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René Kiefer ‹ and Anne-Marie Broomhall
Centre for Fusion, Space, and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, UK

Accepted 2020 June 18. Received 2020 June 18; in original form 2020 March 16

ABSTRACT
Oscillation mode frequencies of stars are typically treated as static for a given stellar model. However, in reality they can be
perturbed by time-varying sources such as magnetic fields and flows. We calculate the sensitivities of radial p-mode oscillations
of a set of models for masses between 0.7 and 3.0 M� from the main sequence to the early asymptotic giant branch. We fit
these mode sensitivities with polynomials in fundamental stellar parameters for six stages of stellar evolution. We find that the
best-fitting relations differ from those proposed in the literature and change between stages of stellar evolution. Together with a
measure of the strength of the perturbation, e.g. of the level of magnetic activity, the presented relations can be used for assessing
whether a star’s observed oscillation frequencies are likely to be close to the unperturbed ground state or whether they should be
adjusted.
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1 IN T RO D U C T I O N

Owing to the revolution that the high-quality space-photometry data
of Kepler (Borucki et al. 2010; Koch et al. 2010), CoRoT (Baglin
et al. 2006; Auvergne et al. 2009), and TESS (Ricker et al. 2014)
have brought about, many thousands of stars now have measured
oscillation frequencies. These stars cover very different stages of
evolution from the main sequence (e.g. Appourchaux et al. 2012;
Lund et al. 2017) to subgiants (Appourchaux et al. 2012), red giants
(e.g. Corsaro, De Ridder & Garcı́a 2015; Kallinger 2019), core
helium burning and asymptotic giant branch (AGB) stars (Kallinger
2019), and even white dwarfs (Hermes et al. 2017). Their oscillation
frequencies can be subject to perturbations due to intrinsic time-
varying sources, for example magnetic activity: it is well known
that for the Sun, p-mode frequencies of low-degree modes at the
frequency of maximum oscillation amplitude νmax vary by about
0.4μHz over the course of the solar activity cycle (Woodard & Noyes
1985; Elsworth et al. 1990; Libbrecht & Woodard 1990; Jiménez-
Reyes et al. 1998). Similar behaviour has been observed for other
main-sequence stars (e.g. Garcı́a et al. 2010; Kiefer et al. 2017a;
Santos et al. 2018).

Stellar activity appears to persist all the way through a star’s
evolution from the main sequence to the AGB: activity cycles have
been detected on dozens of main-sequence stars (e.g. Baliunas et al.
1995); Aurière et al. (2015) measured magnetic fields at the surface of
K and G giants; starspots have been detected on various types of stars
(see references in Berdyugina 2005). Whether activity is generated
by global cyclic dynamos or by local turbulent mechanisms is, in first
approximation, not relevant for the perturbation of mode frequencies.

� E-mail: r.kiefer@warwick.ac.uk

Several frameworks for understanding how various perturbations
affect oscillation mode parameters have been developed, mostly with
the Sun as the benchmark: Dziembowski & Goode (2004) used a
variational approach to quantify the effect of the change of dynamical
quantities over the solar cycle on mode frequencies. Coupling of
normal modes within the framework of quasi-degenerate perturbation
theory was investigated by Roth, Howe & Komm (2002) to calculate
the effect of large-scale flows on p modes by Schad, Timmer & Roth
(2013) to size the meridional circulation and by Kiefer, Schad &
Roth (2017b) and Kiefer & Roth (2018) to assess the effect of global
toroidal magnetic fields on p-mode frequencies and eigenfunctions.
Hanasoge (2017) also exploits normal mode coupling, but with first-
Born perturbation theory, to gauge the impact of Lorentz stresses on
p-mode oscillations.

Recently, Howe et al. (2020) found that the solar νmax varies by
as much as 25 μHz over the Sun’s activity cycle. In an asteroseismic
context, it may thus be important to account for activity-related vari-
ations of νmax and perturbations of measured mode frequencies when
they are used to model the stellar structure or to infer global stellar
parameters such as radius and mass (see also Kiefer, Broomhall &
Ball 2019; Pérez Hernández et al. 2019). The magnitude of the fre-
quency shifts can be estimated by the product of a factor accounting
for the sensitivity of the oscillations to a perturbation and a factor for
the strength of the perturbation, as we will detail in Section 3. In their
effort to estimate the number of stars with detectable activity-related
p-mode frequency shifts in TESS data, Kiefer et al. (2019) derived
the mode sensitivity S to be proportional to RM−1ν−1

max, where R is
the stellar radius and M is stellar mass. This is very similar to the
modal sensitivity contribution that Karoff et al. (2009) gave using
the relation of Metcalfe et al. (2007), which was S ∝ R2.5L0.25M−2,
where L is stellar luminosity. The scaling suggested by Chaplin et al.
(2007) did not incorporate a factor for mode sensitivity but simply
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4594 R. Kiefer and A.-M. Broomhall

Table 1. Initial masses and maximum time-steps between two models.

Initial mass (M�) Max. time-step (yr)

0.7, 0.8, 0.9, 1.0 5· 108

1.1, 1.2 1· 108

1.3, 1.5, 1.7 5· 107

1.8, 2.0, 2.2 2· 107

2.5, 2.8, 3.0 1· 107

assumes linear scaling of mode frequency shifts with the level of
activity.

The exponents in these relations are fixed and it is thus expected
that they cannot capture the variation of the mode sensitivity over
the entire evolution from the main sequence to the early AGB. In
this paper, we first describe the stellar evolutionary models we use to
calculate the mode sensitivity in Section 2. The derivation of the mode
sensitivity factor follows in Section 3. We then fit these sensitivities
for six stages of stellar evolution with several polynomials in stellar
fundamental parameters, as described in Section 4. The results are
discussed in Section 5 and the conclusions we draw from these results
follow in Section 6.

2 MO D E L S

We computed stellar models using Modules for Experiments in Stel-
lar Astrophysics (MESA),1 revision 12115 (Paxton et al. 2011, 2013,
2015, 2018, 2019), for 15 initial stellar masses and evolved them to
the early AGB. We used the MESA test suite inlist for the evolution
of a 1 M� star, which is stored in the MESA installation’s folder
’ \star\test suite\1M pre ms to wd’, adjusted the initial
mass, and, in order to have a better resolution of the main-sequence
and the core helium burning phases, the maximum time between two
models. The initial masses and their respective maximum time-step
values are given in Table 1. We terminated the evolution at the ther-
mally pulsing (TP)-AGB, but as we are considering only stellar mod-
els with νmax > 1 μHz (see Table 2), the more evolved models on the
AGB are not included in our study. A sample MESA inlist is given in
Appendix A1.

The models use the solar metal mixture of Grevesse & Sauval
(1998) with a helium abundance of Y� = 0.248 and a metallicity
of Z� = 0.017. The atmospheric model uses the MESA default,
a standard Eddington grey atmosphere. The opacities are those of
Iglesias & Rogers (1993), Iglesias & Rogers (1996), and the MESA
option for C/O enhancement during and after helium burning is
enabled with a base metallicity of 0.02.

The adiabatic radial p-mode eigenfunctions and eigenfrequencies
of all models were computed with the oscillation code GYRE2

(Townsend & Teitler 2013; Townsend, Goldstein & Zweibel 2018).
A sample GYRE inlist is given in Appendix A2.

Fig. 1 shows a Hertzsprung–Russell diagram of the models we
selected based on the requirements that they have a convection
zone with a top boundary above 0.99 R, they have reached the
main sequence, and their expected νmax is greater than 1 μHz . The
requirement on the outer convection zone boundary ensures that p
modes are detectable at the surface and are not suppressed by a thick
outer radiative zone. We then separated the remaining models into
six evolutionary stages based on the conditions listed in the second
column of Table 2. The third column gives the final number of models

1http://mesa.sourceforge.net/
2https://bitbucket.org/rhdtownsend/gyre/

in each stage. The partitioning into main-sequence, subgiant and the
red giant branch (RGB), core He burning, and AGB is founded on
different stages of energy production and core composition. The
subdivision of the RGB into lower RGB, upper RGB, and tip RGB
models was guided by the phenomenology of the mode sensitivities.
In particular, the separation of upper and tip RGB models improved
the quality of the polynomial fits, as will be described in Section 4.
Ten subgiant models are bluewards of the red edge of the instability
strip defined by Chaplin et al. (2011) as

Tred = 8907 K · L−0.093, (1)

where the luminosity L is in solar units. These models have square
symbols in Fig. 1 and in all following plots.

3 MODE SENSI TI VI TY

We start with the variational expression for frequency shifts derived
by Dziembowski & Goode (2004) (compare to their equation 18)
and quoted by Metcalfe et al. (2007) in their equation 1:

δνi =
∫

dV KiSi

2Iiνi

, (2)

where Ki is the kernel function relating perturbations caused by a
source function Si to the shifts δν i, Ii is the mode inertia, and ν i is the
frequency of mode i in μHz. The integral is calculated over the entire
stellar volume V. In the following, we will ignore the contribution
of magnetic activity to equation (2) and assume that the resulting
frequency shift is linear in the level of activity: δν = S · A, where S
is the sensitivity of a mode to a perturbation and A is a measure of
the level of activity.

Just as in Metcalfe et al. (2007), we shall assume that the dominant
term in the kernel of p modes is proportional to |divξ |2, where ξ

is the displacement eigenfunction. We consider only radial modes,
which considerably simplifies the calculations. With this, the kernel
function is

K ∝
∣∣∣∣2

r
ξr (r) + ∂ξr (r)

∂r

∣∣∣∣
2

, (3)

where ξ r(r) is the radial displacement eigenfunction at radial position
r.

We assume that the perturbation is located within one pressure
scale height Hp below the photosphere with uniform and normalized
strength

S = �(Hp − d) =
{

1, if Hp − d > 0
0, otherwise.

(4)

Here, � is the Heaviside step function and d is the depth below the
photospheric radius of the model. Thus, in this article we make no
assumption about the level of magnetic activity affecting the modes
or how this evolves over the stellar lifetime.

With this definition of the source function, we explicitly concen-
trate on (near-)surface magnetic activity affecting mode frequencies.
From the Sun, it is known that the activity-related frequency shifts
largely originate from the near-surface regions (e.g. Broomhall
2017). Similar behaviour has been observed on other solar-like
oscillators by, e.g. Salabert et al. (2011, 2016a) and Kiefer et al.
(2017a). Deeper located magnetic fields or core magnetic fields are
likely to affect the temporal stability of mode frequencies less (e.g.
Gough & Thompson 1990; Kiefer & Roth 2018). This is because
such magnetic fields have a much smaller effect on p modes than
near-surface fields due to the drop in sensitivity. Further, core fields
are assumed to be stable over very long time-scales, meaning they
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Relations for p-mode sensitivities 4595

Table 2. Separation of evolutionary stages, number of models in each stage, relation in Table 3, which gives the lowest
mean absolute error between fit and model sensitivities for each stage, and letter symbol that is used to identify this stage.

Stage Conditions # models Best-fitting relation ID

Main sequence Centre hydrogen content >10−5 383 5 A
νmax >1000 μHz
Teff <7000 K
Contraction is finished Ltot − LH < 0.01

Subgiants & Centre hydrogen content <10−5 230 5 B
lower RGB νmax >100 μHz

Teff <7500 K

Upper RGB Centre hydrogen content <10−5 257 3 C
10 μHz < νmax < 100 μHz
Helium core not ignited LHe < 0.1LH

Tip RGB Centre hydrogen content <10−5 382 6 D
1 μHz < νmax < 10 μHz
Helium core not ignited LHe < 0.1LH

Core He burning Centre hydrogen content <10−5 514 3 E
Centre helium content >10−5

νmax >10 μHz
Helium burning LHe > 0.1LH

AGB Centre hydrogen content <10−5 175 7 F
Centre helium content <10−5

νmax >1 μHz

All Top convection zone boundary ≥0.99 R 1941

Note. Ltot is the total luminosity of the star including all sources. LH and LHe are the contributions to the total luminosity
from hydrogen and helium-burning processes, respectively.

Figure 1. Hertzsprung–Russell diagram of the stellar models used in this
study. Colours encode stellar evolutionary stages as defined in Table 2: main-
sequence stars are blue, subgiants and lower red giant branch stars are orange,
upper RGB models are green, tip RGB models are red, core helium burning
models are purple, and AGB models are amber. The red edge of the instability
strip is indicated by the dashed grey line.

are unlikely to bring about a mode frequency variation on observable
time-scales. The deeper a magnetic field is located, the stronger it
has to be to achieve the same level of frequency shift. We will discuss
this further in Section 5.2.

In equation (2), the mode inertia I is calculated as

I =
∫

dV ρ|ξ |2, (5)

where the integral extends over the stellar volume V, ρ is density,
and the displacement eigenfunction ξ can again be replaced by ξ r(r),
as we consider only radial modes.

For simplicity, we investigate only the oscillation mode i closest
to νmax, which is calculated for each model with the scaling relation
of Kjeldsen & Bedding (1995):

νmax = νmax� ·
(

M

M�

)(
R

R�

)−2 (
Teff

Teff�

)− 1
2

, (6)

with the calibrated solar reference value νmax� = 3104μHz of Mosser
et al. (2013), the solar values of mass M� = 1.9892 · 1033 g, radius
R� = 6.9598 · 1010 cm, and effective temperature Teff� = 5777 K
as used in the MESA code. R and M are the model’s photospheric
radius and mass, respectively.

With the above definitions, equations (3), (4), and (5), and the
stated assumptions, we calculate the right-hand side of equation (2)
for the set of stellar models described in Section 2 and call this the
mode sensitivity S of a star:

S =

∫ R

Hp

dV Ki,max

2Ii,maxνi,max
, (7)

where the index ’i,max’ indicates the mode closest to νmax. The unit
of S is cm g−1μHz−1.

To better illustrate how the observed behaviour of the mode
sensitivities comes about, we show the three main quantities that
make up the sensitivities, separately:
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4596 R. Kiefer and A.-M. Broomhall

Figure 2. Pressure scale height Hp calculated from the MESA models as a function of νmax for the six stages of stellar evolution as indicated in Table 2 with
colours as in Fig. 1. Left-hand panel comprises the first two stages, right-hand panel the other four stages. Pressure scale heights calculated with equation (8) are
shown in yellow but are largely covered by the models’ data points. The bottom section of both panels shows the normalized difference between the calculated
and the models’ scale height.

Figure 3. Numerator of equation (2) with model scale heights as shown in Fig. 2 over νmax for the six stages of stellar evolution as indicated in Table 2 with
colours as in Fig. 1. Left-hand panel comprises the first two stages, right-hand panel the other four stages.

3.1 Pressure scale height

The vertical distance over which hydrostatic pressure increases by a
factor of e in a stratified atmosphere can be written as

Hp ∝ P

ρg
∝ L0.25R1.5M−1, (8)

where it was taken that ρ ∝ MR−3 and g ∝ MR−2, where g is
surface gravity. It was assumed that the stellar photosphere follows
the equation of state of an ideal gas P ∝ ρT, where P is pressure
and T is temperature. Further, the Stefan–Boltzmann law was used
to express temperature as T ∝ L0.25R−0.5.

Fig. 2 shows the pressure scale heights from the stellar models
with the same colour code for the six stages of stellar evolution as
described in Fig. 1 and detailed in Table 2. It is calculated for each
model as the depth of that grid point at which the pressure is closest
to e · P(photosphere). The left-hand panel shows the first two stages
and the right-hand panel comprises the last four stages in order to
increase clarity as νmax is the ordinate. The scale heights Hp, calc

calculated using equation (8) are shown in yellow data points. The
values are scaled such that equation (8) yields a value of 150 km for
the Sun.

As the models are in hydrostatic equilibrium, the models’ pressure
scale heights and the value obtained from equation (8) are within a

few per cent: the data points largely overlap. The bottom sections
of the panels in Fig. 2 show the normalized difference between the
two sets of values. The ideal gas assumption and that of a perfect
blackbody will obviously affect the degree of accuracy of the rather
simplistic equation (8) through stellar evolution where photospheric
conditions highly vary. The largest relative systematic deviation
between the models’ scale heights and those from equation (8) is
found during the subgiant stage. However, being within a few tens
of per cent of the model values, equation (8) is a good approximation
of stellar photospheric pressure scale heights.

3.2 Integral over kernel function

The integral extends over the stellar volume of the outer pressure
scale height from the photospheric radius inwards. We assume the
source function S to be unitless. As the unit of the eigenfunctions is
cm, the unit of the numerator in equation (2) is cm3.

The integral values of all investigated models are presented in
Fig. 3 with colours and separation into two panels as in Fig. 2. On
the main sequence, models around νmax ≈ 2000 μHz have the largest
integral values. Higher mass stars have higher values than lower
mass stars at same νmax. For the subgiant and lower RGB stars, there
is a spike in integral values for masses 1.5−2 M� around νmax ≈
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Relations for p-mode sensitivities 4597

Figure 4. Same as Fig. 3 but for mode inertia as calculated by use of equation (5).

600 μHz. This increase is due to a surge in the pressure scale height
for these stars; thus, more of the stellar radius and the kernel function
are integrated over. The ridges correspond to different radial orders
of the mode closest to νmax. For the models in the tip RGB phase
(red data points), the five ridges correspond to radial orders n = 3–7,
counting from lowest to highest νmax. To increase clarity of the figure,
a few core He burning models with integral values <1042 were cut.

3.3 Mode inertia

The integral in equation (5) extends over the entire stellar volume and
amounts to a weighting of the stellar density with the eigenfunctions
being the weights. Mode inertia is of the unit cm2 g. Fig. 4 shows the
mode inertias with colours and separation into two panels as in Fig. 2.
The ridges correspond to different mass values, with lower masses
having smaller inertias. As the radial modes that are investigated
here propagate throughout the star, mode inertias tend to be larger
for higher mass stars. This also explains the steep increase with lower
νmax.

4 FI T S O F P O LY N O M I A L S O F ST E L L A R
PA R A M E T E R S

The mode sensitivity value S of the mode eigenfunction closest to
each model’s estimated νmax was calculated as described in Section 3.
For the ease of plotting, S was multiplied by a factor of 1016 before
the fits were carried out. Fig. 5 shows the values of S obtained
as a function of νmax for each evolutionary stage separately with
letter labels in the top right of each panel as given for the different
evolutionary stages in Table 2. Various polynomial models, which
are described in the second column of Table 3, were then fitted
to S independently for each evolutionary stage. The best-fitting
parameters obtained from collecting 1000 least-squares fits, each
with randomly chosen initial values for the parameters, are given in
columns three to eight of Table 3. The initial values were limited to
the half-open interval [ −50, 50). Fits for which the absolute of any
exponent was >50 were neglected. The fits were repeated until 1000
stable samples were found. The best fit is chosen as that one with
the smallest mean absolute error (MAE) between fit and calculated
sensitivities. The last column of Table 3 gives the MAE of the best
fit. The MAE is calculated as

MAE =
∑N

i=0

∣∣Smodel,i − Sfit,i

∣∣
N − dof

, (9)

where, against the usual definition of the MAE, we subtract the
number of degrees of freedom of each fit model, dof, from the number
of data points N in order to penalize use of more free parameters.

The fit models were chosen such as to include global stellar pa-
rameters that are readily available either from asteroseismic analyses
of space telescope light curves or from spectroscopic data. Thus,
models 1 and 4 include only radius R, mass M, and frequency of
maximum oscillation amplitude νmax, which can be measured from
sufficiently long photometric time series. Effective temperature Teff,
luminosity L, and surface gravity log g, which enter models 2, 3, 5,
6, and 7 have to be obtained from, e.g. Gaia measurements or other
spectroscopic observations of the star in question. Model 7 is a solely
spectroscopic relation, should seismic parameters and estimates of
mass and radius not be available.

Fig. 5 also shows the fits of relations to the models’ sensi-
tivity factors. Blue data points are sensitivities calculated from
the MESA/GYRE models and amber circles show the best-fitting
relation. Note that the ordinates of all panels are frequency of
maximum oscillation amplitude νmax with differing value domain
between panels, as well as that the abscissae of all panels show the
model mode sensitivities S with differing domains between panels.
In the interest of improved clarity, the parameters of the best-fitting
relation for each evolutionary group are given in Table 4.

5 D ISCUSSION

The mode sensitivities for main-sequence stars (panel A of Fig. 5)
are largely determined by the kernel functions. This is because their
mode inertias do not change strongly through this stage for each
stellar mass. The largest sensitivities are found for stars more massive
than the Sun. This agrees with the findings of Santos et al. (2019),
who found larger activity-related frequency shift values for stars of
higher effective temperature. In Fig. 6, the main-sequence models’
sensitivities are plotted as a function of effective temperature Teff.
The range of Teff was limited to be the same as in panel (c) of fig.
3 of Santos et al. (2019) for easier comparison. The colour of the
data points indicates stellar age, which, again, was capped at the
same value as in Santos et al. (2019) at 13 Gyr. By comparison
of these two figures, it can be seen that the mode sensitivities
calculated here follow a very similar trend as the measured frequency
shifts.

The bottom parts of the six panels in Fig. 5 show the normalized
residuals between the models’ sensitivities and the ones predicted by
the best-fitting relations. For the main-sequence models, the residuals
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4598 R. Kiefer and A.-M. Broomhall

Figure 5. Fits of polynomials in fundamental stellar parameters to the calculated sensitivity factor S. Blue data points are model sensitivities and amber circles
are the results of the best-fitting relation presented in Table 4. Panels show the six evolutionary stages as laid out in Table 2. Note that the ordinates and abscissae
of the panels have differing value domains. The bottom section of each panel shows the normalized residuals between fitted and model sensitivities.
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Relations for p-mode sensitivities 4599

Table 3. Relations fitted to the theoretical mode sensitivities and their optimal parameters. Within each relation’s paragraph, the six rows correspond
to the six stages of evolution from Table 2 according to their letter symbol. The asterisks in the last column indicate the best model per evolutionary
stage.

Number Relation Stage α β γ δ ε ζ MAE

1 Rα · Mβ A − 3.56 14.7 8.86
B 0.905 1.41 12.58
C 0.624 − 0.512 2.55
D 0.138 − 0.346 0.54
E 0.518 − 0.483 2.26
F − 0.984 5.61 5.21

2 Rα · Mβ · T
γ

eff A − 1.08 4.31 0.28 2.50
B − 4.79 8.71 0.471 8.22
C − 0.582 0.234 0.346 2.38
D − 0.847 − 0.00659 0.439 0.31
E − 1.14 − 0.189 0.503 2.31
F − 1.56 − 0.564 0.923 4.03

3 Rα · Mβ · Lδ A − 0.348 30.2 − 4.64 8.31
B − 10.2 − 9.83 7.13 10.43
C 14.6 3.11 − 8.99 2.29 ∗
D − 30.3 − 7.34 19.6 0.36
E − 8.33 − 1.51 5.42 1.96 ∗
F − 11.2 − 1.48 7.24 5.36

4 Rα · Mβ · νε
max A − 0.554 4.29 0.301 2.53

B 0.109 − 0.198 0.319 8.25
C 0.109 − 0.0856 0.369 2.38
D 0.023 − 0.419 0.476 0.31
E − 4.92 − 3.91 3.56 2.73
F 0.381 − 0.757 0.807 4.30

5 Rα · Mβ · T
γ

eff · νε
max A − 13.4 5.5 6.61 − 6.81 2.33 ∗

B − 13.7 4.67 7.12 − 7.36 6.34 ∗
C − 13.0 6.26 6.53 − 6.58 2.43
D 5.08 − 2.82 − 2.55 3.24 0.31
E 37.8 − 25.5 − 20.9 26.0 2.34
F 12.2 − 6.76 − 5.9 7.29 4.29

6 Rα · Mβ · Lδ · νε
max A − 4.23 − 1.62 2.54 0.307 2.33

B − 3.82 − 3.0 2.74 0.315 6.34
C − 37.3 − 10.3 23.7 0.787 2.31
D 1.54 − 0.0693 − 0.98 0.495 0.31 ∗
E 8.85 − 2.93 − 8.05 3.44 2.34
F 3.98 − 0.406 − 2.27 0.93 4.29

7 T
γ

eff · Lδ · log gζ A − 3.28 1.84 20.7 2.43
B − 3.18 1.79 20.4 7.62
C 0.00889 − 0.00719 1.7 2.39
D 0.317 − 0.383 0.433 0.31
E 0.603 − 0.909 0.0101 2.36
F 0.549 − 0.457 0.87 4.20 ∗

Table 4. Parameters of best-fitting relations per evolutionary stage.

Stage R M Teff L νmax log g
α β γ δ ε ζ

Main sequence − 13.4 5.5 6.61 − 6.81
Subgiants & lower RGB − 13.7 4.67 7.12 − 7.36
Upper RGB 14.6 3.11 − 8.99
Tip RGB 1.54 − 0.0693 − 0.98 0.495
Core He burning − 8.33 − 1.51 5.42
AGB 0.549 − 0.457 0.87
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4600 R. Kiefer and A.-M. Broomhall

Figure 6. Mode sensitivities S of the main-sequence models as function of
effective temperature Teff. Colours show stellar age with capping of the colour
bar at 13 Gyr.

are typically a few tens of per cent, with larger systematic residuals
towards higher values of νmax. Systematically overestimated sensi-
tivities can also be found for models at the low νmax end of panel C
(upper RGB) and panel F (AGB). While the residuals can reach up to
a factor of a few for some models, the overall agreement between the
best-fitting relations’ sensitivities and the model sensitivities is much
better than for the sensitivity scaling relations from the literature, as
we will detail later in this section. For purposes of presentation, we
clipped the ordinate of the residuals’ panels at 5 for stages B, E, and
F. A few single outliers have normalized residuals >5.

Subgiants (panel B of Fig. 5) have similar mode sensitivities
to main-sequence stars. Isaacson & Fischer (2010) found that
≈ 10 per cent of subgiant stars show moderate to strong chromo-
spheric activity. Thus, even though magnetic activity might not be
widespread on this stage of stellar evolution, some stars can be
expected to show significant activity-related frequency shifts. We
also note that given, first, the findings of Balona (2019), who found
evidence of starspots on hot stars, and, second, the large sensitivities
of the few models in the instability strip, possible activity-related
time variations of radial oscillation mode amplitudes and frequencies
of, e.g. γ Dor, δ Scuti, and roAp variables might be worth further
investigation. Amplitude as well as frequency variability has been
detected on these types of variables by several groups including but
not limited to Holdsworth et al. (2014), Breger (2016), and Bowman
et al. (2016).

Overall, mode sensitivities decrease for upper (panel C) and tip
RGB stars (panel D). However, given their low mode frequencies,
even an activity cycle with solar-like amplitude can lead to detectable
frequency shifts in such stars. This requires the cycle length to be of
the order of the order of the observational baseline. For core helium
burning stars (panel E), there are numerous models with sensitivities
of the order of the main sequence again, in particular, at around νmax

≈ 30 μHz. A few AGB models (panel F) have again rather large
mode sensitivities. Depending on the strength and temporal scale of
magnetic activity of upper RGB, core helium burning, and even early
AGB stars, frequency shifts may be detectable for these types of stars
in the available Kepler data set.

We do not give a physical interpretation to the best-fitting relation
within each evolutionary group but provide them here as convenient
shortcuts to estimate the mode sensitivity of individual stars based
on a few readily accessible fundamental parameters. As can be seen
from Table 3, the exponents in each model we fitted can differ quite

drastically from one evolutionary stage to the next. That being said,
the jumps in the exponents for polynomials 2 and 4 are relatively
small and should one be interested in using a single relation for all
stars with only changing the exponents from stage to stage, then
either one of these appears to be a justifiable choice.

It would in general be possible to obtain uncertainties for the
exponents of the polynomial relations, e.g. by using a Markov-chain
Monte Carlo estimation of the optimal exponents instead of the least-
squares fit. However, the MAE of each fit reported in Table 3 can be
used as a good estimation of the uncertainty if mode sensitivities are
calculated.

To assess the impact of the number of models per evolutionary
stage on the fits’ results and quality, we redid the fits for two
scenarios: first, we halved the number of models by taking every
second model, effectively reducing the time resolution. With this,
the polynomial relations per evolutionary stage that provide the best
fit are the same as with the full model set. The exponents, however,
do change, with the largest changes for the tip RGB and core helium
burning stages. For these stages, the best-fitting relations are now
R6.79 · M1.16 · L−4.37 · ν0.60

max and R−3.81 · M−0.54 · L2.62, respectively.
The residuals and the MAE are on a very similar level as with the
full model set for all six stages.

In the second scenario, we lowered the number of models to 175
in each stage, which is the number of models of the AGB group. We
chose these 175 models randomly from the full set. From this we find
similar exponents for the best-fitting relations as for the full model
set and the same relations that provide these best fits. The largest
changes on the exponents occur again for the tip RGB models, for
which the best-fitting polynomial is R4.32 · M0.53 · L−2.77 · ν0.57

max with
a MAE of 0.30. For the core helium burning stage, the number of
models is reduced by almost a factor of 3 (from 514 to 175). The
best-fitting model now is R−7.78 · M−1.06 · L5.04, which is quite similar
to the one from the full model set. The removal of some of the higher
sensitivity models in this stages leads to a somewhat smaller MAE of
1.52. Overall, the MAE of the fits and the residuals are very similar
to the full model set.

From these two checks, we conclude that the best-fitting relations
that we present in Table 4 provide reasonable estimates for the
sensitivities in each evolutionary stage. The number of models within
each evolutionary group and with it the temporal resolution that we
chose for our grid of models appear adequate to capture the bulk
behaviour of mode sensitivities.

In Fig. 7, the main-sequence (left-hand panel) and subgiant and
lower RGB models’ (right-hand panel) sensitivity factors of the best-
fitting relation (amber data points) are compared to those calculated
with the relations of Kiefer et al. (2019) (green) and Karoff et al.
(2009) based on the derivations of Metcalfe et al. (2007) (red). As
mentioned before, these two relations are rather similar – differing
by a factor of merely ∝ √

Teff (see Kiefer et al. 2019) – thus,
the green data points are largely covered by the red. We limit the
comparison to these two evolutionary stages because these relations
were not intended for use far off the main sequence. These two
relations have fixed exponents and an unknown coefficient that gets
lost in their derivation. As this coefficient has to be the same for
all evolutionary stages, we obtained it by fitting the relations to
the sensitivities of the main-sequence and subgiant and lower RGB
models simultaneously. This gave a coefficient of 28525 for the
Kiefer et al. (2019) relation and of 9.03 for the Karoff et al. (2009)–
Metcalfe et al. (2007) relation. Their MAE to the combined data of
both stages is 7.91 and 7.87, respectively. The combined MAE of
the relations found here for these data is 4.28. For the main sequence
individually, these values are 4.36 and 4.31 compared to 2.33 for
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Figure 7. Comparison of fixed-exponent relations to the best-fitting relation. Blue data points are model sensitivities and amber circles are the results of the
best-fitting relation found here. The relations of Kiefer et al. (2019) (green circles) and Karoff et al. (2009)–Metcalfe et al. (2007) (red circles) use the best-fitting
multiplier based on the main-sequence models only. Left-hand panel is for main-sequence models, right-hand panel for subgiant and lower RGB models.

the relation found here. For the subgiants and lower RGB stage,
they are 13.9 and 13.9 compared to 7.62 for the optimal relation.
As can be seen, the relations from the literature do not reproduce
the sensitivity factors as well as the empirical relations found
here.

5.1 Application of the scaling relations

With the relations presented here and a measure of stellar activity,
it is possible to estimate activity-related frequency shifts for stars
from the main sequence to the AGB. We note that the prediction
of frequency shifts has to be done with a normalization to a known
activity level, typically with the Sun as the standard. For example, one
would take the average logarithmic fraction of the solar luminosity
that is emitted in the Calcium II H and K lines log R′

HK�, multiply
it by the sensitivity value obtained from the main-sequence relation,
and scale the result to obtain the known solar cycle p-mode frequency
shift amplitude of 0.4μHz . This scaling factor can then be applied
to stellar log R′

HK values and the sensitivities from the presented
relations to give the expected full-cycle frequency shift values of the
respective stars.

We use the main-sequence polynomial from Table 4 and
known activity measures for the stars KIC 8006161 (HD 173701),
KIC 10644235, and KIC 12009504 to predict their full-cycle fre-
quency shifts. These stars’ and the Sun’s fundamental parameters
as well as their log R′

HK and mean photometric activity 〈Sph〉 are
given in Table 5. See Mathur et al. (2014a, b) for the definition
of 〈Sph〉. The measured frequency shift amplitude δνmeas was taken
from Santos et al. (2018). It is simply calculated as the difference
between their reported maximum and minimum value of the p-mode
frequencies.

For KIC 8006161, we find that using log R′
HK to predict the full-

cycle shift gives δνpred,Ca = 0.18 ± 0.04 μHz, whereas the measured
shift is δνmeas = 1.12 ± 0.09 μHz. Karoff et al. (2013) already found
that this star shows an unexpectedly low-excess flux in the calcium
lines. Thus, log R′

HK appears to be an unsuitable activity measure to
predict the p-mode shift of this star in particular. For KIC 10644253,
the predicted shift using log R′

HK is much closer to the observed value
and the predicted and observed shifts are even in agreement, within
the uncertainty, for KIC 12009504. It should be noted that the values
of log R′

HK were not measured contemporaneously to the Kepler
data. Depending on at what phase of a star’s activity cycle log R′

HK

is measured, it potentially underestimates the full-cycle shifts.

Using the mean photometric activity index 〈Sph〉 to pre-
dict the frequency shifts, we find δνpred,Sph = 0.71 ± 0.15 μHz
for KIC 8006161, 0.91 ± 0.24 μHz for KIC 10644253, and
0.37 ± 0.11 μHz for KIC 12009504. These are in agreement with
the measured values of KIC 10644253 and KIC 12009504. For
KIC 8006161, this is again somewhat lower than the measured value.
This can be due to two reasons: The sensitivity S is underestimated or
〈Sph〉 is underestimated. As can be seen from the top left-hand panel
in Fig. 5, our best relation underestimates the sensitivity by a few
tens of per cent for stars with νmax around 3500 μHz . Furthermore,
KIC 8006161 has an inclination of 38+4

−3 degrees (Karoff et al. 2018).
This can lead to an underestimation of its photometric activity, as
active regions that lead to a global p-mode frequency shifts could
hide on the out-of-sight portion of the star. Thus, it is likely that both
factors contribute to the underestimation of this star’s frequency
shifts.

5.2 Assumption of a global near-surface perturbation

With equation (4), we located the cause of the frequency shifts
entirely in the outer pressure scale height of the star with an isotropic
distribution over the entire stellar sphere.

In a study of activity-related p-mode frequency shifts of Kepler
stars, Salabert et al. (2018) found that for four stars of their 87 star
sample, the shifts have an oscillatory behaviour as a function of mode
frequency. Such a behaviour hints towards a cause of at least part
of the frequency shifts, which is located deeper within the resonant
p-mode cavity, possibly at the depth of the He II ionization zone.
The sample of Salabert et al. (2018) is limited both in quality and
size but poses the very intriguing question of where the (magnetic)
perturbation that is associated with the observed frequency shifts is
actually concentrated in the radial direction.

The frequency dependence of the shifts also depends on the spatial
distribution of activity as was shown by, e.g. Kiefer & Roth (2018).
Further, the spatial distribution of activity affects modes of different
harmonic degree and azimuthal order differently (Moreno-Insertis &
Solanki 2000). Analysing the frequency shifts of the radial and dipole
modes of KIC 8006161 (HD 173701), Thomas et al. (2019) found
that the active regions for this star are at higher latitudes than in the
solar case and are distributed over a wider range.

We argue that any magnetic perturbation that is happening at a
depth below the outer pressure scale height will eventually manifest
in the near-surface layers. There, it will then lead to frequency shifts
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Table 5. Fundamental parameters of test stars.

Star R M Teff νmax log R′
HK 〈Sph〉 δνmeas δνpred, Ca δνpred, Sph

[R�] [M�] [K] [μHz] [ppm] [μHz] [μHz] [μHz]

Sun 1 1 5777 3104 − 4.901 166.1 ± 2.6 0.4
KIC 8006161 0.9293 ± 0.0083 0.9861 ± 0.0253 5488 ± 77 3574.7 ± 11.4 − 5.03 492.4 ± 6.3 1.12 ± 0.09 0.18 ± 0.04 0.71 ± 0.15
KIC 10644253 1.1221 ± 0.0133 1.1748 ± 0.0385 6045 ± 77 2899.7 ± 22.8 − 4.689 385.1 ± 8.9 1.07 ± 0.25 0.64 ± 0.17 0.91 ± 0.24
KIC 12009504 1.4120 ± 0.0193 1.1986 ± 0.0452 6179 ± 77 1865.6 ± 7.7 − 4.949 131.2 ± 3.4 0.49 ± 0.16 0.42 ± 0.12 0.37 ± 0.11

Note. References. Radius and mass: Silva Aguirre et al. (2017). Teff and νmax: Lund et al. (2017) and references therein. log R′
HK: Santos et al. (2019), who used

values from Karoff et al. (2013) and Salabert et al. (2016b). 〈Sph〉: Mathur et al. (2014b); except KIC 8006161: Garcı́a et al. (2014). Measured frequency shift
δνmeas from Santos et al. (2018). Solar values of log R′

HK from Saar & Brandenburg (1999), 〈Sph〉 from Mathur et al. (2014b).

that are larger than those caused by deeper seated perturbations
(Gough & Thompson 1990; Kiefer & Roth 2018). Further, we are
not concerned with the frequency dependence of the frequency shifts
here but focus on the full-cycle shift of the radial mode closest to νmax.
The assumption of the source function with equation (4) appears to
be maintainable in this regard and certainly results in a very good
estimate of the expected level of the mode sensitivities and thus of the
frequency shifts. Still, given the results of Salabert et al. (2018) and
Thomas et al. (2019), we again stress the importance of more detailed
investigations of frequency shifts as a function of mode frequency
and of harmonic degree if the data allow for such analyses.

6 C O N C L U S I O N S

We computed the sensitivity of p-mode oscillations to magnetic
activity for a set of evolutionary stellar models. For this, we used
a standard MESA inlist and adjusted only the initial mass (from
0.7 to 3.0 M�) and maximum time-steps between models. We then
used GYRE to compute p-mode eigenfunctions of all the models.
The complete set of models was divided into six evolutionary stages.
We found that modes are most sensitive to perturbations for main-
sequence and subgiant stars. On the main sequence, sensitivity
increases with higher mass. Lowest mode sensitivities are found
for stars at the tip of the RGB.

In the calculation of the mode sensitivity S, we assumed that the
leading terms in the kernel functions of p modes are proportional to
divξ . We further assumed that the perturbations are concentrated
within one pressure scale height below the photospheric radius
of the models. Fits of polynomials in fundamental and widely
available stellar parameters then gave relations for estimating these
sensitivities.

In contrast to the relations for the mode sensitivity that have been
used in the literature so far, when frequency shifts due to stellar
activity were to be estimated, our relations are based on stellar
models. The added flexibility of changing the exponents on the
fundamental parameters in the polynomials between evolutionary
stages certainly increases the capability of these relations to capture
the true variation of the sensitivities through stellar evolution. The
relation given by Karoff et al. (2009), which is based on derivations
of Metcalfe et al. (2007), and the relation derived by Kiefer et al.
(2019) are unable to reproduce the mode sensitivities of main-
sequence stars and subgiant and lower RGB stars (which they were
originally intended for) as well as the optimal relations presented
here. In particular, the mass dependence of mode sensitivities and
their change over time while the stars are on the main sequence is
not well captured by these relations. For stars off the main sequence,
these relations considerably overestimate mode sensitivities.

We used the optimal relation for the main sequence and tested
it on three stars. We found that it is important to use activity

measures that are contemporaneous to the photometric data that are
used to measure the p-modes whose shifts are to be predicted. If
simple photometric activity indices are used, inclination of the stellar
rotation axis can lead to an underestimation of the true level of activity
and thus to underestimated shifts. Using the mean photometric
activity index 〈Sph〉, we find overall solid agreement between the
predicted and observed frequency shifts for the three stars that we
investigated.

The derivation of the mode sensitivities is done only for purely
radial oscillations, which ensures that the modes are pure p modes.
This is of particular importance in RGB stars, where, e.g. dipole
modes are often of mixed character, partly p mode and partly g
mode. For non-radial modes, the calculation of the mode inertia and
the kernel function would change, as the eigenfunctions include a
horizontal part. It can be expected that mode sensitivities of mixed
modes are weaker, as their mode inertia will have contributions from
both the convective parts of the star (p mode) and the radiative part
(g mode).

The reported relations and the presented mode sensitivities can
also guide the selection of targets for future studies of activity-
related p-mode frequency shifts: Mode sensitivities are largest for
earlier main-sequence stars at around νmax = 2000 μHz. Thus, in
turn, frequency shifts can be expected to be largest for these stars.
Further, subgiants in the range 400 μHz � νmax � 800 μHz show
increased sensitivities and present good targets. Finally, we note
that there appear several models with larger sensitivities in the
upper RGB, core He burning, and the AGB stages. Such studies
– optimally including oscillating stars at various evolutionary stages
– could also aim at testing our relations, given known activ-
ity levels, fundamental stellar parameters, and p-mode frequency
shifts.

The cardinal question driving all of this is: how do stellar dynamos
operate and in what way do they change along stellar evolution?
Simple time-resolved p-mode frequency measurements can play an
important part in answering this.
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DATA AVAILABILITY

The data sets underlying this article were generated with publicly
available software and can be reproduced using the details provided
in the appendix: MESA, http://mesa.sourceforge.net/, GYRE, https:
//bitbucket.org/rhdtownsend/gyre/
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APPENDIX A : INLISTS

A1 MESA inlists

The following inlists were used to generate the set of stellar
models with MESA. As described in Section 2, only the values for
initial mass andmax years for timestepwere changed.
As can be seen from these inlists, the maximal time between the
calculated stellar models is 10 times smaller than those stated in Ta-
ble 1, but we only saved every tenth model (profile interval
= 10). All keys that have the default MESA value are marked with
a #, which should be removed before this inlist is used.

First, this inlist is used to evolve the star to the main sequence:
&star job

show log description at start = .false.
create pre main sequence model = .true.
save model when terminate = .true.
save model filename = ’start.mod’
required termination code string =

’max model number’
# kappa file prefix = ’gs98’

pre ms relax num steps = 50
pgstar flag = .true.

/ ! end of star job namelist
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&controls
max years for timestep = 5d7
initial mass = 0.7

# use gold tolerances = .true.
# use eosELM = .true.
# use eosDT2 = .true.

max number backups = 1
max number retries = 5
max model number = 50

# initial z = 0.02d0
use Type2 opacities = .true.
Zbase = 0.02d0

varcontrol target = 1d-3

photo interval = 50
write model with profile = .true.
write pulse data with profile = .true.
pulse data format = ’GYRE’

profile interval = 10
model data prefix = ’model’
model data suffix = ’.mod’
max num profile models = 1500

history interval = 10
terminal interval = 10
write header frequency = 10

/ ! end of controls namelist
After this, the star is evolved until the end of the AGB with the

following inlist:
&star job

show log description at start = .false.

load saved model = .true.
saved model name = ’start.mod’
save model when terminate = .true.
save model filename = ’end agb.mod’
required termination code string

= ’envelope mass limit’

# kappa file prefix = ’gs98’

change initial net = .true.
new net name = ’o18 and ne22.net’

new surface rotation v = 2 ! so-
lar (km sec∧1)

set near zams surface rotation v steps
= 10

change D omega flag = .true.
new D omega flag = .true.

set initial cumulative energy error
= .true.

new cumulative energy error = 0d0

set initial age = .true.
initial age = 0

set initial model number = .true.
initial model number = 0

pgstar flag = .true.
/ ! end of star job namelist

&controls
max years for timestep = 5d7
initial mass = 0.7

# use gold tolerances = .true.
# use eosELM = .true.
# use eosDT2 = .true.

use eps mdot = .true.

use dedt form of energy eqn = .true.
min cell energy fraction for dedt form

= 0
use eps correction for KE plus PE in

dLdm eqn
= .true.

num trace history values = 2
trace history value name(1) =

’rel E err’
trace history value name(2)

= ’log rel run E err’

max number backups = 10
max number retries = 160
max model number = 6500
backup hold = 3

# initial z = 0.02d0

use Type2 opacities = .true.
Zbase = 0.02d0

am nu visc factor = 0
am D mix factor = 0.0333333333333333d0

# D DSI factor = 0
D SH factor = 1
D SSI factor = 1
D ES factor = 1
D GSF factor = 1
D ST factor = 1

varcontrol target = 1d-3
delta lgL He limit = 0.01d0

envelope mass limit = 1d-2 ! Msun

cool wind full on T = 9.99d9
hot wind full on T = 1d10
cool wind RGB scheme = ’Reimers’
cool wind AGB scheme = ’Blocker’

# RGB to AGB wind switch = 1d-4
Reimers scaling factor = 0.8d0
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Blocker scaling factor = 0.7d0

photo interval = 50
write model with profile = .true.
write pulse data with profile = .true.
pulse data format = ’GYRE’
profile interval = 10
model data prefix = ’model’
model data suffix = ’.mod’
max num profile models = 1500
history interval = 10
terminal interval = 10
write header frequency = 10

/ ! end of controls namelist

A2 GYRE inlist

Name lists that were not used (e.g ’&nad output’) are not listed
here. The frequency interval to be scanned by GYRE, set by the
freq min and freq max keys, is determined as [νmax − 10 ·
�ν, νmax + 10 · �ν], with a minimum value for freq min of
0.001 μHz . Here, νmax is calculated as described in Section 3 and
the large frequency separation �ν is calculated for each model via
the scaling relation of Kjeldsen & Bedding (1995):

�ν = �ν�

(
M

M�

)0.5 (
R

R�

)−1.5

, (A1)

with �ν� = 135 μHz.
&model

model type = ’EVOL’
file = ’path to MESA gyre file’
file format = ’MESA’

/

&mode
l = 0

/

&osc
outer bound = ’JCD’

inertia norm = ’RADIAL’
/

&num
diff scheme = ’COLLOC GL4’

/

&scan
grid type = ’LINEAR’
freq min = freq min value
freq max = freq max value
freq min units = ’UHZ’
freq max units = ’UHZ’
n freq = 500

/

&grid
alpha osc = 20
alpha exp = 4
n inner = 10

/

&ad output
summary file = ’path to summary file’
summary file format = ’TXT’
summary item list = ’M star,R star,

l,n pg,
freq,

freq units,E,E p,E g,E norm’
mode template = ’path of output file’
mode file format = ’TXT’
mode item list = ’l,n pg,freq, freq units,E,
E p,E g,E norm,x,xi r,xi h,rho,P’
freq units = ’UHZ’

/

This paper has been typeset from a TEX/LATEX file prepared by the author.
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