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SUMMARY

A problem of major interest in network data analysis is to explain the strength of connec- 15

tions using context information. To achieve this, we introduce a novel approach named network-
supervised dimension reduction by projecting covariates onto low-dimensional spaces for reveal-
ing the linkage pattern, without assuming a model. We propose a new loss function for estimating
the parameters in the resulting linear projection, based on the notion that closer proximity in the
low-dimension projection renders stronger connections. Interestingly, the convergence rate of 20

our estimator is shown to depend on a network effect factor which is the smallest number that
can partition a graph in a way similar to the graph coloring problem. Our methodology has inter-
esting connections to principal component analysis and linear discriminant analysis, which we
exploit for clustering and community detection. The methodology developed is further illustrated
by numerical experiments and the analysis of a pulsar candidates data in astronomy. 25

Some key words: Clustering; Community detection; Dimension reduction; Graph; Network.

1. INTRODUCTION

Network data that include multiple objects with measurements on interaction between pairs
of objects are becoming increasingly common in a wide variety of fields (Holland & Leinhardt,
1981; Wolfe, 1997; Jin et al., 2001; Newman et al., 2002; Watts et al., 2002; Newman & Park, 30

2003; Newman, 2006; Sarkar & Moore, 2005; Hunter et al., 2008; Kolaczyk, 2009; Goldenberg
et al., 2010; Fienberg, 2012; Scott, 2017). The topology of a network is often represented as a
graph denoted as G = (V, E), where V = {1, 2, . . . , n} is the set of n nodes, and E is the set of
edges among nodes. The relationships among nodes can be described by an adjacency matrix
W = (wij) ∈ Rn×n, where wij is some measure of the connection strength between node i and 35
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2 ZHAO ET AL.

j. For an unweighted graph, wij is binary in that wij = 1 indicates the existence of connection
and wij = 0 indicates otherwise. For a weighted graph,
colorblackwij ≥ 0 represents the strength of connection. The methodology developed in this
paper works for undirected and directed graphs. As a reminder, for a directed graph, wij > 0
if there is a directed edge from i to j, and wij = 0 otherwise. For an undirected graph, W is40

symmetric in that wij = wji for any i 6= j.
A distinctive feature of many network datasets is that they often come with covariate informa-

tion collected at the node or edge level. For example, a participant in an online social network
can be contextualized by its gender, social status, education and so on, while edge variables mea-
sured on pairs of participants, such as whether two participants share common interest or attend45

the same school, may be present. One of the main purposes of network analysis is to explain the
linking pattern wij by using information in Xij = (Xij,1, . . . , Xij,p)

T , a p-dimensional covari-
ate vector between node i and j. In practice, p, the dimension of the covariates, can be large.
When only nodal covariates are available, a general way of defining these edge covariates is to
constructXij as a bivariate function ofXi = (Xi,1, . . . , Xi,p)

T andXj = (Xj,1, . . . , Xj,p)
T , the50

node covariates of the ith and jth node. Popular choices in the literature include
colorblackXij,t = Xi,t −Xj,t (t = 1, . . . , p) if the tth covariate is continuous, and
colorblackXij,t = I(Xi,t 6= Xj,t) if it is categorical, where I(·) is the indicator function. Our ap-
proach can incorporate edge covariates as well. The incorporation of covariate information into
a network model has attracted increasing attention in network data analysis in recent years. We55

refer to Hoff et al. (2002) for using Markov chain Monte Carlo procedures for inference within
maximum likelihood and Bayesian frameworks, Zhang et al. (2016), Weng & Feng (2016) and
Huang & Feng (2018) for conducting community detection in the stochastic block model, Wu
et al. (2017) for using the generalized linear model with low-rank effects, Graham (2017) for
the β-model that assigns individual merit parameter to each node, Ma & Ma (2017) for using60

nuclear norm penalization and projected gradient descent to fit a latent space model with covari-
ates, and Yan et al. (2019) for how to conduct statistical inference for the parameters in a directed
version of the β-model. Deshpande et al. (2018) provided an information theoretical analysis for
inference of latent community structure given a sparse graph along with high dimensional node
covariates. These papers typically assume a known link function to associate the probability of65

the existence of an edge to covariates and possibly other latent variables, sometimes with an
additional independence assumption on the edges as random variables. In a different direction,
Binkiewicz et al. (2017) proposed a method to uncover latent communities in a graph, using
a modification of spectral clustering. Yan & Sarkar (2020) proposed a community detection
method for sparse network with node information.70

In this paper, we propose a novel approach named network-supervised dimension reduction
that seeks to project the covariates onto a low-dimensional space for best explaining the strength
of connection in a network in light of the contextual information. This is achieved by formulating
a new loss function to estimate a linear projection matrix B ∈ Rp×r with r ≤ p, such that the
magnitude of ‖BTXij‖ informs the strength of connection in terms of wij , where ‖ · ‖ is the `275

norm. Without loss of generality, we assume that a smaller value of ‖BTXij‖ corresponds to a
stronger connection, that is, a larger value ofwij . As a concrete example, when nodal information
is available and B is an identity matrix, a small value of
colorblack‖Xij‖withXij = Xi −Xj will correspond to a large value ofwij intuitively. For ease
of presentation, we work with S = (sij) ∈ Rn×n where sij is a monotonic one-to-one decreasing80

function of wij . In the simplest case, sij = 1− wij . The interpretation of sij is that a smaller
value of sij implies a stronger relationship between the two corresponding nodes.
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Thus, we can state our problem as follows. Given data represented as a collections of tuples
{sij , Xij} for i 6= j, we seek to find a matrix B ∈ Rp×r to project Xij such that the value of
‖BTXij‖ reflects the similarity of the nodes in terms of sij . More precisely, the projection is 85

such that the smaller ‖BTXij‖ is, the smaller sij is. Toward this, we propose a novel estimator
of B based on a new loss function and study its rate of convergence for approximating the
columns of B in terms of `2 distance. These are achieved without the restrictive independence
assumption on wij’s or the need to assume a link function betweenBTXij and sij . We show that
the convergence rate of the projection depends, among other things, critically on a factor referred 90

to as the network effect of a graph closely related to the graph coloring problem. Proposing such
an estimator and characterizing its properties can be seen as the first contribution of this work.
Our second contribution is to establish a natural connection between our method and existing
methods such as principal component analysis and linear discriminant analysis. The connection
to the latter enables us to leverage covariate information for better community detection, which 95

we illustrate via simulations showing that a clustering algorithm based on network-supervised
dimension reduction outperforms the competitors.

The following notations are used throughout this paper. For any matrix A = (aij) ∈ Rp×p,
‖A‖op and ‖A‖F denote its operator norm and Frobenius norm, respectively, and ‖A‖max =
maxi,j |aij |. Let {aij} be a set with all items in A. For any symmetric matrix A, λmax(A) and 100

λmin(A) stand for the maximum and minimum eigenvalues of A, respectively, where tr(A) is
its trace. For a vector v ∈ Rp, ‖v‖ denotes its `2 norm. For any variable Z ∈ R, define ‖Z‖ψ2 =

supp≥1 p
−1/2{E(|Z|p)}1/p, and for any Z ∈ Rp, define ‖Z‖ψ2 = supx∈Sp−1 ‖〈Z, x〉‖ψ2 , where

Sp−1 is the unit sphere in Rp. We use In to denote the n× n identity matrix. For any set V , we
use |V | to denote its cardinality. For any matrix B, we denote span(B) as the space spanned 105

by the columns of B, and let PB be the projection matrix onto the space span(B). Denote
a ∧ b = min{a, b}.

2. NETWORK-SUPERVISED DIMENSION REDUCTION

2.1. Notation and background
Recall that our data consists of network-covariate tuples {sij , Xij} (i 6= j). Our goal is to find 110

B ∈ Rp×r such that a small value of ‖BTXij‖ corresponds to a smaller value of sij . In the danger
of causing confusion, we refer to B as the projection matrix and its columns as the projection
directions. To partially ensure identifiability of B, we constrain B ∈ Θr,A, where Θr,A ⊂ Rp×r
satisfies Θr,A = {B ∈ Rp×r : BTAB = Ir}, for a symmetric positive definite matrixA ∈ Rp×p
with eigenvalues uniformly bounded away from 0 and∞. An obvious example is A = Ip. Since 115

a small value of ‖BTXij‖ corresponds to a small value of sij , our proposed network-supervised
dimension reduction estimates B as B̂r,A = (β̂A,1, . . . , β̂A,r) = arg maxB∈Θr,A

H(B), where

H(B) = {n(n− 1)}−1
∑

i 6=j sij‖XT
ijB‖2 = tr

(
BT ĜB

)
, by denoting

Ĝ =
1

n(n− 1)

∑
i 6=j

sijXijX
T
ij =

1

n(n− 1)

∑
i 6=j

Zij , (1)

with Zij = sijXijX
T
ij ∈ Rp×p. This optimization problem for estimating the projection direc-

tions only requires a standard eigenvalue decomposition as shown in the following proposition. 120

PROPOSITION 1. Suppose that all the eigenvalues of A−1/2ĜA1/2 are distinct. Let Ψ̂r be
the matrix consisting of the eigenvectors associated with the first r largest eigenvalues of
A−1/2ĜA−1/2. Then span(B̂r,A) = span(A−1/2Ψ̂r).



4 ZHAO ET AL.

While span(B̂r,A) is unique but B̂r,A is not, Proposition 1 suggests that we can take B̂r,A =

A−1/2Ψ̂r. We next provide analogous results at the population level. LetG0n = E(Ĝ) be the ex-125

pectation of Ĝ which may depend on the size of the network n, and assume that G0 = limnG0n

for some G0 ∈ Rp×p. When Zij’s have the same distribution but not necessarily independent, it
is seen that G0 = G0n = E(Zij). Denote

Br,A = (βA,1, . . . , βA,r) = arg max
B∈Θr,A

tr(BTG0B), (2)

which is the population version of B̂r,A. Similar to Proposition 1, supposing that the eigenvalues
of A−1/2G0A

−1/2 are distinct, if we denote Ψr as the matrix consisting of the eigenvectors as-130

sociated with the first r largest eigenvalues of A−1/2G0A
−1/2, then we also have span(Br,A) =

span(A−1/2Ψr). By the argument similar to B̂r,A, we simply set Br,A = A−1/2Ψr.
We now provide sufficient conditions that guarantee the population maximizer of H(B) spans

the same column space spanned by the true projection directions. Letting the matrix A in Θr,A

be A = E(XijX
T
ij), which equals cov(Xij) when E(Xij) = 0, we have the following result.135

PROPOSITION 2. Suppose that {(sij , Xij), i 6= j} are identically distributed. Assume that
the following conditions hold: (i) sij satisfies E(sij | Xij) = h(BT

0 Xij) where B0 =

(β1, . . . , βr) ∈ Rp×r ∈ Θr,A and h is left unspecified; (ii) the eigenvalues ofA−1/2G0A
−1/2 are

distinct; (iii) cov{sij , (βTmXij)
2} > cov{sij , (vTXij)

2} (i 6= j; m = 1, . . . , r) for any v ∈ Rp
satisfying vTAB0 = 0 and vTAv = 1. Then, it holds that span(Br,A) = span(B0).140

This proposition requires that the conditional mean of sij depends onXij only through the lin-
ear combinationBT

0 Xij , with an unknown link function h left unspecified. This is reminiscent of
the assumption made in the literature of sufficient dimension reduction (Li, 1991), especially for
inferring about the conditional mean of the response given the predictors (Cook & Li, 2002). The
key difference is that the responses in our setup are typically correlated due to the existence of the145

network structure. Condition (i) can be seen as the true model. Particularly, when sij ∈ {0, 1}
(e.g. sij = 1− wij), this condition states pr(sij = 1) = h(BT

0 Xij). The estimation procedure in
(1) does not offer an estimator of h. As such, our estimation procedure is model free. To under-
stand Assumption (iii) in this proposition, consider the case when the covariates are defined as
Xij = Xi −Xj with Xi ∼ N(µ,Σ). Then this assumption becomes cov{sij , (XT

ijβm)2} > 0150

as shown after the proof of this proposition in the Supplementary Materials. This assumption
is intuitive since we expect that a smaller sij corresponds to a small value of ‖BT

0 Xij‖ and
subsequently a small value of (XT

ijβm)2.

2.2. Connections to other methods
In the context of the so-called stochastic block model, we establish novel connections between155

our dimension reduction method and principal component analysis, as well as linear discriminant
analysis. The latter two methods are widely used statistical tools for reducing the dimensionality
of data, both by finding the best linear combinations of covariates. Principal component analy-
sis is an unsupervised method that projects observations onto the so-called principal component
directions such that the variance of the projected data is maximized. Linear discriminant analy-160

sis is a supervised learning algorithm that finds the so-called linear discriminant directions for
projecting data to maximize the separation between observations belonging to different groups
(Johnson & Wichern, 1998).

Recall that for a stochastic block model with k communities, each node belongs to a la-
tent community (Holland et al., 1983). Notationally, denote the latent community label of165
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the ith node as Ci, where Ci ∈ {1, . . . , k} for i = 1, . . . , n. The stochastic block model as-
sumes that these community labels are independent and identically distributed random vari-
ables such that pr(Ci = t) = πt (t = 1, . . . , k), where πt’s are unknown parameters satisfying∑k

t=1 πt = 1. Given their respective communities, node i and j make a connection with proba-
bility pr(wij = 1 | Ci, Cj) = prCiCj

(i 6= j), independent of all other pairs, where prCiCj
is a 170

parameter depending only on Ci and Cj . We look at a simplified stochastic block model where
prCiCj

= at for Ci = Cj = t and prCiCj
= b for any Ci 6= Cj . That is, all the probabilities of

inter-communities connections are the same. For the covariates, we take Xij = Xi −Xj , where
the covariate vector for the ith node satisfies

Xi = µCi + εi (i = 1, . . . , n), (3)

for independent and identically distributed random variables εi with E(εi) = 0 and cov(εi) = 175

Σε. Here it is assumed that εi is independent of Ci, the latent community label of node i in
the stochastic block model above. That is, the covariates follow a distribution with a common
covariance matrix and a community-specific mean. Under these setups, if sij is a one-to-one
mapping of wij , it is easily seen that E(sij | Ci = t, Cj = t′) is a constant (depending on b)
for any t 6= t′, which will be denoted as γb hereafter. Denote E(sij | Ci = Cj = t) = γt for 180

t = 1, . . . , k for ease of notation. We point out that the wij’s in the above model depend only on
the labels Ci’s, which is different from the model assumed in (i) of Proposition 2.

If we apply principal component analysis to the nodal feature Xi, at the population level,
the principal component directions are the leading eigenvectors of cov(Xi) corresponding to its
largest eigenvalues. If we apply linear discriminant analysis to the labelled data {Ci, Xi}ni=1 as- 185

suming that the latent community labels are known in model (3), the linear discrimant directions
at the population level are the leading k − 1 eigenvectors of the generalized eigenvalue problem
that solves ΣbtU = λΣεU for U ∈ Rp×(k−1), where
colorblackΣbt = k−1

∑k
t=1(µt − µ̄)(µt − µ̄)T with µ̄ = (

∑k
t=1 µt)/k, and Σε is the covariance

matrix of εi defined above. We have the following proposition that connects our approach with 190

principal component analysis and linear discriminant analysis.

PROPOSITION 3. Assume that W = (wij) is generated from the simple stochastic block
model outlined above and that Xi’s are generated from model (3). If all the eigenvalues of
A−1/2G0A

−1/2 are distinct for A defined below, the following conclusions hold.

(1) Specify A = Ip in ΘA,r. Our approach is equivalent to principal component analysis con- 195

ducted as eigenvalue decomposition of cov(Xi) at the population level in the sense that
Br,A is exactly the eigenvectors associated with the first r largest eigenvalues of cov(Xi),
if and only if γb =

∑k
t=1 π

2
t γt/

∑k
t=1 π

2
t > 0.

(2) If
∑k

t=1 π
2
t (γb − γt) > 0 and we chooseA = cov(X) in ΘA,r, then our approcah is equiv-

alent to linear discriminant analysis for the model in (3) at the population level in the sense 200

that
colorblackβA,m in (2) is proportional to the ith direction of linear discriminant analysis,
colorblackm = 1, . . . , r.

(3) If γb > 0 and we choose A = Σε in ΘA,r, then our approach is equivalent to linear dis-
criminant analysis for the model in (3) at the population level in the sense that 205

colorblackβA,m in (2) is proportional to the ith direction of linear discriminant analysis,
colorblackm = 1, . . . , r.

This proposition shows that network-supervised dimension reduction can be equivalent to unsu-
pervised principal component analysis or supervised linear discriminant analysis, depending on
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the data generating process. Note that in Proposition 3, prCiCj
= b for any Ci 6= Cj is assumed. 210

By checking the proof, it is seen that the proposed method may not be equivalent to principle
component or linear discriminate analysis in a general case when this assumption does not hold.
In this case, the associated objective function for our method can be seen as a generalized version
of those in the latter two. For community detection, we explain what we mean by further exam-
ining the special case of two communities when k = 2 and sij is a linear decreasing function of215

wij . Recall the definition of Br,A in (2).

COROLLARY 1. Assume thatXij andW = (wij) are generated as in Proposition 3. Let sij =
α0 − α1wij with α1 > 0 and α0 ∈ R be a linear decreasing function of wij . Suppose that the
eigenvalues ofA−1/2G0A

−1/2 forA involved below are distinct. The following conclusions hold.

(1) Let A = Ip. If α0 > 0 and b = (π2
1a1 + π2

2a2)/(π2
1 + π2

2) < α0/α1, then network-220

supervised dimension reduction is equivalent to principal component analysis conducted
as eigenvalue decomposition of cov(Xi) at the population level.

(2) Let A = cov(X). If b < (π2
1a1 + π2

2a2)/(π2
1 + π2

2), then the first direction βA,1 of
network-supervised dimension reduction is equivalent to that of linear discriminant anal-
ysis for the model in (3) at the population level.225

(3) Let A = Σε. If b < 1 and α0 ≥ α1 > 0, the first direction βA,1 of network-supervised di-
mension reduction is equivalent to that of linear discriminant analysis for the model in (3)
at the population level.

To understand this corollary, assume for simplicity that the two communities are equally sized
in that π1 = π2 = 1/2. In this case, (1) states the equivalence of the proposed approach and230

principal component analysis if and only if b = (a1 + a2)/2 < α0/α1, which is simplified as
b = (a1 + a2)/2 when α0 > α1, due to the fact that b ≤ 1. That is, when b = (a1 + a2)/2, the
network information in terms of the adjacency matrix W do not contribute to the identification
of the projections. This is reasonable, since when the probabilities of making connections be-
tween different communities is not small. When π1 = π2 = 1/2, the condition in (2) becomes235

(a1 + a2)/2 > b, and (2) states the equivalence of the proposed approach and linear discriminant
analysis when A = cov(X) and the connection probabilities between different communities are
small. The assumption (a1 + a2)/2 > b is weaker than strong and weak assortativity (Amini
& Levina, 2018) that require min{a1, a2} > b in the setting above. In (3) when A = Σε, our
approach is equivalent to linear discriminant analysis for any linear decreasing function when240

α0 ≥ α1 > 0 and b < 1. When our method is applied to community detection in Section 2.3,
Proposition S2 in the Supplementary Material shows that the misclassification error depends
on the connection probabilities mainly through the projected directions at population level. No-
tably, a1, a2 and b satisfying the constraints in (2) and (3) can be small, implying our approach
is applicable to sparse networks. Relevant simulation results are presented in Section 2.3.245

The results in Proposition 3 and Corollary 1 suggest that the choice of A matters in order to
connect to principal component analysis and linear discriminant analysis. In practice when A is
not pre-specified, we suggest taking A = cov(X). In practice, when A is estimated by Â from
data, there will be an error between Br,Â and its population version Br,A. We give a bound on
the error, presented in Proposition S1 of the Supplementary Material.250

2.3. Application in community detection
Motivated by the covariate model in (3), we may use network-supervised dimension reduction

for community detection. To proceed, we first estimate the projection directions denoted as B̂r,A
if A is given or B̂r,Â if A is estimated as Â. Then we can apply a clustering method based on
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the projected observations B̂T
r,AXi or B̂T

r,Â
Xi (i = 1, . . . , n). For illustration, we apply K-means 255

clustering in the second step. In practice, to check whether our method is applicable, one may
examine the scree plot of the cluster algorithm by plotting the ratio of within variance over total
variance versus the number of clusters. If there is a clear gap in the plot, one may infer that there
are community/cluster structures and our method is applicable.

We now present the result of a small numerical experiment to evaluate the performance of our 260

approach based community detection method. The data is generated such thatW follows the sim-
plified stochastic block model for the edges with two communities as in Section 2.2 and X fol-
lows the covariate model in (3) with εi being a multivariate normal random vector. We set p = 5,
µ1 = (u, 0, . . . , 0)T ∈ Rp, µ2 = −µ1 and Σε = (σij) with σij = 0.7|i−j|/3 in model (3). It is
understood that when u increases, the data in the two communities are better separated by the co- 265

variates. In the stochastic block model, we set π1 = π2 = 1/2, and (a1, a2, b) = δ0(0.5, τ, 0.1),
where δ0 and τ are constants in [0, 1]. It is understood that smaller δ0 gives a sparser network,
and smaller value of τ gives weaker community in the second group. When τ ≤ 0.1, the signal
of the second group is weak and detecting it is difficult.

By varying the magnitude of u, δ0 and τ , we want to evaluate how the proposed method 270

performs with respect to the informativeness of the covariates, the sparsity of the network, and
the strength of the community structure. Specially, we consider the following three cases:

(a) fix δ0 = 0.05 and τ = 0.1 and vary u in {1.0, 1.2, 1.4, 1.6, 1.8, 2.0};
(b) fix δ0 = 0.05 and u = 1.6 and vary τ in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6};
(c) fix u = 1.6 and τ = 0.1 and vary δ0 in {0.05, 0.1, 0.3, 0.5, 0.7, 1}. 275

We examine two choices of A for estimating Br,A. The first is A = cov(X) which is esti-
mated by the sample covariance matrix of X . The second is A = Σε with the corresponding
algorithm and simulation results given in the Supplementary Materials. These two choices of A
yield similar results. To apply network-supervised dimension reduction, the response variable
sij is taken as sij = 1− wij and the number of the directions is taken as r = 1. Each time, we 280

generate a dataset with n = 100 and repeat the process 100 times. The performance of an ap-
proach is evaluated by calculating its clustering errors defined as the proportions of the nodes
that are misclassified. The performance of K-means clustering after applying our approach is
compared to the standard K-means clustering that only uses covariate information, and to several
competing methods that use information from both the network and covariates, including those 285

in Binkiewicz et al. (2017), Zhang et al. (2016) and Yan & Sarkar (2020). Moreover, we also
consider the cases where the network is dense in that δ0 is relatively large and the signal of the
second community is strong in the Supplementary Materials, where we also report the perfor-
mance of the method in Huang & Feng (2018) and the spectral clustering method of Rohe et al.
(2011). The clustering errors for these methods are presented in Figure 1 and the first figure in 290

the Supplementary Materials.
It is seen that for K-means clustering, the clustering error decreases as u increases. The per-

formance of the methods in Zhang et al. (2016) and Binkiewicz et al. (2017) improve when the
network becomes dense, but since detecting the second group is difficulty when τ = 0.1 (i.e.
a2 = b), both methods perform worse than the method in Yan & Sarkar (2020) and our method, 295

as shown in plot (c). In addition, we see that the method in Yan & Sarkar (2020) is better than
that in Zhang et al. (2016) and Binkiewicz et al. (2017) in most of the cases, but worse than
our method. Overall, our approach based clustering performs much better than the other com-
petitors, and it is rather insensitive to the parameters u, δ0 and τ . This implies that our approach
can exploit the information in the covariates as well as the network structure. Especially, when 300

τ = 0.1, it is quite difficult to detect the second group. However, with the help of the information
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(b) δ0 = 0.05,  u = 1.6

0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

δ0

C
lu

s
te

ri
n

g
 e

rr
o

r

(c) u = 1.6,  τ = 0.1

0.05 0.1 0.3 0.5 0.7 1.0

Fig. 1: The average clustering errors. We compare K-means clustering (long dash dot), our
proposed method (solid line), and that in Binkiewicz et al. (2017) (solid line with circle), Zhang

et al.(2016) (solid line with triangle), Yan & Sarkar (2020) (long dash).

from the covariates, our approach based K-means clustering method still estimates the commu-
nity structure well. To gain more insight, we consider a simple case when r = 1, Ci ∈ {1, 2},
and εi follows a normal distribution, and give an explicit bound on the classification error rate
in Proposition S2 of the Supplementary Material. Finally, we also observe that for a network305

with a community structure with between community probabilities dominating the within ones
or admitting a core-periphery one, the performance of our method can deteriorate.

3. ASYMPTOTICS

We study the statistical properties of Ĝ defined in (1) as an estimator of its population version
G0 = limnE(Ĝ). Due to the network structure, each wij in the adjacency matrix W may be310

affected by the other off-diagonal entries of W in complex ways, which raises great challenges
for theoretical analysis. we impose assumptions to rule out the cases where all its entries can
be strongly dependent, without explicitly modelling the dependence structure of the edges of a
network.

We motivate our assumptions by generalizing a notion for inducing edge dependence widely315

used in the graphon model (Lovász & Szegedy, 2006; Diaconis & Janson, 2008; Bickel & Chen,
2009), for which we will follow the notations in Gao et al. (2015). For an undirected graph,
the graphon model assumes the edge random variables wij = wji ∼ Bernoulli(θij), where
θij = f(ξi, ξj) (i 6= j). The sequence {ξi} are the independent and identically distributed la-
tent random variables that are from the uniform distribution on [0, 1], and given {ξi}, wij’s are320

independent for i < j. The function f , a bivariate function symmetric in its arguments, is called
graphon. In the graphon model, because the ith latent variable ξi is assumed to be associated
with the ith node, two edge random variables wij and wkl are independent as long as they do not
share a common node index.

We now introduce what we call the generalized graphon model that is useful for characterizing325

the dependence structure in our setup. Assume that ξi (i = 1, . . . , n) and ζj (j = 1, . . . , n) are
independent and identically distributed latent random variables. Denote Ξ = (ξ1, . . . , ξn)T ∈
Rn. Instead of associating a single element ξi of Ξ with node i as in the graphon model, we
associate the ith node with a subset of Ξ for introducing dependence, as well as an independent ζi
for node-specific effect. Denote the subset for node i as Ni = {j : ξj is associated with node i}.330

In the graphon model, i ∈ Ni. We then assume the edge random variable wij ∼ Bernoulli(θij),
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where

θij = fij(ΞNi , ζi,ΞNj , ζj , Xij) (i 6= j). (4)

Here ΞNi is the sub-vector of Ξ with indices in Ni. In our construction, we have purposely left
unspecified the exact distributions of the random variables {ξi} and {ζj}, as well as the functions
{fij}, as we only need this general construction for relating the edge random variables. In the 335

special case of the graphon model, Ni = {i} and fij(ΞNi , ζi,ΞNj , ζj , Xij) = f(ξi, ξj).
Denote Nij = Ni ∪Nj and let

V =
{
{(i, j), (k, t)} : Nij ∩Nkt = ∅ (i 6= j 6= k 6= t)

}
be the set in which any two pairs of nodes do not share common latent random variables. It is
clear by construction that for any {(i, j), (k, t)} ∈ V, wij is independent of wkt given Xij and
Xkt. The cardinality of V provides a rough characterization of the dependence structure of a 340

network intuitively and is seen to be bounded as |V| ≤
(
n
4

)
. The graphon model achieves the

upper bound.
We now present another example where Ni = {i, i+ 1} for i < n and Nn = {n, 1}. That is,

we associate each node with two latent random variables in Ξ. If we represent this example via
a graph in which nodes are {1, . . . , n} and an edge exists between the ith and jth nodes if Ni ∩ 345

Nj 6= ∅, then it forms a cycle graph. For this example, it is not difficult to see that |V| = n(n−
5)(n2 − 9n+ 22) = O(n4) which is of the same order as the maximum possible cardinality of
|V|.

Next we study ‖Ĝ−G0‖op. Establishing the rate of convergence of Ĝ in the operator norm is
challenging, due to the dependence among the nodes. In the generalized graphon model above 350

for example, node i is correlated with node j for any j ∈ Ni which will complicate theoretical
analysis. We overcome the dependency challenge by splitting all the node pairs into groups such
that any two node pairs in the same group are conditionally independent given covariates.

Let (σ(1), . . . , σ(n)) can be any permutation of {1, . . . , n} and ξα,ij = sij(α
TXij)

2 −
E{sij(αTXij)

2} for any given α ∈ Rp satisfying ‖α‖ = 1. Suppose that we split the index 355

pairs {σ̃(i) = (σ(2i− 1), σ(2i)) (i = 1, . . . , n/2)} into m groups G1, . . . , Gm such that any
two pairs σ̃(i) and σ̃(j) within the same groups satisfy {σ̃(i), σ̃(j)} ∈ V. That is, given {Xij},
ξα,ij’s with (i, j)’s in the same group are independent, which will be referred to as the condi-
tional independence property hereafter. It is shown in the Supplementary Material that a smaller
m is desired as it leads to a tighter upper bound. Finding the smallestm associated with permuta- 360

tion {σ(1), . . . , σ(n)} is very challenging and can be viewed as a graph coloring problem where
the interest is often to find the chromatic number of a graph, defined as the minimum number of
colours required for a vertex colouring scheme with any two adjacent vertices coloured differ-
ently (see Supplementary Materials for further discussion). Denote this number asmσ and define
mnet = max(σ(1),...,σ(n))mσ, which can be loosely seen as the network effect. The asymptotic 365

property of ‖Ĝ−G0‖op is presented in Theorem 1 below.
Moreover, we study the asymptotic properties of the eigenvalues and eigenvectors of Ĝ.

Towards this, denote the eigenvalue decompositions of G0 and Ĝ, respectively, as G0 =∑p
i=1 λiviv

T
i and Ĝ =

∑p
i=1 λ̂iv̂iv̂

T
i , where λ1 ≥ · · · ≥ λp and λ̂1 ≥ · · · ≥ λ̂p are the eigenval-

ues, and vi’s and v̂i’s are the associated eigenvectors. The eigenvalues and eigenvectors depend370

on p but we omit p hereafter for simplicity. Similarly, denote

G0A = A−1/2G0A
−1/2 =

p∑
i=1

φAi ϕ
A
i (ϕAi )T , ĜA = A−1/2ĜA−1/2 =

p∑
i=1

φ̂Ai ϕ̂
A
i (ϕ̂Ai )T ,
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where φA1 ≥ · · · ≥ φAp and φ̂A1 ≥ · · · ≥ φ̂Ap are the eigenvalues, and ϕAi ’s and ϕ̂Ai ’s are the asso-
ciated eigenvectors. Recall the definitions of Br,A and B̂r,A in Section 2. By Proposition 1, we
see that

B̂r,A = (β̂A,1, . . . , β̂A,r) = A−1/2(ϕ̂A1 , . . . , ϕ̂
A
r ), (5)

and that Br,A = (βA,1, . . . , βA,r) = A−1/2(ϕA1 , . . . , ϕ
A
r ). When A is unknown and estimated as375

Â , we can define ĜÂ and ϕ̂Âi analogously, and estimate Br,A by B̂r,Â = (β̂Â,1, . . . , β̂Â,r) =

Â−1/2(ϕ̂Â1 , . . . , ϕ̂
Â
r ).

To study the properties of B̂r,A and B̂r,Â, we make the following assumptions.

(A1) (i) For any integer l > 0 and any subset I = {(it, jt) (t = 1, . . . , l)} satisfying
{(it, jt), (it′ , jt′)} ∈ V for any t 6= t′, {Xitjt (t = 1, . . . , l)} are independent variables,380

following sub-Gaussian distributions with maxi 6=j ‖Xij‖ψ2 < K0 <∞ for some constant
K0 > 0. (ii) The conditional distribution of sij | {Xij} is the same as that of sij | Xij .

(A2) Assume that δ = infi=1,...,p−1(λi − λi+1) > 0 and δA = infi=1,...,p−1(φAi − φAi+1) > 0
uniformly over p.

When Xij = Xi −Xj where Xi’s are independent and identically distributed random vari-385

ables following a sub-Gaussian distribution, (i) of (A1) holds. (A2) assumes that all the eigen-
values ofG0 andG0A are distinct with positive gaps. We have the following convergence results.

THEOREM 1. Assume that maxi 6=j |sij | < c0 almost surely and that (A1) and (A2) hold.

(1) It holds that ‖Ĝ−G0‖op = Op

[
δopn +

(
pm2

net/n
)1/2]

, where δopn = ‖G0n −G0‖op.
(2) Assume further ‖G0‖op < C0 for some constant C0 independent of p. Then for i =

1, . . . , p, it holds that

|λ̂i − λi| = Op

[
δopn +

(
pm2

net/n
)1/2]

, ‖v̂i − cvi‖ = Op

[
δopn +

(
pm2

net/n
)1/2]

,

where c ∈ {−1, 1} is a sign scalar to ensure cv̂Ti vi > 0.390

Next, we provide an approximation to mnet when an additional assumption on the largest
degree as in Assumption (A3) below is imposed. Specifically, we only require the conditional
independence property to hold for all but one groups. For m̃net defined in Theorem 2 below, we
show in the Supplementary Materials that for any permutation {σ(1), . . . , σ(n)}, one can always
split the index pairs into m̃net groups such that the conditional independence property holds for395

the first m̃net − 1 groups. In other words, for any σ̃(i) and σ̃(j) in Gs with s = 1, . . . , m̃net −
1, we have {σ̃(i), σ̃(j)} ∈ V. Combining the conditional independence property for the first
m̃net − 1 groups with Assumption (A3) below, we will show the conclusions of Theorem 1 still
hold but with mnet replaced by m̃net.

(A3) We assume that dmax <
√
n, where dmax = maxi=1,...,n |{j : Nj ∩Ni 6= ∅}|.400

It is easy to see that dmax ≤ maxi |Ni| maxi |{j : ξi is assoiciated with node j}| for the gen-
eralized graphon model. Condition (A3) enables us to control the m̃netth group, where the con-
ditional independence property may fail to hold and an upper bound on the number of correlated
nodes is then necessary.

THEOREM 2. Assume additionally that (A3) holds in Theorem 1. Let m̃net = 405

log(n/4)/ log{4dmax/(4dmax − 1)}+ 1. Then all the conclusions of Theorem 1 hold if
mnet is replaced by m̃net.
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Theorems 1 and 2 present the asymptotic properties of Ĝ. The term δopn in these theorems
can be seen as the approximation error, and is zero when Zij’s have the same distribution. The
term

(
pm2

net/n
)1/2 (or

(
pm̃2

net/n
)1/2) can be seen as the estimation error in which mnet (or 410

m̃net) can be loosely understood as the effect of a network. If dmax is bounded by a con-
stant, then m̃net = O(log n) and the convergence rate of Ĝ is Op[(p/n)1/2 log n]. If dmax =
O(log n), then by noting that 1/ log{4dmax/(4dmax − 1)} = 1/ log{1 + (1/(4dmax − 1))} ≈
4dmax − 1 = O(log n), we have m̃net = O(log2 n) and the convergence rate of Ĝ becomes
Op[(p/n)1/2(log n)2]. Following the proof of this theorem, it can be seen that if sij’s are in- 415

dependent, then ‖Ĝ−G0‖op = Op
[
δopn + (p/n)1/2

]
. Theorem 1 indicates that, if dmax is small

(e.g. dmax = O(log n)), the convergence rate of Ĝ is similar to the independent case up to a
factor of a power function of log n.

In Theorems 1 and 2, the convergence rate of the estimator is established under the generalized
graphon model by exploiting its latent variable representation. In fact, as shown in the proof of 420

Theorem 1, the conclusions of Theorem 1 still hold without the generalized graphon model
assumption, as long as the following conditional independence property holds. Specifically, a
sufficient condition for these theorems to hold is that the node pairs {(σ(2i− 1), σ(2i)) (i =
1, . . . , n/2)} can be split to groups such that sij’s with (i, j)’s in the same group are conditionally
independent given {Xij}. Here the sij’s with (i, j)’s in different groups can still be correlated. 425

By the relationship between ĜA and Ĝ, one can establish the asymptotic properties of ĜA and
its eigenvectors. Consequently, the convergence of B̂r,A can be established, by noting that B̂r,A
is a function of A and the eigenvectors of ĜA. The same argument is applicable for B̂r,Â, when

A is unknown and estimated as Â. We make the following assumptions on the estimator of A.

(A4) Assume that 0 < C−1 < λmin(A) ≤ λmax(A) < C <∞ uniformly over p. 430

(A5) Assume that the estimator Â of A satisfies ‖Â−1/2 −A−1/2‖op = Op(τn).

Assumption (A4) is standard and in (A5), τn is a function of n and p, with p omitted for sim-
plicity. The following theorem shows the convergence rate of the estimator when A is known or
estimated as Â. For simplicity, we assume that r is known.

THEOREM 3. Assume that maxi 6=j |sij | < c0 almost surely and that (A1),(A2) and (A4) hold. 435

The following conclusions hold.

(1) Assume that A is known. Then maxi=1,...,r ‖β̂A,i − cβA,i‖ = Op

[
δopn +

(
pm2

net/n
)1/2]

,

for any given r = 1, . . . , p, where c ∈ {−1, 1} such that cβ̂TA,iβA,i > 0.
(2) When A is unknown, assume further that (A5) holds. Then for any given r = 1, . . . , p,

max
i=1,...,r

‖β̂Â,i − cβA,i‖ = Op

[
τn + δopn +

(
pm2

net/n
)1/2]

,

where c ∈ {−1, 1} such that cβ̂T
Â,i
βA,i > 0.

We give a concrete example to show the values of δopn and τn. 440

COROLLARY 2. Suppose that sij’s are identically distributed (but are dependent), and that
Xij = Xi −Xj with Xi’s i.i.d. from N(µ,Σ), where the eigenvalues of Σ are bounded away
from 0 and∞ uniformly over p. Assume that Â is taken as the sample covariance matrix. Then
it holds that τn = (p/n)1/2 and δopn = 0.
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Theorem 3 shows that the convergence rate is determined by the approximation error δopn , the445

dimension of the covariates p, the network effect mnet, and the convergence rate τn of Â, if A is
unknown. Similar to Theorem 2, we can replace the unknown mnet with m̃net as shown in the
following Theorem 4, of which the proof is the same as that of Theorem 3 and is omitted.

THEOREM 4. Suppose additionally that (A3) holds in Theorem 3. The conclusions of Theorem
3 hold if mnet is replaced by m̃net.450

When wij and consequently sij depend on n, by replacing the condition maxi 6=j sij < c0

above by maxn maxi 6=j sij,n < c0, we can see that the above conclusions still hold. Thus, Theo-
rems 1-4 continue to hold for sparse networks. Finally, we briefly discuss the selection of r mo-
tivated by a similar procedure in Lam & Yao (2012), among others. Recall that φ̂A1 ≥ · · · ≥ φ̂Ap
are eigenvalues of ĜA. We select r as

r̂ = arg max
i=1,...,M

(φ̂Ai − φ̂Ai+1)/(φ̂Ai + φ̂Ai+1),

where M is a fixed number. When A is unknown and estimated as Â, we use the eigenvalue of
ĜÂ instead.

4. SIMULATION

For the model in Proposition 2, it is assumed that E(sij |Xij) = h(BT
0 Xij). Proposition 2

shows that our method can be used to recover span(B0) in this setting. To verify the effectiveness455

of the proposed network-supervised dimension reduction method in recovering span(B0), we
conduct extensive simulation. The performance of our method is examined by computing the
error measure defined as ‖PB0 − PB̂r,Â

‖F , where B0 is the true parameter to be estimated, B̂r,Â
is the estimator of B0 using the method developed in this paper, and PB for any matrix B is the
projection matrix onto the space spanned by the columns of B. Here we take460

colorblackA = cov(X1) and the sample covariance matrix as its estimator. In all simulations, we
take sij = 1− wij and assume that r is known. we set n = 100 or 500 and dimension p = 10 or
50. For each example, 100 datasets are generated. Additional simulation for selection of r using
the method in Section 3 is presented in the Supplementary Materials.

Example 1. We generate data according to the following procedure inspired by a similar setup465

in Weng & Feng (2016).

(i) Let Ci ∈ {1, 2} be the latent community label. Generate Ci from a Bernoulli distribution
such that pr(Ci = 1) = pr(Ci = 2) = 0.5.

(ii) Generate covariates Xi ∼ N(0,Σ) where
colorblackΣ = (σt1t2) with σt1t2 = 0.4|t1−t2|I({|t1 − t2| < 5}).470

(iii) Given (Ci, Cj , Xij) with Xij = Xi −Xj , generate wij ∈ {0, 1} according to the follow-
ing model

pr(wij | Ci, Cj , Xij) = pr(wij | Ci, Cj)
exp(1− ccoef |BT

0 Xij |)
1 + exp(1− ccoef |BT

0 Xij |)
, (6)

where pr(wij | Ci, Cj) is set as pr(wij = 1 | Ci = Cj) = a and pr(wij = 1 | Ci 6= Cj) =
b.

In model (6), the first part can be seen as the community effect and the second part is a logistic475

model representing the nodal effect. In the simulation, we set r = 1 andB0 = (1, 1, 0, . . . , 0)T ∈
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Fig. 2: Average errors for Example 1 for p = 10 (solid line) and 50 (dotted line), respectively,
where r = 1.

Rp, a = 0.8, b = ccoma with ccom = 1, 0.5, or 0.1, and ccoef = [0.5 : 0.5 : 5], the grid points in
the interval [0.5, 5] with step length 0.5. Obviously, ccom = 1 corresponds to no community
effect, while ccom = 0.1 corresponds to strong community effect. A larger ccoef implies a larger
nodal effect, and when ccoef = 0 there is no nodal effect. The generated networks have a wide 480

range of densities, ranging from 3.8% when ccom = 0.1 and ccoef = 0.1, and 41.5% when ccom =
1.0 and ccoef = 0.5. The simulation results are found in Figure 2.

Example 2. Consider an example where each node i is affected by itsK neighbors and denote
the set of their indices as N̄i. The data is generated as follows.

(i) First, generate N̄i for node i. Let µ1, . . . , µn be independent and identically distributed 485

random variables from U(0, 1), and let dij = |µi − µj | (i, j = 1, . . . , n). For each node i,
compute its K-nearest neighbors, according to the distance dij . Define N̄i as the set that
contains those indices j (j 6= i) such that node j is one of node i’s K-nearest neighbors.
By construction, i 6∈ N̄i.

(ii) Let Y1, . . . , Yn be independent random variables generated as Yi ∼ N(µi, 0.1) and Yij = 490

Yi − Yj . Generate Xi as in Example 1 and define Xij = Xi −Xj .
(iii) Generate wij ∈ {0, 1} according to the following model

pr(wij = 1 | {Yij}, Xij) = exp {−10g({Yij})}
exp(1− ccoef‖BT

0 Xij‖2)

1 + exp(1− ccoef‖BT
0 Xij‖2)

,

where ccoef is specified as in Example 1, g({Yij}) = |Yij | ∧
∑

k∈N̄i,k′∈N̄j
|Ykk′ |/K2, and

a ∧ b = min{a, b}.

In this model, we have Ni = {i} ∪ N̄i with i /∈ N̄i, where N̄i may be seen as the latent neigh-
bor of node i. When N̄i = ∅, we see that the node i is only affected by its latent variable Yi, where 495

Yi’s are independent of each other. When N̄i 6= ∅, we actually have an underlying network in-
troduced by the latent neighbor sets N̄i’s. This network can be seen as underlying truth whereas
the network generated by wij is an observed one. The added dependence can lead to a flexible
model with better interpretation. For example, in the study of genetic data, one might view the
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Fig. 3: Average errors for Example 2 for p = 10 (solid line) and 50 (dotted line), respectively,
where r = 2.

underlying network as the true network among genes, and the observed network represented by500

wij as a noisy one, contaminated by measurement errors and affected by environment factors.
We set B0 = (β1, β2) ∈ Rp×2 where β1 = (1, 1, 0, . . . , 0)T ∈ Rp and β2 =

(1,−1, 0, . . . , 0)T ∈ Rp, and set K = 2 or K = 4. For this model, the probability of wij = 1
depends on latent variables in {Yk : Yk ∈ Ni ∪Nj} and the covariates Xi and Xj . Clearly, this
model is a generalized graphon model defined in Section 3. The results of this simulation can be505

found in Figure 3. We briefly discuss these simulation results. It is easy to see that the influence
of the covariate Xij decreases in both examples when ccoef decreases. Particularly, Xij has no
effect when ccoef = 0. We can see from Figure 2 and 3 that the average errors decreases when
ccoef increases. This is reasonable because the covariates contribute more and more information
with an increasing ccoef . Overall, it is seen that the errors decrease as n increases in both510

examples, which is expected from the theoretical results on the convergence rate. Interestingly,
it is seen from Figure 2 that the errors are similar for different ccom in Example 1. This is due to
the fact that the community label Ci is independent of the covariate Xij in the data generating
process.

Finally, to illustrate another application of the proposed dimension reduction method, we515

briefly outline how to select important covariates. Since our method is similar to the principal
component analysis that aims to find the eigenvectors of a matrix, we have developed a procedure
similar to sparse principle components analysis for obtaining a sparse estimator of the projec-
tions as in Zou et al. (2006). More specifically, as in (5), our estimator is B̂r,A = (β̂A,1, . . . , β̂A,r)

with β̂A,j = A−1/2ϕ̂Aj , where ϕ̂Aj is an eigenvector of ĜA = A−1/2ĜA−1/2. To implement our520

procedure, we can use the truncated power algorithm in Yuan & Zhang (2013) and we illustrate
this algorithm as follows when we want to find a sparse estimate of βA,1. Given an initial value
v0 ∈ Rp, for t = 1, 2, . . ., let v′t = ĜAvt−1/‖ĜAvt−1‖, truncate A−1/2v′t by keeping only the
largest m0 entries in absolute values, denote the resulting vector as ϑt, and set vt = A1/2ϑt. Re-
peat the procedure until ϑt converges. The final ϑt obtained is the sparse estimate of βA,1. In 525

Table 1, we report some preliminary results on variable selection using Example 1 with p = 10
and n = 100 for illustration, where the experiments are run 100 times under each setting. Since
the first two variables are significant in this example, we set m0 = 2 in the algorithm. We can
see that the results are all satisfactory especially when ccoef > 0.5.

5. REAL DATA ANALYSIS 530

We apply the method in this paper to a pulsar candidates data collected by the High Time Reso-
lution Universe (HTRU) survey (Keith et al., 2010), which is available on http://archive.
ics.uci.edu/ml/datasets/HTRU2. Pulsars are a rare type of Neutron star that produces
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Table 1: True positive rate and false positive rate for variable selection when (p, n) = (10, 100)
for Example 1

ccom = 0.1 ccom = 0.5 ccom = 1.0
ccoef TP FP TP FP TP FP
0.5 0.49 0.13 0.50 0.13 0.51 0.12
1.0 1.00 0.00 0.99 0.00 1.00 0.00
1.5 1.00 0.00 1.00 0.00 1.00 0.00
2.0 1.00 0.00 1.00 0.00 1.00 0.00

TP, true positive rate; FP, false positive rate.

radio emission detectable here on Earth. They are of considerable scientific interest as probes of
space-time, the inter-stellar medium, and states of matter. Their study yields a better understand- 535

ing of many physics problems, ranging from acceleration of particles in the ultra-strong magnetic
field, to tests of gravity in the strong field regime. Since some pulsars are binary system (Lyne
& Smith, 2012), the signals detected for a star are mixed ones from this star and its neighbors,
and some noise, implying that our generalized graphon model is applicable for this data. In this
dataset, each pulsar is described by eight continuous variables, and a single class variable in- 540

cluding 16259 spurious examples caused by radio frequency interference or noise and 1639 real
pulsar examples which have been checked by human annotators. The continuous variables are
the mean of the integrated profile, the standard deviation of the integrated profile, the excess kur-
tosis of the integrated profile, the skewness of the integrated profile, the mean of the dispersion
measurement–signal-to-noise Ratio curve, the standard deviation of the ratio curve, the excess 545

kurtosis of the ratio curve, and the skewness of the ratio curve. That is, the first four variables are
simple statistics obtained from the integrated pulse profile, while the remaining four variables
are similarly obtained from the ratio curve. In addition, we observe that the sample covariance
matrices of these two groups are different.

We randomly select 200 observations from 16259 spurious examples and 100 observations 550

from 1639 real pulsar examples to construct a graph. For these 300 nodes, we say that two
nodes are connected if their difference in the first variable (the mean of the integrated profile) is
small. We choose a threshold such that the network density, defined as the ratio of edges over
the maximum possible number of edges is 50%, 30%, 10%, 5%, 3%, or 1%. The rest of the eight
variables are used as nodal covariates. In defining the graph, we do not use the information on 555

the labels of these observations. This data generating process is repeated 100 times.
For our approach, we take A = cov(X) and estimate it by the sample covariance matrix. The

rank r is chosen by the method outlined at the end of Section 3 by setting M = 4. Our approach
is compared to the methods in Binkiewicz et al. (2017), Zhang et al. (2016), Yan & Sarkar (2020),
Huang & Feng (2018) and the spectral clustering method of Rohe et al. (2011). In addition, we 560

include our approach by estimating A = Σε via the algorithm in the Supplementary Materials
with r = 1. Since the true community membership of each node is known, we report the average
of the proportions of the nodes that are misclassified. It is obvious that the smaller this quantity is,
the better an approach is. The results averaged over 100 random datasets are found in Figure 4. It
is observed that our network-supervised dimension reduction approach based on the two choices 565

of A, are better than the other methods in most of the cases, especially when the network is
sparse. In addition, our approach is insensitive to the sparsity of the network, while the methods
in Binkiewicz et al. (2017), Rohe et al. (2011), and Zhang et al. (2016) work only when the
network is dense.
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Fig. 4: Comparison of different algorithms for the real data. Our method with A = cov(X)
(solid line) and with A = Σε (dash line), K-means (long dash dot), and the method in

Binkiewicz et al. (2017) (solid line with circle), Zhang et al.(2016) (solid line with triangle),
Yan & Sarkar (2020) (long dash), Rohe et al. (2011) (solid line with diamond) and Huang &

Feng (2018) (solid line with square).
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of the theoretical prop-
erties and additional theoretical and simulation results.
colorblackThe code for community detection is available on https://github.com/DR-
Network/community-detection.580
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