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Abstract

Ensemble runs of high-resolution (�10 km; N1280) global climate simulations

(2005–2010) with the Met Office HadGEM3 model are analysed over large urban

areas in the south-east UK (London) and south-east China (Shanghai, Hang-

zhou, Nanjing region). With a focus on urban areas, we compare meteorological

observations to study the response of modelled surface heat fluxes and screen-

level temperatures to urbanization. HadGEM3 has a simple urban slab scheme

with prescribed, globally fixed bulk parameters. Misrepresenting the magnitude

or the extent of urban land cover can result in land-surface model bias. As urban

land-cover fractions are severely under-estimated in China, this impacts surface

heat-flux partitioning and quintessential features, such as the urban heat island.

Combined with the neglect of anthropogenic heat emissions, this can result in

misrepresentation of heat-wave intensities (or cold spells) in cities. The model

performance in urban areas could be improved if bulk parameters are modelled

instead of prescribed, but this necessitates the availability of local morphology

data on a global level. Improving land-cover information and providing more

flexible ways to account for differences between cities (e.g., anthropogenic emis-

sion; morphology) is essential for realistic future projections of city climates,

especially if model output is intended for urban climate services.

KEYWORD S

cities, global climate simulation, screen-level temperature, urbanization, urban climate, urban

land-surface model

1 | INTRODUCTION

Cities are key to global climate change mitigation strategies
(e.g., Mi et al., 2019 and references therein), and, at the
same time, have to respond to the local impacts of climate
change through adaptation measures (e.g., Landauer
et al., 2019). Rapidly growing urban populations
(UN, 2019) increase the need to conduct projections of

future city climates to inform and develop integrated urban
climate services, for example, to provide guidance for sus-
tainable urban adaptation and planning (e.g., Cortekar
et al., 2016; Baklanov et al., 2018; Grimmond et al., 2020).

The volume and density of buildings and the thermal
and radiative properties of urban materials affect the
surface-energy balance in cities, for example, through
augmentation of heat storage, enhanced radiative
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trapping and increased aerodynamic roughness. A well-
studied manifestation of this is the urban heat island
(Oke, 1973), that is, warmer cities compared to their rural
surroundings. The prevalence of impervious surfaces also
affects the water balance in cities, with increased surface
runoff and strongly reduced potential for infiltration and
evaporation (Grimmond, 2007).

Such localized impacts of urbanization can be
represented in atmospheric models through the use of
specialized urban schemes in land-surface models. Urban
land-surface models (ULSM) parameterise the urban
surface energy balance (e.g., Oke et al., 2017),

QN +QF=QH+QE+ΔQS, ð1Þ

where the net all-wave radiation, QN = (K# – K")+ (L# – L"),
is driven by the net-radiative forcing from incoming (#)
and outgoing (") shortwave (K) and longwave (L) radia-
tion. Additional energy input from anthropogenic heat
emissions (QF) depends on factors such as population
density, traffic volume and seasonal heating/cooling
demands, and hence can vary strongly in space and time
(e.g., Sailor, 2011; Iamarino et al., 2012; Gabey
et al., 2019). In some situations, QF can be the dominant
energy source in Equation (1), for example, in mid-
latitude cities in winter when QN is low and space
heating widely used (e.g., Hamilton et al., 2009). A por-
tion of the energy received is stored (ΔQS) in the urban
volume (e.g., walls, streets) and the ground. The
remaining energy, partitioned into turbulent sensible
(QH) and latent (QE) heat fluxes, is essential to drive
boundary-layer dynamics. When the ULSM is coupled to
a large-scale atmospheric model, the net horizontal
advection of energy into the system (ΔQA) is accounted
for in Equation (1) (right-hand side).

With increasing resolution of both regional and global
climate models, cities and conurbations start to become
resolvable on the model grid (if using adequate land-cover
information), so that local and regional effects of urbaniza-
tion can, in principle, be represented in climate simula-
tions (e.g., Oleson et al., 2008a, 2008b). However, global
simulations still rarely model urban effects explicitly (cf.
discussions in Daniel et al., 2019). This requires not only
adequate urban land-cover information, but for more com-
plex urban models also the availability of bulk information
on building morphology (e.g., mean building height) and
anthropogenic heat emissions (Grimmond et al., 2009),
which are not readily available at the global scale.

In this study, we address the following questions:

• How well do simulations with a simple urban (bulk)
scheme of recent climate (2005–2010) agree with sur-
face observations of screen-level temperatures?

• What are the main factors affecting the representation
of urban signals in these simulations?

• What data/modelling capabilities are needed to
improve the representation of urban signatures in cli-
mate projections and to provide integrated urban cli-
mate services for future planning scenarios?

Data from high-resolution (�10 km; N1280) global
climate simulations with the Met Office HadGEM3
model (Section 2.1) are analysed over highly urbanized
and populous metropolitan regions (Section 2.2): (a) the
south-east UK (London) and (b) south-east China
(Yangtze River Delta region including Shanghai, Hang-
zhou and Nanjing).

2 | CLIMATE SIMULATIONS

2.1 | Setup

The frontier climate simulations of the H2020 PRIMA-
VERA project (Vidale et al., in prep.), with a global hor-
izontal resolution of �0.1� (�10 km; N1280), use the
Met Office HadGEM3 climate modelling system
(Hewitt et al., 2011). The atmosphere-only simulations
for a recent 6-year period (2005–2010) use the Global
Atmosphere (GA7.1) and Global Land (GL7.0) science
configurations for the Met Office Unified Model (UM;
Walters et al., 2019, Wiltshire et al., 2020) and the Joint
UK Land Environment Simulator (JULES; Best
et al., 2011, Clark et al. 2011). Sea surface temperatures
and sea ice concentrations are used as boundary condi-
tions. These are obtained from the HadISST2.1.1 dataset
(Titchner and Rayner, 2014) and are modified to pro-
vide daily increments suitable for high-resolution
simulations.

Given the large computational costs of the simula-
tion, the model is initialised from a converged state at
coarser horizontal resolution (25 km, N512; Roberts
et al., 2019). To help eliminate sensitivity to initial con-
ditions, an ensemble of high-resolution simulations is
constructed. We analyse three ensemble members,
labelled HAD1–3, available from the high-resolution
HadGEM3–PRIMAVERA N1280 suite. The ensemble
members are spawned by randomly perturbing the ini-
tial conditions of the surface temperature field and by
applying to each member a further stochastic perturba-
tion to the full set of initial and restart conditions as
they are read in. Stochastic perturbations are needed as
the model uses stochastic physics. These are additionally
injected at regular intervals during the simulation, with
different time scales depending on the spatial scale
(Sanchez et al., 2016).
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The JULES land-surface model employs a tile
approach for the sub-grid-scale heterogeneity of the land
surface in a grid-box (Best et al., 2011). In the JULES–
GL7.0 science configuration, the built part (i.e., buildings,
roads) of urban areas is represented by a single tile (Best–
1T model; Best, 2005) with only one globally constant set
of surface parameter values for heat capacity, albedo,
emissivity and surface roughness. Thus, they do not
reflect morphometric differences between cities and
across a city (e.g., Grimmond and Oke, 1999; Kent
et al., 2019). The values used are (Wiltshire et al., 2020):
aerodynamic roughness length of z0 = 1 m, bulk urban
albedo of α = 0.18, bulk urban emissivity of ε = 0.97 and
surface heat capacity of C = 0.28 MJ K−1 m−2. The ratio
of roughness length for heat (zh) and momentum (z0)
remains constant at 10−7 (Best et al., 2006). As buildings
are assumed to be below the surface, a zero-plane dis-
placement is assumed to be unneeded (i.e., 0 m).

In these simulations, irrigation or other anthropo-
genic moisture sources are not modelled for urban or
vegetation tiles. Following precipitation, the built sur-
face sheds most of the water immediately (i.e., urban
run-off rates are large; Hertwig et al., 2020) as the water-
holding capacity of the impervious tiles is limited (Best
and Grimmond, 2016a). Hence, in most situations
(i.e., in the absence of rainfall), the turbulent latent heat
flux (QE) is limited to the vegetated tiles, which did not
receive any urban runoff. Anthropogenic heat emissions
(QF) in the HadGEM3–PRIMAVERA runs are assumed
to be 0 W m−2 everywhere. JULES allows QF to be pre-
scribed monthly for urban tiles, but these values are spa-
tially unvarying as, for example, used in UK operational
numerical weather prediction with the UM (Lean
et al., 2011). While global QF models exist (e.g., Allen
et al., 2011; Lindberg et al., 2013), JULES currently only
allows the anthropogenic forcing to be prescribed, which
requires access to local energy-use statistics. These are
difficult to obtain with appropriate timeliness at the
global scale. Hence, including QF in global HadGEM3–
JULES climate model runs is not currently viable.

Vegetation in HadGEM3-JULES is represented using
five plant functional types (PFT): broad-leaf tree, needle-
leaf tree, shrubs, C3 and C4 grass. Urban vegetation (if
resolved) is modelled with one of these vegetation tiles,
but without representing interactions with impervious
surfaces. Leaf-area index and canopy height for the vege-
tation tiles are prescribed as monthly values that vary at
the grid-scale (Wiltshire et al., 2020). Neither crop
dynamics nor its irrigation are modelled.

Evaluations of HadGEM3 (coupled to an ocean
model, Roberts et al., 2019; and/or atmosphere-only,
Vannière et al., 2019) have shown that increasing hori-
zontal resolution from 130 (N96) to 25 km (N512)

reduces global biases of near-surface temperatures and
improves rainfall patterns and amplitudes. Detailed eval-
uations of the HadGEM3–PRIMAVERA N1280 runs are
ongoing (Vidale et al., in prep.; Volonté, pers. comm.) as
the model continues to be developed. Biases identified at
25-km model resolution are not expected to fundamen-
tally shift with the change to 10 km, consistent with
Vellinga et al. (2016) for the switch from 25 to 12 km.

2.2 | Analysis domains

Model output and surface observations are compared for
domains centred on the metropolitan areas of London
(Figure 1a,b) and Shanghai (Figure 1c,d). As London is
central to development and evaluation of the urban
models in JULES (Best, 2005; Porson et al., 2010;
Bohnenstengel et al., 2011), the urban parameters used in
HadGEM3–PRIMAVERA are expected to be most repre-
sentative of this urban area.

The �1 km resolution International Geosphere–Bio-
sphere Project (IGBP; Loveland et al., 2000) data for
1995/1996 are used to create the GA7.1/GL7.0 model
land cover (Walters et al., 2019). Comparison of the
urban impervious or built land-cover fraction (fUrban)
used in HadGEM3–PRIMAVERA (Figure 1b,d) to more
recent (2011) data from the Global Urban Footprint
(GUF) project (�12 m resolution globally; Esch et
al., 2011, 2017, 2018) using TerraSAR–X/TanDEM–X
data (Figure 1a,c) allows differences to be seen.

As London is the largest metropolitan area in Europe, it
covers several HadGEM3 grid cells (Figure 1b). In central
London, the urban land-cover fraction is at or close to 100%
(i.e., vegetation and the River Thames are missing;
Table 1a). Shanghai, China's most populous city, and sur-
rounding regions of the Yangtze Estuary have undergone
rapid urbanization over the last decades (Yin et al., 2011;
Cui and Shi, 2012; Tan et al., 2015). However, this is not evi-
dent in the HadGEM3 land cover. The vast cities of Shang-
hai and Hangzhou (Figure 1c), for example, are only
represented by few urbanized grid-boxes (Figure 1d). The
urban fraction is too low compared to GUF data (Table 1b),
with the maximum fUrban across the domain being 60.2%
(inner-city Shanghai). In both domains, C3 grass is the
dominant PFT with 90% of grid-boxes having tile-fractions
larger than 59% (south-east UK) or 46% (south-east China),
while less than 10% of the grid-boxes have trees.

Similarly, large contrasts are evident between IGBP
fUrban and GUF in other highly urbanized and populous
areas across China (Figure S1 for Beijing and Chong-
qing). Given this clear bias in China, this study focuses
only on a small-area comparison centred on Shanghai
and cities located in the lower reaches of the Yangtze
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TABLE 1 Weather station (Figure 1b,d) data analysed in two domains located in (a) south-east UK (London region) and (b) south-east

China (Shanghai region) with surrounding urban land-cover fraction (fUrban) determined from GUF (25 and 2.5 km boxes centred on the

sites; cf. Figures S2 and S3) and HadGEM3–PRIMAVERA (3-by-3 grid-boxes ≈ 30 km horizontal extent; minimum, maximum and centre

values)

fUrban (%)

Station Latitude Longitude GUF25 km GUF2.5 km

HadGEM3
(min/max/centre) Comment

(a) London region LWC 51.52� −0.11� 75.5 90.7 45.2/100/97.7 stopped 02/2010

SJP 51.50� −0.13� 75.6 80.6 45.2/100/97.7

LHR 51.48� −0.45� 44.0 48.3 7.0/91.5/33.1 Heathrow airport

WIS 51.31� −0.74� 23.1 3.5 7.1/75.4/26.1

(b) Shanghai region SHA 31.4� 121.47� 43.9 87.3 0/60.2/6.3 Baoshan district

XIA 30.23� 120.43� 39.4 35.4 0/0/0 Hangzhou airport

DON 32.85� 120.28� 20.8 36.1 0/9.7/9.7

LIY 31.43� 119.48� 13.2 81.9 0/0/0

LUK 31.74� 118.86� 13.2 19.1 0/0/0 Nanjing/Lukou airport

Note: See text for more details. Stations are: DON, Dongtai (WMO: 58251); LIY, Liyang (WMO: 58345); LHR, Heathrow Airport (WMO: 03772); LWC, London
Weather Centre (WMO code: 03779); LUK, Lukou (ICAO code: ZSNJ); SHA, Shanghai (WMO: 58362); SJP, St James's Park (WMO: 03770); WIS, Wisley
(DCNN code: 5237); XIA, Xiaoshan (WMO: 58457).

FIGURE 1 Domains analysed with observation sites (dots, labels) and the (a,c) urban and non-urban extent of the Global Urban

Footprint (GUF) dataset compared to the (b,d) HadGEM3–PRIMAVERA urban land-cover fractions (fUrban) for (a,b) south-east UK, (c,d)

Shanghai region in China. Note the fUrban scale differs between (b) and (d). Table 1 and text provide further details and data sources [Colour

figure can be viewed at wileyonlinelibrary.com]
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River Delta, for which the observational coverage is good
(Section 3).

2.3 | Output

Surface turbulent sensible and latent heat fluxes, QH and
QE, and net all-wave radiation (QN) are available as daily
averages from three ensemble members (HAD1–3). These
are analysed for the entire 6-year simulation period
(2005–2010). Hourly samples of air temperature (Tair) at
screen-height (1.5 m above local orography) are available
from two ensemble members (HAD1,2). Tair is a model
diagnostic obtained from interpolating air temperatures
between the first model level and the surface using
Monin–Obukhov similarity theory (Essery et al., 2001;
Bohnenstengel et al., 2014). As ensemble member HAD2

has no output for 2010, the seasonal and diurnal compar-
isons are only for 5 years (2005–2009).

Given the model years have only 360 days, the com-
parisons with observations (Section 3) cannot be for indi-
vidual short periods (e.g., hourly) but need to be based on
aggregated data (e.g., monthly, seasonal; Section 4.2) and
use frequency distributions and occurrence of particular
conditions (e.g., hot/cold days; Section 4.3). Comparison
of model statistics of Tair with the observations
(Section 3) are conducted for common data periods. Fre-
quency distributions (Section 4.3) use the same sample
frequency for model and observations; that is, the hourly
model output is sampled to match the 3-hourly observa-
tion frequency available for sites in the Shanghai domain
(for the UK sites it is hourly; see Section 3). Data are
analysed by month and season: summer (June, July,
August; JJA), autumn (SON), winter (DJF), and spring
(MAM). The model bias is analysed as the difference
between model and observations.

3 | OBSERVATIONS

Evaluation of modelled Tair uses single-site surface obser-
vations from weather stations. For the south-east UK,
hourly samples of screen-level air temperature from the
Met Office MIDAS surface observations archive (Met
Office, 2006) are used at four sites (Figure 1b; Table 1a).
In the south-east China domain, ground-based observa-
tions from NOAA's National Climatic Data Center
(NCDC) archive (Climate Data Online; https://www7.
ncdc.noaa.gov/CDO/cdo) at five sites (Figure 1d,
Table 1b) are selected based on data availability during
the evaluation period. From NCDC, 3-hourly Tair samples
are available at 0, 3, …, 21 UTC. Both MIDAS and NCDC
Tair data have a resolution of 0.1�C.

Urban land-cover characteristics of the surface stations
are summarized (Table 1) using both GUF (252 and
2.52 km2 footprints around the sites) and HadGEM3 land
cover (Section 2.2). The latter is given for a 3-by-3 grid-box
area (�302 km2) centred on the evaluation sites. For some
stations, the GUF2.5 km and GUF25 km differences are large
(Figures S2, S3). For example, the immediate surroundings
of WIS (UK) are primarily rural (fUrban = 3.5%) compared
to the wider regional average (23.1%). The latter is close to
the HadGEM3 value (26.1%).

The opposite occurs for LIY (China), where GUF25 km

indicates settlements in rural surroundings, while the
site's immediate neighbourhood is highly urbanized
(81.9%). For SHA (Baoshan/Shanghai), the close proxim-
ity to the Yangtze River causes GUF25 km to be low,
whereas GUF2.5 km (fUrban = 87.3%) indicates extensive
urban surroundings to the station, and of the inner-city
area south of the site. However, fUrban in the HadGEM3
land cover is zero in the 3-by-3 grid-box area around the
LIY, XIA and LUK sites (China), in strong contrast to
GUF (Table 1b).

4 | RESULTS AND DISCUSSION

4.1 | Surface forcing

Before evaluating screen-level temperatures (Section 4.2,
4.3), modelled turbulent heat fluxes at the surface from
the three model ensemble members (HAD1–3) are
analysed, as these directly impact the boundary-layer
temperature profiles. The nature of the energy par-
titioning into sensible and latent turbulent heat flux
(Equation 1) is often strongly altered in cities compared
to rural areas in response to the prevalence of impervious
surfaces and reduced amounts of vegetation
(e.g., Grimmond and Oke, 2002; Goldbach and
Kuttler, 2013; Ward et al., 2016). The relative dominance
of QH or QE for a site can be assessed by the evaporative
fraction

EF=QE= QE+QHð Þ=1= 1+βð Þ ð2Þ

where β = QH/QE is the Bowen ratio, another widely used
method to characterize surface energy-flux partitioning.

The ensemble median summer (JJA; 2005–2010) sur-
face heat fluxes are derived from the daily-averaged
model fluxes of all three ensemble members (HAD1–3).
Spatial distributions of QH, QE and EF are analysed in the
south-east UK domain (Figure 2a-c), as the HadGEM3
land-cover data here are generally reasonable for fUrban

(Table 1a). Patterns of enhanced (reduced) JJA QH (QE)
are clearly linked to urban fractions for individual
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HadGEM3 surface grid-boxes (Figure 1b). The Greater
London area stands out distinctly from its rural surround-
ings. An observed heat-flux climatology for central London
(Kotthaus and Grimmond, 2014a) informs expectations of
model behaviour. With only daily-mean model fluxes avail-
able, diurnal variability is unknown and the magnitudes are
small (cf. hourly-mean observations). In central London, the
observed JJA 25th and 75th percentiles of QH at the time of
day when the median QN is largest can be between �150–
250 W m−2 and at night between �50–100 W m−2 when QN

is lowest and negative (see Figure 6 in Kotthaus and
Grimmond, 2014a). Hence, the JJA model median of
QH < 80 W m−2 in central London is lower than expected.

In grid-boxes with fUrban > 90% in central London
(Figure 1b), QE predominantly occurs immediately after
rainfall, but JULES eliminates subsequent urban tile
evaporation through large runoff rates, which results in
JJA median daily-mean QE of ≤10 W m−2 (Figure 2b).
Earlier studies demonstrate that even small amounts of
vegetation in cities can have a strong impact on the
local surface energy balance (e.g., Loridan and

Grimmond, 2012a, 2012b; Best and Grimmond, 2016b).
The steep spatial gradients of QE (Figure 2b) as fUrban

decreases away from central London demonstrate this, as
well. Like QF, anthropogenic moisture sources are not
modelled in JULES for urban tiles. However, these can
be important in some cities. Recent studies in Beijing
(Dou et al., 2019) and Shanghai (Ao et al., 2018) demon-
strate that irrigation of vegetation, street cleaning and/or
wetting (e.g., to reduce dust, to cool) have a noticeable,
non-negligible effect on observed QE.

The median JJA evaporative fractions (Equation 2;
Figure 2c) for the model grid-boxes covering central
London are clearly dominated by QH with values between
0.075 < EF < 0.3. Hence, the corresponding Bowen ratio
(β) is between 12 and 2.3, which is high, but not unrea-
sonable for central London. Kotthaus and
Grimmond (2014a) report monthly median hourly β
between 5 and 10 in London's central business district. In
rural grid-boxes (fUrban = 0), modelled EF is larger
(0.65 < EF < 0.75; i.e. β ≈ 0.54–0.33) and more spatially
homogeneous.

FIGURE 2 (a–c) Modelled summer (JJA; 2005–2010) ensemble median (HAD1–3) turbulent surface heat fluxes over land for the south-

east UK of (a) QH, (b) QE and (c) evaporative fraction (EF; Equation 2). Monthly ensemble medians (HAD1-3, 2005–2010) with inter-quartile

range (whiskers) for (d) QH/QN, (e) QE/QN and (c) EF = QE/(QE + QH) at LWC, WIS (south-east UK domain; Table 1a) as well as SHA, XIA,

and LUK (south-east China domain; Table 1b). Note these analyses use daily mean QH, QE and QN [Colour figure can be viewed at

wileyonlinelibrary.com]
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To illustrate the sensitivity of JULES surface fluxes to
land cover and urban parameter choices, JULES is run
offline mimicking the HadGEM3–PRIMAVERA GL7.0
setup at a site in central London (KCL) for which high-
quality flux measurements are available for 3 years
(2011–2013; Ward et al., 2016, Hertwig et al., 2020). A
description of JULES settings, parameters (Table A1) and
observations are given in Appendix A. The response of
the Best–1T urban model (Section 2.1) is tested in two
configurations: (a) a control case using high-resolution
land-cover data, observed roughness and radiative
parameters and realistic (modelled) QF (hereafter CTRL–
1T), and (b) default JULES–GL7.0 parameters (Sec-
tion 2.1) and HadGEM3–PRIMAVERA land cover
(HAD–1T).

Seasonal median diurnal cycles of QH modelled off-
line (Figure 3a) show distinct differences in the two test
cases, highlighting some probable causes for the under-
prediction of the (online) HadGEM3 QH (despite the
over-prediction of fUrban) in central London (Figure 2a).
Except for afternoons and early evenings in MAM and
JJA, both CTRL–1T and HAD–1T have a consistently
negative QH bias. Neglecting QF in HAD–1T noticeably
amplifies this, especially in SON and DJF (Figure 3a),
where there are long periods of median QH at or below
0 W m−2. The observations instead show
QH > 0 W m−2 year-round, day and night (the observed
DJF minimum 25th percentile of QH is �25 W m−2),
attributed to both QF and nocturnal storage heat flux
from the building volume. Underestimation of QH is also

caused by the relatively large JULES–GL7.0 urban albedo
used in HAD–1T (α = 0.18) compared to the observed
value of 0.11 used in CTRL–1T (Table A1), leading to a
reduction of energy input (QN) through an increase of K"

(Figure S4a,c). In both configurations, QH has a substan-
tial phase delay (rise and peak times), as a result of the
large thermal inertia (through C and zh) of the urban slab
impacting the temporal response of surface temperatures
(Hertwig et al., 2020). The phase delay, also present in
the diurnal cycle of L" (Figure S4b), impacts diagnostics
like Tair (Section 4.2).

In CTRL–1T (Figure 3b), vegetation (13% land-cover
fraction within a 500-m radius around the KCL site;
Table A1) and the River Thames (21%) influence QE,
while in HAD–1T there is no vegetation and only 2%
water. This results in a median QE close to 0 W m−2 in
HAD–1T (Figure 3b). This echoes the patterns of very
low QE in central London in the HadGEM3–
PRIMAVERA simulations (Figure 2b,e). The river influ-
ences the eddy-covariance heat-flux source areas only for
some wind directions (Kotthaus and Grimmond, 2014b).
As the relative location of land cover is not captured in
the JULES tiling, CTRL–1T overestimates the effect of
the river on QE, which in turn leads to reduced QH

(Figure 3a).
The impact of over- or under-representation of urban-

ization in the HadGEM3–PRIMAVERA land cover
becomes more apparent when comparing modelled heat-
flux characteristics in the London domain (LWC, WIS;
Table 1a) with sites in the Shanghai domain (SHA, XIA,

FIGURE 3 Seasonal median diurnal cycles based on hourly fluxes (2011–2013) of turbulent (a) sensible heat flux (QH), (b) latent heat

flux (QE) in central London (KCL site; Appendix A) from observations and offline JULES simulations using the Best (2005) single tile (1T)

urban model (GL7.0 configuration) with control (CTRL–1T) and HadGEM3–PRIMAVERA (HAD–1T) parameters and land cover (Table A1;

Appendix A) [Colour figure can be viewed at wileyonlinelibrary.com]
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LUK; Table 1b). Comparison is undertaken using the
monthly ensemble median (2005–2010) surface heat
fluxes and EF from the HadGEM3–PRIMAVERA climate
simulations for the three ensemble members (Figure 2d-f).
To account for radiative forcing differences in the two
regions, the daily-mean surface heat fluxes are normalized
by the local daily-mean net all-wave radiation (QN;
Figure 2d,e). The central London LWC site (HadGEM3
fUrban = 97.7%) clearly has the largest ‘urban’ response, with
bulk characteristics similar to the HAD–1T offline test (e.g.,
negative QH occurs in DJF; too low QE). The results for the
WIS background station are dominated by the large fraction
of non-urban surfaces (C3, C4 grass: 66.7%, bare soil: 7.2%),
causing much larger QE in summer (cf. LWC). As the model
output for fluxes are diurnal means, the winter QN values in
the UK are small and often negative (Figure S5a), impacting
the sign of ratios (QE/QN; QH/QN). The daily-mean DJF for
QE is mostly positive (Figure S5c) and for QH mostly nega-
tive (Figure S5b). Similarly, EF (Equation 2) is negative
when the daily-mean QH < 0 W m−2 and jQHj > jQEj,
resulting in larger variability in the monthly statistics
(Figure 2d-f) in winter at the UK sites (cf. China).

With the SHA grid-box (Baoshan district of Shanghai;
Table 1b) having only 6.3% built land cover but 79.2%
vegetation (grass and shrubs), it is unsurprising that the
heat fluxes are similar to those modelled at the rural WIS
site (UK), especially in MAM and JJA (Figure 2d,e). Simi-
larly, the model fluxes at both LUK (Nanjing/Lukou air-
port) and XIA (Hangzhou airport) with zero built land
cover in HadGEM3 show a typical rural response with
the monthly median EF > 0.5 year-round. Here, the
model assumes 86.3% (XIA) and 90.9% (LUK) vegetated
surfaces. As a point of reference, Ao et al. (2016a) report
observed monthly mean daytime Bowen ratios between
2 and 4.7 (i.e., EF between 0.33 and 0.18) for a central
business district in Shanghai (XJH site; Xujiahui district).
The modelled median EF at SHA is much higher and
ranges between 0.42 (August) and 0.68 (June; Figure 2f).
Observed mean daily QH peaks in Shanghai can exceed
290 W m−2 in the early afternoon in JJA, while QE is low
(�65 W m−2; Ao et al., 2016a). Misrepresenting the
energy partitioning over cities in such a way will nega-
tively impact any use of this data, such as for climate-
service applications that use heat-flux ratios to assess
urban heat stress for health of citizens or irrigation
demands for maintaining green infrastructure or reduc-
ing dust resuspension.

4.2 | Urban heat-island intensity

Turbulent heat fluxes (Section 4.1) and surface tempera-
tures play an important role in determining and

co-modulating local boundary-layer dynamics in atmo-
spheric models over cities and therefore impact charac-
teristics of near-surface air temperatures (e.g., Omidvar
et al., 2020). Distinct canopy-layer air-temperature differ-
ences between urban and rural areas have long been
observed worldwide (e.g., literature reviewed in Oke
et al., 2017 and Stewart, 2019), particularly a few hours
after sunset when the urban heat island is strongest.
Radiative and thermal properties of prevalent urban
materials, together with the density and volume of build-
ings, result in heat being effectively stored (ΔQS) during
the day and released at night when QN becomes negative
(Equation 1). This, together with QF, partially offsets radi-
ative night-time cooling in cities; a process that it is criti-
cal to represent in land-surface models.

Figure 4 shows a comparison of seasonal median
diurnal Tair cycles between observations and climate
model (HAD1,2; Section 2.3) at LWC (central London) in
the UK (Figure 4a) and SHA (Baoshan/Shanghai) in
China (Figure 4b). Comparisons of Tair at the remaining
sites in both domains are shown in Figures S6 and S8.

With nearly 100% built surface cover (Table 1a), the
response of the urban Best–1T scheme in JULES domi-
nates the Tair characteristics at LWC (Figure 4a). Only in
summer (when QN is largest) does the model not under-
estimate the median Tair. However, large differences exist
in both magnitude and timing of modelled and observed
median JJA Tair peaks. Compared to the observations,
both ensemble members show a �1 h delay in the morn-
ing temperature rise and a further phase shift of the after-
noon peaks of 1–2 h, together with a positive offset of the
maximum median Tair of �2�C (HAD1) and �1�C
(HAD2). These phase delay features are observed offline
in central London (HAD–1T) in QH (Figure 3a). The posi-
tive afternoon Tair bias in JJA at the highly urbanized
sites (Figures 4a and S6a) can be partially explained by
an over-prediction of surface temperatures (see also JJA
L" bias in Best–1T offline tests in central London; Figure
S4b). This feature of the urban model affects the grid-box
Tair less at sites with lower fUrban (LHR, WIS; Table 1a).
While at these sites in JJA HAD1 performs much better
(Figure S6b,c), the positive bias persists for HAD2, show-
ing that the initial conditions (Section 2.1) and the
resulting response of the atmospheric model in the region
have an influence.

During colder seasons, especially winter, there is a
persistent negative bias in modelled Tair at LWC
(Figure 4a). This is stronger at night and in the early
morning (up to 2�C in DJF). As discussed in Section 4.1,
this is likely related (in part) to the climate model QF

being 0 W m−2, whereas observations at the highly
urbanized LWC are impacted by QF. In central London
in winter, QF can be as large as, or larger than, QN and
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can therefore be the main driver of the surface energy-
balance (Hamilton et al., 2009; Kotthaus and
Grimmond, 2012). Offline tests with the JULES Best–1T
model in central London (KCL site; Appendix A) show
that switching off QF in CTRL–1T can account for up to
�1�C difference in DJF Tair (Figure S7). This agrees with
anthropogenic temperature increments of 0.5–1�C deter-
mined by Bohnenstengel et al. (2014) for other sites
across London. Compared to SJP, located in a highly veg-
etated park and therefore less impacted by QF (cf.
Figure S2), LWC observes consistently warmer median
night-time Tair of �0.6�C year-round (Figure S9), in
agreement with Jones and Lister (2009). As both sites are
within the same 0.1� model grid-box, these local differ-
ences are not represented in the model. Consequently,
the comparison of the HadGEM3–PRIMAVERA Tair with
the statistically cooler SJP site (cf. LWC) has a better
agreement of median night-time temperatures (except
summer), but an exacerbated positive model bias of JJA
afternoon temperatures (Figure S6a). These differences in
model assessment depending on site choice (within the
same model grid-box) show that it is crucial to have mea-
surements available in characteristically urban settings
that reflect the added effects of QF and storage heat flux
from the building volume.

The intensity of the UHI can be assessed by the dif-
ference between urban and rural air temperatures.

Figure 5a shows the modelled and observed seasonal
median diurnal cycle of screen-level air temperature dif-
ferences (ΔTair) between LWC and the rural WIS station
�35 km south-west of LWC (Figure 1a,b). Expectedly,
the observed median ΔTair is highest (and nearly con-
stant) at night, with largest values in JJA (�2.5�C) and
lowest in DJF (�1.5�C). The magnitudes agree with pre-
vious long-term observations (Jones and Lister, 2009).
In all seasons, the climate model underestimates the
median UHI intensity between sunset and sunrise by up
to 1�C (DJF), while in MAM and JJA the median ΔTair

is overestimated in the afternoon and early evening by
up to 0.5�C. Similarly, the large magnitude and seasonal
variability of the observed inter-quartile range of ΔTair

is not reproduced by the model, indicating a smaller
sample spread. Strong differences also exist in the sea-
sonal 90th percentiles of ΔTair, which range between
3.5�C (DJF) to 4.9�C (SON) in the observations and
1.4�C (DJF) and 3.1�C (JJA) in the model ensembles,
implying that more extreme urban–rural temperature
contrasts are not captured.

Observed Tair differences between central London
(LWC) and the less urbanized Heathrow airport (LHR;
fUrban = 48.3% in GUF2.5 km, 33.1% in HadGEM3;
Table 1a) are noticeably smaller compared to LWC–WIS
(Figure 5b). The observed median ΔTair between sunset
and sunrise is relatively constant throughout the year

FIGURE 4 HadGEM3–PRIMAVERA (HAD1,2) and observed seasonal median diurnal cycles of screen-level air temperature (Tair) with

inter-quartile range for (a) LWC (London Weather Centre; Table 1a) and (b) SHA (Shanghai/Baoshan; Table 1b). Observations are (a) hourly

and (b) 3-hourly. See Figure S6 for SJP, LHR and WIS (UK); Figure S8 for XIA, DON, LIY, LUK (China) [Colour figure can be viewed at

wileyonlinelibrary.com]
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with only small variations around 1�C, while the model
has larger seasonal variability of ΔTair with nocturnal
maxima of only �0.5�C in DJF, but up to �1.8�C in JJA.
These magnitudes are very similar to the modelled ΔTair

between LWC and the rural WIS site (Figure 5a). While
more vegetation surrounds LHR (cf. LWC), the site is also
affected by anthropogenic heat emissions related to the
airport infrastructure and operations.

Systematic differences between HAD1,2 and observa-
tions also exist at the SHA site (Figure 4b). Nocturnal
and early morning median Tair are under-estimated in all
seasons except winter (DJF), while Tair peaks are over-
estimated in all seasons except for spring (MAM). This
occurs at all sites in the Shanghai domain (Figure S8)
and can be clearly traced in the bias patterns of the
median 3-hourly Tair in each season (Figure 6). As the
model fUrban severely under-represents the actual built
land-cover fraction at all sites (Figure 1d; Table 1b), the

nocturnal negative model bias tendency partially relates
to the lack of urban heat storage/release. For sites in pop-
ulous cities (e.g., SHA, XIA) with a large building vol-
ume, anthropogenic heat emissions are also likely to
affect the near-surface air temperatures. While in London
and other higher-latitude cities QF typically peaks in win-
ter when space heating is needed, subtropical Shanghai
and surrounding cities like Hangzhou have QF peaks in
summer from air-conditioning use. While space cooling
is used in both commercial and residential buildings,
heating during winter can occur in offices, but is uncom-
mon in residences (Ao et al., 2016a). This could explain
the overall better agreement of nocturnal Tair in DJF
between model and observations, as both sites are situ-
ated outside of high-rise central business districts with
predominantly commercial buildings and instead are
dominated by low-rise buildings (residences and
industry).

FIGURE 5 HadGEM3–PRIMAVERA (HAD1,2) and observed seasonal median (lines/markers) diurnal cycles of screen-level air

temperature differences (ΔTair) with inter-quartile range (shading/error-bars) for (a) LWC–WIS and (b) LWC–LHR (Table 1a) and (c) SHA–
DON (Table 1b), with differences (vertical bars) of the median ΔTair between model ensemble members (HAD1,2) and observations (a, b)

hourly and (c) 3-hourly; and seasonal 90th percentile of the data (arrows). See Figure S10 for ΔTair for SHA–XIA, SHA–LIY and SHA–LUK
(China) [Colour figure can be viewed at wileyonlinelibrary.com]
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Of the five evaluation sites in the Shanghai region
(Table 1b), none qualify as truly rural background stations
(Figure S2). However, it may be expected that differences
in urbanization levels between SHA, with the highest fUr-
ban, and the other sites are to a degree reflected in ΔTair.
However, given the large geographical distances, ΔTair pri-
marily reflects regional climate variations and differences
between coastal sites (SHA, XIA), that can be affected by
land-sea breeze circulations, and inland stations.

Seasonal diurnal cycles of ΔTair between SHA and
DON (Figure 5c; SHA: fUrban = 87.3%, DON: 36.1% based
on GUF2.5 km; Table 1b) have large magnitudes and vari-
ability in both observations and model. As the model
fUrban is very low at both sites (SHA: 6.3%; DON: 9.7%),
the modelled ΔTair mainly reflects climatological differ-
ences. The observed median ΔTair is consistently higher
than the modelled equivalent, with particularly large dif-
ferences at night in MAM and SON and during the day
in JJA. This trend agrees with the expected role of urban
ΔQS and QF for SHA. Similar trends are seen in the
observed ΔTair between SHA and the other sites in the
domain (Figure S10), with the overall smallest differences
occurring between the coastal SHA and XIA stations.

At the inland sites (DON, LIY, LUK), a large over-
estimation of the median JJA screen-level temperatures
occurs (Figures 6 and S8). This is smaller for the coastal
SHA and XIA stations. Unlike at LWC (Figure 4a), this
cannot be attributed to features of the Best–1T model
given the largely missing fUrban characterization in the
model, but must relate to the regional weather pattern
representation by the atmospheric model. Note that dif-
ferences between surface elevations reported for the sta-
tions and the model orography are small.

An increased resolution of global climate models can
modify the hydrological cycle simulated, with an increase

in precipitation over land (Vannière et al., 2019). In June
and July, the analysis region centred on Shanghai is
affected by meso-scale convective systems associated with
the passage of the Meiyu front, which results in very
intense localized rainfall for short durations (e.g. Guan
et al., 2020). While the climate model can resolve the
Meiyu frontal system and its passage through the region
(A. Volonté, pers. comm.), differences in timing, intensity
and location of associated convective precipitation com-
pared to the observations (not shown) may play a role in
the JJA temperature bias (Figure 6).

The urban model behaviour (offline and online) in
highly urbanized central London suggests the positive
JJA model bias of Tair in the Shanghai domain will likely
be exacerbated once more realistic urban land cover is
used. Hence, improving land-cover characteristics is
expected to cause model performance to deteriorate at
these sites, which prompts the need to further investigate
reasons for the bias in the atmospheric model to improve
the model performance.

In some seasons, there are large quantitative differ-
ences between Tair from both ensemble members. Com-
pared to HAD2, HAD1 for the UK domain has a larger
75th percentile and sometimes larger median Tair

(e.g., DJF, JJA; Figures 4a, S6) at all sites across the com-
mon period of data availability. Whereas for the China
domain, HAD1 has a lower 25th percentile in MAM and
SON and lower night-time medians (Figures 4a, S8).
These ensemble differences can be as large as 1–2�C, and
hence can have a meaningful impact on potential uses of
these data, such as for local climate assessment and plan-
ning, if extremes are of interest (Section 4.3). Similarly,
the HAD1 surface heat fluxes in the UK have larger dif-
ferences to the other ensemble members, especially in
summer, while HAD2 and HAD3 are more similar (not

FIGURE 6 Bias (model-observations) of median 3-hourly Tair by season at sites in the Shanghai region (Table 1b) for two ensemble

members (HAD1,2) [Colour figure can be viewed at wileyonlinelibrary.com]

3276 HERTWIG ET AL.

http://wileyonlinelibrary.com


shown). As the implications for urban services can be sig-
nificant, this raises more general questions about the use
of probabilistic versus deterministic forecasts.

4.3 | Occurrence of temperature
extremes

The frequency of occurrence and magnitude of very
warm (e.g., heat waves) or cold air temperatures in cities
can be affected by the UHI (e.g., Lemonsu et al., 2015;
Ramamurthy and Bou-Zeid, 2017; Ao et al., 2019) and can
be further exacerbated by feedback mechanisms with QF

(e.g., through air-conditioning; Takane et al., 2020). Rep-
resenting such processes in climate projections for cities is
crucial for various urban applications, such as related to ther-
mal comfort/heat stress and associated mitigation strategies
(e.g., urban greening; Zölch et al., 2016).

While the HadGEM3–PRIMAVERA simulation
period is too short to derive statistically robust occurrence
likelihoods of heat waves, the occurrence frequency of
recent temperature extremes as represented in the model
and captured in the observations can be compared for the
available output periods. Modelled and observed seasonal
frequency distributions (normalized) of Tair are compared
for daytime and night-time periods in the UK and China
domains (Figure 7; Figures S11, S12). For the UK, the
analysis of hourly data varies daylength between seasons
(all UTC): DJF 09:00–16:00; MAM 07:00–20:00; JJA
06:00–21:00; and SON 08:00–18:00. In the Shanghai
domain, daytime length varies much less through the
year and the observation frequency is only 3-hourly.
Hence, a constant daytime period (06:00–18:00
UTC + 8 h) is used. Common periods and data frequen-
cies for both the observations and model output are used
(see Section 2.3).

The overall shape of the observed Tair frequency dis-
tributions during day and night is captured by the model
in both domains, with a mostly good agreement for the
range of values and skewness patterns (Figure 7). How-
ever, some of the discrepancies between the diurnal air
temperatures ranges (identified in Section 4.2) are
reflected in the tails of the distributions. The higher
observed DJF air temperatures at the London city-centre
site LWC (Figure 4a) are reflected in the cool-end tail of
the Tair distributions (Figure 7a). Similarly, the over-
prediction of JJA and SON daytime temperatures by the
model impact the warm-end Tair tail (stronger for HAD2).
At the rural WIS site (Figure 7b), minimum nocturnal
temperatures are over-predicted throughout the year, in
agreement with characteristics of the 25th percentiles of
the seasonal diurnal cycles (Figure S6c), likely linked to
the higher model fUrban (Table 1a).

At the SHA (Shanghai/Baoshan) site in the China
domain (Figure 7c), the observed nocturnal maximum
Tair in MAM and JJA are slightly warmer than in the
model (see also Figure 4b). This could be connected to
the limited nocturnal heat release from building volumes,
with the low urban tile weighting in the grid-box
(Table 1b). The largest difference between the Tair tails in
the Shanghai domain is found in the JJA daytime maxi-
mum temperatures at the inland sites (Figure 7d for
DON; Figure S12b,c for LIY, LUK), with a strong over-
prediction (much longer tails) from both ensemble mem-
bers. This agrees with earlier discussions (Section 4.2).
Nocturnal distributions of temperatures at these sites are
much better modelled in all seasons, but as for the coastal
SHA and XIA sites the warm-end tail is slightly under-
predicted in MAM and JJA.

The frequency of days with extreme Tair for each sim-
ulation year is analysed (Figures 8, 9) using observed and
modelled daily maximum and minimum temperatures at
each site. Cold and hot thresholds are set to be below/
above the 25th/75th percentiles of observed temperatures
(DJF, JJA, respectively) at all sites. For both domains, the
same two cold thresholds are used: 0 and 5�C. However,
the hot extreme differs between domains, with London
thresholds (25/30�C) lower than for the Shanghai region
(30/35�C). A day is counted as cold (hot) if Tair over 24 h
is detected below (above) these limits. Qualitatively, the
results (Figures 8 and 9) are insensitive to the exact
threshold chosen (as long as they are within the distribu-
tion tails). The frequency is relative to the total number
of days in the year that have valid data, considering both
missing observations and model output. In the UK,
hourly Tair data are analysed, whereas in China 3-hourly
samples (Section 3) of the hourly model output are used
to match the observations (Section 2.3).

As the two central London sites (LWC, SJP; Figure 8)
are within the same model grid-box, the observed fre-
quencies of hot and cold days reflect the climatological
differences between the stations (Section 4.2). The park
station (SJP) has a notably higher occurrence of cold days
cf. LWC with its more extensive built/impervious surfaces
and slower nocturnal radiative cooling (Figure S9). The
observed relative occurrence of hot days is only slightly
higher at LWC (cf. SJP), in agreement with the expected
smaller role of UHI intensity type processes during
the day.

The modelled cold days for HAD1,2 agree better with
SJP (cf. LWC). In 2007 and 2008, the modelled occur-
rence of both Tair < 5�C and Tair < 0�C at LWC are too
high. Whereas for rural WIS the model ensembles in all
years underestimate the occurrence frequency of
Tair < 0�C. This agrees with overestimation of the 25th
percentile of Tair in DJF (cf. observations, Figure S6c).
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This may be partly caused by fUrban being too high in the
model relative to the actual surroundings of the site
(26.1% and a maximum of 75.5% in a 3-by-3 grid-box area
versus 3.5% and 23.1% in GUF2.5 km and GUF25 km;
Table 1a).

In the China domain, model performance differs
between the coastal, highly urbanized sites (SHA, XIA)
and the sites inland and to the north (DON, LIY, LUK).
This is reflected in the temperature extremes (Figure 9).
For the latter, in all years, the model noticeably over-
predicts the occurrence of hot (Tair > 30�C) and very hot

(Tair > 35�C) days compared to the observations, in
agreement with the JJA bias patterns (Figure 6). Cold
days at these sites are better predicted, with no clear
inter-annual trend of the model performance. At SHA
and XIA, hot days are over-predicted in some years, while
in others (2005, 2007 at XIA) the occurrence frequency is
under-predicted. Both the model and the observations
have a lower occurrence of cold days at the more coastal
stations. However, the model results do not reflect the
typical urban response of the land-surface at these sites
due to the severe under-representation of urban land

FIGURE 7 HadGEM3–PRIMAVERA (HAD1,2) and observed normalized frequency distributions of Tair (0.5�C bin size) per season from

daytime and night-time samples for (a) LWC (London Weather Centre), (b) WIS (Wisley), (c) SHA (Shanghai/Baoshan) and (d) DON

(Dongtai). Samples in (a,b) are hourly, in (c,d) 3-hourly with model output frequency reduced to match the observations. See Figure S11 for

results at SJP and LHR (UK); Figure S12 for XIA, LIY and LUK (China) [Colour figure can be viewed at wileyonlinelibrary.com]
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cover (Secions 2.2 and 3). Hence, some of the better
agreement observed here may deteriorate if more realistic
land cover is used.

5 | CONCLUSIONS

High-resolution (�10 km; N1280) global climate simula-
tions (2005–2010) with the Met Office HadGEM3 model
are analysed over large urban areas in the south-east UK
(London) and south-east China (Shanghai, Hangzhou,
Nanjing region) to study the response of modelled surface
heat fluxes and diagnostic screen-level temperatures (Tair)
to urbanization levels. Modelled Tair is evaluated using
weather station data. The climate model uses a simple
urban slab scheme with prescribed, globally fixed parame-
ters (JULES–GL7.0) and land cover derived from IGBP.

While any detected Tair bias could be partially attrib-
uted to bias in the large-scale atmospheric model (and

that needs to be investigated further), differences can also
be linked to both the model land cover and the specifica-
tions used in the urban land-surface model. We draw the
following conclusions regarding the key factors affecting
representation of urban signals in the simulations and
the potential for improvements if model output is
intended to inform applications in urban areas (e.g.,
urban climate services):

• The representation of urban land cover is identified as
the primary source of bias in the JULES land-surface
model. Comparisons of recent (2011) high-resolution
reference data (GUF) to the IGBP-based model land
cover in China, suggest these severely underestimate
both the spatial extent and magnitudes of urbanization.
China's most populous megacity, Shanghai, in the
model only covers four �10 km grid-boxes with a maxi-
mum fUrban of 60.2%, while other conurbations are not
captured at all. Hence, the modelled response of surface

FIGURE 8 Relative frequency of days within a year for which cold/hot screen-level temperatures (Tair) were observed and modelled

(HAD1,2) at sites in the south-east UK domain. The two cold/warm thresholds used for Tair are (i) 5/25�C (hatched bars) and (ii) 0/30�C
(filled bars). Note there is an absence of data for 2010 for HAD2 and LWC observations. As LWC and SJP are within the same model grid-

box they are shown together (LWC: dotted bars; SJP: hatched) [Colour figure can be viewed at wileyonlinelibrary.com]
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heat fluxes that drive boundary-layer dynamics are pre-
dominantly rural/non-urban in nature. This is inevita-
bly reflected in the near-surface air temperatures, as
urban (e.g., heat-island) effects are absent. These, for
example, can impact heat-wave intensity climatologies.
For some sites analysed in the Shanghai region, it is
anticipated that resolving the land-cover characteriza-
tion may increase the JJA Tair bias, prompting the need
to further investigate reasons for the bias in other parts
of the model system. The land cover of Greater London
is more realistic in the model, but non-built surface
covers (vegetation, water) are too low in central London
(model fUrban ≈ 100%) causing bias in the energy par-
titioning (e.g., QE too small). Thus, it is concluded both
too small and too large fUrban negatively impact model

results and therefore, the use of these data for applica-
tions such as urban climate services (e.g., heat stress
assessment or external water use requirements). Hence,
use of appropriate (current and future) urban land-cover
information is crucial, and perhaps the part of the
modelling chain that is easiest to fix as high-resolution
satellite-derived global land-cover products have
become more widely available in recent years (e.g.,
high-resolution (�300 m) global land-cover data of the
European Space Agency's Climate Change Initiative,
ESA-CCI). High-resolution climate simulations in
future climates need to include potential future changes
in land cover, such as urban expansion and/or changes
in land-cover types (e.g., from enhanced green infra-
structure; e.g., Li et al., 2017, Carter, 2018).

FIGURE 9 As Figure 8, but for sites in the south-east China domain with two cold/hot thresholds: (i) 5/30�C (hatched bars) and (ii) 0/

35�C (filled bars). Note that HAD2 has no model output for 2010 [Colour figure can be viewed at wileyonlinelibrary.com]
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• Urban anthropogenic emissions of heat and water are
absent in the current simulations. This causes biases in
turbulent heat fluxes and Tair. In both London and
Shanghai, QF plays an important role in the surface
energy balance. Currently, JULES has the capability to
prescribe QF to the urban tile as spatially unvarying
monthly values. Offline tests of the HadGEM3–
PRIMAVERA configuration in central London showed
that even this simplistic representation can improve the
model performance if suitable magnitudes of QF are
used. As retrieval of local-scale energy-consumption
information is challenging at the global scale, QF should
ideally be modelled based on more accessible parame-
ters like population density and temperature-dependent
heating/cooling demands (e.g., Sailor and Vasireddy,
2006; Lindberg et al., 2013). Anthropogenic water emis-
sions also can have a non-negligible effect on the urban
energy balance in some cities (e.g. street cleaning, irriga-
tion; Ao et al., 2018, Dou et al., 2019), but currently only
vegetated tiles of JULES can be irrigated.

• Urban scheme physics and parameters used in
HadGEM3–PRIMAVERA (JULES–GL7.0) have fixed
singular parameter values, making appropriate choices
to represent cities worldwide challenging. For exam-
ple, the selected default urban albedo (0.18) is large
compared to central London (�0.11 from observations;
Kotthaus and Grimmond, 2014a) and central Shanghai
(�0.14; Ao et al., 2016b). This reduces the energy input
into the urban system (QN), which, combined with the
absence of QF in the model, can cause under-
prediction of QH. In London, the large thermal inertia
of the Best–1 T urban scheme causes a � 1-h delay of
temperature increase in the morning and up to 2-h
delay in the afternoon Tair peak in the climate model
output. Furthermore, modelled JJA daytime tempera-
tures in central London are overestimated by up to
2�C. This is partially explained by the large heat capac-
ity and roughness length for heat used in the scheme.
The JULES two-tile canopy model MORUSES, with
separate surface-energy balance calculations for roofs
and street canyons, can improve this by explicitly
modelling the bulk radiative, thermal and aerody-
namic parameters as a function of building morphol-
ogy (Hertwig et al., 2020). At grid-box scale, the fast
response of the (insulated) roof tile to radiative forcing
can partially offset the large heat storage and corre-
spondingly delayed sensible heat flux of the canyon tile
(Porson et al., 2010). However, urban canopy models
require more characteristics than built land-cover
fractions, which are currently not available globally;
for example, roof and street fractions need to be sepa-
rated and mean building heights, height-to-width
ratios of street canyons and radiative/thermal material

characteristic of built surfaces need to be known. It is
also noted that the impact of very tall buildings is not
captured at all in the JULES urban schemes. In central
Shanghai, for example, over 1200 buildings are taller
than 100 m and extend to 632 m (Tan et al., 2015).
Hence, the buildings are much larger than the local
topography (mean elevation above sea level is 4 m).
Given the increasing verticality of cities worldwide,
more research is needed to better understand the
impacts of tall buildings on the urban surface-energy
balance and how these can be represented in urban
models (Barlow et al., 2017).
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APPENDIX A.

Offline JULES (vn. 5.4) simulations (Section 4.1) are con-
ducted in a setup consistent with the (online)
HadGEM3–PRIMAVERA climate simulations (GL7.0 sci-
ence configuration; Wiltshire et al., 2020). Two model
configurations (CTRL–1T, HAD–1T) using the Best–1T
urban model (Section 2.1; Best, 2005) are tested at the
King's College London Strand Campus (KCL) site in cen-
tral London (51.511�N, 0.117�W), for which hourly obser-
vations (forcing and evaluation data; Ward et al., 2016)
are available for 3 years (01/2011–12/2013). Instruments
mounted on flux towers (49.6 m above ground level) are
used to obtain the observations. Details about site charac-
teristics and measurements are given in Kotthaus and
Grimmond (2014a, 2014b). For an overview of JULES
forcing/evaluation variables see Table 5 in Hertwig
et al. (2020).

Table A1 gives essential parameters, data sources and
settings for the two model configurations analysed. Dif-
ferences between the settings focus on the land-cover
fractions, bulk urban albedo (α), momentum roughness
length (z0) and anthropogenic heat emissions (QF). CTRL–
1T uses land cover and morphology (z0) derived from high-
resolution (�1 m) GIS data for a 500-m radius source area
around the site and an observed α. QF in CTRL–1T is sup-
plied as monthly medians derived from hourly data of
Kotthaus and Grimmond (2014a) generated with the
GreaterQF model (Iamarino et al., 2012) for central London
(see Fig. 2 in Hertwig et al., 2020). The HAD–1T run uses
the HadGEM3–PRIMAVERA land cover of the grid-box
containing the KCL site (note this is adjacent to the grid-
box containing LWC and SJP; Table 1a) and GL7.0 default
values for α, z0 and QF. This setup differs from the Hertwig
et al. (2020) study at the same site. Hertwig et al. (2020)
used a different JULES science configuration, source area
dependent land cover and the Cox (2001) phenology model
for the Best–1T control run.

The model is spun up over the first year of the simula-
tion until soil temperature and moisture have converged.
Model output variables are hourly snapshots (at the
model time step) and analysed as grid-box averages, that

is, results from the JULES tiles in the grid-box are
weighted by their plan-area fractions, as in the (online)
HadGEM3–PRIMAVERA output. For the evaluation
(Figures 3, S4), the model output is restricted to periods
of available observations.

TABLE A1 Parameters used for JULES offline simulations in

central London (KCL site) for CTRL–1T and HAD–1T: (a) land-
cover fractions, (b) urban parameters and (c) plant phenology. For

further details see text and footnotes

CTRL–1T HAD–1T

(a) Land-cover fractions (%)

Σ Vegetated 13a 0b

Broadleaf Tree 10 0

C3 Grass 3 0

Σ Non-vegetated 87a 100b

Urban (impervious) 66 98

Inland water 21 2

(b) Urban parameters

Urban model Best–1T (Best, 2005)

Albedo (α) 0.11c 0.18d

Emissivityd (ε) 0.97 0.97

Heat capacityd (C) 0.28 MJ K−1 m−2 0.28 MJ K−1 m−2

Momentum roughness
length (z0)

1.76 me 1.0 md

Roughness ratiod (zh/z0) 10−7 10−7

Anthropogenic heat
emissions (QF)

>0 W m−2,
monthlyf

0 W m−2, alld

(c) Phenology

Leaf area indexd Monthly spatial fields

Canopy heightd Monthly spatial fields

aDerived from high-resolution (�1 m) London land-cover data.
bHadGEM3–PRIMAVERA model ancillary fields.
cDerived from observations (Kotthaus and Grimmond, 2014a).
dJULES–GL7.0 default value (Wiltshire et al., 2020).
eDerived from London morphology (�1 m) data using the Macdonald
et al. (1998) morphometric method.
fDerived from hourly GreaterQF model data for central London (Kotthaus

and Grimmond, 2014a).
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