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Highlights 

 

 The disorganization of different starches in aqueous ionic liquid (IL) studied 

 Granule surface structure key to determining starch dissolution in aqueous IL 

 Normal cereal starches show endo-corrosion with complete disorganization within 1.5 h 

 Starches with dense layer show exo-corrosion with residual structure at 24 h 

 Disorganization accompanied by increased viscosity and reduced water migration  

 

ABSTRACT: The structural disorganization of different starches in a 1-ethyl-3-methylimidazolium 

acetate ([Emim][OAc])/water mixture (1:6 mol./mol.) at room temperature (25 °C) was studied. For 

normal cereal starches, which have pinholes randomly dispersed on the granule surface or only in the 

outermost annular region (wheat starch), the aqueous ionic liquid (IL) completely destroyed the 

granule structure within 1–1.5 h. Pea starch (PeS) granules with cracks were destroyed by the 

aqueous IL within 6 h. High-amylose maize starch (HAMS), as well as potato and purple yam 

starches (PoS and PYS), which have a dense and thick outer granule layer, were even more resistant 

to the action of the solvent. Structural disorganization was accompanied by increased viscosity and 

controlled the binding of water molecules with starch chains. From this study, we concluded that the 

surface characteristics of starch granule are an important factor affecting starch structural 

disorganization in an aqueous IL.  

 

Keywords: Different starch cultivars; Aqueous ionic liquid; Starch dissolution; Starch granule 

destruction; Granule structure; Crystalline structure.  
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1 Introduction 

There has been huge interest in developing biodegradable polymeric materials based on natural 

biopolymers due to the desire for achieving sustainability and taking advantage of the unique 

properties of these natural biopolymers (Seoud, Koschella, Fidale, Dorn, & Heinze, 2007). Starch is 

an abundant biopolymer widely used in both food and non-food applications due to its desirable 

properties such as low cost, biocompatibility, renewability, and biodegradability (Pérez & Bertoft, 

2010). The shape (sphere, lobular, polyhedron, disk, or irregular tube) and size (the length of the long 

axis ranging from 0.5 to 100 μm) of starch granules vary largely with botanical source (Jane, et al., 

1994; Wang & Copeland, 2015). Based on the X-ray diffraction (XRD) patterns, starches can be 

divided into A-, B- and C-types, which have different physicochemical properties (Lopez-Rubio, 

Flanagan, Gilbert, & Gidley, 2008; Wang, Yu, & Yu, 2008). C-type starches (for example Chinese 

yam starch) are shown to have both A- and B-type crystalline polymorphs, with the B-type 

polymorph in the center surrounded by the A-type polymorph (Wang, et al., 2007; Wang, et al., 2008; 

Wang, Yu, Yu, Chen, & Pang, 2007). The A- and B-type crystallites are considered to have the same 

double-helical configuration, but the way of packing and the water content in the crystallites are 

different (Pérez, Baldwin, & Gallant, 2009). The periphery of starch granules is the first barrier 

against hydrolysis and chemical actions (Nierle, Baya, Kersting, & D. Meyer, 1990). For maize and 

millet starches, there are pores distributed randomly on the granule surface, often in clusters and to 

different degrees, leading to high susceptibility to attack by enzymes or chemical reagents (Fannon, 

Hauber, & BeMiller, 1992). Large granules of wheat starch have pores along the equatorial groove, 

while there are wrinkles on the pea starch surface. For starches without pores on the granule surface, 
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such as potato and yam starches, their surface is corroded much more evenly with the action of 

amylases or chemical reagents (Gallant, Derrien, Aurnaitre, Guilbot, & Massy, 1973).  

 

Because of strong inter- and intramolecular hydrogen bonds in semi-crystalline starch granules 

(Mäki-Arvela, Anugwom, Virtanen, Sjöholm, & Mikkola, 2010), starch cannot be fully dissolved in 

water at temperatures below 120 °C (Jan & Carl, 2010). Hence, other solvents are usually used for 

starch dissolution, including alkaline solution (Han & Lim, 2004), dimethyl sulfoxide (DMSO) 

(Jackson & NE, 1991), zinc chloride (Lina, et al., 2016), molten imidazole (Jordan, Schmidt, Liebert, 

& Heinze, 2014), and N-methyl morpholine-N-oxide (NMMO) (Koganti, Mitchell, Ibbett, & Foster, 

2011). However, these solvents have disadvantages such as the tendency to cause starch degradation, 

being inflammable and explosive. Ionic liquids (ILs), a liquid salt with a melting point below 100 °C, 

are considered as “green” solvents for starch and cellulose (Rogers & Seddon, 2003). ILs have some 

unique physicochemical characteristics such as non-flammability, low vapor pressure, chemical 

stability, and recyclability (Earle, et al., 2006; Seoud, et al., 2007). ILs composed of imidazole 

cations coupled with anions (e.g. halide or carboxylic acid) have strong hydrogen-bonding capacity, 

can destroy inter- and intramolecular hydrogen bonds in biopolymer molecular networks, and 

dissolve biopolymers with reduced energy consumption (Li, et al., 2011; Wilpiszewska & Spychaj, 

2011). The appealing properties of ILs have attracted considerable interest as solvents for the 

processing of biopolymer (e.g. cellulose, starch, and lignin). 

 

The dissolution behavior of starch (rate and degree of granule disintegration) in ILs-based solvents 
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are affected by several factors, but not limited to the solvent effects only (Zhao, et al., 2015). Firstly, 

the type and structure of cations and anions of ILs can highly affect starch dissolution. For example, 

ILs with alkyl imidazolium and [OAc−] or [Cl−] have proved to be most effective at dissolving 

polysaccharides including starch (Lappalainen, Kärkkäinen, & Lajunen, 2013; Tan & Macfarlane, 

2010). The difference in size between anion and cation (Papanyan, Roth, Wittler, Reimann, & 

Ludwig, 2013), the alkyl chain length of cation (Khan, Taha, Ribeiro-Claro, Pinho, & Coutinho, 

2014; Ren, et al., 2019), and the hydrogen-bonding capacity of anion (Ren, et al., 2019) all determine 

the dissolving capability of ILs. Secondly, ILs, when mixed water, could be more powerful for starch 

dissolution than pure ILs. Previous studies showed that 1-ethyl-3-methylimidazolium acetate 

([Emim][OAc])/water mixtures have a critical ratio for the most efficient dissolution of starch 

(Zhang, et al., 2017). The [Emim][OAc]/water ratio influences viscosity, the interaction between 

water and IL ions, and the mobility of water molecules, which all impact starch dissolution (Liu & 

Budtova, 2013; Wang, et al., 2019). However, the dissolution mechanism of starch in aqueous ILs at 

room temperature is still under debate. Recently, Wang et al. found that the damage of potato starch 

structure was less severe than maize starch in [Emim][OAc])/water mixtures (irrespective of mass 

ratio, 2:8, 4:6, 5:5, 6:4, 8:2, or 10:0), which could be due to its distinct surface morphology (Wang, et 

al., 2019). Among six starches to be dissolved in 78 % NMMO, cereal starches (A-type) were found 

to dissolve more rapidly and completely compared with B- and C-type starches (Kogantia, Mitchell, 

MacNaughtan, Hill, & Foster, 2015). 

 

To better understand the mechanism of starch dissolution in aqueous ILs, this work focuses on cereal 
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(millet, maize, wheat, waxy maize, and high-amylose maize), tuber (potato and yam) and bean (pea) 

starches, which are widely used in food and non-food applications. Meanwhile, a 

[Emim][OAc]/water (1:6 mol./mol.) mixture was used as it is proved to be the most effective at 

dissolving maize starch (Wang, et al., 2019; Zhang, et al., 2017). The changes in morphology, 

crystalline structure, and rheological properties of these eight starches during room-temperature 

treatment by aqueous IL were monitored, based on which the underlying mechanisms are discussed. 

By examining the relationship between starch architecture and dissolution behavior, our findings can 

improve our understanding of starch structures and provide insights into the processing and industrial 

application of starch-based materials. 

 

2 Materials and methods 

2.1 Materials 

Waxy maize starch (WMS) and high-amylose maize starch (HAMS, Hylon VII) were kindly 

provided by National Starch Specialties Ltd (Shanghai, China). Normal maize starch (NMS), potato 

starch (PoS), and wheat starch (WS) were obtained from Sigma-Aldrich Chemical Company (St 

Louis, Missouri, USA). Pea starch (PeS) was purchased from Yuanye Bio-Technology Co., Ltd 

(Shanghai, China). Foxtail millet Jingu 16 was provided by Shanxi Qinzhouhuang Millet Group Co., 

Ltd (Changzhi, Shanxi, China). Purple yam was bought from a local market (Deqing, Guangdong, 

China). Millet and purple yam starches (MiS and PYS) were isolated from the foxtail millet grains 

and purple yam tubers according to Qi et al. (Qi, et al., 2019) and Wang et al. (Wang, et al., 2006), 

respectively. [Emim][OAc] (95% purity and ≤ 0.5% moisture content) was purchased from Nuowei 

Jo
ur

na
l P

re
-p

ro
of



 

7 

Chemical Technology Co., Ltd (Wuhu, Anhui, China).  

 

2.2 Analysis of chemical composition and particle size distribution of starches 

The moisture, protein and lipid contents of the isolated starches were determined according to AOAC 

Official Methods 925.10 (AOAC, 1925), 954.01 (AOAC, 1955), and 920.39 (AOAC, 1920), 

respectively. Amylose content was determined by the iodine-binding colorimetric method (Qi, et al., 

2019). The phosphorous content was determined by inductively coupled plasma mass spectrometry 

(ICAPQ, Thermo Fisher Scientific, German). The particle size distribution of starch granules was 

measured using a Bettersize 2000B Intelligent Laser Particle Size Analyzer (Better size Instruments 

Ltd, China). For particle size measurement, starch was evenly dispersed in a sample cell filled with 

distilled water to attain an obscuration of 15–20%. 

 

2.3 Sample preparation 

The [Emim][OAc]/water (1:6 mol./mol.) mixture was pre-made based on the following equation: 

𝑛𝐼𝐿 =
95%⋅𝑚𝐼𝐿

𝑀𝐼𝐿
          (1) 

𝑛𝑤𝑎𝑡𝑒𝑟
𝑚𝑤𝑎𝑡𝑒𝑟+5%⋅𝑚𝐼𝐿

𝑀𝑤𝑎𝑡𝑒𝑟
         (2) 

where nIL and nwater are the moles of the IL and water, respectively, and nIL:nwater = 1:6; mIL and mwater 

are the weights of the IL (95% purity) and water added, respectively; MIL and Mwater are the molar 

masses of the IL and water (170.21 g/mol and 18 g/mol), respectively.  

Mixing [Emim][OAc] and water generates heat. After the aqueous IL prepared was cooled to room 

temperature, different starch suspensions (5 wt%), i.e. 0.5 g of starch (wet basis) mixed in 9.5 g of 
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the aqueous IL, were prepared and stirred magnetically (300 rpm) at room temperature (25 °C) for 

0.5 h, 1 h, 1.5 h, 6 h, and 24 h, after which five volumes of absolute ethanol was added. The samples 

were centrifuged at 4500 g for 15 min. The precipitates were washed using ethanol and centrifuged 

for three more times to remove residual [Emim][OAc]. The obtained starches were dried in an oven 

at 30 °C overnight and ground to pass through a 100-mesh sieve.  

 

2.4 Characterization of starch samples 

2.4.1 Differential scanning calorimetry (DSC) 

The thermal properties of starch samples were examined by a differential scanning calorimeter (200 

F3, Netzsch, Germany) equipped with a thermal analysis data station. Starch samples (approximately 

3 mg) were weighed accurately into 40 μL aluminum pans, where deionized water was added to 

obtain a starch/water ratio of 1:3 (w/w). The starch/water mixtures were left to stand overnight at 

room temperature before DSC measurement. The samples were heated from 20 °C to 135 °C at a 

heating rate of 10 °C/min and an empty aluminum pan was used as the reference. The onset 

temperatures (To), peak temperatures (Tp), conclusion temperatures (Tc), and melting enthalpy 

changes (ΔH) were calculated using Proteus analysis software.  

 

2.4.2 X-ray diffraction (XRD) 

The crystallinity of starch samples was analyzed using an X-ray diffractometer (D8 Advance, Bruker, 

Germany) operating at 40 kV and 40 mA. Starch samples were equilibrated over a saturated NaCl 

solution for 7 days before measurement. Starch powders were packed tightly in a round glass cell 
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and scanned from 5° to 35° (2θ) at a rate of 1 °/min and a step size of 0.02°. Relative crystallinity 

was calculated as the ratio of the crystalline area to the total area between 5° and 35° (2θ) using Eva 

software provided with the instrument.  

 

2.4.3 Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) 

The ATR-FTIR spectra for native and treated starch samples were determined using a Thermo 

Scientific Nicolet IS50 FTIR spectrometer (Thermo Fisher Scientific, USA). Starch samples (150 mg) 

were pressed into round tablets before being scanned in the range of 4000-400 cm−1 at a resolution of 

4 cm−1, and with an accumulation of 32 scans. The spectrum of an empty cell against air was 

recorded as the background. The ratio of absorbances at 1047/1022 cm−1 was calculated using 

OMNIC 9.2 software to estimate the short-range molecular order of starch samples.  

 

2.4.4 Laser confocal micro-Raman spectroscopy 

A Renishaw Invia Raman microscope system (Renishaw, Gloucestershire, UK) equipped with a 

Leica microscope (Leica Biosystems, Wetzlar, Germany) was used to obtain the Laser confocal 

micro-Raman (LCM-Raman) spectra for starch samples in the range of 3500-100 cm−1 at a resolution 

of 7 cm−1. A 785 nm green diode laser source was used. The full width at half maximum (FWHM) of 

the band at 480 cm−1, which is usually used to characterize the short-range molecular order of starch, 

was obtained using WIRE 2.0 software (Wang, et al., 2019). 
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2.4.5 Scanning electron microscopy (SEM) 

The morphology of starch samples was examined using a scanning electron microscope (SU1510, 

Hitachi, Japan). Starch powders were scattered on the conductive tape stuck on aluminum stubs and 

then sputter-coated with gold before imaging at an accelerating voltage of 2 kV.  

 

2.4.6 Light microscopy 

A light microscope (DM-400 M-LED, Leica, Germany) was used to observe the changes in granule 

birefringence under normal and polarized lights. During the treatment of starches (5 wt%) by the 

aqueous IL in glass vials, a drop of the starch/IL/water suspension was quickly taken out to a glass 

slide and covered with a coverslip for imaging.  

 

2.4.7 Rheological measurement 

The viscosity of starch/IL/water suspensions was measured at 25 °C on an MCR 302 rheometer 

(Anton Par GmbH, Austria). The measuring system had a cone-plate geometry with a 4° angle and a 

50 mm diameter. Before testing, starches were mixed with the aqueous IL in glass vials, and then the 

suspensions were applied onto the platform rapidly at different treatment time points. The shear rate 

was fixed at 300 s−1 for 2 h for measurement. To prevent any changes in water content in the 

suspensions, silicone oil was placed around the edge of the measuring cell and the insulation cover of 

the rheometer was applied.  

 

Jo
ur

na
l P

re
-p

ro
of



 

11 

2.4.8 Low-field nuclear magnetic resonance (LF-NMR) 

A 20 MHz NMI20-025 V-I NMR analyzer (Niumag Co., Ltd, Suzhou, China) was used to analyze 

hydrogen proton migration during treatment of starch with the aqueous IL. At different time points (0 

h, 0.5 h, 1 h, 1.5 h, 6 h, and 24 h), 5 g of a starch/IL/water suspension (5 wt% starch in the aqueous 

IL) was placed in a 15 mm NMR glass tube and inserted into the NMR-probe. The T2 transverse 

relaxation time of samples was measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence 

at 32 °C with a τ-value of 300 μs between 90° and 180° pulses (Li, et al., 2020). Data from 8000 

echoes were acquired based on 4 scan repetitions, and the repetition time between two successive 

scans was 7 s. 

 

2.4.9 Statistical analysis 

All analyses except for XRD were performed at least in triplicate, and the results are reported as 

mean values and standard deviations. Analysis of variance (ANOVA) followed by post-hoc Duncan’s 

multiple range tests (p < 0.05) was conducted to determine the significant differences between mean 

values using SPSS 19.0 software (SPSS Inc. Chicago, IL, USA).  

 

3 Results and discussion 

3.1 Granule sizes and chemical compositions of starch samples 

Table 1 lists the compositions (moisture, protein, lipid, amylose and phosphorous contents) of the 

different starches. HAMS had the highest amylose content (69.5%) and WMS the lowest (0.7%). The 

amylose contents of PoS and PYS were 34.4% and 34.9% respectively while those of the rest 
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starches were about 25%. The moisture, lipid and protein contents of eight starches were in the range 

of 7.5-12.6%, 0.1-0.6%, and 0.1-0.5%, respectively. Organophosphates were detected in all starches, 

with the greatest amount observed for potato starch mainly due to the presence of phosphate groups 

(Blennowa, Nielsen, Baunsgaard, Mikkelsen, & BEngelsen, 2002). The average granule size of the 

eight starches, as reflected by mean particle diameters (D4,3), was ranked in the order PoS (56.3 μm) > 

PYS > PeS > WS > WMS > NMS > HAMS > MiS (10.3 μm).  

 

Table 1. Chemical composition and volume-equivalent mean diameter (D4,3) of the different starches. 

Starches 
Moisture 

content (%) 

Protein 

content (%) 

Lipid content 

(%) 

Amylose 

content (%) 
D4,3 (μm) 

Phosphorous 

content (μg/g) 

MiS 12.1 ± 0.1b 0.1 ± 0.0c 0.5 ± 0.1a 23.2 ± 1.1d 10.3 ± 0.2f 409.38 

WMS 7.5 ± 0.1e 0.3 ± 0.1b 0.1 ± 0.3d 0.7 ± 0.1e 15.7 ± 0.3e 42.38 

NMS 10.1 ± 0.2c 0.5 ± 0.2a 0.2 ± 0.0c 24.2 ± 2.5cd 15.2 ± 0.2e 132.68 

WS 9.1 ± 0.1d 0.2 ± 0.1ab 0.2 ± 0.1c 28.2 ± 0.9c 22.5 ± 0.6d 317.24 

HAMS 12.4 ± 0.3ab 0.1 ± 0.0c 0.2 ± 0.1c 69.5 ± 0.8a 10.7 ± 0.1f 194.24 

PoS 12.6 ± 0.0a 0.3 ± 0.0b 0.1 ± 0.0d 34.3 ± 1.7b 56.3 ± 3.0a 567.75 

PeS 9.1 ± 0.1d 0.2 ± 0.1ab 0.3 ± 0.1ab 24.9 ± 2.9cd 35.9 ± 0.8c 21.14 

PYS 10.6 ± 0.2bc 0.4 ± 0.2a 0.6 ± 0.1a 34.9 ± 1.6b 44.8 ± 0.7b 116.90 

Values are represented as mean ± standard deviation; Data followed by the different lower-case 

superscript letters in the same column were significantly different (p < 0.05). 

 

3.2 Crystalline structures of starch samples treated with aqueous [Emim][OAc] 

Native MiS, WMS, NMS, and WS exhibited a typical A-type diffraction pattern with reflections at 

15°, 17°, 18°, and 23° (2θ) (Fig. 1A). During treatment with the aqueous IL, the diffraction peaks for 

MiS, WMS, and MS gradually became weaker and almost disappeared within 1 h, while it took 1.5 h 

for WS to become mostly amorphous.  
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Fig. 1B shows that the XRD peaks for B-type starches (HAMS, PoS, and PYS) at 5.6°, 15°, 17°, 

21.9°, and 23.7° (2θ) became weaker during treatment with the aqueous IL but the crystalline 

structure remained after treatment for 24 h. In contrast, PeS displayed a typical C-type XRD pattern 

with two major peaks at about 17° and 23° and small peaks at around 5.6° and 15° (2θ). The 

diffraction peaks weakened greatly and mostly disappeared within 6 h, which was indicative of a 

substantial disruption of crystalline structure. The changes in the diffraction peaks of starches during 

the treatment with the aqueous IL correspond to a reduction in relative crystallinity (Table 4). This 

indicates that the aqueous IL gradually disrupted the long-range crystalline structure in these 

starches. 
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Figure 1 XRD patterns for the different starches treated with the [Emim][OAc]/water (1:6 mol./mol.) 

mixture: (A) MiS, WMS, NMS, and WS native (n) and treated for 0.5, 1, and 1.5 h; (B) HAMS, PoS, 

PYS, and PeS native (n) and treated for 1.5, 6, and 24 h. 

 

3.3 Short-range molecular order of starch samples treated with aqueous [Emim][OAc] 

The FTIR spectra for the different starch samples after treatment and the ratios of absorbances at 

1047/1022 cm−1 (R1047/1022) are shown in Fig. S1 and Table 2, respectively. Meanwhile, the Raman 

spectra and the corresponding FWHM values of the band at 480 cm−1 for the different starch samples 

are presented in Fig. S2 and Table 3, respectively. A higher R1047/1022 value and a smaller FWHM 

value suggest a high degree of short-range molecular order in starch (Guo, Yu, Copeland, Wang, & 
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Wang, 2018; Wang, et al., 2018).  

For all starches, R1047/1022 decreased gradually with treatment time, although the decreases were not 

significant in some cases. For example, with treatment for 24 h, R1047/1022 decreased from 0.72 to 0.64 

for PoS, from 0.72 to 0.61 for HAMS, and from 0.76 to 0.65 for PYS with treatment for 24 h. 

Besides, FWHM for all the starches increased with treatment time. For example, with treatment for 

1.5 h, FWHM increased from 15.18 to 17.24 for MiS, from 15.27 to 19.51 for WMS, from 15.54 to 

17.59 for NMS, and from 15.53 to 18.31 for WS. The changes in R1047/1022 and FWHM indicate that 

the short-range molecular order in the eight starches was disrupted increasingly with the duration of 

treatment by the aqueous IL.  

 

Table 2. Ratios of absorbances at 1047/1022 cm−1 measured by FT-IR for the different starches 

treated with the [Emim][OAc]/water (1:6 mol./mol.) mixture for different duration. 

Samples IR ratio of absorbances at 1047/1022 cm−1 

 
Native 0.5 h 1 h 1.5 h 

MiS 0.66 ± 0.05a 0.62 ± 0.02ab 0.60 ± 0.02b 0.56 ± 0.01b 

NMS 0.68 ± 0.03a 0.64 ± 0.03ab 0.61 ± 0.02bc 0.58 ± 0.05c 

WMS 0.69 ± 0.02a 0.65 ± 0.01b 0.64 ± 0.01b 0.61 ± 0.01c 

WS 0.69 ± 0.02a 0.63 ± 0.03b 0.62 ± 0.02b 0.60 ± 0.02b 

 Native 1.5 h 6 h 24 h 

PoS 0.72 ± 0.04a 0.70 ± 0.06ab 0.69 ± 0.03ab 0.64 ± 0.02b 

HAMS 0.72 ± 0.07a 0.71 ± 0.03a 0.66 ± 0.01ab 0.61 ± 0.02b 

PeS 0.73 ± 0.02a 0.68 ± 0.00b 0.63 ± 0.02c 0.62 ± 0.02c 

PYS 0.76 ± 0.05a 0.73 ± 0.03ab 0.70 ± 0.01b 0.65 ± 0.01c 

Values are represented mean ± standard deviation; Data followed by the different lower-case 

superscript letters in the same row were significantly different (p < 0.05). 
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Table 3. Full width at half maximum (FWHM) values of the Raman band at 480 cm−1 for the 

different starches treated with the [Emim][OAc]/water (1:6 mol./mol.) mixture for different duration. 

Samples FWHM of 480 cm−1 

 
Native 0.5 h 1 h 1.5 h 

MiS 15.18 ± 0.09a 16.3 ± 0.23b 17.21 ± 0.54c 17.24 ± 0.59c 

NMS 15.54 ± 0.12a 16.75 ± 0.25b 17.39 ± 0.19c 17.59 ± 0.17c 

WMS 15.27 ± 0.27a 17.98 ± 0.06b 18.29 ± 0.21b 19.51 ± 0.27c 

WS 15.53 ± 0.10a 16.27 ± 0.32b 17.63 ± 0.12c 18.31 ± 0.28d 

 Native 1.5 h 6 h 24 h 

PoS 15.46 ± 0.28a 15.90 ± 0.24b 16.46 ± 0.08c 18.56 ± 1.10d 

HAMS 14.66 ± 0.21a 15.28 ± 0.53a 16.12 ± 0.57b 16.47 ± 0.27b 

PeS 15.18 ± 0.21a 15.69 ± 0.15b 18.18 ± 0.14c 19.33 ± 0.24c 

PYS 15.1 ± 0.48a 15.5 ± 0.31a 16.36 ± 0.12b 18.59 ± 0.04c 

Values are represented as mean ± standard deviation; Data followed by the different lower-case 

superscript letters in the same row are significantly different (p < 0.05). 

 

3.4 Thermal properties of starch samples treated with aqueous [Emim][OAc] 

Fig. 2 shows the DSC curves for the eight starches treated by the aqueous IL for different times and 

the corresponding thermal transition parameters (To, Tp, Tc, and ∆H) are listed in Table 4. A typical 

DSC endothermic transition was observed for all the native starches. After 1 h of treatment with the 

aqueous IL, the thermal transitions of MiS, WMS and NMS were not detected, but WS still presented 

a thermal transition. Hence, only the ∆H value for WS was determined (3.5 J/g) after 1 h of treatment. 

When the treatment time was 1.5 h, there was no gelatinization endotherm for the four A-type 

starches (MiS, WMS, NMS, and WS), indicating complete disruption of crystalline order in the 

starch granules. The lower thermal transition observed for MiS, WMS, and NMS after 1 h and 1.5 h 

of treatment and for WS after 1.5 h of treatment was attributed to starch retrogradation. 
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The peak temperatures (Tp) gradually shifted to higher temperatures during 1 h of treatment with the 

aqueous IL, indicating that the treatment preferentially disrupted less stable starch crystallites, 

leaving more stable crystallites to melt at a higher temperature (Wang, Wang, Guo, Liu, & Wang, 

2017; Wang, Zhang, Wang, & Copeland, 2016).  

 

Compared with the A-type starches, HAMS, PoS, PYS, and PeS had a smaller decrease in ∆H after 

the initial 1.5 h of treatment. Longer treatment resulted in a further substantial decrease in ∆H. For 

example, the ∆H value for PoS decreased from 17.3 J/g to 13.9 J/g for the first 1.5 h; longer 

treatment further reduced ∆H to 11.8 J/g at 6 h and 9.5 J/g at 24 h. The ∆H results here are in 

agreement with XRD results. For HAMS, PoS, PYS, and PeS, there was generally a decrease in Tp 

with prolonged treatment. The general trend of decreasing Tp for HAMS, PoS, PYS, and PeS 

suggests that the aqueous IL preferentially destructed more stable crystallites, hence the disruption of 

the crystalline structure was slow.  
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Figure 2 DSC curves for the different starches treated with the [Emim][OAc]/water (1:6 mol./mol.) 

mixture: (A) MiS, WMS, NMS, and WS native (n) and treated for 0.5, 1, and 1.5 h; (B) HAMS, PoS, 

PYS, and PeS native (n) and treated for 1.5, 6, and 24 h. 
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Table 4. Thermal properties and relative crystallinity of the different starches treated with the 

[Emim][OAc]/water (1:6 mol./mol.) mixture for different duration. 

Samples To (°C) Tp (°C) Tc (°C) ΔH (J/g) Relative crystallinity (%) 

MiS      

Native 67.2 ± 0.2b 73.3 ± 0.2b 81.0 ± 0.8b 14.3 ± 1.3b 35.8 ± 1.2 

0.5 h 70.1 ± 0.1b 76.7 ± 0.4b 82.9 ± 0.5b 1.4 ± 0.1a 8.9 ± 1.6 

1.0 h 51.5 ± 0.5a 55.3 ± 1.7a 63.6 ±3.8a 0.6 ±0.3a ND 

1.5 h 51.0 ± 1.1a 56.0 ± 0.2a 65.7 ± 1.5a 1.7 ± 0.1a ND 

WMS      

Native 62.1 ± 0.5b 71.7 ± 0.2b 78.4 ± 0.4c 13.7 ± 0.8c 49.0 ± 2.5 

0.5 h 65.2 ± 1.7c 73.2 ± 1.3b 80.5 ± 1.0c 1.6 ± 0.3a 11.1 ± 3.6 

1.0 h 49.0 ± 0.7a 58.8 ± 0.5a 68.7 ± 0.8b 5.2 ±1.7b ND 

1.5 h 47.4 ± 1.3a 57.1 ± 0.3a 62.8 ± 2.2a 1.6 ± 0.4a ND 

NMS      

Native 65.1 ± 0.3b 71.0 ± 0.14b 76.6 ± 0.2b 12.2 ± 1.2a 30.0 ± 2.0 

0.5 h 66.4 ± 0.2c 72.7 ± 0.3c 79.1 ± 0.6c 6.9 ± 0.7b 18.3 ± 2.1 

1.0 h 67.6 ± 0.2d 73.5 ± 1.0c 82.7 ± 0.4d 0.4 ± 0.1c ND 

1.5 h 51.3 ± 0.5a 56.1 ± 1.1a 63.0 ± 2.6a 1.3 ± 0.2c ND 

WS      

Native 56.3 ± 0.1b 60.8 ± 0.1b 67.1 ± 0.3b 10.1 ± 0.5d 32.5 ± 0.8a 

0.5 h 58.7 ± 0.3c 63.8 ± 0.1b 69.2 ± 0.3b 7.3 ± 1.3c 22.1 ± 2.0b 

1.0 h 58.2 ± 0.1c 63.3 ± 0.2b 69.1 ± 0.1b 3.5 ± 0.3b 6.7 ± 0.4c 

1.5 h 49.7 ± 2.3a 54.2 ± 3.9a 60.0 ± 4.1a 0.6 ± 0.8a ND 

HAMS      

Native 100.2 ± 0.2a 108.0 ± 1a 115.1 ± 1.3a 8.0 ± 0.5a 21.0 ± 1.36a 

1.5 h 97.3 ± 1.7a 102.5 ± 3.5ab 109.6 ± 0.7ab 6.0 ± 0.6b 13.7 ± 1.2b 

6 h 96.7 ± 0.4ab 100.0 ± 0.0 b 107.4 ± 2.3ab 3.8 ± 0.6c 11.5 ± 0.8b 

24 h 93.5 ± 1.8b 97.1 ± 2.8b 103.5 ± 4.7b 3.0 ± 0.1c 10.3 ± 0.9b 

PoS      

Native 61.8 ± 0.1a 66.1 ± 0.1a 72.0 ± 0.2a 17.3 ± 0.5a 39.1 ± 1.2a 

1.5 h 61.7 ± 0.1a 66.0 ± 0.2a 71.4 ± 0.2ab 13.9 ± 0.6b 35.0 ± 1.1b 

6 h 59.1 ± 0.2b 65.1 ± 0.1b 71.2 ± 0.5b 11.8 ± 0.3c 26.5 ± 3.9c 

24 h 53.9 ± 0.3c 61.1 ± 0.1c 68.6 ± 0.4c 9.5 ± 0.4d 21.0 ± 2.3d 

PYS      

Native 78.9 ± 0.0a 82.1 ± 0.1a 86.9 ± 0.2a 12.4 ± 0.5a 40.0 ± 2.5a 

1.5 h 76.9 ± 0.1b 80.7 ± 0.1b 85.2 ± 0.1b 12.0 ± 0.4b 33.6 ± 1.0b 

6 h 76.9 ± 0.1b 81.0 ± 0.1b 85.7 ± 0.5b 11.4 ± 0.3b 31.0 ± 0.9b 

24 h 65.7 ± 0.2c 76.5 ± 0.9c 83.4 ± 0.2c 6.9 ± 0.6c 25.4 ± 0.7c 

PeS      

Native 60.5 ± 1.0a 65.8 ± 0.3a 73.1 ± 1.9a 11.5 ± 0.5a 35.2 ± 2.5a 

1.5 h 59.4 ± 0.2a 66.6 ± 0.1b 74.5 ± 0.6b 9.2 ± 0.2b 29.6 ± 1.4b 

6 h 52.1 ± 0.8b 62.0 ± 0.3c 71.0 ± 0.7c 5.2 ± 0.1c 10.1 ± 4.1c 

24 h 51.6 ± 0.3b 59.9 ± 0.7d 68.2 ± 0.8d 4.8 ± 0.1c 3.6 ± 0.8d 
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Values are represented as mean ± standard deviation; Data followed by the different lower-case 

superscript letters in the same column were significantly different (p < 0.05); ND, not determined.  

 

3.5 Granule morphology of starch samples treated with aqueous [Emim][OAc] 

The effect of the aqueous IL on starch granule morphology at room temperature was observed under 

light microscopy and SEM (Fig. 3). MiS, WMS, and NMS all had a small granule size, angular or 

irregular shapes, and a rough surface containing many randomly distributed indentations with pores 

in the center of indentation. Upon treatment of these three starches by the aqueous IL, the pores on 

the surface became larger and cracks were formed at 0.5 h and 1 h. The granules sagged inward until 

finally, the granules were broken completely at 1.5 h, exposing the internal cavity. Among these three 

starches, WMS was the most susceptible to treatment, for example, the granules lost its morphology 

completely and agglomerated into more dense lumps after 1 h of treatment. Under polarized light, 

the birefringent patterns (Maltese crosses) of WMS and MiS almost disappeared at 0.5 h, while at 1 h 

for NMS. 

 

SEM images show that WS is composed of big discoid-like granules (A-type) and small spherical 

granules (B-type). The granule surface was mostly smooth and the pinholes could only be found at 

the equatorial circular depression of the discoid granules. At 0.5 h, the outermost annular region near 

the equatorial trough was most sensitive to solvent corrosion and the peeling of the granules occurred. 

With prolonged treatment, this tangential degradation led to the cutting of the outermost annular 

region and further inwards tangential destruction until the stable central nucleus was exposed. By 1.5 

h, the central nucleus was completely destroyed. Light microscopy images also show that the 
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outermost annular region was destroyed first and the birefringent patterns in the granule center 

remained until 0.5 h; afterwards, the birefringent pattern gradually became smaller and disappeared 

after 1.5 h of treatment.  

 

The morphological changes of MiS, WMS, NMS, and WS indicate that starch granules with 

randomly distributed pinholes on their surface dissolved faster than those with pinholes concentrated 

at the outermost annular region while other places were smooth. More specifically, the distribution of 

pinholes could determine how the aqueous IL penetrates into the granule, whether radially or 

tangentially.  

 

PeS granules are mostly ellipsoids with wrinkles on their surface, which deepened and cracked after 

1.5 h of treatment by the aqueous IL. The outermost annular layer was separated from the center after 

6 h of treatment. At 24 h, the outermost layer of starch granules peeled off, accompanied by the 

fading of the birefringent patterns. SEM images show that PoS and PYS have spherical granules and 

a smooth surface. During the aqueous IL treatment, many small cracks developed on the outer layers 

of PoS and PYS, and joined together to form large cracks eventually, leading to complete 

disintegration of some granules after 24 h of treatment. Birefringent patterns on the granules were 

observed to become increasingly blurred mainly during 6-12 h and almost disappeared at 24 h. 

HAMS granules are small in size and have irregular shapes with a smooth surface. The aqueous IL 

treatment also caused corrosion of HMAS granules but without significant cracking or rifting. It is 

proposed that the absence of pores on the granules of PeS, HAMS, PoS, and PYS, especially the 

Jo
ur

na
l P

re
-p

ro
of



 

23 

thick and compact outer layers of PoS and PYS, make it difficult for the aqueous IL to destroy the 

granule structures.  
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Figure 3 Representative SEM (Line 1) and light microscopy images under normal (Line 2) and 

polarized light (Line 3) of MiS, WMS, NMS, WS, HAMS, PoS, PYS, and PeS native and treated 

with the [Emim][OAc]/water (1:6 mol./mol.) mixture for different duration. 

 

3.6 Rheological properties of starch samples in aqueous [Emim][OAc] 

The viscosity of the IL/water (1:6 mol./mol.) mixture at a constant shear rate (300 s−1) and 
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temperature (25°C) was around 12 mPa·s, which remained essentially unchanged during the shearing 

process (Wang, et al., 2019). The viscosity of starch (5 wt%) in the same aqueous IL as a function of 

treatment time was monitored (Fig. 4). During the first 2 h (Fig. 4A), the viscosity of the 

WMS/IL/water suspension rose rapidly from 14.5 mPa·s to 685.9 mPa·s at around 0.5 h of treatment, 

followed by a slow increase up to 1184.8 mPa·s at 2 h. Similar viscosity changes were also observed 

for MiS, NMS, and WS, although the increase occurred at a different rate and to a different degree. 

The changes indicate that the granule structure was disrupted gradually during treatment, leading to 

the dissolution of starch and increased viscosity of the solutions. In contrast, there were no apparent 

changes for the suspensions of HAMS, PoS, PYS, and PeS over 2 h of treatment, meaning that the 

starch structure was not disrupted in the aqueous IL/water within the first 2 h (Zhang, et al., 2017). 

For HAMS, PoS, PYS, and PeS, the viscosity only marginally increased during 6–8 h (in particular, 

for HAMS, from 17.7 mPa·s to 27.3 mPa·s) (Fig. 4B). Prolonged treatment increased further the 

viscosity of these starch suspensions, with PeS presenting the highest viscosity of 475.38 mPa·s at 26 

h. These changes in viscosity for HAMS, PoS, PYS and PeS indicate that the dissolution of these 

starches occurred slowly but progressively during the whole treatment.  
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Figure 4 Viscosity profiles of the different starches treated with the [Emim][OAc]/water (1:6 

mol./mol.) mixture: (A) MiS, WMS, NMS, WS, HAMS, PoS, PYS, and PeS during 0-2 h of 

treatment; (B) HAMS, PoS, PYS, and PeS during 6-8 h and 24-26 h of treatment. 
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3.7 T2 distribution of aqueous [Emim][OAc] and starch samples treated with aqueous 

[Emim][OAc] 

The state and distribution of water in different systems can be characterized by low field-NMR, with 

a longer T2 relaxation time reflecting a higher degree of molecular mobility (Li, et al., 2020). From 

the results of the LF-NMR measurement (Fig. 5), there were three different proton groups from the 

relaxation signals, which can be ascribed to strongly bound water (0.01-1 ms), weakly bound water 

(1-100 ms), and free water (100-10000 ms) (Li, et al., 2015; Tang H, 2001). At room temperature, 

there were small changes in the T2 relaxation time of proton groups over time (Fig. 5a and f), 

suggesting the water in the IL/water mixture is relatively stable. However, the proportion of free 

water in starch/IL/water suspensions declined. For MiS, WMS, NMS, and WS, the relaxation time of 

free water in the suspensions decreased along with reduced amplitude (peak height). For example, 

the T2 relaxation time for the WMS/IL/water suspension changed from 1431.5-4994.5 ms to 

47.6-943.7 ms) after 0.5 h. The T2 relaxation time curve was stable for WMS and MiS suspensions 

within 0.5 h whereas for NMS and WS suspensions, within at least 1 h. For WMS, MiS, and NMS 

suspensions (Fig. 5a-d), the relaxation time peak between 50-2000 ms changed from a narrow 

singlet into a doublet, indicating a decrease in the mobility of water molecules due to the formation 

of weakly bound water. For HAMS and PeS, the T2 relaxation time of free water changed 

significantly at 1.5 h or 6 h, respectively, whereas, for PYS and PeS, the change was minor up to 24 

h. The results indicated that the mobility of water molecules in these starch suspensions was changed 

to a much smaller degree compared with other starch suspensions, consistent with the starch 

structural changes caused by the aqueous IL.  
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Figure 5 Carr-Purcell-Meiboom-Gill (CPMG) proton distributions of water molecules in the 

[Emim][OAc]/water (1:6 mol./mol.) mixture during treatment of the different starches: (a) and (f) the 

[Emim][OAc]/water mixture at 0, 0.5, 1, 1.5, 6, and 24 h; (b), (c), (d), and (e) WMS, MiS, NMS, and 

WS at 0, 0.5, 1, and 1.5 h; (g), (h), (i), and (j) HAMS, PoS, PYS, and PeS at 0, 1.5, 6, and 24 h. 
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3.8 Further discussion 

In this study, the dissolution behavior of the eight starches in aqueous [Emim][OAc] was 

investigated by characterizing the structural changes of starch and the viscosity of starch suspensions 

during treatment. The results showed that the surface structure of starch granules is key to affecting 

the dissolution behavior of starch in an aqueous IL. Two different patterns for starch dissolution are 

proposed based on the results of granule morphology and thermal transition (Fig. 6). For MiS, WMS, 

NMS, and WS, the pinholes on the surface could allow the IL/water to penetrate into the granule 

easily, resulting in endo-corrosion of starch granules. As shown in Fig. 6A(a), MiS, WMS, and NMS, 

which have holes randomly distributed on the surface, only needed 1 h for the full destruction of the 

granules, while it took a longer time (1.5 h) for WS, which has holes concentrated in the outermost 

annular region while having other surface areas being smooth, to be fully destroyed as illustrated in 

Fig. 6A(b).  

 

For MiS, WMS, NMS, and WS, less stable crystallites of the starch granule were first destroyed, 

followed by more stable structures, resulting in the endothermic transition shifting to a higher 

temperature. Further treatment would destroy all the helical structures and crystallites in starch as 

shown by DSC and XRD results. With the effective destruction of the starch granule structure, 

amylose was liberated from the granule, which significantly increased the viscosity of the solution 

and hindered the mobility of water molecules (Zhang, et al., 2017). 

 

Starch granules (PoS, PYS, and PeS) with a relatively smooth surface and a thick outer layer are 
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more resistant to the attack by the aqueous IL. In this case, the corrosion of starch granules by the 

solvent started from the surface, leading to the formation of cracks (see Fig. 6B and SEM images). 

As the action of the solvent occurred firstly on the stable surface structures, the endothermic 

transition occurred at a lower temperature and the destruction process was slow. These starches still 

showed an endothermic peak and crystallinity after 24 h of treatment. In particular, for large starch 

granules such as potato starch granules, this exo-corrosion from the surface could not reach the entire 

starch granule within 24 h, leaving some starch crystallites intact. Therefore, the mobility of water 

molecules was hindered and the change in viscosity due to the leaching of amylose chains was small.  

 

For maize starches, amylose content has an impact on the destruction process with the aqueous IL as 

shown by microscopy, DSC and XRD results. HAMS were more rigid and resistant to the solvent 

than NMS and WMS. The different rate and extents of granule destruction for WMS, NMS, and 

HAMS with the aqueous IL confirm that starch with a higher amylose content is more stable in the 

aqueous IL with less fragmentation of the granule. 
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Figure 6 Schematic representation of starch disorganization as affected by aqueous ionic liquid: (A) 

endo-corrosion pattern for (a) WMS, MiS, NMS, and (b) WS; (B) exo-corrosion pattern for (c) PeS, 

(d) HAMS, PoS, and PYS. 

 

4 Conclusions 

While the [Emim][OAc]/water (1:6 mol./mol.) mixture can effectively destruct the starch multiscale 

structure at room temperature 25 °C, the way and degree of damage were different for starches with 

different starch surface morphology. For starches with pores (MiS, WMS, NMS, and WS), the 

corrosion by the aqueous IL follows an inside-out pattern and the destruction to the granules is fast 

and even. In contrast, for starches with a relatively smooth surface (HAMS, PoS, PYS, and PeS), the 

corrosion can only start from the surface. After the aqueous IL treatment, WMS agglomerates into 
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dense lumps whereas, for the other starches, granule fragments are left. The suspension viscosity and 

the mobility of water molecules in the system are influenced by the dissolution process. Our results 

clearly indicate that the destruction process of starch by an aqueous IL is predominantly determined 

by granule surface structure, meanwhile being strongly impacted by amylose content. Our findings 

reveal the structural evolution of starch granules during aqueous IL treatment, which could provide 

an insight into the design of dissolution and modification processes for different starches. 
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