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Abstract

Wake effects impose significant aerodynamic interactions among wind turbines. To
improve the wind farm operating performance, practical wind farm online control con-
sidering wake effects becomes very important. To achieve online optimal wind farm con-
trol while responding to grid demands, this paper proposes a novel optimal wind farm
supervisory control (SC) model and its explicit solutions. From the controller modelling
perspective, the two major wind farm operating modes, the maximum power point track-
ing mode and the set-point tracking mode, are first analysed and unified in one optimi-
sation model while considering wake effects. In this way, wind farm power production
and rotor kinetic energy reserve can be simultaneously considered to conveniently modify
the operation mode in response to different grid demands. Aside from controller mod-
elling, the collocation method is first introduced to address the online application problem
of such wake-effect aware optimal WF control. Although a few optimisation algorithms
have been proposed to find the optimum offline, online optimal control is still challenging
because of the computational complexity brought by wake model non-linearity and non-
convexity. The proposed collocation method explicitly approximates the optimal solutions
to the proposed supervisory control model, through which only a direct algebraic opera-
tion is required for online optimal control instead of repeated optimisations. Case studies
are carried out on different wind farms under various wind conditions, showing that the
wind farm power production potential and releasable power reserve are improved com-
pared to traditional greedy control in both modes. The accuracy of the collocation method
is verified. A detailed analysis of the wind farm production capacity under different wind
speeds and directions is also provided.

1 INTRODUCTION

Alleviating the wake effect and satisfactorily integrating wind
farms (WFs) into the electricity grid are two considerable chal-
lenges in the science of wind energy [1]. To address these two
challenges, practical WF controllers that can flexibly modify the
WF operation modes in response to the grid demands while
considering wake effects are of great importance [2].

The typical WF control framework has a hierarchical struc-
ture composed of wind turbine (WT) level control and WF
level control [3], [4]. Farm-level control, also called WF super-
visory control (WF SC) [3],[5], derives the operating points for
each WT to deal with various ambient wind conditions while
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responding to the grid demands. Turbine level control focuses
on the operation of a single WT to ensure that references from
the SC are reached despite local wind turbulence. Single turbine
control has been investigated extensively [6]. However, to han-
dle the wake effect while reacting to different grid demands,
controller modelling and online application have not been fully
addressed for optimal WF level control.

Optimal WF level control is challenging because of the aero-
dynamic interactions among WTs via wake effects [7]. The oper-
ation of a WT causes a reduced wind speed in downstream
wind flows, which is known as the wake effect [8]. The wake
effect imposes significant aerodynamic interactions among WTs
[9]. In a WF, downstream WTs often operate in the wake of
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upstream WTs, resulting in lower power production Therefore,
coordinated WF control considering the wake effect is essen-
tial to increase the overall performance of a WF [9] [10]. Com-
pared with traditional greedy control, where WTs are optimised
individually [11], coordinated WF control has recently attracted
greater attention.

From the controller modelling perspective, the existing WF
control studies mainly focus on two major operation modes sep-
arately: the maximum power point tracking (MPPT) mode and
the set-point tracking mode. For the MPPT mode, the WF tries
to maximise its power production. Reference [12] found that by
reducing upstream WT production, it is possible to increase the
overall WF production. Reference [13] coordinately optimises
WT axis induction factors and successfully increased WF pro-
duction compared with the greedy control. Reference [14] fur-
ther extended this model and treated the WF power maximi-
sation problem while accounting for the WT power constraints.
However, to simplify the model, the axis induction factor is used
as the decision variable. As a result, the WT rotor speed, which
stores important kinetic energy reserves, cannot be considered
in their models. Apart from power production, power grid fre-
quency regulation is already a requirement of WFs in some juris-
dictions to increase the penetration of wind generation in power
systems [15]. To this end, the set-point tracking mode was devel-
oped, which manipulates rotor kinetic energy. Through simula-
tions and measurement data, [16] found that the wake effect
has a significant influence on the WF inertial response capacity,
which heavily depends on the overall rotor speeds of WTs in the
WF. References [10], [17] proposed an optimal WF SC model
for the set-point tracking mode, which explicitly integrating the
wake equations in rotor kinetic energy optimisation. However,
the wake model in their studies is a simplified one-dimensional
model. Only one-column small WFs under one wind direction
could be studied.

Generally, from the controller modelling perspective,
although the existing literature has investigated both WF operat-
ing modes separately, the combination and coordination of the
two modes have not yet been addressed. However, to provide
different services in response to grid demands, both power pro-
duction and rotor kinetic energy should be simultaneously con-
sidered in the WF supervisory control model [16], [18]. To this
end, a unified control model is desired to flexibly modify the
operating modes in response to the grid demands.

From the application perspective, the nonlinearity and non-
convexity of the wake effect increase the difficulty of solv-
ing such optimal control models integrating wake equations.
Some methods have been used and achieved great perfor-
mance in finding the optimum for off-line calculation. Ref-
erence [9], [13] used gradient-based programming methods.
Sequential convex programming was used in [9] to maximise the
WF power production and obtain quality results. Reference [19]
used dynamic programming method. Model-free methods such
as game theory [20], adaptive filtering [21], Bayesian ascent[22]
and extremum seeking [23] have also been used and achieved
good results. However, these optimisation algorithms are not
suitable for online applications, which require fast reactions and
low computational complexity. To obtain an optimum under
one certain wind condition, gradient-based methods need to

carefully select the initial point and many iterations[13], while
the model-free methods suffer from slow convergence and sen-
sitivity to uncertainties [20]. With the expansion of the farm size,
the computational difficulty is increasingly severe [24]. Conse-
quently, to obtain the optimal results in real time addressing var-
ious wind conditions, repeated optimisation is not acceptable
for large WF online control.

From the application perspective, although some optimisa-
tion algorithms have been proposed to solve the WF control
problem offline, their computational complexity is still one of
the major issues for online control, especially for large WFs.

In this paper, we propose a novel optimal WF SC model and
its explicit solutions. From the modelling perspective, both the
MPPT and set-point tracking modes are unified into a conso-
ciated model to enable flexible switching of operating modes
in response to the grid demands. The WT operating limits are
also constrained. A two-dimensional wake model is utilised so
that large WFs can be analysed under different wind directions.
From the application perspective, the collocation method (CM)
is introduced [25], [26]. By explicitly mapping the wind condi-
tion to the optimal control laws, CM avoids repeatedly solving
the computationally expensive optimization problem and gives
explicit approximations of optimal control laws of the whole
WF. The contributions of this paper are twofold.

(1) A unified optimal WF supervisory control (WF SC)
scheme considering the wake effect is proposed. The two dis-
tinct WF operating modes, MPPT and set-point tracking mode,
are first optimised in one unified optimization model. In this
way, both power production and rotor kinetic energy are simul-
taneously considered and coordinated and the WF can opti-
mise the operating modes in response to different grid demands.
Compared with traditional control schemes that do not consider
the wake effect, increased WF power production potential and
releasable power reserves can be achieved.

(2) CM is first introduced to the WF control field to enable
online application. The non-convex WF SC optimisation model
is solved offline under only a few specifically selected wind con-
ditions. Then the optimal control signals for different wind con-
ditions can be approximated by the CM. In this way, only direct
explicit algebraic operation is required for the online optimal
WF control, alleviating the online computational burden. The
data efficiency and accuracy of the proposed control methods
are also demonstrated.

The remainder of this paper is organised as follows. Sec-
tion 2 briefly introduces the WT mechanical model and the
wake model, formulating the detailed WF model considering
WT aerodynamic interactions. Section 3 constructs the pro-
posed optimal WF SC model. Both the MPPT mode and set-
point tracking mode are analysed. Section 4 introduces the CM
and its application in the WF control framework. Case studies
and conclusions are presented in Sections 5 and 6.

2 QUASI-STATIONARY WF MODEL

In this section, we introduce the detailed quasi-stationary WF
model, which formulates the operating constraints for the opti-
mal control model in Section 3.
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FIGURE 1 Schematic of the Jensen wake model

2.1 WT model

According to aerodynamic theory, the mechanical power gener-
ated by WTi can be computed as [27]

Pi =
1
2
𝜌AiV

3
i Cp(𝜆i , 𝛽i ) (1)

where subscript i is the index for the ith WT, 𝜌 is the air density,
and Ai is the blade swept area. Vi is the upstream wind speed.
In a WF, Vi is determined by the control variables of all the
upstream WTs, and we will formulate it in Section 2.2. Cp is the
power coefficient, which is a function of the blade pitch angle 𝛽
and the tip speed ratio 𝜆. 𝜆 can be represented by

𝜆i =
𝜔iR
Vi

(2)

where 𝜔i is the rotor speed and R is the rotor ratio. Cp is deter-
mined by the aerodynamic design of the WT blades, usually
approximated by curve fitting with the manufacturer data [10],
and can be written as the polynomial form [28]. The kinetic
energy stored in the rotating mass of WTi can be expressed as

Ei =
1
2

J𝜔2
i (3)

where J is the moment of inertia of the WT rotating body.

2.2 Wake model

The wake model used in this work, the Jensen model, is the
most prevalent analytical wake model. Reference [29] compared
different wake models and found that the Jensen model pro-
vides the best fit with realistic WF measurements. Reference
[16] validated the effectiveness of the simulation based on the
Jensen model against the Horn rev measurements. Unlike the
one-dimensional model in [10], the Jensen model is a good tool
for analysing large WFs with multiple rows and columns and has
been widely used in various WF control studies [13], [16], [19],
[21].

As shown in Figure 1, the wake behind a WT is assumed to
be linearly expanded, and the area outside the dashed lines is not

FIGURE 2 A 4-WT small example (wind direction is 0o, 14o, 45o from left
to right)

affected. In a WF, the wind speed in front of a downstream WTi
can be formulated as

Vi = U (1 − 𝛿vi ) (4)

where U is the ambient free stream wind speed. 𝛿vi is the
aggregated deficit factor quantifying the overall speed reduction
caused by all upstream wakes. A single wake deficit produced by
one upstream WTj is calculated as

𝛿v ji (𝜆 j , 𝛽 j ) =

(
1 −

√
1 −Ct (𝜆 j , 𝛽 j )

)
D2

j

(D j + 2𝜅(xi − x j ))2
(5)

where D is the blade diameter. 𝜅 is the decay parameter. It
should be calibrated with the measurements or high-fidelity data
to modify the model error for different WFs [16]. However,
this is outside of the scope of this work. xi , x j are the WTi and
WTj position coordinates in the wind direction. Ct (𝜆 j , 𝛽 j ) is the
thrust coefficient of upstream WT j , which is also a non-linear
function of 𝛽 and 𝜆 and is usually approximated by curve fitting
with the manufacturer data [10].

Based on Equation (5), the aggregated wind deficit consider-
ing all the wakes of upstream WTs is given by

𝛿vi (𝝀Φi
, 𝜷Φi

) =

√√√√√√∑
j∈Φi

⎛⎜⎜⎝𝛿v ji (𝜆 j , 𝛽 j )
A

overlap
j→i

Ai

⎞⎟⎟⎠
2

(6)

where A
overlap
j→i is the overlapping area of the wake corridor of

WTj and the blade disk plane of WTi , as shown in Figure 1. Φi
denotes the set of upstream WTs of WTi . 𝝀Φi

and 𝜷Φi
denote the

control variables of all WTs in Φi . Because of the wake effect,
Vi in front of each WT is influenced by the control variables of
all upstream WTs in Φi .

Note that Φi is jointly determined by the WF layout and
the wind direction 𝜃. Take a 4-WT small WF as an exam-
ple. As shown in Figure 2, when 𝜃 = 0o, Φ4 = {1, 2, 3}. When
𝜃 = 14o, Φ4 = {3}. When 𝜃 = 45o , Φ4 is empty and the four
WTs operate separately. Therefore, Φi is a discrete function
of 𝜃 and determined by the WF layout. We denote it as
Φi (𝜃).

Then, the detailed WF power model incorporating the wake
interactions can be modelled in the following steps.

Step 1: Given the WT type, the Ct and Cp curve fitting in terms
of 𝜆 and 𝛽 can be determined [10].

Step 2: Given the position coordinates of all in-service WTs in
the WF and the wind direction 𝜃,Φi (𝜃) for each WTi are simple
to determine.
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FIGURE 3 Overall WF control framework

Step 3: Vi (𝝀Φi
, 𝜷Φi

) in front of each WT can then be modelled
through the Jensen model (4)–(6).

Step 4: By summing the power of each turbine, the overall WF
power production PWF can be formulated as

PWF(𝝀, 𝜷,U, 𝜃) =
N∑

i=1

1
2
𝜌AiV

3
i (𝝀Φi

, 𝜷Φi
,U )Cp(𝜆i , 𝛽i ) (7)

where 𝝀 = {𝜆1, 𝜆2,… , 𝜆N } and 𝜷 = {𝛽1, 𝛽2,… , 𝛽N } are the
control variables of all WTs in the WF, determining the WF
operation state. N is the turbine number.

3 OPTIMAL WF SUPERVISORY
CONTROL

As shown in Figure 3, the typical task of the optimal SC is to
find the optimal operating point of each WT in response to the
grid demands under various wind conditions. From the grid per-
spective, the main WF operating modes are the MPPT mode
and set-point tracking mode [3]. In MPPT, the WF tries to max-
imise its power production. On the other hand, with increasing
wind energy penetration, WF is preferred for operating as a con-
trollable entity like conventional power plants and for provid-
ing frequency support [30],[31]. To this end, set-point tracking
control is proposed to constrain the power output to a speci-
fied reference. The two distinct modes were investigated sep-
arately. However, to provide different services in response to
grid demands, both modes should be coordinated in WF super-
visory control. To this end, a unified control model is proposed
that simultaneously optimises WF power production and rotor
kinetic energy so that the WF can flexibly modify the operat-
ing modes in response to different grid demands. To optimise
the quasi-stationary operating point of the entire WF, the pro-
posed WF SC model unifies both operating modes and consid-
ers the WT operating constraints. The quasi-stationary optimi-
sation model of an N -turbine WF is formulated as follows:

max
𝝀,𝜷

f (U, 𝜃) = 𝜇Erot
WF + (1 − 𝜇)PWF (8)

s.t : Erot
WF ≥ (1 − 𝜇)E0 (9)

𝜇PWF = 𝜇Pdem = 𝜇(1 − 𝜂)Pmax
WF (U, 𝜃) (10)

𝜔min ≤ 𝜔i ≤ 𝜔max i = 1, 2,… , N (11)

0 ≤ 𝛽i ≤ 𝛽max i = 1, 2,… , N (12)

Pi ≤ Prate i = 1, 2,… , N (13)

WT model : (1) − (3), (7) (14)

Wake interactions : (4) − (6) (15)

𝜇 = {0, 1} is a predefined mode parameter in response to the
grid demand. 𝜇 = 0 when the WF is required by the power sys-
tem to operate in the MPPT mode, while 𝜇 = 1 operates in the
set-point tracking mode. We introduce 𝜇 to unify the two oper-
ating modes in one form. It is pre-determined in response to the

grid demand before the optimisation is solved. Erot
WF =

∑N
i=1 Ei

and denotes the total kinetic energy of the WF stored in the
rotating mass [10]. Ei is defined in Equation (3). E0 is the pre-
defined WF rotor kinetic energy level, which is also determined
by the power system [32]. PWF represents the total WF power
generation defined in Equation (7). Pmax

WF (U, 𝜃) denotes the max-
imum WF power generation potential under the specific wind
condition [U, 𝜃], which is a constant. The grid active power
demand is Pdem = (1 − 𝜂)Pmax

WF . 𝜂 is the WF deloading propor-
tion. 𝜂, Pdem and E0 are all predefined parameters in response to
the grid demand. i is the index for the ith WT in the WF.

The rotor speed and pitch angle of individual WTs are con-
strained in Equations (11) and (12), respectively. Constraint (13)
limits the WT output power by the rated capacity Prate . Given the
wind condition [U, 𝜃] and the farm layout, Equations (14) and
(15) formulate the detailed quasi-stationary WF model.

The objective function (8) and constraints (9), (10) are elabo-
rated below in different modes.

1) 𝜇 = 0, WF maximum power production mode (WF
MPPT)

MPPT is one of the main issues for WF operation. When 𝜇 is
set to 0, the objective function f (U, 𝜃) = PWF, so the objective
function (8) maximises the total WF power generation. Con-
straint (10) is inactive. Constraint (9) is used to maintain Erot

WF
above the predefined rotor kinetic energy level E0. Given the
wind condition [U, 𝜃], Pmax

WF (U, 𝜃) is the optimal value of the
objective function obtained by solving this mode.

2) 𝜇 = 1, set-point tracking mode
This problem focuses on improving the amount of addi-

tional power a WF can provide during the frequency excursion
and therefore determines the WF frequency support capabil-
ity. Therefore, in this mode, the optimisation model maximises
the releasable kinetic energy in the quasi-stationary state in the
WF level. When power production is required to maintain a cer-
tain level by the power system, the WF should operate in this
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mode. The objective function f (U, 𝜃) = Erot
WF, witch maximises

the releasable kinetic energy in the quasi-stationary state in the
WF level. Constraint (9) is inactive. Constraint (10) enforces the
WF power output following the grid demand and maintains a
power reserve level 𝜂. In this mode, the power reserve and the
frequency regulation services can be provided by the WF [10].

According to the grid demands, the WF is deloaded by a
predefined margin 𝜂 to provide the power reserve and follow
Pdem according to the constraint (10). Additionally, by exploiting
wake effects, this mode provides a coordinated quasi-stationary
distribution of Pdem to individual WTs. By exploiting the wake
effect and coordinating WTs, the proposed model can possibly
increase the WF kinetic energy without reducing the total out-
put power. In this way, the WF frequency regulation capability is
improved without any additional cost. We call this distribution
scheme coordinated distribution (CD).

4 EXPLICIT APPROXIMATIONS OF
OPTIMAL CONTROL LAWS

4.1 Application difficulties of optimisation
algorithms in online WF control

For WF control, f (U, 𝜃) and the resolved optimal decision
variables [𝜷opt ,𝝀opt ] need to be determined for various wind
conditions covering the main operating range. Because of the
wake model (4)–(6), the SC optimisation model is non-linear
and non-convex. For offline calculations, some methods have
been proposed and achieved good performance in finding qual-
ity solutions [9], [13], [22]. However, these algorithms are not
suitable for online application, which requires fast reactions
and low computational complexity. For one optimization under
one wind condition, model-free algorithms such as game the-
ory methods suffer from slow convergence and sensitivity to
uncertainties [20]. Additionally, the model-based methods such
as sequential convex programming (SCP) [9] require many
iterations. Because of the non-convexity, the results obtained
by repeated optimisations are influenced by the initial point.
Although we can modify the solving procedure and try differ-
ent initial points to find the optimum offline, the complexity is
not acceptable for online control applications. With the expan-
sion of the farm size, repeatedly solving the non-convex optimi-
sation problem for various wind conditions is computationally
expensive for online control.

Therefore, the lack of explicit control laws hinders the appli-
cation of optimal coordinated WF control in online control. To
this end, we first introduce the collocation method (CM) to the
WF control field.

4.2 Explicit WF control based on the
collocation method

CM is a polynomial approximation method with high data effi-
ciency. The power of the CM lies in its ability to select appropri-

ate interpolation points to create a polynomial model that has a
higher order approximation accuracy. The optimisation model
only needs to be solved under a few specially selected wind con-
ditions offline. Then, explicit approximations of optimal control
laws can be derived by the proposed CM. For the online optimal
WF control problem, only a direct explicit algebraic operation is
required instead of repeated optimisations.

To clarify the theory and application procedure of the pro-
posed CM, we first take the MPPT mode as an example. The
theoretical procedure for both modes is the same. In the MPPT
mode, with the variation of the wind condition [U, 𝜃], the
resolved optimal decision variables 𝝉 ≜ [𝜷opt ,𝝀opt ] and the opti-
mal objective values of the model (8)-(15) also change. Thus, the
optimal control laws with respect to different wind conditions
[U, 𝜃] are defined implicitly through the optimisation model (8)-
(15). Our target is to formulate an explicit approximation to
relate [U, 𝜃] to the optimal control laws 𝝉 with as few inter-
polation points as possible since each optimisation is computa-
tionally expensive. The CM-based approximation of the optimal
control law can be expressed as a linear combination of basis
functions

𝜏∗k (U, 𝜃) =
∑
j=1

ck j𝜙 j (U, 𝜃) (16)

where ∗ represents the approximation, 𝜙 j (U, 𝜃) is the j th basis

of the basis function set {𝜙 j (U, 𝜃)}j=1, and ck j is the coefficient

of the j th basis.  is the basis size. Index k means the kth
control variable. For the set-point tracking mode, the param-
eter space extends to [U, 𝜃, 𝜂]. The WF deloading proportion
𝜂 is also included to modify the WF operation according to the
required power level. Given the approximation order n, the basis
function set is constructed in the tensor product form as

{𝜙 j (U, 𝜃)}j=1 ≜ {Pm1
(U )Pm2

(𝜃) : 0 ≤ m1, m2 ≤ n − 1}

(17)

where P belongs to a particular orthogonal polynomial set.
According to approximation theory [25], [33] and our previous
works [34], the Legendre orthogonal polynomial series provides
good approximation accuracy. For the set-point tracking mode,
the basis function set is {𝜙 j (U, 𝜃, 𝜂)}j=1 accordingly. We choose
to construct the basis using Legendre orthogonal polynomials
here. Readers who are interested in more details of orthogonal
polynomials are referred to [25],[26]. Pm1

(U ) denotes the m1th
degree Legendre polynomial in U formulated as

Pm1
(U ) =

1
2m1

m1∑
s=0

(
m1
s

)2

(U − 1)m1−s (U + 1)s (18)

where Pm2
(𝜃) is the m2th degree Legendre polynomial in 𝜃.

(
m1
s

) =
m1!

s!(m1−s)!
denotes the combination operation. We omit
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the proofs, but it can be proven that each Pm1
has exactly m1

roots[26].
Now, the task is to identify the  coefficients in Equation

(16). According to Equation (17),  = n2 for the MPPT mode,
n2 coefficients in Equation (16) need to be determined. For the
set point tracking mode, there are n3 coefficients because the
parameter space is three dimensional. This can be done by solv-
ing the optimisation model (8)–(15) many times under many
different wind conditions [U, 𝜃] and applying a least squares
algorithm. However, we are attempting to solve the optimi-
sation model (8)–(15) under as few wind conditions as possi-
ble because each optimisation is computationally complex and
requires carefully selecting the initial point to obtain the optimal
results. The power of CM lies in its ability to judiciously select
appropriate situation points to create the polynomial that has a
higher order accuracy. To this end, CM judiciously interpolates
the polynomial with the optimisation results at [Ul , 𝜃l ] as fol-
lows:

{[Ul , 𝜃l ]}l=1 ≜ {[U, 𝜃] ∣ Pn(U )Pn(𝜃) = 0}. (19)

The specially selected  wind conditions {[Ul , 𝜃l ]}l=1,
which are the roots of the equation Pn(U )Pn(𝜃) = 0, are deter-
mined in Equation (19). Because each Pn has exactly n roots[26],
n2 wind conditions are selected. This selection algorithm is
based on the Gaussian quadrature integration (GQI) theory.
For the set point tracking mode, accordingly, the selected
interpolation points also include 𝜂: {[Ul , 𝜃l , 𝜂l ]}l=1 ≜ {[U, 𝜃] ∣
Pn(U )Pn(𝜃)Pn(𝜂) = 0}. According to GQI, if the polynomial is
interpolated using exactly the right points, the expected value of
an (n-1)th degree approximation polynomial is identical to the
expected value of any polynomial of degree less or equal to the
(2n-1)th degree [26]. Similarly, higher order moments are also
well approximated. This means that the polynomial interpola-
tion can obtain a higher order accuracy based on the CM and
the points selected by Equation (19) ensures a high data effi-
ciency. The math proof will be further discussed in Section 4.3.

Therefore, the optimisation model (8)–(15) is solved offline
under only the specially selected  wind conditions by Equa-
tion (19). Then, the following linear equations can be solved to
determine the  coefficients ck j

⎡⎢⎢⎢⎢⎣
𝜏k(U1, 𝜃1)

⋮

𝜏k(U , 𝜃 )

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝜙1(U1, 𝜃1)⋯𝜙 (U1, 𝜃1)

⋮ ⋱ ⋮

𝜙1(U , 𝜃 )⋯𝜙 (U , 𝜃 )

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ck1

⋮

ck

⎤⎥⎥⎥⎥⎦
(20)

where 𝜏k(U, 𝜃) are the optimisation results of the optimal SC
model (8)-(15) for the kth control variable at the chosen wind
condition [U, 𝜃] in {[Ul , 𝜃l ]}l=1. 𝜏k(U, 𝜃) can be derived by solv-
ing the optimisation model offline [9],[13], [22], [23]. In this lit-
erature, we use sequential convex programming (SCP) and care-
fully adjust the initial point for different wind conditions. The
quality of the offline solutions by SCP has been demonstrated

in [9] and is shown in Section 5. Readers interested in the details
of SCP, which is a commonly used method for non-convex opti-
misation and has been used to solve such optimisations integrat-
ing wake equations, are referred to [9]. For the set-point tracking
mode, the parameter space extends to [U, 𝜃, 𝜂]. The theoretical
procedure for both modes is all the same.

4.3 Discussion on the accuracy of explicit
control and its implementation procedure

The CM-based approximation polynomial can obtain the same
moments as a higher order model based on the selection of suit-
able points by Equation (19). The proof is based on orthogonal
polynomials and GQI [26] and is provided here. Let w(x ) be
the probability density function describing the distribution of a
system parameter x. A set of polynomials {𝜙 j }


j=1 is said to be

orthonormal if and only if the following relationship holds for
all Pn in {𝜙 j }


j=1:

∫ Pn(x )Pm (x )w(x )dx =

{
1, if m = n

0, if m ≠ n
(21)

where Pn is an orthogonal polynomial in this set {𝜙 j }

j=1 of order

n.
Theorem: For any polynomials of degrees up to 2n − 1, their

expected values can be accurately identified by n samples.
Proof. Let ℙ2n−1 denote all polynomials of (2n − 1) degrees

and let {xl }
n
l=1 be the zeros of n degree orthogonal polyno-

mial Pn. Let f ∗ =
∑n−1

j=0 c j Pj (x ) be the (n-1) degree interpola-
tion polynomial constructed by the sum of orthogonal polyno-
mials, and c j is the constant coefficient. Then, any f ∈ ℙ2n−1
can be expressed as

f (x ) = r (x )Pn(x ) + f ∗ = r (x )Pn(x ) +
n−1∑
j=0

c j Pj (x ) (22)

where r (x ) is a polynomial of degree of at most (n-1) [25].
By orthogonality of Pn in {𝜙 j }


j=1, the expected value of f (i.e.

∫ fwdx) can be easily derived

∫ fwdx = ∫ f ∗wdx + ∫ Pn(x )r (x )wdx

= ∫ f ∗wdx = c0 ∫ P0(x )wdx. (23)

To identify c0, we need to choose interpolation nodes and
operate through Equation (22). Only n samples are sufficient if
we use the zeros {xl }

n
l=1 of n degree orthogonal polynomial Pn as

interpolation nodes because Pn(xl ) = 0 in Equation (22). Oth-
erwise, more interpolation points are required to identify r (x ).
Therefore, only n samples are needed to compute the expected
value of the (2n − 1) degree polynomial f . ■
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Algorithm 1 Application procedure of CM-based explicit optimal WF
control (Take MPPT mode as an example)

Require: Approximation order n; power system demands: 𝜇.

Ensure: Explicit approximation of optimal WF control laws under the input
approximation order and power system demands for all wind conditions:
Equation (16)

offline calculation

1: Construct the Legendre basis set {𝜙 j (U, 𝜃)}j=1 using Equation (17)–(18).

2: Calculate the best samples, i.e., Gaussian points [Ul , 𝜃l ] according to GQI
theory by Equation (19)

3: Under the judiciously selected wind conditions, i.e. Gaussian points of Step 2,
formulate the WF SC model (8)–(15) with the input model parameters: 𝜇, 𝜂,
Pdem and E0.

4: Solve the optimisation models and store the offline solutions. In this paper,
we use SCP [9]. Other proven optimization algorithms can also be used.

5: Formulate (20) based on the optimization results of Step 4. Solve (20) directly
by matrix inversion to obtain the coefficients ck j in Equation (16). The
approximation polynomial is derived.

Higher order moments are also well approximated in this way,
although a firm theoretical basis is lacking [25]. Readers who are
interested in more details of GQI theory are referred to previ-
ous studies [25], [26]. Section 5 presents numerical experiments
to further demonstrate the accuracy and the data efficiency of
the proposed CM-based explicit WF control. This proof gives
the math theories of CM advantages over normal interpolation
methods. The overall implementation procedure is summarised
in Algorithm 1.

4.4 Discussion on the polynomial order
selection

Typically, the approximation order n is a hyper-parameter of
the proposed polynomial interpolation method. Just like hyper-
parameters in the normal interpolation or approximation meth-
ods [26], [34], the higher order n typically results in a higher
order accuracy, but more sample points at the same time. So
the polynomial order should be chosen based on the required
approximation accuracy. For the explicit WF control application
in this paper, the parameters space is only two dimensional for
the MPPT mode and three dimensional for the set-point track-
ing mode. The sample space is small. So the hyper-parameter
can be chosen based on the standard hyper-parameter choice
method, i.e. try-and-error experience to obtain required approx-
imation accuracy [26], [34].

For future WF researches with more complicated grid
demands and higher-dimensional parameter space, Smolyak
adaptive sparse algorithm can be used alternatively to incremen-
tally add higher order terms to the polynomial in an adaptive
way until a given error tolerance is reached [35], [36]. The basic
idea is to sequentially add decoupled terms, low-order coupled
terms and high-order coupled terms into the polynomial. Each
time a new term is added, the polynomial is updated and com-
pared to the error tolerance to determine whether a new term

FIGURE 4 A 25-turbine grid WF layout

needs to be further added or not. The impact of a higher order
term on the polynomial interpolation precision is assessed by
the its coefficients. Only the terms with a noticeable impact are
added. Since this algorithm is not a contribution nor the appli-
cation focus of this paper, to save space, we do not discuss its
equation details further. Instead, details of the procedure can be
found in [35].

Through CM, there are fewer required sample points com-
pared to those of the common methods such as least squares
algorithms [26] or lookup tables. Additionally, the choice of
sample points is independent of the target control viable. One
set of optimisation results is sufficient for all the interest out-
puts of the model. Therefore, CM is very suitable for WF con-
trol. The approximation accuracy and the online control perfor-
mance are illustrated in Section 5. Via CM, the online optimal
WF control problem is switched from repeated optimisation
(8)–(15) to explicit algebraic operation (16), which is suitable for
online control.

5 CASE STUDIES

In this section, two examples are presented: a 25-WT WF and
an 80-WT WF that replicates the layout of Horns Rev1 in
Denmark. The WF simulation is carried out based on Aeolus
SimWindFarm [37], which is a widely used fast WF simulation
toolbox based on the MATLAB/Simulink environment. WTs
are the commonly used NREL 5 MW Type III WT [11], whose
main parameters are provided in Appendix A. Other WT types
are also applicable.

5.1 25-Turbine example

A WF with 25 WTs is first studied, as shown in Figure 4. The
WTs are placed in a grid pattern with a distance of 5D. 1) The
influence of U and 𝜃 on Pmax

WF
For the MPPT mode, the main objective is to maximise the

overall power production of the WF. Therefore, the perfor-
mance measure of the proposed control scheme is the power
production improvement. Figures 5 and 7 show the total WF
production of 25 turbines derived by the proposed WF SC in
WF MPPT mode and traditional single WT MPPT under differ-
ent wind conditions. Traditional WT MPPT optimises a single
WT operation individually [6], and the algorithm is mature. The
power production of the proposed WF MPPT is always higher
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FIGURE 5 Improvement of WF power production under various wind
directions

FIGURE 6 Overview of the wind speed throughout the WF (wind direc-
tion is 0o, 13o, , 45o from left to right)

than that with greedy WT MPPT. The improvement is plotted
with the percentage value on the right.

Figure 5 illustrates the impact of wind direction 𝜃. We only
consider the wind directions ranging from 0o to 45o because
of the symmetry of the WF layout. The wind speed is set to
9 m/s. When 𝜃 = 0o, the wake effect is the most severe due
to the alignment between the wind direction and the WT array.
Therefore, the power production is the lowest. In this case, the
proposed WF MPPT can improve the power output by 20.45%.
Traditional WT MPPT optimises a single WT operation indi-
vidually [6], and the algorithm is mature. By considering the
aerodynamic interactions, the proposed WF MPPT significantly
alleviates the wake effect. Along the direction 𝜃 = 45o, the rela-
tive distance between WTs is larger, and the wake interaction
is weaker. When 𝜃 = 13o and 34o, the wake effect is mini-
mum since WTs are staggered in this direction. As expected, the
power production is highest, and the improvement of the pro-
posed WF MPPT compared to WT MPPT is only 1.32%. The
wind direction affects the relative locations of WTs and thus the

FIGURE 7 Improvement of WF total power production under various
wind speeds

FIGURE 8 WF total kinetic energy for different wind speeds and
different 𝜂

wake interaction patterns. The wind speed throughout the entire
WF under the three directions is depicted in Figure 6.

Figure 7 investigated the influence of the free-stream wind
speed U on Pmax

WF . After the cut-in speed, the wind speed range
can be divided into three sections based on its influence on WF
power production. As shown in Figure 7, when U is lower than
10.5m∕s, all WTs in the WF are partially loaded [11], in which
𝛽 and 𝜆 are jointly optimised and Equation (13) is inactive. In
this wind speed section, the total power production increases
with the wind speed. However, the improvement percentage of
the proposed WF MPPT compared with WT MPPT remains at
the same level. This is because, in this section, the wake inter-
action pattern among WTs is independent of U in the MPPT
mode [9]. With the increase in U , the upstream WTs are fully
loaded[11]. Equation (13) is constrained for these WTs. How-
ever, the downstream WTs are still operating in partially loaded
regions due to the wind speed deficit. Thus, in this transition
region, the improvement percentage decreases because the wind
power is spilled for upstream WTs. When all the WTs have
reached the rated output as U further increases, we say that the
WF reaches its rated generation. The exact wind speed does not
affect the WF power output any more before the cut-out speed.

2) Set-point tracking mode
In the set-point tracking mode, the main objective is to max-

imise the releasable kinetic energy. The performance measure
is the releasable kinetic energy improvement. Figure 8 gives an
overview of the kinetic energy Erot

WF under different deloading
levels 𝜂 and wind speeds U . To highlight the effectiveness of
the proposed method, 𝜃 is 13o in this case in which direction the
wake effect is minimal. As shown in Figure 8, with increasing U ,
Erot

WF also increases until all the WTs reach the rotor speed upper
limit 𝜔max , which is 1.2671 rad/s[11]. In addition, the decrease
in 𝜂 will reduce the WF holistic rotor speed and consequently
Erot

WF. Take U = 6.5m∕s as an example. For 𝜂 = 30% and 25%,
Erot

WF reaches the maximum WF rotor kinetic energy limited by
the rotor speed upper limit. For 𝜂 = 5%, only 56.4% of the
maximum is reached. This is because of the nature of the WT
Cp(𝜆, 𝛽) curve[27], which gives rise to this trade-off between
Erot

WF and PWF.
By considering the wake effect, the proposed WF SC in set-

point tracking mode, i.e. coordinated distribution (CD), success-
fully improves the releasable energy without reducing the total
output power compared to the commonly used proportional
distribution (PD) [5] [38]. The improvement by CD is shown
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FIGURE 9 Kinetic energy improvement under different 𝜂

FIGURE 10 Comparison of CM and optimisation results of SCP for Pmax
WF

in Figure 9. The currently commonly-used PD distributes the
power demand proportionally to the available power capabil-
ities of each WT, which do not consider the wake effect. We
will further introduce it in Section 5.2. The wind conditions of
13o and 8m∕s are used as an example. With decreasing 𝜂, the
kinetic energy derived by PD decreases much more significantly
than that of CD, and the energy gap between the two meth-
ods increases. When 𝜂 = 5%, CD can increase Erot

WF by 65.03%
compared with PD. For other wind directions when the wake is
more severe, such improvement is more distinct.

By exploiting the wake effect and coordinating WTs, the pro-
posed WF SC model increases the WF kinetic energy without
reducing the total output power. In this way, the WF frequency
regulation capability is improved without any additional cost.

3) Explicit polynomial approximations of optimal con-
trol laws

Figures 10, 11, and 12 compare the results derived by
explicit algebraic operation through approximation polynomi-

FIGURE 11 Optimal references of 𝜆1

FIGURE 12 Optimal references of 𝛽1

als with the optimisation results calculated through SCP for the
MPPT mode.

For CM, we only select 100 wind conditions according to
the GQI in Equation (19) for optimisations offline. Namely, n
in Equations (17) and (19) is set to 10. Then, the polynomials
Equation (16) are derived to approximate the relationship from
𝜃 and U to Pmax

WF and the optimal control laws of all WTs. Note
that the same 100 points are utilised to determine the polyno-
mial models for all the outputs of interest.

Specifically, the approximate optimal control law for the 𝛽 of
WT 1

1 as circled in Figure 4 takes the following form. We omit 88
items to save space.

𝛽∗1 = 0.297 − 0.206U − 4.996U 2 − 1.524U 3 + 49.122U 4

+ 56.358U 5 − 78.668U 6 − 105.16U 7 +⋯

+⋯+ 11469U 7𝜃9 − 3507U 8𝜃9 − 5774U 9𝜃9.

To verify the accuracy of derived explicit approximations, the
optimization model (8)–(15) is solved 1 729 times for different
wind conditions covering the speed range from 5 m/s to 14 m/s
and direction range from 0o to 45o with a 0.5o interval.

As shown in Figures 10, 11 and 12, the explicit approxi-
mations are in great agreement with the optimisation results
throughout all the wind conditions. For Pmax

WF (𝜃,U ) in Figure 10,
the mean percentage error between the explicit approximations
and optimisation results in the 1 729 points is only 1.34%; 95.2
percent of the gaps are less than 5%. Figures 11 and 12 illustrate
the derived 𝜆 and 𝛽 for WT 1

1 . For 𝜆, the mean percentage error
of the explicit control laws is only 1.03% with a maximum devi-
ation of 6.13%. For optimal 𝛽, the mean error of the explicit
approximations is only 0.09 degrees.

As shown in Figure 12, when WT 1
1 is upstream of other

WTs (for example, 𝜃 < 14o), the optimal reference value of 𝛽
increases obviously compared to the wind direction where its
wake does not influence other WTs and thus it operates alone
as WT MPPT. These results reveal that the deloading of the
upstream WTs is performed by the WF MPPT for the overall
WF power maximisation.

To illustrate the data efficiency and accuracy of the proposed
CM, we also compare CM to the standard look up table (LUT)
method based on linear interpolation. With the same number
of 100 sample points, where each dimension of [U, 𝜃] is equally
discrete by ten points, the mean percentage error of LUT for
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TABLE 1 Approximation accuracy and data efficiency of LUT for the
set-point tracking mode

Number of samples 180 330 605 1089

Approximation accuracy 45.14% 28.26% 10.36% 1.46%

FIGURE 13 Layout of the Horn rev 1 wind farm

Pmax
WF (𝜃,U ) is 2.47% evaluated by the 1 729 points. To obtain

the same level of accuracy as CM, LUT requires around 300
samples. The result shows that in the considered WF case, LUT
requires more sample points to obtain the same level accuracy
of CM to approximate the maximum WF power production.

CM is also applied in the set-point tracking mode to further
verify the advantages. Table 1 shows the accuracy of LUT to
approximate the optimal control law of 𝛽 for WT 1

1 under the
set-point tracking mode. The sample efficiency of LUT limits its
application when the parameter space dimension increases. For
the proposed CM, with the help of smolyak to adaptively deter-
mine the added high-order terms, only 294 points are required
to obtain the accuracy of 2.43%, which are much less than the
points required by the LUT.

For the optimisation problem under one wind condition, the
SCP takes approximately 24 minutes on average with greedy
control as the initial point in a 3.6 GHz Intel Core i7 proces-
sor in MATLAB R2016a, which is apparently not acceptable for
real-time online control. However, with CM, the only necessary
optimisations are the few to identify the polynomials offline.
In real-time online control, only an explicit algebraic operation
through the derived explicit polynomials is needed to obtain
the optimal control signals for different wind conditions, which
only takes milliseconds to compute. The online computational
complexity is reduced significantly in this way, making the pro-
posed WF SC feasible for large WF online control applications.

5.2 Horn rev WF

In this section, we proceed to a realistic WF that replicates the
commonly employed offshore WF Horns Rev1 located in Den-
mark, as shown in Figure 13. Eighty WTs are placed in the cor-
ners of a parallelogram layout with a 7.2o tilt, whose side lengths
are approximately 7D. In this case, we illustrate the contribution
of the proposed explicit online optimal WF SC to WF perfor-

FIGURE 14 Dynamic simulation of Horn rev1 with traditional PD con-
trol

FIGURE 15 Dynamic simulation of Horn rev1 with the proposed control

mance in response to different grid demands based on time-
domain simulations.

For U = 12.5m∕s and 𝜃 = 0o, Figures 14 and 15 present the
performance of the WF by the widely used PD [38] and the
proposed explicit optimal control, respectively.

Pdem is the grid power demand. Pout is the actual WF power
generation. Pavail is the maximum available wind power of the
entire WF

Pavail (t ) =
Nt∑
i=1

PWTi
avail =

Nt∑
i=1

1
2
𝜌AV i

eff(t )3C max
p (24)

V i
eff(t ) is the effective wind speed in front of WTi at time t . Many

estimation techniques for V i
eff(t ) have been developed [39], but

they are outside the scope of this paper. C max
p is the maximum

power coefficient, which is a constant for a certain WT type.
Traditionally, the widely used PD allocates Pdem to WTs as fol-
lows, which do not consider the wake effect [5]

PWTi =
Pdem

Pavail
PWTi

avail . (25)

PWTi is the power command to WTi . When the set points of
WTs change, the wind field will change accordingly and in turn
affects the WF operation. If the WF control can not modify the
operation modes while considering the wake effect, the gener-
ation capacity may be evaluated incorrectly and the control sig-
nals may not be persistently acceptable in the steady state. As
shown in Figure 14, at t = 900 s, the grid demand is increased
to 320 MW. According to the current wind speed estimation,
Pavail is sufficient to support Pdem . However, when the reduced
wind speed caused by up-WTs successively reaches the down-
WTs after a time delay, Pavail decreases gradually. As a result, the
WF cannot provide Pdem after 1 060 s.
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However, because the proposed WF SC considers the wake
interactions of the whole WF, the WF generation capacity can be
correctly evaluated. In addition, because the unified model can
modify the operation modes conveniently in response to differ-
ent grid demands, the power demand signal is well-followed by
the proposed methods. Figure 15 shows the WF controlled by
the proposed SC with the CM explicit polynomials. Pdem is the
same as that in Figure 14. By operating the WF as a whole, the
wake effect is alleviated, and the wind speed experienced by the
downstream WTs is increased; thus, the maximum steady-state
Pout and Pavail are improved. In addition, because the WF capac-
ity is correctly evaluated, we do not need to worry about the
failure of following Pdem caused by the wake effect.

6 CONCLUSION

This paper proposes an wake-effect aware online optimal WF
SC model. Two major WF operation modes are first optimised
in one unified model so that the WF operation can be flexibly
modified in response to different grid demands. The WF opti-
mal operating points in the quasi-stationary state are calculated
for both MPPT and set-point tracking modes. Through the pro-
posed control scheme, the WF power production potential and
releasable power reserve are improved significantly compared
to those of traditional single WT control. In addition, from the
application perspective, CM is first introduced in the WF con-
trol field. By solving the WF SC model offline under only a few
specifically selected wind conditions, the optimal SC results can
be explicitly approximated by the proposed CM. For the online
optimal WF control problem, only a direct explicit algebraic
operation is required instead of repeated optimisations, making
the proposed WF SC feasible for large WF online control. For
future work, an important direction is the modelling and con-
trol of the WF in the dynamic state considering the wake effect
time delay.
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APPENDIX A

Parameters of NREL 5 MW Type III WT

Prate = 5MW , D = 126m, 𝜔min = 6.9r pm, 𝜔max = 12.1r pm,
𝛽max = 90o, Hub height = 90m, Gearbox ratio = 97 : 1, Rated
wind speed = 11.4m∕s, C max

p = 0.485.
More detailed information on NREL 5 MW Type III WT is

provided in [11].
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