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1 Introduction  

1.1 Uncertainty issues within the WFD  

The Water Framework Directive (WFD) requires that results of the status assessment and 
monitoring programmes give estimates of the confidence and precision of the determination. 
Understanding the effect of sampling variation and other sources of uncertainty on the 
ecological status class assessment and underlying metrics is key in this process. Sources of 
uncertainty can be, amongst others, due to natural spatial and temporal variation, sampling 
methodology or predictive modeling (Clarke and Hering, 2006). A detailed overview of general 
considerations with regards to uncertainty issues in status assessment is given in the WISER 
Deliverable D6.1-1: “Report on a workshop to bring together experts experienced with tool 

development and uncertainty estimation” (Clarke and Jones, 2008).   

For macrophyte status assessment the sampling methodology is an important source of 
uncertainty. Quantitative estimates of uncertainty related to bioassessment methods are required 
to reach accurate waterbody ecological classification decisions. Standardised, objective, and 
repeatable monitoring methods are essential in monitoring programs with aims to detect 
anthropogenic impact on lake ecosystems. Results of lake macrophyte surveys are extremely 
sensitive to errors due to both vertical and horizontal variability of macrophyte communities 
(Jensen 1977, Janauer, 2002). In addition to spatial variability there are errors related to 
recognition and identification of individual species and also especially to coverage estimations 
of vegetation.  

This study aims to assess the relative importance of different sources of (spatial) 
variation in the sampling data on uncertainty in the available metrics. Previous work on 
uncertainty in macrophyte status assessment methods and metrics (especially from the STAR 
project on running waters) showed that inter-surveyor differences were low and the influences 
of temporal variation (years and seasons) and shading slightly stronger (Clarke and Hering, 
2006). The strongest variation was due to habitat modifications, but several metrics were of 
sufficient precision in terms of sampling uncertainty to be useful for estimating the ecological 
status of rivers (Staniszewski et al., 2006). However, the probability of misclassification of a site 
was found to be largely associated with classification methodology (Szoszkiewicz et al., 2007, 
2009). 

 

1.2 General scope and specific aims of the report 

The general aim of this study was to assess uncertainty in various macrophyte metrics, which 
might be used in assessing status of this BQE. This has been achieved by using several sources 
of information, including a dataset collected as part of the WISER project using a common 
sampling method from 28 lakes in 10 European countries. A primary focus is to quantify the 
variation resulting from choices in sampling methodology and the effects of lake typology and 
environmental pressures (especially total phosphorus concentration in the overlying water). 
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Research questions 

Several specific research questions were formulated: 

• How does the choice of using presence-absence data or abundance data affect metric 
results and their uncertainty?  

• How does the choice of the species list that is used (i.e. full list vs selected taxa/ with or 
without helophytes) affect the results of the metric? 

• How does surveying 0-1 m depth zone compare to surveying the whole depth range of 
potentially colonized area? 

• How variable is a metric between lake types, between waterbodies, within a waterbody, 
and between transects? 

• What is the effect of using only subsets of the data on the amount of variation? (e.g. 
depth zone, species saturation limit adjusted)  

 

A practical aim of this work is to give recommendations on appropriate sampling design and 
analysis methods that are most likely to reduce uncertainty in status assessment. This study does 
not address the effects of probability of misclassification of water bodies in status classes as for 
the used metrics no common status boundaries have been defined. 
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2 Methods 

To answer the five questions posed in the introduction, data were collected from three sources; 
(i) a customised field survey of 28 lakes in 10 countries, (ii) an unpublished Finnish study, and 
(iii) data available from previous studies in the literature. 

2.1 Data collection 

2.1.1 Customised field survey 

A dedicated sampling campaign was conducted in the summer of 2009. 28 lowland clear water 
lakes from 10 countries representing broad geographical and trophic gradient were selected for 
survey (Table 2.1, Appendix).  

Table 2.1. List of lakes surveyed for macrophytes in 2009 for uncertainty analyses. Information is as per 
WFD definitions. Where information was not available this si denoted with a dash 

Country  Lake Name 
GIG 
Region 

GIG 
Type 

 
Alkalinity 
Type 

Provisional 
Status 

Eutrophication 
pressure 

Hydromorpho-
logical pressure 

Roofensee CB LCB1 High H/G Low Low 

Grienericksee CB LCB1 High G/M Medium Medium Germany 

Glindower See CB LCB1 High P/B High Medium 

Fussingsø CB LCB1 High - Medium - 
Denmark 

Nordborgsø CB LCB1 High - High - 

Saadjärv CB LCB1 High H/G Low Low 
Estonia 

Viljandi CB LCB1 High G/M Low Medium 

Kiełpińskie  CB LCB1 High G Medium Low 

Rumian CB LCB1 High M Medium Low Poland 

Lidzbarskie CB LCB1 High P/B High Low 

Rostherne Mere CB LCB1 High P/B High Low 

Loweswater N LN2a Medium M Medium  Low 
United 
Kingdom 

Grasmere N LN2a Medium M Medium  Low 

Sääksjärvi N LN1 Medium G/M Low  Medium 

Vuojärvi N LN1 Medium M/P High Medium Finland 

Iso-Jurvo N LN2a Low H/G Low Medium 

Nøklevann N LN2a Low H Low Low 

Longumvatnet N LN2a Medium G/M Medium Low Norway 

Temse N LN2a Medium M Medium Low 

Västra Solsjön N LN2a Low H Low Low 

Fiolen N LN2a Low M Medium Low Sweden 

Skirösjön N LN1 Medium P High Medium 

Aulnes (étang des) Med L-M1 High M High Low 
France 

Salagou (lac du) Med - High M Medium Medium 

Segrino Med AL5 High H/G Low Medium 

Lago di Monate Med AL5 Medium G Medium Medium 

Candia Med AL5 Medium G/M Medium Low 
Italy 

Alserio Med AL5 High M/P High Low 

 

A common sampling procedure was devised, based on boat transect methods. Within each 
selected lake, six localities evenly distributed along a shoreline were identified (the first 
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assigned arbitrarily, and the other five at regular intervals around the shore). Within each 
locality three parallel transects were surveyed, each being 5 m from its neighbour and each 
starting at the shore and proceeding towards the centre of the lake (Figure 2.1). Each transect 
was divided into depth zones of 1 m depth intervals down to the macrophyte colonisation depth 
limit and in each depth zone five macrophyte sampling sites were used. At each sampling site a 
single sample was gathered from a rake dragged along the bottom for approximately 2 m, and 
supplemented by observation through a bathyscope, where this was possible. In each sample all 
species were identified and their abundance was estimated using a continuous percentage scale. 

 

 

A more detailed description of the sampling procedure and common protocol are available in the 
WISER Deliverable 3.2-1: “Overview and comparison of macrophyte survey methods used in 

European countries and a proposal of harmonized common sampling protocol to be used for 

WISER uncertainty exercise including a relevant common species list” (Kolada et al., 2009).  

Data collected during the field campaign were compiled using the WISER common 
database format. This maintained the hierarchical structure of the data in a form analogous to the 
sampling design. In this format, each observation of a taxon in a sample was given a separate 
record. Data were extracted from the database at various levels to enable analysis. These levels 
were depth-zone within transect, transect, locality, and whole lake. Within each of these levels a 
taxon was deemed to be present if it was recorded at least once. Abundance at each level was 

Fig. 2.1. Diagram of sampling design used in the WISER common field sampling protocol, employed 
in 2009 
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relative point frequency, which for each taxon was the number of observations of the taxon, 
divided by the total number of observations of all taxa at that level. 

2.1.2 Finnish study on uncertainty 

As an additional set of information for use in the uncertainty assessment for macrophyte metrics 
the results of an unpublished study in Finnish lakes is presented to complete some of the 
questions that were difficult to answer with the data from the common WISER database. This 
study assessed the effect of different sources of error variation on the metric values and 
consecutive classification results in the Finnish macrophyte based ecological classification 
scheme (Kanninen et al., 2009a,b). The Finnish approach to the classification of lakes based on 
macrophytes involves the use of three individual metrics; being (i) Proportion of Type Specific 
Taxa (PTST), (ii) Percent Model Affinity (PMA) and (iii) Trophic Index (RI). Each of these 
metrics has type specific expected (E) values and ecological class boundaries. The median of the 
metric-specific classification results is used as the final classification outcome. 

The field campaign consisted of macrophyte surveys of 18 small (area <5 km2) humic 
(water colour 30-90 mg Pt/l) lakes in Eastern Central Finland. The lakes represented reference 
conditions (n=10) and lakes impacted by nutrient loading (n=8). On each lake fifteen 
macrophyte transects were surveyed in June-August 2003-2005. The main belt transect method 
with minor modifications has been applied in the Finnish lake biological monitoring programs 
since 2006. In the main belt transect method (Kuoppala et al., 2008), the transect is divided to 
zones according to macrophyte life forms or dominant species. In each zone the species are 
recorded and the frequency and coverage of each taxa are estimated on a percent scale. 

In five of the lakes a whole lake (areal) survey of the macrophyte species and their 
abundance was also employed. Whole lake surveys are a traditionally used method in Finnish 
macrophyte studies and the method is used in certain long-term monitoring cases. The data were 
used to compare the Ecological Quality ratios (EQRs) produced by the different methods.  

Data from 29 transects (5-6 transects from each of six lakes) were used to estimate the 
variation related to different observers by repeating the transect survey at same sites by three 
different field teams. All teams had good prior expertise in using the method and an 
intercalibration session preceded the field work. On another five lakes the between-observer 
variation of the whole lake survey method was explored. In this case 3/5 of the shoreline length 
of each lake was repeated by different field teams. 

2.2 Data analyses 

This section describes the methods used to carry out the analyses on the WISER dataset for 
uncertainty issues. First is a description of some general data exploration and derivation of 
macrophyte metrics. This is followed by a description of the methods used to answer the 
specific research questions.  

2.2.1 General data-exploratory work 

Multivariate analyses 
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A multivariate analysis (clustering and ordination of samples) was performed for quick 
exploration of the data available within the WISER dataset. Species abundance data were 
averaged per lake and used for exploratory multivariate analyses with the statistical software 
programme PRIMER. A similarity matrix was calculated using the Bray-Curtis Similarity index 
on the non-transformed abundance data and on the presence/absence data. Dendrograms were 
made by clustering using group average and ordination plots were made using on-metric Multi 
Dimensional Scaling (NMDS). 

2.2.2 Calculation of indices 

• ICM-LM trophic index and Ellenberg index  

Taxon-specific trophic rank scores, also known as Intercalibration Metric scores and referred to 
in this report as ICM-LM (Intercalibration Common Metric for Lake Macrophytes) scores, were 
supplied by Nigel Willby, of the University of Stirling, UK. These scores are in use by the 
Water Framework Directive Intercalibration Exercise as a means of comparing lake macrophyte 
condition across Member States, where assessment methods are not consistent. For submerged 
aquatic plant taxa, scores were derived using methods similar to those used by UKTAG (2009), 
and Birk and Willby (2010). In general, scores were calculated by rescaling the median of the 
logarithms of the concentration of total phosphorus concentrations in lakes across Europe in 
which the taxon is found. These scores are available in the WISER Deliverable 3.2-3: „Report 

on the most suitable lake macrophyte based assessment methods for impacts of eutrophication 

abnd water level fluctuations” (Kolada et al., 2011). Scores are combined across sites to form a 
metric, either as a simple mean, or by using some measure of abundance to weight the mean (see 
formula below). The site metric is intended to be representative of the nutrient status of the 
nutrient status of the water, as experienced by the macrophyte flora.  

The ICM-LM scores were only available for real hydrophytes, as this metric was only 
ever designed to be used with submerged taxa. Ellenberg’s Nitrogen values for soil fertility 
(scores from 1 to 9; Ellenberg et al., 1991) were compiled for all taxa in the dataset in order to 
test the use of a metric with and without helophytes. We supplemented the original values with 
British values where original values were missing (Hill et al., 1999). Even with these 
supplements, there were 13 taxa, notably charophytes, for which no score was available. Scores 
for the missing taxa were derived by making a regression analysis of the ICM-LM and Ellenberg 
values for all species with both values and used the regression line to fill in the blanks for 
charophytes. These Ellenberg values were then used to calculate an average Ellenberg-N metric 
per lake. There were 16 taxa for which neither Ellenberg nor ICM-LM scores were available, 
and these were excluded from further analyses. 

In this study, ICM-LM and Ellenberg metrics were calculated from scores both as simple 
averages of the scores of the taxa found (unweighted), or as weighted averages,  

 

where M is the metric, Si is the score for taxon i, and Ai is the abundance of taxon i.  
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In many cases, these metrics have been calculated for subsets of the macrophyte community, 
such as “submerged only”, or “helophytes”.  

• Maximum depth of colonisation 

Maximum depth of colonisation (C_max) was determined as the greatest depth in which rooted 
plants were found, using the common survey method. This value was used at the transect, 
station and lake levels. 

• Species richness 

Species richness was expressed as the number of all macrophyte taxa identified within a lake, 
transect or station. 

2.2.3 Uncertainty assessments  

The WISER lake macrophyte data was used to examine variability associated with the varying 
levels of the hierarchical sampling scheme: transects within stations within waterbodies within 
countries. We assessed this for several response metrics, including: 

• Lake Macrophyte Intercalibration Metric for lake macrophytes (ICM-LM),  

• modified Ellenberg score, 

• maximum growing depth (C_max),  

• species richness. 

 

Each metric was calculated for each transect. We used lake level alkalinity and total 
phosphorus concentration as covariates in the analyses for two reasons. Firstly, these variables 
define strong gradients in the dataset. Secondly, the response of the macrophyte metrics to lake-
level TP, accounting for variations in alkalinity, and for uncertainty in surveying lakes, is of 
considerable interest in itself. As these covariates were measured at the waterbody level they 
explain variance between waterbodies and countries, but not within waterbodies. We examined 
correlation between metrics at the various levels in the sampling hierarchy, and correlations 
between explanatory variables. 

Alkalinity information for Étang des Aulnes (France) was not available. Data from this lake 
were excluded from further analyses. 

We undertook the uncertainty analyses using linear mixed effects models, fitted using the 
nlme package in the R environment for statistical computing (R Development Core Team, 
2008). The levels of the sampling hierarchy were specified as nested random effects, with the 
lowest level, variation between transects, forming the residual. We used TP and alkalinity, 
measured at the lake level, as explanatory variables in all analyses because of their strong 
relationship to the metrics studied. Depending on the focus of the analysis, we used additional 
explanatory variables. For example when looking at metric values for different depth zones, an 
indicator variable for depth zone was used. TP and alkalinity were log transformed, and richness 
was square root transformed prior to model fitting.  
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Correlations between metrics were examined by first creating a data matrix with a single 
column for metric value and second column containing an indicator variable for the metric 
name. Analysis then considered the responses of pairs of metrics modelled as a bivariate normal 
distribution which can consider correlations between metrics at each of the levels of the 
sampling hierarchy. Models were fitted using Residual Maximum Likelihood Estimation 
(REML) to produce unbiased estimates of random effect variances, but any comparison of 
models differing in their fixed effects was undertaken using Akaike’s Information Criterion and 
models fitted by standard Maximum Likelihood. 

2.2.4 Finnish data analyses 

In the unpublished Finnish study, the estimates of variance (measured as standard deviation) 
from different sources (observer in different methods, shore type) were used to calculate 
probabilities of misclassification due to different sources, using STARBUGS software (Clarke, 
2005) and following methods described by Clarke and Hering (2006). 

The effect of shore type on the ecological quality metrics and their variation was 
explored by quantifying the variation of the metric EQRs metrics between three shore type 
categories (5 transects per lake per category, 12 lakes).  
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3 Results 

3.1 General exploratory work on the data  

3.1.1 Ordination of the analysed lakes 

The list of taxa identified in all 28 lakes included 127 taxa; 115 recorded at species level, 11 at 
genus level and one undefined moss. The list was comprised of 81 submerged taxa (including 4 
algae, 6 mosses, 8 isoetids and 13 charids) and 46 others (including helophytes, supralittoral and 
even 4 terrestrial taxa). Filamentous algae, woody species (Alnus sp., Salix sp., etc.) and taxa 
recorded at genus or higher level were excluded from analyses.  

The clustering of species data including helophytes per lake is shown for the abundance 
data on species composition only, as results from the presence absence were very comparable. 
Figure 3.1 shows the similarity between samples in a dendrogram graph and Figure 3.2 shows 
the resulting ordination of sites in a 2D plot (stress 0.16).  

Three main groups of samples can be distinguished in the similarity analyses:  

1 mainly higher alkalinity central European lakes (FR, EE, PL, DE, GE), with 2 more 
eutrophic, moderate alkaline lakes from the Northern GIG (1 UK, 1 FI),  

2 a small group of higher altitude lakes (all Italian lakes and 2 Norwegian lakes),  

3 Nordic moderate and low alkaline lakes (FI, SE, NO, UK). 

Similarity between samples was never more than 60%. There was one outlying sample, the 
Swedish lake Skirösjön. Only one registered submerged species was recorded from this lake so 
it might therefore fall outside any of the three groups. 
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Fig. 3.1. Hierarchical clustering of the lakes, with grouping of lakes into three main groups 
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The three distinguished groups based on the clustering of species data can also be seen in the 
NMDS ordination diagram. Imposed on that is a vertical axis that appears to represent a trophic 
gradient with lakes of higher trophic status in the upper part of the plot and lakes of lower 
trophic status in the lower part of the plot. The horizontal axis appears to represent an alkaline 
gradient, with the lower alkalinity sites on the left part of the plot and the higher alkaline lakes 
on the right site of the plot.   

3.1.2 Effects of alkalinity 

Alkalinity has a strong influence on the metric:TP relationship. Unfortunately, we do not have 
enough low alkalinity lakes in this data set to really separate them for statistical analyses per 
alkalinity group. Plotting logTP against ICM-LM index for the three different alkalinity groups 
shows this relationship between alkalinity and TP (Figure 3.3). All high alkalinity lakes have 
values of ICM-LM between 4.5 and 7.5 with no clear relationship between logTP and ICM-LM. 
At high TP the relationship flattens right off, especially given that there are fewer transects for 
which an ICM-LM is calculable at all. The plot also highlights the wide variation in this metric 
within lakes. It is notable that even for the quite high TP lakes, some transects have much lower 
ICM-LM scores than others which is due to the number of species in these samples rather than 
the type of the species. This also indicates this metric should not be used for lakes at the high 
end of the pressure scale.  

 

Fig. 3.2. Ordination of 28 lakes from 10 European countries used for WISER uncertainty exercise based 
on NMDS, showing the three dominant groups in the total database and the 1 outlying Swedish lake 

DE_Glindower See
DE_Grienericksee

DE_RoofenseeDK_Fussing

DK_Nordborg

EE_SaadjärvEE_Viljandi

FI_Iso-Jurvo
FI_Sääksjärvi

FI_Vuojärvi

FR_Aulnes (étang des)

FR_Salagou (lac du )

IT_Alserio

IT_Candia

IT_MonateIT_Segrino

NO_Longumvannet

NO_Nøklevann

NO_Temse

PL_Kielpinskie

PL_Lidzbarskie
PL_Rumian

SE_Fiolen

SE_Skirösjön

SE_Västra Solsjön

UK_Grasmere

UK_Loweswater

UK_Rostherne Mere

Stress: 0.16



 
 

Deliverable D3.2-2. Uncertainty in macrophyte metrics 
 

Page 14/30 

 

A similar pattern was observed when comparing average lake Ellenberg values (for submerged 
taxa only) to lake alkalinity (Figure 3.4). At low alkalinities, there is a sharp increase in the 
Ellenberg metric associated with increasing alkalinity, but at alkalinities above 0.5 meq/L the 
Ellenberg score is consistently high, and does not appear to increase further. 

 

Fig. 3.3. Relationship between log(TP) and ICM-LM, as calculated at the station level, 
for the three WFD alkalinity classes low (red), moderate (green) and high (black) 
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Fig. 3.4. Weighted average (for each lake) Ellenberg scores compared to alkalinity 
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3.1.3 ICM-LM scores vs. Ellenberg values 

Both Ellenberg and ICM-LM values were available for 51 of all 127 taxa included in the 
analysed taxa list. In the regression of ICM-LM scores against Ellenberg values (Figure 3.5), the 
determination coefficient (R2) was 0,64 and the regression equations were: 

• Ellenberg score = 0.224+0.789*ICM-LM score 

• ICM-LM score = 1.88+0.810*Ellenberg score 

 

3.1.4 Combined response of ICM-LM and Ellenberg to TP 

Table 3.1 illustrates the parameters of a bivariate model where both ICM-LM and Ellenberg 
score are modelled as a function of TP and alkalinity, including their covariance at all levels of 
the model. Country is not included here as its variance is minimal. The results show that in this 
model, ICM-LM responds more steeply than Ellenberg (0.48 vs 0.38). P-values for these 
parameters are only marginally different (0.094 vs 0.090), probably because of the lower 
residual variance in Ellenberg score at each level of the model. This in turn may be because in 
each instance, Ellenberg score is based on more taxa than ICM. Correlation between ICM-LM 
and Ellenberg score is estimated at each of the levels of the model, and is strongest at waterbody 
scale (0.71), decreasing as one moves to stations within waterbodies (0.64) and transects within 
stations (0.44). This correlation is in part due to the overlap in species used to calculate the two 
scores. The relationship between alkalinity and both metrics is virtually identical.  

 

Fig. 3.5. Regression of ICM-LM score against Ellenberg-N score for the 51 taxa 
recorded in this study for which both scores were available 
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Table 3.1. Parameters for multivariate model of ICM-LM and Ellenberg score vs alkalinity and TP. 
Random effects for ICM-LM and Ellenberg presented as standard deviations, fixed effects presented as 
parameter value with standard error in brackets 

 
ICM Ellenberg Correlation 

Number of 
observations 

Random effects    

Waterbody 0.84 0.65 0.71 22 

Station 0.73 0.64 0.64 123 

Transect 0.50 0.44 0.42 677 

Fixed effects    

Intercept 4.54 (0.90) 4.67 (0.70)   

alkalinity 0.69 (0.21) 0.68 (0.17)   

TP 0.48 (0.29) 0.38 (0.22)   

 

3.2 Results specific to research questions: 

3.2.1 Research question 1: How does the choice of using presence-absence data or 

abundance data affect the metric results and their uncertainty? 

The REBECCA project (Penning et al, 2008a), found very little difference between metrics 
calculated using presence/absence data, and those calculated using a simplified abundance scale, 
partially because the data came from many different sources. Relationships between metrics and 
their associated pressures became weaker when metrics were weighted by abundance, rather 
than being calculated only on presence/absence data.  

Analysis of WISER field campaign data showed that presence/absence and abundance 
weighted scores are highly correlated (Figure 3.6). This correlation is high especially at the 
waterbody scale, and progressively less correlated as one moves to the finer scales of station and 
transect within the lake (Table 3.2).  
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Fig. 3.6. Comparison of ICM-LM scores, calculated at the lake level for submerged and 
helophyte taxa, based on presence/absence data and scores weighted by abundance 
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Table 3.2 shows the parameters of a bivariate model where both abundance weighted and 
presence/absence ICM-LM are modelled as a function of TP and alkalinity, including their 
covariance at all levels of the model. Note that the unit of observation is the transect, hence there 
is an implicit weighting at the station and waterbody scale based on the number of times a taxon 
was observed. Compared to presence/absence ICM-LM, the abundance weighted ICM-LM 
gives a steeper (0.46 vs 0.38) but slightly less precise (standard error of 0.30 vs 0.28) response 
to TP, while response to alkalinity is very similar. Presence/absence ICM-LM shows greater 
variance at waterbody scale than weighted ICM; variances are progressively similar at station 
and transect level. 

Table 3.2. Parameters for multivariate model of transect-level abundance-weighted and presence-
absence ICM-LM vs alkalinity and TP. Random effects for abundance weighted and presence absence 
presented as standard deviations, fixed effects at the waterbody scale are presented as parameter value 
with standard error in brackets 

 

Abundance 

Weighted 

Presence- 

absence 
Correlation 

Number of 

observations 

Random effects    

Waterbody 0.84 0.78 0.99 22 

Station 0.75 0.72 0.94 113 

Transect 0.49 0.50 0.84 634 

Fixed effects (waterbody scale)    

Intercept 4.57 (0.92) 4.77 (0.86)   

alkalinity 0.71 (0.22) 0.69 (0.20)   

TP 0.46 (0.30) 0.38 (0.28)   

 

3.2.2 Research question 2: How does the choice of the species list that is used affect 

the results of the metric?  

The comparison of weighted average Ellenberg scores when using submerged species only vs. 
all taxa (including helophytes) shows a strong relationship between them (Figure 3.7). However, 
it appears that results of the helophyte scores offer little extra information (Błąd! Nie można 

odnaleźć źródła odwołania.Figure 3.8). Metrics based on submerged taxa only show a stronger 
relationship with the pressure variable TP, and are also more closely related to alkalinity (Table 
3.3) 

Table 3.3 illustrates the parameters of the bivariate model where weighted Ellenberg 
scores for only helophytes and only submerged taxa are modelled as a function of alkalinity, 
including their covariance at all levels of the model. Alkalinity clearly shows strong 
relationships between both metrics, but a considerably steeper relationship with submerged taxa 
than helophytes. TP was not fitted as a covariate in this model as with alkalinity already 
included, relationships with the metrics were weak. However, fitting TP to both metrics did 
seem to show that the relationship with submerged taxa was stronger than the relationship with 
helophytes only. While the former was in the expected positive direction, the point estimate for 
the latter was actually negative. Considering residual correlations between the metrics, these 
were generally low, although there was some evidence of a negative correlation (-0.31) between 
the metrics at the waterbody scale. 



 
 

Deliverable D3.2-2. Uncertainty in macrophyte metrics 
 

Page 18/30 

 

Table 3.3. Parameters for multivariate model of separate Ellenberg scores for helophytes and 
submerged taxa vs TP and alkalinity. Random effects for the two metrics presented as standard 
deviations, fixed effects presented as parameter value with standard error in brackets 

 
Submerged Helophytes Correlation 

Number of 
observations 

Random effects    

Waterbody 0.91 0.46 -0.31 27 

Station 0.69 0.85 -0.01 149 

Transect 0.51 0.55 0.03 661 

Fixed effects    

Intercept 5.34 (0.19) 6.19 (0.13)   

alkalinity 1.15 (0.14) 0.36 (0.10)   

TP -- --   

Fig. 3.7. Comparison of weighted average Ellenberg scores when calculated using 
only submerged taxa (x-axis), and all taxa (y-axis) 
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Fig. 3.8. Comparison of weighted average Ellenberg scores when calculated using 
only submerged taxa (x-axis), and only helophytes (y-axis) 
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Forcing there to be a single relationship with alkalinity for both metrics did lead to a 
significant partial relationship between the submerged metric and TP, but given that there are in 
practice clearly different relationships between the metrics and alkalinity, this is not realistic, 
and highlights that care must be taken in the construction of these multivariate models. 

3.2.3 Research question 3: How does surveying 0-1 m depth zone compare to 

surveying the whole depth range of potentially colonized area?  

Table 3.4 illustrates the parameters of a bivariate model where weighted ICM-LM scores for 
submerged taxa for the depth zones up to 1m and greater than 1m are modelled as a function of 
TP and alkalinity, including their covariance at all levels of the model. Note that for this analysis 
the <1 m depth zone was compared to the >1 m depth zone. The <1 m depth zone was not 
compared to the full transect, as this would have used data from the <1 m depth zone twice and 
created noise in the analysis.  

ICM-LM values for depth >1m were less variable at waterbody scale (so there is less 
variation between lakes), but marginally more variable at station and transect scale. There is 
fairly high correlation between ICM-LM for the different depth zones at waterbody and station 
scale, but low correlation at transect scale. Most importantly, ICM-LM scores for deeper water 
were lower than for shallower water (intercept at 4.51 vs 5.05) indicating that species in the 
shallow zone are more often representing higher trophic status. Relationships with alkalinity 
were little different, but the relationship with TP was substantially steeper and more precise for 
the deep zone than for the shallow zone.  

Table 3.4. Parameters for multivariate model of ICM-LM (abundance weighted for submerged species 
only) for depth zone <1m and >1m vs alkalinity and TP. Random effects for depth zone presented as 
standard deviations, fixed effects presented as parameter value with standard error in brackets 

 
< 1m > 1m Correlation 

Number of 
observations 

Random effects    

Waterbody 0.93 0.80 0.79 22 

Station 0.76 0.79 0.67 113 

Transect 0.54 0.50 0.10 529 

Fixed effects    

Intercept 5.05 (1.03) 4.51 (0.90)   

alkalinity 0.72 (0.24) 0.68 (0.21)   

TP 0.33 (0.33) 0.49 (0.29)   

 

3.2.4 Research question 4: How variable is a metric between lake types, between 

waterbodies, within a waterbody, and between transects?   

Table 3.5 compares the relative proportion of variance in the selected metrics at each level of the 
sampling hierarchy, and summarised this variance as proportions between and within 
waterbodies. Results are presented per metric for models with and without TP and alkalinity as 
explanatory variables. Not surprisingly, both ICM-LM and Ellenberg show similar behaviour, 
with 70-75% of variance in the metric occurring between waterbodies and countries in the null 
model. Including TP and alkalinity in the models reduces this variance to 40-50%. In these latter 
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models, ICM-LM, compared to Ellenberg, illustrates a slightly higher proportion of variance 
between waterbodies + countries, with correspondingly less variance within waterbodies. 
Maximum growing depth also behaves similarly to ICM-LM, although the covariates appear 
slightly more successful in explaining between-waterbody variance. The richness metric follows 
a completely different behaviour; introduction of the covariates reduces the variance between 
waterbodies but accentuates the variance between countries and total between waterbody 
variance remains roughly constant. 

Table 3.5. Proportions of variance at different levels of the sampling strategy for four different metrics 
and two formulations of the model: with and without TP/alkalinity  

Metric Model Country Waterbo
dy 

Station Transect Total 
Between 

Total 
Within 

ICM-LM 
(weighted) 

Null 0.11 0.61 0.19 0.08 0.72 0.28 

 TP + Alk 0.00 0.47 0.37 0.16 0.47 0.53 

Ellenberg Null 0.31 0.42 0.18 0.08 0.74 0.26 

 TP + Alk 0.00 0.41 0.40 0.19 0.41 0.59 

Max growing 
depth C_max 

Null 0.39 0.31 0.21 0.08 0.70 0.30 

 TP + Alk 0.01 0.38 0.44 0.17 0.39 0.61 

Richness Null 0.18 0.19 0.45 0.18 0.37 0.63 

 TP + Alk 0.28 0.10 0.44 0.18 0.38 0.62 

 

Alkalinity showed very strong relationships (looking at the p-values) with all metrics except 
richness (Table 3.6). Relationships between TP and metrics were always in the expected 
direction but for both ICM-LM and Ellenberg, there was sufficient imprecision in the 
relationships for p-values to be above the traditional cut-off values of p=0.05. This general 
pattern was confirmed through re-fitting models using maximum likelihood (ML) estimation 
and comparison of Akaike Information Criteria (AIC) values. The significant relationships 
between TP and both C_max and Richness metrics were notable. We re-fitted the C_max and 
richness TP/alkalinity models to the subset of data with an ICM-LM score. The C_max-TP 
relationship was robust to this fitting to a smaller subset of the data, but the richness relationship 
was not. 49 transects had values for richness but not ICM-LM; these were spread across 12 
lakes, the lake with the largest number of transects lost being Glindower See with 15. For 
C_max, it is notable that the strong relationship with TP was entirely dependent on alkalinity 
also being in the model, without alkalinity, the C_max-TP relationship was very weak (results 
not shown). 

Table 3.6. Significance (p-values) for approximate tests for TP and alkalinity fixed effects for models for 
each metric in Table 3.5, and numbers of samples at each level of the model  

Metrics TP Alkalinity Country WB Station Transect 

ICM-LM (weighted) 0.144 0.007 8 22 113 317 

Ellenberg 0.115 0.002 8 22 123 360 

Max growing depth 0.001 0.000 8 18 100 282 

Richness 0.027 0.191 8 22 125 366 
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3.2.5 Research question 5: What is the effect of using only subsets of the data on the 

amount of variation (e.g. depth zone, species saturation limit adjusted)?  

Due to the uneven distribution of macrophyte vegetation along shoreline, sampling effort is one 
of the key factors affecting observed species diversity. The total number of species detected 
depends heavily on the number of transects, as highlighted by Finnish experiences from 
resampling the transect data of several small humic lakes (Figure 3.9). In this lake type, lakes 
impacted by eutrophication have a higher species diversity than reference lakes, which therefore 
require a higher number of transects to be assessed correctly. 

The areal survey method was more efficient than the transect method in producing information 
on number of species (Figure 3.10). The metric specific Ecological Quality Ratios derived from 
data from transects and whole lake surveys did not differ in the case of PMA and RI. Whole lake 
surveys method produced lower PTST metric EQRs than the transect method survey of 15 
transects. 

 

Fig. 3.9. Relationship between the number of transects surveyed and the subsequent number of 
species recorded in six Finnish lakes (Kanninen unpublished report). Blue lines represent reference 
and pink lines impact lakes of the small humic lake type, Lake Rauvanjärvi (green line) is a reference 
lake for the medium sized humic lake type 

Fig. 3.10. Values of macrophyte metrics produced by two field methods in several Finnish lakes 
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Classification boundaries for the metrics and degree of sampling variation of different sources 
are shown in the table below (Table 3.7). 

Table 3.7. Classification boundaries for the metrics and degree of sampling variation of different sources  

 

The habitat type categories were differentiated by their average slope, fetch and percentage of 
organic bottom (Figure 3.11). Shore morphology was the greatest source of uncertainty as it was 
responsible for the highest degrees of misclassification probability in all of the three metrics 
according to the STARBUGS simulations. The effect of habitat was most pronounced in the 
Proportion of type-specific species. 

For the metrics PMA and RI all sources of uncertainty and, thus, misclassification 
probabilities at class midpoints were fairly low. Inter-surveyor variability resulted in fairly low 
probability of misclassification in all metrics and comparable to the level reported for river 
MTR-method by Staniszewski et al. (2006). For the metrics using presence-absence data only 
(PTST and RI), inter-surveyor variability in the transect method was somewhat lower than in the 
areal survey method. For the abundance based metric PMA, transect data seemed somewhat 
more repeatable. 

 

Fig. 3.11. Average properties of investigated shorelines of Finnish case study lakes  
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Habitat type (shore morphology) had an effect also on the detection of human impact (reference 
vs. impacted lakes) using the metric PTST (Figure 3.12). Metrics PMA and RI were not 
sensitive to habitat effect in this respect. Also the metric PMA, using the basic 15 transect data, 
differentiated between reference and impacted lakes, although the response of PMA EQR to the 
pressure gradient was not as clear as that for PTST (data not shown here). The Trophic Index 
did not differentiate between reference and impacted lakes nor respond to the pressure gradient 
in this data. 

Fig. 3.12. Effect of shore type on the EQRs produced by different metrics with two different field methods 
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4. Discussion and conclusions  

4.1 WISER field campaign dataset 

Ordination of the data from the 2009 WISER field campaigned grouped lakes corresponding to 
differences in alkalinity, altitude, and apparent trophic status. This is in accord with WFD 
typology and the pressure/response paradigm on which the WFD is based. It was also apparent, 
within this group of lakes at least, that the response of metrics to nutrient pressure (TP) 
decreased with increasing alkalinity. Higher alkalinity lakes do not appear to respond as much to 
increased pressure as low-alkalinity lakes. Unfortunately, it was not considered practicable to 
conduct separate analyses of the lakes of different alkalinity types, due to the limited number of 
lower alkalinity lakes in our dataset.  

It should also be noted that alkalinity can be increased by eutrophication, an effect that is 
especially important in low alkalinity lakes. Alkalinity generation in soft water lakes is usually 
dominated by biological reduction of sulfate and nitrate. Anoxia in the water column is not 
essential, as reduction can occur in surficial sediments, which are nearly always anoxic (Wetzel, 
2001). This means that it is not possible to have a low-alkalinity eutrophic lake, as the process of 
eutrophication will increase the alkalinity so that it is no longer low. 

4.1.1 The effect of using abundance data rather than presence-absence data on the 

metric results and their uncertainty (research question 1) 

Although in the REBECCA project (Penning et al, 2008a), there was little evidence of benefit in 
using metrics calculated using an average scores weighted by abundance, it is important to note 
that the data collected for the REBECCA study were from multiple sources and collected using 
disparate sampling and quantification methods. Analysis of the data collected during the 
harmonized WISER field campaign supports the use of abundance weighted averages as they 
provide a stronger relationship with the nutrient pressure (TP), but they should only be used in 
cases where all data has been collected using common abundance scales (and preferably by the 
same surveyors). 

4.1.2 The effect of the choice of species list on the metric results (research question 2) 

As was concluded in the REBECCA project (Penning et al, 2008b), in this study the use of 
helophytes in the calculation of metrics appeared to provide little additional information, and 
metrics based on helophytes do not respond as well to nutrient pressure (TP) as do the 
submerged species. Helophytes are less affected by water quality as their environment is not 
sub-aquatic, as their response to eutrophication is obscured by soil trophic characteristics, 
exposure, shoreline management and especially water level fluctuation dynamics as noted in 
several studies (e.g. Coops et al., 1994). The use of data from the WISER intensive field 
campaign provides a stronger basis than has been previously available to answer this question.  

It is possible that the use of large datasets collated from multiple sources will provide 
spurious answers to this question, as it is likely that bias in sampling is related to trophic status. 
Put simply, it is likely that in regions with lakes where the submerged taxa are highly visible, 
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flourishing and diverse, sampling effort will be concentrated on these plants, in contrast to 
regions where lakes are more eutrophic, so predominately have few submerged taxa, but a 
flourishing emergent community, where it is likely that sampling effort will concentrate on the 
helophyte taxa. 

4.1.3 Comparison of shallow (0-1 m) and deeper (1+ m) depth zones (research 

question 3) 

This study has shown that higher ICM-LM scores are obtained from shallow zone samples, than 
from deeper zone samples, which is very important in the status assessment of lakes. If an 
assessment method uses only shore-based data (obtained by wading), it is likely to result in an 
assessment of condition that is worse and less precise than if the method used data from deep 
water as well (obtained by boat). It was also apparent that metrics calculated on data from 
deeper samples were more responsive to changes in the pressure (TP). Therefore it seems to be 
important to include the deeper sites in the survey to get a more precise response to a TP 
pressure gradient. 

4.1.4 Variability of metrics between lake types, between waterbodies, within a 

waterbody, and between transects (research question 4)  

The results illustrate that differences in the number of transects for which metrics may be 
calculated can have a strong influence on the results. In particular, as TP levels increase, 
richness decreases, but numbers of taxa for which metrics such as ICM-LM can be calculated 
decrease even more rapidly. It is a general rule in statistical modelling that the data points at the 
extremes of the explanatory variables have most influence on the response relationships. 
Increased imprecision of metrics associated with low richness of indicator taxa, and at the most 
extreme, non-calculability of such indices can have a significant influence on perceived metric 
performance. Therefore, to maintain the same degree of uncertainty, more sampling is required 
at either end of the trophic scale, when there is less vegetation to be sampled. 

The results of including both TP and alkalinity in the models are revealing. TP and 
alkalinity are fairly well correlated in the dataset, hence it is not surprising that in some cases, 
either variable on its own may show apparent relationships with metrics. In particular, in this 
dataset, for ICM-LM and Ellenberg, alkalinity is clearly the dominant explanatory variable, and 
partial relationships with TP are not significant at p=0.05. The fact that the significant TP-
C_max relationship is conditional on alkalinity also being in the model is notable and highlights 
the inter-relatedness of these variables. 

4.1.5 The effect of using only subsets of the data on the amount of variation (research 

question 5) 

The results of the Finnish study provide evidence of the importance of shore morphology as a 
source of uncertainty in the Finnish macrophyte based classification system in small humic 
lakes. The proportion of type specific taxa was the metric that showed most error variation but 
on the other hand it was also the best metric to differentiate between reference and impacted 
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lakes. When using transects, the effect of shore type on the metric variation should be controlled 
for by focusing monitoring efforts on shallow or average sloping shores as noted in national 
quality control project (Kuoppala et al., 2008). The effect of habitat is most likely even more 
pronounced in larger lakes with more shore morphological variation. 

The results suggest that metrics calculated from presence-absence data only may be more 
effectively derived from survey data of larger areas than transects only. Consideration upon the 
most cost-effective monitoring method may still be needed. Generally, the effect of inter-
surveyor variation on uncertainty of ecological quality metrics was fairly low and can be tackled 
by surveyor training and implementing other quality assurance protocols. 

4.2 Recommendations for sampling, data analysis and assessment methods 

Analysis of WISER field campaign data presented above supports the following 
recommendations: 

1 Assessment methods should include samples from the entire depth range of aquatic 
vegetation, as using only shallow samples can result in a worse assessment of ecological 
status. 

2 Assessment methods should use abundance data (not just presence/absence) where 
possible, but only in cases where all data has been collected using the same methods. 

3 Helophytes should not be used in the assessment of the status of lake macrophyte 
communities, as they do not respond in the same way (as submerged taxa) to nutrient 
pressure. 

4 Assessment methods that rely on trophic status metrics should use data from samples 
across entire depth range of plants in the lake, else status is likely to be judged worse.  

5 Examination of uncertainty in metrics should not be undertaken in the absence of the 
relationships between metrics and stressors. In the worst case scenario, a metric may 
illustrate desirable properties of low variance within waterbodies relative to variance 
between waterbodies, but this may be at the expense of the metric’s desired response to 
stressors.  

6 It is necessary to sample at multiple stations. This is supported by high residual variance 
in metrics, even after accounting for TP and alkalinity gradients. 

7 More sampling is required to maintain the same degree of uncertainty in lakes where 
macrophytes are scarce or taxa richness is low. At these sites, scores of individual taxa 
can have a much larger impact than lakes with more macrophyte cover or more taxa. 

 

Examination of the Finnish study on uncertainty supports the following additional 
recommendations: 

1 Shore morphology and exposure have an effect on species composition and therefore 
careful selection of sites is needed. 

2 Intensive areal survey methods might identify more species than transect methods. 

3 The number of transects should be high enough to reach species saturation. For some 
lake types, like the small boreal humic lakes, there is a need for further development of 
the most suitable metrics for classification, as the three metrics used in the Finnish lakes 
study are not able to detect human impact. Potential new metrics may include e.g. the 
maximum depth of isoetids. 
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