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a b s t r a c t 

Background and objective: The oral minimal model (OMM) of glucose dynamics is a prominent method 

for assessing postprandial glucose metabolism. The model yields estimates of insulin sensitivity and the 

meal-related appearance of glucose from insulin and glucose data after an oral glucose challenge. Despite 

its success, the OMM approach has several weaknesses that this paper addresses. 

Methods: A novel procedure introducing three methodological adaptations to the OMM approach is pro- 

posed. These are: (1) the use of a fully Bayesian and efficient method for parameter estimation, (2) the 

model identification from non-fasting conditions using a generalised model formulation and (3) the intro- 

duction of a novel function to represent the meal-related glucose appearance based on two superimposed 

components utilising a modified structure of the log-normal distribution. The proposed modelling proce- 

dure is applied to glucose and insulin data from subjects with normal glucose tolerance consuming three 

consecutive meals in intervals of four hours. 

Results: It is shown that the glucose effectiveness parameter of the OMM is, contrary to previous results, 

structurally globally identifiable. In comparison to results from existing studies that use the conventional 

identification procedure, the proposed approach yields an equivalent level of model fit and a similar pre- 

cision of insulin sensitivity estimates. Furthermore, the new procedure shows no deterioration of model 

fit when data from non-fasting conditions are used. In comparison to the conventional, piecewise linear 

function of glucose appearance, the novel log-normally based function provides an improved model fit 

in the first 30 min of the response and thus a more realistic estimation of glucose appearance during 

this period. The identification procedure is implemented in freely accesible MATLAB and Python software 

packages. 

Conclusions: We propose an improved and freely available method for the identification of the OMM 

which could become the future standardard for the oral minimal modelling method of glucose dynamics. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The quantitative assessment of the body’s response to food 

ntake in people with normal and impaired glucose tolerance 

s crucial in the development of therapeutic strategies for dia- 
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etes mellitus [1] . One method for examining postprandial glu- 

ose metabolism involves the oral minimal model (OMM) of glu- 

ose dynamics [2–8] . It describes the response of the blood glu- 

ose level to an oral glucose challenge in the form of an oral glu- 

ose tolerance test (OGTT), consisting of pure carbohydrates, or a 

ixed meal tolerance test (MTT), including additional macronutri- 

nts such as fat and protein. The OMM provides an estimation of 

nsulin sensitivity, i.e. the body’s ability to respond to the effects 

f insulin, and a time profile of meal-related glucose appearance 
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Table 1 

Details on the subject populations consuming different meal types with stan- 

dard (STAND), high carbohydrate (HCHO) and high protein (HPROT) mixtures of 

macronutrient content. The meal composition is given in percentage of calories con- 

tained in the respective macronutrient content. Data are given as mean ± standard 

error and were taken from [27] . 

STAND HCHO HPROT 

No. of subjects (females) 12 (5) 10 (4) 11 (5) 

Age 23 ±1 25 ±3 25 ±2 

Body weight (females) [kg] 76 ±5 (59 ±1) 77 ±4 (59 ±5) 80 ±3 (57 ±3) 

Meal composition 40 / 49 / 11 63 / 27 / 10 19 / 40 / 41 

[% CHO / Fat / Protein] 

CHO per meal (females) 1.2 (1.1) 2 (1.8) 0.6 (0.5) 

[g/kg body weight] 

Calories per meal (females) 13 (11) 13 (11) 13 (11) 

[kcal/kg body weight] 
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GA) in the peripheral bloodstream [9] . The OMM has been exten- 

ively validated against data from experiments using traced glu- 

ose [10] as well as traced glucose and clamp measurements [11] . 

n both studies, it was concluded that the OMM is a reliable tool 

o estimate both insulin sensitivity and glucose appearance during 

GTTs and MTTs. 

The OMM was proposed in 2002 by Dalla Man et al. [9] and 

s based on an earlier model often referred to as minimal model, 

hich was developed for the description of glucose excursions dur- 

ng an intravenous glucose tolerance test (IVGTT) [12] . Both mod- 

ls use measured insulin concentrations as a known input and de- 

cribe the simultaneously measured glucose levels as output. 

Despite the OMM’s success in assessing postprandial glucose 

etabolism, the conventional modelling approach using the OMM 

as several weaknesses that this paper will address. The aim of 

his paper is, therefore, to critically discuss the oral minimal mod- 

lling approach and propose several improvements to the conven- 

ional modelling procedure. 

The main adaptation is the use of a fully Bayesian and thus 

robabilistic method for parameter estimation, called variational 

ayesian (VB) analysis [13] , instead of the frequentist approaches 

sed conventionally [ 2–11 , 14–16 ]. This change is motivated by the 

act that fully Bayesian methods have been shown to produce su- 

erior results in the similar IVGTT minimal model [17–19] . Further- 

ore, our research group has shown the VB method’s aptitude in 

everal applications to low dimensional models [20–24] including 

odels of glucose dynamics [20–23] . Additionally to the use of the 

B method, this paper will demonstrate that the model parame- 

er governing insulin-independent glucose utilisation is, contrary 

o previous results [9] , structurally globally identifiable. This de- 

ands appropriate adaptations to the parameter estimation proce- 

ure that are greatly facilitated by the Bayesian parameter estima- 

ion approach. 

An additional weakness of the conventional oral minimal mod- 

lling approach is that it has so far only been applied to the de- 

cription of a single, isolated meal response from a fasted state. 

his paper develops a framework for identifying the OMM from 

onsecutive meal responses, allowing the examination of diurnal 

hanges in insulin sensitivity and meal-related GA with the OMM. 

urthermore, the paper proposes an alternative functional descrip- 

ion of GA that has several advantages over the conventional piece- 

ise linear formulation. To establish the validity of the proposed 

daptations to the modelling procedure, a comparison to published 

tudies using the conventional approach for identifying the OMM 

as been carried out. 

Further drawbacks of the prevalent oral minimal modelling ap- 

roach are that the frequently used parameter estimation software 

ackage SAAM II [25] is only commercially available and that some 

arts of the identification procedure are not described in sufficient 

etail or inconsistent between uses. These issues will be resolved 

n this paper by proposing a consistent and well-described proce- 

ure, allowing the validation of this method by independent re- 

earch groups. This is greatly facilitated by the fact that the VB 

ethod used in this paper is implemented in MATLAB and Python 

nd specific, easy to use and free software packages for the identi- 

cation of the OMM are published together with this article ( https: 

/github.com/manueich/VBA-OMM ). 

. Methods 

.1. Data description 

The dataset used in this work was collected by Ahmed et al. 

26] in 1976 and Nuttall et al. [27] in 1985. It contains plasma 

lucose and insulin profiles from 26 young subjects with normal 

lucose tolerance (NGT) collected over 12 hours in a single day. A 
2 
otal of three identical meals each providing 33 % of the total esti- 

ated daily calorie requirement were consumed four hours apart. 

lood samples were collected at the same time in each subject af- 

er meal consumption at 0, 2, 5, 10, 20, 30, 40, 50, 60 min, then

very 15 min up to 120 min and then every 30 min up to 240 min.

ne additional fasting sample was collected before the consump- 

ion of breakfast, i.e. at -15 min. The coefficient of variation (CV) of 

he plasma glucose and insulin assays are given as 1.5 and 13.4 %, 

espectively [26] . 

Data from three different meal types of standard (STAND), high 

arbohydrate (HCHO) and high protein (HPROT) composition are 

sed. The meals were consumed by three different subject cohorts 

ssembled from the overall population (see Table 1 ), leading to 33 

lucose and insulin profiles and 99 responses in total. The absolute 

mount of macronutrients provided to each individual subject was 

caled according to body weight. Additionally, female subjects re- 

eived 12.5 % fewer calories per body weight to account for the sex 

ifferences in average body composition and therefore lean mass. 

.2. Model formulation 

The original formulation of the OMM by Dalla Man et al. [9] is 

s follows 

dG ( t ) 

dt 
= −G ( t ) X ( t ) − p 1 ( G ( t ) − G b ) + 

Ra ( t ) 

V 

, G ( 0 ) = G b , (1) 

dX ( t ) 

dt 
= −p 2 X ( t ) + p 3 ( I ( t ) − I b ) , X ( 0 ) = 0 . (2) 

The glucose concentration and its basal (pre-test) level are rep- 

esented by G and G b in mmol/L, respectively. The glucose effec- 

iveness parameter p 1 in min 

−1 controls the insulin-independent 

lucose utilisation and V in L/kg is the distribution volume of 

lucose relative to body weight. The input function Ra repre- 

ents the meal-related, posthepatic appearance of new glucose in 

mol/kg/min. The state X in min 

−1 represents the insulin action 

n a remote (from plasma) compartment with p 2 in min 

−1 govern- 

ng its decay dynamics and p 3 in min 

−2 per mU/L governing the 

mplitude of insulin action. The insulin sensitivity is given as the 

atio p 3 / p 2 and has the unit min 

−1 per mU/L. The insulin concen- 

ration I and its basal (pre-test) level I b in mU/L are considered to 

e known, error-free inputs. 

The first two terms in Eq. (1) describe the insulin-dependent 

nd insulin-independent glucose utilisation, respectively and rep- 

esent the actions of the liver and peripheral tissues on glucose 

etabolism. The state X , described by Eq. (2) , does not repre- 

ent the concentration of a certain substance in a compartment, 

ut rather the action or effect of insulin, highly influenced by the 

oncentration of insulin in the plasma I . In the postprandial state, 

hen glucose and insulin concentrations are typically above their 

espective baseline levels, X is positive which leads to glucose leav- 

ng the blood via the first two terms in Eq. (1) . The only source of

https://github.com/manueich/VBA-OMM
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Fig. 1. Example profiles of the functions representing GA over a duration of 12 

hours. We utilise three separate, partially overlapping GA functions following the 

three consecutively consumed meals. The dotted lines represent the persisting ab- 

sorption Rap from the previous meal overlapping with the GA from the current 

meal. The dash-dot lines during the first meal indicate the two components of the 

function Ra LN . 
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lucose inflow to the blood is then the meal-related glucose ab- 

orption Ra from the gut. In the fasted state, at the beginning and 

he final part of the modelled response, glucose and insulin levels 

an lie below their baseline values. This can induce a blood glucose 

ncrease via the first two terms in Eq. (1) , as G ( t ) < G b and the

tate X becoming negative due to I ( t ) < I b , describing the mecha-

ism of glucose output by the liver and peripheral tissues during 

asting. For the case of G ( t ) = G b and I ( t ) = I b , the model is at its

teady-state, meaning that the state X is zero or decays to zeros 

ia the parameter p 2 . 

This paper proposes the following generalised formulation of 

he OMM: 

dG ( t ) 

dt 
= −G ( t ) X ( t ) − p 1 ( G ( t ) − G b ) + 

Ra ( t ) + Rap ( t ) 

V 
, G ( 0 ) = G 0 , (3) 

dX ( t ) 

dt 
= −p 2 [ X ( t ) − S I ( I ( t ) − I b ) ] , X ( 0 ) = X 0 . (4) 

In comparison to the original OMM formulation in Eqs. (1)- 

2) , the insulin sensitivity S I in min 

−1 per mU/L is directly in- 

luded, as it facilitates the definition of its parameter probability 

ensity function (PDF) in a Bayesian context and the physiologi- 

al interpretability of the model in general. Further adaptations to 

he model are made, namely: the basal level of glucose G b is dif- 

erent from its initial condition G 0 , the initial condition X 0 is al- 

owed to be non-zero, and the term Rap representing a persisting 

A is included. This allows the incorporation of effects from previ- 

us meals to identify the model from non-fasting conditions. 

Identical to the conventional OMM formulation [9] , the mea- 

urement error is considered to be additive and normally dis- 

ributed with zero mean and a known standard deviation, calcu- 

ated from the glucose assay CV. For comparability with the litera- 

ure results, a CV of 2 %, instead of the 1.5 % given for the dataset

tilised in this paper, is used. The details of handling the measure- 

ent uncertainty within the VB approach are provided in Section 

 of the supplementary material. 

To define the time profile of the rate of glucose appearance Ra 

ollowing the consumption of a single meal, work [9] proposed a 

arametric, piecewise linear description: 

a PL ( t ) = 

{
k i −1 + 

k i −k i −1 

t i −t i −1 
( t − t i −1 ) if t i −1 ≤ t ≤ t i i = 1 . . . 7 

k 7 exp [ −α( t − t 7 ) ] if t > t 7 
. (5) 

The adjustable heights k 0 - k 7 at fixed breakpoints times t 0 - 

 7 are inferred from experimental glucose and insulin data in the 

ontext of the parameter estimation problem in the OMM and de- 

ne the overall shape of the GA time profile. An example profile 

f GA using the function Ra PL can be seen in Fig. 1 . There is no

onsensus about the optimal breakpoint intervals in the literature, 

owever, it is most common to choose the first seven breakpoints 

t 0, 10, 30, 60, 90, 120 and 180 min and have the last breakpoint

oincide with the last measurement point of the response. Further- 

ore, the height at t = 0, i.e. k 0 is fixed to zero [ 7 , 9 , 14 ], as no

lucose is appearing at the time of meal consumption. In contrast, 

orks [ 10 , 11 ] also fix the height between 0 and 5 min to zero and

et the breakpoints at slightly different time points. 

In this work, we choose the most common approach, i.e. fix- 

ng k 0 to zero and setting the breakpoints at 0, 10, 30, 60, 90, 120,

80 and 240 min. Furthermore, the effects of digestion and absorp- 

ion cannot be assumed complete after 240 min. The GA function 

s thus described by a monoexponential decay with rate α, fixed to 

.017 min 

−1 after 240 min as suggested in work [9] for response 

urations shorter than 6 h. 

Besides the inconsistency in the choice of breakpoints, another 

omplication arises from the fact that the original OMM formu- 

ation [9] stipulates to constrain the area under the curve (AUC) 
3 
f Ra based on the amount of glucose contained in the meal. The 

xed AUC of Ra is calculated as the product of the amount of glu- 

ose in the meal per kg of body weight and the fraction f of in-

ested glucose that enters the peripheral circulation fixed to 0.9 

10] . This additional information means that one of the height pa- 

ameters k 1 - k 7 needs to be replaced, which leads to two is- 

ues. Firstly, the details of this replacement procedure, particularly 

hich of the height parameters k 1 - k 7 to replace is not mentioned 

n any publication. Secondly, it can lead to the height of the se- 

ected breakpoint to become negative and thus non-physiological, 

ven if all other heights are constrained to be positive. The details 

f fixing the AUC of Ra through the replacement of a height pa- 

ameter proposed in this paper are provided in Section 1 of the 

upplementary material. 

Given the difficulties and disadvantages with a piecewise lin- 

ar formulation of the GA function in Eq. (5) , we propose an alter- 

ative, parametric description of Ra following a single meal. It is 

omposed of two superimposed components: 

a LN ( t ) = A [ ( 1 − R H ) f LN ( t, T 1 , W 1 ) + R H f LN ( t, T 2 , W 2 ) ] , (6) 

here the individual components are defined by a function that 

tilises a modified structure of the log-normal distribution with an 

UC of one: 

f LN ( t, T , W ) = 

⎧ ⎨ 

⎩ 

0 if t = 0 

1 

t 
√ 

πW 

exp 

[
−( ln ( t T ) − 1 

2 W ) 
2 

W 

]
if t > 0 

. (7) 

Parameters T 1 , T 2 , W 1 and W 2 govern the peak times and gen-

ral widths of the respective components and therefore the over- 

ll shape of the GA time profile ( Fig. 1 ). The function Ra LN has a

xed total AUC of A and the contributions of the AUCs of individual 

omponents to the overall AUC are governed by the parameter R H 
hich is restricted to the range (0,1). This ensures that the function 

a LN remains non-negative at all times. The fixed total AUC is cal- 

ulated identically to the case of Ra PL , by multiplying the amount 

f glucose contained in the meal with the fractional absorption f . 

he use of two superimposed, log-normally shaped components in 

6) with differing peak times to describe the overall shape of GA is 

ustified by the fact that experimentally measured GA profiles of- 

en display two distinct phases characterised by a secondary hump 

fter the initial peak [28–30] . 

In comparison to the conventional piecewise linear function 

a PL defined by Eq. (5) , the new log-normally-based function Ra LN 

efined by Eqs. (6)-(7) has only five parameters ( T 1 , T 2 , W 1 , W 2 ,

 ) that have to be inferred during parameter estimation, instead 
H 
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Fig. 2. Schematic depiction of the modelling procedure for incorporating the over- 

lapping effects between meals. 
f six ( k 1 , k 2 , k 3 , k 4 , k 5 , k 7 ). Furthermore, the proposed input func-

ion Ra LN has the following advantages over the conventional func- 

ion Ra PL : 

• Removed necessity to choose fixed values for the time of the 

breakpoints t 0 - t 7 and which height parameter to replace to 

fix the overall AUC of Ra PL . 
• Guaranteed positive and therefore physiologically justified GA 

rates. As explained before, it is possible for the function Ra PL in 

Eq. (5) to become negative as a result of fixing the overall AUC. 
• Increased flexibility in the first 30 min of the response because 

the parameter T 1 governing the peak time of the first compo- 

nent can be adapted. 
• Removed necessity to assume a fixed decay rate α after the end 

of the response duration because the GA behaviour beyond the 

modelled duration, i.e. Rap , is completely determined by the 

adaptable parameters ( T 1 , T 2 , W 1 , W 2 , R H ) of Ra LN and there-

fore informed by the data. 
• Straightforward adaptation to a dataset with different meal re- 

sponse durations or irregular meal consumption times. As the 

last breakpoint of the function Ra PL in Eq. (5) is dependent on 

the last measurement point of the described meal response, a 

dataset with varying durations between meals would require 

the adaption of the formulation of Ra PL for every response, 

which is highly impractical. 

.3. Structural identifiability analysis 

The previously mentioned publication [9] presented a structural 

dentifiability analysis on the conventional OMM formulation in 

qs. (1)-(2) and input function Ra PL in Eq. (5) using the Taylor se- 

ies approach [31] . Here, the conclusion was made that parameters 

 2 and p 3 as well as the height parameters k 1 - k 7 are structurally 

lobally identifiable if parameter p 1 and the distribution volume V 

re known. This result has been used by all studies utilising the 

MM, e.g. [2–7] . 

In this paper, these results are partially disproved by combining 

he Taylor series approach with symbolic computation. In particu- 

ar, it is demonstrated that in addition to parameters p 2 , p 3 and 

 1 - k 7 , parameter p 1 is also structurally globally identifiable if 

he distribution volume V is known. This can be shown by using 

ne additional Taylor series coefficient, demonstrating that work 

9] truncated the Taylor series expansion too early, as already hy- 

othesised by Saccomani et al. [32] . These novel structural identi- 

ability results extend to the generalised formulation of the OMM 

n Eqs. (3)-(4) with input function Ra PL in Eq. (5) , i.e. that p 1 , p 2 , S I 
nd k 1 - k 7 are structurally globally identifiable. The details of the 

tructural identifiability analysis are provided in Section 3.1 of the 

upplementary material. 

To examine the identifiability of the OMM in Eqs. (3)-(4) in 

ombination with the log-normally based GA function Ra LN in Eqs. 

6)-(7) the Taylor series approach is no longer tractable with sym- 

olic computation. We thus resort to a different approach that can 

stablish the local structural identifiability or non-identifiability of 

arameters, called the observability rank criterion (ORC) method 

33] . The method is implemented as a freely available MATLAB 

oolbox, known as STRIKE-GOLDDv2.2 [ 33 , 34 ]. Applying the ORC 

ethod to the OMM in Eqs. (3)-(4) in combination with the func- 

ion Ra LN in Eqs. (6)-(7) , it can be shown that all parameters are

tructurally locally identifiable. The details of the computation are 

rovided in Section 3.2 of the supplementary material. Given the 

ymmetric nature of Ra LN in Eq. (6) , it can be deduced that there

re at least two structurally locally identifiable parameter combi- 

ations, given the fact that the two input components of Ra LN can 

e switched for the same overall shape, which would be indicated 

y T > T . 
1 2 

4 
.4. Definition of prior distributions 

The unknown parameters to be estimated in the new formu- 

ation of the OMM in Eqs. (3)-(4) are the system parameters p 1 , 

 2 , and S I as well as the parameters related to the piecewise lin-

ar GA function Ra PL , i.e. k 1 , k 2 , k 3 , k 4 , k 5 , k 7 , and the parameters

elated to the log-normal GA function Ra LN , i.e. T 1 , T 2 , W 1 , W 2 and

 H . Prior distributions for all parameters are selected as log-normal 

DFs since the parameters are only physiologically plausible when 

ositive. The exception to that is the parameter R H which is re- 

tricted to the range (0,1) by passing a normally distributed aux- 

liary parameter through a logistic mapping. All prior and poste- 

ior distributions are characterised by their median and coefficient 

f variation (CV). The prior distributions are set based on popu- 

ation densities determined by a study from 2004 [ 10 ]. Here, ad- 

itional data from traced glucose was utilised to estimate all un- 

nown parameters of the OMM in a NGT subject population. The 

etails of all prior distributions are provided in Section 4 of the 

upplementary material. Two comments are in order. Firstly, the 

rior distribution of the previously fixed glucose effectiveness pa- 

ameter p 1 is chosen to have a CV of 25 %. In a preliminary analy-

is, this level of prior uncertainty was found to provide a suitable 

rade-off between considering the observed population variability 

f p 1 in work [10] and an acceptable estimation precision of the re- 

aining parameters, especially the insulin sensitivity S I . Secondly, 

he treatment of the unknown parameter p 2 governing the dynam- 

cs of state X , is inconsistent between studies. While some studies 

hoose to fix it altogether [ 16 , 35 ], a selective “Gaussian Bayesian

rior” with a CV of 20 % was considered in other studies [ 7 , 10 ]. We

nstead model parameter p 2 with a log-normal distribution and an 

ncreased prior CV of 40 % to better reflect its observed population 

ariability in work [10] . 

.5. Parameter estimation procedure 

The parameter estimation is carried out using a variational 

ayesian (VB) approach [ 13,36 ]. It provides an approximation to 

he posterior distributions of unknown model parameters through 

he maximisation of a lower bound on the model evidence, i.e. the 

arginal likelihood of observing the data under the given model. 

his probabilistic treatment of unknown parameters allows the es- 

imation of parameter uncertainty and incorporation of existing 

nowledge into the estimation procedure, as demonstrated in the 

revious section. 

The procedure for identifying the OMM from consecutive meal 

esponses is schematically depicted in Fig. 2 . The basal levels of 

lucose G b and insulin I b in Eqs. (3)-(4) are fixed over the entire 

uration covered by the dataset (12 h) and are calculated by av- 

raging the results from the -15, 0, 2 and 5 min samples of the 
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Fig. 3. Boxplots and individual values of (a) posterior median and (b) posterior co- 

efficient of variation (CV) of the system parameters p 1 , p 2 , and S I for the input func- 

tions Ra PL (left) and Ra LN (right) over all 99 modelled responses. The bullets mark 

significant differences (p < 0.05) between estimations for the two input functions 

according to the Wilcoxon ranksum test. Furthermore, the r-values in (a) give the 

Pearson correlation coefficient between estimations for the two input functions and 

the shaded areas (violin plots) indicate the respective prior distributions. 
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t  
rst meal to counteract measurement errors. A recalculation of 

asal levels before every meal is unfeasible because it cannot be 

ssumed that basal levels are reached before the next meal is con- 

umed. In contrast, the initial conditions G 0 and X 0 are reset for 

very meal, where G 0 is calculated as the average of the 0, 2 and

 min samples. A similar approach to X 0 is not possible because 

his state is not directly observed but inferred by the model. In- 

tead, X 0 is set to 0 before breakfast, assuming no active insulin 

ue to the fasting state of the subjects [9] . For the subsequent 

eals (lunch and dinner) this assumption cannot be justified, so X 0 

s set to the last inferred value from the previous meal, i.e. X (240).

he persisting absoption Rap is calculated as Rap ( t ) = Ra ( t + 240),

here the function Ra is either Ra PL or Ra LN inferred from the pre- 

ious meal. 

One set of unknown parameters is estimated from every sin- 

le meal response in the dataset using the VB approach. To pro- 

ide the insulin concentration profile as known input, it is lin- 

arly interpolated on the integration time step of 0.1 minutes. Soft- 

are packages implementing the described identification proce- 

ure in MATLAB and Python are freely accessible online ( https: 

/github.com/manueich/VBA-OMM ). They have been designed for 

ase of use while requiring minimal knowledge of the underlying 

athematical techniques. A detailed documentation and examples 

an be found online. 

.6. Validation of the parameter estimation procedure 

The validity of the estimation results and thus the proposed pa- 

ameter estimation procedure is examined by comparison to liter- 

ture results. This comparison can identify possible differences to 

he results from the conventional identification procedure when 

pplied to similar datasets. Included in this comparison are re- 

ults from studies identifying the OMM under similar conditions, 

.e. populations only consisting of NGT subjects and utilising re- 

ponses from OGTTs or MTTs. Compared are the inference results 

f parameters p 2 and S I as well as the weighted residuals between 

odel output and data calculated with 

 i = 

y i − G i 

0 . 02 · y i 
, (8) 

here R i is the value of the weighted residual calculated from the 

lucose measurement point y i and the corresponding glucose level 

 i inferred by the model. The value 0.02 represents the glucose 

ssay CV of 2 %. An additional model fit criteria is calculated as the 

oot mean squared error (RMSE) between glucose data and model 

utput. 

To assess the difference in glucose appearance profiles between 

he two functions Ra PL and Ra LN , the following quantity is calcu- 

ated: 

Ra ( t ) = 

R a PL ( t ) − R a LN ( t ) 

R a PL ( t ) 
. (9) 

. Results 

.1. Parameter estimation 

The posterior estimates of the system parameters p 1 , p 2 , and S I 
or both types of GA functions are displayed in Fig. 3 . The pop-

lation distribution of the glucose effectiveness parameter p 1 in 

a) follows the prior distribution and the estimated medians dis- 

lay a low correlation (r = 0.17) between input functions. Together 

ith the fact that the posterior CVs of p 1 in (b) only marginally de-

reased from the prior CV of 25 % implies practical identifiability 

ssues in this parameter. For the case of the parameter p 2 , the pop-

lation distribution in (a) has shifted with respect to the prior PDF, 

ndicating that the individual posterior densities are informed by 
l

5 
he data. The posterior CVs in (b), however, show large variability, 

ndicating that the parameter cannot be estimated with adequate 

recision in a significant number of cases. 

In contrast, the insulin sensitivity estimates are highly corre- 

ated (r = 0.93) and statistically equivalent (p = 0.66) between both 

ypes of GA functions. Furthermore, S I estimates show a high pos- 

erior precision which indicates excellent convergence from a prior 

V of 100 %. 

The posterior results of the input function parameters are pro- 

ided in Section 5 of the supplementary material. The parame- 

ers related to the two input functions show excellent convergence 

o a more narrow posterior distribution, as indicated by an over- 

ll median of 11.3 % from a prior CV of 50 % for the parameters

f Ra PL and an overall median of 10 % from a prior CV of 30 %

or the parameters of Ra LN . Here, two observations can be made. 

irstly, for the case of Ra PL , lower values of parameters generally 

ead to higher posterior CVs and secondly, for the case of Ra LN , the

wo width parameters W 1 and W 2 show higher posterior CVs, in 

omparison to the remaining parameters. The overall posterior CVs 

evertheless confirm the structural identifiability results regarding 

he parameters of Ra LN . In this context, there are no cases where 

he respective components of the log-normal input are switched as 

ndicated by T 1 < T 2 in all responses. 

.2. Comparison to literature 

A literature search found six studies matching the inclusion cri- 

eria of having a NGT subject population and using data from ei- 

her MTTs [ 7 , 9 , 10 , 14 ] or OGTTs [ 15 , 16 ]. A comparison between the

iterature results and the corresponding outcomes of the procedure 

https://github.com/manueich/VBA-OMM


M.M. Eichenlaub, J.G. Hattersley, M.C. Gannon et al. Computer Methods and Programs in Biomedicine 200 (2021) 105911 

Table 2 

Comparison between the results of this work and the literature. If provided, values are given as population mean ± standard error. In the case of an empty cell, the respective 

results were not reported by the authors of the study. 

Type of test Samples (Duration [min]) S I [10 -4 min -1 per mU/L] CV S I [%] p 2 [min -1 ] CV p 2 [%] 

Present work using Ra PL MTT 17 (240) 10.5 ± 0.6 6.8 ± 0.6 25.5 ± 2.0 27.5 ± 0.8 

Dalla Man et al. [9] MTT 21 (420) 6.8 ± 0.7 2.8 ± 0.3 11 ± 0.5 15 ± 0.7 

Dalla Man et al. [10] MTT 21 (420) 8.1 ± 0.5 7 ± 0.3 - - 

Dalla Man et al. [14] MTT 21 (420) 7.9 ± 0.6 5 - - 

Saad et al. [7] MTT 13 (360) 6.3 ± 1.1 - - - 

Geragotou et al. [15] OGTT 10 (210) 20.3 ± 2.8 - - - 

Theodorakis et al. [16] OGTT 10 (120) 17.7 ± 1.8 17.3 - - 

Fig. 4. Time profiles of mean and standard deviation of weighted residuals of the OMM with the piecewise linear input Ra PL and log-normal input Ra LN . Additionally, results 

from selected publications by Dalla Man et al. (2002) [9] (no standard deviation is provided), Dalla Man et al. (2004) [10] and Saad et al. [7] are provided. The solid horizontal 

lines indicate a value of zero and the adjacent dashed lines the -1 to + 1 range. 
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resented in this paper using the piecewise linear function Ra PL is 

rovided in Table 2 . 

The number of sampling points and intervals between the 

ataset used in this paper and the literature studies are similar, 

aking the overall estimation results comparable, as the estima- 

ion precision of the parameters can be affected by the number 

nd timing of the sampling points. As with the dataset used in this 

ork, it is common to sample at irregular intervals with a tighter 

ampling grid at the beginning of the test. Additionally, OGTTs al- 

ow for shorter sampling durations compared to MTTs. 

The posterior CV of the insulin sensitivity parameter S I shows 

hat the insulin sensitivity can be estimated with a precision com- 

arable to the literature results. When comparing absolute in- 

ulin sensitivity values between different studies, it has to be 

oted that potential biases in the insulin measurement techniques, 

hich are known to be up to twofold [37] , can affect the re-

ults. The estimated S I values are similar in studies [ 7 , 9 , 10 , 14 ],

hich could stem from the fact that these studies were conducted 

ithin a single institution, using consistent equipment and as- 

ays. When the OMM is utilised by independent groups as in 

his work and studies [ 15 , 16 ], differences in population means are

bserved, most likely due to differences in insulin measurement 

ethods. 

Only one study provides posterior results of the parameter p 2 . 

ere, the standard error of point estimates and posterior CVs are 

ower. This is most likely the consequence of the more narrow 

rior distribution of 20 % chosen in [9] , whereas our work utilised 

 prior CV of 40 %. The bias in mean population point estimates 
6 
ould be a result of potential biases introduced by the insulin mea- 

urement techniques. 

.3. Model fit 

To assess the model fit, a plot of the time profile of averaged 

eighted residuals as calculated by Eq. (8) is provided in Fig. 4 . 

imilar to the literature, our results show very few outliers outside 

he -1/ + 1 range demonstrating a comparable ability to fit the data. 

he increased standard deviation, i.e. variability in the results of 

his work can be explained by the fact that, unlike the literature 

tudies, this work used data from three different meal composi- 

ions leading to higher variability in the recorded responses. 

An interesting trend can be observed in all results using the 

iecewise linear GA function, including the results of this work: 

here is a clear bias towards negative weighted residuals in the 

rst 20 - 30 min of the response. Considering Eq. (9) , defining 

he weighted residuals, this means that the model overestimates 

he glucose excursion in comparison to the data. This trend is not 

resent in the results of the new log-normal GA function (red 

quares in Fig. 4 ), demonstrating the improved ability of the new 

nput function to describe the data in this particular part of the 

esponse. In contrast, Ra LN yields slightly more biased residuals 

ith larger variability towards the end of the response. This can 

e explained by the higher flexibility of Ra PL in the last 90 min of 

he response. For the remaining part of the response, both input 

unctions produce a similar model fit. Overall, the RMSE values of 

he models using the two input functions are equivalent, i.e. Ra 
PL 
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Fig. 5. Boxplots and individual values of (a) insulin sensitivity estimates and (b) 

RMSE values grouped according to the time of meal consumption. The p-values in 

the top left corner give the results of a Kruskal-Wallis test. 
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.27 ± 0.13 vs. Ra LN 0.27 ± 0.12 mmol/L, p = 0.92 according to the 

ilcoxon ranksum test. 

.4. Diurnal variability 

To examine the ability of the model identification procedure to 

ccount for overlapping effects between meals, the diurnal changes 

n insulin sensitivity and RMSE values are analysed and displayed 

n Fig. 5 . The insulin sensitivity estimates decrease over the course 

f the day, whereas the RMSE values are unaffected by the time of 

eal consumption. 
ig. 6. Top: Comparison between the inferred GA profiles of Ra PL and Ra LN for the meal

right). Bottom: Time course of the relative deviation between GA functions for each mea

nd associated standard deviation. 

7 
.5. Estimation of glucose appearance 

A comparison between the inferred time profiles of GA using 

he piecewise linear function Ra PL and log-normally based func- 

ion Ra LN is provided in Fig. 6 , where it is demonstrated that the 

rst peak in GA profiles occurs slightly earlier in all meal types 

hen Ra LN is used. This can be considered more realistic because 

nlike Ra PL , the proposed function is more flexible in this part of 

he response and fits the data better, as described in the previ- 

us section. For the remaining response time, the inferred profiles 

n the meals of standard (STAND) and high carbohydrate (HCHO) 

omposition display a similar pattern and low δRa values indicat- 

ng the relative difference of GA functions. This is not the case in 

he meal with high protein content (HPROT). Here, the GA pro- 

le of the piecewise-linear function indicates three distinct absorp- 

ion phases, whereas the new function is by definition only ca- 

able of producing two phases. Despite this lack of flexibility of 

a LN , a worse model fit in the HPROT meal cannot be detected, 

s demonstrated by the statistical equivalence of RMSE values, i.e. 

a PL 0.23 ± 0.1 vs. Ra LN 0.24 ± 0.1 mmol/L, p = 0.59 according to 

he Wilcoxon ranksum test. 

. Discussion 

In this work, we critically discussed the oral minimal mod- 

lling approach and introduced three novel methodological adap- 

ations to the conventional method: the use of the VB method for 

arameter estimation, the model identification from non-fasting 

onditions using a generalised model formulation and a novel 

unction to represent meal-related glucose appearance. Addition- 

lly, we demonstrated that the glucose effectiveness parameter p 1 
s structurally globally identifiable, disproving earlier results [9] . To 

ncorporate this new structural identifiability result into the pa- 

ameter estimation procedure, the proposed Bayesian approach is 

articularly useful as it allows the definition of a suitable prior 

istribution over p , balancing the observed population variabil- 
1 

 types of standard (left), high carbohydrate (centre) and high protein composition 

l type, as calculated by Eq. (9) . The solid lines and the shaded areas give the mean 
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e.g. [43] , from meal test glucose and insulin data. 
ty from work [ 10 ] with the estimation precision of the remaining 

arameters. The posterior results of p 1 showed a high uncertainty 

ompared to its prior and low correlation between medians when 

stimated with two different GA functions. This demonstrates that 

he estimates of p 1 are unreliable which prohibits the interpreta- 

ion of the glucose effectiveness regarding the subject and/or meal 

haracteristics. Furthermore, it exposes a general weakness of the 

MM irrespective of the parameter estimation approach. We nev- 

rtheless argue that fixing p 1 to its population median, as was 

one in all previous studies using the OMM, is not suitable, be- 

ause it would ignore the large population variability observed in 

ork [10] and lead to an underestimation of the uncertainty in the 

emaining parameters especially the insulin sensitivity. 

The remaining parameters, especially the insulin sensitiv- 

ty parameter S I , could be estimated with acceptable precision 

omparable to that of literature results, as shown in Table 2 . This 

stimation precision could be achieved despite the introduction of 

dditional uncertainties through the prior distributions over p 1 and 

 2 , therefore demonstrating the aptitude of the VB model inversion 

pproach. Similarly, the time course of averaged weighted residu- 

ls displays a similar pattern in comparison to the literature re- 

ults ( Fig. 4 ), demonstrating the ability of the inversion approach 

o achieve equally good model fitting results. 

A factor limiting the cogency of the current study is the use of a 

ataset that only contains subjects with normal glucose tolerance, 

s the OMM can be particularly useful for the study of metabolic 

efects in subjects with impaired glucose tolerance and type 2 dia- 

etes. However, the easily accessible nature of the developed soft- 

are packages allow other research groups, where data from dif- 

erent subject populations might be available, to apply the OMM 

nd validate the proposed identification method further. 

An important aspect of the oral minimal modelling approach is 

he fact that that the distribution volume V and the fractional glu- 

ose absorption f are fixed to population results, despite the fact 

hat these parameters have a considerable population variability, 

s observed in the previously mentioned work by Dalla Man et al. 

2004) [10] . Here, it was already noted that this inflexibility can 

mpair the OMM’s ability to assess insulin sensitivity on an indi- 

idual level. In fact, it can be shown that the insulin sensitivity pa- 

ameter S I is highly affected by the chosen values for V and f with a

roportional relationship to an increase in f and an inverse propor- 

ional relationship to an increase in V (see section 5.2 in the sup- 

lementary material). This issue could be partially solved using the 

roposed log-normally based input function Ra PL , as the parmeter 

 governing its AUC in expression (6), fixed based on f and the 

mount of glucose in the meal, could be treated as an adaptable 

arameter, whose prior distribution is informed by the population 

istribution over f from work [10] . This would eliminate the need 

o assume a fixed value for f , while retaining the structural local 

dentifiability of all parameters according to the ORC method and 

ighlights an additional benefit of the new input function Ra PL . In 

his work we however refrained from this procedure as it would 

e a substantial deviation from the conventional identification ap- 

roach and therefore disallowing a comparison with results from 

he literature. 

In terms of the computational cost, the VB method is highly ef- 

cient. Using MATLAB 2019b running on a PC with Microsoft Win- 

ows 10 Enterprise, Intel Core i7 CPU with 3.4 GHz and 32 GB 

f RAM, the identification of the OMM was taking an average of 

.5 s per response. Similar results were obtained with the Python 

ersion of the software package. This is significantly less than the 

ime of several hours reported when identifying the IVGTT mini- 

al model using a Markov Chain Monte Carlo approach [19] and 

akes the proposed approach feasible in a practical setting like a 

hysiological or clinical laboratory. 
8 
The analysis of diurnal changes in RMSE values shown in 

ig. 5 (b) shows no decrease in the model’s ability to fit the data 

rom meals consumed under non-fasting conditions, which implies 

he validity of the associated generalisation of the OMM formula- 

ion in Eqs. (3)-(4) . Furthermore, the decrease in insulin sensitiv- 

ty over the course of the day shown in Fig. 5 (a) confirms earlier

esults by Saad et al. [7] . Here, the conventional OMM in Eqs. (1)-

2) was applied to MTTs conducted at different times on three con- 

ecutive days, where the meals were consumed 6 h apart so that 

asting conditions could be assumed independent of mealtime. In 

ur work, we achieved very similar results regarding the diurnal 

hanges in insulin sensitivity using data from a far less elaborate 

xperimental procedure. This further demonstrates the utility of 

he generalised model in Eqs. (3)-(4) to account for overlapping 

ffects between meals and encourages the application of our pro- 

edure to similar datasets e.g. [ 27 , 38–40 ]. 

The newly proposed GA function, consisting of two superim- 

osed log-normally shaped components, has several advantages in 

omparison to the conventional piecewise linear representation of 

A. These are mainly related to the fact that it is a fully differ- 

ntiable function that does not require the specification of fixed 

alues. The results using the new GA function show that it is pos- 

ible to fit the data with the same accuracy and that the relevant 

nsulin sensitivity parameter estimates are highly correlated and 

ave similar, albeit slightly decreased precision. A particularly use- 

ul feature of the log-normal input function is its flexibility in the 

ime of the initial peak. This gives the model the ability to bet- 

er fit the data in the first 20–30 min of the response, as demon- 

trated by the time profile of averaged weighted residuals in Fig. 4 . 

his improved model fit makes the estimated GA rates more real- 

stic during the initial part of the response and explains the high 

eviations to the piecewise linear function, demonstrated in Fig. 6 . 

nother indication of a more realistic estimation of GA using the 

og-normally based GA function is found in the previously men- 

ioned study [10] . Using traced glucose to obtain a reference pro- 

le of GA, it was found that the piecewise-linear function overes- 

imates GA in the first 30 min. Since Ra LN infers lower GA rates 

n comparison to Ra PL , the proposed log-normal input can thus be 

onsidered to provide more realistic results during the initial part 

f the response. 

The potential use of the new GA function extends beyond 

he OMM to other models describing the postprandial glucose 

etabolism. In particular, the function could be used to describe 

mbulatory glucose profiles in models that only require glucose 

ata for identification [ 23 , 41 ], where it is common that meals are

onsumed at irregular intervals. 

The vast majority of studies using the OMM, e.g. [ 2–11 , 14 ],

ave been published by or with the contribution from the research 

roup that introduced the OMM in 2002. In comparison, its appli- 

ation by independent research groups, e.g. [ 15 , 16 ], is rare. Pos- 

ible causes for this sparsity could be the difficulties in replicat- 

ng the modelling approach due to inconsistencies and a lack of 

etails in the literature, and the fact that the prevalent software 

ool is only commercially available. This couldpotentially lead to a 

hortfall of objective and independent validation of the oral min- 

mal modelling approach. To alleviate these issues, this paper de- 

cribed all relevant details of the model identification procedure 

hich, together with the freely accessible software packages that 

e offer, makes it possible for other research groups to apply and 

alidate the OMM independently. This work could thus set the fu- 

ure standard for the identification of the oral minimal model of 

lucose dynamics. In particular, the published work facilitates the 

omparison of the OMM results against other means of determin- 

ng insulin sensitivity, e.g. [42] , and glucose absorption patterns, 
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