
Article

Optimising Deep Learning at the Edge for Accurate Hourly Air
Quality Prediction

I Nyoman Kusuma Wardana 1,3,∗ , Julian W. Gardner 1 , and Suhaib A. Fahmy 2,1

Citation: Wardana, I N.K.; Gardner,

J.W.; Fahmy, S.A. Optimising Deep

Learning at the Edge for Accurate

Hourly Air Quality Prediction. Sen-

sors 2021, 1, 0. https://dx.doi.org/

10.3390/s1010000

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Submitted to Sensors for possible open

access publication under the terms

and conditions of the Creative Com-

mons Attribution (CC BY) license (

https://creativecommons.org/licenses/

by/4.0/).

1 School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom;
J.W.Gardner@warwick.ac.uk

2 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; suhaib.fahmy@kaust.edu.sa
3 Department of Electrical Engineering, Politeknik Negeri Bali, Badung, Bali, Indonesia
* Correspondence: Kusuma.Wardana@warwick.ac.uk

Abstract: Accurate air quality monitoring requires processing of multi-dimensional, multi-location1

sensor data, that has previously been considered in centralised machine learning models. These are2

often unsuitable for resource-constrained edge devices. In this article, we address this challenge3

by (1) designing a novel hybrid deep learning model for hourly PM2.5 pollutant prediction, (2)4

optimising the obtained model for edge devices, and (3) examining model performance running5

on the edge devices in terms of both accuracy and latency. The hybrid deep learning model6

in this work is composed of 1D Convolutional Neural Network (CNN) and Long Short-Term7

Memory (LSTM) to predict hourly PM2.5 concentration. Results show that our proposed model8

outperforms other deep learning models, evaluated by calculating RMSE and MAE errors. After9

selecting the best model, we optimise the model for edge devices, using Raspberry Pi 3 Model B+10

(RPi3B+) and Raspberry Pi 4 Model B boards (RPi4B). The lite version produced 4 times smaller11

file size compared to the original version. From the lite version, further size reduction can be12

achieved by implementing different post-training quantisations. About a 47% reduction can be13

achieved by dynamic range quantisation, about 45% by full integer quantisation, and about 35%14

by float16 quantisation. A total of 8272 hourly samples were continuously executed directly at the15

edge. The RPi4B executed these data two times faster compared to the RPi3B+ in all quantisation16

modes. Full-integer quantisation produced the most effective time execution, with latencies of17

2.19 seconds and 4.73 seconds for RPi4B and RPi3B+, respectively.18

Keywords: Air quality prediction; PM2.5 prediction; deep learning; post-training quantisation;19

edge computing20

1. Introduction21

Edge computing refers to the deployment of computation closer to data sources22

(edge) [1], rather than more centrally as is the case with cloud computing. It can address23

latency, privacy, and scalability issues faced by cloud-based systems [2,3]. In terms of24

latency, moving computation closer to the data sources decreases end-to-end network25

latency. In terms of privacy, computation performed at the edge or at a local trusted26

edge server prevents data from leaving the device, potentially reducing the chance for27

cyber-attacks. In terms of scalability, edge computing can avoid network bottlenecks at28

central servers by enabling a hierarchical architecture of edge nodes [4]. Moreover, edge29

computing can address energy-aware and bandwidth saving applications [5].30

For data processing and information inference, it is also possible to embed intelli-31

gence at edge devices, which can be enabled by Machine Learning (ML) algorithms [6,7].32

Deep Learning [8], a subset of Machine Learning, can be implemented on edge devices,33

such as mobile phones, wearables, and IoT nodes. Deep Learning is more resilient to34

noise and able to deal with non-linearity. Instead of relying on hand-crafted features,35

Deep Learning automatically extracts the best possible features during its training phase.36

Version January 27, 2021 submitted to Sensors https://www.mdpi.com/journal/sensors

https://www.mdpi.com
https://orcid.org/0000-0003-2486-253X
https://orcid.org/0000-0002-4706-0049
https://orcid.org/0000-0003-0568-5048
https://dx.doi.org/10.3390/s1010000
https://dx.doi.org/10.3390/s1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors

Version January 27, 2021 submitted to Sensors 2 of 25

During training, the deep neural network architecture can extract very coarse low-level37

features in its first layer, recognise finer and higher-level features in its intermediate38

layers and achieve the targeted values in the final layer [9].39

Efficient deep learning design (e.g. deep neural networks) for embedded devices40

can be achieved by optimising both algorithmic (software) and hardware aspects [9].41

At the algorithmic level, two methods can be implemented, namely model design and42

model compression [4]. In model design, researchers focus on designing deep learning43

models with a reduced number of parameters. This results in reduced memory size44

and latency, while trying to maintain high accuracy. In model compression, models are45

adapted for edge deployment by applying a number of different techniques on a trained46

model, such as parameter quantisation, parameter pruning, and knowledge distillation.47

Parameter quantisation is a conversion technique to reduce model size with minimal48

degradation in model accuracy. Parameter pruning eliminates the least essential values49

in weight tensors. This method is related to the dropout technique [10]. Knowledge50

distillation [11] creates a smaller deep learning model by mimicking the behaviour of a51

larger model. It can be realised by training the smaller model using the outputs obtained52

from the larger model. At the hardware level, the training and inferencing processes53

of deep learning models can be accelerated by the computation power of server-class54

central processing units (CPUs), graphics processing unit (GPUs), tensor processing units55

(TPUs), neural processing units (NPUs), application-specific circuits (ASICs) and field-56

programmable gate arrays (FPGAs). Deep learning accelerators with diversity of layers57

and kernels built from custom low density FPGAs can provide high-speed computation58

while maintaining reconfigurability [12]. Both ASICs and FPGAs are generally more59

energy-efficient than conventional CPUs and GPUs [4].60

Deep learning at the edge can be applied for air pollution prediction. Air pollution61

exposure causes negative impacts on human health [13,14] and economic activities [15].62

Among many air pollutants, particulate matter (PM) harms the human respiratory63

system, as it may enter into the human respiratory tract or even the lungs through64

inhalation [16,17]. Particulate matter can be in the form of PM2.5 (particulate matter65

with diameter less than 2.5 µm, or fine particles) and PM10 (diameter less than 1066

µm, or inhalable particles) [18]. It may lead to lung cancer [18], affect cardiovascular67

diseases [19], and even result in death [20]. Particulate matter causes premature death,68

and it is considered as responsible for 16% of global deaths [21]. The complex mixture69

of particulate matter and other gases like ozone was recorded to be associated with70

an all-cause death rate of up to 9 million in 2015 [22]. In this connection, building a71

forecasting system based on hourly air quality prediction plays an important role in72

health alerts [23].73

Many works on PM2.5 prediction considered only the performance evaluation by74

comparing predicted values to the dataset for accuracy. Our work aims to extend this75

body of work around deep learning models for air quality monitoring by analysing the76

deployment of these models to edge devices. In this work, our main contribution lies in77

(1) designing a novel hybrid deep learning model for PM2.5 pollutant prediction based on78

the selected dataset, (2) optimising the obtained model to a lightweight version suitable79

for edge devices, and (3) examining the model performance when running on the edge80

devices. We implement post-training quantisation as a part of the algorithmic-level81

optimisation. This technique compresses model parameters by converting floating-point82

numbers to reduced precision numbers. Quantisation can improve CPU and hardware83

accelerator latencies and potentially reduce the original deep learning model size.84

The remainder of this paper is structured as follows. Section 2 describe the related85

works and clarify our originality. Section 3 describes some of the basic theories related86

to this research. Section 4 explains the dataset and the requirement preprocessing. This87

section also defines our proposed deep learning model and gives a brief overview of the88

edge devices used in this work. Section 5 depicts the results of our proposed model in89

Version January 27, 2021 submitted to Sensors 3 of 25

terms of prediction accuracy. This section also explains the model optimisation results90

for the selected edge devices. Section 6 offers conclusions and discusses future work.91

2. Related Works92

Numerous works have been published in the last few years around the use of deep93

learning for air quality prediction. Navares and Aznarte [24] implemented Long Short-94

Term Memory (LSTM) to predict PM10 and other air pollutants. They demonstrated a95

Recurrent Neural Network (RNN) that can map input sequences to output sequences96

by including the past context into its internal state, making it suitable for time-series97

problems. However, as the time series grows, relevant information occurs further in the98

past making RNNs unable to connect suitable information. Moreover, RNNs suffer from99

the vanishing gradient problem due to cyclic loops.100

LSTMs, a variation of RNNs, are capable of learning long-term dependencies and101

able to deal with vanishing gradients. Li et al. [25] predicted hourly PM2.5 concentration102

by using an LSTM model. The authors combined historical air pollutant data, mete-103

orological data, and time stamp data. For one-hour predictions, the proposed LSTM104

model outperformed other models such as the spatiotemporal deep learning (STDL),105

time-delay neural network (TDNN), autoregressive moving average (ARMA), and sup-106

port vector regression (SVR) models. Xayasouk et al. [26] implemented LSTM and Deep107

Autoencoder to predict 10-day of PM2.5 and PM10 concentrations. By varying the input108

batch size and recording the total average of the model performances, the proposed109

LSTM model are more accurate than the DAE model. Seng et al. [27] used LSTM model110

to predict air pollutant data (PM2.5, CO, NO2, O3, SO2) at 35 monitoring stations in111

Beijing. They proposed a comprehensive model called multi-output and multi-index of112

supervised learning (MMSL) based on spatiotemporal data of present and surrounding113

stations. The effectiveness of the proposed model was compared to the existing time114

series model (Linear Regression, SVR, Random Forest, ARMA), and baseline models115

(CNN-LSTM, CNN-Bidirectional RNN). Xu et al. [28] proposed a framework called High-116

Air. This framework used hierarchical graph neural network based on encoder-decoder117

architecture. Both encoder and decoder consist of LSTM network. Other works based on118

LSTMs are also reported in [29] and [30].119

Other researchers have also proposed hybrid deep learning models. Zhao et al. [31]120

attempted to compare ANN, LSTM, and LSTM-Fully Connected (LSTM-FC) models121

to predict PM2.5 concentrations. They found that LSTM-FC produced better predictive122

performance. Their model consists of two parts. In the first, the LSTM is applied to123

model the local PM2.5 concentrations. In the second, the fully connected network is used124

to capture the spatial dependencies between the central station and neighbour stations.125

The combination of CNN and LSTM models have also been actively explored [16,32–34].126

CNN-LSTM may improve the accuracy for PM2.5 prediction, as reported by Li et al. [35],127

where the authors implemented a 1D CNN to extract features from sequence data and128

used LSTM to predict future values. In many real problems, input data may come from129

many resources, constructing spatio-temporal dependencies as explained by Qi et al.130

[32]. Gated Recurrent Units (GRUs), another variant of RNNs, have also been applied131

to PM2.5 prediction. Tao et al. [36] combined a 1-dimensional CNN with bi-directional132

GRU to forecast PM2.5 concentration. They examined attributes in the dataset to find133

the best input features for the proposed model, and evaluate the model performance134

based on mean absolute error (MAE), root mean square error (RMSE), and symmetric135

mean absolute percentage error (SMAPE). Powered by AI cloud computing to interpret136

multimode data, a new framework based on CNN-RNN is proposed by Chen et al. [37]137

to predict PM2.5 values. The framework consists of input preprocessing stages, CNN138

encoder, RNN-based learning network, and CNN Decoder. Input model considers the139

spatiotemporal factor in the form of 4D sequence data of heat maps.140

A variety of deep learning optimisation techniques have been proposed recently.141

Even though the selected case study in these works might not be related to air quality142

Version January 27, 2021 submitted to Sensors 4 of 25

prediction, we review some of them as follows. The post-trained model size can be143

reduced by quantising weights and activation function, without retraining the model.144

This method is called the post-training quantisation [38]. Banner et al. [38] proposed 4-bit145

post-training quantisation for CNN. They designed an efficient quantisation method by146

minimising mean-squared quantization error at the tensor level and avoiding retraining147

the model. Moreover, mathematical background review for integer quantisation and148

its implementation on many existing pre-trained neural network models have been149

presented by Wu et al. [39]. With 8-bit integer quantisation, the obtained accuracy150

either matches or is within 1% of the floating-point model. Intended for mobile edge151

devices, Peng et al. [40] proposed a fully-integer based quantisation method tested on152

an ARMv8 CPU. The proposed method achieved comparable accuracy to other state-of-153

the-art methods. Li and Alvarez [41] specifically proposed the integer-only quantisation154

method for LSTM neural network. The obtained result is accurate, efficient and fast155

to execute. Moreover, the proposed method has been deployed to a variety of target156

hardware.157

To the best of our knowledge, the previous explained works related to air quality158

prediction do not specifically optimise their obtained models to the resource-constrained159

edge devices. Our work aims to extend this body of work around deep learning models160

for air quality monitoring by analysing the deployment of these models to edge device.161

We implemented post-training quantisation techniques to the baseline model using162

tools provided by TensorFlow framework [42] and evaluated the optimised model163

performance on Raspberry Pi boards. Table 1 summarises the aforementioned research164

related to air quality prediction. In the last rows of the table, we stated our work165

contribution.166

3. Related Theory167

3.1. One-Dimensional Convolutional Neural Network168

Many articles focus on two-dimensional Convolutional Neural Network (2D CNN)169

models. These networks work best for image classifications problems. The same ap-170

proach can be applied to one-dimensional (1D) sequences of data (time-series data). A171

1D CNN model learns to extract features from time-series data and maps the internal172

features of the sequence. This model is very efficient to gather information from raw173

time-series data directly, especially from shorter (fixed-length) segments of the overall174

dataset.175

In our case study, we extract time-series air pollutant data such as PM2.5, PM10, SO2,176

CO, NO2, and O3, and meteorological data such as temperature, air pressure, dew point,177

wind direction and wind speed. Figure 1 illustrates how the feature detector (or kernel)178

of the 1D CNN slides across the features, by assuming that our input model is only the179

pollutant data.180

Figure 1. A feature detector of 1D CNN slides over time-series data.

Version January 27, 2021 submitted to Sensors 5 of 25

Table 1. Summary of the works related to air quality prediction. We studied current research trend on deep learning
application and extend this body of work around deep learning models by analysing the deployment of these models to
edge device. In the last row of the table, we stated our work contribution

Reference Proposed Model Target Prediction Model Optimisation Note

[16] EWT-MAEGA-
NARX

PM2.5, SO2, NO2, and CO No Combining the EWT, MAEGA and
NARX neural networks fro multi-step
air pollutant predictions

[24] LSTM CO, Average NO2, Average
O3, Average PM10, Average
SO2, Average Plantago, Aver-
age Poaceae

No Combining different type of group in-
puts for the LSTM network. Choos-
ing a single but comprehensive model
rather than multiple individual mod-
els.

[25] LSTM Extended PM2.5 No Adding auxiliary Inputs (meteorolog-
ical data, month of year, and hour of
day) for LSTM network

[26] LSTM and Deep Au-
toencoder

PM2.5, PM10 No Varying the input batch size and
recording the total average of the
model performances

[27] LSTM-based MMSL PM2.5, CO, NO2, O3, SO2 No Considering spatiotemporal factors
[28] HighAir Frame-

work
Air Quality Index (AQI),
Points of Interest (POI),
weather data

No Using graph neural network based on
encoder-decoder architecture. Both en-
coder and decoder consist of LSTM net-
work

[29] Geo-LSTM PM2.5 No Implementing geo-layer to integrate
the spatial-temporal correlation from
other monitoring stations

[30] An ensemble LSTM PM2.5 No Performing 3 steps: ensemble em-
pirical mode decomposition (EEMD),
LSTM, inverse EEMD

[31] LSTM-FC PM2.5 No Using LSTM-based temporal simulator
and NN-based spatial combinatory

[32] Graph CNN-LSTM PM2.5 No Implementing graph signal for spatial
dependency modelling

[33] Deep-AIR PM2.5, PM10, NO2, CO, O3 No Combining CNN-LSTM networks, us-
ing ResNet to let the model learn large
information

[34] CNN-LSTM PM2.5 No Using CNN to eliminate redundancy
and obtain the features, using LSTM to
predict the time-series

[35] CNN-LSTM PM2.5 No Using 1D CNN for feature extraction
and the LSTM layer for prediction

[36] CBGRU PM2.5 No Using 2 layers CNN and Bidirectional
GRU

[37] LSTM PM2.5 No Using cloud server node with AI tech-
nology

Our work CNN-LSTM PM2.5 Yes Implementing post-training quantisa-
tion for model optimisation. Deploy-
ing deep learning model to edge de-
vices

If the input data to the convolutional layer of length n is denoted as x, the kernel of181

size k as h, the kernel window is shifted by s positions, then the output y is defined as:182

y(n),=

{
∑k

i=0 x(n + i)h(i) if n = 0

∑k
i=0 x(n + i + (s− 1))h(i) otherwise

(1)

183

For example, if we have n = 6, k = 3, and s = 1, then the output will be:184

Version January 27, 2021 submitted to Sensors 6 of 25

y(0) = x(0)h(0) + x(1)h(1) + x(2)h(2)185

y(1) = x(1)h(0) + x(2)h(1) + x(3)h(2)186

y(2) = x(2)h(0) + x(3)h(1) + x(4)h(2)187

y(3) = x(3)h(0) + x(4)h(1) + x(5)h(2)188

If it is assumed that there is no padding applied to the input data, then the length189

of output data o is given by:190

o = bn− k
s
c+ 1 (2)

191

Therefore, we can find the length of y based on the example mentioned above that is192

o = (6− 3)/1 + 1 = 4.193

Aside from the convolutional layer, there is a pooling layer, which downsamples194

the dimensions of the convolution output. There are several kinds of pooling layer, such195

as max pooling and average pooling. Max-pooling takes the maximum of the window,196

whereas average pooling takes the average value of the window. The dimensions output197

by the convolutional layers may be greater than one. The flattening process aims to198

reduce the output dimension to form a flat structure suitable for fully connected layers.199

3.2. Long Short-Term Memory Cells200

Long Short-Term Memory (LSTM) [43] is a structural modification of the Recurrent201

Neural Network (RNN) that adds memory cells in the hidden layer so that it can be202

implemented to control the flow of information in time-series data. Figure 2 shows the203

LSTM network cell structure.204

Figure 2. An LSTM cell structure.

As shown in Figure 2, the network inputs and outputs on the LSTM structure are205

described as follows:206

Ft = σ(W f · [Ht−1, Xt] + b f) (3)

It = σ(Wi · [Ht−1, Xt] + bi) (4)

C̃t = tanh(Wc · [Ht−1, Xt] + bc) (5)

Ct = Ft ∗ Ct−1 + It ∗ C̃t (6)

Ot = σ(Wo · [Ht−1, Xt] + bo) (7)

Ht = Ot ∗ tanh(Ct) (8)

σ(x) =
1

1 + e−x (9)

tanh(x) =
ex − e−x

ex + e−x (10)

Version January 27, 2021 submitted to Sensors 7 of 25

With W f , Wi, Wc and Wo as input weights, b f , bi, bc, and bo as biases, t is the current time,207

t− 1 represents the previous state, X is the input, H is the output, and C is the status of208

the cell. The notation σ is a sigmoid function, which produces an input between 0 and 1.209

A value of 0 means not allowing any value to pass to the next stage, while a value of 1210

means to let the output fully enter the next stage. The hyperbolic tangent function (tanh)211

is used to overcome the loss of gradients during the training process, which generally212

occurs in the RNN structure.213

3.3. Error Measures214

In this work, root mean square error (RMSE) and mean absolute error (MAE), are215

used as evaluation parameters. RMSE and MAE can be calculated using Equation (11)216

and Equation (12), respectively.217

RMSE =

√
∑n

i=1 (Yi − Ŷi)
2

n
(11)

MAE =
∑n

i=1 |Yi − Ŷi|
n

(12)

218

where n is the total number of data samples, Yi are the measured values, and Ŷi are the219

predicted values.220

3.4. Correlation Coefficient between Features221

Correlation analysis can provide information about the correlation of two time-222

series features. In our work, we evaluate the time-series of air quality parameters. If223

time series data is vectored as X = (x1, x2, . . . , xn) and there is another vector Y =224

(y1, y2, . . . , yn), then the correlation coefficient r of the two vectors is calculated using225

the following equation:226

r =
n ∑n

i=1 xiyi −∑n
i=1 xi ∑n

i=1 yi√
n ∑n

i=1 xi
2 − (∑n

i=1 xi)
2
√

n ∑n
i=1 yi

2 − (∑n
i=1 yi)

2
(13)

The value of r in Equation (13) is the Pearson correlation coefficient. When 0 < r < 1,227

it is said that both features have positive correlations, and when −1 < r < 0 they228

have negative correlation. A value of 0 indicates that there is no correlation between229

the features. When the absolute value of r approaches 1, then both features higher230

correlation. A value r of 1 indicates two series of data are identical.231

3.5. TensorFlow Post-training Quantisation232

In thiw work, we built deep learning models using TensorFlow 2.2 framework [42].233

TensorFlow provides a lightweight version called TensorFlow Lite that offers various234

tools to convert and run TensorFlow models on various edge devices, including mobile,235

embedded and IoT devices. The deep learning models were built, trained, tested and236

optimised on a desktop computer. From these steps, a lightweight (optimised) deep237

learning model was obtained. The optimised model was then deployed to the Raspberry238

Pi boards. To port the model, execute it, and define the inputs/outputs on the Raspberry239

Pi boards, it is necessary to install the TensorFlow Lite Interpreter library.240

TensorFlow provides tools for optimising deep learning model called the Tensor-241

Flow Model Optimisation Toolkit. Depending on the requirements of our applications,242

we can choose pre-optimised model, post-training or training-time optimisation tools.243

In this work, we focus on post-training quantisation. In post-training quantisation, the244

optimisation takes place after training process has been completed. There are three245

post-training quantisation methods provided by TensorFlow, namely dynamic range246

quantisation, full integer quantisation, and float16 quantisation. Dynamic range quantisation247

Version January 27, 2021 submitted to Sensors 8 of 25

Figure 3. Post-training optimisation methods provided by TensorFlow [44]

statically quantises only the weights, from floating-point (32-bits) to integer (8-bits).248

During inference, weights are converted back from 8-bits to 32-bits and computed using249

floating-point kernels. Compared to the dynamic range quantisation, full integer quanti-250

sation offers latency improvements. Full integer quantisation supports two methods,251

namely integer with float fallback and integer-only conversions. The integer with float fall-252

back means that a model can be fully integer quantised, but the execution falls back to253

float32 when operators do not have an integer implementation. The integer-only method254

is appropriate for 8-bit integer-only devices, such as microcontrollers and accelerators255

like EdgeTPU. In this method, the conversion fails if the model has unsupported op-256

eration. Finally, float16 quantisation converts weights to float16 (16-bit floating-point257

numbers). Figure 3 depicts the post-training methods graphically.258

4. Materials and Methods259

4.1. Dataset and Preprocessing260

In this study, we used a dataset provided by Zhang et al. [45], which can be down-261

loaded from the University of California, Irvine (UCI) Machine Learning Repository262

page. The dataset captures Beijing air quality, collected from 12 different Guokong (state263

controlled) monitoring sites in Beijing and its surroundings [45]. These 12 monitoring264

sites are Aotizhongxin, Changping, Dingling, Dongsi, Guanyuan, Gucheng, Huairou,265

Nongzhanguan, Shunyi, Tiantan, Wanliu, and Wanshouxigong.266

Regardless of the real geographical location and the ability for each monitoring267

site to gather both pollutant and meteorological data, we consider every monitoring268

site merely as a Node. Therefore, we model a complex monitoring site as a simple node.269

The term node is closely associated with the end device, where the edge computing270

is usually executed. We are interested only in the data obtained by each node and its271

correlation with other nodes. We number the 12 monitoring sites as mentioned above,272

from Aotizhongxin as Node 1, Changping as Node 2, Dingling as Node 3, Dongsi as273

Node 4, etc.274

There are a total of 12 columns (features) and 36,064 rows in the dataset, collected275

from 01 March 2013 to 28 February 2017. Each row in the dataset is hourly data, com-276

posed of pollutant data (PM2.5, PM10, SO2, CO, NO2, and O3) and meteorological data277

(temperature, air pressure, dew point, rain, wind direction and wind speed). We split278

data into training data and test data. Data from 01 March 2013 to 20 March 2016 were279

used as training data, whereas data from 21 March 2016 to 28 February 2017 were used280

as test data. By using this division, there are a total of 26,784 training data and 8,280281

test data. In this work, we focus on predicting the PM2.5 concentrations. We evaluated282

the best model for a short-term prediction, that is 1-hour particulate matter concentra-283

Version January 27, 2021 submitted to Sensors 9 of 25

tions. Figure 4 shows the PM2.5 concentrations obtained from Node 1 (Aotizhongxin284

monitoring site).285

Figure 4. PM2.5 concentration gathered by Node 1 (Aotizhongxin monitoring site). This figure
depicts the whole period of PM2.5 concentration, starting from 01 March 2013 to 28 February 2017.

Data can be numerical or categorical. The attribute of wind direction in the dataset,286

which is categorical data, admits 16 values: N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW,287

SW, WSW, W, WNW, NW, and NNW. These features were label encoded. Dividing 360288

degrees by 16 (number of wind directions) and applying floor rounding, we found a289

label for N is 360, NNE is 22, NE is 45, ENE is 67, etc. Instead of labelling N as 0, we290

assign it as 360. For missing values in the dataset, we filled them with the last timestamp291

data.292

Besides labelling the categorical data and filling in missing values, we scaled the293

input features during the training and testing phases. Feature scaling is a method used294

to normalise the range of independent variables or features of data. In data processing,295

it is also known as data normalisation and is generally performed during the data296

preprocessing step. In this work, all inputs are normalised to the range of 0 and 1297

(min-max scaler). The general formula for a min-max of [0, 1] is given as:298

x
′
=

x−min(x)
max(x)−min(x)

(14)

4.2. Feature Selection299

Our work aims to predict PM2.5. As shown in Table 2, PM2.5 are strongly correlated300

to PM2.5, NO2 and CO (with r > 0.6), moderately correlated to SO2 (with r = 0.49), and301

weakly correlated to O3 (with r = −0.15). It is also found that rain (RAIN), air pressure302

(PRES), and temperature (TEMP) have the weakest correlation with PM2.5. To obtain303

the optimum number of input features, only RAIN, PRES and TEMP are varied. Thus,304

four different combinations are obtained and the values of RMSE and MAE for each305

combination are recorded, as shown in Table 3. Table 3 reports the feature selection306

process only for Node 1. The results obtained from this step can be applied to all other307

nodes.308

As shown in Table 3, removing rain during training (11 attributes) yielded the best309

performance. Thus, PM2.5, PM10, SO2, CO, NO2, and O3, temperature, air pressure, dew310

point, wind direction and wind speed were selected as the input features for our model.311

We use the same input features for all monitoring sites.312

To obtain the RMSE and MAE values shown in Table 3, we used a simple LSTM313

network as a baseline model before implementing our proposed hybrid model (see314

Section 4.3). A 1-layered LSTM with 15 neurons was selected as a model predictor. The315

lookback length of the input is determined by calculating the autocorrelation coefficient316

among the lagged time series of PM2.5 data. We set 0.7 as a minimum requirement for317

high temporal correlation among the lagged data. As shown in Figure 5, eight samples318

Version January 27, 2021 submitted to Sensors 10 of 25

Table 2. Correlation coefficients (r) among attributes at Node 1.

Attribute PM2.5 PM10 SO2 NO2 CO O3 TEMP PRES DEWP RAIN WD WSPD

PM2.5 1 0.87 0.49 0.67 0.76 -0.15 -0.09 -0.02 0.15 -0.01 -0.19 -0.27
PM10 0.87 1 0.47 0.65 0.65 -0.12 -0.07 -0.05 0.09 -0.02 -0.12 -0.17
SO2 0.49 0.47 1 0.44 0.57 -0.22 -0.36 0.23 -0.29 -0.04 -0.12 -0.11
NO2 0.67 0.65 0.44 1 0.66 -0.46 -0.17 0.04 0.12 -0.03 -0.24 -0.48
CO 0.76 0.65 0.57 0.66 1 -0.32 -0.37 0.24 -0.12 -0.01 -0.22 -0.25
O3 -0.15 -0.12 -0.22 -0.46 -0.32 1 0.58 -0.42 0.30 0.03 0.21 0.33
TEMP -0.09 -0.07 -0.36 -0.17 -0.37 0.58 1 -0.83 0.83 0.04 0.05 0.01
PRES -0.02 -0.05 0.23 0.04 0.24 -0.42 -0.83 1 -0.78 -0.06 -0.02 0.09
DEWP 0.15 0.09 -0.29 0.12 -0.12 0.30 0.83 -0.78 1 0.08 -0.13 -0.33
RAIN -0.01 -0.02 -0.04 -0.03 -0.01 0.03 0.04 -0.06 0.08 1 -0.01 0.00
WD -0.19 -0.12 -0.12 -0.24 -0.22 0.21 0.05 -0.02 -0.13 -0.01 1 0.31
WSPD -0.27 -0.17 -0.11 -0.48 -0.25 0.33 0.01 0.09 -0.33 0.00 0.31 1

Table 3. Model performance based on different input attributes for Node 1.

Input features Number of inputs RMSE MAE

All 12 17.704 10.017
Without rain 11 17.363 9.807
Without rain and pressure 10 18.168 10.268
Without rain, pressure and temperature 9 17.638 9.937

(including time lag = 0) were selected as the length of the input model. At this time lag,319

all autocorrelation coefficients have values higher than 0.7 for all monitoring sites. Thus,320

we used the current sample (time lag = 0) and the previous 7 samples to predict 1 sample321

in the future.322

Figure 5. Autocorrelation coefficients for PM2.5 concentration with different time lags.

4.3. Proposed Model323

In Section 4.2, we implemented a simple, single-layered LSTM model composed324

of 15 neurons to evaluate model performance based on different input attributes. From325

this experiment, we can determine which attributes should be fed to the model. In this326

section, we propose a hybrid model by combining one-dimensional convolutional neural327

networks (1D CNN) as feature extractors, and feeding the output of these CNNs to an328

LSTM network, as shown in Figure 6.329

The proposed model is composed of two inputs, both are formed in a parallel struc-330

ture. In the first input (INPUT-1), only local (present) node data are collected, whereas in331

the second input (INPUT-2), all PM2.5 data obtained from local and surrounding nodes332

Version January 27, 2021 submitted to Sensors 11 of 25

Figure 6. The proposed hybrid CNN-LSTM model. In this model, there are two parallel inputs
(INPUT-1 and INPUT-2), one coverts the local node data (processed by CNN-1), and another one
contains spatiotemporal dependency of PM2.5 data (processed by CNN-2).

are fed. Local node refers to the node where PM2.5 is being predicted. Data for INPUT-1333

are PM2.5, PM10, SO2, CO, NO2, and O3, temperature, air pressure, dew point, wind334

direction and wind speed (11 features in total). Eight timesteps (lookback) of these inputs335

are used to predict one hour of PM2.5 in the future. Each batch of inputs is fed to the336

CNN network, which acts as a feature extractor before entering the LSTM network. After337

various experiments, we determined the properties of the CNN networks. Both CNN338

networks (block CNN-1 and CNN-2 in Figure 6) are composed of five convolutional339

layers and a single average pooling layer. The reshape layer configures the outputs340

produced by the CNN layers before entering the LSTM network. The same number of341

neurons are maintained from the previous experiment (15 neurons) with the rectified342

linear unit (ReLU) activation function. A dense layer with one neuron yields the final343

prediction. During the training process, the Adam optimiser was used.The properties of344

each layer is summarised in Table 4.345

Table 4. Hybrid CNN-LSTM network properties of the proposed model. CNN-1 and CNN-2 have
the same convolutional layer properties

Layer Properties

1st Convolutional filter = 50, kernel size = 3, activation = ReLU
2nd Convolutional filter = 30, kernel size = 3, activation = ReLU
3rd Convolutional filter = 15, kernel size = 2, activation = ReLU
4th Convolutional filter = 10, kernel size = 2, activation = ReLU
5th Convolutional filter = 5, kernel size = 2, activation = ReLU
Pooling global average pooling
Reshape reshape((1,15))
LSTM units = 15, activation = ReLU
Dense units = 1

As explained in Section 4.2, we use eight samples to predict one future sample. To346

implement deeper convolutional layers as feature extractors to a relatively short data347

length (in our case eight samples), we should set small kernel sizes. The length of the348

next convolutional layer can be calculated using Equation 2. By setting a small value of349

kernel size k, we can get higher output size o. Thus, a small kernel size will give more350

possibilities to operate another convolutional layer in the next step. In our work, we use351

kernel size equal to 3 for the first and second convolutional layers, and kernel size equal352

to 2 for remaining three convolutional layers. The selected kernel sizes and filters shown353

in Table 4 are obtained based on our various experiments. Choosing a smaller filter size354

for each layer will produce a smaller final model size. Thus, it will benefit to our edge355

Version January 27, 2021 submitted to Sensors 12 of 25

device. We found that the filter sizes of 50, 30, 15, 10 and 5 for each convolutional layer356

in our model produce the best result. We also discovered that the same properties of357

CNN-1 and CNN-2 yield optimum solutions as feature extractors while maintaining358

work balance for each input during training and inferencing stages.359

4.4. Spatiotemporal Dependencies360

In this study, both spatial and temporal qualities are studied. The temporal factor is361

taken into account by selecting time-lag data (lookbacks) as a model input, as discussed362

in Section 4.2. A time lag equal to zero indicates the current sample. When the time-363

lag is less than 8, the autocorrelation coefficient is higher than 0.7 for all nodes. This364

autocorrelation value indicates a high temporal correlation. Therefore, we use 8 values365

for the input length (current measured value plus 7 past values).366

As mentioned previously in Section 4.3, in the first input of the model (INPUT-1),367

temporal dependency of the local node data is covered. The attributes involved for368

the first input are 8 timesteps of PM2.5, PM10, SO2, CO, NO2, and O3, temperature, air369

pressure, dew point, wind direction and wind speed. We can consider that in INPUT-1,370

only temporal data are covered. However, in the second input of the model (INPUT-2),371

both temporal and spatial data of the local and pairing nodes are included. In the second372

input, we collect only 8 timesteps of all PM2.5 data (from local and surrounding nodes)373

and neglect all other environmental and meteorological data. All PM2.5 samples from 12374

nodes are analysed and the PM2.5 correlation coefficients between nodes are calculated.375

Evaluating the correlation coefficient can indicate the effect of spatial dependency. As376

shown in Table 5, PM2.5 concentrations have a strong correlation (r > 0.7) among nodes.377

A strong correlation implies that there is a high spatial dependency for PM2.5 among378

nodes. Therefore, in this experiment, we include a feature extraction process for the379

PM2.5 concentrations at all neighbouring nodes (data INPUT-2).380

Table 5. PM2.5 coefficient correlation for all nodes. A strong correlation implies that there is a spatial dependency for
particulate matter data. Therefore, when predicting PM2.5 data at a certain node, we should consider PM2.5 values at other
nodes.

Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9 Node10 Node11 Node12

Node1 1 0.84 0.83 0.95 0.96 0.89 0.83 0.94 0.88 0.93 0.93 0.91
Node2 0.84 1 0.90 0.81 0.83 0.84 0.84 0.80 0.80 0.80 0.86 0.78
Node3 0.83 0.90 1 0.80 0.83 0.84 0.85 0.79 0.81 0.79 0.85 0.77
Node4 0.95 0.81 0.80 1 0.97 0.89 0.82 0.95 0.88 0.96 0.93 0.93
Node5 0.96 0.83 0.83 0.97 1 0.92 0.84 0.94 0.88 0.95 0.95 0.94
Node6 0.89 0.84 0.84 0.89 0.92 1 0.85 0.87 0.85 0.89 0.93 0.88
Node7 0.83 0.84 0.85 0.82 0.84 0.85 1 0.80 0.89 0.81 0.84 0.79
Node8 0.94 0.80 0.79 0.95 0.94 0.87 0.80 1 0.87 0.94 0.91 0.92
Node9 0.88 0.80 0.81 0.88 0.88 0.85 0.89 0.87 1 0.87 0.87 0.86
Node10 0.93 0.80 0.79 0.96 0.95 0.89 0.81 0.94 0.87 1 0.92 0.95
Node11 0.93 0.86 0.85 0.93 0.95 0.93 0.84 0.91 0.87 0.92 1 0.90
Node12 0.91 0.78 0.77 0.93 0.94 0.88 0.79 0.92 0.86 0.95 0.90 1

Figure 7 depicts the kinds of input data required to forecast the value of PM2.5 at a381

certain node. If we want to forecast the next 1-hour value of PM2.5 concentration at Node382

1, we need to use current pollutant and meteorological samples plus 7 previous samples383

collected by that node (the first input of the proposed model) and collect all PM2.5 values384

from all other nodes (the second input of the proposed model). This scenario also applies385

to all other nodes.386

4.5. Deep Learning Data Processing387

The properties of our proposed deep learning model have been summarised in388

Table 4. In this section, we discuss the internal inference process in our deep learning389

Version January 27, 2021 submitted to Sensors 13 of 25

a
Figure 7. Illustration of spatiotemporal consideration for predicting the value of PM2.5 concentra-
tion at Node 1. Node 2 to 12 send their PM2.5 data to Node 1. Node 1 uses these PM2.5 data as the
second input of the proposed model (INPUT-2 in Figure 6), whereas the local data at Node 1 are
used as the first input (INPUT-1 in Figure 6). This technique also applies to all other nodes.

model. In CNN-1, the 8 timesteps of 11 input features forms an 8× 11 matrix. These390

11 features are composed of pollutant and meteorological data (PM2.5, PM10, SO2, CO,391

NO2, and O3, temperature, air pressure, dew point, wind direction and wind speed). In392

CNN-2, the 8 timesteps of 12 input features forms an 8× 12 matrix. These 12 features393

consist of PM2.5 concentrations at 12 nodes. According to equation 2, with a kernel (or394

feature detector) size of 3 and a stride step of 1, the kernel slides through the input matrix395

for 6 steps ((8− 3)/1+ 1 = 6). With a filter size of 50, the first convolutional layer yields396

a 6× 50 matrix. In the second convolutional layer, the input is now a 6× 50 matrix.397

With a size of 3, the kernel slides along the window for 4 steps ((6− 3)/1 + 1 = 4) and398

produces a 4× 30 matrix (since the filter size is 30). The same process applies to all399

convolutional layers. Thus, the fifth convolutional layer yields a 1× 5 matrix. A global400

average pooling layer behaves as a flattening process. By concatenating both CNN layer401

outputs, the tensor is ready to enter the LSTM network. The LSTM network consists of402

15 cells (or units). Details of the data processing inside an LSTM cell have already been403

discussed in Section 3.2. Finally, a single dense layer produces the final result, that is our404

PM2.5 prediction. Figure 8 summarises this process.405

Figure 8. Details of data processing in the proposed deep learning model.

Version January 27, 2021 submitted to Sensors 14 of 25

4.6. The Selected Edge Devices406

Having evaluated the proposed deep learning model, we now optimise and deploy407

that model to edge devices. In this work, we utilised the Raspberry Pi, a popular, credit408

card-sized yet powerful single-board computer (SBC) developed by the Raspberry Pi409

Foundation. In recent years, there have been considerable varieties of applications410

developed using Raspberry Pi boards Sajjad et al. [46]. We have chosen two different411

Raspberry Pi boards: Raspberry Pi 3 Model B+ (RPi3B+) and Raspberry Pi 4 Model B412

(RPi4B) to show the variation in model performance. The RPi4B is more computationally413

capable than the RPi3B+. Table 6 shows a feature comparisons between the two boards.414

Table 6. Raspberry Pi 3 Model B+ and Raspberry Pi 4 Model B feature comparisons

RPi3B+ RPi4B

SoC Broadcom BCM2837B0 Broadcom BCM2711
CPU Quad-core Cortex-A53 (ARMv8) 64-bit

@1.4 GHz
Quad-core Cortex-A72 (ARMv8) 64-bit
@1.5 GHz

GPU Broadcom VideoCore IV @250 MHz Broadcom VideoCore VI @500 MHz
FPU VFPv4 + NEON VFPv4 + NEON
RAM 1 GB LPDDR2 SDRAM 2 GB LPDDR4 SDRAM (used in this

experiment)
Storage microSD card microSD card
Power ratings Idle: 459 mA (2.295 Watt), Maximum:

1.13 A (5.661 Watt)
Idle: 600 mA (3 Watt), Maximum: 1.25
A (6.25 Watt)

We selected Raspberry Pis since these boards support both TensorFlow and Ten-415

sorFlow Lite frameworks. Therefore, we can explore wide-range functionalities related416

to post-training quantisation provided by the TensorFlow, and demonstrate the perfor-417

mance of both original and quantised models by calculating the model accuracy, the418

obtained model file sizes and the execution time directly at the edge. Moreover, the419

Raspberry Pi’s rapid use for research and hobbyist purposes gave rise to many online420

forums and communities.421

5. Results and Discussion422

5.1. Evaluation Scenario423

The evaluation process in this section can be generally described as follows. We424

provide 20 different deep learning models and divide these models into three groups.425

The performance of all models is evaluated based on the attained RMSE and MAE values426

at all nodes. The best model becomes our proposed model. The TensorFlow file of427

the proposed model will then be converted into TensorFlow Lite model. In this work,428

we used TensorFlow version 2.2. Further optimisation is conducted by implementing429

post-training quantisation of the original TensorFlow model. Finally, the performance of430

each TensorFlow Lite model is evaluated. The resulted model file size, the execution time,431

and the prediction performance of each TensorFlow Lite model are reported. Figure 9432

illustrates this process.433

Figure 9. The Evaluation scenario diagram conducted in this work.

5.2. Model Performance434

Based on pollutant and meteorological data from the current and the previous 7435

hours, we predict the short-term PM2.5 concentration for 1 hour in the future. Model436

Version January 27, 2021 submitted to Sensors 15 of 25

performance was measured based on the obtained RMSE and MAE values evaluated at437

all nodes. The values of RMSE and MAE were calculated using equation 9 and Equation438

10, respectively. Table 7 summarises the obtained RMSE and MAE of all models, with439

Node 1 as a representative. The complete result of all nodes is presented in Table A1 and440

Table A2. We compared our proposed model against several deep learning architectures441

and proved that our proposed model outperforms other models. Model comparison in442

Table 7 can be explained as follows:443

• Simple models with local data only (Group I) take input samples directly without444

passing them through CNN layers. In these models, the convolutional, pooling,445

concatenation and reshaping layers are omitted. Thus, the inputs are directly446

supplied to the RNN, LSTM, GRU or Bidirectional layers. The kinds of inputs used447

in this architecture are PM2.5, PM10, SO2, CO, NO2, and O3, and meteorological448

data such as temperature, air pressure, dew point, wind direction and wind speed.449

• Hybrid models with local data only (Group II) filter input samples through the CNN450

layers before entering the ANN, RNN, LSTM, GRU or Bidirectional layers. These451

architectures are hybrid models. In this group, only INPUT-1 and CNN-1 layers452

are considered, whereas INPUT-2 and CNN-2 layers are neglected. The properties453

of the CNN layers have been described in Table 4. In this case, only PM2.5, PM10,454

SO2, CO, NO2, and O3, and meteorological data such as temperature, air pressure,455

dew point, wind direction and wind speed are used as the model inputs, without456

considering neighbouring PM2.5 samples.457

• Hybrid models with spatiotemporal dependency (Group III) use two inputs (INPUT-1458

and INPUT-2), and each input is filtered by CNN layers (CNN-1 and CNN-2).459

The first input covers the pollutant and meteorological data for the node under460

consideration, while the second input comprises PM2.5 samples from neighbouring461

nodes. Models in Group III comply with Figure 6, but we vary the LSTM layer with462

ANN, RNN, GRU or Bidirectional layers.463

• Artificial neural network (ANN), recurrent neural network (RNN), long short-464

term memory (LSTM) and gated recurrent unit (GRU) models in all groups were465

evaluated and their performance were compared. For fairness, all models in all466

groups are composed of one hidden layer with 15 neurons (units) inside the layer.467

At the output layer, there is a dense layer with one neuron to produce the final468

prediction.469

• Bidirectional layers are an extension of conventional RNN, LSTM and GRU with two470

different input directions. First, the input sequence is treated in the usual direction.471

Second, the input sequence is handled in reverse direction. This scenario can offer472

additional context to the model and may result in faster and even deeper learning473

on the input sequence.474

As shown in Table 7, we compared 20 different models. We can see that by adding a475

deeper model (CNN layers) as feature extractor before the predictor (ANN, RNN, LSTM476

or GRU) will slightly improve models performances. Generally, Group II has better477

performance than Group I. Adding spatiotemporal considerations along with pollutant478

and meteorological data as inputs of the model can increase the accuracy. At some nodes,479

the results can be improved significantly. For example, at Node 1, Group I and Group480

II produce RMSE values between 17 and 19, whereas Group III produces RMSE values481

between 15 and 17. The best RMSE value was obtained by our proposed model (model482

no 16 in Table 7), which is 15.322. This RMSE value is better than all other investigated483

models. For instance, the Bidirectional RNN model in Group I yielded an RMSE value of484

19.377, the CNN-LSTM model in Group II produced 17.652, and the CNN-ANN model485

in Group III returned the RMSE value of 17.160. If we continue to look in more detail486

to other nodes in Table A1 and Table A2, the PM2.5 concentration at Node 11 can be487

better forecast, not only by our proposed model but also by other investigated models.488

In contrast, the PM2.5 concentration at Node 12 was the hardest to predict as indicated489

by the higher RMSE and MAE values. For all nodes, our proposed model produced490

Version January 27, 2021 submitted to Sensors 16 of 25

Table 7. Comparison of RMSE and MAE values for PM2.5 prediction using different model
architectures calculated for Node 1. Twelve different model architectures are proposed and
categorised into three groups. The best model for each group is indicated in bold. The proposed
model in this work belongs to Group III (model number 16). In Group III, both spatial and
temporal dependencies are considered. Our proposed model yields the lowest RMSE and MAE
values. Detail results for all nodes are shown in Table A1 and Table A2

No. Model Type RMSE MAE

Simple models with local data only (Group I)
1 RNN 18.485 10.636
2 LSTM 17.786 10.230
3 GRU 18.367 10.664
4 Bidirectional RNN 19.377 12.257
5 Bidirectional LSTM 18.016 10.427
6 Bidirectional GRU 18.603 10.944

Hybrid models with local data only (Group II)
7 CNN-ANN 17.757 10.321
8 CNN-RNN 18.227 10.906
9 CNN-LSTM 17.652 10.203
10 CNN-GRU 17.244 9.552
11 CNN-Bidirectional RNN 17.334 10.001
12 CNN-Bidirectional LSTM 17.344 10.054
13 CNN-Bidirectional GRU 17.462 10.486

Hybrid models with spatiotemporal dependency (Group III)
14 CNN-ANN 17.160 10.307
15 CNN-RNN 15.672 9.162
16 CNN-LSTM (Proposed Model) 15.268 8.778
17 CNN-GRU 17.169 9.665
18 CNN-Bidirectional RNN 17.365 10.443
19 CNN-Bidirectional LSTM 15.643 8.853
20 CNN-Bidirectional GRU 16.089 9.512

the best performance with error values between 14 and 18 for RMSE, and between 7491

and 9 for MAE. The obtained RMSE and MAE values are linearly related. Therefore, by492

evaluating the RMSE values, we can get an overview of the MAE values.493

Figure 10 shows the boxplot of prediction deviation of all model. The prediction494

deviation is obtained by subtracting the real value of data test from the predicted values495

of the model. From the boxplot, we can find information about the variability of the data.496

The box plot is also useful when we want to compare the distribution between many497

models. In Figure 10, the solid line in the middle of each box represents the median498

value. Since the graph represents the prediction deviation between predicted and real499

data, we prefer this line close to zero. The shorter box and whisker, the more centralised500

the data is. The more centralised data means the more accurate our model in predicting501

the PM2.5 data. We also removed the outliers values in order to make the graph more502

readable. As shown in Figure 10, our proposed model gives the best result as it produces503

more centralised data and the median value closest to zero.504

In order to describe model performance more intuitively, Figure 11 shows a line505

plot between the real and predicted values on the test data at Node 1. The solid line506

and dashed line indicate the real and predicted values, respectively. There are a total of507

8,280 samples, collected from 21 March 2016 to 28 February 2017. Overall, the model508

can capture the fluctuations of future PM2.5 values effectively, as shown in Figure 11.509

The larger errors usually happen when there are spikes in the actual data, whereas for510

smoother PM2.5 data variations, our model forecasts successfully.511

Version January 27, 2021 submitted to Sensors 17 of 25

Figure 10. The boxplot of the prediction deviation of all investigated models at Node 1.

Figure 12 shows scatter plots obtained from all nodes, showing the relationship512

between real and predicted values; the perfect predictions coincide with the diagonal513

solid line. Due to the presence of prediction errors the points diverge from this diagonal.514

All dots mapped below the diagonal solid (ideal) line indicate predictions that are lower515

than the correct values, while the opposite occurs for points above the ideal line. For516

example, in the case of Node 3, we observe that more deviations occur below the ideal517

line. The model predicted 103.92 µg/m3, whereas the actual value is 414 µg/m3. The518

same case occurs for Node 7. The model predicted 162.36 µg/m3, whereas the real519

sample is 556 µg/m3. Some mispredictions may be due to measurement error, which520

can be recognised from sudden changes in a sequence of measured samples that are521

not technically feasible. As shown for Node 12 in Figure 12, there is a significant error522

in predicting PM2.5 data. The model predicted 554.24 µg/m3 whereas the measured523

sensor value is only 3 µg/m3 for the labelled point. If we check the dataset at Node 12524

in more detail, there had been a sharp drop in the measured value from 621 µg/m3 to525

only 3 µg/m3. From 3 µg/m3, the measured value then jumps sharply to 144 µg/m3.526

The LSTM network could not recognise these changes. Therefore, there is a significant527

prediction error at this point.528

Figure 11. Line plot of real and predicted PM2.5 data at Node 1.

Version January 27, 2021 submitted to Sensors 18 of 25

Figure 12. Scatter plots of real and predicted values of PM2.5 data resulted from the proposed
model at all nodes.

5.3. Model Optimisation for the Edge529

After the final model has been trained, the next process is to deploy that model to530

the edge after optimising it. This Optimisation benefits filesize and computation latency.531

The initially created model is the TensorFlow (TF model). From the TF model, we convert532

our model to a TensorFlow Lite (TFLite model), a lightweight model suitable for edge533

devices. This TF model can be deployed with or without optimisation, as explained in534

Section 4.6. We evaluated all possibilities, both with and without optimisation applied.535

Table 8 summarises the file size comparison between the TF Model and TFLite model.536

In this case, TFLite has not yet been optimised. The original file size is 318 kilobytes537

whereas the lite version is 77 kilobytes or 4 times smaller. File size reduction is an538

essential step for resource-constrained edges, especially devices with minimal storage539

available.540

Table 8. TensorFlow and TensorFlow Lite file size comparison.

Properties TF model TFLite model

File size (kB) 318 77

Further size reduction can be achieved by implementing post-training quantisation.541

As shown in Figure 13, four different optimisation techniques available in the TensorFlow542

framework have been evaluated for our proposed deep learning model. These techniques543

are dynamic range quantisation, full integer quantisation with float fallback, integer544

only quantisation, and float16 quantisation. As shown in Table 8 and Figure 13, TFLite545

model without optimisation/quantisation has a size of 77 kilobytes. Using this model546

as a reference, about a 47% reduction can be achieved by dynamic range quantisation,547

about 45% by full integer quantisation, and about 35% by float16 quantisation. Based on548

these results, dynamic range quantisation outperforms other techniques, even though it549

is just slightly better than full-integer quantisation.550

Version January 27, 2021 submitted to Sensors 19 of 25

Figure 13. TensorFlow Lite model size comparison.

The time needed for edge devices to predict the available test data was measured. In551

this study, a total of 8272 hourly samples (data from 21 March 2016 to 28 February 2017)552

were continuously executed directly at the edge. The experiment results are summarised553

in Figure 14. As depicted in the figure, the RPi4B board is two times faster than the554

RPi3B+ board in all quantisation modes. The model with Float16 quantisation does not555

improve execution time as the latency remains the same with or without quantisation,556

likely due to the fixed 32-bit floating point datapath on these devices. In this case,557

the RPi3B+ board needs 8.49 seconds to execute the complete test whereas the RPi4B558

board produces a 0.07 second difference (3.75 seconds and 3.82 seconds). Even though559

about 47% size reduction can be achieved by dynamic range quantisation, this mode has560

minimal execution time improvement. The execution time for this mode is 7.03 seconds561

and 3.14 seconds for RPi3B+ and RPi4B, respectively. Full integer quantisation produced562

the most effective execution time improvement, with latencies of 4.73 seconds and 2.19563

seconds for RPi3B+ and RPi4B, respectively.564

Figure 14. Comparison of TensorFlow Lite execution time for test data.

Version January 27, 2021 submitted to Sensors 20 of 25

Besides model size and execution time, we must also evaluate model accuracy after565

applying quantisation. Table A3 in Appendix A shows the details of the RMSE and566

MAE values for the initial TensorFlow and TensorFlow Lite models. Since the result567

deviation between the optimized models is very small, we provide a boxplot to present568

the model performance more intuitively, as shown in Figure 15. This figure provides569

information about prediction deviation between the result obtained by TFModel and570

TFLite Model. It is clearly observed that TFLite without quantisation and TFLite with571

float16 quantisation accuracies are very similar (or produced a very small deviation) to572

the original TFModel. Slightly a longer deviation range is given by TFLite with dynamic573

range quantisation. Both TFLite integer quantisations give the longest box and whisker574

range, indicating that these quantisations inferior to other post-quantisation methods in575

terms of prediction accuracy.576

Figure 15. Boxplot of prediction deviation resulted from each TFLite model. The deviation is
calculated by substracting the real values from the predicted values of each TFLite model.

If we are primarily concerned with model accuracy, TFLite without quantisation is577

a suitable technique. However, it is not the best choice for size reduction and execution578

time improvement. Dynamic range and float16 quantisations also maintain model accu-579

racy. Dynamic range quantisation produced better model size reduction and execution580

time than float16 quantisation. Full integer quantisations outperformed other TFLite581

models in terms of model size and latency but slightly reduced model accuracy.582

To examine the correspondence between our TensorFlow Lite models and the initial583

TensorFlow model intuitively, we can compare these models using scatter plots, as shown584

in Figure 16. This figure presents the result at only Node 1. However, the same behaviour585

occurred for all nodes. The results obtained by the TFLite without quantisation, dynamic586

range quantisation, and float16 quantisation match the results predicted by the initial587

TensorFlow model, as demonstrated by the a smooth straight-line pattern. We have can588

also observed the same effect from Figure 15. A larger deviation is produced by full589

integer quantisation models, both integer with fallback and full integer quantisations.590

The straight-line pattern is more scattered and lead to a conclusion that that full integer591

quantisation impacts model accuracy, even with a very small deviation.592

6. Conclusions593

Edge computing brings computation closer to data sources (edge) and can be a594

solution for latency, privacy and scalability issues faced by a cloud-based system. It595

Version January 27, 2021 submitted to Sensors 21 of 25

Figure 16. Scatter plot of the prediction data obtained by TensorFlow and TensorFlow Lite models.

is also possible to embed intelligence at the edge, which can be enabled by Machine596

Learning algorithms. Deep Learning, a subset of ML, can be implemented at the edge.597

In this work, we proposed a hybrid deep learning model composed of 1D Convolutional598

Neural Network and Long-short Term Memory (CNN-LSTM) networks to predict a599

short-term hourly PM2.5 concentration at 12 different nodes. The results show that600

our proposed model outperformed other possible deep learning models, evaluated by601

calculating RMSE and MAE errors at each node. In order to implement an efficient model602

for edge devices, we applied four different post-quantisation techniques provided by603

TensorFlow Lite framework: dynamic range quantisation, float16 quantisation, integer604

with float fallback quantisation, and full integer-only quantisation. Dynamic range and605

float16 quantisations maintain model accuracy but do not improve latency significantly.606

Meanwhile, full integer quantisation outperforms other TFLite models in terms of model607

size and latency but slightly reduces model accuracy. The targeted edge devices in our608

work are the Raspberry Pi 3 Model B+ and Raspberry Pi 4 Model B boards. Technically,609

the Raspberry Pi 4 demonstrated lower latency due to the more capable processor.610

In future, we plan to develop this work further by offloading model computation for611

multiple nodes to a gateway device, thereby allowing the sensor nodes to be extremely612

lightweight. We would also like to explore methods for efficient sharing of a gateway613

deep learning model by multiple nodes. Finally, we would like to explore how models614

can be evolved on these edge devices.615

Author Contributions: Conceptualization, K.W. and S.F.; methodology, K.W., J.G. and S.F.; soft-616

ware, K.W.; data collection, K.W.; data analysis K.W. and S.F.; writing—original draft preparation,617

K.W.; writing—review and editing, K.W., J.G. and S.F.; supervision, J.G. and S.F. All authors have618

read and agreed to the published version of the manuscript.619

Funding: This work was supported by Indonesia Endowment Fund for Education (LPDP), Min-620

istry of Finance, Republic of Indonesia under grant number Ref: S-1027/LPDP.4/2019.621

Acknowledgments: INK Wardana was supported with a studentship from Indonesia Endowment622

Fund for Education (LPDP).623

Conflicts of Interest: The authors declare no conflict of interest.624

Version January 27, 2021 submitted to Sensors 22 of 25

Abbreviations625

The following abbreviations are used in this manuscript:626

627

1D CNN One-Dimensional Convolutional Neural Network
ANN Artificial Neural Network
DL Deep Learning
GRU Gated Recurrent Units
IoT Internet of Things
LSTM Long Short-Term Memory
MAE Mean Absolute Error
ML Machine Learning
PM Particulate Matter
RMSE Root Mean Square Error
RNN Recurrent Neural Network
RPi3B+ Raspberry Pi Model 3B+
RPi4B Raspberry Pi Model 4B

628

Appendix A629

In this section, we report the RMSE and MAE of the predicted values of all nodes.630

Table A1 and Table A2 show the RMSE and MAE values, respectively. Table A3 shows631

the effect of quantisation techniques on the RMSE and MAE values.632

Table A1. Comparison of RMSE values for PM2.5 prediction using different model architectures for all nodes.

No. Architectures Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9 Node10 Node11 Node12

Simple Models Group I
1 RNN 18.485 17.961 19.356 20.655 19.332 21.088 17.186 19.560 21.046 17.892 20.920 23.149
2 LSTM 17.786 18.203 19.802 19.775 19.186 19.434 17.620 18.208 21.143 17.586 17.946 21.180
3 GRU 18.367 18.353 18.475 22.143 20.578 20.459 17.449 19.471 20.914 18.435 19.267 22.257
4 Bidirectional RNN 19.377 17.383 17.799 20.703 18.864 20.737 17.522 18.740 20.125 17.450 18.442 21.996
5 Bidirectional LSTM 18.016 17.084 18.967 20.806 18.829 19.563 17.547 19.041 19.299 17.144 17.335 22.520
6 Bidirectional GRU 18.603 17.606 17.650 21.290 19.275 19.339 16.899 18.443 18.764 17.052 17.138 21.489

Hybrid Models Group II
7 CNN-ANN 17.757 16.838 17.841 19.752 19.207 19.793 17.174 18.777 20.364 17.635 17.041 21.537
8 CNN-RNN 18.227 16.813 17.445 20.021 18.420 19.303 16.952 18.418 18.686 16.713 17.018 21.492
9 CNN-LSTM 17.652 16.801 18.387 19.743 19.184 19.228 17.261 18.242 18.663 17.040 17.209 21.160
10 CNN-GRU 17.244 16.742 17.733 19.667 19.759 20.897 17.001 18.391 19.652 16.611 17.081 21.818
11 CNN-Bidirectional RNN 17.334 16.804 17.571 19.514 18.520 19.083 18.062 18.109 20.697 16.908 16.962 21.421
12 CNN-Bidirectional LSTM 17.344 17.981 20.118 20.267 19.640 19.071 16.862 18.058 18.427 16.676 17.071 21.667
13 CNN-Bidirectional GRU 17.462 17.518 20.038 21.214 18.642 19.098 16.800 19.131 18.497 17.230 16.944 21.268

Hybrid Models Group III
14 CNN-ANN 17.160 17.661 18.493 18.074 17.282 18.598 19.235 17.969 18.196 17.018 17.705 19.134
15 CNN-RNN 15.672 17.159 18.377 18.135 16.933 18.262 16.135 18.596 20.215 16.053 15.981 19.494
16 CNN-LSTM (proposed model) 15.268 15.710 17.082 17.706 16.557 17.743 15.493 16.172 17.920 14.894 14.951 18.962
17 CNN-GRU 17.169 16.136 20.252 18.900 17.034 20.692 18.166 18.327 18.897 16.250 17.031 19.098
18 CNN-Bidirectional RNN 17.365 18.182 18.229 19.658 17.591 18.301 16.045 16.818 18.068 15.513 15.154 19.426
19 CNN-Bidirectional LSTM 15.643 16.647 18.085 17.941 17.574 18.544 15.845 16.584 19.187 15.530 16.423 19.038
20 CNN-Bidirectional GRU 16.089 16.855 19.121 18.193 17.269 19.350 15.789 16.545 18.134 15.874 15.785 19.267

Version January 27, 2021 submitted to Sensors 23 of 25

Table A2. Comparison of MAE values for PM2.5 prediction using different model architectures for all nodes.

No. Architectures Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9 Node10 Node11 Node12

Simple Models Group I
1 RNN 10.636 10.123 10.206 11.412 10.904 12.043 8.636 11.080 11.571 10.686 12.403 12.139
2 LSTM 10.230 10.710 10.376 10.670 10.906 11.174 8.786 10.499 11.829 10.880 10.523 11.078
3 GRU 10.664 10.769 9.881 12.505 11.635 11.57 8.880 11.548 11.977 11.053 11.183 11.947
4 Bidirectional RNN 12.257 9.898 9.349 11.871 10.743 11.887 9.040 10.571 11.154 10.587 11.144 11.560
5 Bidirectional LSTM 10.427 9.462 10.335 11.710 10.584 11.098 8.764 10.826 10.461 10.357 9.765 11.710
6 Bidirectional GRU 10.944 10.345 9.429 13.051 10.924 10.665 8.338 10.171 10.124 10.404 9.658 11.348

Hybrid Models Group II
7 CNN-ANN 10.321 9.387 9.671 10.679 11.351 11.333 8.714 11.267 11.466 10.757 9.385 11.558
8 CNN-RNN 10.906 9.959 8.888 11.311 10.303 10.746 8.306 10.419 9.961 10.043 9.615 11.123
9 CNN-LSTM 10.203 9.365 9.727 10.582 11.176 10.571 8.914 10.027 10.407 10.084 9.612 11.216
10 CNN-GRU 9.552 9.423 9.213 10.622 11.771 12.006 8.420 10.410 11.313 10.077 9.492 11.52
11 CNN-Bidirectional RNN 10.001 9.443 9.383 10.274 10.562 10.312 9.75 10.179 12.417 10.072 9.683 10.833
12 CNN-Bidirectional LSTM 10.054 10.439 11.576 11.778 12.542 10.670 8.313 10.245 9.858 9.895 9.700 11.282
13 CNN-Bidirectional GRU 10.486 9.923 11.638 12.638 10.590 10.440 8.273 11.383 10.290 10.684 9.466 11.210

Hybrid Models Group III
14 CNN-ANN 10.307 10.351 9.221 9.872 10.168 10.446 12.906 10.637 10.245 10.564 10.191 9.985
15 CNN-RNN 9.162 9.602 8.998 10.106 9.510 10.069 8.326 11.068 12.817 10.055 9.543 10.295
16 CNN-LSTM (proposed model) 8.778 8.873 8.803 9.653 9.228 9.590 7.607 9.116 9.588 8.993 8.486 9.641
17 CNN-GRU 9.665 8.967 11.431 11.118 9.981 11.852 11.023 10.252 10.838 10.068 10.274 9.878
18 CNN-Bidirectional RNN 10.443 10.265 9.054 11.354 9.978 10.115 8.286 9.676 9.709 9.213 8.527 10.269
19 CNN-Bidirectional LSTM 8.853 9.297 9.657 9.763 10.177 9.746 7.980 10.095 10.167 9.203 10.149 9.815
20 CNN-Bidirectional GRU 9.512 9.644 9.838 10.037 9.331 10.863 7.977 9.665 9.780 9.786 9.143 10.111

Table A3. Effect of quantisation techniques on RMSE and MAE values.

Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9 Node10 Node11 Node12
Initial TensorFLow model
RMSE 15.268 15.710 17.082 17.706 16.557 17.743 15.493 16.172 17.920 14.894 14.951 18.962
MAE 8.778 8.873 8.803 9.653 9.228 9.590 7.607 9.116 9.588 8.935 8.486 9.641
TFLite without quantisation
RMSE 15.268 15.710 17.082 17.706 16.557 17.743 15.493 16.172 17.920 14.894 14.951 18.962
MAE 8.778 8.873 8.803 9.653 9.228 9.590 7.607 9.116 9.588 8.935 8.486 9.641
TFLite - dynamic range quantisation
RMSE 15.270 15.710 17.116 17.679 16.580 17.741 15.490 16.189 17.906 14.905 14.994 18.974
MAE 8.784 8.872 8.844 9.639 9.236 9.592 7.611 9.129 9.604 8.943 8.550 9.678
TFLite - integer with float fallback
RMSE 15.704 16.102 17.506 18.108 17.032 18.167 15.694 16.536 18.758 15.467 15.216 19.690
MAE 9.418 9.420 9.562 10.425 10.004 10.394 8.081 9.674 10.792 9.694 9.048 10.785
TFLite - integer-only quantisation
RMSE 15.704 16.102 17.506 18.108 17.032 18.167 15.694 16.536 18.758 15.467 15.216 19.690
MAE 9.418 9.420 9.562 10.425 10.004 10.394 8.081 9.674 10.792 9.694 9.048 10.785
TFLite - float16 quantisation
RMSE 15.268 15.708 17.082 17.707 16.557 17.742 15.494 16.171 17.920 14.896 14.952 18.962
MAE 8.777 8.871 8.803 9.654 9.228 9.589 7.607 9.115 9.588 8.936 8.486 9.642

References
1. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE

Access 2018, 6, 6900–6919. doi:10.1109/access.2017.2778504.
2. Ngu, A.H.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, M.Z. IoT Middleware: A Survey on Issues and Enabling technologies.

IEEE Internet of Things Journal 2016, pp. 1–1. doi:10.1109/jiot.2016.2615180.
3. Frustaci, M.; Pace, P.; Aloi, G.; Fortino, G. Evaluating Critical Security Issues of the IoT World: Present and Future Challenges.

IEEE Internet of Things Journal 2018, 5, 2483–2495. doi:10.1109/jiot.2017.2767291.

https://doi.org/10.1109/access.2017.2778504
https://doi.org/10.1109/jiot.2016.2615180
https://doi.org/10.1109/jiot.2017.2767291

Version January 27, 2021 submitted to Sensors 24 of 25

4. Chen, J.; Ran, X. Deep Learning With Edge Computing: A Review. Proceedings of the Institute of Electrical and Electronics Engineers
IEEE 2019, 107, 1655–1674. doi:10.1109/jproc.2019.2921977.

5. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet of Things Journal 2016, 3, 637–646.
doi:10.1109/jiot.2016.2579198.

6. Samie, F.; Bauer, L.; Henkel, J. From Cloud Down to Things: An Overview of Machine Learning in Internet of Things. IEEE
Internet of Things Journal 2019, 6, 4921–4934. doi:10.1109/jiot.2019.2893866.

7. Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A
Comprehensive Survey. IEEE Communications Surveys & Tutorials 2020, 22, 869–904. doi:10.1109/comst.2020.2970550.

8. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. doi:10.1038/nature14539.
9. Verhelst, M.; Moons, B. Embedded Deep Neural Network Processing: Algorithmic and Processor Techniques Bring Deep

Learning to IoT and Edge Devices. IEEE Solid-State Circuits Magazine 2017, 9, 55–65. doi:10.1109/mssc.2017.2745818.
10. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
11. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network, 2015, [arXiv:stat.ML/1503.02531].
12. Véstias, M.P.; Duarte, R.P.; de Sousa, J.T.; Neto, H.C. A fast and scalable architecture to run convolutional neural networks in low

density FPGAs. Microprocessors and Microsystems 2020, 77, 103136. doi:10.1016/j.micpro.2020.103136.
13. Yang, T.; Liu, W. Does air pollution affect public health and health inequality? Empirical evidence from China. Journal of Cleaner

Production 2018, 203, 43–52. doi:10.1016/j.jclepro.2018.08.242.
14. Sun, C.; Kahn, M.E.; Zheng, S. Self-protection investment exacerbates air pollution exposure inequality in urban China. Ecological

Economics 2017, 131, 468–474. doi:10.1016/j.ecolecon.2016.06.030.
15. Ma, J.; Li, Z.; Cheng, J.C.; Ding, Y.; Lin, C.; Xu, Z. Air quality prediction at new stations using spatially transferred bi-directional

long short-term memory network. Science of The Total Environment 2020, 705, 135771. doi:10.1016/j.scitotenv.2019.135771.
16. Liu, H.; Wu, H.; Lv, X.; Ren, Z.; Liu, M.; Li, Y.; Shi, H. An intelligent hybrid model for air pollutant concentrations forecasting:

Case of Beijing in China. Sustainable Cities and Society 2019, 47, 101471. doi:10.1016/j.scs.2019.101471.
17. Zhang, Y.; Li, Z. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite

observation. Remote Sensing of Environment 2015, 160, 252–262. doi:10.1016/j.rse.2015.02.005.
18. Hamra, G.B.; Guha, N.; Cohen, A.; Laden, F.; Raaschou-Nielsen, O.; Samet, J.M.; Vineis, P.; Forastiere, F.; Saldiva, P.; Yorifuji, T.;

Loomis, D. Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. Environmental
Health Perspectives 2014. doi:10.1289/ehp.1408092.

19. Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine Particulate Air Pollution and Hospital
Admission for Cardiovascular and Respiratory Diseases. JAMA 2006, 295, 1127. doi:10.1001/jama.295.10.1127.

20. Langrish, J.P.; Li, X.; Wang, S.; Lee, M.M.; Barnes, G.D.; Miller, M.R.; Cassee, F.R.; Boon, N.A.; Donaldson, K.; Li, J.; Li, L.; Mills,
N.L.; Newby, D.E.; Jiang, L. Reducing Personal Exposure to Particulate Air Pollution Improves Cardiovascular Health in Patients
with Coronary Heart Disease. Environmental Health Perspectives 2012, 120, 367–372. doi:10.1289/ehp.1103898.

21. Islam, N.; Saikia, B.K. Atmospheric particulate matter and potentially hazardous compounds around residential/road side soil in
an urban area. Chemosphere 2020, 259, 127453. doi:10.1016/j.chemosphere.2020.127453.

22. Daiber, A.; Kuntic, M.; Hahad, O.; Delogu, L.G.; Rohrbach, S.; Lisa, F.D.; Schulz, R.; Münzel, T. Effects of air pollution particles
(ultrafine and fine particulate matter) on mitochondrial function and oxidative stress – Implications for cardiovascular and
neurodegenerative diseases. Archives of Biochemistry and Biophysics 2020, 696, 108662. doi:10.1016/j.abb.2020.108662.

23. Castelli, M.; Clemente, F.M.; Popovič, A.; Silva, S.; Vanneschi, L. A Machine Learning Approach to Predict Air Quality in
California. Complexity 2020, 2020, 1–23. doi:10.1155/2020/8049504.

24. Navares, R.; Aznarte, J.L. Predicting air quality with deep learning LSTM: Towards comprehensive models. Ecological Informatics
2020, 55, 101019. doi:10.1016/j.ecoinf.2019.101019.

25. Li, X.; Peng, L.; Yao, X.; Cui, S.; Hu, Y.; You, C.; Chi, T. Long short-term memory neural network for air pollutant concentration
predictions: Method development and evaluation. Environmental Pollution 2017, 231, 997–1004. doi:10.1016/j.envpol.2017.08.114.

26. Xayasouk, T.; Lee, H.; Lee, G. Air Pollution Prediction Using Long Short-Term Memory (LSTM) and Deep Autoencoder (DAE)
Models. Sustainability 2020, 12, 2570. doi:10.3390/su12062570.

27. Seng, D.; Zhang, Q.; Zhang, X.; Chen, G.; Chen, X. Spatiotemporal prediction of air quality based on LSTM neural network.
Alexandria Engineering Journal 2021, 60, 2021–2032. doi:10.1016/j.aej.2020.12.009.

28. Xu, J.; Chen, L.; Lv, M.; Zhan, C.; Chen, S.; Chang, J. HighAir: A Hierarchical Graph Neural Network-Based Air Quality
Forecasting Method 2021. [arXiv:2101.04264].

29. Ma, J.; Ding, Y.; Cheng, J.C.; Jiang, F.; Wan, Z. A temporal-spatial interpolation and extrapolation method based on geographic
Long Short-Term Memory neural network for PM2.5. Journal of Cleaner Production 2019, 237, 117729. doi:10.1016/j.jclepro.2019.117729.

30. Bai, Y.; Zeng, B.; Li, C.; Zhang, J. An ensemble long short-term memory neural network for hourly PM2.5 concentration
forecasting. Chemosphere 2019, 222, 286–294. doi:10.1016/j.chemosphere.2019.01.121.

31. Zhao, J.; Deng, F.; Cai, Y.; Chen, J. Long short-term memory - Fully connected (LSTM-FC) neural network for PM2.5 concentration
prediction. Chemosphere 2019, 220, 486–492. doi:10.1016/j.chemosphere.2018.12.128.

32. Qi, Y.; Li, Q.; Karimian, H.; Liu, D. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural
network and long short-term memory. Science of The Total Environment 2019, 664, 1–10. doi:10.1016/j.scitotenv.2019.01.333.

https://doi.org/10.1109/jproc.2019.2921977
https://doi.org/10.1109/jiot.2016.2579198
https://doi.org/10.1109/jiot.2019.2893866
https://doi.org/10.1109/comst.2020.2970550
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/mssc.2017.2745818
http://xxx.lanl.gov/abs/1503.02531
https://doi.org/10.1016/j.micpro.2020.103136
https://doi.org/10.1016/j.jclepro.2018.08.242
https://doi.org/10.1016/j.ecolecon.2016.06.030
https://doi.org/10.1016/j.scitotenv.2019.135771
https://doi.org/10.1016/j.scs.2019.101471
https://doi.org/10.1016/j.rse.2015.02.005
https://doi.org/10.1289/ehp.1408092
https://doi.org/10.1001/jama.295.10.1127
https://doi.org/10.1289/ehp.1103898
https://doi.org/10.1016/j.chemosphere.2020.127453
https://doi.org/10.1016/j.abb.2020.108662
https://doi.org/10.1155/2020/8049504
https://doi.org/10.1016/j.ecoinf.2019.101019
https://doi.org/10.1016/j.envpol.2017.08.114
https://doi.org/10.3390/su12062570
https://doi.org/10.1016/j.aej.2020.12.009
http://xxx.lanl.gov/abs/arXiv:2101.04264
https://doi.org/10.1016/j.jclepro.2019.117729
https://doi.org/10.1016/j.chemosphere.2019.01.121
https://doi.org/10.1016/j.chemosphere.2018.12.128
https://doi.org/10.1016/j.scitotenv.2019.01.333

Version January 27, 2021 submitted to Sensors 25 of 25

33. Zhang, Q.; Lam, J.C.; Li, V.O.; Han, Y. Deep-AIR: A Hybrid CNN-LSTM Framework forFine-Grained Air Pollution Forecast, 2020,
[arXiv:eess.SP/2001.11957].

34. Qin, D.; Yu, J.; Zou, G.; Yong, R.; Zhao, Q.; Zhang, B. A Novel Combined Prediction Scheme Based on CNN and LSTM for Urban
PM2.5 Concentration. IEEE Access 2019, 7, 20050–20059. doi:10.1109/access.2019.2897028.

35. Li, T.; Hua, M.; Wu, X. A Hybrid CNN-LSTM Model for Forecasting Particulate Matter (PM2.5). IEEE Access 2020, 8, 26933–26940.
doi:10.1109/access.2020.2971348.

36. Tao, Q.; Liu, F.; Li, Y.; Sidorov, D. Air Pollution Forecasting Using a Deep Learning Model Based on 1D Convnets and Bidirectional
GRU. IEEE Access 2019, 7, 76690–76698. doi:10.1109/access.2019.2921578.

37. Chen, H.C.; Putra, K.T.; Chun-WeiLin, J. A Novel Prediction Approach for Exploring PM2.5 Spatiotemporal Propagation Based
on Convolutional Recursive Neural Networks 2021. [arXiv:2101.06213].

38. Banner, R.; Nahshan, Y.; Soudry, D. Post training 4-bit quantization of convolutional networks for rapid-deployment. Advances
in Neural Information Processing Systems. Curran Associates, Inc., 2019, Vol. 32, pp. 7950–7958.

39. Wu, H.; Judd, P.; Zhang, X.; Isaev, M.; Micikevicius, P. Integer Quantization for Deep Learning Inference: Principles and Empirical
Evaluation 2020. [arXiv:2004.09602].

40. Peng, P.; You, M.; Xu, W.; Li, J. Fully integer-based quantization for mobile convolutional neural network inference. Neurocomput-
ing 2021, 432, 194–205. doi:10.1016/j.neucom.2020.12.035.

41. Li, J.; Alvarez, R. On the quantization of recurrent neural networks 2021. [arXiv:2101.05453].
42. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.;

Goodfellow, I.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Levenberg, J.; Mane, D.; Monga, R.;
Moore, S.; Murray, D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan,
V.; Viegas, F.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng, X. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems, 2016, [arXiv:cs.DC/1603.04467].

43. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Computation 1997, 9, 1735–1780. doi:10.1162/neco.1997.9.8.1735.
44. Post-training quantization. Available online: https://www.tensorflow.org/lite/performance/post_training_quantization.

(accessed on 22-Jan-2021).
45. Zhang, S.; Guo, B.; Dong, A.; He, J.; Xu, Z.; Chen, S.X. Cautionary tales on air-quality improvement in Beijing. Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences 2017, 473, 20170457. doi:10.1098/rspa.2017.0457.
46. Sajjad, M.; Nasir, M.; Muhammad, K.; Khan, S.; Jan, Z.; Sangaiah, A.K.; Elhoseny, M.; Baik, S.W. Raspberry Pi assisted

face recognition framework for enhanced law-enforcement services in smart cities. Future Generation Computer Systems 2017,
108, 995–1007. doi:10.1016/j.future.2017.11.013.

http://xxx.lanl.gov/abs/2001.11957
https://doi.org/10.1109/access.2019.2897028
https://doi.org/10.1109/access.2020.2971348
https://doi.org/10.1109/access.2019.2921578
http://xxx.lanl.gov/abs/arXiv:2101.06213
http://xxx.lanl.gov/abs/arXiv:2004.09602
https://doi.org/10.1016/j.neucom.2020.12.035
http://xxx.lanl.gov/abs/arXiv:2101.05453
http://xxx.lanl.gov/abs/1603.04467
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.tensorflow.org/lite/performance/post_training_quantization
https://doi.org/10.1098/rspa.2017.0457
https://doi.org/10.1016/j.future.2017.11.013

	Introduction
	Related Works
	Related Theory
	One-Dimensional Convolutional Neural Network
	Long Short-Term Memory Cells
	Error Measures
	Correlation Coefficient between Features
	TensorFlow Post-training Quantisation

	Materials and Methods
	Dataset and Preprocessing
	Feature Selection
	Proposed Model
	Spatiotemporal Dependencies
	Deep Learning Data Processing
	The Selected Edge Devices

	Results and Discussion
	Evaluation Scenario
	Model Performance
	Model Optimisation for the Edge

	Conclusions
	
	References

