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Abstract:

Up to now, relatively little effort has been dedicated to the quantitative 
assessment of the differences in spatial patterns of model outputs. In 
this paper, we employed a variogram-based methodology to quantify the 
differences in the spatial patterns of root-zone soil moisture, net 
radiation, and latent and sensible heat fluxes simulated by three land 
surface models (SURFEX/ISBA, JULES and CHTESSEL) over three 
European geographic domains, namely United-Kingdom, France and 
Spain. The model output spatial patterns were quantified through two 
metrics derived from the variogram: i) the variogram sill which 
quantifies the degree of spatial variability of the data and ii) the 
variogram integral range which represents the spatial length scale of the 
data. 
The higher seasonal variation of the spatial variability of sensible and 
latent heat fluxes over France and Spain compared to UK is related to a 
more frequent occurrence of a soil-moisture limited evapotranspiration 
regime during summer dry spells in the South of France and Spain. The 
small differences in spatial variability of net radiation between models 
indicates that the spatial patterns of net radiation are mostly driven by 
the climate forcing data set. However, the models exhibit larger 
differences in latent and sensible heat flux spatial variabilities, which are 
related to their differences in i) soil and vegetation ancillary datasets and 
ii) physical process representation. The highest discrepancies in spatial 
patterns between models are observed for soil moisture which is mainly 
related to the type of soil hydraulic function implemented in the models. 
This work demonstrates the capability of the variogram to enhance our 
understanding of the spatiotemporal structure of the uncertainties in 
land surface model outputs. We therefore strongly encourage the 
implementation of the variogram metrics in model intercomparison 
exercises. 
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Abstract
Up to now, relatively little effort has been dedicated to the quantitative assessment of the differences 

in spatial patterns of model outputs. In this paper, we employed a variogram-based methodology to 

quantify the differences in the spatial patterns of root-zone soil moisture, net radiation, and latent and 

5 sensible heat fluxes simulated by three land surface models (SURFEX/ISBA, JULES and 

CHTESSEL) over three European geographic domains, namely United-Kingdom, France and Spain. 

The model output spatial patterns were quantified through two metrics derived from the variogram: 

i) the variogram sill which quantifies the degree of spatial variability of the data and ii) the variogram 

integral range which represents the spatial length scale of the data. 

10 The higher seasonal variation of the spatial variability of sensible and latent heat fluxes over France 

and Spain compared to UK is related to a more frequent occurrence of a soil-moisture limited 

evapotranspiration regime during summer dry spells in the South of France and Spain. The small 

differences in spatial variability of net radiation between models indicates that the spatial patterns of 

net radiation are mostly driven by the climate forcing data set. However, the models exhibit larger 

15 differences in latent and sensible heat flux spatial variabilities, which are related to their differences 

in i) soil and vegetation ancillary datasets and ii) physical process representation. The highest 

discrepancies in spatial patterns between models are observed for soil moisture which is mainly 

related to the type of soil hydraulic function implemented in the models.

This work demonstrates the capability of the variogram to enhance our understanding of the 

20 spatiotemporal structure of the uncertainties in land surface model outputs. We therefore strongly 

encourage the implementation of the variogram metrics in model intercomparison exercises.
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1 Introduction
30 Accurate simulation of surface fluxes, such as evapotranspiration (ET), is essential to reduce the uncertainties 

in predictions of the long-term evolution of the terrestrial water cycle and the occurrence of hydro-

meteorological hazards (Seneviratne et al. 2010; Vilasa et al., 2017). The different ways in which the control 

of soil moisture on ET dynamics is modelled has been identified as a major source of discrepancies among 

land surface model (LSM) predictions (Seneviratne et al. 2010). Various experiments have been designed to 

35 compare multiple LSMs and evaluate them against observations at both regional (Henderson-Sellers et al. 

1993; Boone et al. 2009) and global scales (Dirmeyer, 2011, Koster et al., 2006). Important efforts have been 

dedicated to developing tools to evaluate and compare model performances at various spatial and temporal 

scales using ground data sets (e.g. FLUXNET) and satellite observations (Kumar et al., 2012; Luo et al., 2012; 

Best et al., 2015; Eyring et al., 2016). 

40 Intercomparison of LSMs generally rely on first-order statistical metrics such as accuracy metrics (RMSE, 

bias), density function overlap with observations, model against observation scatterplots or Taylor diagrams, 

to quantify the discrepancies between models. Some process-based metrics have been developed to investigate 

a specific feature of the model such as the dry-down dynamics (Ukkola et al. 2016; Harris et al., 2017) or the 

bi-modal distribution of soil moisture (Vilasa et al., 2017).

45 While most studies have investigated the uncertainties in the temporal dynamics of surface fluxes, using the 

metrics mentioned above, far fewer efforts have been dedicated to quantify the uncertainties in their spatial 

dynamics (Harris et al., 2017). The evaluation of the differences in spatial patterns simulated by land surface 

models has been limited to qualitative assessment of spatial maps of key model output fluxes or variables, that 

provides little insight into the spatiotemporal structures of the model output uncertainties. 

50 The analysis of the spatial structures displayed by geospatial data sets brings insight on the nature and the 

scale of spatial variation of Earth surface processes. Garrigues et al., 2007 employed stochastic models to 

characterize the nature of the spatial structures displayed by satellite imagery and to identify the underlying 

processes structuring distinct types of landscape. Besides, Garrigues et al., 2008 showed that the seasonal 

evolution of cropland spatial structures observed in satellite imagery can be related to vegetation dynamic 
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55 processes and agricultural practices. Tarnavsky et al.,2008 employed variogram analysis to assess the 

differences in spatial information content across multiple satellite-based vegetation maps and to identify the 

spatial resolution at which the differences in spatial information content between satellite data sets is 

reduced. Similarly, Pontius et al, 2008 showed that the analysis of the variations of the spatial structures of 

maps as a function of spatial resolutions brings insights on the differences in spatial information content 

60 between geospatial data sets. Pontius and Malanson, 2005 used this approach to assess the differences in 

accuracy between distinct land use models.

First-order statistics are not sufficient to reliably characterize the spatial structures of model outputs since they 

do not account for spatial correlation (Julesz, 1962). Second-order spatial statistic metrics are required to 

resolve the differences in the spatial patterns of geospatial data. A review of second-order spatial metrics 

65 applied to remote sensing imagery is given in Garrigues et al. (2006). These authors highlighted that the 

variogram is a robust tool to measure the spatial patterns of uncertainties in satellite observations. They 

exploited the variogram to quantify: (i) the spatial variability of the data over the area of interest and (ii) the 

spatial structures of the data, i.e. patches of similar outputs that repeat themselves independently within the 

studied region at a characteristic spatial length scale. Furthermore, the implementation of variogram is more 

70 straightforward than other metrics, such as wavelet decomposition (Csillag and Kabos, 2002).

In this paper, the variogram analysis methodology is applied to surface energy balance fluxes and root-zone 

soil moisture content simulated by three LSMs, at the regional scale, over three European domains associated 

with contrasted climate. The models are implemented using their standard configuration along with their 

standard soil and vegetation parameters. This progress report aims to demonstrate the capability of the 

75 variogram analysis to quantify the differences in the spatial patterns of surface fluxes and soil moisture, as 

predicted by distinct land surface models. The results of the variogram analysis are used to discuss the drivers 

of the differences in spatial patterns of model outputs.

2 Models and simulation design

2.1 Model description
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80 Three LSMs are used in this work:

 SURFEX/ISBA (the Interactions between Soil, Biosphere, and Atmosphere; Noilhan and 

Planton, 1989) v8.0 developed at Meteo France;

 JULES (the Joint UK Land Environment Simulator; Best et al., 2011) configured as GL6 

and based on the code version 4.4, developed by the Met Office; 

85  CHTESSEL, (most recent version of the Tiled ECMWF Scheme for Surface Exchanges 

Over Land; Basalmo et al. (2009)) employed at the European Centre for Medium-Range 

Weather Forecasts (ECMWF). 

Table 1 provides the main characteristics of these models. These models are driven by a climatology 

of Leaf Area Index and vegetation height. Their spatial integration is achieved using their default soil 

90 and vegetation ancillary data sets and land cover map. All models calculate a single source energy 

balance and use a multi-layer diffusion scheme to simulate water and heat transfer in the soil. While 

SURFEX and JULES represent the functional coupling between the stomatal conductance (gs) and 

the net assimilation of CO2 (photosynthesis, A), CHTESSEL relies on an empirical parametric 

formulation of the stomatal conductance. 

95 2.2 Experiment design

The simulations were conducted from 1994 to 2012 over a 0.5° grid over Europe and at a 3-hourly 

time step, using the WFDEI (WATCH Forcing Data methodology applied to ERA-Interim data, 

Weedon et al., 2014) atmospheric reanalysis. Two distinct simulations were conducted for JULES 

using distinct soil hydraulic parametrizations: one is based on the van Genuchten, 1980 scheme 

100 (JULESVG) and one relies on the Clapp and Hornberger, 1978 scheme (JULESCH). We used the 1979-

1993 period as a spin up period and the model's outputs were analyzed from 1994 to 2012. 

The spatial patterns of the model outputs were evaluated over three European geographic domains, 

Page 5 of 33

http://mc.manuscriptcentral.com/PiPG

Progress in Physical Geography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

6

namely United-Kingdom, France and Spain, which were selected to represent contrasted climate, soil 

and vegetation characteristics (Table 2). The variogram analysis is applied to the latent heat (LE), 

105 sensible heat (H), net radiation (RN) fluxes, and the root-zone liquid soil moisture content (θ) 

variables. Three-hourly model outputs are first averaged over 10-days. Next, the 10-day values are 

averaged over the entire simulation period (1994-2012), to represent a mean climatological annual 

timeseries, i.e. thirty-six 10-day values. The variograms of the mean climatological values of each 

flux and variable are then computed.

110 3 Geostatistical methodology to quantify the spatial patterns of model outputs

The variogram analysis consists of two steps: i) computing the empirical variogram over the domain 

of interest and ii) fitting a theoretical variogram model to the empirical variogram to retrieve the 

spatial variability and the size of the spatial structures of the data.

3.1 Empirical variogram

115 The empirical variogram γe(h) (Eq. 1) measures the dissimilarity between the model outputs z(xi ) and z(xj) 

taken at two distinct grid cells xi and xj separated by a distance h  (Eq.(1)). To provide statistically meaningful 

variogram values, the pairs of grid cells at a similar distance h are grouped into bins of separation distance. 

N(h) is the number of grid cell pairs within each bin. The variogram is computed as the average of the squared 

differences of the model values (z(xi ) and z(xj) ) of all pairs of grid cells that fall within each distance bin. To 

120 properly sample the range of separation distance h between grid cells, the bin size is set to one grid cell. The 

variogram is computed to a maximum distance equal to half the domain size to ensure that there are enough 

grid cell pairs within in each distance bin (Garrigues et al. 2006). 

                                      (1)𝛾𝑒(ℎ) =
1

2𝑁(ℎ)∑𝑥𝑖,𝑥𝑗‖𝑥𝑖 ― 𝑥𝑗‖ = ℎ(𝑧(𝑥𝑖) ― 𝑧(𝑥𝑗))2

125

3.2 Variogram modelling
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We assume that the model outputs (z(xi ) and z(xj)) are realizations of a random function Z(x). Under the 

second-order stationarity hypothesis (Chiles and Delfiner, 2012), which ensures the existence and the 

stationarity of the first and second moments of Z(x), the theoretical variogram γ(h) is defined by:

130

                                      (2)𝛾(ℎ) = 0.5𝑉𝑎𝑟[𝑍(𝑥 + ℎ) ― 𝑍(𝑥)] = 𝜎2 ― 𝐶(ℎ)

where C(h) and σ2 are the covariance and the variance of Z(x), respectively. γ(h) is a function starting from 0 

for h = 0 and converging to the sill, σ2 , as h tends to infinity. The range, r, of the theoretical variogram is the 

135 distance at which it reaches the sill. Data separated by a distance larger than the range are spatially uncorrelated.

The linear model of regionalization, which models the variogram as a linear combination of elementary 

conditionally definite negative functions gk(h), is defined by:

                   (3)𝛾(ℎ) = 𝜎2∑𝑘
𝑖 = 1(𝑏𝑘𝑔𝑘(ℎ))

140

where bk is the weight associated to each function gk(h). In an exploratory approach, distinct combinations of 

distinct gk functions (spherical, exponential, Gaussian) were tested and it was found that a single exponential 

model was providing the best fit to our data. 

Eq. (3) then becomes:

145

                      (4)𝛾(ℎ) = 𝜎2[1 ― 𝑒𝑥𝑝( ―3ℎ
𝑟 )]

The parameters σ2 and r of the exponential variogram model are estimated by least-square fitting to the 

experimental variogram. 
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150 The integral range derived from the variogram (A, Eq. 5) is used to quantify the spatial structures of the data. 

A is an area moment that represents the mean surface of the spatial structure of the variable over a given spatial 

domain (Chiles and Delfiner, 2012).

 

                                                                                                               (5)𝐴 =
1
𝜎2∫ℎ ∈ ℝ2(𝜎2 ― 𝛾(ℎ))

155

The value of A for an exponential variogram model can be analytically derived from Eq. 4 and is directly 

proportional to the variogram range:

                                                                              (6)𝐴 =
2𝜋𝑟2

9

160 3.3 Variogram modelling assumptions

The modelling of the variogram relies on the second order stationarity hypothesis which implies that the data 

does not exhibit any spatial trend within the geographic domain and allows to use the variogram range to 

quantify the length scale of the data. As demonstrated by Garrigues et al., (2006), the integral range can be 

used as a posteriori yardstick to judge if the size of the geographic domain is large enough to measure properly 

165 the length scale of the data with the variogram. We verified that the integral range of most of the modelled 

variograms are small enough compared to the surface of the geographic domain that justifies the validity of 

the second order stationarity hypothesis.

We chose to not include any nugget component (discontinuity at the origin) to represent unresolved sub-grid 

variability. We checked that including a nugget term in Eq.3 did not improve the quality of the variogram fit 

170 and does not change the estimation of the length scale of the data. This work is focused on the characterization 

of large-scale spatial structures and the characterization of sub-grid heterogeneity, which would require data 

at a finer spatial resolution, is beyond the scope of this work.

3.4 Spatial pattern analysis
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The spatial patterns of the variables of interest are characterized by the square root of the variogram 

175 sill (i.e., ), which quantifies the degree of spatial variability of the data, and by the variogram integral 𝜎

range (A), which quantifies the mean surface of the spatial structures (i.e patches) displayed by the 

data. The unit of  is that of the variable (W m-2 for the surface fluxes and m3 m-3 for soil moisture). 𝜎

The unit of A is that of the surface of a grid cell (0.25 deg2).

The analysis involves quantifying the seasonal evolution of A and  and assess the differences across 𝜎

180 geographic domains, variables and models. We use the Root-Mean-Square-Difference (RMSD) to 

quantify the differences in A and  between model experiments.𝜎

Variograms were also computed for two key surface properties:  

 the maximum water content available for the plant transpiration (MaxAWC) which is defined 

as the difference between the soil moisture at field capacity and the soil moisture at wilting 

185 point; this is a key driver of ET dynamics (Garrigues et al. 2015). MaxAWC is constant in 

time so one variogram is computed for each model and each geographic domain. 

 the monthly Leaf Area Index (LAI) which represent the vegetation seasonal cycle. For each 

LSM, a variogram of LAI was computed over each geographic domain at a monthly timestep. 

In this report, we showed the results for France to illustrate the relationship between the 

190 spatial patterns of LAI and that of surface fluxes.

4 Drivers of the spatial patterns of surface fluxes and soil moisture

Impact of climate

Figure 1 shows that the seasonal variations of A and  of net radiation are low compared to those 𝜎

calculated for latent and sensible heat fluxes. Net radiation is strongly driven by the climate and its 

195 spatial pattern does not have a strong seasonal signal.

Impact of surface characteristics
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The lower values of A generally obtained over France indicate smaller size of spatial structures 

compared to UK and Spain. This is related to the smaller spatial structures observed for the soil 

hydraulic properties (Figure 5) and for LAI (Figure 6) over France.

200  Impact of vegetation dynamics

The spatial variability of sensible and latent heat fluxes exhibits strong seasonal variations and is the 

highest in late spring and early summer (Figure 2 and 3). This is related to the development of 

vegetation in spring and summer which results in a higher spatial variability of LAI as shown by 

Figure 7. The contrast between the response of vegetated and non-vegetated surface to the climate 

205 forcing is more important in summer which increases the spatial variability of surface fluxes. Also, 

evapotranspiration is more frequently limited by soil moisture during spring and summer; this 

contributes to the larger spatial variability in latent heat fluxes. 

Impact of soil moisture stress

The larger seasonal variations of  for sensible and latent heat fluxes observed over France and Spain 𝜎

210 compared to UK (Figure 2 and 3) is most likely related to a more frequent occurrence of the soil-

moisture limited regime in the South of France and in Spain. Soil moisture stress generates large 

spatial contrasts in the energy partitioning between latent and sensible heat which explains the 

increase of the spatial variability of surface fluxes during dry spells.

5 Drivers of the differences in spatial patterns between models

215 Tables 3 and 4 indicate that the differences in A and  are lower for the comparison between SURFEX 𝜎

and JULES compared to the comparison of these models with CHTESSEL which has the highest 

RMSD. The largest discrepancies between models are obtained for sensible and latent heat fluxes and 

root-zone soil moisture. We investigate below the main drivers of these discrepancies.

Impact of forcing data set
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220 Figure 1 shows small differences in in A and  of net radiation across models. This is supported by 𝜎

the higher RMSD of spatial variability between models, for H and LE, compared to those calculated 

for RN (Table 4). The main explanation is that the climate forcing data set, which contains the main 

drivers of net radiation, i.e., shortwave and longwave incoming radiation, is identical across 

experiments. Conversely latent and sensible heat fluxes exhibit larger differences in spatial patterns 

225 between experiments which arise from the differences in i) the soil and vegetation data sets 

implemented in each model and ii) physical process representation such as stomatal conductance 

parametrization. 

Impact of soil hydraulic parametrization 

The largest differences in  between models are observed for the root-zone soil moisture. For France 𝜎

230 and Spain, we identified two combinations of models with similar  values (Figure 4, Table 4): 𝜎

 JULESVG and CHTESSEL with the highest  values, 𝜎

 JULESCH and SURFEX with the lowest  values. 𝜎

Conversely for UK, JULESCH, JULESVG and SURFEX provide similar  values of soil moisture 𝜎

while CHTESSEL shows much higher values than the rest of the models.

235 The simulation of surface fluxes is hugely dependent on the soil hydraulic parametrization and soil 

property map (Garrigues et al., 2015) which can exhibit different spatial patterns across models. 

SURFEX and JULESCH are based on the Clapp and Hornberger, 1978 model while JULESVG and 

CHTESSEL rely on the van Genuchten, 1980 model. This observation holds over France and Spain; 

this suggests that the impact of the type of soil hydraulic parametrization on the surface flux spatial 

240 patterns is stronger than the type of soil map used to infer the soil properties over these domains. 

Conversely, over the UK, the substantial differences in spatial variability between CHTESSEL and 

the rest of the model experiments are probably related to differences in the spatial distribution of soil 
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properties. This is confirmed by the variograms computed on the soil hydraulic properties (MaxAWC, 

Figure 5) which exhibit large discrepancies in the spatial variability of MaxAWC between models 

245 over UK.

Impact of LAI

The LAI value of each grid cell is the result of the LAI data set and the land cover map implemented 

in each model. While the models rely on the same satellite LAI data set, they use different land cover 

classifications (see Table 1) which may generate distinct spatial distributions of grid cell LAI values. 

250 This is illustrated over France where the models exhibit large discrepancies in both the LAI spatial 

structures (Figure 6) and the time course of the LAI spatial variability (Figure 7). Figure 7 shows that 

over France, SURFEX and JULES display more pronounced seasonal variations of LAI spatial 

variability than CHTESSEL which is concurrently observed for the latent heat flux in Figure 3. 

Besides, JULES shows the highest values of LAI spatial variability during the summer which 

255 concurrently results in the highest spatial variability of latent heat flux during the summer. The shift 

in the seasonal variation of LAI spatial variability of SURFEX and JULES observed over France 

(Figure 7) is also observed for the latent heat flux (Figure 3). These examples clearly show that the 

LAI spatial variability is a key driver of the spatial variability of the simulated surface fluxes. 

6 Conclusions

260 This work shows that variogram modeling is a powerful tool to quantify the differences in land surface 

model outputs through two components: 

- the degree of spatial variability quantified by the variogram sill,

- the surface of the spatial structure of the data represented by the variogram integral range.

Variogram analysis was applied to surface fluxes and soil moisture simulated by three land surface 

265 models over three European domains with contrasted climates (UK, France and Spain). 
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The main outcomes are

-The models show larger differences in the spatial variabilities of the turbulent heat fluxes, which are 

more prominently driven by i) soil and vegetation ancillary data and ii) physical process 

representation, compared to the net radiation spatial variability which is mainly driven by the radiative 

270 climate forcing. 

- The seasonal evolution of the spatial variability of LAI and that of latent heat flux show large 

similarities. The increase in spatial variability of sensible and latent heat fluxes in spring and summer 

is related to the enhancement of the spatial variability of LAI which creates a larger spatial contrast 

in the surface response to the climate forcing. The higher seasonal variations of spatial variability in 

275 turbulent heat fluxes observed over France and Spain are most likely related to a more frequent 

occurrence of soil-moisture limited ET regime during summer dry spells in Spain and South of 

France.

- The highest discrepancies in spatial patterns between models are observed for soil moisture. Over 

France and Spain, the spatial patterns of soil moisture are primarily related to by the type of soil 

280 hydraulic function (van Genuchten (1980) versus Clapp, R. and G. Hornberger (1978)) while over UK the 

differences between models are related mainly to differences in soil maps that determine the 

parameters of the soil hydraulic functions.

This report highlights the capability of the variogram to measure the spatial patterns of land surface 

model outputs, to monitor the seasonal changes in spatial patterns and to quantify the differences in 

285 spatial patterns across variables, geographic domains and models. The integral range is a powerful 

metric to verify if the model simulations resolve similar spatial features. The variogram sill allows 

the detection of differences in the spatial variability across models that can be related to differences 

in the spatial distribution of the surface parameters used by each model. We therefore strongly 

encourage the implementation of the variogram metrics in model intercomparison exercises to 
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290 enhance our understanding of the spatiotemporal structure of the uncertainties associated with land 

surface models. Besides, the variogram analysis proposed in this work can be applied to satellite 

observations of surface fluxes and surface characteristics to evaluate the accuracy of the spatial 

patterns of surface fluxes simulated by land surface models.

A key assumption of the variogram modelling approach, used in this work, is the second-order 

295 stationarity which implies that the data does not exhibit any spatial trend and allows to use the variogram to 

quantify the length scale of the data. The integral range, which represents the average surface of the data spatial 

structure, can be used to verify as posteriori the validity of this assumption. The size of the geographic domain 

should be adjusted to have an integral range much smaller than the surface of the geographic domain used to 

compute the variogram. Besides, in this work we chose to model the variogram using a single 

300 exponential model to demonstrate the capability of the variogram metrics to characterize the model 

outputs spatial patterns. A first improvement could be to include additional elementary functions in 

the linear model of regionalization (Eq. 2) to describe multiple length scales in the data. While this 

can be relevant for small spatial domains, we did not find any improvements for the large domains 

investigated in this work. Another possible avenue for improvement is to use alternative types of 

305 covariance models. Genton and Kleiber (2015) demonstrate the flexibility of the Matern covariance 

function to describe correlation at both large (scale parameter) and small distances (smoothness 

parameter).  In addition, in this work, we modeled the spatial patterns for each 10-day time step and 

then we observed the temporal evolution of the variogram metrics. An alternative approach could be 

to implement a space-time version of the linear model of regionalization to describe the 

310 spatiotemporal structure of the model outputs (De Iaco et al., 2013). Variograms can be modelled 

within a multivariate framework to investigate the co-variability between variables. This could be 

applied in further research to analyze the spatial dynamics of ET-soil moisture relationships, and to 

identify the discrepancies in the representation of the spatial dynamics of drought across models. 
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Table 1: Characteristics of SURFEX, JULES and CH-TESSEL land surface models. A-gs denotes 
the functional coupling between the stomatal conductance (gs) and the net assimilation of CO2 (A)

SURFEX JULES CH-TESSEL

Energy balance One-source One-source One-source

Canopy radiative transfer Multi-layer (10) canopy Multi-layer canopy Big-leaf

Heat and water soil 
transfers

Multi-layer soil diffusion 
scheme (14 layers)

Multi-layer soil diffusion 
scheme (4 layers)

Multi-layer soil diffusion 
scheme (4 layers)

Soil retention model Clapp, R. and G. 
Hornberger, 1978

Clapp, R. and G. 
Hornberger, 1978 

or
van Genuchten (1980) 

van Genuchten (1980)

Root-zone depth 1 to 3 m depends on 
plant functional type 
and location

1.00m 2.89m

Field capacity pressure 
head

-3.3 m -3.3 m - 1.0 m

Wilting point pressure 
head

-150.0 m -150.0 m -150.0 m

Stomatal conductance A-gs (Jacobs et al., 1996) A-gs (Jacobs et al., 1996) Jarvis approach (Jarvis, 
1976)

Photosynthesis model Goudriaan et al. (1985) Collatz et al. (1991) and 
Collatz et al. (1992)

Goudriaan et al. (1985)

Soil water stress 
parameter

Available soil water 
content in the root-zone

Available soil water 
content in the root-zone

Available soil water 
content in the root-zone

Application of soil water 
stress

Mesophyll and stomatal 
conductance

Photosynthesis 
parameters

Jarvis approach

Leaf Area Index MODIS climatology MODIS climatology MODIS climatology  

Land cover map ECOCLIMAP IGBP GLC2000

Soil map HSWD HSWD FAO/ Digital Soil Map of 
the World (DSMW)

Plant functional types needle leaf trees, evergreen 
broadleaf trees, deciduous 
broadleaf trees, C3 crops, C4 
crops, C4 irrigated crops, 
herbaceous, tropical 
herbaceous, and wetlands

(broadleaf forest, needleleaf 
forest, C3 grass, C4 grass and 
shrub

PFTs (semi-desert, 
water and land mixtures, crops, 
short grass, evergreen 
needleleaf, deciduous 
needleleaf, deciduous broadleaf, 
deciduous needleleaf, tall grass, 
tundra, irrigated crops, bogs and 
marshes, evergreen shrubs, 
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deciduous shrubs, mixed forest, 
interrupted forest).

References Masson et al., 2012
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Table 2: Geographic domains. ULC and LRC mean upper left corner and lower right corner, 
respectively.

Domain ULC Latitude ULC Longitude LRC Latitude LRC Longitude

France (FR) 50.25 -2.25 43.75 5.75

Spain (SP) 43.25 -9.25 36.25 2.25

United-Kingdom 
(UK)

58.75 -9.25 50.75 1.75
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Table 3: Root-Mean-Square-Difference (RMSD) in integral range (A) of 10-day mean values of 
RN, H, LE and root-zone soil moisture between SURFEX, JULESCH, JULESVG and CHTESSEL. 

Experiments RN H LE Soil moisture

Modelx vs Modely UK FR SP UK FR SP UK FR SP UK FR SP

SURFEX vs 
JULESVG

 11.91   5.66    15.23    21.33     8.53    12.09    27.20    17.12     5.79     8.92    20.87    11.30

SURFEX vs 
JULESCH

 11.98     5.82    15.43    16.78     8.34     9.40    27.72    16.66     7.14    22.10    15.72    11.78

SURFEX vs 
CHTESSEL

 15.01     3.01     6.72    35.61     7.80    14.00    34.54    20.68    11.38     5.12    20.24    11.30

JULESVG vs 
JULESCH

  0.12     1.35     1.76    13.58     4.78     4.56    14.80     5.72     2.52    17.67    19.81     4.63

JULESVG vs 
CHTESSEL

 10.72     6.74     9.04    33.60     9.41     7.06    27.04    13.67     8.57    10.28    26.34     0.00

JULESCH vs 
CHTESSEL

 10.75   6.87     9.28    33.95     7.95     7.93    23.31    14.93     9.20    20.75    23.31     4.63

Mean values 10.08 4.90 9.58 25.81 7.80 9.17 25.77 14.80 7.43 14.14 21.05 7.27
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Table 4: Root-Mean-Square-Difference (RMSD) of spatial variability (σ) of 10-day RN, H, LE and 
root-zone soil moisture between SURFEX, JULESCH, JULESVG and CHTESSEL. 

Experiments RN H LE Soil moisture

Modelx vs Modely UK FR SP UK FR SP UK FR SP UK FR SP

SURFEX vs 
JULESVG

  
0.06

    
0.03

    
0.14

    0.23     0.21     0.14     0.24     0.17     0.29     1.83     2.65     5.65

SURFEX vs 
JULESCH

  
0.06

    
0.03

    
0.15

    0.21     0.21     0.15     0.24     0.17     0.18     3.21     0.44     0.36

SURFEX vs 
CHTESSEL

  
0.13

    
0.09

    
0.09

    0.26     0.25     0.19     0.24     0.25     0.21     7.28     2.10     4.63

JULESVG vs 
JULESCH

  
0.01

    
0.01

    
0.01

    0.04     0.05     0.13     0.03     0.07     0.19     1.72     2.89     5.54

JULESVG vs 
CHTESSEL

  
0.17

    
0.10

    
0.21

    0.15     0.16     0.17     0.08     0.19     0.25     8.75     0.67     1.05

JULESCH vs 
CHTESSEL

 0.17     
0.10

    
0.21

    0.13     0.13     0.08     0.08     0.13     0.10    10.38     2.33     4.52

Mean 0.1 0.06 0.135 0.17 0.17 0.14 0.15 0.16 0.20 5.53 1.85 3.63

Page 25 of 33

http://mc.manuscriptcentral.com/PiPG

Progress in Physical Geography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figure 1: Temporal evolution of the integral range (A) and the spatial variability (σ) of RN at 10-
day time step over UK, France and Spain, for SURFEX (magenta), JULESVG (blue), JULESCH 
(green) and CHTESSEL (red) experiments. 

Figure 2: Temporal evolution of the integral range (A) and the spatial variability (σ) of H at 10-day 
time step over UK, France and Spain, for SURFEX (magenta), JULESVG (blue), JULESCH (green) 
and CHTESSEL (red) experiments.

Figure 3: Temporal evolution of the integral range (A) and the spatial variability (σ) of LE at 10-
day time step over UK, France and Spain, for SURFEX (magenta), JULESVG (blue), JULESCH 
(green) and CHTESSEL (red) experiments.

Figure 4: Temporal evolution of the integral range (A) and the spatial variability (σ) of the root-
zone soil moisture at 10-day time step over UK, France and Spain, for SURFEX (magenta), 
JULESVG (blue), JULESCH (green) and CHTESSEL (red) experiments.

Figure 5: Comparison of the integral range (A) and the spatial variability (σ) of the maximum 
available water content (MaxAWC) across models and geographic domains. Models are represented 
by distinct colors: SURFEX in magenta, JULESVG in blue, JULESCH in green and CHTESSEL in 
red. Geographic domains are represented by distinct symbols: UK (triangle), France (circle), Spain 
(square).

Figure 6: Seasonal evolution of the integral range (A) of LAI over France, for SURFEX (magenta), 
JULESVG (blue), and CHTESSEL (red) models.

Figure 7: Seasonal evolution of the spatial variability (σ) of LAI over France, for SURFEX 
(magenta), JULESVG (blue), and CHTESSEL (red) models.
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