
A critical review of methods for analyzing 
freshwater eutrophication 

Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Zhang, Y., Li, M., Dong, J., Yang, H. ORCID: 
https://orcid.org/0000-0001-9940-8273, Van Zwieten, L., Lu, 
H., Alshameri, A., Zhan, Z., Chen, X., Jiang, X., Xu, W., Bao, 
Y. and Wang, H. (2021) A critical review of methods for 
analyzing freshwater eutrophication. Water, 13 (2). 225. ISSN 
2073-4441 doi: https://doi.org/10.3390/w13020225 Available 
at http://centaur.reading.ac.uk/95932/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: https://www.mdpi.com/2073-4441/13/2/225 

To link to this article DOI: http://dx.doi.org/10.3390/w13020225 

Publisher: MDPI 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/383999847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online

http://www.reading.ac.uk/centaur


water

Review

A Critical Review of Methods for Analyzing Freshwater
Eutrophication

Yan Zhang 1,*,Mingxuan Li 1,† , Jiefeng Dong 1,†, Hong Yang 2 , Lukas Van Zwieten 1,3, Hui Lu 4,
Aref Alshameri 1, Zihan Zhan 1, Xin Chen 1, Xueding Jiang 1, Weicheng Xu 1, Yanping Bao 1 and Hailong Wang 1

����������
�������

Citation: Zhang, Y.; Li, M.; Dong, J.;

Yang, H.; Van Zwieten, L.; Lu, H.;

Alshameri, A.; Zhan, Z.; Chen, X.;

Jiang, X.; et al. A Critical Review of

Methods for Analyzing Freshwater

Eutrophication. Water 2021, 13, 225.

https://doi.org/10.3390/w13020225

Received: 4 December 2020

Accepted: 12 January 2021

Published: 18 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China;
l1003946085@163.com (M.L.); JayF0357@163.com (J.D.); lukas.van.zwieten@industry.nsw.gov.au (L.V.Z.);
aref_alshmiri@yahoo.com (A.A.); luxetamor@126.com (Z.Z.); chenxin@fosu.edu.cn (X.C.);
jiangxueding@fosu.edu.cn (X.J.); weichengxu@fosu.edu.cn (W.X.); byp3048@163.com (Y.B.);
hailong.wang@fosu.edu.cn (H.W.)

2 Department of Geography and Environment Science, University of Reading, Reading RG6 6AB, UK;
h.yang4@reading.ac.uk

3 New South Wales Department of Primary Industries, 1243 Bruxner Highway,
Wollongbar, NSW 2477, Australia

4 School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China;
lvhui3@mail.sysu.edu.cn

* Correspondence: zhangy49@mail2.sysu.edu.cn
† These authors contributed equally to this work.

Abstract: Water eutrophication is a global environmental problem that poses serious threats to
aquatic ecosystems and human health. The evaluation of eutrophication provides a theoretical basis
and technical guidance for the management and rehabilitation of water ecosystems. In the last four
decades, dozens of evaluation methods have been applied to freshwater eutrophication, but there is
a clear need to optimize and standardize the most suitable methods. We have addressed this gap
by presenting a systematic review of methodologies. Due to the diversity and complexity of water
bodies, no single evaluation method was identified that would adequately represent eutrophication
under all scenarios. We demonstrate that lakes can best be assessed using the trophic level index (TLI)
method, reservoirs and wetlands the trophic state index (TSI) and fuzzy comprehensive evaluation
(FCE) method, respectively, and rivers the FCE method or back propagation (BP) neural network
methods. More recently applied methodologies including spectral imaging and 3-D mapping of
water quality using underwater gliders allow greater resolution and can be effective in managing
waterbodies to avoid future eutrophication. The aim of this review is to guide future studies on the
most appropriate methods available for assessing and reporting water eutrophication.

Keywords: water quality; evaluation methods; BP neural network; fuzzy comprehensive evaluation
(FCE); trophic state index (TSI); trophic level index (TLI)

1. Introduction

Water eutrophication has become an increasingly serious problem worldwide [1]. Water
eutrophication refers to the phenomenon whereby an excess of nitrogen (N), phosphorus (P), and
other inorganic nutrients enter a relatively closed and slow-flowing water body (such as lake,
reservoir, river and freshwater wetland) stimulating the proliferation of algae and other plankton
in the water, resulting in lower dissolved oxygen (DO), increased chlorophyll-a (Chl-a) content
and the deterioration of water quality. This can result in the death of fish and other aquatic life.
The decomposition of algae under anoxic conditions further releases nutrients such as N and P
back into water for the next generation of algae to utilize [2] (Figure 1). Eutrophication can
result in toxic cyanobacteria blooms in lakes and waterways and the proliferation of algae
in coastal areas [1], manifesting in the death of native aquatic organisms, reduction in
biodiversity, and impacts on human health (Figure 1).
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Figure 1. (a) Sources of nutrient inputs and the cycling of nutrients in the water body, (b) Demonstration of eutrophication
and its effects in the water body.

The occurrence of eutrophication has been increasing globally since the 1960s. The
number of eutrophic lakes increased from 41 to 61% between the late 1970s to the late
1990s [3,4]. In 2012, 63% of the world’s inland water bodies were eutrophic with the
area accounting for 31% of all water bodies [5,6]. In 2019, among the 107 lakes (reser-
voirs) monitored in China, 5.6% were middle-eutrophic (the trophic level index (TLI):
60 ≤ TLI (∑) ≤ 70) and 23.4% were light-eutrophic (50 ≤ TLI (∑) ≤ 60), while 61.7% were
mesotrophic and 9.3% oligotrophic [7,8]. The proportion of large lakes (lakes with an area
of more than 500 square kilometers) with each trophic state (eutrophic, mesotrophic, and
oligotrophic) is shown in Figure 2 and represents the number of lakes and lake surface
area globally in 2018. It was shown that the southern regions of South America (Patagonia
plateau) and Central Asia (Qinghai-Tibet Plateau) are primarily oligotrophic, while the
large lakes in southeast and mid-northern North America (south Canada and the southeast
United States), East Asia (East China), and Central Africa are eutrophic. In terms of the
number of lakes, Oceania had the highest proportion of large lakes with oligotrophication
(23.1%), Europe had the highest proportion of large lakes with mesotrophication (35.2%),
and Africa had the highest proportion of large lakes with eutrophication (88.8%). In terms
of surface area, North America has the highest proportion of oligotrophic large lakes
(49.8%), Asia has the highest proportion of mesotrophic large lakes (71.2%) and Africa has
the highest proportion of eutrophic large lakes [9]. The majority of eutrophic water was
located in Africa, Oceania, South America, North America, Europe and Asia [9,10]. For
example, Victoria Lake in Africa and Erie Lake in North America [11,12].

Different eutrophic water bodies use different methods to evaluate their state of
eutrophication and their evaluation parameters are also diversified. Total nitrogen (TN)
and total phosphorus (TP) content are key drivers for water eutrophication, resulting in
an increased concentration of Chl-a [13,14]. Therefore, in this review, we selected the
concentration of TN, TP and Chl-a as the key water quality indicators (Table 1). These
values in the table are the average values of local eutrophication water indicators, measured
at the time specifically mentioned in the references. Here, eutrophic water from 21 studies
worldwide is described with middle-eutrophic and hyper-eutrophic (TLI (∑) ≥ 70) water
bodies commonly reported [15]. Importantly, this review has also identified that there are
many methods (criteria) used to evaluate the eutrophication level of water, which makes
direct comparison between studies challenging [16]. In 1982, the OECD (Organization
for Economic Co-operation and Development) set the criteria for trophic status of lakes
and defined ultra-oligotrophic (Table 1). In Table 2, most of the methods have similar
eutrophication water quality parameters, but some of the evaluation methods are unique.
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Figure 2. Global distribution of water eutrophication. The pie chart of the outside circle corresponds
to the proportion of the number of large lakes in each eutrophication state in the continent, and
the pie chart of the inside circle corresponds to the proportion of the surface area of large lakes in
each eutrophication state in the continent (Africa, Asia, South America, North America, Oceania and
Europe). Global data for the six continents of the world (except Antarctica) in 2018 [12].

Understanding water quality is a key step to better managing the problems associated
with eutrophic water. To facilitate the further assessment of the existing eutrophic water
bodies, an enhanced understanding and appropriate choice of an evaluation method for
the eutrophication level is necessary [17]. For this reason, we present a comprehensive
review of 13 water eutrophication evaluation methods and a comparative analysis of
their applicability. The purpose is to find the most suitable method to evaluate water
eutrophication, and further improve and develop the treatment of water eutrophication.

2. Methods

We searched the published papers as well as regional databases of water monitor-
ing (Google Scholars, Web of Science and China National Knowledge Infrastructure).
The search terms were “eutrophication evaluation”, “water eutrophication”, “evaluation
method”, with a time span of 1972–2020. In order to study the feasibility of the evalua-
tion method, we set up two criteria: (1.) In order to ensure that data was not influenced
by studies that assessed minor water bodies, we excluded datasets where waterbodies
had an area < 1 km2. We extracted the eutrophication status of 29 lakes, 17 reservoirs,
14 rivers and 9 wetlands, and the database covers waters ranging from shallow to deep,
oligotrophic to hyper-eutrophic (Tables 1 and 2). (2.) Our dataset recorded meta-data
including geographical location, area, average depth; the concentration of TN, TP, and
Chl-a.

3. Globally Applied Methods for Determining the Eutrophication Status of Waters

Indicators for the evaluation of water eutrophication have commonly included the
following: N content greater than 0.2–0.3 mg/L, P content greater than 0.01–0.02 mg/L,
biochemical oxygen demand (BOD) greater than 10 mg/L, total number of bacteria in
fresh water with a pH value of 7–9 of greater than 104 units/mL, and Chl-a greater than
10 µg/L [18]. Currently, the evaluation of water eutrophication has evolved from the use
of simple single indicators (N or P) to comprehensive indicators, such as the total nutrition
status index. Here we describe a broad range of methodologies for the evaluation and
quantification of eutrophication.

3.1. Methods Based on Mathematical Calculations
3.1.1. The Single Factor Index Evaluation (SFIE) Method

The SFIE method initially appeared in 1990 and consists of one factor that has the
greatest impact on water quality [19].
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The main idea is to compare the monitoring value of each water quality index with
the concentration value of the target water quality index according to the standard table of
water quality evaluation factors. If the ratio is greater than 1, then the water is judged to
meet the standard level [20]. After comparing all of the evaluation factors, the worst water
quality factor level is selected as the level for the entire water body [21]. The expression of
the index, Ii, is shown in Equation (1) [22].

Ii =
Ci

Ci0
, (1)

where Ci is the actual measured value of the class I assessment pollutants; Ci0 is the starting
pollution value or relevant standard of the class I assessment pollutants; Ii ≤ 1 means the
water is not polluted; Ii > 1 means the water is polluted. The calculation results can directly
reflect the severity of water pollution [23,24].

The SFIE method can clearly and intuitively compare the measured value with the
standard value, so as to quickly understand the water quality category. However, it
is a comparison of one factor at one point in time and ignores the other water quality
indicators [25].

3.1.2. Formula Scoring (SCO) Method

This basic evaluation model is widely used and is based upon a scoring formula that
is simple and can quickly and conveniently evaluate the level of water eutrophication. Its
expression is shown in Equation (2):

M =
1
n ∑n

i=1 Mi (2)

where M is the score of lake eutrophication; Mi is the index score value of item i to evaluate
the pollutant; n is the number of indexes. According to the selected evaluation factors and
their corresponding evaluation standards, the corresponding scores of each evaluation
parameter are in the range of 0–100 (Table 2). The higher the total score, the higher
the eutrophication level of lakes and reservoirs [24,26]. Shu used the Formula scoring
method to evaluate eutrophication of 24 lakes in China. The results showed that there were
16 eutrophic lakes, accounting for 66.6% of the total number of the survey [27].

However, in applying the methodology, if a certain parameter score is significantly
below (or above) score values of other parameters, the parameter should be deleted. This
makes the method more subjective [28].

3.1.3. The Algal Dominant Species Evaluation Method

Algae are an important component of the biological resources in aquatic ecosystems.
As the community structure and growth of algae are directly affected by the changes
in the water ecological environment, they can be used to assess water eutrophication.
This method initially appeared in 1993 and is primarily used for rivers that tend to be
polluted and have a population of algae [29]. The qualitative and quantitative collection of
phytoplankton in water is used to determine whether the water is eutrophied [30].

The algae comprehensive index (K) further refines the algal population structure and
determines the water eutrophication level, which is then expressed as:

K = (Cyanophyta + Chlorococcales + Centricae + Euglena)/species of desmidiales, (3)

when k ≥ 3, it is hyper-eutrophic, when 1 ≤ K < 2, it is middle-eutrophic, when k < 1,
it is light-eutrophic [31]. Zhou et al., evaluated the algal diversity of 4 tributaries of The
Yangtze River in China, and the results showed that the nutrient levels of the 4 tributaries
all belonged to the middle-eutrophic status, and the maximum algal cell density was
6.036 × 106 cells/L.
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Table 1. Nutritional status of water eutrophication and evaluation method (criteria) in lakes, reservoirs, rivers, and
freshwater wetlands.

Evaluation
Method (Criteria) Water Nutrient (N)

(mg/L)
Nutrient (P)

(mg/L)
Chl-a 9

(µg/L)
Documented

Eutrophication Reference

Lugano Lake,
Switzerland NA 10 TP 4: 0.140 NA

Hyper-
eutrophic

(1960~2001)
[32]

Viroi Lake,
Albania

NH4
+: 0.090

NO3
−: 0.670 NA NA Eutrophic

(2013~2014) [33]NI 1

Olympic Forest
Park wetland,

China

TN 5:
0.300~2.100

TP:
0.040~0.180 NA Light-eutrophic

(2016) [34]

TLI 2

City Park Lake,
Louisiana, USA TN: 0.682 TP: 0.330 35.1 Eutrophic

(2000~2001) [35]

Idku Lake,
Egypt NA PO4

3−:
0.200~0.430

39.9~104.2
Hyper-

eutrophic
(2016)

[36]

Jinhe River,
China

TN:
0.240~8.340

TP:
0.019~0.490 1.6~92.7

Eutrophic
(2007~2011)

Hyper-
eutrophic

(2012~2014)
Middle-

eutrophic
(2015)

[37]

Guanshan
Wetland, China

TN:
0.520~2.200

TP:
0.019~1.040 1.0~37.0 Light-eutrophic

(2014~2016) [38]

Improved TLI Chaohu Lake,
China

TN:
1.500~2.680

TP:
0.150~0.230 13.2~21.9

Light-eutrophic
(2000~2006)

Middle-
eutrophic

(2007~2017)

[39]

Erie Lake, USA NA TP: 0.115 58.0

Blue-green
algae bloom
(1965~1979)

Declined
quality

(1995~2004)

[40,41]

Lyng Lake,
Danish TN: 2.400 TP: 0.370 73.0

Hyper-
eutrophic

(1999)
[42]

Ramgarh Lake,
India NA NA NA

Hyper-
eutrophic

(2015)
[43]

Bütgenbach
Reservoir,
Belgium

NH4
+:

0~0.480
PO4

3−:
0~0.110

0~39.4
Hyper-

eutrophic
(2007)

[44]

Ecbatan
Reservoir,

Egypt
TN: 2.200 TP: 0.075 5.8

Middle-
eutrophic

(2018)
[45]

TSI 3

Dawangtan
Reservoir,

China

NH4
+−N:

0.180~0.710 TN:
0.820~2.760

TP: 0.020~0.090 NA
Middle-

eutrophic
(2019)

[46]
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Table 1. Cont.

Evaluation
Method (Criteria) Water Nutrient (N)

(mg/L)
Nutrient (P)

(mg/L)
Chl-a 9

(µg/L)
Documented

Eutrophication Reference

Rietvlei nature
reserve

wetland, South
Africa

TN: 0.358~6.000 TP: 0.081~0.371 NA
Middle-

eutrophic
(2005~2006)

[47]

TSI

Xuanwu
Wetland, China TN: 2.010~2.110 TP: 0.160~0.310 NA

Hyper-
eutrophic

(2011)
[48]

FCE 6

Pamvotis Lake,
Northwest

Greece

NH4
+: 0.250

NO3
−: 0.560 NA NA Eutrophic

(2002) [49]

Honghu Lake,
China TN: 1.410 TP: 0.065 2.6~3.7

Middle-
eutrophic

(2005~2006)
[50]

Berg River,
South Africa TN: 2.170 TP: 0.700 NA

Hyper-
eutrophic

(2007)
[51]

Dianshan Lake,
China TN: 1.086 TP: 0.029 3.0 Light-eutrophic

(2011) [52]
BP neural network

7 Gaozhou
Reservoir,

China
TN: 0.358 TP: 0.046 1.4 Mesotrophic

(2011) [53]

OECD 8

classification

Wastwater NO3
−: 0.352 TP: 0.003 0.8 Ultra-

oligotrophic [14]

Ennerdale
Water NO3

−: 0.333 TP: 0.008 1.05 Oligotrophic [14]

Buttermere NO3
−: 0.175 TP: 0.004 1.43 Oligotrophic [14]

Crummock
Water NO3

−: 0.193 TP: 0.007 2.075 Oligotrophic [14]

Coniston Water NO3
−: 0.365 TP: 0.008 3.585 Oligotrophic [14]

Derwentwater NO3
−: 0.199 TP: 0.015 3.275 Mesotrophic [14]

Grasmere NO3
−: 0.253 TP: 0.016 5.655 Mesotrophic [14]

Loweswater NO3
−: 0.529 TP: 0.013 7.68 Mesotrophic [14]

Bassenthwaite
Lake NO3

−: 0.384 TP: 0.022 6.37 Mesotrophic [14]

Ullswater NO3
−: 0.254 TP: 0.012 5.44 Mesotrophic [14]

Blelharn Tarn NO3
−: 0.827 TP: 0.039 18.345 Eutrophic [14]

Esthwaite
Water NO3

−: 0.695 TP: 0.031 22.355 Eutrophic [14]

1 NI, nemerow index; 2 TLI, trophic level index method; 3 TSI, trophic state index method; 4 TP, total phosphorus; 5 TN, total nitrogen; 6

FCE, fuzzy comprehensive evaluation method; 7 BP, back propagation; 8 OECD, Organization for Economic Co-operation and Development;
9 Chl-a, chlorophyll-a;10 NA, not available.

3.1.4. The Nemerow Index (NI)

The Nemerow water quality index first proposed in 1974 focuses on the most serious
pollution factors [54]. The method can also be used to assess heavy metal pollution in
water [25]. The NI method considers the average value of evaluation indexes and the impact
of the most serious pollution evaluation indexes on water quality. However, the weight of
pollution factors is not considered, thus the method has potential to underrepresent the
current level of eutrophication. Therefore, different correction methods to correct the NI
have been adopted, for example (Equation (4)):

PI =

√√√√(
Ci
Li,j

)
MAX

2 + Ci
2

Li,jAug

2
(4)
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where PI is the water quality index; Ci is the measured concentration of a pollutant (i
is the number of water quality items), (mg/L); Li,j is the maximum allowable value of
i water quality parameters for the purpose of j water (mg/L) (j is the purpose of the
water; the purpose of water is divided into three categories: used by human in direct
contact, used by human in indirect contact and not used by humans.) [54]. Alberto et al.,
investigated of the eutrophication of Lugano Lake using this method and showed that it
was hyper-eutrophic [32].

3.1.5. The Trophic Level Index (TLI) Method

TLI is widely used for eutrophication assessments of lakes, rivers and freshwater
wetlands in China. It uses the chemical oxygen demand (CODMn), TN, TP, secchi disk (SD),
and Chl-a as the evaluation indices of water eutrophication to calculate the nutritional state
(Table 2). The calculation includes Equations (5)–(11):

TLI
(
∑
)
= ∑m

j=1 wj TLI(j). (5)

Calculation formula of the TLI nutritional status evaluation index [55] is as follows:

TLI(chl) = 10(2.5 + 1.086lnchl), (6)

TLI(TP) = 10(9.436 + 1.624lnTP), (7)

TLI(TN) = 10(5.453 + 1.694lnTN), (8)

TLI(SD) = 10(5.118 − 1.94lnSD), (9)

TLI(CODMn) = 10(0.109 + 2.661lnCODMn) (10)

Formula for calculating the weight of each index [30]:

ωj =
r2

ij

∑m
j=1 r2

ij
(11)

where rij is the correlation of the basic parameter Chl-a and the j-th parameter; m is the
number of basic parameters to be evaluated.

The evaluation criteria for the TLI method are oligotrophic, TLI (∑) ≤ 30; mesotrophic,
30 < TLI (∑) ≤ 60; light-eutrophic, TLI (∑) ≤ 70; mid-eutrophic, 70 < TLI (∑) ≤ 90; hyper-
eutrophic, TLI (∑) > 90 [55,56] (Table 2).

Because the eutrophication parameters of water are constantly changing, for some
waterbodies that have been reevaluated across long periods of time, the correlation and
weight of Chl-a and TP, TN, and SD display change over time. Therefore, the commonly
used TLI index formula based on the original weight cannot accurately evaluate the
nutritional status of water. To evaluate the eutrophication status of water accurately, it is
necessary to improve the comprehensive nutritional status index method (an improved
TLI). This is done by modifying the correlation coefficient of the TLI method equation, so it
is more suitable for the current status of the water body. The improved TLI is Equation
(12):

TLI (∑) = 0.6286TLI(Chl-a) + 0.1093TLI(TP) + 0.1936TLI(TN) + 0.0685TLI(SD) (12)

3.1.6. The Trophic State Index (TSI) Method: Carlson Index

In 1977, Carlson synthesized a number of eutrophication indicators, with the SD
as the core, combined CODMn, Chl-a and TP, calculated these parameters into TSI, and
successively graded the nutritional status of lakes [57,58] (Table 2). The evaluation method
overcomes the limitation of single factor evaluation and is one of the main methods for
assessing lake eutrophication [59]. Its expression is shown in Equations (13)–(16) [60,61].
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Maryam et al. assessed Ecbatan reservoir using Carlson’s index, and showed that the
reservoir is middle-eutrophic [45].

TSI(SD) = 10
(

6 − lnSD
ln 2

)
(13)

TSI(CODMn) = 10
(

6 − 1.21 − 0.76 ln
ln 2

)
(14)

TSI(Chl-a) = 10
(

6 − 2.04 − 0.68 ln Chl-a
ln 2

)
, (15)

TSI(TP) = 10

(
6 −

ln 48
TP

ln 2

)
(16)

The revised trophic state index (TSIM) based on Chl-a is a widely used assessment
method for eutrophication in China that can make up for the deficiency of the TSI. It is
a trophic state index based on the concentration of Chl-a, and its expression is shown in
Equations (17)–(19) [62,63]:

TSI (Chl-a) = 10
(

2.46 − lnChl-a
ln 2.5

)
(17)

TSI (SD) = 10
(

2.46 −3.69 − 1.53lnSD
ln 2.5

)
, (18)

TSI (TP) = 10
(

2.46 −6.71−1.15lnTP
ln 2.5

)
(19)

3.1.7. Stochastic Assessment Method (Empirical Frequency)

The water quality indexes including CODMn, TN, TP, SD, and Chl-a are treated as
random variables in the stochastic assessment method. It is necessary to deduce the
empirical frequency of each water quality index and use the weighted average method
to calculate the empirical frequency of lake eutrophication level. The following is the
empirical frequency (P) calculation equation [64] (Equation (20)):

P =
m

n + 1
× 100% (20)

where m is the water sample number; n is the sample size; P of each random variable is
calculated. According to the coefficients related to CODMn, TN, TP, SD, and Chl-a, the
weight, Wi, of each water quality index in the eutrophication assessment is obtained. It
is applicable to the weighted average equation. Thus P = Wi × Pi. Furthermore, the lake
eutrophication evaluation frequency standard can be obtained (Table 2). Xie et al., used
the stochastic assessment method and the fuzzy comprehensive evaluation (FCE) method
to evaluate the eutrophication of 30 lakes in China. The data showed that the evaluation
results of 19 lakes were completely consistent, indicating that the two methods were reliable
in their evaluation of lake eutrophication [65].

3.2. Methods Based on Models
3.2.1. The Fuzzy Comprehensive Evaluation (FCE) Method

The basic idea of the FCE method is to establish the index monitoring data of each
factor and membership standard of each level. Then a membership degree matrix is
formed. The membership degree matrix of weight-setting factors is then multiplied to
obtain a dataset for the evaluation of water eutrophication [66]. The method is based on the
measured values of the physical and chemical parameters of water quality [67,68] shown
in Equation (21):

DA(u) = µA(u)− µAc(u) (21)
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The following are the specific steps of this method. (1) Establish a set of water quality
evaluation factors and classification sets. (2) Establish a single factor evaluation matrix. (3)
Determine the weight of each factor. (4) Establish an evaluation model [62,69] (Table 2).
The relationship between each index and classification is listed in Table 2. This method
considers the contribution of all factors and can reduce subjectivity. This method has been
shown to be more suitable for rivers and freshwater wetlands [70].

According to the mathematical fuzzy operation rules, the average weighted model
is used as the fuzzy operator. In addition, the fuzzy matrices A and R (A is the weight
distribution matrix, and R is the fuzzy relation matrix between the evaluation factors and
their relative evaluation standards) are combined to obtain the hierarchical setting of the
evaluation standard of the fuzzy subset [71]. According to the principle of its maximum
membership degree, the (Bn) max (B is a fuzzy subset of the standard hierarchical setting;
n = 1, 2, hierarchical setting) is selected as the result of the comprehensive water quality
evaluation [25]. Fang evaluated the eutrophication of the region and the whole lake based
on the FCE method. The results showed that most of the region and the whole lake are
mesotrophic [72].

3.2.2. The Back Propagation (BP) Neural Network

The BP neural network model is a nonlinear mathematical model based on neural
network methodology [30,73]. It was first proposed in 1986 [74]. It is a feedforward
multilevel neural network with a transfer continuity function, and it is the most widely
used neural network model [75,76]. This model uses a BP algorithm as the learning
algorithm of the network and does not need to establish mathematical equations. It
weights the differentiable nonlinear functions in the software MATLAB, which can be used
to analyze the influencing factors of water eutrophication [20,77] (Table 2).

The BP neural network model simulates a biological neural network for processing
information [31,78,79]. Its training method is the error backpropagation algorithm (the BP
algorithm), which constantly modifies the network weights and thresholds to minimize the
mean square error [80,81]. For detailed formulas of the BP neural network model, please
refer to Shao [82].

The BP neural network is a nonlinear system that is adaptive, self-organized, self-
learning, anti-interference, and fault-tolerant. It has a strong adaptability to various
evaluations and is widely used [22,24]. Compared with other methods, this method
eliminates the influence of setting the weight of each pollution factor and relying on an
empirical equation. Cui evaluated the eutrophication degree of 24 lakes in China based on
the MATLAB neural network and eutrophication evaluation criteria. The results showed
that there were 2 mesotrophic lakes, 3 light-eutrophic lakes, 10 middle-eutrophic lakes and
9 hyper-eutrophic lakes [52].

3.2.3. The One-Dimensional Normal Cloud Model (ONCM) Method

The ONCM method is a recently developed evaluation method [83] where the eu-
trophication level is divided into six grades. The evaluation factor corresponds to the
nutrition level and is expressed by a comprehensive cloud (Table 2). Table 2 shows the
relationship between Ex, En and He, and the classification.

According to the evaluation factors and standards, three digital characteristics of the
cloud model can be determined using the following equation [84] (Equations (22)–(24)):

Ex =
(Bmin + Bmax)

2
, (22)

En =
(Bmax − Bmin)

6
, (23)

He = k, (24)
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where Bmin and Bmax are the minimum and maximum boundaries of VQa (the evaluation
factor), and k is a constant.

According to the determined cloud model parameters Ex, En and He, the indexes of the
evaluation factors TN, TP, SD, and Chl-a, the corresponding comprehensive cloud models
are generated using the positive normal cloud generator and the half cloud generator (the
ascending cloud and descending cloud, respectively) [85].

3.2.4. The Multidimensional Normal Cloud Model (MNCM) Method

The multidimensional normal cloud model is an extension of the one-dimensional
normal cloud model and uses an improved selection of the correlation coefficient of the
cloud model. It can more comprehensively reflect the water eutrophication level [86]. The
degree of water eutrophication can be divided into n levels. The model is established by
taking multidimensional evaluation factors as one dimension of the multidimensional
cloud model. The MNCM method determines three numerical characteristics, select the
appropriate evaluation factors and their evaluation criteria, and generates one-dimensional
and multidimensional cloud models based on these evaluation factors [40]. Then, the
established model is used to confirm the maximum degree of certainty, it can be directly
judged that each evaluation factor is located in the level of water samples with different
nutritional levels [87,88].

The MNCM is used to evaluate the eutrophication of 6 lakes in China. The results
show the MNCM method can judge the eutrophication degree of different water bodies at
the same level, which proves the feasibility and effectiveness of the method [86].

Table 2. Water eutrophication evaluation parameter and classification.

Method Parameter Classification Reference

SCO 1

CODMn
(mg/L) TN (mg/L) TP

(mg/L) SD (m) Chl-a
(mg/L) Score

[26]

≤0.15 ≤0.020 ≤0.001 ≥10.0 ≤0.0005 ≤10
Oligotrophic>0.15,

≤0.3 >0.020, ≤0.030 >0.001,
≤0.0025

<10.0,
≥8.0

>0.0005,
≤0.0010 >10, ≤20

>0.3,
≤0.4 >0.030, ≤0.050 >0.0025,

≤0.005
<8.0,
≥5.0

>0.0010,
≤0.0020 >20, ≤30 Mesotrophic

>0.4,
≤2.0 >0.050. ≤0.300 >0.005,

≤0.025
<5.0,
≥1.5

>0.0020,
≤0.0040 >30, ≤40 Eutrophic

>2.0,
≤4.0 >0.050, ≤0.300 >0.025,

≤0.050
<1.5,
≥1.0

>0.0040,
≤0.0100 >40, ≤50 Light-eutrophic

>4.0,
≤8.0 >0.300, ≤0.800 >0.025,

≤0.050
<1.0,
≥0.5

>0.0100,
≤0.0260 >50, ≤60

Mid-eutrophic
>8.0,
≤18.0 >0.800, ≤2.000 >0.050,

≤0.200
<0.5,
≥0.4

>0.0260,
≤0.0650 >60, ≤70

>18.0,
≤25.0 >2.000, ≤6.000 >0.200,

≤0.600
<0.4,
≥0.3

>0.0650,
≤0.1600 >70, ≤80

Hyper-eutrophic
>25.0,
≤40.0 >6.000, ≤9.000 >0.600,

≤0.900
<0.3,
≥0.2

>0.1600,
≤0.4000 >80, ≤90

>60.0 >14.000 >1.300 <0.12 >1.0000 >90,
≤100
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Table 2. Cont.

Method Parameter Classification Reference
CODMn
(mg/L) TN (mg/L) TP

(mg/L) SD (m) Chl-a
(mg/L) TLI

≤0.15 ≤0.02 ≤0.001 ≥10.0 ≤0.0005
>0.15,
≤0.40 >0.02, ≤0.05 >0.001,

≤0.004
<10.0,
≥5.0

>0.0005,
≤0.0010

≤30 Oligotrophic

>0.40,
≤1.00 >0.05, ≤0.10 >0.004,

≤0.010
<5.0,
≥3.0

>0.0010,
≤0.0020

>1.00,
≤2.00 >0.10, ≤0.30 >0.010,

≤0.030
<3.0,
≥1.5

>0.0020,
≤0.0040

>2.00,
≤4.00 >0.30, ≤0.50 >0.030,

≤0.050
<1.5,
≥1.0

>0.0040,
≤0.0100

>30, ≤50 Mesotrophic

>4.00,
≤8.00 >0.50, ≤1.00 >0.050,

≤0.100
<1.0,
≥0.5

>0.0100,
≤0.0300 >50, ≤60 Light-eutrophic

>8.00,
≤10.00 >1.00, ≤2.00 >0.100,

≤0.200
<0.5,
≥0.4

>0.0300,
≤0.0640

>10.00,
≤25.00 >2.00, ≤6.00 >0.200,

≤0.600
<0.4,
≥0.3

>0.0640,
≤0.1600

>60, ≤70 Mid-eutrophic

TLI (Σ) 2

>40.00 >9.00 >0.900 <0.2 >0.4000 >70 Hyper-eutrophic

[89]

TSIM
3

TSIM (TP) TSIM (SD) TSIM (Chl-a)

[61]

≤2.0 ≤4.4 ≤24.6 Oligotrophic
>2.0, ≤11.9 >4.4, ≤18.2 >24.6, ≤32.2 Mesotrophic

>11.9, ≤35.1 >18.2, ≤42.1 >32.2, ≤39.7 Eutrophic
>35.1, ≤45.2 >42.1, ≤50.1 >39.7, ≤47.6 Light-eutrophic
>45.2, ≤65.2 >50.1, ≤68.3 >47.6, ≤70.2 Mid-eutrophic

>65.2 >68.3 >70.2 Hyper-eutrophic

Empirical
Frequency

CODMn
(mg/L) TN (mg/L) TP

(mg/L) SD (m) Chl-a
(mg/L)

Empirical
Fre-

quency

[64]

≤0.3 ≤0.030 ≤0.0025 ≥10.0 ≤0.001 ≤14.3 Oligotrophic
>0.3,
≤0.4 >0.030, ≤0.050 >0.0025,

≤0.0050
<10.0,
≥5.0

>0.001,
≤0.002

>0.4,
≤28.6 Mesotrophic

>0.4,
≤2.0 >0.050, ≤0.300 >0.0050,

≤0.0250
<5.0,
≥1.5

>0.002,
≤0.004

>0.4,
≤42.9 Eutrophic

>2.0,
≤4.0 >0.300, ≤0.500 >0.0250,

≤0.0500
<1.5,
≥1.0

>0.004,
≤0.010

>0.4,
≤57.1 Light-eutrophic

>10.0,
≤25.0 >2.000, ≤6.000 >0.2000,

≤0.6000
<0.4,
≥0.3

>0.065,
≤0.160

>71.4,
≤85.7 Mid-eutrophic

>25.0 >6.000 >0.6000 <0.3 >0.160 >85.7 Hyper-eutrophic

FCE 4

DO
(mg/L)

BOD5
(mg/L)

CODMn
(mg/L)

NH3-
N(mg/L)

Cyanogen
(mg/L)

As
(mg/L)

Cr
(mg/L)

F
(mg/L)

[66]
≥8.0 ≤3.0 ≤15.0 ≤0.5 ≤0.005 ≤0.05 ≤0.01 ≤1.0 Class I
<8.0,
≥6.0 ≤3.0 ≤15.0 ≤0.5 >0.005,

≤0.050 ≤0.05 >0.01,
≤0.05 ≤1.0 Class II

<6.0,
≥5.0

>3.0,
≤4.0

>15.0,
≤20.0

>0.5,
≤10.0

>0.050,
≤0.200

>0.05,
≤0.20

>0.01,
≤0.05 ≤1.0 Class IV

<5.0,
≥3.0

>4.0,
≤6.0

>20.0,
≤30.0

>1.0,
≤2.0 >0.200 >0.20 >0.01,

≤0.05
>1.0,
≤1.5 Class IV

<1.0 >10.0 >40.0 >2.0 >0.200 >0.20 >0.10 >1.5 Class V
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Table 2. Cont.

Method Parameter Classification Reference

BP
neural

network

CODMn (mg/L) TN
(mg/L) TP (mg/L) Chl-a

(mg/L) value

[75]

≤0.3 ≤0.03 ≤0.0025 ≤0.001 0 ≤ y < 1 Oligotrophic

>0.3, ≤0.4 >0.03,
≤0.05 >0.0030, ≤0.0050 >0.001,

≤0.005 1 ≤ y < 2 Mesotrophic

>0.4, ≤2.0 >0.05,
≤0.30 >0.0050, ≤0.0300 >0.005,

≤0.025 2 ≤ y < 3 Eutrophic

>2.0, ≤4.0 >0.30,
≤0.50 >0.0300, ≤0.0500 >0.025,

≤0.050 3 ≤ y < 4 Light-eutrophic

>4.0, ≤10.0 >0.50,
≤2.00 >0.0500, ≤0.2000 >0.050,

≤0.500 4 ≤ y < 5 Mid-eutrophic

>10.0 >2.00 >0.2000 >0.500 y ≥ 5 Hyper-eutrophic

Ex
7 En

8 He
9

[88]

≥15.0 5.0 0.01 C1
<15.0, ≥7.5 5.0 0.01 C2ONCM 5

<7.5, ≥3.8 5.0 0.01 C3
<3.8, ≥1.3 5.0 0.01 C4
<1.3, ≥0.7 5.0 0.01 C5MNCM

6
<0.2 5.0 0.01 C6

1 SCO, formula scoring method; 2 TLI, trophic level index; 3 TSI, trophic state index; 4 FCE, fuzzy comprehensive evaluation; 5 MNCM,
multidimensional normal cloud model; 6 ONCM, one-dimensional normal cloud model; 7 Ex, digital characteristics of the cloud model; 8

En, digital characteristics of the cloud model; 9 He, digital characteristics of the cloud model.

3.3. Methods Based on Spectral Imaging
3.3.1. Remote Sensing

Water quality assessment using remote sensing is based on the spectral characteristics,
and statistical analyses of water quality parameters. This forms a water quality parameter
inversion model. The spectral characteristics of water are mainly determined by plankton
content, suspended matter content (turbidity), nutrient content (yellow matter, salinity
index), other pollutants, bottom morphology (underwater topography), water depth,
surface roughness and other factors. This technology has the advantages of producing a
large amount of information, and it is less limited by surface conditions [90].

The spectral characteristics of water reflect the scattering and absorption of light
radiation by a wide range of photochemically active substances in the water. Satellite
imagery was originally obtained from Landsat Thematic mapper (TM), spot satellite images
of France, and NOAA/AVHRR. Satellite remote sensing (HJ1B-CCD and GF-2 PMS2) is
currently used to research inland water quality [91]. The eutrophication of Pamvotis Lake
in Ioannina, Greece, was studied using the application of Chl-a detection algorithms based
on Sentinel-2 satellite image data. The results showed that Pamvotis Lake is a eutrophic
lake, and the highest Chl-a concentration was located in the east and south-east of the
lake [92]. The Normalized Difference Vegetation Index (NDVI) derived from the Moderate-
resolution Imaging Spectroradiometer (MODIS) imagery was used to investigate duckweed
blooms and other floating vegetation in Lake Maracaibo, Venezuela. The data showed that
there were different amounts of duckweed and floating vegetation in the lake from 2003 to
2006 [93]. The Landsat TM image data and hyperspectral remote sensing data also has been
used to assess water eutrophication [94,95]. The consequences show that the calculation
results of these data can accurately analyze water quality, indicating that remote sensing
technologies have the potential to be applied to water quality monitoring in large-scale
basins (Table 3).
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Table 3. The remote sensing parameters and TM radiation of lake data.

Monitoring
Parameters

SS 1

(mg/L)
SD 2

(m)
DO 3

(mg/L)
CODMn

4

(mg/L)
BOD5

5

(mg/L)
TN 6

(mg/L)
TP 7

(mg/L)
Reference

Monitoring
parameters AVG 8 37.53 0.33 8.83 4.05 2.07 4.39 1.30

Radiation data
MW 9/(cm2·SR 10) TM1 11 TM2 TM3 TM4 TM5 TM6 TM7

Radiation data
AVG 0.687 0.554 0.267 0.033 0.010 0.086 0.002

[95]

Monitoring
parameters

T (◦C) pH TUB 12 (NTU) HDO 13 (% Sat.) Chl (µg/L)
[96]

17.3~20.9 7.5~8.9 18.5~110.0 18.9~207.6 4.79~219.1
1 SS, suspended solids; 2 SD, secchi disk; 3 DO, dissolved oxygen; 4 CODMn, chemical oxygen demand; 5 BOD5, biochemical oxygen
demand; 6 TN, total nitrogen; 7 TP, total phosphorus; 8 AVG, average value; 9 MW, megawatt; 10 SR, steradian; 11 TM, thematic mapper;
12 TUB, Turbidity; 13 HDO, high dissolved oxygen.

3.3.2. Multiple Equipment

With the progress of modern continuous monitoring technology, the analysis technol-
ogy of integrated data of multiple equipment, such as the unmanned aerial vehicle (UAV)
and underwater glider (UG), has emerged, which can carry out real-time, continuous and
intuitive monitoring of water bodies. UAVs can carry a range of remote sensing equipment
including photography, multi and hyperspectral imaging that can be used to quantify Chl-a
and other water quality parameters [96]. The UG is an underwater robot and collects water
quality information (CODMn, pH) enabling a 3-dimensional map of water quality indices
to be developed [97].

4. Methods Best Suited to Describe the Degree of Eutrophication

Water eutrophication is a complex chemical, biological and physical process that is
affected by many factors, and these indicators and standards are not universally applicable [50].
There are different evaluation methods for multiple eutrophic waters (Figure 3). We discussed
and analyzed the advantages and disadvantages of these methods, and chose the methods
(TLI, TSI, BP neural network or FCE and FCE) with high frequency and the most accurate
results to describe the degree of waters (lakes, reservoirs, rivers and freshwater wetlands)
eutrophication. It is better to choose traditional calculation formulas to evaluate eutrophication
with limited funds. The higher technical methods (e.g., UAV and UG) require a certain amount
of funds.

Figure 3. Evaluation methods applied to different waters (lakes, reservoirs, rivers and wetlands). The best methods
identified in this work is written in red color.
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4.1. The TLI Method for Lake Eutrophication

Lakes are a large and complex system. Lakes can be divided into deep and thermally
stratified lakes or shallow and non-stratified lakes. Here, we focus on the shallow and
non-stratified lake systems [14]. The evaluation of lake eutrophication is based on a series
of indicators related to a lake’s nutritional status and interrelations of these factors (e.g.,
CODMn, TN, TP and Chl-a). Due to the complex chemical effects of various pollutants in
the water, the eutrophication assessment of lake water is a difficult nonlinear prediction
problem [56]. Currently, the basic methods for the evaluation of lake eutrophication include
the following [98]: the TLI method, the MNCM method, the BP neural network method,
the FCE method, and the NI method [72]. Among these, the selection of cloud model
parameters (expected value, Ex; entropy, En; hyper entropy, He) used in MNCM method
is inherently uncertain, indicating that the operational formula used in this method is
not mature enough. Further research is needed on how to reasonably select cloud model
parameters and how to combine the cloud model with other theories [99]. The BP neural
network model was established by MATLAB software, and the network can be trained
with enough calibration samples to avoid subjective influences. The methodology has
been shown to accurately depict the level of eutrophication. However, there may be local
minimum values in the BP neural network calculation, which is not good enough for the
accuracy of this algorithm. Moreover, the local minimum point may appear in the squared
sum function of the error, which is unfavorable to the operation of the algorithm. Therefore,
the BP neural network method required further development [100]. However, the TLI
method uses CODMn, TN, TP, SD and Chl-a as the evaluation indexes [101] to overcome the
one-sidedness of a single factor evaluation of eutrophication [102]. We, therefore, suggest
that the TLI is currently the most suitable method for the evaluation of lake eutrophication.

4.2. The TSI Method for Reservoir Eutrophication

Reservoirs (artificial lakes) have been built for flood control, irrigation, power genera-
tion and fish farming [103]. Currently, the evaluation methods for reservoir eutrophication
primarily include the TSI method [104], the SFIE method [105], the FCE method [106], and
the BP neural network method. It should be noted that, when the above methods are used
to evaluate and analyze the eutrophication of the reservoirs, the results are often more
objective. Of all the methods, the SFIE method is most influenced by individual water
quality indicators. Therefore, it lacks objectivity, and although the FCE method focuses
on the subordination degree of different monitoring indexes to different water qualities,
it fails to consider the inevitable randomness and other uncertainties in the evaluation
process. This can lead to deviations in the evaluation results. However, the TSI method
dismisses the traditional single indicator as presented by the SFIE method and integrates
multiple factors, focuses on the comparison of water quality between tested water and its
water function area, and effectively analyzes the fuzziness of the degree of eutrophication
and water quality category [107]. Hence, it is particularly applicable for the evaluation of
reservoir eutrophication [108].

4.3. The BP Neural Network or the FCE Method for River Eutrophication

Evaluation of river eutrophication has used the BP neural network method, the FCE
method [109], the TLI method, and the NI method [110]. Among these, the BP neural
network method provides a comprehensive evaluation following calibration. The method
can avoid the subjectivity of determining the evaluation index and index weight, thus
better reflecting the level of water pollution [111]. The FCE method can describe water
quality both qualitatively and quantitatively, and it objectively considers the contribution
of various factors [37]. Nevertheless, based on the complexity of a river system, water
environment and the complex water quality dataset obtained by water environmental
monitoring, a variety of evaluation methods should be used to evaluate and manage water
quality. Therefore, the BP neural network method and the FCE method are more suitable
to evaluate river eutrophication.
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4.4. The FCE Method for Freshwater Wetland Eutrophication

The protection of wetland aquatic environments is particularly important. Here,
we discuss the freshwater wetlands, such as the Rietvlei wetland. The eutrophication
evaluation methods for freshwater wetlands primarily include the FCE method [112], the
TLI method [113], the NI method, and the TSI method. The NI method has the advantages
of a simple mathematical description. This easily leads to the degradation of water quality
if the change level in the range is omitted [114]. The FCE method uses the degree of
membership to indicate the classification range of eutrophication, which can better reflect
the difference and continuity of water quality levels. This method considers the influence
of a series of different indicators on water eutrophication and can determine the weight of
each pollution index in the overall evaluation. In addition, it can determine the membership
degree of an evaluation index, which can objectively reflect the eutrophication status of
the water. Consequently, the FCE method is considered most suitable for the evaluation of
eutrophication of freshwater wetlands.

5. Conclusions and Perspectives

Algal blooms caused by water eutrophication have become a global environmental
and human health risk, and they are very frequent in many regions [104,115]. In this review,
we evaluated the most common methods used to assess the levels of eutrophication in
lakes, reservoirs, rivers, and freshwater wetlands. To effectively manage eutrophication, it
is essential to have adequate metrics for the level and extent of contamination. The water
assessment methods recommended in this review all have universal applicability with
suitable accuracy. As a mature method, the TLI and TSI has been widely recognized for the
evaluation of eutrophication of lakes and reservoirs. A river system is a complex water
environment, and there was no consensus found for the optimal evaluation method. BP
neural network methodology and the FCE method have, however, been commonly used
for the evaluation of rivers. The FCE method is more appropriate to evaluate freshwater
wetland eutrophication, and the analysis results have high credibility that can objectively
reflect freshwater wetland eutrophication.

Introduction of new methodologies and ability to capture remote data will allow
improvements in the assessment of eutrophication. In particular: (1) the integration of
data from new monitoring tools such as underwater gliders and unmanned aerial vehicles,
remote sensing, and meteorological and hydrological data with traditional assessments
will allow the status of eutrophication to be accurately reported and will enable improved
management of eutrophication. (2) The evaluation of freshwater eutrophication should
pay attention to the differences in the ecological environment. For example, four kinds of
water bodies (lakes, reservoirs, wetlands and rivers) correspond to different recommended
evaluation methods (TLI method, TSI method, FCE method or BP neural network methods
and FCE method). (3) Methodologies should consider the utilization of existing and big
data sets, numerical model reanalysis, and neural networks. This mathematical approach
can make up for a shortage of survey data and the limitation of evaluation methods while
improving the accuracy of evaluation results.
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