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The deeper understanding Faust sought

Could not from the Devil be bought.

But now we are told,

By theorists bold,

All we need to know is R0.

DAHLEM WORKSHOP, BERLIN 1982 [1].
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ABSTRACT

The majority of the World Health Organization (WHO) guidelines for control or

elimination of neglected tropical diseases (NTDs) involve broad recommendations.

There is some variation in these guidelines according to factors such as the

co-endemicity of other diseases or failure to hit targets, but largely the same

methods are used across a diverse range of cultures and climates. As the majority

of NTDs have life-cycles that involve free-living stages or intermediary hosts,

environmental conditions and external factors have the potential to either benefit

or undermine the e↵orts of interventions. Through models we can explore the

e↵ect the varying biological parameters and simulate the outcomes of di↵erent

types of interventions. This thesis aims to investigate a few of the current

knowledge gaps by developing novel models of these processes for two specific

diseases: Ascaris lumbricoides, a soil-transmitted helminth infection, and

lymphatic filariasis (LF), a long-lived worm transmitted by mosquitoes. Extending

established models from the literature, the work presented attempts to better

describe some of the biological processes influencing transmission and the impact

this could have on control and elimination strategies. A seasonal model of Ascaris

infection is used to quantify the impact of fluctuations in external larval stage

development on mass drug administration success, finding that the impact of

seasonal variance is highly dependent on local weather profiles. Models of LF,

considering both stochastic elimination and the vector dynamics, demonstrate the

importance of solid experimental evidence for parameterising models and highlight

why adult-acting vector control measures are potentially more e↵ective than

larval-based methods. Additionally, the vector model for LF is then used to

xix



recommend a novel method for deriving human prevalence estimates through

vector sampling, including confidence interval and sample size calculations. This

work has demonstrated new methods for modelling helminth infections in humans

and drawn some important conclusions that could impact future studies and

public health strategies for NTDs. By challenging modelling assumptions and

realising what we don’t know, this thesis has lead to a deeper understanding of the

processes involved and highlighted where further research is required.

xx



CHAPTER 1

INTRODUCTION

The term ‘Neglected Tropical Diseases’ (NTDs) first came into common use during

World Health Organization (WHO) meetings in Berlin in 2003 and 2004 [2]. The

subsequent creation of a WHO Department for Control of Neglected Tropical

Diseases led to a series of events, concluding in the publication of a WHO Road

Map in 2012 describing global targets for the period 2012-2020 [3] and a meeting

in London in the same year entitled ‘Uniting to combat NTDs: ending the neglect

and reaching the 2020 goals’. This meeting was attended by Bill Gates, the WHO

Director-General, the CEOs of major pharmaceutical companies, senior

government o�cials from endemic and donor countries, and representatives of

academic institutions and civil society. The outcome was the London Declaration:

an agreement from twelve of the worlds biggest pharmaceutical companies to

ensure sustained drug donations to help meet the control and elimination goals set

by WHO [4].

There were originally seventeen diseases under the NTD umbrella, representing a

diverse range of infections which are common in low-income populations in

developing countries across the Americas, Africa and Asia [3]. These populations

also often had very poor, or no, access to local health care. In 2017 three

additional diseases were added, bringing the total to twenty [2]. The additional

funding and global support that has been mobilised due to the collective

rebranding of these diseases has led to huge progress in a number of instances

[5–7]. Progress in some diseases, such as lymphatic filariasis and trachoma, has

1



CHAPTER 1. INTRODUCTION

been so substantial that the focus has shifted from control to elimination, with the

new 2030 goals reflecting this [8, 9].

Mathematical models have long played a role in public health planning for major

diseases such as malaria, with Ross’ initial model of mosquito-borne disease dating

back to 1908 [10], and Daniel Bernoulli describing the first mathematical model of

small pox in 1766 [11]. However, not all NTDs share this long history of modelling

involvement. For example, the first specific models describing lymphatic filariasis

(LF) transmission were developed in the 1990s [12, 13]. There have be substantial

leaps in theory in recent years and the formation of groups such as the NTD

Modelling Consortium and the DeWorm3 project, both funded by the Bill and

Melinda Gates Foundation, has resulted in increased engagement between

mathematicians, the WHO and public health professionals [9].

This context means it is increasingly important to ensure models are biologically

sensible and well parameterised [14]. In particular, when modelling interventions

such as mass drug administration (MDA – regular population-wide use of

chemotherapy) there are a number of global and local factors that must be

considered. In this thesis I challenge some of the assumptions made by current

model frameworks and investigate the impact of a range of factors on modelling

outcomes.

I have not included a separate literature review chapter, due to individual

literature review content being included in each chapter as follows:

• In Chapter 1, I cover the global context of NTDs and a review of

mathematically modelling methods for diseases, macro-parasites and

mosquito dynamics.

• In Chapter 2, I describe the global burden of soil-transmitted helminths

(STH) and review the evidence in the literature for seasonal influencers of

transmission.

• In Chapter 3, I introduce the biology of lymphatic filariasis (LF), discuss

currently used models of transmission and review the empirical evidence

behind key parasite life-cycle parameters.

• In Chapter 4, I review the modelling literature on mosquito-borne diseases,

focusing on LF and drawing comparisons with malaria. I also discuss present

evidence for the use of vector control as an intervention tool for both diseases.

2



CHAPTER 1. INTRODUCTION 1.1. BACKGROUND

• In Chapter 5, I review the literature surrounding xenomonitoring as a tool

for LF surveillance.

1.1 Background

1.1.1 Global context of neglected tropical diseases (NTDs)

NTDs a↵ect more than one billion people across 149 countries [2] and cost billions

of dollars every year. A subset of these are caused by helminth, or macro-parasitic

worm, infections, including STH, LF, onchocerciasis, Guinea worm and

schistosomiasis. There are two main subdivisions of helminths: nematodes,

including intestinal and filarial worms, and flatworms, including schistosomes [15].

Helminths are particularly persistent due to their ability to modulate their host’s

immune response [16] and in 2006 were estimated to a↵ect around a quarter of the

world’s population [17].

Helminth infections are characterised by the intensity of disease, rather than

simply presence or absence. A higher parasite load will generally result in more

severe symptoms and a higher risk of serious complications. For example, a high

intensity Ascaris infection, one of the STH parasites, could cause intestinal

blockage or impair growth of children [18]. Some infections are also associated

with potential long-term complications, such as individuals with LF developing

elephantiasis, which is associated with painful and irreversible swelling to the

limbs, breasts or genitals [19].

1.1.2 Soil-transmitted helminths (STH)

STH, or intestinal worms, are transmitted through excretion of eggs in the faeces

of infected individuals. In areas that lack adequate sanitation and hygiene,

particularly where there is poor access to secure latrine facilities, onward

transmission is then caused by the resulting contamination of the soil [17]. Eggs

can then be ingested through a number of routes, including in soil attached to

unwashed vegetables, contaminated water sources and through children playing in

or eating the soil [18]. In addition, hookworm eggs hatch in the external

environment and the resulting worm can pierce the skin, meaning infection can

occur by walking barefoot through contaminated soil [17, 20].
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STH infections lead to nutritional impairment by reducing levels of iron and

protein and increasing mal-absorption of nutrients [18]. In 1909 the Rockefeller

Foundation launched a successful campaign against hookworm in the U.S. South,

reaching more than 400,000 people, and by 1914 hookworm was no longer a severe

problem in the United States [21]. They also collected a vast amount of data that

has been useful in the expansion of these e↵orts to other countries, in particular

data relating to STH parasite biology, leading to early evidence that Ascaris eggs

develop best in moist and warm conditions but are prone to deteriorate in direct

heat [22].

School-aged children (SAC) and pre-school-aged children (pre-SAC) have generally

been found to harbour the greatest burden of intestinal worms [15], particularly

for Ascaris and Trichuris [23]. Due to the labour intensive and unreliable nature

of most diagnostic tools, the WHO recommended approach to controlling STH

involves regular mass distribution of drugs in endemic and at-risk regions,

otherwise known as MDA, with a focus on treating SAC [24]. However, recent

evidence has suggested that community-wide MDA would be more appropriate in

some settings [23, 25].

1.1.3 Lymphatic filariasis (LF)

LF is transmitted through a complex life-cycle with an intermediary host.

Developmental stages called microfilaria (mf) circulate in the blood of infective

individuals and can be ingested by mosquitoes in the process of taking a blood

meal. These mf then develop into a third-stage larvae (L3) in the mosquito, before

migrating to the mosquito head and proboscis (viz. mouth). When the mosquito

takes future blood meals the larvae can then enter the skin of the host, eventually

migrating into the lymphatic system and developing to maturity [26]. As with

many intestinal worm infections, sexual reproduction is required to produce mf,

which will then circulate in the infected host’s blood [19, 27]. The most common

parasite is Wucheria bancrofti, accounting for 90% of all cases worldwide and the

most common vectors are Anopheles spp. and Culex spp., which are also known to

commonly transmit malaria [19].

An individual infected with LF may not necessarily be mf positive, particularly if

they have a single worm infection as this makes sexual reproductive impossible,

and this can impact the utility of diagnostic methods. The most most commonly
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used test for diagnosing infection is a night blood smear test, where blood is drawn

at night and inspected under a microscope for presence of mf, which can only

detect infectious individuals. If blood is drawn during the day then the mf, which

only circulate at night, are not usually detectable [19]. However, antigen tests such

as the immunochromatographic test (ICT) and the filariasis test strip (FTS) are

increasingly being used in surveillance programs [28, 29].

The most common intervention used to combat LF is MDA, as with STH, but

vector control methods such as bednets and indoor residual spraying also have the

potential to reduce transmission [8, 5]. In 1993 LF was earmarked as eradicable

with current tools in a report by the International Task Force for Disease

Eradication and in the years since the global focus has moved towards elimination

rather than control [8]. Annual MDA is recommended by the WHO until a

standardised survey indicates su�ciently low transmission to halt interventions.

Following MDA cessation, three rounds of transmission assessment surveys survey

(TAS) have to be passed, indicating a microfilaria prevalence of <1% or an antigen

prevalence of <2% [30]. When a country has achieved these steps, they can

prepare and submit a dossier to the WHO with the aim of being validated as

having achieved elimination as a public health problem (EPHP).

1.1.4 Mathematical modelling of disease

In the early 20th century Ronald Ross was one of the first academics to

characterise disease transmission using mathematical models [31], ultimately

playing a key role in the development of the commonly-used compartmental SIR

model. Variations on the SIR model have been used across mathematics and

epidemiology to describe the dynamics of a huge range of di↵erent diseases [32].

This type of model is described by compartmentalising the population of interest

into di↵erent categories representing their infection status; the SIR model

considers individuals to belong to either a susceptible (S), infectious (I) or

recovered/removed (R) class.

The dynamics of compartmentalised SIR-type models are described using rates of

transmission, birth, death, recovery and other such processes and usually consist of

a series of coupled di↵erential equations. Other examples include the SIS model

(susceptible, infectious, susceptible), which is often used to model diseases with

minimal immunity consideration such as the common cold [33]. There is also the
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SEIR model (susceptible, exposed, infectious, recovered), used when there is a

delay between contracting the disease and infectivity, otherwise known as an

incubation period [34]. Additional complex can be added in a number of ways,

including adding further compartments, incorporating age-structure, or

considering spatial dynamics.

A key epidemiological measure, which can be either directly calculated or

simulated depending on model structure, is the basic reproductive number

(otherwise know as the basic reproductive ratio), R0, which represents the

expected number of secondary infections that would be caused by one average

infectious individual in an otherwise susceptible population [27]. By definition, if

R0 > 1 then you would expect an introduction of disease to lead to an epidemic,

whereas if R0 < 1 then you would expect disease to die out.

These compartmental models focus on the number, or proportion, of individuals

who are susceptible, infected, and so on. However, with helminth infections it is

much more common for biological measures of disease to be in terms of intensity

rather than prevalence, and we would expect di↵erent dynamics to arise from two

populations with the same prevalence level but di↵erent intensities of infection. As

such, models of helminth transmission often consider the rate of change of mean

worm burden (the average number of adult worms per individual in the

population) [27]. Models therefore focus on the worm population dynamics rather

than tracking human prevalence, usually with a term considering the rate of

change of larval stages either in the environment or some intermediary host. A

negative binomial distribution of worms is then usually assumed to calculate

human prevalence directly from the modelled mean worm burden [27].

The reproductive ratio, R0, for helminths is described as the average number of

female worms produced by one mature female worm during its reproductive life

span [27]. Similarly to the SIR model, R0 must be greater than one for disease to

establish itself and it must be less than one for disease to die out. Interventions,

such as vaccines, MDA or vector control can also be added to the model and the

e↵ective reproductive number, Re, can be calculated. If Re is less than one then

the interventions are su�cient to make the disease die out.

Helminth models also have a property that isn’t seen in most other models of

disease: an infected individual in which there are no fertilised female worms is not

infectious and will not contribute to onward transmission [26]. Due to the

requirement of sexual reproduction in the parasite life cycle, models suggest there
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is a ‘break-point’: a level of mean intensity below which transmission is

unsustainable due to the e↵ect this has on the probability of a male and female

adult worm coexisting in the same host [35]. Below this break-point population

growth is severely restricted and the parasite population would be expected to

decay to extinction [36].

1.2 Aims

The majority of the guidelines for control or elimination of NTDs involve broad

recommendations for numbers of rounds and coverage of MDA, which

demographic should be targeted and a description of the stopping criteria. There

is some variation in these guidelines according to factors such as the co-endemicity

of other diseases or failing to hit targets despite achieving recommended MDA

coverage. For example, in areas endemic for loiasis it is not possible to use

ivermectin, a key drug recommended in combination with other medicines to treat

LF, due to the potential for severe adverse events [37].

However, these very specific cases where di↵erent methods are recommended are

insu�cient to account for the wide variation we expect to see in intervention

e↵ectiveness [38]. As the majority of NTDs have life-cycles that involve free-living

stages or intermediary hosts, environmental conditions have the potential to either

assist or undermine the e↵orts of interventions [39–41]. There are also certain

aspects of disease biology, such as the seasonal impact of weather conditions on

onward transmission potential of developing Ascaris eggs or the probability of one

infectious mosquito infecting a human with LF, that we know surprisingly little

about.

Models are an important tool that can help us investigate how important these

unknowns are and work towards quantifying the impact they could have on

intervention success. Through models we can explore the e↵ect the varying

biological parameters and simulate the outcomes of di↵erent types of interventions.

However, it is also vital to ensure that the experimental evidence base used to

parameterise our models is broad, accessible and reliable [14]. Models can provide

real-world recommendations, but are also vital to helping us identify key

unknowns, ideally then prompting further experimental research and an improved

understanding of the biological processes that drive transmission. We aim to

investigate a few of the following knowledge gaps by developing novel models of
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these processes.

Firstly, it is widely accepted in the literature that STH infections have seasonal

drivers that can cause transmission fluctuations [42–44]. However, there are very

few modelling studies that attempt to address this challenge. Studies that do exist

are relatively recent and have considered seasonality through a maximum

temperature for egg survival [45] or human migration [46]. There have also been

some recent studies on schistosomiasis, a helminth parasite with a prominent

animal reservoir of infection, that have attempted to describe periodic forcing due

to seasonal variation [41, 47, 48]. Field studies have shown correlation between

re-infection and seasonal factors, such as rainfall [39], but modelling so far hasn’t

questioned the impact that seasonal fluctuations in these conditions may have on

program success, particularly in combination with the timing of MDA.

Considering the dynamics of parasitic stages outside the host is also a common

area of weakness in LF models, which generally do not explicitly model the larval

dynamics [49, 13]. Recent developments have included an equation for the larval

dynamics [50, 51], but the vector dynamics are not described in the model. A more

detailed literature review reveals that there is also a general lack of experimental

evidence for key biological parameters, such the the probability an infectious bite

will lead to a new human infection [52, 53] and the parasite aggregation [54]. In

the context of elimination targets, uncertainty in these key parameters could be

the di↵erence between predicting success or failure. We aim to build a simple

model of extinction to investigate how severe these e↵ects might be.

Current models of LF also don’t explicitly model vector dynamics, in particular

the interaction with di↵erent vector control measures. Instead, presence of vector

control is assumed to result in a proportion reduction in biting rates, reducing

transmission [50]. The general consensus across modelling groups is that vector

control is unlikely to have a substantial additional benefit when used in

combination with MDA [55]. However, the simplifying assumptions made in these

models may lead to incorrectly estimating the impact of vector control,

particularly where there are field studies that demonstrate the power of measures

such as long lasting insecticide-treated bednets (LLINs) against LF transmission

[5, 56, 6, 57]. Following conclusions made about the importance of annual biting

rate whilst investigating elimination dynamics, I believe these processes are

potentially highly important to quantifying transmission dynamics. Using vector

population modelling methods adapted from the literature, we aim to derive a
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model that captures the e↵ects of vector control on mosquito population and

infection measures.

Finally, we aim to demonstrate how an explicit vector control model could be used

to inform xeno-monitoring methods. Xeno-monitoring is a non-invasive method of

assessing transmission and infection levels in a population by sampling vectors and

either dissecting or testing for disease DNA and has been considered a potential

option for systematic program-based surveillance by the WHO for almost two

decades [58]. However, there is still very poor understanding of how

xeno-monitoring measures relate back to factors of public health importance, such

as human prevalence [59]. Programmatic usage has generally involved simple

detection of presence or absence, where presence of infection results in follow-up

testing of the human population [60, 61], or to identify potential hotspots of

transmission [62], rather than as a proxy for human prevalence. Progress in

quantification of this relationship could potentially lead to more robust and

cost-e↵ective tools for post-validation surveillance.

In the following chapters I will detail the work done during my PhD to address

these aims.

1.3 Approach

I will mainly focus on formulating novel models of transmission, building on

models from the literature and exploring the biological basis for the processes

described. In particular, I will focus on the impact that adding the explicit

modelling of commonly excluded aspects of these processes has on model

outcomes. Due to a lack of relevant epidemiological data my explorations will be

largely theoretical and speculative, but I will discuss the relevance of the results

and how these could be made more directly applicable in future studies.

In Chapter 1, I build a seasonal transmission model for Ascaris lumbricoides, a

type of STH. The model is based on a widely used deterministic di↵erential

equation helminth model that describes both the mean adult worm burden and

free-living stages [27]. Using experimental data, I fit relationships between

environmental factors, namely temperature and rainfall, and the development,

viability and host uptake of infective larval stages. These relationships are then

used to fit seasonally varying parameters for these processes to mean climate data
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for specific settings, such as South Korea and Nigeria.

Using approximate Bayesian computation (ABC) to fit the model to

epidemiological data taken from the literature, I compare how seasonal e↵ects vary

across settings. Most importantly, I consider the impact these seasonal

fluctuations have on predicted mass drug administration outcomes and suggest

how it may be possible to optimise MDA timing to maximise impact.

Still thinking about the importance of biological details that are often overlooked,

I move on to investigate the biological unknowns surrounding LF transmission in

Chapter 2. A number of these quantities, including vector to host transmission

rates, have a shockingly poor and sparse evidence base in the literature. Using

methods taken from branching process theory [63], I use these transmission cycle

parameters to describe the expected number of secondary infectious cases caused

by a single infectious individual in a population close to elimination targets. This

can also be used to calculate the ultimate probability of extinction, where all

chains of transmission die out.

I then use a univariate analysis to investigate the importance of these vector and

parasite parameters to predictions and what e↵ect the associated uncertainty

could have on elimination programs. I demonstrate that factors such as the annual

biting rate (ABR) and the single hit probability of an infectious mosquito passing

on a viable infection are highly influential to model outcomes. The e↵ect of

parameters that are expected to be of importance, such as the fecund life span of

the adult worm in the host, is found to be mitigated by the relatively strong

evidence base behind their quantification. I then go on to advise next steps for

experimental studies in refining the estimates of some of these parameters.

However some parameters, such as the annual biting rate, are highly dependent on

setting, which is largely the cause of the wide variations found in the literature.

Variations in biting rate result in widely varying estimates of transmission

intensity and potential, which could be an important factor when considering

control methods.

In Chapter 3, I build an explicit model of vector dynamics and infection,

including processes to reflect the utilisation of a range of vector control measures:

LLINs, indoor residual spraying (IRS) and larvicides. I generalise a compartmental

mosquito gonotrophic cycle model from the malaria literature [64] and

parameterise the implementation of vector control using experimental field studies
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[65, 66]. I then expand this model to include SEI (susceptible, exposed, infectious)

dynamics and, by considering an age-structured formulation, describe an

equilibrium solution.

As mosquito life spans and dynamics are relatively fast compared to human

infection length and life expectancy, I will assume that the fast dynamics in the

mosquito population can be approximated by the quasi-equilibrium solution. I will

then use this model, as well as analytical derivations of key epidemiological

measures such as the e↵ective reproductive number, to investigate the impact of

di↵erent vector control combinations on the size, infection profile and transmission

potential of the mosquito population. Although my main focus is LF, I will also

discuss potential applications of the model to malaria.

I will also discuss how I integrated the vector model with a model of human LF

infection and considered the impact of continuous LLIN usage across an extended

period of time on human disease intensity, inspired by field studies that have shown

bednets alone could potentially lead to elimination of transmission (EOT) [5].

In Chapter 4, I build on the model described in the previous chapter and derive a

method for linking human prevalence and mosquito DNA prevalence for LF, as is

attempted through molecular xenomonitoring (MX). I derive a probabilistic model

for human prevalence based on vector sampling methods, utilising the inherent

biases observed across di↵erent trap types to measure vector prevalence and the

proportion of the population that are parous. Using this model I estimate vector

sample sizes required for specified levels of precision.

I will also discuss the common method of pooling mosquitoes, which involves

testing multiple mosquitoes at once, with a positive outcome indicating that at

least one of the mosquitoes in that pool were carrying LF DNA. This is a

potentially cost saving method, particularly when considering the large sample

sizes required, but complicates the interpretation of survey results when

attempting to look beyond presence or absence of disease. I derive the relationship

between vector prevalence and pool prevalence (the proportion of pools that test

positive) depending on the pool size and conduct first investigations into the

associated loss of power when pooling mosquitoes as opposed to individual testing.

I conclude, in Chapter 5, by briefly discussing the negative binomial assumption

of parasite aggregation and using a few toy examples to demonstrate why it is

important to be careful when using these assumptions in practice.
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CHAPTER 2

SOIL-TRANSMITTED HELMINTHS (STH)

2.1 Introduction

2.1.1 Chapter outline

In this chapter I investigate the impact of seasonal variance in free-living stage

dynamics on transmission and disease interventions for Ascaris lumbricoides. I

first lay out the experimental evidence that temperature and rainfall conditions

influence egg development in the external environment and then build a seasonal

model of the A. lumbricoides life cycle. I use data from South Korea and Nigeria

to fit and test the model, concluding that settings with extreme fluctuations in

rainfall or temperature could exhibit strong seasonal transmission patterns that

may be partially masked by the longevity of A. lumbricoides infections in hosts. I

then demonstrate how seasonally timed mass drug administration (MDA) could

impact the outcomes of control strategies. For the South Korean setting the

results predict a comparative decrease of 74.5% in mean worm days (the number of

days the average individual spend infected with worms across a 12 month period)

between the best and worst MDA timings after four years of annual treatment.

Finally, I discuss how seasonal variation in egg survival and maturation could be

exploited to maximise the impact of MDA in certain settings and highlight the

need for further investigation in this area.
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2.1.2 Disclaimer

This chapter is adapted from my article: Seasonally timed treatment programs for

Ascaris lumbricoides to increase impact - An investigation using mathematical

models, published in PLoS NTDs December 2018 [67]. I was the first author on

this article and the work contained is my own, conducted with consultation from

and collaboration with the other authors. There is some additional content and

detail that was not included in the publication, including expansion and

integration of the supplementary materials.

2.1.3 Background

Soil-transmitted helminth (STH) infections a↵ect approximately 1.5 billion people

worldwide, with periodic mass deworming playing a key role in control and

elimination e↵orts [68]. More e�cient allocation of control e↵ort resources

therefore has the potential to improve the lives of many millions of people, with

studies like the DeWorm3 initiative working to determine the feasibility of

interrupting transmission [69]. Ascariasis, infection of the small intestine by the

parasite Ascaris lumbricoides, is one of the most common of these infections

citePullan2014 and the life cycle of the parasite involves egg exposure to

environmental conditions during larval stage development [18]. Experimental

studies on Ascaris suum eggs, a closely-related species of ascarid, have shown that

changes in temperature can a↵ect maturation, viability and mortality [70–72, 22].

It is likely that temperature also a↵ects A. lumbricoides eggs, and that data from

this and related species can be used to predict climatic e↵ects on ascariasis [73–75].

For a related ascarid in pigs, A. suum, high temperatures are associated with a

trade-o↵ between faster maturation and higher mortality [71], such that an

optimum temperature exists for maximum viability. This optimum temperature

has been estimated for the ascarid of dogs, Toxocara canis, as around 25°C [76],

whereas at temperatures below 10°C little or no evidence of development was

recorded for either A. suum or T. canis, even after multiple months of observation

[72, 76]. Rainfall is also expected to impact the life-cycle and onward transmission,

but there is greater uncertainty around the magnitude and mechanism of this

e↵ect. It appears that moisture is important for egg development [22] and that

minimal rainfall is needed to maintain soil water content above a required

threshold for development of A. suum larvae [77]. Moisture requirements are
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better characterised for strongyloid nematodes of livestock, for which fecal matter

often already contains su�cient moisture for rainfall to not be considered a

limiting factor to development, at least in temperate climates [78, 79]. There is

some evidence that excess water can lead to accelerated development of ascarid

larvae [77] and that survival rates are higher in environments with higher moisture

[80], but it is possible that the greatest impact of rainfall on the infection cycle is

through transmission. Rain is associated with greater sequestration of eggs

through the soil and studies have shown that soil samples taken during rainy

seasons often produce the highest yield of viable A. lumbricoides ova [81].

Climates which exhibit wet and dry seasons may also see changes in human

behaviour that could impact transmission during these periods; for example,

consumption of pickled vegetables during the late autumn to winter season has

previously been suggested as a driver of reinfection in South Korea [82].

Historical field studies of ascariasis have found seasonal peaks in prevalence

[83, 84] and reinfection rates [82]. One study, treating at di↵erent times of year

from 1977 to 1978 across six hamlets in Kyunggi Do province, Korea, found that

the highest peak in transmission occurred in early spring; a di↵erence of 23.5% was

observed between the highest and lowest reinfection rates [82]. Strong seasonal

variation in reinfection rates has also been recorded in Saudi Arabia[81], with the

optimal period for larval survival and transmission coinciding with cooler

temperatures and a brief rainy season. A more recent field study of 477 individuals

in Sri Lanka [39] found positive correlations between wet-days per month and both

infection and re-infection rates.

In contrast to parasite control programmes in humans, anthelmintic treatment of

livestock populations routinely takes account of seasonal variation in infection

pressure. Gastrointestinal nematode infection typically peaks in summer in

temperate areas [85] and during the rainy season in arid and semi-arid regions [86].

Management factors such as winter housing and concentration of birthing in spring

or rainy seasons, when grass availability is highest, modify these seasonal patterns

[87]. Nevertheless, e↵ects of climatic drivers, especially temperature and rainfall,

on the development and survival of infective larvae are well documented [88] and

explain seasonal variation in levels of infection [89]. Models in which climate drives

infection pressure are able to predict observed seasonal patterns [90–92].

Treatment generally aims to protect animals during periods of heightened risk, or

to eliminate egg output in advance of conditions suitable for larval development.

Thus, suppression of egg output is widely used as a management tool, and is most
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e↵ective when calibrated to local climatic conditions [93, 94]. In seasonally arid

regions, treatment during periods hostile for free-living parasite stages was once

recommended in order to minimise reinfection; however, this favours the

development of anthelmintic resistance [95]. Improved ability to predict nematode

infection risk for livestock in terms of climate has led to model-driven farmer

decision support tools, which are sensitive to seasonal variation in infection

pressure [96, 97]. For A. suum, egg maturation driven by summer temperatures

and prolonged survival in the winter forms the basis for recommended seasonal

control strategies in pigs [98].

Despite the precedent set in the veterinary sector, the majority of public health

programs have yet to adopt seasonal timing of mass drug administration (MDA)

for A. lumbricoides control due to a lack of empirical evidence on the expected

impact of such a move. Drugs are distributed through existing infrastructures,

such that adjusting procedure can incur significant financial and operational costs,

which the benefit of seasonal treatment would have to outweigh. However, the gain

in reduced public health burden from seasonally targeted treatments could be high

for certain climates, with areas that see large variations in temperature and

rainfall likely to display the most pronounced di↵erences. The key aims of this

theoretical study are to propose a novel model for A. lumbricoides transmission

that incorporates some of the seasonal elements of the system, and in doing so to

demonstrate the potential impact seasonally-timed treatment could have in

di↵erent climates and prevalence settings.

2.2 Methods

2.2.1 A. lumbricoides life cycle model

A model reflecting four key stages of the A. lumbricoides life cycle, is used to

describe the level of infection in the human population alongside the

environmental egg dynamics (see Fig 2.1 and Eq 2.1–2.4). This is a new model

framework inspired by the well-established two-stage delay di↵erential equation

model developed by Anderson and May that considers the interaction between the

mean worm burden (M) and the number of infective larval stages present in the

immediate environment (L) [27]. Using a similar approach to Fowler et al [99], this

new framework is easier to describe, implement and fit as it removes the need for
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delays. Here we additionally consider the mean number of juvenile worms per host

(J) and the total count of immature eggs in the environment (E). This allows the

removal of delays from the system such that maturation of both juvenile stages in

the host and eggs in the environment can be represented as rates: 1/⌧1 and 1/⌧2

respectively, where ⌧1 and ⌧2 represent average maturation times.

dJ

dt
= �L�

✓
1

⌧1
+ µ1

◆
J (2.1)

dM

dt
=

1

⌧1
J � µ2M (2.2)

dE

dt
= sN�M �

✓
1

⌧2
+ �1

◆
E (2.3)

dL

dt
= 1/⌧2E � (�N + �2)L (2.4)

  

Figure 2.1: A. lumbricoides life cycle. Diagram depicting the model structure
used to represent the A. lumbricoides life cycle.

Death rates µ1 and µ2 for the within-host stages, J and M , incorporate both

parasite and host mortality. For the environmental stages, E and L, death is taken
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to occur at rates �1 and �2 respectively. The excretion rate of eggs into the

environment, sN�M , is calculated using the worm gender ratio, s = 0.5, the worm

fecundity, �, the human population size, N , and the current level of mean worm

burden, M . Ingestion occurs at rate �L per host, removing eggs from the

environment at rate �NL, where � represents an ingestion uptake rate.

All biological processes occurring during environmental stages are considered to be

a↵ected by seasonal factors; parameters for egg maturation time (⌧2), egg

mortality (�1) and infective stage mortality (�2) are linked to temperature through

experimental data, whereas transmission (�) is taken to vary with rainfall. Values

of model parameters are given in Table 2.1.

Table 2.1: Model parameter definitions and values.

Definition Value Source
� Ingestion or uptake rate 10�12–3.3⇥ 10�9

⌧1 Maturation rate from juvenile stage to adult worm 65 (50–80) [27]
1/⌧2 Mean maturation time from eggs to infective larvae 15–120 [70–72]
d1 Proportion of juvenile stages that survive maturation 0.01 [27]
d2 Proportion of eggs that survive to become infective 0–0.8 [71]
µ Death rate of hosts (lifespan = 50 years) 5.48⇥ 10�5

µ1 Death rate of juvenile worms (including host death) (1� d1/⌧11 ) + µ
µ2 Death rate of adult worms (including host death) 0.042 + µ [27]
�1 Death rate of immature eggs ( 1

d2
� 1)/⌧2

1/�2 Life span of infective larval stages 5–65 [71]
s Sex ratio in adult worms (proportion female) 0.5 [27]
�0 Baseline fecundity per adult female worm 7.03⇥ 105 [100]
N Host population size setting

Unless specified all units are in days.

2.2.2 Egg survival data

To form an evidence-base for relationships between biological model parameters

and temperature we have drawn on three di↵erent experimental studies

considering A. suum eggs. Two of these studies have been used to parameterise

the average time taken for eggs to mature into infective larvae (⌧2) across

temperatures ranging from 5-35°C [70, 72]. The third study was used for seasonal

parameterisation of the immature egg and infective larval death rates (�1 and �2),

with a temperature range of 15–35°C [71].
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The first study [70] investigated the rate of development to infectivity of a

suspension of A. suum eggs in flasks placed inside a pig barn in Saskatchewan,

western Canada. Recorded temperatures in the barn ranged from 16.8-25.5°C and

increased rates of maturation were seen at higher temperatures; it took an between

21-28 days to observe development for temperatures above 23.5°C, whereas a
development time of 77-84 days was recorded for a mean barn temperature of

16.8°C. This data was used as the main basis for the relationship between

temperature and egg maturation time (⌧2).

The second study [72] recorded the developmental stages of eggs in a coarse sand

medium in an environmental chamber with 50% humidity under three temperature

conditions: 5°C, 25°C and 30°C. As the humidity was maintained it can be

assumed that this was not a limiting factor in development, giving temperature as

the sole determinant. No development was observed at 5°C in the first month,

with only marginal development being recorded across the three-month time-span

of the study; no eggs reached infectivity. At 25°C and 35°C it took 19 and 17 days

respectively for eggs to display successful embryonation. This data was used to

extend the previous data set to consider a wider range of temperatures in fitting ⌧2.

For the two external stage death rates a third study was used [71] that considered

larval viability post-development and larval death rate across a temperature range

of 16-34 �C± 1. Eggs were incubated in flasks containing a H2SO4 solution so

moisture is also assumed to be su�cient for development and survival. Higher

temperatures recorded lower viability and faster time to 90% mortality; larvae

were observed as living for up to 150 days at temperatures of around 20°C, but
above 25°C this quickly drops to below 50 days and above 30°C larvae survived for

fewer than 10 days. The study also considered development rate, but recorded the

time until 90% of the eggs had reached maturity rather than the average; this was

used to provide a qualitative validation of the fitted relationship for ⌧2 but not

considered for fitting purposes.

All seasonal egg relationships were fitted using fminsearch in Matlab R2015b to

minimise the squared error between the model and the data. An exponential decay

curve was fitted to the maturation time data as a function of temperature; limits

of function parameters give ⌧2 bounded below by a non-zero limit and the

exponential relationship reflects the assumption that development occurs either

very slowly or not at all for low temperatures [72]. The proportion of eggs

successfully reaching maturity (d2) was fitted to a quartic relationship for higher
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temperatures and capped at a fitted maximum for lower temperatures. Immature

egg death rates (�1) were then calculated as values which would give the

associated survival proportions; �1 = ( 1
d2

� 1)/⌧2. Larval death rates (�2) were

derived by solving a simple di↵erential relationship to get �2 = � ln (0.1)/m where

m is the time taken to achieve 90% mortality, which was fitted to an inverse

tangent relationship with temperature.

Full temperature-dependent relationships are detailed in the Results in Table 2.2.

2.2.3 Climate data

Records of mean monthly temperature (°C) and rainfall (mm) relevant to the

dates and settings we chose to investigate are taken from web archives [101, 102]

and used to fit setting-specific functions. The main requirement of these functions

is annual periodicity, hence a sinusoidal function provides a good approximation.

2.2.4 Epidemiological data

The first data set used to fit and validate the model originates from a field study

conducted between April 1977 and September 1978 in Gyeonggi Province, South

Korea [82]. The study was conducted across six hamlets (labeled A-F), each

consisting of approximately 100 inhabitants, that were considered far enough apart

to have independent transmission. Three rounds of biannual testing and

chemotherapy were applied in each location to the entire village population, with

intervention dates o↵set by a month for each hamlet to monitor di↵erent seasonal

responses. The drug used was pyrantel pamoate and the test was a Kato-Katz

smear test, involving visual characterisation of absence or presence of eggs in a

stool sample.

The second data set, used to investigate an alternative setting, is taken from a

double-blind placebo-controlled random trial study based across four semi-urban

villages in Osun State, Nigeria, between 2006 and 2007 [103]. Participation was

encouraged but voluntary and the study followed 194 children, aged 12-60 months,

across a period of 14 months. The treatment group received directly observed

therapy (DOT) of albendazole every 4 months for a year, with a follow-up

assessment at 14 months; the control group received no treatment but prevalence

was measured at the same intervals as the treatment group. The test used in both
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cohorts was also a Kato-Katz smear test.

2.2.5 Model implementation and fitting

The model was coded and run using Matlab R2015b, with the function ode45 used

to compute numerical solutions to the di↵erential equations. For each simulation

the model was run for a 30 year period to equilibriate the initial conditions before

any intervention strategy was applied. Administration of anthelmintic drugs was

implemented as a proportional reduction in mean worm burden; this proportion

depended on e�cacy, taken from the literature, and coverage, taken from the data.

Treatment using albendazole was assumed to have an e�cacy of 88% [104];

pyrantel pamoate is taken to have the same e�cacy [104], although this is likely to

be a conservative estimate [105].

In both settings transmission rate (�) was originally considered as an inverse

tangent function of rainfall; three parameters are taken to describe the magnitude

(�0), slope gradient (a1), and horizontal shift (a2) of the function. The slope

gradient and shift are permitted to take a range of values to allow for either a

positive or negative relationship to reflect conflicting views in the literature and as

it is possible that this will change between settings due to influence from human

behavioural characteristics, such as the e↵ects of rice planting during the rainy

season.

Parameters were fitted to the epidemiological data sets using approximate

Bayesian computation (ABC), followed by a regression-based conditional density

estimation method (ABC-CDE) [106], see Figure 2.2. Uniform priors for each of

the fitted parameters were defined and simulations were run using values sampled

from these distributions. Simulation outputs were compared to prevalence data,

filtered, and then linear regression is used to correct model inputs, resulting in a

posterior distribution. Simulation outputs were filtered (keeping 1000 of 75K

realisations, or 1.3%) to maximise the binomial log-likelihood:

X

i

[xi log(pi) + (N � xi) log(1� pi)] , (2.5)

where xi were the positive cases from the data, N was the total population size

and pi were the model prevalences. Weights were then calculated using the
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Figure 2.2: ABC-CDE. Schematic demonstrating the approximate Bayesian com-
putation regression-based conditional density estimate method used to fit parame-
ters.

squared errors between the model output and the data and the posteriors were

corrected by the best estimate of the underlying parameters, calculated using

weighted linear regression of all filtered parameter sets.

Model outcomes were obtained from 1000 model runs sampling parameters from

the posterior distributions and credible intervals were calculated by taking the

2.5% and 97.5% quantiles of the outputs.

For the South Korean data set the 9 data points from villages A-C were used

together for fitting and then model outputs for villages D-F were compared to the

other half of the data for validation. Prevalence, P , in the host population was

calculated from mean worm burden using a standard negative binomial

relationship [27], P = 1� (1 +M/k)�k, to capture the expected heterogeneity of

infection intensity.

For the Nigerian data set the model was fitted to the first four data points for each
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group and then the model predictions were compared to the fifth data point in

each case. Due to results displaying a very low overall impact of rainfall on

transmission the model was also fitted assuming a constant transmission rate, �,

and Akaike Information Criterion (AIC) and AICc (AIC with a correction for

small sample sizes) values were used for model selection. A negative binomial

relationship was also assumed between prevalence and mean worm burden, but in

this case the aggregation parameter was also fitted to the data.

2.3 Results and Discussion

2.3.1 Egg survival parameters

The experimental data for all three environmental egg parameters showed strong

dependence on temperature, as seen in Figure 2.3. The biggest e↵ects are seen in

maturation for temperatures below 20°C, for infective stage mortality above 25°C.
The proportion of eggs that develop into viable larvae is mostly constant unless

temperatures reach above 30°C, which is only relevant in some climates. All fitted

seasonal relationships can be seen in Table 2.2.

Standard transmission models for human ascariasis would expect maturation time

to be in the range of 10 to 30 days and a free living infective stage life expectancy

of 28 to 84 days [27]. The fitted relationships fall in the 10-30 day range for

temperatures above approximately 22.5°C, but exhibit a dramatic increase for

lower temperatures. For mid-range temperatures the model predicts time to 90%

mortality for infective stages to be between 40 and 120 days, which equates to a

life expectancy of 17-52 days and falls within the expected range.
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2.3.2 Fitting and validation: Korea

The fitted parameters for transmission rate in South Korea are:

�0 = 3.30(2.89, 3.82)⇥ 10�9; a1 = �3.46(�3.97,�3.12); a2 = �66.8(�85.3, 56.0);

such that the transmission rate � = a1
⇡
(arctan(a2R+ a3) + ⇡/2). This reflects an

inverse relationship between rainfall and transmission, perhaps due to high rainfall

resulting in infective stages being washed away from areas where uptake is likely to

occur.

Figure 2.4 shows the fitted rainfall-dependent relationship for South Korea.

Transmission is at its lowest during the months that see the most rain, with a

sharp increase as rainfall declines into the driest months. This could be due to

heavy rain washing eggs away through drainage systems, hence reducing

transmission, or human behavioural traits.

  

Figure 2.4: Seasonal transmission. Annual values for the transmission rate (�)
in Gyeonggi Province, South Korea. Depicted as best fit model averages with 95%
credible intervals.

Figure 2.5 shows both the fitting and validating outcomes for the South Korean

data set. There is excellent agreement between the model and the data used for

fitting from villages A-C. Model outcomes for villages D and E are seen to provide

a reasonable fit to the data when considering overlap between the respective 95%

confidence intervals, with some discrepancy between the model and the data for

24



CHAPTER 2. STH 2.3. RESULTS AND DISCUSSION

T
a
b
le

2
.2
:
F
it
te
d

eq
u
a
ti
o
n
s
a
n
d

p
a
ra

m
et
er

s
fo
r
se
a
so

n
a
l
re

la
ti
o
n
sh

ip
s
w
it
h

te
m
p
er

a
tu

re
(°
C
),

T
.

N
a
m
e

P
ro

ce
ss

R
el
a
ti
o
n
sh

ip
a 1

a 2
a 3

⌧ 2
M
at
u
ra
ti
on

(E
)

a 1
+
a 2

ex
p
(�

a 3
T
)

15
.5
(1
3.
0,
17
.3
)

4.
49

(3
.3
3,
5.
35

)
·1
03

0.
25

5(
0.
23

1,
0.
26

7)
m

90
%

m
or
ta
li
ty

(L
)

a 1
(a
rc
ta
n
(a

2
�
a 3
T
)
+
1.
5)

50
.2
(4
8.
4,
52
.3
)

13
.7
(1
1.
2,
16
.2
)

0.
55

8(
0.
45

7,
0.
66

0)
d 2

P
ro
p
or
ti
on

vi
ab

le
m
in
(a

1
,a

1
�
a 2
(T

�
a 3
)4
)

0.
79

8(
0.
79

6,
0.
80

1)
1.
08

(0
.6
2,
1.
78

)
·1
0�

5
26
.3
(2
5.
4,
26
.9
)

25



CHAPTER 2. STH 2.3. RESULTS AND DISCUSSION

village F. Parasite density aggregation, k, is 0.45 [107, 108].

  

Figure 2.5: Model validation – South Korea. Fitting and testing plots for
Villages A-F [82]. 95% confidence is represented by error bars on the data and 95%
credible intervals by shaded regions on the model outcome. Top row (left to right):
Villages A-C, fitting outcomes (- -) compared with data (⇤). Bottom row (left to
right): Villages D-F, model outcomes (- -) compared with data (⇥). Prevalence
data was recorded pre-treatment in all cases.

2.3.3 Fitting and validation: Nigeria

ABC results for fitting the model to the Nigerian data returned posteriors that

allowed for a range of marginal positive and negative relationships between rainfall

and transmission, indicating a lack of evidence to support this element of model

structure, unlike the significant relationship found for the South Korean data.

Comparing the sample size corrected Akaike Information Criterion (AICc) of this

model AICcR to that of the reduced model (AICc�), considering constant

transmission, leads us to reject the combined model with rainfall in favour of one

relying on temperature (AICcR = 434.83; AICc� = 429.69; AICc� < AICcR; the

relative likelihood of the rainfall model is 0.082). Comparison of the less

conservative AIC values would also reject the rainfall model in favour of the

simpler one (AICR = 434.62, AIC� = 429.63). This implies that we do not have

enough evidence to suggest rainfall is a significant predictor of disease in Nigeria.

A transmission rate of � = 7.93⇥ 10�10 (7.86��8.00⇥ 10�10) and a parasite

density aggregation of k = 0.16 give the best fit to the data.
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Fitting outcomes for the constant transmission model capture the overall

magnitude and trend of the data in both cases (see Figure 2.6), with reasonable

agreement between the model and testing data points (August 2007). The model

appears unable to capture the observed peak in cases seen across both groups

during February 2007, which suggests that this increase was driven by additional

factors; it is possible that sampling biases caused by behavioural change among

the target population could influence such a peak.

  

Figure 2.6: Model validation – Nigeria. Fitting plots for treatment (top) and
control (bottom) branches of the 2006-07 Nigerian study [103]. 95% confidence, for
the data, and 95% credible intervals, for the model, are represented with error bars
and shaded regions respectively. The model (- -) was fitted to the first four data
points in each branch (⇥) and then compared to the fifth observation (⇧).
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2.3.4 Seasonal egg dynamics

Figure 2.7 shows the model estimates for setting-specific seasonal parameter

values. The maturation time relationships show a key di↵erence between the two

settings; in Nigeria the high temperatures result in low-level fluctuations in

maturation time around the 20 day mark, but the drop-o↵ in temperature over the

winter in South Korea is expected to produce a significant slow down in

maturation across this period - with more than half the year seeing average

maturation times of greater than 50 days.

In South Korea the model considers larval mortality to be very low across the

entire year, due to low overall temperatures, with a peak during the summer

months between May and September. In contrast, larval mortality in Nigeria is

taken to fluctuate across the year, but with a higher average death rate. However,

in both settings the temperatures don’t get high enough for the model to predict

much e↵ect on the proportion of eggs that remain viable following maturation.

2.3.5 Impact on MDA

Investigating model outcomes for the South Korean setting shows that seasonal

timing of MDA could result in a 74.5% di↵erence in the number of days the

average individual is infected with worms (mean worm days) across the 12 months

following cessation of MDA; the best and worst case scenarios are March and June

respectively. This represents a significant improvement in worm burden across the

population, which could be expected to link with similar decreases in morbidity

and infection intensity. Similar improvements for prevalence and levels of

infectious larvae in environment are detailed in Table 2.3. It is also interesting to

note that whilst the seasonal trend is much more noticeable in the external larval

population than the mean worm burden, there is still potential for a large seasonal

impact on intervention (see Figure 2.8).

In South Korea June represents a peak in levels of infectious larvae and the

beginning of an uptake in transmission across the following months (see

Supporting Information for estimated seasonal transmission levels), causing faster

reinfection. Bringing down prevalence through MDA also results in low egg output

until new adult worm infections have developed (approximately 2-3 months). As

larval numbers will be naturally declining in this period it is expected that

28



CHAPTER 2. STH 2.3. RESULTS AND DISCUSSION

T
a
b
le

2
.3
:
T
h
e
p
re

d
ic
te
d

b
es
t
a
n
d

w
o
rs
t
tr
ea

tm
en

t
m
o
n
th

s
fo
r
G
y
eo

n
g
g
i
P
ro

v
in
ce

,
S
o
u
th

K
o
re

a
,
1
9
7
7
.

O
u
tc
o
m
e

J
u
n
e
(w

o
rs
t)

M
a
rc
h

(b
es
t)

R
el
a
ti
v
e
im

p
ro

v
em

en
t

M
ea
n
w
or
m

d
ay
s

15
1.
6
(1
12

.1
-
20

2.
1)

38
.6

(2
2.
1
-
63

.6
)

74
.5
%

(4
3.
3
-
89

.1
%
)

P
re
va
le
n
ce

25
.4
%

(2
0.
9
-
30

.3
%
)

9.
0%

(5
.5

-
13

.7
%
)

64
.6
%

(3
4.
4
-
81

.8
%
)

In
fe
ct
io
u
s
eg
g
co
u
nt

6.
26

⇥
10

8
(4
.4
8
-
8.
51
⇥
10

8
)

1.
67

⇥
10

8
(0
.9
2
-
2.
84
⇥
10

8
)

73
.3
%

(3
6.
7
-
89

.2
%
)

F
or

th
e
12

m
on

th
s
fo
ll
ow

in
g
ce
ss
at
io
n
of

4
an

nu
al

tr
ea
tm

en
t
ro
u
n
d
s;

m
ea
n
w
or
m

d
ay
s
re
p
re
se
nt
s
th
e
to
ta
l
b
u
rd
en

of
in
fe
ct
io
n

p
er

in
d
iv
id
u
al

w
h
il
st

ot
h
er

va
lu
es

ar
e
av
er
ag

ed
ac
ro
ss

th
e
ti
m
e
p
er
io
d
.

29



CHAPTER 2. STH 2.3. RESULTS AND DISCUSSION

  

Figure 2.7: Seasonal external stage parameters. Annual parameter values for
South Korea (left) and Nigeria (right). From top to bottom: maturation time (days);
daily death rate of infective larval stages; proportion of eggs that are viable following
maturation. Depicted as best fit model averages with 95% credible intervals.

artificially reducing egg output through mass treatment will have a less marked

e↵ect on the overall population.

Contrastingly, in March, infectious larval counts are close to an annual minimum

and transmission is on the decline. As the temperature picks up through April and
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Figure 2.8: Model outcomes. Results for South Korea (left) and Nigeria (right).
Top row: Fitted temperature and rainfall profiles. Middle row: Seasonal pre-control
baseline profiles showing environmental levels of infective larvae and mean worm
burden. Bottom row: Predicted mean number of worm days per individual across
the 12 months following cessation of 4 annual MDA rounds, for treatment occurring
in di↵erent months of the year. All error bands represent 95% credible intervals.

May the larval population should experience a sharp increase, hence treating at

this time is likely to limit the resulting peak and dampen future reinfection

potential.
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In Nigeria there is still a seasonal peak in environmental levels of infective larvae,

but the model does not indicate much di↵erence between MDA outcomes for

treatment at di↵ering times of the year (Figure 2.8, bottom right). This comes

partially from the lack of rainfall dependence, but also due to the narrow

temperature range in the region; for temperatures above 25�C both the egg

maturation and larval death rates show very little variation, resulting in a reduced

seasonal e↵ect – see Supporting Information for estimated parameter values across

the year.

In both cases the best time for annual treatment is predicted to occur just before

the main upswing in infective larvae, the worst time coinciding with the peak.

Bringing down infection levels whilst larval numbers are low starves the larval

population, causing larger reductions in future infection levels; decreased

transmission due to high rainfall in the summer months in South Korea

exaggerates this e↵ect.

Figure 2.9 shows the average predicted prevalence in the 12 months immediately

following 4 rounds of seasonally-timed annual MDA, with treatment times during

di↵erent months of the year, for both settings. We see a very similar trend to the

mean worm days plots in Figure 2.8, with large seasonal di↵erences in South Korea

and no evidence for any significant di↵erence in Nigeria.

  

Figure 2.9: Seasonal MDA outcomes: Prevalence. Average prevalence (pro-
portion of the population) across the 12 months following cessation of four annual
MDA rounds for South Korea (left) and Nigeria (right). Depicted as best fit model
averages with 95% credible intervals.
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2.4 Conclusions

A deterministic macro-parasite model has been used to investigate known

relationships between temperature, rainfall and A. lumbricoides transmission.

Model parameters were fitted to egg data from lab experiments, as well as

prevalence data for two settings (South Korea 1977-78, Osun Province, Nigeria

2006-07) and used to predict the impact of these relationships on control

strategies. Our results show that there could be large undetected fluctuations in

the infective larval population, impacting transmission, without these e↵ects being

necessarily evident through untargeted surveys of human infection.

In South Korea fitting resulted in a negative relationship between rainfall and

transmission, with the higher rainfall in the summer months causing a steep decline

in transmission rate. The temperate South Korean climate is expected to provide

su�cient soil moisture for year-round egg development so it is plausible that low

rainfall doesn’t negatively impact the larval population. A transmission decrease

due to high rainfall could be explained by the possibility eggs and larvae are being

washed away through drainage systems, reducing host exposure to infection.

Osun State is located in South-Western Nigeria, where rainfall is abundant across

the year; there is no dry season, as experienced by the Northern areas of the

country. The lack of dependency on rainfall displayed by fitting the model to data

from this region indicates that the factors influencing disease dynamics di↵er from

those in South Korea. The infection data is not seasonally structured, and hence

gives only partial information on the seasonal trends, but the peak of infection in

February does imply that there could be an additional level of seasonal variation

that is not captured by the model. This could be indicative of seasonal changes in

population behaviour or eating habits, or other climatic factors such as humidity

and soil water-content.

There is also a large time period between the two studies, with almost 30 years

between them (1978 to 2007), therefore e↵ects seen in the earlier data set, from

South Korea, may not be reflective of current transmission conditions. In

particular, the rainfall dependency is fitted without any underlying explanatory

mechanism, so if this e↵ect is due to di↵erent behaviour between the dry and rainy

seasons then cultural changes across the time period could have an impact this

relationship. However, the relationships between infective stage development in

the environment and temperature used in both the Nigeria and South Korea
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models are based on the same data source [70, 72, 71], so I would expect this e↵ect

to be robust across the settings.

The model implies that optimal timing for MDA could coincide with minima in

the environmental larval population, with the best treatment time predicted to be

just preceding the annual upswing. These results agree with veterinary practices

that advise treatment coinciding with hostile environmental conditions for the

free-living stages, but we would expect a similar need for caution in this approach

due to the potential for selecting for anthelmintic resistance [109]. For South Korea

the much wider temperature range, as well as the inclusion of rainfall-influenced

transmission in the model, led a predicted comparative decrease of 74.3% in mean

worm burden between the best and worst MDA timing. In comparison, the model

predicted only a 12.8% decrease for Nigeria. The climate data used was taken from

as close a geographical location as possible to each study, although the monthly

temperature averages used to fit these relationships will undoubtedly conceal daily

fluctuations that would be expected to result in a more variable seasonal trend.

Analysis of these two contrasting settings demonstrates that the importance of

seasonal factors for A. lumbricoides control is expected to vary dramatically

between di↵erent locations, depending on local climatic and transmission patterns.

It is possible that di↵erent e�cacies of treatment could lead to di↵erences in the

optimal time of year for treatment, or that changing the time of year between

treatments could be beneficial in some settings. Frequency and number of MDA

rounds could also impact our results, but benefits from treating at a seasonally

optimal time of year are expected to be cumulative.

In temperate climates, like South Korea, high ranges of temperatures may allow

for significant fluctuations in larval stage development across the year and could

lead to important knock-on e↵ects for MDA programs. Although the consistent

temperature pattern in Nigeria results in low predicted seasonal di↵erences and

the data presented here shows no evidence for rainfall-dependence, it is possible

that rainfall could still play an important role in other settings. Although current

results are subject to further evidence, we can still use the findings to gain insight

into the types of settings where we might expect seasonal e↵ects that have the

potential to impact the e�cacy of MDA programs.

For example, the DeWorm3 trials, which aim to test the feasibility of interrupting

the transmission of soil transmitted helminths (STH) using intensified MDA

programs, are based in three countries with heterogeneous weather profiles: Benin,
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India and Malawi [69]. In Benin the temperature range (monthly averages of

25-30°C [110]) is narrower than that of Nigeria, so one would expect any seasonal

drivers to be behavioural or rainfall-related. Temperatures are similarly high in

Vellore, India, (monthly averages of 23-33°C [111]) but with a steeper drop o↵ in

the cooler months that may introduce more seasonal variation. The third setting,

Malawi, exhibits a fairly narrow but much lower temperature profile (monthly

averages of 17-24°C [112]) and, depending on rainfall e↵ects, this is where we

would expect seasonal MDA to have the highest impact due to the steep increase

in maturation time as temperature drops under 20°C. Therefore in this setting it

would be prudent to carefully consider the implications of seasonally-timed

intensified MDA, as model results suggest that treatment during the cooler months

could deliver maximum impact on A. lumbricoides transmission.

All results are subject to uncertainty, through the Bayesian fitting framework, and

under the assumptions made during model construction and selection. In addition,

the egg survival data used to fit the model originates from experiments on Ascaris

suum life stages; there may still be some variation that has been unaccounted for,

although previous studies have shown strong parallels between A. suum and A.

lumbricoides eggs [73]. Preferred epidemiological data would include more frequent

measurements, with treatment at di↵erent times of the year in parallel

communities across at least four years to provide greater insight into the long term

infection dynamics.

The model succeeds in qualitatively describing the biological components of the

system and exhibits a good fit to both data sets, but caution must still be taken

when interpreting predictions. Although the model is adapted from a

well-established literature base there are still some limitations. For simplicity of

calculation the helminth sex ratio within a host is not considered; infections

consisting of only male or only female parasites should not result in any egg

output. It has been demonstrated in previous studies that sexual reproduction in

helminth infections can lead to a breakpoint in transmission, below which

transmission is no longer viable [27, 113]. This breakpoint is likely to be highly

dependent on setting-based factors, such as parasite aggregation and levels of

human migration [35].

The assumed negative binomial relationship between mean worm burden and

prevalence is also an approximation and not a true conversion. Additionally it

could be worth considering the uncertainty around where transmission occurs; if
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infection is driven by hot-spots, such as community latrines, then these may have

their own micro-climate that is less a↵ected by the environmental conditions.

Taking seasonality into account when planning control programs can also be

di�cult; even in settings with clear seasonal trends there are likely to be additional

complications when determining and successfully executing the optimal treatment

timing. For example, the presence of other parasitic diseases in the human

population could impact MDA outcomes and interfere with control measures;

treatment often targets multiple STH infections and the best timing for one species

may not be ideal for another. In addition, the logistics of treating at a particular

time of year may be disproportionately costly or di�cult for the benefits gained; it

may be much easier to treat at particular times of year and moving MDA outside

of these windows could result in lower coverage and hence worse overall outcomes.

If achievable, timing treatment to maximise impact now may create future

problems further down the line; veterinary experience shows that timing MDA

during low periods of larval density in the environment can magnify the risk of

drug resistance by imposing additional selection pressures on the system.

Although anthelmintic resistance has not been definitively identified using

currently available tools for human STH infections, it is still important to be

cautious of any action that may encourage resistance to spread. Any seasonal

recommendations for treatment timing should therefore be considered alongside

the potential resistance development risk and further analysis would need to be

done to inform any actions taken.

Nonetheless, our results suggest that variation in egg survival and maturation

could be exploited to maximise the impact of MDA. Practically, we face the

challenges of feasibility, caused by factors such as school term times and potential

seasonal accessibility in hard-to-reach areas, but optimising treatment timing may

be worth considering in some areas. Even though the evidence base in humans is

weak there is enough grounds, combined with the depth of veterinary literature

suggesting significant advantages to seasonally targeted anthelmintic therapy, to

warrant further investigation.

2.4.1 Chapter summary

In this chapter I introduced STHs, focusing in particular on the global significance

and biology of Ascaris lumbricoides. I compiled and presented evidence for the

36



CHAPTER 2. STH 2.4. CONCLUSIONS

impact temperature has on egg dynamics and used this to fit relationships between

temperature and egg survival, development and viability. I also reviewed evidence

for a relationship between rainfall and transmission and found this e↵ect to be

inconclusive. I then developed a novel seasonal model of transmission and

treatment, incorporating the egg dynamics, and fitted this to data from South

Korea and Nigeria, before predicting the impact of selective MDA timing across

the year. My results show that for some settings, such as South Korea, optimising

the time of year MDA is implemented across a program could lead to a

comparative decrease of 74.5% in mean worm days. However, in tropical settings

where temperature variations are small, such as Nigeria, there is no evidence that

MDA timing is important.
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CHAPTER 3

LYMPHATIC FILARIASIS ELIMINATION

3.1 Introduction

3.1.1 Chapter Outline

In this chapter I analyse the evidence for key biological determinants of lymphatic

filariasis (LF) transmission and use a model of transmission derived from

branching process theory to demonstrate that a target threshold of <1%

microfilariae (mf) prevalence is not likely to be su�cient for transmission

interruption in communities with a mid-to-high annual biting rate. I also show

that the insu�cient and inconsistent experimental evidence behind key biological

determinants of disease, particularly the transmission rate from vector to human,

leads to high uncertainty in confidence of elimination success. This highlights the

need for further experimental studies to refine our understanding of LF thresholds.

I then go on to describe how local biting rate or vector density could be used as a

proxy for transmission intensity to adapt targets between settings.

3.1.2 Disclaimer

This chapter is adapted from my first author article entitled Evaluating the

evidence for lymphatic filariasis elimination, published in Trends in Parasitology in

November 2019 [14] and also from a general audience article Is there a worm on

38



CHAPTER 3. LF ELIMINATION 3.1. INTRODUCTION

that branch? published in a Biology and Medicine Special Issue of Mathematics

Today in October 2019 [114]. I was the first author on both articles and the work

contained is my own, conducted with consultation from and collaboration with the

other authors. There is some additional content and detail that was not included

in these publications, specifically expansion and integration of relevant

supplementary materials.

3.1.3 Background

The year 2019 marks a number of important anniversaries: 75 years since D-Day,

50 years since both the Stonewall riots and the first moon landing and 30 years

since the fall of the Berlin Wall. It also marks 40 years since the global eradication

of small pox – the first infectious disease to be driven extinct by modern medicine

[115]. Prior to eradication, small pox had existed for at least 3,000 years and, with

up to a 30% mortality rate, was considered one of the most feared human diseases

in the world [116]. Now, thanks to a global vaccination campaign, the virus is

believed to only exist in two secure laboratories and there have been no reported

cases since 1978.

The success of the small pox programme led to an increase in discussions about

eradication of other diseases, such as polio, mumps and guinea worm. In 1993, The

Carter Center, a not-for-profit organisation founded in 1982 by former U.S.

President Jimmy Carter, published a report declaring these three diseases, along

with three others, as potentially eradicable with existing tools [117]. Malaria

eradication, previously abandoned after being unsuccessfully targeted in the 1950s

and 60s, also made a return to the global health agenda in 2008 [118]. Whilst the

only other disease to join small pox in the last 40 years has been rinderpest, a

livestock disease eradicated in 1999 [119], there has been some significant progress

made towards achieving elimination across number of these diseases. Notably,

global e↵orts have brought cases of Guinea worm down from almost 100,000 in

1993 to only 30, from just two countries, in 2017 [120].

LF was one of the diseases earmarked for eradication in 1993 [117]. Colloquially

known as elephantiasis, LF is a mosquito-transmitted worm infection that can

cause lasting and debilitating disability if left untreated [26]. Although reliable

written records of the disease only date back to the 16th century, historians argue

it has been around for a lot longer. Due to the distinctive nature of some disease
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symptoms, such as the severe swelling of limbs, there are ancient artifacts dating

all the way back to Pharaoh Mentuhotep II’s reign over Ancient Egypt around

2000 BC that potentially provide evidence of filariasis in the ancient world [121]

(see Figure 3.1).

Four-thousand years later, in AD 2000, infection was still widespread across

tropical regions, with 120 million people estimated to be at risk [122]. Due to over

7 billion treatments being delivered through mass drug administrations (MDA,

where large proportions of the population are treated at the same time, usually

yearly), the number of infected people is thought to have lowered substantially

since the millennium, with fourteen countries having been validated as reaching

less than 1% prevalence across their endemic regions [26, 123].

The question which now faces the Global Programme to Eliminate Lymphatic

Filariasis (GPELF), is whether and where LF is likely to be eliminated once this

low level of infection is achieved. The mathematical literature on infectious

diseases has been crucial in informing the discussion on eliminating infections, and

a number of challenges remain [117]. Here we address the particular challenges of

modelling the elimination of a sexually reproducing parasite which is transmitted

by a mosquito.

3.1.4 Global situation and progress

There are currently 886 million people across 52 countries worldwide at risk of LF

[19]. Infection is caused by a mosquito-transmitted filarial worm and, if left

untreated, can lead to permanent and debilitating disability. GPELF set a target

of elimination as a public health problem (EPHP, see Glossary) in 1997, leading to

over 7.1 billion treatments delivered as part of mass drug administrations (MDA)

since 2000 [8]. In 2011, the WHO published guidelines for halting treatment and

verifying EPHP through the use of Transmission Assessment Surveys (TAS) to

measure a target threshold [30, 124]. By October 2018, 14 countries had reached

this target, and 554 million people worldwide no longer require mass treatments

[19].

As indicated by the name of the TAS, it was hoped that reaching these targets

would lead to elimination of transmission (EOT) in most areas. However, in Sri

Lanka the TAS has been demonstrated as not sensitive enough to detect low-level

persistence [125, 5] and pockets of transmission are still being found despite EPHP
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Figure 3.1: A statue of Pharoah Mentuhotep II (who reigned c. 2055–2004 BC).
Swollen limbs, as are depicted here in the legs, are a characteristic symptom of lym-
phatic filariasis. Image credit: Statue of Nebhepetre Mentuhotep II in the Jubilee
Garment MET DP302395.jpg by Pharos / Wikimedia Commons / CC0 1.0
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validation. The community is now revisiting the TAS methods, including the

original target of 1% microfilaria (mf) prevalence [126], particularly in the context

of the new triple drug regimen which is hoped to accelerate progress, but will

require di↵erent post-treatment surveillance [55].

It is possible that achieving EPHP, according to the current definition, will lead to

EOT in some settings [127, 128], but the high levels of variability between

localities and uncertainty in our knowledge of transmission makes it hard to

predict where this will occur. This is exacerbated further by seasonal variation in

environmental conditions, which has been shown to impact a number of helminth

infections [67, 129]. Residual infection remaining after MDA cessation can lead to

resurgence and reintroduction [130, 131], with long-term persistence dependent on

a range of factors [7].

3.2 Methods

3.2.1 Sexual reproduction in the host and elimination

The sexual reproduction of filarial worms requires both male and female parasites

to be present in an individual host for microfilariae production, so at a su�ciently

low prevalence we would expect most infections to be non-transmissible due to low

parasite load (i.e. a low probability of male and female adults in the same host).

This is expected to result in fewer onward infections, and hence increasingly lower

prevalence and intensity, until infection dies out. The threshold below which we

expect this phenomenon to occur is called the breakpoint [27, 113]. As the focus of

some NTD programs has shifted from control towards elimination, there have been

a number of studies aiming to quantify these thresholds for a variety of helminth

infections within the NTD umbrella [20, 132, 117, 133].

This theory has certain consequences for control (Figure 3.2a). If transmission is

su�ciently low, then the infection is expected to die out. If there is a higher

transmission rate, outcomes depend on the mean worm load in the population; if,

usually through control strategies, the worm load is below the green dashed line

(the breakpoint) then elimination is assured. Previous modelling studies that have

assessed breakpoint thresholds have found values of much less than 1% mf

prevalence [131, 134–136]. It has been previously demonstrated that factors such

as parasite aggregation and vector competence will further a↵ect these thresholds
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(a) Breakpoint extinction

(b) Stochastic extinction

Figure 3.2: LF extinction theory. Schematics comparing the theory behind break-
point extinction (a) and stochastic extinction (b) for LF. (a) For su�ciently low
transmission intensities (i.e. low biting rates) disease levels will drop away to zero.
Beyond the critical transmission level (black dotted line) there are three equilib-
ria: high disease (stable, red), low disease (unstable breakpoint, green), disease-free
(stable, black). Disease levels above the breakpoint will increase to the higher equi-
librium, whereas disease levels below will decrease to zero. (b) Visual depiction of a
transmission chain starting with one infectious individual. The number of secondary
infections caused by each currently infectious individual are sampled from the sec-
ondary case distribution. This is used to simulate the onward chains of infection;
extinction occurs when all chains die out (i.e. have no secondary cases). Stochastic
variation can cause this to occur even above the theoretical breakpoint threshold.
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[50] and the majority of studies have focused on specific geographical areas,

resulting in a wide range of suggested breakpoints across the literature.

Measuring breakpoints that are substantially lower than 1% mf prevalence would

require infeasible sample sizes and survey costs. In this review we dont argue for a

specific breakpoint, instead focusing on asserting that the experimental evidence is

too uncertain to conclusively support a 1% threshold and emphasizing the

importance of spatial heterogeneity.

Whilst breakpoint theory is extremely useful, it is also possible for stochastic, or

chance, extinction to occur before this break-point is reached, particularly when

infection levels are low (Figure 3.2b). The probability of elimination, given a

particular prevalence (e.g. 1%), can be calculated by considering the probability a

chain of transmission will die out (this chain has similarities to a branching process

[63]). These types of branching-process-style methods have been used for

soil-transmitted helminths [137, 138], but have been adapted here to account for

vector-borne transmission with an aggregated bite risk [99, 54]

Current guidelines mean EPHP is validated after passing TAS, but we have little

experience in what this means for long-term transmission. Assuming for simplicity

that TAS is able to measure a true mf prevalence of less than 1%, this theory of

stochastic extinction can be used to estimate how the future probability of EOT

(zero infections) depends on a range of setting- and disease-specific variables. This

process uses the distribution of the number of infectious secondary cases caused by

one infectious individual, the mean of which is the e↵ective reproductive number

(Re).

As a toy example, for a population of 1000 and 1% mf prevalence, we consider a

distribution of individual worm burdens (Figure 3.3a). Infections with only one

worm are non-transmissible. From one infectious person you then get the number

of new cases, Z, caused during their infectious period (Figure 3.3b). Since

transmission represents a chance event, Z is best represented by a distribution,

and acts as a proxy for Re. This distribution determines the probability of the

transmission chain dying out, i.e. no further cases, at some point in the future. We

use this to give a univariate demonstration of the present parameter uncertainty

and how this might impact two epidemiological measures: the probability of

elimination and the e↵ective reproductive number.
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Figure 3.3: Simulating transmission chain extinction. A schematic describing the
simulation process for calculating the number of secondary cases produced by one
infectious individual in a population with 1% mf prevalence. (a) Allocate distribu-
tion of adult worms and bite risks across the population. Individuals with 1 worm
are infected but not infectious, individuals with 2 worms are considered potentially
infectious. (b) Generational calculation of number of new infectious cases caused by
aan average infectious individual. One infectious individual infects X vectors. The
vectors that survive the incubation take infectious blood meals, resulting in Y new
adult worms. These worms are distributed across the population according to bite
risk aggregation, resulting in Z new infectious (�2 worms) individuals.
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3.2.2 Branching process extinction

The most common branching process formulation is the Galton-Watson process

[63], which we outline here before adapting for LF (Figure 3, right):

Let Xn denote the number of infectious individuals in generation n and for each

infectious individual, i, let Zn,i be the number of new infectious cases directly

caused by that individual. Zn,i iid random variables over n 2 0, 1, 2... and

i 2 1, ..., Xn.

Assuming we start a chain of infection with one infectious individual, X0 = 1, we

then have the recurrence equation,

Xn+1 =
XnX

i=1

Zn,i . (3.1)

The extinction probability of one chain of infection is the probability that Xn = 0

for some n > 0, or that limn!1 P [Xn = 0].

Define pm (m = 0, 1, 2, ...) as the probability of an individual producing m

o↵spring and dm as the probability of extinction by the mth generation; d0 = 0 as

we start with one individual in generation 0. Hence dm is an increasing, bounded

sequence (0 = dm  d1  d2  ...  1) and therefore converges to some limit, d,

where 0  d  1 is the ultimate extinction probability.

d1 = p0 (3.2)

d2 = p0 +
X

j=1

pj(d1)
j (3.3)

... (3.4)

dm = p0 +
X

j=1

pj(dm�1)
j . (3.5)

We can write this as,

dm = f(dm�1) (3.6)
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where f is the ordinary generating function:

f(d) = p0 +
X

j=1

pjd
j . (3.7)

Since dm ! d, we can find the probability of ultimate extinction by solving

d = h(d).

We want to show that d is the smallest non-negative root of this equation. Take

b > 0 also a root with b 6= d and b = f(b), then we have that d1 = f(0)  f(b) = b,

hence d1  b. Assume dk  b for some k, then

dk+1 = f(dk)  f(b) = b , (3.8)

since f is an increasing function. Hence, by induction d is the smallest

non-negative root. The function, f , is also convex and hence has at most two real

roots. Since one is always a root, f(1) =
P

j=0 pj = 1, then the probability of

ultimate extinction is only less than one if the second root both exists and lies

between zero and one.

By considering the gradient of f at one, f 0(1) =
P

j=1 jpj , we can determine the

location of the other root – namely there is only a second root in [0, 1] if f 0(1) > 1.

Notably this gradient, f 0(1), is equal to the average number of secondary cases

caused by a single infectious individual, often called the basic reproduction number

to describe early outbreak dynamics. Since we are considering a situation where

there is a background population prevalence that has been artificially lowered to

1%, we call this the e↵ective reproduction number, Re.

In our model (further details below), we want to take account of the heterogeneous

worm distribution across hosts, as it is a key feature of the system. Therefore, it is

not possible to directly calculate either the e↵ective reproduction number or the

probability of extinction, but both can be calculated numerically by considering

the outcome distributions of stochastic simulations. In particular, by calculating

the proportion of simulated individual infections that result in each number of

onward infections, we can generate a discrete numerical approximation of our

secondary case o↵spring probability distribution.

From this, we can iterate through each generation to find the probability that

47



CHAPTER 3. LF ELIMINATION 3.2. METHODS

extinction has occurred. This probability converges over time and, if su�cient

generations are considered, can be used as an approximation of the ultimate

extinction probability, d.

3.2.3 Lymphatic filariasis model

In order to estimate the extinction probability for LF, we simulate a population of

1000 individuals, with variable infection risk, of whom 1% are productively

infected (producing transmissible o↵spring, mf), a proportion are unproductively

infected and the remainder are uninfected. We assume the dominant vector is

Anopheles gambiae.

We then calculate for a randomly infected individual, the number of onward

productive infections they produce according a model of the life-cycle. An

infection lasts for a randomly selected period of time (exponential, mean 1/r, the

estimated fecund life span, 6 years). This individual has a risk of being bitten

relative to the rest of the population (Gamma, mean=1), which, depending on the

annual bite rate (ABR), or the expected number of bites per year, generates the

expected number of bites in during their infectious period. For each bite, there is a

probability, c, that the mosquito becomes infected. We assume each new infection

occurs in a new mosquito, which gives an upper bound of the total number of

infected mosquitoes for this individual.

Each mosquito then has exponentially distributed life expectancy (mean= 1/g, 6.9

days [64, 139]) and has to survive an incubation period (also Exponential,

mean= ⌫, 8.5 days [140]). From this we can derive the probability a vector

survives to infectiousness and, using a binomial distribution, calculate the total

number of infected vectors, V , which survive the incubation period. The number

of infectious bites caused by these vectors is then Poisson distributed at a daily

rate, f=0.335 [139], per vector and of these bites only a small proportion, b ⌧ 1

[52, 53], will successfully lead to a productive infection. The e�cacy of

transmission from vector to host is so low due to the route the larvae must take to

establish; rather than being injected into the bloodstream during the bite, the

larvae must instead independently fall onto the skin and find the hole left by the

mosquito after feeding.

This describes the number of new adult worms Y , that are established in humans

resulting from the entire duration of this one individual’s infection (one distinct
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outcome per iteration, creating a distribution). From the total number of new

adult worms, Y , we can derive the e↵ect on prevalence by sampling Y individuals,

with replacement, according to bite risk. Each time an individual is sampled they

gain 1 adult worm. We then compare new worm burdens with previous worm

burdens – how many new infectious (� 2 worms) cases are there that were

previously not infectious ( 1 worm)? This gives our number of secondary

infections, Z.

Then the mean number of new infectious humans is Re, which here relates to the

full-cycle reproduction number focusing on human infections only. If Re < 1 then

eventual extinction will occur – implying that prevalence is already below the

theoretical breakpoint of the system. However, if Re > 1 then extinction is not

guaranteed but may still occur. We need to consider the o↵spring distribution of

the transmission chain, pj probability of having j secondary cases, which can be

approximated by the scaled frequency of secondary infectious case counts, in order

to calculate the probability of extinction.

3.3 Empirical evidence for life-cycle variables

We now review evidence for key parameters in the life-cycle which drive

transmission (Figure 3.4). As previously mentioned, a number of these variables,

such as the annual biting rate (ABR), are likely to introduce large di↵erences due

to the high spatial variability. Others, such as the probability an infectious

mosquito bite results in a viable human infection, have the potential to be more

consistent across settings, but currently lack in experimental evidence. Table 3.1

at the end of this section outlines the range of values for biological variables found

in the literature.

A detailed literature review turns up widely varying estimates of ABR, partially

due to geographical variation. These values, from countries with history of LF

endemicity, range from 3 [64] to 611 [141] bites per person per day. A number of

these are based on human landing catches [64, 141, 142], with the majority relying

on studies from the 1960s and 70s [141], whilst some are derived from models

[143]. Despite a wealth of historic studies, supported by the malaria literature

(which covers many of the same vector species including Anopheles gambiae),

human landing catches are often considered unethical and give highly variable

results. Relying on historic estimates can also disregard changes in socio-economic
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Figure 3.4: LF life-cycle. Life-cycle schematic demonstrating key biological vari-
ables that could a↵ect prediction of elimination success. Duration of infection is
determined by human and fecund worm lifespans. Infection from host to vector
depends on the annual biting rate (ABR) and the probability a bite on an infectious
host infects a vector. The number of vectors that survive to infectivity depends
on incubation (EIP) and vector lifespan. Transmission from vector to host is then
determined by the blood feeding rate (BFR) and the probability an infectious bite
results in a viable adult infection, as well as the requirement for �2 worms for
infectivity.
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conditions resulting in decreased vector-human contact.

Current estimates in the literature of the basic reproductive number without

control, R0, range from 0-2.5 [144], depending on the vector-host ratio (an

alternative metric to ABR). Although setting-specific values of R0 for other

diseases can often be calculated from infection data, the global landscape of public

health history for LF means that we have very little contemporary baseline

(pre-control) data with which to do this. As an alternative, we can consider the

previously mentioned estimation of Re.

Another important, but largely uncertain, factor is the degree of parasite

aggregation, measured inversely by the negative binomial k. For LF, adult worm

aggregation is considered to be driven by heterogeneous transmission, caused by

host variation in bite risk [132]. Initial estimates for k were based on mf data (k =

0.08, 0.3 [50, 54]). However, a recent study in Papua New Guinea used bite and mf

data to demonstrate that the k for bite risk is an order of magnitude larger than

that for mf aggregation, giving a refined estimate of 0.73 (s.d. 0.035), with

site-specific estimates ranging from 0.3–1.3 [15, 26]. We will now separate

transmission into two parts: humans to mosquitoes, and mosquitoes to humans.

When considering the former the key variables are duration of infection, which

depends on fecund worm lifespan, and the probability that a vector biting an

infected host will become infectious.

Often worm lifespan is stated as being 6-8 [19] or 5-10 years [51, 145], but

reference trails rarely reveal empirical evidence. There are studies that corroborate

similar ranges, such as 2.1-5.4 [146] or 9.1-11.8 [147] years, but there are also

estimates in the literature of up to 40 years [148].

Infectivity to mosquitoes depends on mf intensity, leading to wide ranges of

15-60% of vectors becoming infected from a single mf positive bite [139, 149].

Infection from vector to human is governed by the number of infectious bloodmeals

one mosquito will take calculated from vector survival and competence, extrinsic

incubation period (EIP) and blood feeding rate (BFR) and the probability one

infectious bite will result in a viable infection. There are reasonable estimates for

vector survival and BFR from the malaria literature [64, 150] and for LF

incubation [140], although these do not typically account for the impact of

infection on survival [139].
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One key parameter of infection, the probability an infectious bite results in a

mature human infection, is largely unknown. Estimates range from 10-5 to 10-3

[52, 53] and are usually broken down into three steps: the L3 leaving the vector,

entering the host and developing to fecundity. The first is relatively

straightforward to measure [151], although poses ethical issues, and the second can

be estimated using mouse models [152, 153]. The third is harder; best estimates

are calculated by using Brugia malayi studies to derive a daily death rate and then

applying this across the longer Wucheria bancrofti developmental period [51, 154].

Although Brugia malayi is also a cause of LF in humans, the parasite is of a

separate species to Wucheria spp. and hence is not necessarily comparable in this

way.

3.4 Results

If we include these parameters in the simple framework described above, we can

see how the uncertainty a↵ects our estimates of key epidemiological measures

(Figure 3.5). The mid-points of elimination probability (0.73) and Re (1.1) are not

intended to be true estimates, rather they represent a mid-ground of the

parameter ranges found in the literature and a basis for comparison.

The variable which generates the most univariate uncertainty is the probability an

infectious mosquito bite will infect a human, b, due to the wide range of possible

values. Variation in elimination probability due to ABR, which is correlated with

the basic reproductive number (R0), is also very high. This is due to both

measurement inaccuracy and spatiotemporal variability. Parameters that are

known to be key drivers in the probability of elimination, worm fecund lifespan

and the degree of adult worm aggregation [50, 20, 155], potentially induce lower

uncertainty here due to considering narrower plausible intervals.

In addition to the probability of elimination, we also consider the e↵ective

reproductive number, Re. It is important to note that for helminth infections,

metrics often refer to the number of adult filarial worms arising from one adult

filarial worm, rather than considering human infections. However, the theory is

similar enough to allow heuristic comparison. Our mid-estimate for Re is chosen to

be close to 1, representative of the low-level transmission observed in some

post-MDA settings, but varying the probability an infectious mosquito bite will

lead to a patent infection (b) can lead to an order of magnitude di↵erence. In fact,
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Figure 3.5: Predicting elimination probabilities. Illustration of the potential im-
pact of high uncertainty in variables by considering their univariate impact on the
probability of elimination (a) and the e↵ective reproductive number (b) for the key
biological variables of the LF transmission cycle. Assuming an mf prevalence of 1%
and a human population size of 1000. References for ranges of variables considered
can be found in Table 3.1. Note that this univariate analysis should be interpreted
carefully as variables are likely to be correlated in ways which we cannot yet ac-
count for. For example, the mid-estimates here have been chosen to represent a
mid-ground of ranges found in the literature and are not necessarily representative
of the true values or ranges that may exist across real-world settings.
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Figure 3.6: The probability that transmission will become extinct for di↵erent
annual biting rates (ABR) and di↵erent starting prevalence (green 0.5%, orange
1%). At low biting rates, the infection is highly likely to fade out, but for high
biting rates it is unlikely.

it is possible to push the estimate of Re across the critical threshold (Re = 1)

between extinction and endemicity by adjusting any variable within the ranges

found in the literature. This reinforces the importance of using reliable variable

estimates when making predictions, particularly in elimination settings where

infection data are sparse.

We can characterise the probability of extinction from achievement of 1% mf

prevalence in relation to transmission intensity (Figure 3.6, orange curve). When

the annual biting rate (ABR) is low, then infection is highly likely to fade out, but

this probability declines as the biting rate increases. This emphasises the

importance of local context in determining the extinction probability from this

endpoint. We additionally simulated the curve for a halving of the endpoint - a

prevalence of 0.5%. This, of course, increases the probability of extinction, but

would require much larger sample sizes to evaluate.
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3.5 Recommendations

Due to the demonstrated uncertainty that knowledge gaps, particularly in the

establishment of a patent infection, can cause in estimating elimination thresholds

it would be prudent to refine the evidence for these variables. Here we discuss a

few options for future studies and analyses that we believe could strengthen the

knowledge base.

The probability that an infectious bite leads to an infectious host cannot be

measured experimentally in humans, however we can improve current estimates

with anecdotal and observational studies. Longitudinal studies can provide

evidence of the time to antigen positivity and the time to mf positivity in children,

or in adults that have moved from non-endemic to endemic regions. One existing

study, looking at acquisition in travellers, surmises that the majority of cases are

in individuals who spent in excess of six months in an endemic region [49], whereas

another cites a number of travellers contracting infection with only one month of

exposure [53]. Entomological studies routinely estimate ABR through human

landing catch data, and individual exposure can be quantified based on net usage

and vector biting habits [156, 157].

The range of ABRs discussed are very broad estimates, covering a wide range of

settings, but this can be a di�cult variable to measure consistently. It may be

possible to obtain greater certainty in Re without accurate ABR measures for each

location. For example, estimates of low, medium or high vector densities would

still improve our predictions and these categories of exposure, which act as a proxy

for R0 classification, could be informed by a combination of trap densities and

vector control coverage. Spatial heterogeneity can also occur within

implementation units (IU), posing problems for any categorisation process, so it is

important that treatment targets are determined by the maximum transmission

measure for a region.

We have used basic analyses to highlight that the existing experimental evidence

does not a↵ord a high degree of certainty at the current 1% mf prevalence

elimination threshold. This is mainly because of uncertainties in variables which

could be either experimentally or analytically refined, but also due to

spatiotemporal variation in vector densities and biting rates [141]. That varying

the value of one input variable within sensible ranges found in the literature can

make such an impact on predictions, demonstrates the di�culties posed by
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targeting EOT when we know local heterogeneities and variability are di�cult to

measure. Observations of ongoing transmission in parts of validated countries o↵er

empirical support to our concerns with the EPHP target, prompting some

important outstanding policy questions. This highlights the need for both

refinement of the experimental evidence based and care when selecting model

parameters from the literature.

Recent empirical evidence suggests the current survey does not capture ongoing

transmission. By altering the survey design, through di↵erent diagnostics,

measuring mosquitoes or sampling on a more detailed spatial scale, it is possible

that areas of high transmission rates could be picked up earlier. In order to

support e↵orts to eliminate lymphatic filariasis we would recommend a

multi-pronged approach: improving the experimental evidence base of measurable

quantities; detailed analysis of existing infection data to improve our

understanding of the infection risk associated with an infectious bite; and

development of a discrete system to classify vector density, as a proxy for

transmission intensity, to allow comparison of di↵erent regions. The optimisation

of elimination program strategies and surveillance will require continual revisiting

of predictions as we gather more epidemiological data through existing surveys and

monitoring infrastructures, as well as expanded epidemiological and surveillance

studies at low prevalence.

As more countries cease interventions and move to post-validation surveillance it is

increasingly obvious that transmission breakpoints are unlikely to be

one-size-fits-all, hence more flexible thresholds are necessary. The GPELF

currently has only one surveillance strategy for all locations with the same

mosquito and worm species. Fully tailoring strategies to local epidemiology would

improve utility, but the cost of evaluating the local epidemiology is likely to far

exceed the cost of the existing surveys. Therefore, it is likely that an adaptive

survey design would be more practically useful. It is vital that we ensure this

process is well-informed, as prematurely halting control or surveillance programs

could pose a serious threat to global targets, but also because we believe that it

may be possible to exploit this geographical variation to maximise the probability

of elimination.
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3.6 Outstanding questions and further work

There remain a number of key outstanding questions surrounding the issue of LF

elimination. In particular, the expected time frame of disease extinction is of

increasing interest to public health initiatives and donors, who want to see return

on their investments of time and money. Further analysis using the theory of

branching processes could allow us to consider the likely timelines to extinction or

elimination for scenarios that have Re < 1. However, as we know from

well-established analysis of the deterministic model, the epidemic growth rate for a

helminth with a lifespan of the order of a decade is extremely slow [27]. This

means that for a number of the branches/simulations, infection can oscillate

around low levels for many years before either re-emerging or fading out. This is a

challenge that will require investment in long-term surveillance.

In addition, despite general agreement on the existence of a break-point, there is

currently no clear consensus on where this threshold lies and how it might vary

between di↵erent settings. Our results show that factors such as ABR could have a

substantial impact on extinction probability, making it unlikely that there is a

single threshold that will work reliably. However, this raises the question of how

adaptable targets should be and how public health policy makers can best balance

costs with setting appropriate and relevant targets. Indeed, if in some locations

the break-point is lower than can feasibly be measured through current

surveillance strategies, then what should the next steps be? It is currently unclear.

The impact of ABR on extinction probability for di↵erent thresholds is also

interesting from the perspective of vector control initiatives. Decreasing the ABR

in an area will increase the probability of disease extinction at a particular mf

prevalence threshold, but we could also think about this in terms of how it a↵ects

the breakpoint; a lower ABR will give the same extinction probability for a higher

mf prevalence. Looking back at Figure 3.2, ABR can be considered a proxy for

transmission intensity and decreasing transmission results in a higher breakpoint.

If transmission is low enough then disease cannot be maintained at any prevalence

and we would expect reversion to the disease-free equilibrium. In the next chapter

I use a vector-based model to investigate the potential e↵ect of vector control on

transmission measures.

Another key unknown is how much of the uncertainty described here is due to lack

of rigorous biological evidence and how much represents natural stochastic
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variation within nature. To quantify this will require well-formulated experimental

studies and innovative ways of measuring key biological determinants of

transmission.

3.7 Concluding remarks

The elimination of an infectious disease requires a number of pieces of the puzzle

to work together. Biological plausibility, usually due to the availability of a

particular tool, such as a vaccine, or drugs donated for MDA, together with

political will and funding at all levels, from global policy to community-level

acceptability, are essential parts of the puzzle. Mathematical modelling can inform

our understanding of the biological plausibility, identifying important drivers of

success and informing the design of not only interventions, but how targets are set,

measured and evaluated.

In the case of LF, hopes for elimination in the coming decades are high. The slow

epidemic growth rate, the lack of amplification in the mosquito (a mosquito can

only transmit as many worms as they ingest, usually fewer), the low probability of

infection of a host and the hope that global development will improve the living

conditions of those exposed to these diseases, mean that there are many reasons to

expect that elimination is likely to occur in many a↵ected areas once infection is

brought low, as this analysis suggests. The transmission chain model presented

here, whilst mathematically relatively straightforward, provides a practical basis

for informing policy discussions in this area. In particular it shows that there are

likely to be many areas where additional interventions and surveys may be needed.

3.7.1 Chapter summary

In this chapter I described the history of disease elimination and introduced the

disease of focus: lymphatic filariasis. I discussed the biology of transmission,

namely the dependence of infectivity on parasite sexual reproduction in the host

and how this creates a break-point prevalence where transmission is no longer

viable. I also introduced the idea of stochastic elimination prior to reaching this

break-point and used branching process theory to describe a model of transmission

that could predict elimination probability for a specified set of biological

parameters. I presented the results of a detailed literature review that determined
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possible ranges for these biological parameters and demonstrated how the wide

variety of values found could have dramatic e↵ects on model results. I then

analysed my model output, showing the wide window of elimination probabilities

and e↵ective reproductive numbers that came from these parameter ranges, and

discussed how the break-point might vary between settings – specifically with

regards to annual biting rate. I concluded by discussing the implications of these

findings and outlining what further work could be done.
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CHAPTER 4

MODELLING MOSQUITO-BORNE DISEASE

4.1 Introduction

4.1.1 Chapter Outline

In this chapter I use a deterministic compartmental gonotrophic cycle model of

vector dynamics to investigate the impact of di↵erent vector control methods on

key measures of disease transmission, focusing specifically on lymphatic filariasis

and malaria. I compare the impact of di↵erent vector control methods, including

indoor residual spraying (IRS) and larvicides, and then go on to demonstrate how

low prevalence could potentially be achieved using long-lasting insecticide nets

(LLINs) alone. I show that the dual e↵ect of killing and transmission prevention

caused by IRS or LLINs scales up with coverage much faster than the population

reduction method of larvicides. I draw parallels between LF and malaria

transmission and discuss the potential for collaboration in co-endemic areas.

4.1.2 Disclaimer

The work in this chapter builds on a simple vector model I developed during an

MSc research project specifically for modelling the e↵ect of bednets on LF

transmission. The model described here and the results presented represent work

done during my PhD.
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4.1.3 Background

Ronald Ross and George Macdonald are known for their contributions to

developing a mathematical model for mosquito-borne disease transmission, with

the resulting models often referred to as ‘Ross-Macdonald’ models, and Ross is

widely credited for first discovering the transmission of malaria by mosquitoes. In

1904, Ross published a mathematical population model of adult mosquitoes,

specifically investigating spatial larval control methods and their impacts on

mosquito populations and disease transmission [158]. Ross argued that multiple

methods of control would be necessary in most settings, including larval control,

bednets (which were not insecticide treated at the time) and improved housing.

The discovery of the insecticidal e↵ects of dichlorodiphenyltrichloroethane (DDT)

would later introduce the possibility of IRS, or treating bednets, to reduce

mosquito densities in the place of larval control.

In the 1950s George Macdonald extended and used Ross’ malaria models to

develop metrics for measuring vector-borne disease transmission. Macdonald’s

malaria model [159] is still widely cited and used as a basis for further modelling.

This theory provided important insights into the relative benefits of certain

interventions and laid the groundwork for adult-target vector control to be

recognised as the best method for managing malaria [160, 161]. Long-lasting

insecticide-treated nets (LLINs) have been a widely used method in combating

malaria transmission since 2004. They are draped over beds, as peak vector biting

activity of a number of mosquito species occurs between dusk and dawn [162], and

serve to both kill and repel adult vectors. As it is predicted that transmission

intensity and geographic viability of vector-borne diseases will increase with

climate change, methods for controlling these diseases and their vectors are

increasingly important [163].

For LF, as seen in Chapter 3, large-scale preventative chemotherapy has been

shown to be e↵ective at achieving elimination as a public health problem in certain

settings [164, 165]. The majority of national elimination programs focus solely on

this approach, as recommended by the World Health Organization guidelines, with

mosquito control only considered a supplemental strategy [19]. However, a key

problem is that, of the remaining endemic countries, many at-risk communities are

hard to reach and have poor or no access to health care [166]. We have also seen

there is evidence to suggest that, in some settings, these methods alone are

insu�cient to ensure transmission is interrupted. In Sri Lanka, following an mass
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drug administration (MDA) program that ran from 2002 to 2006, a observational

study has shown persistence of low-level LF transmission [125].

Whilst vector control has been cited as a possible supplementary preventative tool

to be used in parallel with MDA [19], its importance may still be underestimated;

correct usage of vector control could reduce the number of rounds required to

interrupt transmission, whilst also aiding the prevention of disease resurgence

[167]. Additionally, in The Gambia, there is evidence that transmission was

interrupted in the absence of MDA due to malaria-focused vector control

programs, specifically following the use of LLINs [5]. The Gambia has had a varied

history of LF prevalence, with a high of an estimated 50% of adults being mf

positive in the 1950s. Despite no distribution of anti-filarial drugs, surveys in the

1970s showed prevalence had halved in the worst a↵ected areas and prevalences as

low as 2.9% were recorded in some locations [168]. This decrease was attributed to

reductions in mosquito biting rates, due to a combination of lower rainfall and the

introduction of LLINs. A later study, considering data spanning from 1997 to 2013

[5], found that LF transmission may have been interrupted in The Gambia during

this time and attributed this interruption to the rapid scale up of LLIN usage.

With similar anecdotal results in Papua New Guinea [156], in addition to Nigeria

launching a plan to coordinate malaria and LF elimination programs in 2014,

using LLINs as a key component [169, 170], there is an increasing awareness of the

impact that vector control can have on elimination programs. The results from

The Gambia, in particular, demonstrate it may be possible to achieve elimination

in some settings using just vector control, as we might expect from the theoretical

discussion around breakpoints in the previous chapter (low vector density will

result in lower worm burdens, and hence less chance of parasite sexual

reproduction, making transmission less sustainable). The cross-disease benefit

could also pose an attractive prospect for countries endemic with both malaria and

LF. However, this may not be achievable within feasible time frames and the e↵ect

will vary with local transmission conditions.

LF and malaria share common vectors, meaning vector-based malaria control

methods will also combat LF transmission. The success of LLINs in the global

malaria e↵ort has made them arguably the most important current tool for

malaria control in Africa [171]. We would theoretically expect them to be even

more e↵ective against LF, as it is less transmissible than malaria. Due to a lower

probability of infection given one infectious bite [172], sustained LF transmission
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requires a higher biting rate.

4.1.4 Modelling

Ross’ first model of mosquito-borne disease transmission, published in 1908 [10],

was a description of the expected number of human infections based on the

number of mosquitoes and the mosquito infection dynamics. Between each time

step (defined as one month), he assumed that a mosquito could take two

bloodmeals, enough to contract the infection and then transmit it back to another

human. His main conclusions from this were in noticing a relationship between the

mosquito to human ratio and the number of human infections, particularly that

there was a critical mosquito density below which transmission would not be

sustained. His second model was a coupled set of di↵erential equations for the

number of infectious humans, X, and the number of infectious mosquitoes, Z [31].

In 1923, Lotka and Sharpe extended this second model to include the extrinsic

incubation period (EIP) in the mosquito and the intrinsic incubation period (IIP)

in the human [173]. Macdonald’s development of the model, however, is the most

well-known and was the first to describe the recovery rate under superinfection.

Macdonald also derived a formula for the basic reproduction number (R0) for

mosquito-borne diseases, the number of secondary cases generated by one

infectious case in a totally susceptible population:

R0 =
ma2bcpv

�r log p
. (4.1)

where m is the ratio of mosquitoes to humans, a is the daily blood feeding rate, b

is the proportion of infectious bites than infect a human, c is the opposite, the

proportion of bites on an infectious host that infect a mosquito, v is the extrinsic

incubation period, r is the human recovery rate and p is the daily mosquito

survival probability [159].

In contrast, as a lesser studied disease, there was little attempt to model LF

transmission until the 1990s; this decade saw the formulation and publication of

three models [12, 49, 13]. The first, published in 1990, was a simple deterministic

di↵erential equation model [12] of prevalence in the vector population and mean

worm burden in the human population. This was followed by two more in 1998:
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EPIFIL, a determinisitic population-level model [49], and LYMFASIM, a

stochastic individual-based model [13]. EPIFIL originally focused only on the

human infection dynamics, and was later extended to include an equation for the

infective larvae [51], but still assumed a fixed vector population. The first

formulation of LYMFASIM also included larval dynamics, but also made the

assumption of a constant monthly biting rate. Neither framework explicitly

modelled the vector population. In 2015 a third model, TRANSFIL, was published

[50]. This is also a stochastic individual-based model and models larval dynamics

in a similar way to EPIFIL and LYMFASIM.

Further modelling work has been done to investigate the impact of vector control

on LF using these models, but the dynamics of vector control are not explicitly

modelled, instead assuming proportional reductions in biting rates. TRANSFIL

also quantifies the e↵ect of LLINs on vector death rates, which impacts the force of

infection from the infective larvae population. Results from all three models

suggest this approach could be advantageous in combination with MDA in high

prevalence settings only, but not as a stand-alone method [55]. Annual MDA at

65% coverage with 50% LLIN coverage is shown to perform consistently better

than increasing MDA coverage to 80% in all transmission settings and better than

bi-annual 65% MDA in low-transmission settings, but LLINs are not considered in

isolation.

A very recent model published in summer of 2019, GEOFIL, extends these

methods to include Aedes-type transmission and spatial aspects of transmission

using a spatially-explicit agent-based modelling framework considering the

movement of individuals between households using a radiation model [130]. This

also involves some more explicit modelling of the mosquito population, considering

the mosquito prevalence, and they found that mosquito biting rates were a critical

determinant of infection risk. However, as Aedes spp. mosquitoes bite during the

day and the night, the scenario considered would be expected to benefit less from

bednet usage than scenarios where the dominant vector is a night-biting Anopheles

mosquito.

There is a wider range of bednet modelling methods in the malaria literature,

where vector control has long been considered an important factor. Some use

similar biting rate adjustments to reflect reduced transmission or mosquito death

[174], but others model the vector population more explicitly to consider the

movement between stages of the feeding cycle [175, 176]. These latter models also
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consider di↵erent feeding locations and sources, taking into account the

possibilities of a vector obtaining their blood meal from cattle or outdoor-residing

humans.

In a recent paper adult female mosquitoes are considered to move through four

stages: ovipositing; emerged; fed; and gestating [175]. The LLIN interaction occurs

between the emerged and fed stages, with mosquitoes repeating their attempts to

feed until meeting either success or death. A process-explicit deterministic model

is then used to estimate statistics describing transmission and vector life-histories,

focusing on the relationship between successful transmission events and the

number of preceding failed feeding attempts. However, the age-structure of the

mosquito population is not considered

A 2015 study used PDEs to formulate a general age- and bite-structured model for

vector-borne diseases [177], based on an SEI model structure within the human

and vector populations. Age-structure had been previously used in mosquito-borne

disease modelling, but either focusing predominantly on the host population

[178, 179] or splitting the mosquito life-cycle into stages (egg, larvae, pupae, adult)

[180]. Using PDEs it was possible to allow continuous aging of the mosquito

population and consider the idea that the age at which a mosquito gets infected

will impact its transmission potential. It is widely accepted that, due to long

incubation periods in malaria and LF and short lifespans, most mosquitoes will

not live long enough to transmit infection, prompting proposals for late-life-acting

(LLA) insecticides as a method for reducing transmission with less risk of

insecticide resistance [181]. Results of the PDE model suggest that the e�cacy of

vector control methods focused on adult mortality may be less than predicted in a

non-age-structured framework, whereas treatment of humans may prove more

e↵ective than predicted, but comparison of di↵erent vector control measures is not

presented, although a later study does explore this in the context of blood tongue

virus [182].

4.2 Vector control data

In this chapter we consider three di↵erent vector control measures: LLINs, IRS

and larvicides. In order to consider interventions in terms of coverage, we define

the action of these three measures as described in Table 4.1. We consider coverage

of LLINs to describe the percentage of indoor-sleeping individuals who sleep daily
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Table 4.1: Vector control coverage definitions.

Control
measure

50% coverage 100% coverage

LLINs 50% hosts sleep under nets All hosts sleep under nets
IRS 50% bedrooms sprayed All bedrooms sprayed
larvicides 50% larval sites treated All larval sites treated

Table 4.2: Adult vector control: outcome probabilities from feeding attempt [65].

Control measure Feed success Death (pre-feed) Death (post-feed)

LLINs (6 holes) 0.121 (0.054-0.188) 0.495 (0.392-0.597) n/a
LLINs (80 holes) 0.318 (0.231,0.405) 0.373 (0.282-0.463) n/a

IRS 0.894 (0.856-0.931) n/a 0.567 (0.507-0.626)

under bednets; coverage of IRS describes the percentage of people who have had

their bedrooms sprayed in the previous 6 months; coverage of larvicides is taken to

be the percentage coverage (by area) of larval sites with weekly larvicidal

treatment.

An experimental hut trial in Benin tested the e�cacy of LLIN and IRS

interventions using a pyrethroid-impregnated polyester LLIN and chlorfenapyr IRS

[65] against Anopheles gambiae and Culex quinquefasciatus. The bednets used

were deliberately provided with either 6 holes (4cm2 each) or 80 holes (2cm2 each)

to simulate di↵erent levels of integrity. The results for Anopheles gambiae vectors

are shown in Table 4.2. LLINs were found to have the highest repelling e↵ect, with

only 12.1% of vectors successfully feeding in the presence of a bednet. However,

they observed a 56.7% mortality in vectors that fed in huts treated with IRS,

which was higher than the 49.5% of vectors that died when attempting to feed in

huts where the individuals were protected by LLINs.

Use of the biological larvicide Bacillus thuringiensis israelensis (Bti) to treat

Anopheles breeding sites has been tested in a study in Peru and Ecuador [66]. The

larvicide was found to be e↵ective, but due to the surface feeding habits of

Anopheles larvae, it was found to be only e↵ective for the first 7-10 days following

spraying, after which it had sank su�ciently below the surface to have no further

impact. The study saw an average adult density reduction (measured in bites per

person per hour) of 50–70% in the seven days following treatment across all

identified larval breeding sites in a 2km radius.
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4.3 Methods

Here I define a discrete age-structured gonotrophic cycle model of adult mosquito

feeding to model uptake of infection within the mosquito population and compare

the impact of di↵erent vector control measures on transmission of two vector-borne

diseases: malaria and LF.

4.3.1 Gonotrophic cycle model

Considering the gonotrophic cycle of an adult mosquito, we divide the stages into

four categories: blood-seeking (B), fed (F), gestating (G) and ovipositing (O)

[175]. In the absence of intervention new adult mosquitoes are considered to be

born into the emerged class at rate � and obey a constant natural death rate g.

Dynamics can then be described using the following system of ordinary di↵erential

equations (ODEs):

dB

dt
= � + ⇡1O � ⇡2B � gB (4.2)

dF

dt
= ⇡2B � ⇡3F � gF (4.3)

dG

dt
= ⇡3F � ⇡4G� gG (4.4)

dO

dt
= ⇡4G� ⇡1O � gO , (4.5)

where ⇡2 represents the baseline rate of feeding and moving from blood-seeking to

fed; ⇡i, i = 1, 3, 4, denote the movement between the other states. The magnitude

of � has little bearing on most results as we will generally focus on vector infection

prevalence and relative population changes, but it could be chosen to fit a required

population size. Similarly ⇡i, i = 1, . . . , 4 are chosen such that feeding (moving

from blood-seeking to fed) is faster than the other transitions; relative values are

dependent on the choice of cycle length.
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4.3.2 Control methods

There are a number of vector-based control methods used to combat

mosquito-borne diseases; we will focus on three di↵erent options: LLINs, IRS and

larvicides. LLINs a↵ect the bite-rate and cause mortality at point of feeding; IRS

kills fed mosquitoes that rest on a↵ected surfaces after a blood meal and has some

repellent e↵ect; use of larvicides brings down the birth rate by killing immature life

stages. We can introduce these measures into the model by adjusting the

parameters:

dB

dt
= �(1� ✓) + ⇡1O � ⇡2(q1 + q2)B � gB (4.6)

dF

dt
= ⇡2q1B � ⇡3F � gF (4.7)

dG

dt
= ⇡3(1� q3)F � ⇡4G� gG (4.8)

dO

dt
= ⇡4G� ⇡1O � gO , (4.9)

Here q1 and q2 represent the probabilities of vector success or death, respectively,

during a feeding attempt and q3 is the probability a vector dies after feeding (due

to IRS). When no vector control is in use q1 = 1 and q2 = q3 = 0. We consider a

successful feed to have occurred in any of three potential scenarios: biting indoors

despite LLIN or IRS presence; biting indoors in the absence of LLINs or IRS;

biting outdoors (taken to occur in proportion 1�Q, where Q is the probability of

a blood meal being taken indoors) – including cattle. Death due to IRS is

considered as an additional probability of not surviving between the fed and

gestating classes, post feeding and potential transmission. The adult emergence

rate is multiplied by a scaling factor (1� ✓), where ✓ = ✓0✓̂ is a proportional

population reduction due to larvicides; ✓0 is the coverage (i.e. proportion of larval

sites treated) and ✓̂ is the e�cacy of the intervention, or proportional reduction in

adult mosquitoes emerging from a treated larval site.

The values of qi, i = 1, ..., 3 are given by the following equations, calculated using

the feeding dynamics described by Figure 4.1,
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q1 = (1�Q) +Q
�
1� � + ��I

��
1� ! + !�L

�
, (4.10)

q2 = Q!⌫L
�
1� �(1� �I)

�
, (4.11)

q3 = Q�⌫I , (4.12)

with ! and � representing the coverage of LLINs and IRS respectively. �L and ⌫L

are the success and death probabilities of feeding in the presence of an LLIN, where

1� �L � ⌫L is the probability of repeating. �I is the probability of successfully

feeding in the presence of IRS, where 1� �I is the probability of repeating, and ⌫I

is the probability of death during the Fed class immediately after exposure to IRS.

Values of parameters are given in Table 4.3.

  

Figure 4.1: Mosquito feeding dynamics. Outcomes of feeding, death and repeating
are all dependant on: proportions of blood meals taken outdoors; vector control
coverage; vector control e�cacy parameters.
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Table 4.3: Parameters for mosquito biology and vector control (Anopheles gam-
biae)

Definition Value Source

Q Fraction of blood-meals indoors 0.9–0.95 [64]
⇡2 Daily rate of feeding when

blood-seeking
1/0.68 [64]

� Mean feeding cycle length (days) 3 [64]
a Daily rate of feeding on humans Q/� [183]
g Natural daily death rate 1/14 [184, 176]
�L Probability of feeding in pres-

ence of LLINs
6 holes: 0.121 (0.054–0.188)
80 holes: 0.318 (0.231,0.405)

[65]

⌫L Probability of pre-meal death in
presence of LLINs

6 holes: 0.495 (0.392–0.597)
80 holes: 0.373 (0.282-0.463)

[65]

�I Probability of feeding in pres-
ence of IRS

0.894 (0.856–0.931) [65]

⌫I Probability of post-meal death
in presence of IRS

0.567 (50.7–62.6) [65]

✓̂ Proportion of larvae that die
from larvicidal treatment

0.6 (0.5–0.7) [66]

� Adult mosquito emergence rate
from larval stages

1000-100000 (dependent on:
disease and setting)

4.3.3 Generational distribution

To gain insight into the age-structure of the vector population we consider a

generational formulation of the gonotrophic cycle model, where a subscript i

denotes the number of times mosquitoes in a given class have completed the cycle,

giving an infinite series of ODEs:

dBi

dt
=

8
<

:
�(1� ✓)� ⇡2(q1 + q2)Bi � gBi if i = 0

⇡1Oi�1 � ⇡2(q1 + q2)Bi � gBi if i � 1
(4.13)

dFi

dt
= ⇡2q1Bi � ⇡3Fi � (g + �)Fi (4.14)

dGi

dt
= ⇡3Fi � ⇡4Gi � gGi (4.15)

dOi

dt
= ⇡4Gi � ⇡1Oi � gOi . (4.16)

Adult emergence can only occur into generation i = 0. Using this model it is

possible to calculate the parity of the population.
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It is reasonable to assume the vector population adjusts essentially instantaneously

to equilibrium if vector control in a given setting is fixed, as the vector dynamics

are faster than the human dynamics [185]. We can hence derive the following

relationship between sequential blood-seeking classes:

B⇤
n = KB⇤

n�1 , (4.17)

where

K =
⇡1⇡2⇡3⇡4q1

(⇡2(q1 + q2) + g)(⇡3 + g + q3)(⇡4 + g)(⇡1 + g)
(4.18)

is a constant and K < 1, this quantity can be interpreted as the gonotrophic cycle

survival probability, or the proportion of the vectors that are gravid (have had at

least one bloodmeal). As the constant term is less than unity, the di↵erence

equation can be solved to get an explicit formula, B⇤
n = KnB⇤

0 , which can be used

to calculate the number of vectors in each feeding generation for initial conditions

B0 =
�(1� ✓)

⇡2(q1 + q2) + g
. (4.19)

The proportion of the population that have completed at least one feeding cycle

(are parous) is given by

1� B0P
i
Bi

. (4.20)

4.3.4 Disease dynamics

The incubation period of LF in the mosquito is approximately 8.5 days [176, 140],

and for malaria this can range from 10 to 21 days, depending on parasite species

[184]. This means infection cannot be passed on to a new host immediately after

the mosquito is infected. Due to the short adult mosquito lifespans (average 10-14

days [176]), including the infected but not yet infectious vectors in the force of

infection on humans would result in a severe over-estimation when considering the

proportion of infectious bites. When modelling the disease dynamics we therefore

introduce an exposed class – where a mosquito has been exposed to infection but

is not yet contributing to the net force of infection on the host population. See

Tables 4.4 and 4.5 for full details of the parameter values used and their sources.

We consider three disease states: susceptible (S), exposed (Y ) and infectious (Z).

Extending the ODE model (as in Eqn 4.9) to include disease requires sub-dividing

each stage of the cycle into these three states, giving a new system of twelve
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Table 4.4: Disease parameters for lymphatic filariasis (Wuchereria bancrofti)

Definition Value Source

c Proportion bites on infectious humans
that result in mosquito infection

0.37 (0.15–0.6) [149, 139]

b Proportion bites from infectious
mosquitoes that result in human
infection

1.43⇥ 10�4 Table 3.1

u Extrinsic incubation period in humans
(days)

285 (192–379) [154]

v Intrinsic incubation period in vector
(days)

8.5 (7–10) [140]

1/r Worm fecund life span (years) 6 Table 3.1
x Prevalence of infection in human pop-

ulation
 Probability vector infected after blood

meal
cx

Table 4.5: Disease parameters for malaria (Plasmodium falciparum)

Definition Value Source

c Proportion bites on infectious humans that
result in mosquito infection

0.55 (0.47-0.63) [186]

b Proportion bites from infectious mosquitoes
that result in human infection

0.037 (0.018-0.055) [64]

u Intrinsic incubation period in humans (days) 12 (8-23) [187]
v Extrinsic incubation period in vector (days) 10 (10-21) [150]
1/r Mean human infection duration (days) 14 [184]
x Prevalence of infection in human population varied
 Probability vector infected after blood meal cx

ODEs. We assume adult emergence only occurs in the susceptible vector

population. Assuming a prevalence x in the human population and a probability c

that a vector becomes infected after biting an infectious human, then a proportion

xc of susceptible vectors moving from blood-seeking to fed become exposed to

disease; all exposed mosquitoes can become infected, this occurs at rate 1/v where

v is the average vector incubation period. Due to timescales of infection and vector

lifespan we do not consider recovery from infection. See Fig. 4.2 for a diagram of

the full model dynamics.
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Figure 4.2: Mosquito disease dynamics. Birth occurs in the susceptible (S) state,
then during the feeding process vectors can become exposed with probability p̂ = xc
given a successful feed. Exposed (Y) vectors from all stages become infectious (Z)
at rate 1/v, where v is the incubation period. Straight lines indicate transitions,
diagonal lines represent deaths and dashed lines are infection events.

Generational distribution with disease

Consider instead the generational distribution model at equilibrium (Eqn. 4.16),

such that the number of blood-seeking vectors in generation n is KnB0. It is

su�cient to consider the blood-seeking class as this is the stage of the feeding cycle

where vectors have potential to pick up or transmit disease through biting. If we

define the binomial probability, p̂ = xc, of a successful feed leading to a new vector

infection, then the probability a mosquito becomes exposed during generation n is

p̂(n) = (1� p̂)n�1p̂. Hence the probability a mosquito has been exposed before

generation n is [1� (1� p̂)n]. Combining these gives the number of vectors in

generation n that are already infected:

B0K
n[1� (1� p̂)n] . (4.21)
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The total number of diseased (exposed or infectious) vectors is given by

summation across the generations;

D = B0

1X

n=0

[Kn �Kn(1� p̂)n] (4.22)

=
p̂KB0

(1�K)(1�K + p̂K)
. (4.23)

If the incubation period is assumed to be equivalent to N generations (or cycles),

then the probability of surviving until infectious is given by KN and can be

treated as a multiplicative factor when calculating the numbers of infectious and

exposed vectors:

Z = KND , (4.24)

Y = D � Z . (4.25)

These values can be normalised to give prevalence of exposure and infection in the

vector population. Here we are fixing the range of possible EIP values in relation

to the cycle length, with EIP 2 (N � 1, N ] gonotrophic cycles. This simplifies the

system and allows us to derive analytical forms of the quasi-equilibrium solution of

the model and a number of key transmission statistics. This assumption is not

unreasonable given the comparatively narrow range of values quoted in the

literature [140].

The force of infection on humans, FoIH , is proportional to the number of

infectious mosquitoes and the vector bite rate:

FoIH / ⇡2q1Z . (4.26)

4.3.5 Transmission measures

There are a number of statistics commonly used to described transmission of

vector-borne diseases. In the field, human landing catches are often used to

estimate the entomological inocculation rate (EIR), the expected number of

infectious bites received by a single host each year [188]. A second measure,

vectorial capacity, denotes the total number of infectious bites that would
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eventually arise from all the mosquitoes that bite a single infectious human on a

single day [186]. From the vectorial capacity we can derive the basic reproductive

number, R0, for vector borne diseases. This di↵ers from the usual interpretation of

R0 for non-vector diseases by focusing on the vector dynamics and is also

occasionally interpreted as R2
0, describing the number of new infectious mosquitoes

that would arise from a single infectious mosquito after one parasite generation

[186]. These three key measures are given by the following formulas:

Entomological innoculation rate (EIR):

E = maz , (4.27)

where m is the ratio of mosquitoes to humans, a is the blood feeding rate on

humans, and z is the fractional prevalence of infectious vectors.

Vectorial capacity:

V =
ma2pv

� ln(p)
=

ma2

g
e�gv , (4.28)

where p is the vector daily survival probability and v is the extrinsic incubation

period in the vector. Alternatively, g is the instantaneous vector death rate.

Basic reproductive number:

R0 =
ma2bc

gr
e�gv =

ma2bc

� ln(p)r
pv =

V bc

r
, (4.29)

where b is the probability a bite from an infectious vector infects a human, c is the

probability a bite on an infectious human infects a vector, and r is the human

disease recovery rate.

We can calculate the total number of diseased vectors (exposed plus infectious), D,

dependent on vector control parameters and coverage:
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D := Y + Z =
KE0

(1�K)(1�K + K) ,
(4.30)

E0 =
�(1� ✓)

⇡2(q1 + q2) + g
. (4.31)

E0 is the number of exposed vectors and  = cx is the probability one human

blood feed results in a vector infection (x is the prevalence of disease in the human

population).

From this we can get the total number of infectious vectors:

Z = KND , (4.32)

and hence directly calculate our useful statistics. For example, the EIR is given by:

E = maKN

✓
KE0

(1�K)(1�K + K)

◆
1

M
(4.33)

In the absence of interventions the mean feeding cycle length is,

� = 1/⇡1 + 1/⇡2 + 1/⇡3 + 1/⇡4 , (4.34)

where 1/⇡2 is the average time to hunt and take a blood meal. IRS and larvicides

won’t impact hunting time, but the repelling e↵ect of bednets will result in some

vectors taking longer to move from emerged to fed.

If we assume a repelled vector begins the hunting process from scratch, then the

expected time taken to successfully feed will be equal to the time taken to feed

given a successful first attempt plus the expected time taken to feed scaled by the

proportion of vector that repeat on any given attempt.
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E[Time to feed] = E[Time | Successful attempt] (4.35)

+P[Repeat]E[Time to feed] (4.36)

E[Time to feed] =
1

⇡2
+Q!(1� � � ⌫)E[Time to feed] (4.37)

E[Time to feed] =
1

⇡2(1�Q!(1� � � ⌫))
(4.38)

Now we can express overall feeding cycle length, �, in terms of bednet parameters:

� =
1

⇡2(1�Q!(1� � � ⌫))
+

1

⇡3
+

1

⇡4
+

1

⇡1
(4.39)

=
(⇡1⇡3 + ⇡1⇡4 + ⇡3⇡4)⇡2(1�Q!(1� � � ⌫)) + ⇡1⇡3⇡4

⇡1⇡2⇡3⇡4(1�Q!(1� � � ⌫))
(4.40)

and the human blood feeding rate is given by:

a = Q

✓
1

⇡2(1�Q!(1� � � ⌫))
+

1

⇡3
+

1

⇡4
+

1

⇡1

◆�1

(4.41)

= Q
⇡1⇡2⇡3⇡4(1�Q!(1� � � ⌫))

(⇡1⇡3 + ⇡1⇡4 + ⇡3⇡4)⇡2(1�Q!(1� � � ⌫)) + ⇡1⇡3⇡4
(4.42)

The ratio of vectors to humans m, can be scaled by changes in the mosquito

population (m = M/H), where

M =
1X

i=0

E0K
i =

E0

1�K
(4.43)

and K describes the probability of surviving each feeding cycle, with dependence

on vector control parameters included in E0 and K.

The death rate will depend on IRS and bednet usage. We can relate the

probability of a vector surviving one feeding cycle, K, to a per cycle death rate

�ln(K), then we have
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g =
�ln(K)

�
(4.44)

as the instanenous daily death rate.

Now that we have vector control dependent expressions for all relevant parameters,

these can be substituted into our equations to calculate key transmission measures,

such as R0. In the presence of vector control measures, we relabel R0 as the

e↵ective reproductive number under control, Re.

4.3.6 Host dynamics

Using the formulation laid out in the EPIFIL model [51], whilst simplifying to

neglect acquired immunity and age dependency in humans, it is possible to write

down an ODE model for LF host infections. Disease magnitude is described in

terms of the mean worm burden (W ) and mean mf count per 20µl of blood (M);

acquisition of disease is dependent on the force of infection of the vector on the

host population, FV!H , taken to be the prevalence of disease in the vector

population.

dW

dt
= �

V

H
 1 2 3FV!H � µW (4.45)

dM

dt
= ↵W � �M . (4.46)

Infection is described using the rate at which humans are bitten, which is given as

the number of bites per mosquito per unit time, �, multiplied by the ratio of

vectors to hosts. This is combined with the proportion of L3 leaving the mosquito

per bite ( 1), the proportion of these that enter the host ( 2), the proportion of

L3 in the host that then develop into adult worms, and the force of infection

(FV!H); death of adult worms occurs at rate µ. Adult worms produce mf at rate

↵ per 20µl of blood and mf die at rate �.

Host prevalence, P , can then be estimated by considering the probability of an

individual having greater than zero parasites per 20µl of blood:

P (M) = 1� (1 +M/k)�k . (4.47)
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Table 4.6: Parameter definitions and values for host model, all taken from Norman
et al (2000) [51].

Parameter Definition Value (per month)

� Number of bites per mosquito 10
↵ Production rate of mf per worm 2

k(M) Aggregation parameter 0.0029 + 0.0236⇥M

The vector model equilibrium depends on the probability one successful blood feed

results in a mosquito becoming infected. Since vector dynamics are much faster

than host dynamics we assume that they instantaneously adjust to

quasi-equilibrium, hence we can use the current state of host infection to calculate

the new vector equilibrium at each step of evaluating the host model and

determine the force of infection on the host population at that point in time.

The model is hence evaluated in the following way:

1. The rate at which humans are bitten is fitted to the required equilibrium

host prevalence in the absence of vector control, using the relationship

between M and prevalence given in Equation 4.47.

2. The type and coverage of vector control is chosen.

3. At each step equilibrium vector prevalence is re-evaluated based on the host

prevalence.

4. The values of W and M are recorded at each time step; host prevalence can

then be estimated if required.

4.4 Results

In all of the following results, unless otherwise specified, we assume a 40% human

prevalence (infectious disease) to reflect a high-endemicity setting. Results for LF

parameters are presented first, followed by results for malaria parameters.

First we investigate the age-structure properties of the mosquito model and what

this can tell us about transmission. We consider the age of a mosquito in terms of

the number of generations, or gonotrophic cycles, it has lived through. Figure 4.3

shows the age-dependent probability of a vector being exposed (E) or infectious
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(I) by the number of gonotrophic cycles completed, in the absence of vector

control. There is zero probability of being exposed or infectious in the newly

emerged generation, and mosquitoes then have a probability of becoming exposed

each time they feed, according to Eqn 4.21. For LF this probability is taken to be

0.37 if the bloodmeal is taken on an infectious host and it is assumed that it takes

3 feeding cycles to reach infectivity. For malaria these parameter are 0.4 and 4

feeding cycles respectively, so vectors can’t be infectious until they have completed

their 4th feeding cycle, this means the ratio of infectious to exposed vectors is

lower, with fewer infectious vectors overall.

Figure 4.3: Stacked bar plots showing the probability of a vector being exposed
(yellow) or infectious (red) for each cycle generation. Left: For LF at 40% host mf
prevalence. Right: For malaria at 40% host prevalence.

4.4.1 Lymphatic filariasis

Figures 4.4 and 4.5 show how the generational distribution of the mosquito

population, and the presence of infection, varies according to the three di↵erent

vector control interventions. We can clearly see the di↵erence in the e↵ects

between the larvicides, which just impact the vector population size, and the other

interventions, which also repel living vectors and reduce feeding.

LLINs, which have the highest repelling rate, cause a relative increase in the

number of nulliparous vectors (those who have taken no bloodmeals), as well as an

increased death rate due to contact with insecticides. This leads to many fewer

vectors in the older generations, in which infectious disease is the most prevalent
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and a higher frequency of mosquitoes in the younger generations, in particular

generation 0. IRS acts in a similar way, but repelling is less common and the

killing e↵ect is stronger.

Figure 4.5: Histograms showing the age distribution of a vector population (den-
sity, indexed by number of gonotrophic cycles completed) for single vector control in-
terventions. All interventions are assumed to have 50% coverage. Bars are coloured
by the proportion of vectors in each cycle generation that are susceptible (green),
exposed (yellow) and infectious (red) for LF at 40% host mf prevalence.

Larvicides act by reducing the emergence rate, and hence the overall population

size, but as this doesn’t impact adult feeding or death rates the age distribution of

the population remains proportionally the same, meaning there is still a

substantial infectious subset of older vectors. This is easily seen in Figure 4.5,

which shows the proportional distribution rather than the raw count of vectors;

the larvicide histogram is an exact replica of the histogram representing no vector

control measures. The LLIN and IRS histograms show more than twice the

proportion of null parous vectors (around 40% as opposed to under 20%).

83



CHAPTER 4. MODELLING MOSQUITOES 4.4. RESULTS

The control combinations (bottom row Figure 4.4) give the best outcome when

adult-based control measures are combined - either IRS and LLINs or all three

controls. Combining larvicides with either IRS or LLINs simply gives a scaling of

the single repeating intervention e↵ect. As the number of infectious vectors is

already very low in the case of just IRS or LLIN usage, this scaling is unlikely to

have an impact on transmission viability that is reflective of the level of

programmatic e↵ort required to find and treat 50% of larval sites.

Having parameterised the model for LF, we can directly calculate the derived

measures from Section 4.3.5 for a range of intervention intensities (see Figure 4.6).

The emergence rate (or birth rate) of adult mosquitoes was chosen to give an R0

value of approximately 2.5 in the absence of intervention [144].

In all transmission measures presented, the scale-up of larvicide coverage has the

least impact and IRS and LLINs are reasonably comparable. Particularly, using

larvicides doesn’t decrease the prevalence of infectious vectors and has a lesser

e↵ect on the population size than either of the other two interventions. As a

result, the respective decrease in key transmission measures, such as Re and the

entomological inoculation rate (EIR) is only linear. Even at 100% coverage of the

adult-acting measures the vector population does not go fully extinct, and there

are still very low levels of infection in the vector population. This is because IRS

and LLINs are not 100% e↵ective at repelling or killing mosquitoes so it is still

possible for a minority vectors to successfully feed, contract and potentially

transmit the parasite.

The vectorial capacity is proportional to the basic reproductive number, so the

results demonstrate the same e↵ects.

In all previous plots the LLINs were assumed to be relatively new, without waning

e�cacy, but we can use the data presented in Section 4.2 to consider how these

key transmission measures change if the integrity of the nets is reduced. Figure 4.7

shows the total number of vectors in the population and Re for a range of

coverages of LLINs with 6 holes (blue, the standard assumed in previous plots)

and 80 holes (red). The nets with 80 holes perform worse than the nets with 6

holes, with the biggest discrepancy in Re occurring at low-to-mid coverage levels.

As the coverage level increases beyond 50%, and the gradient flattens, the relative

di↵erence is much smaller.
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4.4.2 Malaria

Figure 4.8 shows how the generational distribution of the mosquito population,

and the presence of infection, varies according to combinations of the three

di↵erent vector control interventions (all at 50% coverage). As with the LF results,

use of larvicides has a visibly di↵erent e↵ect to the other two interventions. As the

EIP for malaria is approximately one gonotrophic cycle longer than that for LF,

transmission is even more reliant on the older generations. Hence, the adult-acting

interventions that shift the population distribution towards the earlier generations

have an even higher impact on potential transmission.

The control combinations (bottom row Figure 4.8) once again give the best

outcome when adult-based control measures are combined and the addition of

larvicides to any control strategy has a minimal e↵ect on the number of infectious

vectors, due to the very low number of older vectors. However, the three

interventions used together is still visibly better than any other combination.

When calculating the epidemiological measures, such as the EIR, for malaria it is

di�cult to set a fixed transmission level that is representative of malaria endemic

settings, as estimates of R0 in the literature vary dramatically with one review

study reporting estimated values of R0 ranging between one and more than 3,000

[189]. Another study gives ranges between 1.3 for the lowest endemicity regions to

175.6 for the highest [190]. As a result, in Figure 4.9 we have considered three

di↵erent scenarios: high transmission (red, R0 = 400), medium transmission (blue,

R0 = 40) and low transmission (green, R0 = 4). Log-scale plots are presented

alongside the standard linear-scale plots to enable easier comparison between

control measures for the medium and low transmission settings.

As before, the larvicides have much less impact on both the total number of vectors

and the basic reproductive number than the other two adult-acting interventions.

However, the log plot of the basic reproductive number shows an interesting

deviation between LLINs and IRS at the higher levels of coverage that isn’t visible

on the linear-scale plot. This is due to the very low rate of successful feeding in the

presence of LLINs (0.121), which results in much less successful feeding at high

coverage due to a saturation of LLIN usage. IRS allows a higher feeding proportion

(0.894 with 57% dying post-feed) this means over 50% of vectors seeking a blood

meal will successfully feed and survive, even if every house is sprayed.

87



CHAPTER 4. MODELLING MOSQUITOES 4.4. RESULTS

F
ig
u
re

4
.8
:

B
ar

p
lo
ts

sh
ow

in
g
th
e
ag

e
d
is
tr
ib
u
ti
on

of
a
ve
ct
or

p
op

u
la
ti
on

(t
ot
al

co
u
nt
,
in
d
ex
ed

by
nu

m
b
er

of
go

n
ot
ro
p
h
ic

cy
cl
es

co
m
p
le
te
d
)
w
it
h
a
va
ri
et
y
of

co
m
b
in
at
io
n
s
of

ve
ct
or

co
nt
ro
l
in
te
rv
en
ti
on

s.
A
ll
in
te
rv
en
ti
on

s
ar
e
as
su
m
ed

to
h
av
e
50

%
co
ve
ra
ge
.
B
ar
s
ar
e
co
lo
u
re
d
by

th
e
p
ro
p
or
ti
on

of
ve
ct
or
s
in

ea
ch

cy
cl
e
ge
n
er
at
io
n
th
at

ar
e
su
sc
ep

ti
b
le

(g
re
en

),
ex
p
os
ed

(y
el
lo
w
)

an
d
in
fe
ct
io
u
s
(r
ed

)
fo
r
m
al
ar
ia

at
40

%
h
os
t
p
re
va
le
n
ce
.

88



CHAPTER 4. MODELLING MOSQUITOES 4.4. RESULTS

F
ig
u
re

4
.9
:
T
ra
n
sm

is
si
on

m
ea
su
re

co
m
p
ar
is
on

s
fo
r
th
e
th
re
e
co
n
si
d
er
ed

ve
ct
or

co
nt
ro
l
in
te
rv
en
ti
on

s:
L
L
IN

s
(b
lu
e)
,
IR

S
(r
ed

)
an

d
la
rv
ic
id
es

(y
el
lo
w
)
fr
om

0
to

10
0%

co
ve
ra
ge

fo
r
h
ig
h
(d
ot
-d
as
h
ed

),
m
ed

iu
m

(s
ol
id
)
an

d
lo
w

(d
as
h
ed

)
tr
an

sm
is
si
on

le
ve
ls
.
T
op

le
ft
:
T
ot
al

nu
m
b
er

of
ve
ct
or
s
in

th
e
p
op

u
la
ti
on

.
T
op

ri
gh

t:
T
ot
al

nu
m
b
er

of
ve
ct
or
s
in

th
e
p
op

u
la
ti
on

(l
og

-s
ca
le

y
ax

is
).

B
ot
to
m

le
ft
:
R
ep

ro
d
u
ct
iv
e
ra
ti
o
(R

e
).

B
ot
to
m

ri
gh

t:
R
ep

ro
d
u
ct
iv
e
ra
ti
o
R

e
(l
og

-s
ca
le

y
ax

is
).

F
or

m
al
ar
ia

at
40

%
h
os
t
p
re
va
le
n
ce
.

89



CHAPTER 4. MODELLING MOSQUITOES 4.4. RESULTS

Figure 4.10: Infectious vector prevalence comparison for the three considered
vector control interventions: LLINs (blue), IRS (red) and larvicides (yellow) from 0
to 100% coverage. For malaria at 40% host prevalence.

Figure 4.10 shows the prevalence of infectious vectors according to intervention

intensity. As this is a proportional measure it is the same for all three of the low,

medium and high transmission scenarios. The plot once again echoes the LF

results, with larvicide coverage making no di↵erence to vector prevalence and IRS

and LLINs appearing relatively comparable throughout the range of coverage.

4.4.3 Repeating e↵ects

Looking in closer detail at the repeating e↵ects caused by IRS and LLINs, we can

calculate the change caused in gonotrophic cycle length, and hence whether this

impacts how many feeding cycles it should take for a vector to become infectious.

The model parameterises the EIP in terms of number of feeding cycles, or

generations, so we are mainly interested in whether changes in intervention

coverage are likely to cause discrete changes.

Figure 4.11 reiterates what we already saw in Figure 4.4, that LLINs have a much

stronger repeating rate and this causes a larger increase in the gonotrophic cycle

length. IRS can only cause at maximum just over a 2% increase in mean cycle
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length, but high coverage of LLINs could lead to up to a 12% increase. For LF

(Figure 4.11 bottom left) the mean number of cycles required to pass through the

EIP is around 2.85 in the presence of no interventions. A 12% increase in cycle

length results in an EIP which is still more than 2.5 cycles, hence three cycles are

still required before a vector will be able to perform an infectious bite. Even 100%

coverage of LLINs is not su�cient to decrease the number of cycles required to

reach infectivity.

For malaria (bottom right) LLINs are capable of bringing the EIP down from four

cycles to three cycles, but only at very high coverage levels (greater than 95%). As

achieving 95% LLIN coverage in practice is an unrealistic goal, this means that for

the purposes of our results, the repeating e↵ect has no change on the e↵ective

length of the incubation period in terms of generations of feeding, hence it is

reasonable to take this parameter as fixed in the model for the purposes of our

results.

4.4.4 Elimination settings

As in Chapter 3, we are interested in elimination settings for LF, where we are

either close to, or have achieved, a human prevalence of less than 1% mf. Here we

consider a setting where this reduction in prevalence has been caused largely by

mass drug administration (MDA), rather than vector control measures. The

impact of this on the vector dynamics can be simulated by considering a setting

with the same vector to host ratio (or the same adult vector emergence rate) but a

lower host prevalence. We are then interested in how using vector control measures

will impact onward transmission.

Transmission measures such as the basic reproductive number are independent of

host prevalence, as they are defined based on one average infectious individual.

However, the prevalence of infectious vectors and associated measures such as the

EIR are substantially reduced by a reduction from 40% to 1% host prevalence

(Figure 4.12).

When low host prevalences have been achieved it is highly important to maintain,

and if possible improve on, these gains. In particular, adult-acting vector control

measures and the impact they can have on Re could be vital in the final phases of

elimination programs.
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4.4.5 The Gambia

Following on from the evidence of elimination discovered in The Gambia in the

absence of MDA, I used the host infection process described in Section 4.3.6 to

investigate whether the model could achieve a prevalence of less than 1% mf using

just LLINs. I considered an equilibrium host mf prevalence of 50%, which is

reflective of measured mf levels in The Gambia in the 1950s, and then calculated

the trend in human infection across ten years of consistent LLIN usage.

Figure 4.13 shows the mean worm burden (W) and microfilaria count per 20µl of

blood (M) decreasing over a ten year period in the presence of 40% (left) and 80%

(right) LLIN coverage. There is a noticeable di↵erence between the two levels of

intervention and the decreasing mf levels appear to be reaching a plateau by the

10 year mark in both instances.
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Figure 4.13: Mean adult worm burden (W, blue solid) and mf count per 20µl of
blood (M, red dashed) over ten years of LLIN usage at 40% coverage (left) and 80%
coverage (right). Considering an equilibrium mf prevalence of 50%, to reflect 1950s
prevalence in The Gambia.

Due to these apparent diminishing returns, we now consider the net benefit of 10

years of LLIN usage for a range of coverage, still given a starting mf prevalence of

50% (Figure 4.14). Looking at both the host and vector prevalences, we see the

most substantial gains can be made by increasing coverage up to around 60%;

beyond this point increases in LLIN coverage have a much smaller relative e↵ect.

However, a coverage of 80% or higher would be required to get host mf prevalence

to below 1% in this time period.
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Figure 4.14: Prevalence of LF in the host (blue dashed) and vector (red dot-
dashed) after 10 years of LLIN usage for coverage between 0 and 100%, starting at
50% baseline mf prevalence.

4.5 Discussion

The results presented in this chapter have used the explicit equilibrium solution of

a gonotrophic cycle model for mosquito dynamics. Primarily the aim was to

investigate how di↵erent vector control measures could change mosquito

population structure and hence the potential e↵ect on transmission of vector-borne

diseases such as LF and malaria. We were also interested in the role long-lasting

insecticidal nets may have played in the reduction of LF prevalence to below EPHP

levels in The Gambia. We found that adult-acting vector control measures are

likely to have a much greater e↵ect on transmission than larval-based interventions.

In particular, LLIN and IRS both have a compounded e↵ect due to the repelling

action reducing transmission both from host to vector and from vector to host.

Areas that are co-endemic for malaria and LF, or other mosquito-borne diseases

such as dengue, could especially benefit from adult-acting vector control.

Considering the longitudinal usage of LLINs, the majority of reductions in mean

worm burden and mf prevalence are achieved within 5 years of implementation.
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Even for relatively low LLIN coverage (40%) a plateau begins to emerge around 10

years after implementation. Whilst we show that substantial reductions in mf

prevalence could be caused by LLIN usage, we find that coverage may have to be

unrealistically high (greater than 80% of individuals sleeping under nets) to

reproduce the results seen in The Gambia in the absence of other factors. This

implies that LLINs may have played an important role in reducing prevalence

across this over 50 year period, but that other environmental and social factors are

also likely to have contributed to reducing transmission.

We assumed a number of things in the construction of this model, including a fixed

EIP in the mosquito, that there is no impact of infection of vector fitness and that

vector mortality remains constant with age. This last assumption is consistent

with current understanding of wild mosquito populations; although senescence is

observed in laboratory mosquitoes, wild mosquitoes are expected to die long before

they can exhibit any substantial deterioration with age [191]. We also assumed

that vector control interventions were maintained at the same coverage level across

time, with no waning e↵ects, which would be logistically di�cult and expensive to

achieve.

It is also important to remember that scale-ups in use of insecticides to combat

transmission can result in wide-spread insecticide resistance and behavioral

changes in sleeping conditions can lead to changes in biting behavior [192, 193].

These factors have the potential to undermine progress made using vector control

measures, and in particular evidence of this has been seen in a number of malaria

control programs [194–196].

This model has been developed based on vector models in the malaria literature

and hence makes no consideration of the parasite density dependent infectivity we

expect to see for LF. In medium to high prevalence settings we would expect the

probability of a mosquito becoming infected during an infectious blood meal to

increase if the host has a higher worm burden. Future work could expand on the

current model by considering the infection probability from host to vector as

dependent on the mean filarial load, but would need more detailed data to

parameterise this relationship. However, even with these limitations, considering

the vector dynamics still provides important insight into how vector control

measures could be explicitly described in established LF models.

Our results cover a range of high and medium transmission settings, briefly

touching on a low prevalence setting of 1%, but we do not consider host
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prevalences of less than 1% mf. In the absence of explicit inclusion of the mating

requirements for filarial worms, we would not expect to see the breakpoint

described in Chapter 3. As this break point is often estimated as being below 1%

mf prevalence, we wouldn’t expect this exclusion to have substantial impact on our

presented results, although it is likely that vector control could prove a vital tool

in the final stages of elimination.

As more countries begin to bring disease levels down towards the 1% mf prevalence

range, and target passing TAS, the key questions of importance change. Here we

have presented a first investigation into how a range of vector control interventions

could contribute towards the control and decline of disease prevalence in both the

host and vector populations. The obvious follow-on question would be whether

combining MDA and vector control could prove a useful tool. It would also be

useful to investigate how progress can be maintained and furthered, and what role

vector control should play in the next step of the journey towards elimination as

we move away from intervention and more towards surveillance.

Post-MDA surveillance is a challenge facing a growing number of countries as more

are validated for achieving EPHP. When prevalence is low there may be less

adherence to vector control measures, but the vector is still an important marker

of disease. A number of studies have suggested using xeno-monitoring as a method

for detecting presence of disease in a population, but with a good enough

understanding of disease it may be possible to link mf prevalence in humans to

prevalence of infectious disease in mosquitoes [197, 198].

4.5.1 Chapter summary

In this chapter I gave an introduction to the literature on modelling malaria and

LF. I then described the development of a deterministic compartmental model of

the mosquito gonotrophic cycle, based on vector models used in the malaria

literature. I incorporated vector control measures and infection dynamics into the

model and investigated the impact of vector control on transmission. Adult-acting

vector control was found be more e↵ective than larvicide-based intervention for the

same coverage level, due to the combination of adulticide and repelling e↵ects. I

also conclude that it is possible, but unlikely, that LLIN usage alone could be

credited for a reduction to below EPHP levels of LF in The Gambia between 1950

and the present day.
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CHAPTER 5

XENO-MONITORING

5.1 Introduction

5.1.1 Chapter outline

In this chapter I aim to characterise human microfilaria (mf) prevalence of

lymphatic filariasis (LF) as a function of mosquito prevalence, describing a method

of disease surveillance using di↵erent vector sampling and testing methods. I

characterise uncertainty around my calculations and investigate the sample sizes

required for xenomonitoring-derived estimates to be useful for public health

decision-making. I also simulate the described sampling and human prevalence

estimation process in an elimination setting (human mf prevalence of 1%) to

demonstrate feasibility and compare individual and pool-based sampling.

5.1.2 Background

With sixteen countries and territories having achieved validation of elimination of

LF as a public health problem (EPHP), and seven more recently under post-MDA

surveillance [19], there is increasing discussion on what should be done

post-validation. As achieving EPHP is not necessarily expected to guarantee true

elimination of transmission [199], and with the largely unknown risk of resurgence

[130, 9], there is a need for well formulated guidelines on what programs should be
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aiming to do after validation of EPHP. Currently the World Health Organization

(WHO) requires a nation to pass three transmission assessment surveys (TAS1–3)

and have some ongoing surveillance to achieve validation, but there is no guidance

on what this ongoing surveillance should entail [30]. This results in a real risk that

some programs will stop e↵ectively monitoring disease levels after achieving

validation, potentially leading to undetected resurgence.

A number of countries have implemented their own post-validation strategies,

including combinations of passive surveillance, active case tracing, focused testing

of at-risk populations and vector surveys [199–202]. Human diagnostics used are

either antigen tests (immunochromatographic test, ICT, or filarial test strip, FTS)

or microscopic examinations of night blood smears, although poor specificity in the

antigen tests means some programs follow up any positives with night blood

smears [203]. Entomological surveillance is currently described by the WHO as

optional [30], but is being used as a tool to detect presence of infection in a number

of post-validation settings including Ghana, Togo and Bangladesh [200–202].

The main methods of testing vectors for disease are dissection [202], for

identification of W. bancrofti larval stages under a microscope, or real-time

polymerase chain reaction (PCR) to identify presence of parasite DNA in mosquito

carcasses, termed molecular xenomonitoring (MX) [200, 201]. Dissection is labour

intensive and a positive result requires a viable infection in the mosquito, whereas

with PCR it is possible to detect presence of W. bancrofti DNA if a vector has

simply taken a blood meal from an infected human [204]. PCR methods often

involve grouping the mosquitoes into pools of 10 or more (known as pooling) to

increase the accuracy of PCR outputs and save on costs. Other testing methods

are also in development, including PCR testing of mosquito excreta that can

detect whether a mosquito has taken an mf positive blood meal [198].

Xenomonitoring is a non-invasive alternative to human surveys, and is potentially

capable of indirectly measuring parasite burden within endemic locations [61, 205].

The challenges associated with measuring low prevalence means that required

sample sizes are very large. Since antigen and antibody levels have been shown to

be a lagging indicator of infection [206] and night blood smears are highly invasive

and impractical on a large scale, xenomonitoring could prove to be a key

surveillance tool along the road to elimination.

However, there are no standard methods for gathering or interpreting

xenomonitoring observations. If no evidence of disease is found in the vector
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population then it is necessary only to calculate confidence around that

measurement to quantify likelihood of disease absence. However, if any vectors or

pools test positive for disease then it would be informative to be able to relate the

results to human public health measures. A number of studies have measured

mosquito and human prevalence concurrently, in an attempt to quantify the

underlying relationship.

A study in Egypt in 2000 recorded pre-MDA host mf prevalence levels of 11.5% in

Giza and 4.1% in Qalubiya, with mosquito prevalence estimates of 2.38-3.88% and

3.07-5.99% respectively, before going on to measure host and mosquito prevalence

annually with each round of MDA [207, 208]. The prevalence in mosquitoes was

seen to decrease with the prevalence in humans. Another study, conducted in

American Samoa, measured a range of post-MDA vector prevalences below 3% [59]

and a more recent post-validation study from Sri Lanka reports mosquito

prevalences of 0.01-1.04% in settings with a host mf prevalence of 0-1.4% [61].

Table 5.1 describes a few relevant data sets found in the literature.

Using this data, as well as the model described in Chapter 4, we describe a

potential method for xenomonitoring and, by characterising the uncertainty, derive

sample sizes required to estimate human prevalence to within a desired precision.

5.2 Deriving human prevalence

Let V represent vector prevalence, H represent host (human) prevalence and K

represent the proportion of mosquitoes that are parous (have completed at least

one gonotrophic cycle). Then we have that the number of vectors in generation i,

as described by the model in Chapter 4, is Xi = KiX0, where X0 is the number of

nulliparous (or pre-gravid) vectors, and the total number of vectors is

X = X0/(1�K). If our tests are detecting presence of parasite DNA in human

blood meals, rather than infectious prevalence, of captured vectors, then we have

that the probability of not feeding from an infectious human on any given blood

meal is 1�H, where H is the human prevalence. Therefore the probability a

vector in generation i hasn’t taken a meal from an infection human at any point is

(1�H)i and hence we get that the probability a vector has taken a human blood

meal is
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Country Area Human mf (%) Vector DNA (%) Source
PNG Sepik 38.6 25.5 [156]

38.4 28
23.7 15.5
2.0 15
3.4 5

Usino 18.6 15.1 [209]
8.3 3.7
3.4 4.8
1.3 1.02

Egypt Giza 11.5 3.07 [208, 210]
4.5 1.76
2.7 1.84
1.3 0.7
0.4 0.47
1.2 0.19

Qalubiya 3.1 4.37 [208, 210]
1.7 0.28
0.6 0.073
0 0
0.2 0.081
0 0

Ghana Central 1.7 4.3 (anopheles) [211]
1.7 0.02 (culex)

Table 5.1: Data from field studies comparing human mf prevalence and vector
DNA prevalence via PCR. Vector prevalence estimates are all estimated from pooled
observations.
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P[vector in Xi is positive] = 1� (1�H)i . (5.1)

We can then use this to derive vector prevalence as a function of gravidity (K) and

human prevalence (H), assuming that parasite DNA taken from any previous

blood meal will be detectable at the point of sampling (one study has

demonstrated ability to detect LF parasite DNA for more than 2 weeks following

ingestion of an mf positive blood meal [212]). We also assume here that the

proportion of blood meals taken on non-human animals is negligible but these

methods could easily be extended to account for this if it was a substantial factor

by replacing H with QH in Equation 5.1, where Q is the proportion of feeding on

humans.

V =
X

i

X0Ki(1� (1�H)i)

X0/(1�K)
(5.2)

= (1�K)
X

i

Ki(1� (1�H)i) (5.3)

= (1�K)
hX

i

Ki �
X

i

Ki(1�H)i
i

(5.4)

= (1�K)

"
1

1�K
� 1

1�K +KH

#
(5.5)

=
KH

1�K +KH
, (5.6)

which can be rearranged to give:

H =

 
1�K

K

! 
V

1� V

!
. (5.7)

The variety in mosquito trap methods available allows catches to target either the

entire population (e.g. CDC light traps) or just gravid mosquitoes (e.g. Centre for

Disease Control and Prevention (CDC) gravid traps). Although it would be costly

to dissect su�cient vectors to directly measure K, it could also be estimated using

the ratio of disease DNA prevalence between gravid trap and non-biased trap

captures. We have that V = KVp, where Vp is the prevalence in the parous

population. In this way, such a combination of trap types could be used to
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E 1% 2% 5%
n 9600 2397 381

Table 5.2: Sample sizes for number of vectors required to measure vector prevalence
in a particular trap type, by percentage allowable error (E).

estimate human prevalence from xeno-monitoring observations.

However, this method is only useful if we can quantify the uncertainty around

these measurements, and the sample size required to ensure an appropriate level of

accuracy. If we are simply interested in calculating the prevalence in a particular

trap type to within a certain error, E, with 95% confidence then we can use a

standard binomial distribution to directly calculate the required sample size,

n >
(1.96)2(0.5)2

E2
. (5.8)

Values for error of 1–5% can be seen in Table 5.2.

However, there is no standard method for calculating confidence intervals or

sample sizes for distributions that are functions of binomial variables. We first

compare two methods for calculating confidence intervals around the estimate of

K = V/Vp: the Ln-method [213, 214], which is specifically designed for ratios of

two proportions, and the Delta (or Taylor) method [215], a more general method

commonly used for functions of random variables.

If we consider the random variables X ⇠ Binomial(m,V ) and Y ⇠ Binomial(n, Vp),

with estimates of prevalence x = X/m and y = Y/n. then we can define a new

random variable T = x/y = nX/mY .

The Ln-method assumes the logarithmic transformation of T is normally

distributed with estimated mean ln (x/y) and standard deviation

� = 1/x+ 1/y � 1/m� 1/n. Then the confidence interval on the observed value

t = x/y is given by:

(t exp(�⇠1�↵
2
�), t exp(⇠1�↵

2
�)) , (5.9)

and a total confidence interval width of 2t sinh ⇠1�↵
2
�, where ⇠1�↵

2
= 1.96

represents a 95% confidence.
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The Delta method works for general T = g(X,Y ), where the variance of T is given

as a function of partial derivatives of g, the variances of X and Y , and the

covariance of X and Y .

Var(g(X,Y )) =

 
@g

@X

!2

Var(X)+

 
@g

@Y

!2

Var(Y )+

 
@g

@X

@g

@Y

!
Cov(X,Y ) . (5.10)

Here g(X,Y ) = nX/mY , so we have partial derivatives:

@g

@X
=

n

mY
=

1

my
, (5.11)

@g

@Y
= � nX

mY 2
= � x

ny
, (5.12)

and variances, Var(X) = mx(1� x) and Var(Y ) = my(1� y). Assuming the

variables X and Y have zero co-variance gives an overall variance of

Var(T ) =
x(1� x)

my2
+

x2(1� y)

ny3
, (5.13)

which can be used to calculate the confidence interval: t± ⇠1�↵
2

p
Var(T ), where

⇠1�↵
2
= 1.96 gives a 95% confidence interval. Unlike the Ln-method, this

formulation of the confidence interval is symmetrical around the central estimate, t.

We can also use the Delta method to derive a formula for a confidence interval on

the human prevalence, H, estimated using observed values of vector prevalence. If

we substitute K = V/Vp into Equation 5.7 the we get

H =
Vp � V

1� V
=

Y/n�X/m

1�X/m
= g(X,Y ) , (5.14)

with partial derivatives
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@g

@X
=

m(Y � n)

n(m�X2)
=

y � 1

m(1� x)2
, (5.15)

@g

@Y
=

m

n(m�X)
=

1

n(1� x)
. (5.16)

We can then construct an estimate of the variance of H,

Var(H) =
x(1� y)2

m(1� x)3
+

y(1� y)

n(1� x)2
, (5.17)

which can be used to get the 95% confidence interval h± 1.96
p
Var(H).

As we are interested in the sample sizes required to derive a useful estimate of

human prevalence from vector observations, we can use these confidence interval

calculations to investigate how the error, E = 1.96
p
Var(H), varies with sample

sizes m (light traps – all vectors) and n (gravid traps):

E = 1.96

s
x(1� y)2

m(1� x)3
+

y(1� y)

n(1� x)2
. (5.18)

To simplify the calculation we consider the case where m = an, where a times the

number of vectors are sample from random traps than gravid traps, due to

di↵erences in trap e�ciency. Recent field studies using standard CDC traps

suggest this value may be around one order of magnitude, a ⇡ 10, [40, 216, 217].

We can rearrange our expression for E as follows to get:

E = 1.96

s
x(1� y)2

an(1� x)3
+

y(1� y)

n(1� x)2
(5.19)

n =
(1.96)2

E2

 
x(1� y)2 + a2y(1� y)(1� x)

a3(1� x)3

!
(5.20)

n =
(1.96)2

E2
f(x, y) (5.21)

However, we would like an expression for n that doesn’t contain x or y, as these

aren’t estimable before sampling begins. Logically, if we maximise the function f

in Equation 5.21 then we will get a conservative bound on the sample size required
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for a specified error, E. The partial derivative of f(x, y) with respect to x is given

by

@f

@x
= (1� y)

2a2y(1� x) + 2x(1� y) + (1� y)

a3(1� x)4
> 0 , 8x 2 [0, 1] . (5.22)

The function f therefore achieves its maximum value at x = 1, but f(1, y) = 1.

However, we can impose reasonable bounds on x. Since overall vector prevalence

will always be lower than human prevalence, and we are interested in elimination

and low prevalence settings we can set a very conservative maximum estimate of

x = 0.1 (see Table 5.1), which represents 10% prevalence of LF DNA presence in

the vector population. We can now maximise f with respect to y, setting x = 0.1

to be constant and taking the partial derivative

@f

@y
=

2x(y � 1) + a2(1� x)� 2a2(1� x)y

a3(1� x)3
. (5.23)

Substituting in x = 0.1 and setting equal to zero, we get a turning point at

ŷ =
0.9a2 � 0.2

1.8a2 � 0.2
(5.24)

with 0 < ŷ < 1. Taking the second derivative,

@2f

@y2
=

2x� 2a2(1� x)

a3(1� x)3
=

0.2� 1.8a2

(0.9a)3
< 0 , (5.25)

hence the turning point given in Equation 5.24 is a maximum and get a required

sample size of

n >
(1.96)2

E2
f(0.1, ŷ) . (5.26)

vectors from gravid traps and m = an vectors from light traps. For a human

prevalence estimation error of E = 0.01, or 1% prevalence, assuming a = 10, this is

equivalent to requiring a sample size of n > 1187 and m > 11870.
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5.3 Pool prevalence

In reality the majority of vector studies will pool vectors for analysis to save costs.

Vector prevalence would then be present in terms of pool prevalence, or the

percentage of pools testing positive. If pools are consistent in size, for example N

vectors in each pool, then we want to estimate the prevalence in the sampled

vector population, p. Assuming random sampling, the number of positive vectors

in a pool is distributed X ⇠ Binomial(N, p).

From observations of pooled vectors we can detect two cases: X = 0 and X � 1.

These occur with probabilities,

P(X = 0) = (1� p)N (5.27)

P(X � 1) = 1� (1� p)N . (5.28)

If we have a large number of pools (M pools, label them X1,. . . ,XM ) then the

proportion of positive pools is approximately equal to the probability a pool is

positive (i.e. that X � 1),

# Positive pools

M
⇡ P(X � 1) (5.29)

.

For fixed prevalence and pool size we can then rearrange to get an estimate of

prevalence (p) in terms of the ‘pool prevalence’ (label this q := P(X � 1)):

1� (1� p)N = q (5.30)

(1� p)N = 1� q (5.31)

1� p = (1� q)
1
N (5.32)

p = 1� (1� q)
1
N . (5.33)

This gives us a relationship that can be used to translate observed outcomes from

pooled vectors into a more easily interpreted epidemiological statistic. Using pools
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from di↵erent trap types could be used to estimate vector prevalence in the overall

and gravid vector populations, allowing us to derive the proportion parous and an

estimate for the host prevalence, H, as previously described:

H =
y � x

1� x
=

[1� (1� ypool)1/N ]� [1� (1� xpool)1/N ]

1� [1� (1� xpool)1/N ]
(5.34)

= = 1�
(1� ypool)1/N

(1� xpool)1/N
. (5.35)

We can use the Delta method to calculate confidence intervals on H, depending on

pool size and the sampled pool prevalences xpool and ypool from light and gravid

trap collections respectively. If we have Xpool and Ypool random variables

describing the number of positive pools, with a total of mp and np pools tested

respectively, then we can define

g(Xpool, Ypool) = 1�
(1� Ypool/np)1/N

(1�Xpool/mp)1/N
(5.36)

and we have that the partial derivatives are

@f

@xpool
= �

(1�Xpool/mp)
� 1

N �1(1� Ypool/np)
1
N

mpN
(5.37)

= �
(1� xpool)

� 1
N �1(1� ypool)

1
N

mpN
(5.38)

@f

@ypool
=

(1�Xpool/mp)
� 1

N (1� Ypool/np)
1
N �1

npN
(5.39)

=
(1� xpool)

� 1
N (1� ypool)

1
N �1

npN
. (5.40)

We also have variances Var(Xpool) = xpool(1� xpool)mp and

Var(Ypool) = ypool(1� ypool)np. Allowing us to calculate the error, E, as
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E = 1.96

vuutxpool(1� xpool)mp

 
@f

@xpool

!2

+ ypool(1� ypool)np

 
@f

@ypool

!2

. (5.41)

The error here is then dependent on the number of pools from each trap type, mp

and np, as well as the number of vectors per pool N . For di↵erent values of N this

can then be compared against the error for unpooled samples (the case N = 1) to

assess the di↵erence in power between these methods.

5.4 Results

Figure 5.1 shows the relationship between pool prevalence and vector prevalence

for a range of pool sizes. A pool of size one would simply represent testing every

vector, giving a linear relationship (p = q), but as pool size increases the curve

becomes more convex. For a pool size of 20 vectors an 80% pool prevalence would

give less than a 10% vector prevalence. For low vector prevalences (up to 5%) the

relationship between pool prevalence and vector prevalence is approximately

linear, even for pools of up to 20 vectors.

Figure 5.1: The relationship between vector prevalence (p) and pool prevalence
(q) for di↵erent pool sizes if we assume large number of pools (M). Top: The
relationship for all pool and vector prevalences. Bottom: Zoomed in on 0 - 20%
vector prevalence.

Figure 5.2 shows the reviewed data from Egypt [208, 210], PNG [156, 209] and
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Ghana [211] on a graph showing the relationship between vector prevalence and

human mf prevalence for di↵erent proportions of parous mosquito (45%, 60% and

75%). These studies all estimated vector prevalence from pooled prevalences, using

similar methods to what we have described here, via commonly-used software tool

PoolScreen. The lower part of the figure focuses on regions of low prevalence

(< 10%), for which the model relationship is close to linear. Linear regression fits

to the data show the di↵erences between settings, indicating systematic di↵erences

in the mosquito dynamics. Even within one country, for example looking at Giza

(yellow) and Qalubiya (red) there are potentially significant di↵erences in the

proportion of vectors that are parous. This reiterates the importance of having

robust and well-characterised methods, involving understanding of the underlying

dynamics, when interpreting vector measures of disease for public health

applications.

Figure 5.2: Data and model linking vector prevalence and individual prevalence
for di↵erent parity levels. In the data vector prevalence is estimated from pooled
prevalence and the model shows curves for a range of parity (45%, 60% and 75%).
Right: Zoomed in to low prevalence (< 10%) with shaded regions representing un-
certainty of fitted linear regressions to: a) Giza, Egypt [208, 210] (Red), b) Qalubiya,
Egypt [208, 210] (yellow), c) Sepik [156] and Usino [209], PNG (purple). A dashed
line shows the best fit for Ghana [211] but uncertainty cannot be calculated due to
sample size.

We are interested in the use of vector prevalence (either pooled or individual)

ratios across trap types to estimate host prevalence, in particular whether required

sample sizes are feasible for use of xenomonitoring as a surveillance method. Figure

5.3 shows how the required parous vector (gravid trap) sample size, n, varies with
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Figure 5.3: Plot showing how required sample size, n, of parous vectors varies with
chosen error, E. Required sample size of random vectors, e.g. using light traps, is
m = an. Here we take a = 10 and the total number of vectors that need to be
sampled is given by n+m = n+ an.

the size of the allowable error margin, E. A 1% host mf prevalence error margin

gives a required sample size of 1187 parous vectors, which translates to 11870

additional random vectors, giving an overall sample size of 13057 vectors. A

smaller margin gives larger sample sizes; an error of 0.1% prevalence giving sample

sizes of n = 118, 700, m = 1, 187, 000 and an overall sample size of 1,305,700.

Using the relationships derived in this chapter we can run trial sampling scenarios,

with fixed sample size and host prevalence, to compare the di↵erent methods of

characterising uncertainty. A series of trial sampling scenarios were run with host

prevalence H = 0.01 or 1% mf prevalence, a sample size of n = 1187 and

m = 11870, as recommended by our sample size calculations, and a range of parity

between 0.1 and 0.75.

Figure 5.4 shows parity estimates plotted against true underlying parity, with

confidence intervals calculated using the Ln method (orange) and Delta method

(blue). The main di↵erence between the methods is that the Ln method is

non-symmetrical around the central estimate, which in most cases leads to a

narrower lower interval and a wider upper interval. However, aside from this small

shift, there is generally good agreement between the two methods. The Delta

method is the most widely used in statistics and is generalisable to more complex

111



CHAPTER 5. XENO-MONITORING 5.4. RESULTS

functions of random variables, so this method is the one that we use going forward.

Figure 5.4: Example simulation showing comparison between the two methods of
confidence interval derivation for proportion of population parous when calculated
from observed vector prevalence in gravid and random traps: Ln (orange, triangle)
and Delta (blue, inverted triangle). Sample sizes: n = 1187, m = 11870 and
underlying host prevalence H = 0.01. Data points are o↵set to allow ease of viewing,
neighboring points represent the same parous proportion.

Figure 5.5 shows the estimated vector prevalence plotted against true vector

prevalence for parous (orange) and random (blue) sampling of the population,

with confidence intervals calculated using the Delta method. The randomly

sampled vectors will include nulliparous mosquitoes which cannot test positive for

LF presence as they haven’t yet taken a bloodmeal, hence the random prevalence

will always be less than the parous prevalence. As the sampling method takes into

account trap e�ciency, we have sampled ten times the number of random vectors

as parous vectors, meaning the confidence intervals on these are narrower.

However, the parous prevalence estimates are all within 0.5% prevalence of the

true value and the sampled data matches the true underlying value well.

The next step is to consider the confidence intervals around the estimated host

prevalence (see Figure 5.6). We compare the results of sampling individual vectors

(red) and pooling the same number of total vectors into pools of N = 20 (blue).

This gives di↵erent estimates of host prevalence for the same underlying
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Figure 5.5: Example simulation showing the estimated vector prevalence in
parous (orange, diamond) and random (blue, circle) populations, with sample sizes
n = 1187 and m = 11870 respectively and underlying host prevalence H = 0.01.
Confidence intervals were calculated using the Delta method.

prevalence (1%) and parity, and the Delta method was again used to calculate

confidence intervals. In all cases, as expected due to loss of information through

pooling, the pooled confidence intervals are either equivalent or wider than the

individually sampled intervals. However, there is actually surprisingly little

deviation in both the central estimates and confidence intervals between the two

methods. This is potentially due to the simple near-linear relationship between

pool prevalence and vector prevalence at low prevalence levels (Figure 5.1).

Pooling vectors for testing is substantially cheaper and less labour intensive, so

this could be exploited to increase feasibility of xenomonitoring as a survey tool.

The majority of the confidence intervals from individually tested vectors are less

than 1% prevalence on either side of the estimated host prevalence, whereas some

of the confidence intervals from pooled testing are closer to 1.5% each side. If

pooling was being used then a larger sample size would be required for the same

error width, but this would likely still represent fewer overall lab tests than using

this sample size and individual testing.
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Figure 5.6: Example simulation showing comparison of estimated host prevalence
for individual (red, circle) and pooled (blue, diamond) tested mosquitoes. Sample
sizes n = 1187 and m = 11870 respectively in both cases, with a pool size of N = 20
in the pooled case, and underlying host prevalence H = 0.01. Confidence intervals
were calculated using the Delta method. Data points are o↵set to allow ease of
viewing.

5.5 Discussion

Through deriving analytical expressions for host prevalence as a function of vector

DNA prevalence and subsequent confidence intervals, we have been able to

calculate the vector sample sizes required to measure host prevalence to within a

specified error with 95% confidence. We have also demonstrated the potential of

exploiting biases in di↵erent commonly used CDC-approved trap types as a proxy

for measuring the proportions of nulliparous and parous mosquitoes, an essential

locally-dependent parameter of vector and transmission dynamics. We also

generalised these results to include the potential for pooling vectors before

carrying out laboratory testing, which could substantially reduce costs and

increase feasibility. These results are also directly applicable to other

mosquito-borne diseases, such as malaria, as the biological details of LF are not

used anywhere in this analysis.
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We found that the relationship between pool prevalence and vector prevalence

would be hard to use for mid to high vector prevalences (>20% prevalence) due to

the rapidly increasing slope. This would mean a small change in observed pool

prevalence would lead to an increasingly large change in estimated vector

prevalence, making it di�cult to calculate vector prevalence to within a sensible

error. However, at low vector prevalence (<20%) this calculation becomes much

more feasible, even for pool sizes of up to 20 vectors, and at very low prevalence

(<5%) the relationship between pool prevalence and vector prevalence is close to

linear, allowing for very easy calculation.

Comparing the model of host prevalence as a function of prevalence to data

observed in field studies demonstrated that parous proportions may vary

significantly between settings, potentially due to local di↵erences in the

environment or vector dynamics.

When considering the required sample sizes used to measure vector and parous

vector prevalence we estimated that a total sample size of just over 13,000 vectors

(1187 parous, 11870 random) would be required to measure host prevalence to

within an error of 1% mf prevalence. This is a relatively large, but not infeasible,

sample size. However, the required sample size increases exponentially with

decreasing error, meaning the required precision of surveillance will be a key

determining factor in whether xenomonitoring is a feasible method for post-MDA

settings.

Cost of surveillance is also a key factor when programs consider which method to

use. Both collection and PCR testing of mosquitoes are currently relatively high in

cost due to the necessity of expensive real-time PCR machines [218] and skilled

labour [219], meaning individual capture and testing of vectors is likely to be

infeasible in most settings. However, human surveillance is also a high cost

intervention and is mainly used in post-MDA scenarios, where the low prevalences

mean sample sizes need to be both large and spatially-distributed to e↵ectively

estimate presence or absence of transmission [220]. The development of rapid

point-of-care tests such as the filarial test strip (FTS) has alleviated some of these

challenges, but many programs find there is a lack of willingness in the population

to participate in surveillance for an infection is no longer considered a major

problem [198].

Pooling vectors is common practice in the field, particularly if resources are

limited, and can save substantially on PCR costs [219]. Our first investigations
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suggest that the di↵erence in confidence between individually testing and pooling

vectors is relatively small, potentially due to the low prevalence settings

considered. We would expect this di↵erence to be increased for higher prevalences,

but as the main interest in xenomonitoring comes from elimination settings, pool

sizes of up to 20 vectors in these places should only lead to a small loss of

accuracy. More work needs to be done to directly link required sample size, pool

size and error width.

It is important to note that our assumption of zero co-variance between trap type

samples only holds if traps are not set at the same time in the same place, as we

might expect the presence of multiple trap types in one location to bias the

samples. We have also assumed that the same number of vectors are included in

each pool, which is not always the case in vector studies, often the average pool

size is quoted instead. Further investigation would need to be done as to how

feasible it is to fix pool size in the field and how variation in pool size might

impact our calculations.

As more countries achieve EPHP and move into post-MDA surveillance, novel

tools for monitoring infection levels become increasingly important. Human-based

testing is expensive and invasive, with high associated labour and resource costs,

and xenomonitoring has long been discussed as a potentially financially viable

alternative but there is still little understanding of the relationship between vector

prevalence and host prevalence and common opinion is that sample sizes may be

logistically infeasible. We have attempted to bridge this knowledge gap and our

findings suggest that sample sizes may be more feasible than expected, depending

on required precision levels. However, we have presented analysis of one potential

xenomonitoring surveillance method, further modelling and field work will be

needed to investigate and compare a range of methods in developing the best tools

for surveillance in the journey towards true elimination of transmission.

5.5.1 Chapter Summary

In this chapter I derived analytical relationships between host prevalence and

measurable parasite DNA prevalence in vector blood meals, considering both

individually sampled and pooled vector measurements. I also described a method

for estimating the proportion of parous mosquitoes. I also derived an explicit

formula for sample size calculation, depending on a required precision. My results
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show that required sample sizes may be more feasible than previously expected,

and that pooling vectors may be a viable method for reducing the costs and labour

required for use of xenomonitoring as a surveillance tool.
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CHAPTER 6

AGGREGATION

6.1 Introduction

6.1.1 Chapter outline

In this chapter, I explore the relationship between disease prevalence and infection

intensity for helminth parasites. I challenge the standard negative binomial

assumptions and briefly investigate the practical implications of such assumptions,

particularly in conjunction with a range of mass drug administration (MDA)

modelling assumptions.

6.2 Background

As discussed in Chapter 2, disease prevalence (P ) for helminth infections is often

assumed to link to intensity (or mean worm burden, M) through a negative

binomial distribution [27]. This is based on the knowledge that there is

heterogeneity in the parasite burden between hosts, otherwise known as the

aggregation of parasites within the host population. The derivation of this

relationship is based on the assumption of a gamma-distributed infection risk

combined with a Poisson distributed acquisition rate, giving the following

analytical expression:
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P = 1� (1 +M/k)�k (6.1)

Aggregation k is expected to vary between settings, but is sometimes also taken as

a function of M , linear or otherwise [51, 27]. However, for modelling purposes

aggregation is often considered constant for a particular region or setting.

This derivation has proved a highly powerful and useful tool in modelling helminth

infections, however it is also considered by some as a non-ideal approximation, due

to the increase in either biological or mathematical complexities often required to

incorporate the negative binomial structure into models [221]. Converting results

to prevalence also means that information is lost about the distribution of worm

burden in the population, which is interlinked with the morbidity of disease and

other important epidemiological factors. In particular, lower prevalence is

associated with higher degrees of aggregation [222].

However, unless the model is individual-based, prevalence measures are often used

in the implementation of model simulations. For example, in vector-borne

helminth infection models the force of infection from the host population to the

vector population is often taken to be a function of the host prevalence rather than

the mean worm burden, as it is necessary to include the probability of a vector

biting an infectious individual. Ideally we would use a formulation based on M

rather than the host prevalence.

6.3 Lymphatic filariasis force of infection

If we consider the lymphatic filariasis (LF) model in Chapter 4, then it is possible

to describe such a formulation for the force of infection on the vector population as

a function of M . To estimate host prevalence we consider the mf count per 20µl of

blood in an individual as being distributed following a negative binomial

distribution. From Anderson and May [27], we have that the probability of z

parasites per 20µl of blood when sampling a random individual from the

population is:

P[z|M,k] =

✓
z + k � 1

z

◆⇣
1 +

M

k

⌘�k�z
⇣M
k

⌘
z

. (6.2)

Here M is the mean mf count and k is a descriptor of over-dispersion.
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Take A to be the ratio of mosquito feeding volume to 20µl, A = (Feeding

volume)/20µl, and ⌘ to be the probability one ingested mf results in an L3

infection. Then, assuming a single hit model, it follows that the force of infection

(FH!V ) of humans on mosquitoes is proportional to the infinite sum:

FH!V / 1�
1X

z=0

e�A⌘zP[z|M,k] . (6.3)

We can now derive an analytical solution for the summation term, ⌃, in Equation

(6.3). In order to use a binomial sums identity,

1X

z=0

✓
z + k � 1

z

◆
x�z ⌘

⇣x� 1

x

⌘�k

for |x| > 1 , (6.4)

we rearrange the summation term to fit this construction:

⌃ =

✓
1 +

M

k

◆�k 1X

z=0

✓
z + k � 1

z

◆✓
eA⌘

✓
1 +

k

M

◆◆�z

. (6.5)

Now, using the formula for P[z|M,K], as given in Equation (6.2), and taking

x = eA⌘(1 + k/M), we see that the force of infection is governed such that

FH!V / 1�
✓
1 +

M

k
� M

k
e�A⌘

◆�k

. (6.6)

Unfortunately, there is a lack of data on the single hit probability of one mf

translating into an L3 infection, ⌘, leaving this formulation di�cult to

parameterise.

6.4 Impact of MDA on aggregation estimates

In this section I compare population-based and individual-based formulations of

infection to investigate the impact of di↵erent mass drug administration

assumptions on aggregation assumption.

For the population-based example I choose a constant aggregation parameter, k, to

directly relate prevalence, P , to mean worm burden, M , using the standard

negative binomial distribution. For the individual-based formulation I set up a

population of size N with individual worm burden distributed according to a
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negative binomial with a mean M = 1 and aggregation k = 1, such that each

individual has an allocated worm burden drawn as random samples from this

distribution.

For a given e�cacy of treatment, ↵, MDA is then applied to the individual-based

population according to one of the following cases:

1. Random human sampling for treatment and treatment e�cacy per person

sampled: either 100% or 0% clearance of infection based on an ↵ probability

of success.

2. Random sampling, treatment e�cacy per worm: an ↵ probability of clearing

each individual worm, independent of the number of worms present in a host.

A negative binomial distribution is then fitted to the treated population and the

new estimated value of the aggregation parameter, k, is recorded. Using this

method we can numerically estimate k for a range of mean worm burdens for both

MDA assumption cases and then compare prevalence, using Equation 6.1, to the

population-level model using the constant value of k (see Figure 6.1). As the

intervention modelled is one application of 88% e�cacy medication with a range of

coverage between 0 and 100%, the minimum possible resulting mean worm burden

is 88% less than baseline, which translates to a mean worm burden of 0.12.

Our results show that assuming a constant k, and not re-fitting the negative

binomial after applying an external force to the system, results in systematic

over-estimation of prevalence compared to the individual-based model. Case 2 of

modelling MDA (treatment e�cacy per worm in each person treated) also results

in a higher estimate of prevalence than Case 1 (treatment e�cacy per person).

This follows logically from the methods used, as assuming 100% clearance in 88%

of cases treated will increase heterogeneity in worm burden and reduce prevalence.

We also see that the fitted aggregation parameter, k, varies dramatically with

MDA coverage (and associated resulting mean worm burden). For Case 1 k

decreases with increasing MDA coverage and decreasing mean worm burden, and

is close to zero at maximum coverage. This represents increasing heterogeneity as

disease levels decline. Case 2 behaves similarly, albeit with a shallower gradient,

until an MDA coverage of around 90% (or a mean worm burden of around 0.2). At

these high levels of coverage k begins to increase again, representing reducing

heterogeneity. As an e↵ective coverage of higher than 90% is infeasible in most
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settings [223, 224], with WHO recommended coverage of 65-80% dependent on

setting, this e↵ect is interesting but has limited public health relevance.
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Figure 6.1: Relationships between mean worm burden, prevalence, parasite ag-
gregation and MDA coverage for three cases: assuming MDA leads to proportional
reduction of the mean with a constant aggregation parameter k = 1 (black) and two
cases of modelling one round of MDA coverage, with k varied according to best fit
negative binomial distribution. Case 1 (blue): MDA e�cacy acts per person (either
0% or 100% of worms are cleared in each individual treated, with probability 0.88).
Case 2 (red): MDA e�cacy acts per worm (each worm in a treated human is cleared
with probability 0.88). Host prevalence (top row) and parasite aggregation (bottom
row) are given as functions of mean worm burden (left column) and MDA coverage
(right column, e�cacy = 88%).
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6.4.1 Systematic non-adherence

To consider the impact of extended MDA usage on aggregation we consider a

sequence of four treatment rounds at a range of coverages (0-100%), with the same

initial conditions as before (M = k = 1). Using Case 1 or Case 2 to model the

MDA application, we can also consider the role of systematic non-adherence. We

consider the two extreme cases: adherence is completely random, and adherence is

completely systematic, i.e. the same individuals are treated in every round.

Figure 6.2 shows prevalence and k for a range of MDA coverage and resulting

mean worm burden. As expected, our results show that MDA programs with

random adherence perform better than those with systematic adherence, due to a

larger number of unique individuals treated. However, it’s interesting to see that

assuming random MDA coverage with treatment e�cacy per worm leads to a

substantially higher estimate of prevalence for the same mean worm burden than

all other methods. The similarities between Case 1 and Case 2 in the case of

complete systematic adherence implies that the reduction in aggregation caused by

worm-based rather than human-based e�cacy is overwhelmed by the increased

aggregation caused by treating the same individuals each round. In all cases there

are large discrepancies between the fitted estimates of prevalence and those

calculated using a constant k. There is more noise in the non-systematic scenario

of Case 2 than in other realisations because of the combined stochastic e↵ects of

randomly selecting both individual humans to treat and individual worms to clear

in the presence of MDA, meaning a higher number of simulations would be

required to achieve a comparably smooth curve.

Figure 6.3 depicts example worm count frequencies comparing systematic and

random adherence across the two MDA modelling methods, assuming a coverage

of 65%. In both cases we see a decrease in the number of zeros and an overall

increase in heterogeneity when we assume systematic adherence. Looking back at

Figure 6.2 we see that at 65% MDA coverage there is a similar distance between

systematic and random aggregation estimates for both cases, explaining the

similarities between these two histograms.
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Figure 6.2: Relationships between mean worm burden, prevalence, parasite aggre-
gation and MDA coverage for three cases: constant aggregation parameter k = 1
(black), case 1 (blue) and case 2 (red) – as described in Figure 6.1 – after 4 rounds
of MDA. Cases 1 and 2 are presented with random sampling (solid) and systematic
non-compliance (dashed). Systematic non-compliance is taken to be maximal, with
the same individuals missing treatment in each round. Host prevalence (top row)
and parasite aggregation (bottom row) are given as functions of mean worm burden
(left column) and MDA coverage (right column, e�cacy = 88%).
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Figure 6.3: Example worm count frequency plots comparing systematic and ran-
dom compliance for MDA cases 1 (Top, blue, drug e�cacy per host) and 2 (Bottom,
red, drug e�cacy per worm). Worm counts are taken after 4 rounds of MDA at 65%
coverage in each case. MDA e�cacy = 88%.
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6.5 Concluding remarks

Using a simple individual-based formulation of parasite infection, I have shown

that assuming a negative binomial relationship between mean worm burden and

prevalence with constant aggregation, k, may not always be appropriate. In

particular, MDA and the way it is modelled is likely to have e↵ects on this

relationship that cannot be characterised by a constant aggregation assumption.

The relationships shown also demonstrate complex relationships between

aggregation, MDA coverage, mean worm burden and prevalence. This implies that

expressing k as a linear function of mean worm burden may also be insu�cient to

capture changes in the underlying parasite distribution caused by external

pressures.

We find that both systematic compliance and MDA assumptions have an impact

on estimated distribution parameters and the associated aggregation, with

systematic non-adherence resulting in potentially large changes in prevalence and

aggregation estimates. These results highlight the importance of caution when

translating between mean worm burden and prevalence across all helminth

infections, as well as the need for further biological and modelling studies in the

characterisation of these relationships.

6.5.1 Chapter summary

In this chapter I used an individual-based model to investigate the relationship

between disease prevalence and infection intensity for helminth parasites, in

particular focusing on analysis of the commonly-made negative binomial

assumption. Considering a range of possible modelling assumptions, I

demonstrated that assuming constant or linear values of the aggregation

parameter, k, could potentially be inappropriate in a number of scenarios, resulting

in an over-estimation of prevalence and an under-estimation of aggregation.
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This thesis has focused on a range of questions across the landscape of neglected

tropical diseases (NTDs), helminths and vector-borne transmission. The key

overarching aim has been to investigate current models in the literature and

expand the utility of these by including more detailed modelling of the underlying

processes. A secondary, but equally important, goal was to highlight knowledge

gaps and lay the basis for future research that will be beneficial towards disease

control and elimination. I addressed these questions by developing novel models

for A. lumbricoides (a soil-transmitted helminth, STH) and lymphatic filariasis

(LF) transmission using a variety of modelling methods.

My results show that there are a number of scenarios where more detailed models

would be appropriate to assist understanding of transmission and control. For

example, I demonstrated in Chapter 2 that the importance of seasonal mass drug

administration (MDA) timing is highly dependent on local weather profiles,

showing how temperate climates could be exploited to maximise program impact.

In Chapters 3 and 4 I showed that annual biting rate is a key determinant of

elimination success and that vector control has the potential to substantially

reduce transmission, in contradiction to previous modelling conclusions [55]. In

Chapter 5 I utilised an explicit model of mosquito feeding dynamics to calculate

estimates of sample sizes required for the viable use of xenomonitoring as a tool for

disease surveillance, which appear more feasible than suggested in the existing

literature [59].
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The main implications of the seasonal model results in Chapter 2 are that there

may be a number of settings where MDA programs are a long way from achieving

their potential maximum benefit. A relative improvement of 75% across a four

year period would represent a substantial gain in population health and disease

control, particularly in settings that still see transmission after many rounds of

MDA as benefits are expected to be multiplicative [225]. The recommendations

prompted by these results are fairly simple and suggest that optimal treatment

timing should coincide with environmental lows in the larval population [67].

Similarly, the worst time for MDA was found to be during peaks in the infective

larval population. As the relationship between temperature and development is

reasonably well-characterised for ascaris eggs [70], these periods should be

relatively straightforward to determine.

The main bulk of the remaining chapters focused on aspects of the LF

transmission cycle and their relationship with control and surveillance methods.

Chapter 3 has important connotations for future assessment and modelling of

elimination dynamics. The identification of key knowledge gaps and

recommendations for how they could be improved upon could potentially lead to

substantially increased understanding of the disease [14], which could be

instrumental in achieving elimination targets. Secondly, drawing awareness to the

weaknesses in the experimental evidence base is vital to assuring models are

realistic and well parameterised, highlighting the importance of critical assessment

when taking parameters directly from the literature.

Findings from the mosquito model developed and analysed in Chapter 4, show

that adult-acting control measures are likely to have a much greater impact on

transmission than larval-based interventions. Although larval control has been

cited as a potentially viable method for reducing disease [66], these results

demonstrate a multiplicative benefit of increasing coverage of adult-acting

measures, compared to a linear benefit of increasing larvicide coverage. This

implies that, unless vector population collapse is achieved through aggressive

larvicide usage, programs would be better o↵ focusing on long lasting insecticidal

treated net (LLIN) and indoor residual spraying (IRS) interventions. The

conclusion that high coverage (80%) of LLIN usage alone could cause dramatic

decreases in population mean worm burden across an order of 4-5 years.

In addition, the recommendations for vector survey sample sizes and methods,

presented in Chapter 5, have far-reaching implications and potential impact. A
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statistically robust method of estimating the likely window of human prevalence

from vector surveillance is critical to the feasibility of xenomonitoring as a public

health tool and I have made substantial progress in this respect. The direct

calculation of confidence intervals and guidelines on the sample sizes required for

individually-sampled mosquitoes described here could lead to the development of a

well-defined and applicable xeno-monitoring strategy that could be used by

programs for surveillance post-validation of elimination as a public health problem.

My initial assessment that pooling vectors (up to and including pool sizes of 20)

doesn’t dramatically increase the error of measurements is a step towards making

such strategies a↵ordable and practically achievable for programs with fewer

resources. I would expect that focusing on a low prevalence setting (<5%

microfilaria, mf, prevalence in humans) is the cause of this e↵ect, making it ideal

for elimination programs, but further analysis needs to be done to better

understand this relationship.

I believe the consideration of aggregation assumptions in Chapter 6 is important,

with results demonstrating that using a constant or linear form for the aggregation

parameter, k, may be inappropriate for estimating prevalence from mean worm

burden over time. However, this relatively short section of work serves only to

demonstrate some potential pitfalls. Further work is necessary to characterise the

extent of the limitations of the negative binomial assumption, as well as to develop

a viable alternative if it is required.

My results are founded upon modelling assumptions. Parasite density dependent

e↵ects are neglected due to their reduced importance in low prevalence settings

and other simplifications are assumed across the models, including constant pool

sizes in the xenomonitoring analysis and no consideration of insecticide or

chemotherapy resistance developing where control methods achieve high coverage.

Although it is important to take modelling assumptions into consideration when

analysing results, I have demonstrated new methods for modelling helminth

infections in humans and drawn some important conclusions. In some cases my

results challenge the status quo, such as implying vector control usage may be

more important than previously concluded in modelling studies. In other cases

they confirm current understanding, for example by demonstrating why some

regions may not see any seasonal variation in STH prevalence or intensity. In

addition to these, I have also contributed some new understanding to the field,

including a greater awareness of the importance of disease transmission parameters
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and novel suggestions for xenomonitoing error quantification.

The modelling undertaken during the work in this thesis is somewhat limited by

the lack of general availability of detailed epidemiological data on the diseases

discussed, both in terms of baseline and intervention measures. As such, the

results are mainly theoretical and a key outcome is to highlight some areas where

future modelling work, in collaboration with field observations, should be focused.

In particular, future modelling work is important around the dynamics of

elimination of transmission of LF and how we can improve control methods for

both LF and STH. Similar work investigating the impact of seasonal variation on

transmission for other STH parasites would be important for deciding whether

treatment programs should target their timing as the same drug is often used for

multiple parasites, as well as extension of the present work to a wider range of

settings and weather profiles. Greater clarity is also required on the

characterisation of parasite aggregation within human populations under di↵erent

external forces.
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The research reported in this thesis has investigated the impact of biological and

environmental factors on neglected tropical disease (NTD) control, elimination and

surveillance using mathematical and statistical modelling methods. I have

demonstrated that challenging modelling assumptions and realising what we don’t

know can lead to deeper understanding of the processes involved, particularly

where there is a paucity of data, and highlighted where further research is

required. Through this work I have addressed some of the challenges faced by

NTD control programs and my results contribute to the growing modelling

evidence base within the field.
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Naomi-Pitchouna Awaca-Uvon, Gary J Weil, Dieudonné Mumba, and Michel
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SUPPLEMENTARY MATERIAL

1. Further parameters for Chapter 4

This section of the supplementary contains detail on the standardisation of

parameter names and meanings, as well as explicitly describing relationships

between parameters where they exist. Table 1 shows standard parameter names

for vector models, aligned with Smith et al 2012 [183]. Table 2 describes additional

parameters defined for the purposes of the model used in Chapter 4.
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Table 1: Standard parameter names for vector models (Smith et al 2012).

Definition Parameter Notes

Population density of humans H
Population density of mosquitoes M
Number of infected humans X
Number of exposed vectors Y NE

Number of infectious vectors Z NI

Human blood feeding rate (daily) a
Probability vector survives one day p
Instantaneous vector death rate g g = � ln(p)
Intrinsic incubation period (in humans) u
Extrinsic incubation period (in vectors) v
Human recovery rate r
Prob vector infected after biting infected human c
Prob infectious bite infects a human b
Blood feeding rate (all prey) f
Fraction of blood meals on humans Q a = fQ
Mean feeding cycle length � a = Q/�
Prevalence of malaria in humans x
Fraction of exposed vectors y
Fraction of infectious vectors z
Ratio of vectors to humans m = M/H
Human biting rate (# bites per human per day) HBR = ma
EIR (# infectious bites per human per day) E = maz
The average mosquito lifespan 1/g
Stability index (# human bites per vector across its life) S = a/g
Probability vector survives to infectiousness P = e�gv

Probability vector infected during human bloodmeal  = cx
Vectorial capacity V
Basic reproductive number R0

E↵ective reproductive number under control Rc

Critical vector density required to sustain transmission m0
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Table 2: Additional parameter names required for this model.

Definition Parameter Notes

Rate of moving from Exposed to Fed ⇡2
Rate of moving from Fed to Resting ⇡3
Rate of moving from Resting to Ovipositing ⇡4
Rate of moving from Ovipositing to Exposed ⇡1
Emergence rate (from larval stages) �
Linear reduction in emergence rate due to larvicides ✓
Additional IRS-induced death rate �
Bednet coverage !
Probability successful feed in presence of bednet �
Probability death caused by bednet ⌫
Probability successful feed on single attempt q1 = 1�Q!(1� �)
Probability death on a single feeding attempt q2 = Q!⌫
Probability a vector survives one feeding cycle K previously C
The number of newly emerged null-parous vectors B0

Extrinsic incubation period (number of feeding cycles) N
Probability of vector infection from one bite p̂ = xc
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2. Published article 1

Title: Seasonally timed treatment programs for Ascaris lumbricoides to increase
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Seasonally timed treatment programs for
Ascaris lumbricoides to increase impact—An
investigation using mathematical models
Emma L. Davis1͞
, Leon Danon2, Joaquı́n M. Prada1,10, Sharmini A. Gunawardena3, James
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Abstract
There is clear empirical evidence that environmental conditions can influence Ascaris spp.

free-living stage development and host reinfection, but the impact of these differences on

human infections, and interventions to control them, is variable. A new model framework

reflecting four key stages of the A. lumbricoides life cycle, incorporating the effects of rainfall

and temperature, is used to describe the level of infection in the human population alongside

the environmental egg dynamics. Using data from South Korea and Nigeria, we conclude

that settings with extreme fluctuations in rainfall or temperature could exhibit strong sea-

sonal transmission patterns that may be partially masked by the longevity of A. lumbricoides

infections in hosts; we go on to demonstrate how seasonally timed mass drug administration

(MDA) could impact the outcomes of control strategies. For the South Korean setting the

results predict a comparative decrease of 74.5% in mean worm days (the number of days

the average individual spend infected with worms across a 12 month period) between the

best and worst MDA timings after four years of annual treatment. The model found no signif-

icant seasonal effect on MDA in the Nigerian setting due to a narrower annual temperature

range and no rainfall dependence. Our results suggest that seasonal variation in egg sur-

vival and maturation could be exploited to maximise the impact of MDA in certain settings.

Author summary

Soil-transmitted helminth infections affect 1.5 billion people worldwide and mass drug
adminstration (MDA) is one of the key public health measures for reducing the burden

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006195 January 18, 2018 1 / 20
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of infection. A number of experimental studies have demonstrated links between temper-
ature and the dynamics of Ascaris spp. eggs, which are exposed to the environment during
maturation. Field studies in a number of countries, including Sri Lanka, Saudi Arabia and
South Korea have demonstrated seasonal variation in reinfection rates; in Sri Lanka signif-
icant correlations were found between reinfection and both temperature and the number
of wet days recorded. The impact of these variations on transmission, and therefore con-
trol, are unknown. Using a deterministic macroparasite model we demonstrate that sea-
sonal changes in maturation and death rates of free-living stages, as well as transmission,
could result in large seasonal swings in the infective larval population and mean worm
burden in the human population. Although the seasonal effects are likely to vary between
species of STH due to disparate life-cycles, this could have large knock-on consequences
for timings of MDA programs and expected public health outcomes for A. lumbricoides
infections in certain settings, indicating the need for further investigation in this area.

Introduction

Soil-transmitted helminth infections affect approximately 1.5 billion people worldwide [1],
with periodic mass deworming playing a key role in control and elimination efforts. More effi-
cient allocation of control effort resources therefore has the potential to improve the lives of
many millions of people, with studies like the DeWorm3 initiative working to determine the
feasibility of interrupting transmission [2]. Ascariasis, infection of the small intestine by the
parasite Ascaris lumbricoides, is one of the most common of these infections [1] and the life
cycle of the parasite involves egg exposure to environmental conditions during larval stage
development [3]. Experimental studies on Ascaris suum eggs, a closely-related species of asca-
rid, have shown that changes in temperature can affect maturation, viability and mortality [4–
6]. It is likely that temperature also affects A. lumbricoides eggs, and that data from this and
related species can be used to predict climatic effects on ascariasis [7–9].

For a related ascarid in pigs, A. suum, high temperatures are associated with a trade-off
between faster maturation and higher mortality [5], such that an optimum temperature exists
for maximum viability. This optimum temperature has been estimated for the ascarid of dogs,
Toxocara canis, as around 25˚C [10], whereas at temperatures below 10˚C little or no evidence
of development was recorded for either A. suum or T. canis, even after multiple months of
observation [6, 10]. Rainfall is also expected to impact the life-cycle and onward transmission,
but there is greater uncertainty around the magnitude and mechanism of this effect. It appears
that minimal rainfall is needed to maintain soil water content above a required threshold for
development of A. suum larvae [11]. Moisture requirements are better characterised for stron-
gylid nematodes of livestock, for which fecal matter often already contains sufficient moisture
for rainfall to not be considered a limiting factor to development, at least in temperate climates
[12, 13]. There is some evidence that excess water can lead to accelerated development of asca-
rid larvae [11] and that survival rates are higher in environments with higher moisture [14],
but it is possible that the greatest impact of rainfall on the infection cycle is through transmis-
sion. Rain is associated with greater sequestration of eggs through the soil and studies have
shown that soil samples taken during rainy seasons often produce the highest yield of viable A.
lumbricoides ova [15]. Climates which exhibit wet and dry seasons may also see changes in
human behaviour that could impact transmission during these periods; for example, con-
sumption of pickled vegetables during the late autumn to winter season has previously been
suggested as a driver of reinfection in South Korea [16].
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Historical field studies of ascariasis have found seasonal peaks in prevalence [17, 18] and
reinfection rates [16]. One study, treating at different times of year from 1977 to 1978 across
six hamlets in Kyunggi Do province, Korea, found that the highest peak in transmission
occurred in early spring; a difference of 23.5% was observed between the highest and lowest
reinfection rates [16]. Strong seasonal variation in reinfection rates has also been recorded in
Saudi Arabia [15], with the optimal period for larval survival and transmission coinciding with
cooler temperatures and a brief rainy season. A more recent field study of 477 individuals in
Sri Lanka [19] found positive correlations between wet-days per month and both infection
and re-infection rates.

In contrast to parasite control programmes in humans, anthelmintic treatment of live-
stock populations routinely takes account of seasonal variation in infection pressure. Gas-
trointestinal nematode infection typically peaks in summer in temperate areas [20] and
during the rainy season in arid and semi-arid regions [21]. Management factors such as
winter housing and concentration of birthing in spring or rainy seasons, when grass avail-
ability is highest, modify these seasonal patterns [22]. Nevertheless, effects of climatic driv-
ers, especially temperature and rainfall, on the development and survival of infective larvae
are well documented [23] and explain seasonal variation in levels of infection [24]. Models
in which climate drives infection pressure are able to predict observed seasonal patterns
[25–27]. Treatment generally aims to protect animals during periods of heightened risk, or
to eliminate egg output in advance of conditions suitable for larval development. Thus,
suppression of egg output is widely used as a management tool, and is most effective
when calibrated to local climatic conditions [28, 29]. In seasonally arid regions, treatment
during periods hostile for free-living parasite stages was once recommended in order to
minimise reinfection; however, this favours the development of anthelmintic resistance
[30]. Improved ability to predict nematode infection risk for livestock in terms of climate
has led to model-driven farmer decision support tools, which are sensitive to seasonal varia-
tion in infection pressure [31, 32]. For A. suum, egg maturation driven by summer tempera-
tures and prolonged survival in the winter forms the basis for recommended seasonal
control strategies in pigs [33].

Despite the precedent set in the veterinary sector, the majority of public health programs
have yet to adopt seasonal timing of mass drug administration (MDA) for A. lumbricoides con-
trol due to a lack of empirical evidence on the expected impact of such a move. Drugs are dis-
tributed through existing infrastructures, such that adjusting procedure can incur significant
financial and operational costs, which the benefit of seasonal treatment would have to out-
weigh. However, the gain in reduced public health burden from seasonally targeted treatments
could be high for certain climates, with areas that see large variations in temperature and rain-
fall likely to display the most pronounced differences. The key aims of this theoretical study
are to propose a novel model for A. lumbricoides transmission that incorporates some of the
seasonal elements of the system, and in doing so to demonstrate the potential impact season-
ally-timed treatment could have in different climates and prevalence settings.

Methods

A. lumbricoides life cycle model

A model reflecting four key stages of the A. lumbricoides life cycle, is used to describe the level
of infection in the human population alongside the environmental egg dynamics (see Fig 1.
The full equations describing the model can be found in the Supporting Information). This is
a new model framework inspired by the well-established two-stage delay differential equation
model developed by Anderson and May that considers the interaction between the mean
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worm burden (M) and the number of infective larval stages present in the immediate environ-
ment (L) [34]. Using a similar approach to Fowler et al [35], this new framework is easier to
describe, implement and fit as it removes the need for delays. Here we additionally consider
the mean number of juvenile worms per host (J) and the total count of immature eggs in the
environment (E). This allows the removal of delays from the system such that maturation of
both juvenile stages in the host and eggs in the environment can be represented as rates: 1/τ1

and 1/τ2 respectively, where τ1 and τ2 represent average maturation times.
Death rates μ1 and μ2 for the within-host stages, J and M, incorporate both parasite

and host mortality. For the environmental stages, E and L, death is taken to occur at rates
č1 and č2 respectively. The excretion rate of eggs into the environment, sNĕM, is calculated
using the worm gender ratio, s = 0.5, the worm fecundity, ĕ, the human population size,
N, and the current level of mean worm burden, M. Ingestion occurs at rate ČL per host,
removing eggs from the environment at rate ČNL, where Č represents an ingestion uptake
rate.

All biological processes occurring during environmental stages are considered to be
affected by seasonal factors; parameters for egg maturation time (τ2), egg mortality (č1) and
infective stage mortality (č2) are linked to temperature through experimental data, whereas
transmission (Č) is taken to vary with rainfall. Values of model parameters are given in
Table 1.

Fig 1. A. lumbricoides life cycle. Diagram depicting the model structure used to represent the A. lumbricoides life cycle.

https://doi.org/10.1371/journal.pntd.0006195.g001
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Egg survival data

To form an evidence-base for relationships between biological model parameters and tempera-
ture we have drawn on three different experimental studies considering A. suum eggs. Two of
these studies have been used to parameterise the average time taken for eggs to mature into
infective larvae (τ2) across temperatures ranging from 5-35˚C [4, 6]. The third study was used
for seasonal parameterisation of the immature egg and infective larval death rates (č1 and č2),
with a temperature range of 15-35˚C [5].

The first study [4] investigated the rate of development to infectivity of a suspension of A.
suum eggs in flasks placed inside a pig barn in Saskatchewan, western Canada. Recorded tem-
peratures in the barn ranged from 16.8-25.5˚C and increased rates of maturation were seen at
higher temperatures; it took an between 21-28 days to observe development for temperatures
above 23.5˚C, whereas a development time of 77-84 days was recorded for a mean barn tem-
perature of 16.8˚C. This data was used as the main basis for the relationship between tempera-
ture and egg maturation time (τ2).

The second study [6] recorded the developmental stages of eggs in a coarse sand medium in
an environmental chamber with 50% humidity under three temperature conditions: 5˚C, 25˚C
and 30˚C. As the humidity was maintained it can be assumed that this was not a limiting factor
in development, giving temperature as the sole determinant. No development was observed at
5˚C in the first month, with only marginal development being recorded across the three-
month time-span of the study; no eggs reached infectivity. At 25˚C and 35˚C it took 19 and 17
days respectively for eggs to display successful embryonation. This data was used to extend the
previous dataset to consider a wider range of temperatures in fitting τ2.

For the two external stage death rates a third study was used [5] that considered larval via-
bility post-development and larval death rate across a temperature range of 16-34˚C ± 1. Eggs
were incubated in flasks containing a H2SO4 solution so moisture is also assumed to be suffi-
cient for development and survival. Higher temperatures recorded lower viability and faster
time to 90% mortality; larvae were observed as living for up to 150 days at temperatures of
around 20˚C, but above 25˚C this quickly drops to below 50 days and above 30˚C larvae sur-
vived for fewer than 10 days. The study also considered development rate, but recorded the

Table 1. Model parameter definitions and values.

Name Definition Value Source

Č Ingestion or uptake rate seasonal

τ1 Maturation rate from juvenile stage to adult worm 65 (50-80) [34]

τ2 Maturation rate from eggs to infective larvae seasonal [4–6]

d1 Proportion of juvenile stages that survive maturation 0.01 [34]

d2 Proportion of eggs that survive to become infective seasonal [5]

μ Death rate of hosts (lifespan = 50 years) 5.48e-5

μ1 Death rate of juvenile worms (including host death) Ö1� d1=t1
1 Ü á m n/a

μ2 Death rate of adult worms (including host death) 0.042 + μ [34]

č1 Death rate of immature eggs Ö 1
d2
� 1Ü=t2

č2 Death rate of infective larval stages seasonal [5]

s Sex ratio in adult worms (proportion female) 0.5 [34]

ĕ0 Baseline fecundity per adult female worm 7.03 × 105 [36]

N Host population size setting

Unless specified all units are in days.

https://doi.org/10.1371/journal.pntd.0006195.t001
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time until 90% of the eggs had reached maturity rather than the average; this was used to pro-
vide a qualitative validation of the fitted relationship for τ2 but not considered for fitting
purposes.

All seasonal egg relationships were fitted using fminsearch in Matlab 0.0.21 to minimise the
squared error between the model and the data. An exponential decay curve was fitted to the
maturation time data as a function of temperature; limits of function parameters give τ2

bounded below by a non-zero limit and the exponential relationship reflects the assumption
that development occurs either very slowly or not at all for low temperatures [6]. The propor-
tion of eggs successfully reaching maturity (d2) was fitted to a quartic relationship for higher
temperatures and capped at a fitted maximum for lower temperatures. Immature egg death
rates (č1) were then calculated as values which would give the associated survival proportions;
g1 à Ö 1

d2
� 1Ü=t2. Larval death rates (č2) were derived by solving a simple differential relation-

ship to get č2 = −ln(0.1)/m where m is the time taken to achieve 90% mortality, which was fit-
ted to an inverse tangent relationship with temperature.

Climate data

Records of mean monthly temperature (˚C) and rainfall (mm) relevant to the dates and set-
tings we chose to investigate are taken from web archives [37, 38] and used to fit setting-spe-
cific functions. The main requirement of these functions is annual periodicity, hence a
sinusoidal function provides the best approximation.

Epidemiological data

The first dataset used to fit and validate the model originates from a field study conducted
between April 1977 and September 1978 in Gyeonggi Province, South Korea [16]. The study
was conducted across six hamlets (labeled A-F), each consisting of approximately 100 inhabi-
tants, that were considered far enough apart to have independent transmission. Three rounds
of biannual testing and chemotherapy were applied in each location, with intervention dates
offset by a month for each hamlet to monitor different seasonal responses. The drug used was
pyrantel pamoate.

The second dataset, used to investigate an alternative setting, is taken from a field study
based in Osun State, Nigeria, between 2006 and 2007 [39]. The study followed two groups of
194 children, aged 12-60 months, across a period of 14 months. The treatment group received
albendazole every 4 months for a year, with a follow-up assessment at 14 months; the control
group received no treatment but prevalence was measured at the same intervals.

Model implementation and fitting

The model was coded and run using Matlab R2015b, with the function ode45 used to compute
numerical solutions to the differential equations. For each simulation the model was run for a
30 year period with a time step of 0.5 days to equilibrate the initial conditions before any inter-
vention strategy was applied. Administration of anthelmintic drugs was implemented as a pro-
portional reduction in mean worm burden; this proportion depended on efficacy, taken from
the literature, and coverage, taken from the data. Treatment using albendazole was assumed to
have an efficacy of 88% [40]; pyrantel pamoate is taken to have the same efficacy [40], although
this is likely to be a conservative estimate [41].

In both settings transmission rate (Č) was originally considered as an inverse tangent func-
tion of rainfall; three parameters are taken to describe the magnitude (Č0), slope gradient (a1),
and horizontal shift (a2) of the function. The slope gradient and shift are permitted to take a
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range of values to allow for either a positive or negative relationship to reflect conflicting views
in the literature and as it is possible that this will change between settings due to influence
from human behavioural characteristics, such as the effects of rice planting during the rainy
season.

Parameters were fitted to the epidemiological datasets using approximate Bayesian compu-
tation (ABC), followed by a regression-based conditional density estimation method [42]. Uni-
form priors for each of the fitted parameters were defined and simulations were run using
values sampled from these distributions. Simulation outputs were compared to prevalence
data, filtered, and then linear regression is used to correct model inputs, resulting in a posterior
distribution. Simulation outputs were filtered (keeping 1000 of 75K realisations) to maximise
the binomial log-likelihood and weights were calculated using the squared errors between the
model output and the data.

Model outcomes were obtained from 1000 model runs sampling parameters from the pos-
terior distributions and credible intervals were calculated by taking the 2.5% and 97.5% quan-
tiles of the outputs.

For the South Korean dataset villages A-C were used for fitting and then model outputs for
villages D-F were compared to the other half of the data for validation. Prevalence was calcu-
lated from mean worm burden using a standard negative binomial relationship [34], with
aggregation parameter k = 0.45 [43, 44], to capture the expected heterogeneity of infection
intensity.

For the Nigerian dataset the model was fitted to the first four data points for each group
and then the model predictions were compared to the fifth data point in each case. Due to
results displaying a very low overall impact of rainfall on transmission the model was also fitted
assuming a constant transmission rate, Č, and Akaike Information Criterion (AIC) values were
used for model selection. A negative binomial relationship was also assumed between preva-
lence and mean worm burden, but in this case the aggregation parameter was also fitted to the
data.

Results and discussion

Egg survival parameters

The experimental data for all three environmental egg parameters showed strong dependence
on temperature, as seen in Fig 2. The biggest effects are seen in maturation for temperatures
below 20˚C, for infective stage mortality above 25˚C. The proportion of eggs that develop into
viable larvae is mostly constant unless temperatures reach above 30˚C, which is only relevant
in some climates. All fitted seasonal relationships can be seen in Table 2.

Standard transmission models for human ascariasis would expect maturation time to be in
the range of 10 to 30 days and a free living infective stage life expectancy of 28 to 84 days [34].
The fitted relationships fall in the 10-30 day range for temperatures above approximately
22.5˚C, but exhibit a dramatic increase for lower temperatures. For mid-range temperatures
the model predicts time to 90% mortality for infective stages to be between 40 and 120 days,
which equates to a life expectancy of 17-52 days and falls within the expected range.

Fitting and validation: Korea

The fitted parameters for transmission rate in South Korea are: Č0 = 3.30(2.89, 3.82) × 10−9;
a1 = −3.46(−3.97, −3.12); a2 = −66.8(−85.3, 56.0); such that the transmission rate
b à a1

p Ö arctan Öa2Rá a3Ü á p=2Ü. This reflects an inverse relationship between rainfall and
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transmission, perhaps due to high rainfall resulting in infective stages being washed away from
areas where uptake is likely to occur.

Fig 3 shows both the fitting and validating outcomes for the South Korean dataset. There is
excellent agreement between the model and the data used for fitting from villages A-C. Model
outcomes for villages D and E are seen to provide a reasonable fit to the data when considering
overlap between the respective 95% confidence intervals, with some discrepancy between the
model and the data for village F.

Fitting and validation: Nigeria

ABC results for fitting the model to the Nigerian data returned posteriors that allowed for a
range of marginal positive and negative relationships between rainfall and transmission, indi-
cating a lack of evidence to support this element of model structure, unlike the significant rela-
tionship found for the South Korean data. Comparing the Akaike Information Criterion of
this model (Arain) to that of the reduced model (AČ), considering constant transmission, leads
us to reject the combined model with rainfall in favor of one relying only on temperature.
(Arain = 434.6; AČ = 429.6; AČ< Arain; the relative likelihood of the rainfall model is 0.082.)
This implies that we do not have enough evidence to suggest rainfall is a significant predictor
of disease in Nigeria. A transmission rate of Č = 7.93e − 10 (7.86e − 10, 8.00e − 10) and a para-
site density aggregation of k = 0.16 gives the best fit to the data.

Fitting outcomes for the constant transmission model capture the overall magnitude and
trend of the data in both cases (see Fig 4), with reasonable agreement between the model and
testing data points (August 2007). The model appears unable to capture the observed peak in
cases seen across both groups during February 2007, which suggests that this increase was
driven by additional factors; it is possible that sampling biases caused by behavioural change
among the target population could influence such a peak.

Fig 2. Environmental egg relationships. Fitted relationships for environmental egg parameters with temperature compared to the data. Left: Maturation time (days).
Middle: Time to 90% mortality (days). Right: Proportion of eggs that develop into viable larvae.

https://doi.org/10.1371/journal.pntd.0006195.g002

Table 2. Fitted equations and parameters for seasonal relationships with temperature (˚C), T.

Name Process Relationship a1 a2 a3

τ2 Maturation (E) a1 + a2 exp(−a3T) 15.5(13.0, 17.3) 4.49(3.33, 5.35) � 103 0.255(0.231, 0.267)

m 90% mortality (L) a1(arctan(a2 − a3T) + 1.5) 50.2(48.4, 52.3) 13.7(11.2, 16.2) 0.558(0.457, 0.660)

d2 Proportion viable min(a1, a1 − a2(T − a3)4) 0.798(0.796, 0.801) 1.08(0.62, 1.78) � 10−5 26.3(25.4, 26.9)

https://doi.org/10.1371/journal.pntd.0006195.t002
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Impact on MDA

Investigating model outcomes for the South Korean setting shows that seasonal timing of
MDA could result in a 74.5% difference in the number of days the average individual is
infected with worms (mean worm days) across the 12 months following cessation of MDA; the
best and worst case scenarios are March and June respectively. This represents a significant
improvement in worm burden across the population, which could be expected to link with
similar decreases in morbidity and infection intensity. Similar improvements for prevalence
and levels of infectious larvae in environment are detailed in Table 3. It is also interesting to
note that whilst the seasonal trend is much more noticeable in the external larval population
than the mean worm burden, there is still potential for a large seasonal impact on intervention
(see Fig 5).

In South Korea June represents a peak in levels of infectious larvae and the beginning of an
uptake in transmission across the following months (see Supporting Information for estimated
seasonal transmission levels), causing faster reinfection. Bringing down prevalence through
MDA also results in low egg output until new adult worm infections have developed (approxi-
mately 2-3 months). As larval numbers will be naturally declining in this period it is expected
that artificially reducing egg output through mass treatment will have a less marked effect on
the overall population.

Contrastingly, in March, infectious larval counts are close to an annual minimum and
transmission is on the decline. As the temperature picks up through April and May the larval
population should experience a sharp increase, hence treating at this time is likely to limit the
resulting peak and dampen future reinfection potential.

Fig 3. Model validation—South Korea. Fitting and testing plots for Villages A-F [16]. 95% confidence is represented by error bars on the data and 95% credible
intervals by shaded regions on the model outcome. Top row (left to right): Villages A-C, fitting outcomes (⇤) compared with data (x). Bottom row (left to right):
Villages D-F, model outcomes (- -) compared with data (x). Prevalence data was recorded pre-treatment in all cases.

https://doi.org/10.1371/journal.pntd.0006195.g003
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In Nigeria there is still a seasonal peak in environmental levels of infective larvae, but the
model does not indicate much difference between MDA outcomes for treatment at differing
times of the year (Fig 5, bottom right). This comes partially from the lack of rainfall depen-
dence, but also due to the narrow temperature range in the region; for temperatures above

Fig 4. Model validation—Nigeria. Fitting plots for treatment (top) and control (bottom) branches of the 2006-07 Nigerian study [39]. 95% confidence, for the data,
and 95% credible intervals, for the model, are represented with error bars and shaded regions respectively. The model (⇤) was fitted to the first four data points in each
branch (×) and then compared to the fifth observation (⇧).

https://doi.org/10.1371/journal.pntd.0006195.g004
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25˚C both the egg maturation and larval death rates show very little variation, resulting in a
reduced seasonal effect—see Supporting Information for estimated parameter values across
the year.

In both cases the best time for annual treatment is predicted to occur just before the main
upswing in infective larvae, the worst time coinciding with the peak. Bringing down infection
levels whilst larval numbers are low starves the larval population, causing larger reductions in
future infection levels; decreased transmission due to high rainfall in the summer months in
South Korea exaggerates this effect.

Conclusions

A deterministic macroparasite model has been used to investigate known relationships
between temperature, rainfall and A. lumbricoides transmission. Model parameters were fitted
to egg data from lab experiments, as well as prevalence data for two settings (South Korea
1977-78, Osun Province, Nigeria 2006-07) and used to predict the impact of these relationships
on control strategies. Our results show that there could be large undetected fluctuations in the
infective larval population, impacting transmission, without these effects being necessarily evi-
dent through untargeted surveys of human infection.

In South Korea fitting resulted in a negative relationship between rainfall and transmission,
with the higher rainfall in the summer months causing a steep decline in transmission rate.
The temperate South Korean climate is expected to provide sufficient soil moisture for year-
round egg development so it is plausible that low rainfall doesn’t negatively impact the larval
population. A transmission decrease due to high rainfall could be explained by the possibility
eggs and larvae are being washed away through drainage systems, reducing host exposure to
infection.

Osun State is located in South-Western Nigeria, where rainfall is abundant across the year;
there is no dry season, as experienced by the Northern areas of the country. The lack of depen-
dency on rainfall displayed by fitting the model to data from this region indicates that the fac-
tors influencing disease dynamics differ from those in South Korea. The infection data is not
seasonally structured, and hence gives only partial information on the seasonal trends, but the
peak of infection in February does imply that there could be an additional level of seasonal var-
iation that is not captured by the model. This could be indicative of seasonal changes in popu-
lation behaviour or eating habits, or other climatic factors such as humidity and soil water-
content.

The model implies that optimal timing for MDA could coincide with minima in the envi-
ronmental larval population, with the best treatment time predicted to be just preceding the
annual upswing. These results agree with veterinary practices that advise treatment coinciding
with hostile environmental conditions for the free-living stages, but we would expect a similar
need for caution in this approach due to the potential for selecting for anthelmintic resistance
[45]. For South Korea the much wider temperature range, as well as the inclusion of rainfall-

Table 3. The predicted best and worst treatment months for Gyeonggi Province, South Korea, 1977.

Outcome June (worst) March (best) Relative improvement

Mean worm days 151.6 (112.1—202.1) 38.6 (22.1—63.6) 74.5% (43.3—89.1%)

Prevalence 25.4% (20.9—30.3%) 9.0% (5.5—13.7%) 64.6% (34.4—81.8%)

Infectious egg count 6.26 × 108 (4.48—8.51×108) 1.67 × 108 (0.92—2.84×108) 73.3% (36.7—89.2%)

For the 12 months following cessation of 4 annual treatment rounds; mean worm days represents the total burden of infection per individual whilst other values are

averaged across the time period.

https://doi.org/10.1371/journal.pntd.0006195.t003
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influenced transmission in the model, led a predicted comparative decrease of 74.3% in mean
worm burden between the best and worst MDA timing. In comparison, the model predicted
only a 12.8% decrease for Nigeria. The climate data used was taken from as close a geographi-
cal location as possible to each study, although the monthly temperature averages used to fit

Fig 5. Model outcomes. Results for South Korea (left) and Nigeria (right). Top row: Fitted temperature and rainfall profiles. Middle row:
Seasonal pre-control baseline profiles showing environmental levels of infective larvae and mean worm burden. Bottom row: Predicted mean
number of worm days per individual across the 12 months following cessation of 4 annual MDA rounds, for treatment occurring in different
months of the year. All error bands represent 95% credible intervals.

https://doi.org/10.1371/journal.pntd.0006195.g005
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these relationships will undoubtedly conceal daily fluctuations that would be expected to result
in a more variable seasonal trend.

Analysis of these two contrasting settings demonstrates that the importance of seasonal fac-
tors for A. lumbricoides control is expected to vary dramatically between different locations,
depending on local climatic and transmission patterns. It is possible that different efficacies of
treatment could lead to differences in the optimal time of year for treatment, or that changing
the time of year between treatments could be beneficial in some settings. Frequency and num-
ber of MDA rounds could also impact our results, but benefits from treating at a seasonally
optimal time of year are expected to be cumulative.

In temperate climates, like South Korea, high ranges of temperatures may allow for signifi-
cant fluctuations in larval stage development across the year and could lead to important
knock-on effects for MDA programs. Although the consistent temperature pattern in Nigeria
results in low predicted seasonal differences and the data presented here shows no evidence
for rainfall-dependence, it is possible that rainfall could still play an important role in other set-
tings. Although current results are subject to further evidence, we can still use the findings to
gain insight into the types of settings where we might expect seasonal effects that have the
potential to impact the efficacy of MDA programs.

For example, the DeWorm3 trials, which aim to test the feasibility of interrupting the trans-
mission of STH using intensified MDA programs, are based in three countries with heteroge-
neous weather profiles: Benin, India and Malawi [2]. In Benin the temperature range (monthly
averages of 25-30˚C [46]) is narrower than that of Nigeria, so one would expect any seasonal
drivers to be behavioural or rainfall-related. Temperatures are similarly high in Vellore, India,
(monthly averages of 23-33˚C [47]) but with a steeper drop off in the cooler months that may
introduce more seasonal variation. The third setting, Malawi, exhibits a fairly narrow but
much lower temperature profile (monthly averages of 17-24˚C [48]) and, depending on rain-
fall effects, this is where we would expect seasonal MDA to have the highest impact due to the
steep increase in maturation time as temperature drops under 20˚C. Therefore in this setting it
would be prudent to carefully consider the implications of seasonally-timed intensified MDA,
as model results suggest that treatment during the cooler months could deliver maximum
impact on A. lumbricoides transmission.

All results are subject to uncertainty, through the Bayesian fitting framework, and under
the assumptions made during model construction and selection. In addition, the egg survival
data used to fit the model originates from experiments on Ascaris suum life stages; there may
still be some variation that has been unaccounted for, although previous studies have shown
strong parallels between A. suum and A. lumbricoides eggs [7]. Preferred epidemiological data
would include more frequent measurements, with treatment at different times of the year in
parallel communities across at least four years to provide greater insight into the long term
infection dynamics.

The model succeeds in qualitatively describing the biological components of the system and
exhibits a good fit to both datasets, but caution must still be taken when interpreting predic-
tions. Although the model is adapted from a well-established literature base there are still some
limitations. For simplicity of calculation the helminth sex ratio within a host is not considered;
infections consisting of only male or only female parasites should not result in any egg output.
The assumed negative binomial relationship between mean worm burden and prevalence is
also an approximation and not a true conversion. Additionally it could be worth considering
the uncertainty around where transmission occurs; if infection is driven by hot-spots, such as
community latrines, then these may have their own micro-climate that is less affected by the
environmental conditions.
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Taking seasonality into account when planning control programs can also be difficult; even
in settings with clear seasonal trends there are likely to be additional complications when
determining and successfully executing the optimal treatment timing. For example, the pres-
ence of other parasitic diseases in the human population could impact MDA outcomes and
interfere with control measures; treatment often targets multiple STH infections and the best
timing for one species may not be ideal for another. In addition, the logistics of treating at a
particular time of year may be disproportionately costly or difficult for the benefits gained; it
may be much easier to treat at particular times of year and moving MDA outside of these win-
dows could result in lower coverage and hence worse overall outcomes.

If achievable, timing treatment to maxmise impact now may create future problems
further down the line; veterinary experience shows that timing MDA during low periods of
larval density in the environment can magnify the risk of drug resistance by imposing addi-
tional selection pressures on the system. Although anthelmintic resistance has not been
definitively identified using currently available tools for human STH infections, it is still
important to be cautious of any action that may encourage resistance to spread. Any seasonal
recommendations for treatment timing should therefore be considered alongside the poten-
tial resistance development risk and further analysis would need to be done to inform any
actions taken.

Nonetheless, our results suggest that variation in egg survival and maturation could be
exploited to maximise the impact of MDA. Practically, we face the challenges of feasibility,
caused by factors such as school term times and potential seasonal accessibility in hard-to-
reach areas, but optimising treatment timing may be worth considering in some areas. Even
though the evidence base in humans is weak there is enough grounds, combined with the
depth of veterinary literature suggesting significant advantages to seasonally targeted anthel-
mintic therapy, to warrant further investigation.

Supplemental methods

Model formulation. We consider four stages of the life cycle of A. lumbricoides: Juvenile
worms (inside the host); Mature worms (inside the host); Eggs (developing in the environ-
ment); and Larvae (at infectious stage in the environment). These states are denoted by the let-
ters J, M, E and L respectively; J and M are taken to be mean values per host, whereas E and L
are total values in the environment.

dJ
dt
à bL� 1

t1

á m1

✓ ◆
J Ö1Ü

dM
dt
à 1

t1

J � m2M Ö2Ü

dE
dt
à sNlM � 1

t2

á g1

✓ ◆
E Ö3Ü

dL
dt
à 1=t2E � ÖbN á g2ÜL Ö4Ü

Parameters are as described in Table 1 and seasonal relationships are as given in Table 2.
Immature egg and larval death rates were calculated from these seasonal relationships
(g1 à Ö 1

d2
� 1Ü=t2 and č2 = −ln(0.1)/m respectively).
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Fig 6. Seasonal external stage parameters. Annual parameter values for South Korea (left) and Nigeria (right). From top to bottom: maturation time
(days); daily death rate of infective larval stages; proportion of eggs that are viable following maturation. Depicted as best fit model averages with 95%
credible intervals.

https://doi.org/10.1371/journal.pntd.0006195.g006
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For the South Korean setting transmission rate, Č, is given by
b à a1

p Ö arctan Öa2Rá a3Ü á p=2Ü. Where Č0 = 3.30 × 10−9 (2.89, 3.82) × 10−9, a1 = −3.46

(−3.97, −3.12) and a2 = −66.8(−85.3, 56.0). For the Nigerian setting Č is taken as constant,
Č = 7.93 × 10−10 (7.86, 8.00) × 10−10.

Disease prevalence, P, in the host population is given by P = 1 − (1 + M/k)−k, where k is 0.45
for the South Korean setting (taken from a previous study) and 0.16 for the Nigerian setting
(fitted to the data).

Model fitting. A binomial log-likelihood is used for fitting: ∑i[xilog(pi) + (N − xi)log(1 − pi)],
where xi were the positive cases from the data, N was the total population size and pi were the
model prevalences.

Setting-specific seasonal parameter estimation. Fig 6 shows the model estimates for set-
ting-specific seasonal parameter values. The maturation time relationships show a key differ-
ence between the two settings; in Nigeria the high temperatures result in low-level fluctuations
in maturation time around the 20 day mark, but the drop-off in temperature over the winter
in South Korea is expected to produce a significant slow down in maturation across this
period—with more than half the year seeing average maturation times of greater than 50 days.

In South Korea the model considers larval mortality to be very low across the entire year,
due to low overall temperatures, with a peak during the summer months between May and
September. In contrast, larval mortality in Nigeria is taken to fluctuate across the year, but
with a higher average death rate. However, in both settings the temperatures don’t get high

Fig 7. Seasonal transmission. Annual values for the transmission rate (Č) in Osun, South Korea. Depicted as best fit
model averages with 95% credible intervals.

https://doi.org/10.1371/journal.pntd.0006195.g007
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enough for the model to predict much effect on the proportion of eggs that remain viable fol-
lowing maturation.

Fig 7 shows the fitted rainfall-dependent relationship for South Korea. Transmission is at
its lowest during the months that see the most rain, with a sharp increase as rainfall declines
into the driest months. This could be due to heavy rain washing eggs away through drainage
systems, hence reducing transmission, or human behavioural traits.

Additional treatment outcome plots. Fig 8 shows the average predicted prevalence in the
12 months immediately following 4 rounds of seasonally-timed annual MDA, with treatment
times during different months of the year, for both settings. We see a very similar trend to the
mean worm days plots in Fig 5, with large seasonal differences in South Korea and no evidence
for any significant difference in Nigeria.
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Opinion

Evaluating the Evidence for Lymphatic
Filariasis Elimination
Emma L. Davis,1,* Lisa J. Reimer,2 Lorenzo Pellis,3 and T. Deirdre Hollingsworth4

In the global drive for elimination of lymphatic filariasis (LF), 15 countries have achieved valida-

tion of elimination as a public health problem (EPHP). Recent empirical evidence has demon-

strated that EPHP does not always lead to elimination of transmission (EOT). Here we show

how the probability of elimination explicitly depends on key biological parameters, many of

which have been poorly characterized, leading to a poor evidence base for the elimination

threshold. As more countries progress towards EPHP it is essential that this process is well-

informed, as prematurely halting treatment and surveillance programs could pose a serious

threat to global progress. We highlight that refinement of the weak empirical evidence base is

vital to understand drivers of elimination and inform long-term policy.

Global Situation and Progress

There are currently 886 million people across 52 countries worldwide at risk of LFi. Infection is caused

by a mosquito-transmitted filarial worm and, if left untreated, can lead to permanent and debilitating

disability. The Global Program to Eliminate Lymphatic Filariasis (GPELF) set a target of elimination as
a public health problem (EPHP) (see Glossary) in 1997, leading to over 7.1 billion treatments delivered

as part ofmass drug administrations (MDAs) since 2000i. In 2011, the WHO published guidelines for

halting treatment and verifying EPHP through the use of transmission assessment surveys (TAS) to
measure a target thresholdii,iii. By October 2018, 14 countries had reached this target, and 554 million

people worldwide no longer require mass treatmentsiv.

As indicated by the name of the TAS, it was hoped that reaching these targets would lead to

elimination of transmission (EOT) in most areas. However, in Sri Lanka the TAS has been demon-

strated as not sensitive enough to detect low-level persistence [1,2], and pockets of transmission

are still being found despite EPHP validation. The community is now revisiting the TAS methods,

including the original target of 1% microfilaria (mf) prevalence [3], particularly in the context of the

new triple-drug regimen which is hoped to accelerate progress, but will require different post-treat-

ment surveillance [4].

It is possible that achieving EPHP, according to the current definition, will lead to EOT in some set-

tings [5,6], but the high levels of variability between localities, and uncertainty in our knowledge of

transmission, make it hard to predict where this will occur. This is exacerbated further by seasonal

variation in environmental conditions, which has been shown to impact a number of helminth infec-

tions [7,8]. Residual infection remaining after MDA cessation can lead to resurgence and reintroduc-

tion [9,10], with long-term persistence dependent on a range of factors [11].

Sexual Reproduction in the Host, and Elimination

The sexual reproduction of filarial worms requires both male and female parasites to be present in an

individual host for microfilariae production, so at a sufficiently low prevalence we would expect most

infections to be nontransmissible due to low parasite load (i.e., a low probability of male and female

adults in the same host). This is expected to result in fewer onward infections, and hence increasingly

lower prevalence and intensity, until infection dies out. The threshold below which we expect this

phenomenon to occur is called the breakpoint [12,13]. As the focus of some neglected tropical dis-

ease (NTD) programs has shifted from control towards elimination, there have been a number of

studies aiming to quantify these thresholds for a variety of helminth infections within the NTD um-

brella [14–17].
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Highlights
The current target of elimination as

a public health problem (EPHP) for

lymphatic filariasis was originally

devised with the intention of inter-

rupting transmission. However,

some countries that have achieved

EPHP are still finding new cases.

Analysis of the evidence for key

biological determinants suggests

that a target threshold of <1%

microfilaria (mf) prevalence is not

likely to be sufficient for trans-

mission interruption in commu-

nities with a mid-to-high annual

biting rate.

The experimental evidence under-

lying estimates is insufficient or

inconsistent, particularly trans-

mission rates from vector to human,

leading to high uncertainty in con-

fidence of elimination success.

Local biting rate is expected to be

highly variable between settings

and could have a large impact on

elimination feasibility for a given

target prevalence.

Further experimental studies are

needed to refine our understand-

ing of LF elimination thresholds.
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(B)
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Figure 1. Lymphatic Filariasis Extinction Theory.

Schematics comparing the theory behind breakpoint extinction (A) and stochastic extinction (B) for lymphatic

filariasis. (A) For sufficiently low transmission intensities (i.e., low biting rates), disease levels will drop away to

zero. Beyond the critical transmission level (black broken line) there are three equilibria: high disease (stable,

red), low disease (unstable ’breakpoint’, green), disease-free (stable, black). Disease levels above the breakpoint

Glossary
Annual biting rate (ABR): the
average number of mosquito
bites per person per year.
Basic reproductive number (R0):
the average number of new in-
fectious cases generated by one
infectious case in an entirely sus-
ceptible population.
Blood feeding rate (BFR): the rate
at which mosquitoes take a blood
meal.
Branching process: a stochastic
process which consists of collec-
tions of random variables, which
are indexed by the natural
numbers (1,2,3,.).
Breakpoint: a prevalence level
below which sustained trans-
mission is not viable and elimina-
tion (zero cases) becomes an
absorbing state.
Effective reproductive number
(Re): the average number of new
infectious cases generated by one
infectious case in a population
made up of both susceptible and
infectious hosts.
Elimination as a public health
problem (EPHP): as measured by
TAS, a metric used by the WHO to
validate programme success. In-
tended to naturally lead to EOT.
Extrinsic incubation period (EIP):
the time it takes for ingested mf to
develop to infectious L3 larvae in
the mosquito.
Implementation unit: the desig-
nated level of the administrative
unit in a country, for which the
decision to administer antifilarial
drugs to the entire population is
taken if it is identified as having
indigenous transmission or
endemicity.
L3: the third larval stage of the
parasite; at this point it is infec-
tious to humans.
Mass drug administration (MDA):
the administration of drugs to a
whole population, irrespective of
disease status.
Microfilaria (mf): developmental
stages in the bloodstream, pro-
duced by fertilized female worms,
that can be picked up by
mosquitoes.
Transmission assessment surveys
(TAS): a series of surveys designed
by the WHO to measure post-
MDA infection levels and verify
EPHP.
Triple drug: ivermectin and
diethylcarbamazine and albenda-
zole (IDA): a drug combination

(Figure legend continued at the bottom of the next page.)
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This theory has certain consequences for control (Figure 1A). If transmission is sufficiently low, then

the infection is expected to die out. If there is a higher transmission rate, outcomes depend on the

mean worm load in the population; if, usually through control strategies, the worm load is below

the green broken line (the breakpoint) then elimination is assured. Previous modelling studies that

have assessed breakpoint thresholds have found values of much less than 1% mf prevalence

[10,18–20]. It has been previously demonstrated that factors such as parasite aggregation and vector

competence will further affect these thresholds [21], and the majority of studies have focused on spe-

cific geographical areas, resulting in a wide range of suggested breakpoints across the literature.

Measuring breakpoints that are substantially lower than 1% mf prevalence would require infeasible

sample sizes and survey costs. In this review we do not argue for a specific breakpoint, instead

focusing on asserting that the experimental evidence is too uncertain to conclusively support a 1%

threshold and emphasizing the importance of spatial heterogeneity.

Whilst breakpoint theory is extremely useful, it is also possible for stochastic, or chance, extinction to

occur before this breakpoint is reached, particularly when infection levels are low (Figure 1B). The

probability of elimination, given a particular prevalence (e.g., 1%), can be calculated by considering

the probability that a chain of transmission will die out (in mathematics we call this chain a branching
process [22]). These types of branching process methods have been used for soil-transmitted hel-

minths [23,24], but have been adapted here to account for vector-borne transmission with an aggre-

gated bite risk [25,26].

Current guidelines mean that EPHP is validated after passing TAS, but we have little experience in

what this means for long-term transmission. Assuming for simplicity that TAS is able to measure a

true mf prevalence of less than 1%, this theory of stochastic extinction can be used to estimate

how the future probability of EOT (zero cases) depends on a range of setting- and disease-specific

variables. This process uses the distribution of the number of infectious secondary cases caused by

one infectious individual, the mean of which is the effective reproductive number (Re).

As a toy example, for a population of 1000 and 1% mf prevalence, we consider a distribution of indi-

vidual worm burdens (Figure 2A). Infections with only one worm are nontransmissible. From one in-

fectious person you then get the number of new cases, Z, caused during their infectious period (Fig-

ure 2B). Since transmission represents a chance event, Z is best represented by a distribution, and acts

as a proxy for Re. This distribution determines the probability of the transmission chain dying out, that

is, no further cases, at some point in the future; for more detail see Box S1 in the supplemental infor-

mation online. We use this to give a univariate demonstration of the present parameter uncertainty

and how this might impact two epidemiological measures: the probability of elimination and the

effective reproductive number.

Empirical Evidence for Life-Cycle Variables

We now review evidence for key parameters in the life cycle which drive transmission (Figure 3). As

previously mentioned, a number of these variables, such as the annual biting rate (ABR), are likely

to introduce large differences due to the high spatial variability. Others, such as the probability an

infectious mosquito bite results in a viable human infection, have the potential to be more consistent

across settings, but currently lack in experimental evidence.

A detailed literature review turns up widely varying estimates of ABR, partially due to geographical

variation. These values, from countries with a history of LF endemicity, range from three [27] to 611

that has recently become the gold
standard for treatment of LF.
Univariate: literally ’of one vari-
able’. Univariate analysis explores
variables one-by-one, keeping all
others fixed.
Vector–host ratio: the number of
vectors per human in a
geographical region.

will increase to the higher equilibrium, whereas disease levels below will decrease to zero. (B) Visual depiction of a

branching process starting with one infectious individual. The number of secondary infections caused by each

currently infectious individual are sampled from the secondary case distribution. This is used to simulate the

onward chains of infection; extinction occurs when all chains die out (i.e., have no secondary cases). Stochastic

variation can cause this to occur even above the theoretical breakpoint threshold.
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[28] bites per person per day. A number of these are based on human landing catches [27–29], with

the majority relying on studies from the 1960s and 1970s [28], whilst some are derived from models

[30]. Despite a wealth of historic studies, supported by the malaria literature, human landing catches

are often considered unethical and give highly variable results. Relying on historic estimates can also

disregard changes in socioeconomic conditions resulting in decreased vector–human contact.

Current estimates in the literature of the basic reproductive number, R0, range from zero to 2.5 [31],

depending on the vector–host ratio (an alternativemetric to ABR). Although setting-specific values of

R0 for other diseases can often be calculated from infection data, the global landscape of public

health history for LFmeans that we have very little contemporary baseline (precontrol) data with which

to do this. As an alternative, we can consider the previously mentioned estimation of Re.

(B)

(A)

TrendsTrends inin ParasitologyParasitology

Figure 2. Simulating Branching Process Extinction.

A schematic describing the simulation process for calculating the number of secondary cases produced by one

infectious individual in a population with 1% microfilaria (mf) prevalence. (A) Allocate distribution of adult worms

and bite risks across the population. Individuals with 1 worm are infected but are not infectious, individuals with

two or more worms are considered potentially infectious. (B) Generational calculation of number of new

infectious cases caused by one infectious individual. One infectious individual infects X vectors. The vectors that

survive the incubation take infectious blood meals, resulting in Y new adult worms. These worms are distributed

across the population according to bite risk aggregation, resulting in Z new infectious (R2 worms) individuals.
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Another important, but largely uncertain, factor is the degree of parasite aggregation, measured

inversely by the negative binomial k. For LF, adult worm aggregation is considered to be driven by

heterogeneous transmission, caused by host variation in bite risk [15]. Initial estimates for k were

based on mf data (k = 0.08, 0.3 [21,26]). However, a recent study in Papua New Guinea used bite

and mf data to demonstrate that the k for bite risk is an order of magnitude larger than that for mf

aggregation, giving a refined estimate of 0.73 (standard deviation 0.035), with site-specific estimates

ranging from 0.3 to 1.3 [15,26]. We will now separate transmission into two parts: humans to mosqui-

toes, and mosquitoes to humans. When considering the former, the key variables are duration of

infection, which depends on fecundworm lifespan, and the probability that a vector biting an infected

host will become infectious.

Often worm lifespan is stated as being 6–8i or 5–10 years [32,33], but reference trails rarely reveal

empirical evidence. There are studies that corroborate similar ranges, such as 2.1–5.4 [34] or 9.1–

11.8 [35] years, but there are also estimates in the literature of up to 40 years [36].

Probability bite on
ABR

TrendsTrends inin ParasitologyParasitology

Figure 3. Lymphatic Filariasis Life-cycle.

Life-cycle schematic demonstrating key biological variables that could affect prediction of elimination success.

Duration of infection is determined by human and fecund worm lifespans. Infection from host to vector depends

on the annual biting rate (ABR) and the probability that a bite on an infectious host infects a vector. The number

of vectors that survive to infectivity depends on the extrinsic incubation period (EIP) and vector lifespan.

Transmission from vector to host is then determined by the blood feeding rate and the probability that an

infectious bite results in a viable adult infection, as well as the requirement for two or more worms for infectivity.
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Infectivity to mosquitoes depends on mf intensity, leading to wide ranges of 15–60% of vectors

becoming infected from a single mf-positive bite [37,38].

Infection from vector to human is governed by the number of infectious bloodmeals one mosquito

will take – calculated from vector survival and competence, extrinsic incubation period (EIP) and
blood feeding rate (BFR) – and the probability one infectious bite will result in a viable infection.

There are reasonable estimates for vector survival and BFR from the malaria literature [27,39]

and for LF incubation [40], although these do not typically account for the impact of infection on sur-

vival [37].

One key parameter of infection, the probability an infectious bite results in a mature human infection,

is largely unknown. Estimates range from 10–5 to 10–3 [41,42] and are usually broken down into three

steps: the L3 leaving the vector, entering the host, and developing to fecundity. The first step is rela-

tively straightforward to measure [43], although it poses ethical issues, and the second can be esti-

mated using mouse models [44,45]. The third is harder; best estimates are calculated by using Brugia

malayi studies to derive a daily death rate and then applying this across the longerWucheria bancrofti

developmental period [32,46].

Quantifying the Probability of Elimination

If we include these parameters in the simple framework described above, we can see how the uncer-

tainty affects our estimates of key epidemiological measures (Figure 4). The mid-points of elimination

probability (0.73) and Re (1.1) are not intended to be true estimates, rather they represent a mid-

ground of the parameter ranges found in the literature and a basis for comparison.

The variable which generates themost univariate uncertainty is the probability that an infectious mos-

quito bite will infect a human, b, due to the wide range of possible values. Variation in elimination

probability due to ABR, which is correlated with the basic reproductive number (R0), is also very

high. This is due to both measurement inaccuracy and spatiotemporal variability. Parameters that

are known to be key drivers in the probability of elimination, worm fecund lifespan and the degree

of adult worm aggregation [21,47,48], potentially induce lower uncertainty here due to considering

narrower plausible intervals.

In addition to the probability of elimination, we also consider the effective reproductive number, Re. It

is important to note that, for helminth infections, metrics often refer to the number of adult filarial

worms arising from one adult filarial worm, rather than considering human cases. However, the theory

is similar enough to allow heuristic comparison. Our mid-estimate for Re is chosen to be close to 1,

representative of the low-level transmission observed in some post-MDA settings, but varying the

probability that an infectious mosquito bite will lead to a patent infection (b) can lead to an order

of magnitude difference. In fact, it is possible to push the estimate of Re across the critical threshold

(Re = 1) between extinction and endemicity by adjusting any variable within the ranges found in the

literature. This reinforces the importance of using reliable variable estimates when making predic-

tions, particularly in elimination settings where infection data are sparse.

Recommendations

Due to the demonstrated uncertainty that knowledge gaps, particularly in the establishment of a pat-

ent infection, can cause in estimating elimination thresholds it would be prudent to refine the evi-

dence for these variables. Here we discuss a few options for future studies and analyses that we

believe could strengthen the knowledge base.

The probability that an infectious bite leads to an infectious host cannot be measured experimentally

in humans; however, we can improve current estimates with anecdotal and observational studies.

Longitudinal studies can provide evidence of the time to antigen positivity and the time tomicrofilaria

positivity in children, or in adults that havemoved from nonendemic to endemic regions. One existing

study, looking at acquisition in travelers, surmises that the majority of cases are in individuals who
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(Figure legend at the bottom of the next page.)
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spent in excess of 6 months in an endemic region [49], whereas another cites a number of travelers

contracting infection with only 1 month of exposure [42]. Entomological studies routinely estimate

ABR through human landing catch data, and individual exposure can be quantified based on net us-

age and vector biting habits [50,51].

The range of ABRs discussed are very broad estimates, covering a wide range of settings, but this can

be a difficult variable to measure consistently. It may be possible to obtain greater certainty in Re

without accurate ABR measures for each location. For example, estimates of low, medium, or high

vector densities would still improve our predictions, and these categories of exposure, which act

as a proxy for R0 classification, could be informed by a combination of trap densities and vector-con-

trol coverage. Spatial heterogeneity can also occur within implementation units, posing problems for

any categorization process, so it is important that treatment targets are determined by the maximum

transmission measure for a region.

Concluding Remarks

We have used basic analyses to highlight that the existing experimental evidence does not afford a

high degree of certainty at the current 1%mf prevalence elimination threshold. This is mainly because

of uncertainties in variables which could be either experimentally or analytically refined, but also due

to spatiotemporal variation in vector densities and biting rates [28]. That varying the value of one

input variable within sensible ranges found in the literature can make such an impact on predictions,

demonstrates the difficulties posed by targeting EOT when we know that local heterogeneities and

variability are difficult to measure. Observations of ongoing transmission in parts of validated coun-

tries offer empirical support to our concerns with the EPHP target, prompting some important

outstanding policy questions (see Outstanding Questions).

In order to support efforts to eliminate LF we would recommend a multipronged approach:

improving the experimental evidence base of measurable quantities; detailed analysis of existing

infection data to improve our understanding of the infection risk associated with an infectious bite;

and development of a discrete system to classify vector density, as a proxy for transmission intensity,

to allow comparison of different regions. The optimization of elimination programme strategies and

surveillance will require continual revisiting of predictions as we gather more epidemiological data

through existing surveys and monitoring infrastructures, as well as expanded epidemiological and

surveillance studies at low prevalence.

As more countries cease interventions and move to postvalidation surveillance it is increasingly

obvious that transmission breakpoints are unlikely to be one-size-fits-all, hence more flexible thresh-

olds are necessary. It is vital that we ensure that this process is well-informed, as prematurely halting

control or surveillance programs could pose a serious threat to global targets, but also because we

believe that it may be possible to exploit this geographical variation to maximize the probability of

elimination.
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Figure 4. Predicting Elimination Probabilities.

Illustration of the potential impact of high uncertainty in variables by considering their univariate impact on the

probability of elimination (A) and the effective reproductive number (B) for the key biological variables of the

lymphatic filariasis (LF) transmission cycle, assuming a microfilaria (mf) prevalence of 1% and a human

population size of 1000. References for ranges of variables considered can be found in Table S1 in the

supplemental information online. Note that this univariate analysis should be interpreted carefully as variables

are likely to be correlated in ways which we cannot yet account for. For example, the mid-estimates here have

been chosen to represent a mid-ground of ranges found in the literature and are not necessarily representative

of the true values or ranges that may exist across real-world settings. Abbreviations: BFR, blood feeding rate;

EIP, extrinsic incubation period.

Outstanding Questions

How can we translate our under-

standing of elimination dynamics

to clear and feasible guidelines for

public health programs?

Is there a universal threshold, or do

we need to tailor predictions for

different communities and

settings?

What are the key determinants that

vary between settings, and how can

we measure them?

How can we reliably measure

annual biting rate for different

settings?

How can we refine our estimates of

transmission probability from vec-

tors to humans?

How can we determine where 1%

mf prevalence is a threshold below

which elimination is likely?

If lower target thresholds are

required for elimination of trans-

mission, then are we realistically

able to measure these using current

tools?

Whilst we can measure that preva-

lence is below certain thresholds,

is this sufficient evidence of elimi-

nation of transmission?

In settings where we are still seeing

new cases after EPHP verification,

what is the probability of large-

scale resurgence?

What is a suitable survey design in a

context of limited resources?

How will the new diagnostic affect

elimination measurement?

How can we harness xeno-moni-

toring techniques to improve

post-EPHP surveillance?
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Supplemental Information

Supplemental information associated with this article can be found online at https://doi.org/10.1016/

j.pt.2019.08.003.

Resources
iwww.who.int/lymphatic_filariasis/resources/who_wer9344/en/

iiwww.who.int/lymphatic_filariasis/resources/9789241511957/en/

iiiwww.who.int/lymphatic_filariasis/resources/9789241550161/en/

ivwww.who.int/news-room/fact-sheets/detail/lymphatic-filariasis
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Background: Co-infection with multiple soil-transmitted helminth (STH) species is common in communities
with a high STH prevalence. The life histories of STH species share important characteristics, particularly in the
gut, and there is the potential for interaction, but evidence on whether interactions may be facilitating or
antagonistic are limited.

Methods: Data from a pretreatment cross-sectional survey of STH egg deposition in a tea plantation commu-
nity in Sri Lanka were analysed to evaluate patterns of co-infection and changes in egg deposition.

Results: There were positive associations between Trichuris trichiura (whipworm) and both Necator americanus
(hookworm) and Ascaris lumbricoides (roundworm), but N. americanus and Ascaris were not associated.
N. americanus and Ascaris infections had lower egg depositions when they were in single infections than when
they were co-infecting. There was no clear evidence of a similar effect of co-infection in Trichuris egg deposition.

Conclusions: Associations in prevalence and egg deposition in STH species may vary, possibly indicating that
effects of co-infection are species dependent.We suggest that between-species interactions that differ by species
could explain these results, but further research in different populations is needed to support this theory.

Keywords: Ascaris lumbricoides, co-infection, epidemiology, Necator americanus, Sri Lanka, Trichuris trichiura

Introduction
Soil-transmitted helminths (STHs) are widespread, with 1.45 bil-
lion people infected globally in 20101 and more than 830 million
children in need of preventive treatment in 2016.2 Often, all
three major STHs (Ascaris lumbricoides [roundworm]; Trichuris
trichiura [whipworm]; Necator americanus and Ancylostoma
duodenale [hookworm]) will be present in a community3–5 and
co-infections with more than one STH are common.6 For
example, in one community in Brazil, 24.1% of the population
were infected with both hookworm and Ascaris, which was a
higher prevalence than single infections of either.7

Given the high prevalence of STH co-infections, it is important to
investigate the effects and drivers of co-infection and the conse-
quences for STH epidemiology and morbidity.7,8 Correlated expo-
sures and host predisposition could lead to positive associations
between species and increased intensity of infection. Ascaris,

Trichuris and Ancylostoma duodenale share faecal–oral transmis-
sion routes, and exposure factors such as sanitation and toilet
facilities are expected to correlate with co-infection.6,9 Within-
host interactions between species have also been studied, as hel-
minths have many opportunities for interaction within the host
via resource sharing and host-immune responses.7–11 However,
little is known about the nature of these interactions in humans
and there have been few epidemiological studies addressing
them.

Epidemiological studies of all three STHs in human popula-
tions are common, and some have studied co-infection. One
study of a rural community in Brazil found a positive association
in the prevalence of N. americanus and Ascaris and that egg
deposition was higher in dual infections,7 although egg depos-
ition must be interpreted with care, as it is affected by both the
number of adult worms and the fecundity of individual worms.
A study of mass drug administration in Burundi found that

© The Author(s) 2018. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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infections with hookworm, Ascaris and Trichuris were all asso-
ciated with greater odds of multiple infection, with the strongest
effect in Trichuris.12 A large review study that collated STH data
from 44 different epidemiological studies and analysed the
independence of worm species prevalences found positive asso-
ciations between species were common, especially between A.
lumbricoides and T. trichiura, although they did not assess hook-
worm infections as separate A. duodenale and N. americanus.6

Interestingly, this study also found that there was heterogeneity
in associations by geographic regions.6

Previous studies have investigated how co-infections of more
than one helminth species may be cooperative or antagonistic
and found that interactions between species are highly com-
plex.9,13 It has been shown that co-infections of intestinal
nematodes in rodent models under laboratory conditions are
competitive, with reduced or suboptimal establishment of one
of the co-infecting species.9 In the same study, however, the
results of analysis of helminth infections in wild rodent popula-
tions did not corroborate this finding, suggesting that being
infected with one intestinal helminth increased the likelihood of
infection with another.9

STHs use immunoregulation to escape host immunity in the gut,
and it has been theorized that the immunoregulation of the different
STH species may be synergistic within the host, resulting in a less
hostile immune environment in co-infections.7,8,10,11 Studies of the
immunology of co-infection in humans and animal models have pro-
vided some support for this theory. One study found more down-
regulation of the specific, pro-inflammatory T helper 1 (Th1) immune
response in N. americanus, A. lumbricoides and Schistosoma mansoni
co-infections compared with single infections, although infection
intensity was not affected by co-infection.10 Another study by Geiger
et al.14 compared low- and high-intensity single infections and co-
infections of A. lumbricoides and T. trichiura and found that both co-
infection and heavy-intensity infections had reduced parasite-specific
immune responses and Th1 responses, suggesting the importance of
worm burden rather than co-infection effects, although this could
also be an indication of host immune capacity–related predisposition.

Here, we build on these previous studies by analysing histor-
ical data on all STH species present in two tea plantations in Sri
Lanka (A. lumbricoides, N. americanus and T. trichiura),5,15 focus-
ing on potential associations in prevalence and egg deposition
between the different worm species. First, we compared the
odds of infection of each species in the presence of co-
infections. Second, we assessed egg deposition for each worm
species in single infections and co-infections. These analyses
provide information about both the impact of co-infection for
epidemiology at the population level and infection outcome at
the individual level. There are few studies that combine both indi-
vidual and population-level measures of effect of STH co-infection
in human populations, but it is potentially informative about the
mechanism and outcomes of within-host interactions.

Materials and methods
Study population
A detailed description of the data collection and study popula-
tion can be found in previous publications.16–18 Briefly, the study
population was two tea plantation communities in Sri Lanka,

Ayr in the Western province and Maliboda in the Sabaragamuwa
province. There were a total of 477 participants (155 in Ayr and
322 in Maliboda). The two sites were broadly similar, with the
main occupation of estate labourer in both plantations (24.8%
in Maliboda and 27.1% in Ayr). Maliboda had a younger age pro-
file than Ayr (2–50 y [median 11 y] and 2–76 y [median 18 y],
respectively). The distribution of income was higher in Ayr
(median 2000 Sri Lankan rupees [SLR]) compared with Maliboda
(median 1500 SLR), and Ayr had a higher proportion of the
population with access to toilet facilities (75.5% compared with
37.3%). The 5 to 18-year-olds had been treated once a year
with mebendazole for 5 y prior to data collection, but they had
not been treated for 10–11 months before this study took place.

Data collection
Data were collected after written consent was obtained from
participants in April 2000. A single stool sample was taken
alongside a questionnaire of relevant demographic information
(including age, occupation, education level) and exposure infor-
mation (hygiene and sanitation, toilet facilities).16–18 Stool sam-
ples were analysed using the Kato–Katz technique on one
slide.19 Although different hookworm species cannot be distin-
guished by egg morphology, it was assumed that all hookworm
eggs were N. americanus, as it has been found that this is the
only species that causes human infection in Sri Lanka.15 All par-
ticipants were treated with mebendazole after sampling.

The data used here are from the preliminary pretreatment
survey, which was followed up with repeated monthly resam-
pling from the same community over the next year.

Statistical analysis
Statistical analysis was carried out using R version 3.4.1 (R Project
for Statistical Computing, Vienna, Austria) and the packages
ggplot2, lmtest, and MASS.20–23

Associations between worm species

We used multiple logistic regression to assess associations between
worm species and calculate odds ratios (ORs) of infection with
each species given infection with co-infecting species. We con-
sidered the additional factors of age, plantation and water source
in the models. These variables were chosen to avoid multicollinear-
ity and to reflect variables that were highlighted as important fac-
tors in the original studies.16,18 Plantation correlated strongly with
access to toilet facilities, so only plantation was used as a binary
categorical variable, with Ayr and Maliboda as values. Age was
included as a categorical variable, with the categories 2–13, 14–18,
19–30 and >31 y. These categories were chosen to match the cat-
egories in the original studies16,18 and similar studies.7 Water
source was divided into four categories: water from waterfalls,
pipe-borne water, river water and well water.

We used a stepwise method to build the regression models and
test for effect modification, adding one factor at a time to the
models. For each species model we first assessed the evidence
for effect modification between the two species by including it in
the model (e.g., Ascaris ~N. americanus×Trichuris). If the effect
modification term was significant, we maintained the interaction
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in the next model steps and if it was not, the species were
included as separate factors (e.g., Ascaris ~N. americanus
+Trichuris). For each additional variable added, the following
steps were followed:

(1) We assessed effect modification from the additional vari-
able in the ORs of the variables of interest, the co-infecting
species, using either:
(a) For multilevel variables age and water source, a likeli-

hood ratio (LR) test comparing the model with the
effect modification to the model with the factors
included separately or

(b) For the binary variable plantation, by looking at the sig-
nificance of the effect modification term.

If the LR test or the effect modification term was significant,
the factor was maintained as an effect modifier in the next
step, otherwise the factors were included separately.

(2) We assessed the importance of the variable in explaining
variation in the outcome of interest, the odds of infection
with the model species, using an LR test comparing the
model chosen in the previous step with a model not includ-
ing the factor at all. If this test was significant, the factor
was included in the final model.

This procedure aimed to produce the model best supported
by the data available. We also used McFadden’s R2 to provide an
additional measure of the amount of variation in the data
explained by the chosen model.24

Egg deposition between infection type groups

We used negative binomial generalized linear models (GLMs) to
test for an effect of presence of other STH infections on egg
deposition. Negative binomial models were used because egg
deposition is overdispersed. Egg deposition models were built the
same way as the logistic regression models, adding age, planta-
tion and water source using a stepwise method and LR tests. For
each species, one model was built to directly test the hypothesis
that egg depositions in the presence of any co-infection was dif-
ferent from single infections, and a second model tested the egg
deposition in the presence of each other species separately. Raw
egg counts were used in all analyses. The reported counts in the
text and figures are transformed to eggs per gram of stool (EPG)
for clarity. We used a variance-based R2, described for GLMs in
Zhang,25 to provide an approximate measure of the variation in
the data explained by each model.

Results
Associations between worm species
Overall there was a 28.9% (136/477), 52.6% (251/477) and 67.5%
(322/477) prevalence of N. americanus, Ascaris and Trichuris infec-
tions, respectively. The prevalences of single and co-infections are
presented in Figure 1. Co-infection was more common overall than
single infection, with 245 (51.4%) individuals co-infected with at
least two parasite species and 148 (31.0%) singly infected. In the
population, 51.2% were 2–13 y, 9.0% were 14–18 y, 13% were
19–30 y and 26.8% were ≥31 y old. A total of 32.5% of the popula-
tion lived in Ayr and 67.5% in Maliboda.

There were positive associations between Trichuris and both
other species but no association between N. americanus and
Ascaris. Results of this statistical analysis, including ORs, are pre-
sented in Table 1. Figure 1 shows the observed proportions of
each type of infection and the proportions that would be
expected if the species were distributed randomly with respect
to each other in the population. The proportion of individuals
uninfected and triply co-infected is greater than would be pre-
dicted by chance, while single- and dual-infection proportions
are mostly smaller than expected. No effect modification
between species was observed to be supported by the data in
any model. There was a positive association between the
19–30 y age group and Ascaris, but no association was found
between age and Trichuris or N. americanus, and neither planta-
tion nor water source were associated with infection by any spe-
cies. McFadden’s R2 suggests that in each model <1% of the
variation in the data is explained by co-infecting species.

Egg deposition
Overall, among those infected (with a positive egg count), median
egg deposition in EPG was 185.0 (interquartile range [IQR]
74.0–450.3) for N. americanus, 2701.0 (IQR 675.2–10 878.0) for
Ascaris and 277.5 (IQR 111.0–809.4) for Trichuris (Figure 2).
Distributions of egg depositions in each co-infection type are pre-
sented in Figure 2, using a log scale to reduce overdispersion.

The results of analysis of the effect of co-infection in egg
depositions indicated that both Ascaris and N. americanus had
slightly higher egg counts (Table 2) in co-infections compared
with single infections. For Trichuris egg deposition, the presence of
a co-infection was not a significant factor, although there were
significant results for effect modification from age and plantation.

Figure 1. Observed and expected prevalences of single infections and
co-infections. Observed values were calculated as the number of cases
in an infection type group divided by the total number of participants.
Expected values were calculated using three-way contingency tables.
Bars on observed values are 95% confidence intervals. Na: N. ameri-
canus; Al: A. lumbricoides; Tt: T. trichiura.
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Only plantation had a significant effect, with decreased deposition
in Maliboda (Table 2). Results from the models that included co-
infecting species presence separately are presented in Table 3.
Egg depositions in Ascaris and N. americanus were slightly higher
when Trichuris was also present (Table 3). The model for Trichuris
was more complex. There was a significant effect of the presence
of N. americanus, increasing deposition slightly, after controlling
for plantation and water source. Plantation and water source
improved the likelihood of the model despite neither of these fac-
tors having a detectable effect on their own. There was a signifi-
cant effect modification of N. americanus from plantation. The
two Trichuris models differed, with different factors included, sug-
gesting neither model is reliable and not supporting an effect of
co-infection on Trichuris egg deposition.

Although there were significant effects in these models, they
explained very little of the variation in the data, as demon-
strated by the low R2 values (Tables 2–3). Trichuris deposition
models had the lowest R2, at 0.3%.

Discussion
We analysed data on STH egg deposition from two plantation
communities in Sri Lanka for associations between STH species
in infection prevalence and egg depositions.

Associations between worm species
We analysed the associations between worm species and found
strong positive associations between N. americanus and
Trichuris, and Ascaris and Trichuris (Table 1, Figure 1). Ascaris and
Trichuris share a faecal–oral transmission route, and we would
expect similar exposures to correlate with the prevalence of
both, leading to a positive association between them. N. ameri-
canus is transmitted differently, mainly through contact with
bare skin, so it is unclear how the positive association between
N. americanus and Trichuris arises. It is possible that socio-
economic factors or pre-disposition, not captured in these

models, correlate with N. americanus as well as Trichuris,
although we might then expect there to also be a correlation
with Ascaris. If within-host interactions lead to a benefit for
establishment of infection of second and third species, we might
also expect a positive association. These results may then indi-
cate that establishment interactions differ between species, as
there is no positive association between N. americanus and
Ascaris, but positive associations in other cases. Figure 1 indi-
cates that the proportion of the population that is uninfected or
triply infected is greater than would be expected by chance. This
could support the theory that establishment of second and third
species is facilitated compared with establishment of primary
infection. However, it is also important to consider that those with
higher exposure may have stronger immune protection from worm
establishment and stronger anti-fecundity immune responses.26,27

This may lead to cancelling out of positive associations due to cor-
related exposures. In addition, the amount of variation in the data
explained by these models was low, suggesting that if there are
correlated exposures, predispositions or establishment interactions,
they are not strong drivers of STH infection.

Other studies in human and animal populations, including a
large pooled analysis from Howard et al.,6 have tended to find posi-
tive associations between STH species infections, suggesting there
is a higher prevalence of STH co-infections than would be expected
by chance.7,9,12 These associations have been attributed to syner-
gistic interactions within the host,7,12 correlated exposures9 and
host predisposition.6 Comparing the results of these studies with
the analysis presented here suggests that many factors are import-
ant in determining the distribution of STH co-infections, including
STH species-specific within-host interactions, host-related factors
such as human behaviour and other environmental factors.

Egg deposition
There was a varied relationship between co-infection and egg
deposition among STH species in this study. When assessing the
difference in egg deposition between single infections and

Table 1. Logistic regressions assessing associations between species, with all model variables, ORs and McFadden’s R2s for each model. Species
variables are the presence or absence of infection

Species Variable OR (95% CI) p-Value McFadden’s R2 (%)

Ascaris N. americanus 1.1 (0.7 to 1.8) NS 5.1
Trichuris 2.5 (1.6 to 3.7) <<0.0001
<13 y 1 –

13–18 y 1.5 (0.8 to 3.0) NS
19–30 y 2.7 (1.5 to 5.1) <0.005
≥30 y 1.1 (0.7 to 1.8) NS

N. americanus Ascaris 1.2 (0.8 to 1.8) NS 4.5
Trichuris 3.2 (1.9 to 5.5) <<0.0001

Trichuris Ascaris 2.4 (1.6 to 3.6) <<0.0001 7.3
N. americanus 3.2 (1.9 to 5.5) <<0.0001

CI: confidence interval; NS: not significant, p>0.05.
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co-infections, both N. americanus and Ascaris egg deposition
was higher in co-infections than in single infections, but this
was not apparent in Trichuris. We found evidence of increased
egg deposition in Ascaris and N. americanus infections when

Trichuris was present, but no clear evidence of a similar effect in
Trichuris. All egg deposition models had a low R2, highlighting
that even though co-infection was found to have an effect in
some models, this effect is fairly small.

Egg deposition is influenced by both adult worm number and
per-worm fecundity—that is, greater egg deposition could indicate
higher worm burden in co-infections, increased fecundity of a simi-
lar number of adult worms or both. By considering egg deposition
findings alongside evidence of positive associations between spe-
cies, we can suggest which of these may be the case. Increased
egg deposition in co-infections coupled with a positive association
in prevalence could indicate a benefit to establishment of second
or third infections, leading to greater numbers of co-infections and
greater worm burdens in co-infections. Increased egg deposition
with no positive association, on the other hand, could indicate that
the presence of co-infections improves the fecundity of a helminth
but not establishment.We can therefore suggest that these results
indicate positive effects of Trichuris on the establishment of N.
americanus and Ascaris, leading to greater egg depositions and
positive associations in each. Trichuris deposition is not affected
by co-infection, however, suggesting that it is not facilitated by
co-infections.

However, this analysis has limitations and there are alternative
theories that should also be considered. To confirm these theories,
data from different populations and larger samples are needed.
For example, a possible alternative explanation for the higher egg
deposition rate in co-infections could be that there is host predis-
position to both higher-intensity infections and to multiple infec-
tions rather than there being interactions between species. It is
also important to note that equal levels of egg deposition in co-
infections to single infections could be due to no change in either
establishment or fecundity or to changes in both that cancel each
other out. Worm expulsion studies could give a better indication
of the effect of co-infection on the number of adult worms.

Although several previous studies have found evidence for
co-immune modulation in co-infections of STH, evidence for
changes in the intensity of infection or egg deposition is
mixed.7,9,10,14 We might expect co-immunoregulation to have
some impact on the number of adult worms and adult worm
fecundity, but this relationship is difficult to study in human
populations, where other factors such as age and the presence
of other non-STH infections such as malaria and Schistosoma
will also interact with worm life history.

Overall, both our study and previous studies highlight that
STH life cycles are complex and are not easily studied with indir-
ect measures such as egg deposition. It is important to note
that greater worm load could lead to greater morbidity and
greater egg deposition could lead to greater transmission of
parasites. Information about impacts to morbidity and/or trans-
mission could inform STH treatment and control, so further
investigation of this phenomenon is important, particularly as
there is some evidence that infection intensity can affect drug
efficacy and drug efficacy varies between STH species.28–30

Limitations
The occupation and living conditions of the study population
were relatively homogeneous, so these results have limited

Figure 2. Egg deposition distributions by infection type group. Egg
deposition was measured as EPG. Medians, interquartile ranges and indi-
vidual data points are plotted on a log scale. (a) The egg deposition
from N. americanus infections, including single infections, infections with
Ascaris or Trichuris and triple infections. (b) The egg deposition from
Ascaris infections. (c) The egg deposition from Trichuris depositions. Na:
N. americanus; Al: A. lumbricoides; Tt: T. trichiura.
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generalizability to other populations. Other studies of STH epi-
demiology take the prevalence of other non-STH infections into
account, as there is evidence that there are also within-host
interactions with these species. We do not have data on the
prevalence of other infections in these communities at the time
of this survey, so we could not analyse their influence on these
data. The faecal sample used for the Kato–Katz microscopic
assessment was less than a 1 g (54.5mg); when this small, its
representation of the egg concentration is sensitive to

homogenisation of the sample. However, Kato–Katz is the
recommended method for assessment of STH egg counts by
the World Health Organization.31

Conclusions
We found positive associations between some, but not all, STH
species and some evidence that in N. americanus and Ascaris

Table 2. Negative binomial generalized linear regression assessing the relationship between egg deposition and the presence of any
co-infection, with all model variables, regression coefficients and a variance-based R2

Species Variable Coefficient (eggs/54mg) (95% CI) p-Value Variance-based R2 (%)

Ascaris Any co-infection 0.8 (0.3 to 1.2) <0.001 0.8
N. americanus Any co-infection 1.4 (0.6 to 2.0) <0.0005 0.5
Trichuris Any co-infection −0.1 (−1.0 to 0.8) NS 0.3

<13 y 0 –

13–18 y −0.4 (−1.5 to 0.8) NS
19–30 y 1.0 (−0.02 to 2.4) NS
≥31 y 0.04 (−0.7 to 0.8) NS
Ayr 0 –

Maliboda −1.3 (−2.1 to −0.6) <0.0005
Interactions:
Co-infection: 13–18 y −0.7 (−2.0 to 0.7) NS
Co-infection: 19–30 y −2.0 (−3.4 to −0.8) <0.005
Co-infection: ≥31 y −0.5 (−1.4 to 0.3) NS
Co-infection: plantation 1.0 (0.1 to 1.9) <0.05

CI: confidence interval; NS: not significant, p>0.05.

Table 3. Negative binomial generalized linear models assessing the relationship between faeces egg count and the presence of co-infecting
species and other factors, with all model variables, regression coefficients and variance-based R2

Species Variable Coefficient (eggs/54.5mg) (95% CI) p-Value Variance-based R2 (%)

Ascaris N. americanus −0.3 (−0.7 to 0.06) NS 1.4
Trichuris 0.7 (0.2 to 1.1) <0.005

N. americanus Ascaris 0.4 (0.0 to 0.8) NS 1.4
Trichuris 1.0 (0.4 to 1.6) <0.0005

Trichuris Ascaris 0.05 (−0.3 to 0.4) NS 0.3
N. americanus 0.6 (0.06 to 1.2) <0.05
Ayr 0 –

Maliboda 0.5 (−0.1 to 1.2) NS
Water from waterfall 0 –

Pipe-borne water −0.1 (−0.8 to 0.4) NS
River water 0.1 (−1.0 to 1.6) NS
Well water 0.7 (−0.2 to 1.6) NS
Interaction:
N. americanus: Plantation −1.0 (−1.7 to −0.4) <0.005

CI: confidence interval; NS: not significant, p>0.05.
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co-infection, egg deposition may be increased. The results may
be due to correlated exposures, host pre-disposition or between-
species interactions, but the variation between STH species sug-
gests differential impacts of these factors on the different species.
The within-host interactions are clearly complex, species specific
and dependent on many other host- and environment-related
factors. More needs to be known about the effects of co-infection
on within-host life cycles of STH species to understand the
importance of co-infection for morbidity and the epidemiology of
co-infection.
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