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The formulae for the cross section of bremsstrahlung by relativistic electrons and positrons taking into account 
the contribution of the second Born approximation are obtained. The dependence of the radiation cross section in the 
field of atomic plane on the sign of charge of the particle is considered.

PACS: 12.20.-m, 41.60.-m

In this paper we consider the second Born correction 
to  the  process  of  bremsstrahlung  of  high  energy 
electrons and positrons in an external field. The account 
of the second Born approximation leads to dependence 
of  the  radiation  cross  section  on  the  charge  sign  of 
radiating particle. It is demonstrated that contribution of 
the second Born approximation can be substantial for 
the case of coherent interaction of radiating particle with 
atoms of a crystal. 

1. DIFFERENTIAL CROSS SECTION OF 
THE RADIATION PROCESS

The cross section of the bremsstrahlung of electrons 
and positrons in an external field is determined by the 
relation [1]
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where  ),( pε  and  )','( p


ε  are  the  energy  and  the 
momentum of the initial and final particles,  ω  and  k


 

are the frequency and the wave vector of the radiated 
wave, )'( ωεεδ −−  is the delta-function that determines 
the energy conservation under radiation. According to 
the rules of diagram technique [1] the squared matrix 
element in (1) can be written with the account of the 
contribution of the second Born approximation in  the 
form 
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where  gU  is  the  Fourier  component  of  the  potential 
energy  of  the electron  (positron)  in  an external  field, 

),0( gg


=µ  is  the  4-momentum  transferred  to  the 
external  field  (it  is  assumed that  the  external  field  is 
stationary),  µµµµ kppg −−= ' ,  1M  and  2M  are  the 
matrix  elements  which determine contributions  of  the 
first and the second Born approximations (see Fig. 1):
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where µe  is the photon polarization vector, v and v' are 
the  initial  and  final  velocities  of  the  electron, 

µµµ qgq −=' . The values  b,  gσ  and  gτ  in  1M  and 

2M  are determined by the relations 
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where '/' ppn 
=  is the unit vector along the momentum 

'p  direction, and ⊥n  are the components of this vector 
orthogonal to the p .

Fig. 1. Feynman diagrams corresponding to the first  
and the second Born approximations in the process of  
bremsstrahlung in an external field
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The  matrix  element  of  the  radiation  process 
depends on the momentum transferred to the external 
field g


 in an explicit form. The cross section itself can 

be  also  expressed  directly  through  the  transferred 
momentum (and also through the angle ϑ  between the 
vectors  k


 and  p ).  Such  presentation  is  especially 

convenient  in  the  range  of  small  values  of  the 
transferred momentum mg < <⊥ , because it is possible 
to  make  an  expansion  in  the  matrix  element  by  the 
powers of  ⊥g  in this case. Transformation to the new 
variables  is  described  in  [2,3].  The  differential  cross 
section in this case takes the form:
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where '2/2 ε εωδ m= . The variable y  is connected to 
ϑ  by the relation

( ) ayfm +=2/ε ϑ ,      11 ≤≤− y ,             (7)
where
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From the fact that the value a in the radical in (7) must 
be positive one can conclude that

εδ 2/2
|| ⊥+≥ gg .                                  (8)

Note that Eq. (7) determines the possible values of 
the radiation angle ϑ  under given values of ||g  and ⊥g
.

Eq. (4) can be simplified that makes the procedure 
of  summing  over  polarization  of  interacting  particles 
more  easy  than  for  original  Eq. (4).  Neglecting  the 
terms  of  the  order  of  22 / εm ,  we obtain  after  some 
calculations the following expression for 2M :  

  uQ
qqeg

eQuM
qqg 











+















 +−= ⊥⊥

2
'

0
12 2

'
'2
ˆ

ˆ
'

'
σε σε

γ
τε ε

ω


,(9)

where 1Q  is the spinor structure of 1M , 
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After summing over polarizations of final particles 
and  averaging  over  polarization  of  initial  particle  we 
obtain with accuracy to terms of order of  22 / εm  the 

following equations for the values  2
1M  and  *

21MM  

in (1):
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Substituting these equations into (1), we obtain after 
the  integration  over  y and  expansion  on  mg /⊥  the 
following  expression  for  the  cross  section  of  the 
radiation  with  account  of  the  second  Born 
approximation: 
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Let us consider some particular cases of (12). If the 
condition  eff

q ||< <δ  is  satisfied,  where  eff
q ||  are  the 

characteristic values of the longitudinal  component of 
the  momentum  q


 in  (12),  we  can  neglect  the 

dependence  of  gU  and  qgU −  on  ||g  in  (12).  After 

integration over ||g  we obtain that 

2

22

)2('4
31)()(

πε ε
ωσ ⊥

⊥⊥ ⋅









+=

gd
gdwgd −


 2

gU

 




























+×

eff

eff

q

g
O

||

||
1 ,                 (13)

where

ω
ω

ε
ε

π
d

m
gegdw 2

22 '
3
2)( ⊥

⊥ = .                       (14)

For  εω < <  Eq. (13) corresponds to the product of 
the radiation probability  ωddw /  and the cross section 
of elastic scattering of the particle in the external field 

eldσ  with account of contribution of the second Born 
approximation,
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For  the Coulomb field of  the nucleus with charge 
|| eZ  the last equation transforms to the form
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where the scattering angle  pg /⊥≈ϑ .  The last  result 
coincides with the corresponding result of the paper [4] 
obtained  by  different  method.  For  arbitrary  external 
field the formula for eldσ  was obtained in [5,6]. 

Note  that  radiation  of  electrons  in  Coulomb field 
exceeds slightly the radiation of positrons. That is due to 
the fact that electron attracted by the nucleus moves in 
the region with larger gradient of the potential than the 
positron. 

So in the range of frequencies  εω ~  the theorem 
about  factorization  of  the  radiation  cross  section, 
according to which 

)()( ⊥⊥≈ gdgdwd elσσ ,                (15)
is  justified  with  an  accuracy  to  the  correction  which 
determines  the  contribution  of  the  second  Born 
approximation.

2. THE CROSS SECTION FOR RADIATION 
OF RELATIVISTIC ELECTRONS AND 

POSITRONS IN THE FIELD OF ATOMIC 
PLANE IN A CRYSTAL

We can see that dependence of the radiation cross 
section  on  the  particle  charge  sign  in  the  case  of 
radiation of high energy electrons and positrons in the 
field of single atom is rather small. Different situation 
arises  for  coherent  interaction  of  relativistic  particles 
with  atoms of  crystal  lattice.  In  this  case,  due  to  the 
coherent  effect  the  dependence  of  the  radiation  cross 
section on the particle charge sign can be substantially 
amplified in comparison with analogous dependence of 
the  radiation  cross  section  in  an  amorphous  medium. 
The  attention  to  this  fact  was  paid  in  [7]  during 
consideration  of  contribution  of  the  second  Born 
approximation into coherent radiation cross section of 
relativistic electrons in the field of atomic plane of the 
crystal. It was demonstrated that in considered case the 
relative contribution of the second Born approximation 
into coherent  radiation cross section is  determined by 
the parameter 

22

2

θε
α

a
RZe

p =
2

2
~

θ
θ c                                   (16)

which represents by the order of value the ratio of the 
squared  critical  angle  of  plane  channeling  [8]  to  the 
squared angle of incidence θ  of the beam to the atomic 
plane (here || eZ  is the charge of the nucleus of crystal 
lattice  atom,  R is  the  screening  radius  of  the  atomic 
potential, a is the average distance between atoms in the 
crystal  plane).  In this case the Born expansion of  the 
radiation  cross  section  is  valid  if  1< <pα .  The 

parameter pα  rapidly increases with θ  decrease. Under 
1~pα  the account of effects of channeling and above-

barrier  motion  of  particles  in  respect  to  the  crystal 
atomic plane is necessary [3,8,9].

So consider the coherent radiation of electrons and 
positrons in the field of continuous potential of one of 

the atomic planes  in  a  crystal  under  incidence of  the 
beam under small angle  θ  to this plane. The potential 
energy  of  the  particle  in  continuous  potential  of  the 
plane is determined by Eq. (8,9)
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where )( nrru 
−  is the particle potential energy in field 

of the single atom of crystal plane located in the point 
nr


,  yL  and  zL  are the linear dimensions of the plane 
and x is the coordinate, orthogonal to the atomic plane 
of the crystal (summation in (17) is made over all atoms 
of the crystal plane). Taking the atomic potential in the 
form of the screened Coulomb potential, and
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we find  the  expression  for  the  Fourier  component  of 
(17): 
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where  ya  and  za  are the distances between atoms in 
the plane along the axes y and z, and

22
||4

−+
=

Rg
eeZu g 

π
.

Substituting the Fourier  component (18)  into (12), 
we  obtain  the  following  expression  for  the  radiation 
cross section
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Here we have used the fact that in the case under 
consideration xgg θ≈|| . The value xg  here covers the 
range θδ /≥xg . Under εω < <  Eq. (19) transforms to 
the corresponding result of the paper [7]. Note that in 
the case of interaction of the particle with continuous 
potential of the plane the radiation cross section cannot 
be  presented  in  the  form  (15)  for  any  photon 
frequencies. This is due to the fact that elastic scattering 
on the continuous plane  can take place only to  some 
fixed angles to the plane [5,6] because of energy and 
momentum conservation laws in the process of elastic 
scattering. 

Eq. (19)  demonstrates  that  for  all  frequencies  the 
cross section of radiation by positrons turns out larger 
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than  the  cross  section  of  radiation  by  electrons,  in 
difference  to  the  case  of  radiation  in  Coulomb field. 
This result can be explained by the following way. The 
sign of the effect is determined by competition of two 
factors:  (i)  the  electron  is  attracted  to  the  plane  and 
moves in the region with larger gradient of the potential 
than  the  positron,  that  leads  to  increase  of  radiation; 
(ii) in distinct to the positron, it spends less time in the 
region with large gradient of the potential, that leads to 
decrease of radiaton. In Coulomb field the first factor 
plays the determinative role, in the field of atomic plane 
- the second one. 

Eq. (19)  demonstrates  also  that  radiation  spectrum 
ωσω dd /  posesses  the  maximum  in  the  range  of 

frequencies satisfying the condition
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With  the  particle  energy  growth  the  position  of  this 
maximum moves to the region of high frequencies. For 

θε /~ 2 Rm  the maximum is located in the region of 
frequencies for which the effect of recoil under radiation 
is  substantial.  The  parameter  (16)  that  determines 
dependence of the cross section on the particle charge 
sign for θε /~ 2 Rm  takes the form

θ
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So in  the  range  of  energies  under  consideration  with 
decrease  of  θ  the  dependence  of  coherent  radiation 
cross section on the charge sign of the particle becomes 
substantial in the whole range of frequencies of radiated 
photons. 

3. COHERENT RADIATION ON A SET OF 
ATOMIC PLANES IN THE SECOND BORN 

APPROXIMATION
The cross section of bremsstrahlung on the crystal is 

determined by relation [3]:
)( incohcoh ddNd σσσ += ,

where N is the whole number of atoms in crystal, cohdσ  
is the coherent part of radiation cross section caused by 
interference  of  radiation  produced  on  different  atoms 
regularly  arranged  in  the  crystal,  incohdσ  is  the 
incoherent  part  caused  by  thermal  spread  of  atom 
positions in the crystal. For the case of interaction of the 
particle  with  the  set  of  parallel  atomic  planes  in  the 
crystal, we can obtain the equation for cohdσ  from (19) 
by change of  integration over  xdg  to  the  summation 
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where  ax  is the distance between atomic planes. The 
cross section of coherent radiation of 1 GeV positrons 
and  electrons  incident  under  the  angle  4104 −⋅=θ  
radians to the <011> plane of the Si crystal is shown on 

the  Fig. 2.  We  can  see  that  the  difference  between 
radiation cross  sections for  positrons  and electrons in 
the case illustrated is of order of 10%. 

Fig. 2. The  cross  section  of  coherent  radiation  of  
1 GeV positrons (solid line) and electrons (dashed line)  
incident  under  the  angle  4104 −⋅=θ  radians  to  the 
<011> plane of the Si crystal. The dotted line shows the 
Bethe-Heitler cross section
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