specifications, unless theoretically motivated, are difficult to justify or have 

been overused in applied studies” (Elhorst & Vega 2013, p.11). In a more recent study, 

Wimpy et al (2020) review applied research in political science that has used spatial 

models has over-relied on the SAR when, in fact, this was not the most accurate spatial 

model for the given theoretical account. In line with Elhorst and Vega’s call to 

reconsider the SLX model as a starting point, Wimpy et al show “even if the true GDP 

is SAR, the SLX performs quite well at detecting spatial relationships; […] the same 

cannot be said of the SAE when the true DGP is the SLX” (Wimpy et al 2020, p.33). 

 

As we have stressed earlier this brief article is just a teaser, we strongly advise to read 

the books by Darmofal (2015) and  Ward and Gleditsch (2018) because written 

specifically for political scientists.  Most likely the major and most demanding part of 

the learning curve will be on dealing with spatial data, their spatial merging and 

defining the W matrixes. Of course, also learning how to run the apt tests and 

estimators will be a central component of the learning curve, but we believe it will be 

quite rewarding.   
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