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Introduction. In positive systems inputs, state variables and outputs take only non-negative values.
Examples of positive systems are industrial processes involving chemical reactors, heat exchangers and
distillation columns, storage systems, compartmental systems, water and atmospheric pollution models. A
variety of models having positive linear systems behaviour can be found in engineering, management
science, economics, social sciences, biology and medicine, etc.

Positive linear systems are defined on cones and not on linear spaces. Therefore, the theory of
positive systems is more complicated and less advanced. An overview of state of the art in positive systems
is given in the monographs [2, 5]. An extension of positive systems are the cone systems. The notion of cone
systems was introduced in [6]. Roughly speaking cone system is a system obtained from positive one by
substitution of the positive orthants of states, inputs and outputs by suitable arbitrary cones. The realization
problem for cone systems has been addressed in [6].

The first definition of the fractional derivative was introduced by Liouville and Riemann at the end
of the 19th century [21, 24, 26]. This idea has been used by engineers for modeling different processes in the
late 1960s [1, 3, 25-27]. Mathematical fundamentals of fractional calculus are given in [21, 23, 24, 26]. A
generalization of the Kalman filter for fractional order systems has been proposed in [27]. Fractional
polynomials and nD systems have been investigated in [4]. The positive controllability of positive systems
and approximate constrained controllability of mechanical systems have been investigated in [20, 21].

The  aim of  this  paper  is  to  give  an  overview of  some  recent  developments  and  new results  in  the
theory of fractional positive and cone 1D and 2D linear systems.

The paper is organized as follows. The standard and positive fractional continuous-time linear
systems are addressed in section 2. Necessary and sufficient conditions for the positivity of the system are
established. Similar problem for the discrete-time linear systems are considered in section 3. Section 4 is
devoted to the reachability of positive fractional discrete-time linear systems. The realization problem for
positive fractional continuous-time systems is addressed in section 5. The cone fractional discrete-time linear
systems and their reachability are considered in section 6. Positive fractional 2D systems and their
reachability are addressed in section 7. Concluding remarks and open problems are given in section 8.

The following notation will be used in this paper.

 © Kaczorek T., 2010
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Let n m  be  the  set  of n m  real matrices and 1: .n n  The set of m n  matrices with

nonnegative entries will be denoted by m n  and 1: .n n  The set of nonnegative integers will be
denoted by Z  and the n n  identity matrix by .nI

Continuous-time linear systems. 1. Continuous-time fractional linear systems. In  this  paper  the
following Caputo definition of the fractional derivative will be used [21, 24]
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Consider the continuous-time fractional linear system described by the state equations
( ) ( ) ( ), 0 1D x t Ax t Bu t ( ) ( ) ( )y t Cx t Du t  ,                            (2 ,b)

where ( ) ,nx t ( ) ,mu t ( ) py t  are the state, input and output vectors and ,n nA ,n mB
,p nC .p mD

Theorem 1. [10] The solution of equation (2a) is given by
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and ( )E At  is the Mittage-Leffler matrix function, 1

0

( ) t xx e t dt  is the gamma function.

Remarks. 1. From (4) and (5) for 1  we have 0
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2. From the Cayley-Hamilton theorem we have. If 1
1 1 0det[ ] ( ) ( ) ...n n

n nI s A s a s a s a ,   (7)

then 1
1 1 0... 0n n

nA a A a A a I  .                                                                 (8)

Example. Find the solution of eq.(2a) for 10 , 0 1 0, ,0 0 1A B 0
1 ,1x 1, for 0( ) 0, for 0

tu t t  .      (9)

Using (4) and (5) we obtain 0 2
0
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since 0 1 0 0 for 2,3,...0 0 0 0
k

kA k .

Substitution of (10) and ( ) 1u t  into (3) yields
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0 0

2

2
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0
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1
( 1) (2 1)

( 1) ( 1) (2 1)
1

( 1)

t tAx t B ABx t t x t Bu d x t t d

t t
Ax t Bt ABtx

t

,       (11)

since ( 1) ( ).
2. Positivity of continuous-time fractional systems.
Definition 1. The fractional system (2) is called the internally positive fractional system if and only

if ( ) nx t  and ( ) py t  for 0t  for any initial conditions 0
nx  and all inputs ( ) ,mu t 0.t
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A square real matrix [ ]ijA a  is called the Metzler matrix if its off-diagonal entries are nonnegative,

i.e. 0ija  for i j  [2, 5].

Lemma 1. Let n nA  and 0 1 . Then

0
0

( ) for 0
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k

,
( 1) 1
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[( 1) ]

k k
n n

k

A tt t
k

,             (12,13)

if and only if A is a Metzler matrix. Proof is given in [10].
Theorem 2. The continuous-time fractional system (2) is internally positive if and only if

, , ,n m p n p m
nA M B C D                                        (14)

nM  is the set of Metzler matrices. Proof is given in [10].

Definition 2. The fractional system (2) is called externally positive if and only if ( ) , 0py t t
for every input ( ) , 0mu t t  and 0 0.x

The impulse response ( )g t  of single-input single-output system is called its output for the input
equal  to  the Dirac impulse ( )t  with zero initial conditions. Assuming successively that only one input is
equal to ( )t  and the remaining inputs and initial conditions are zero we may define the impulse response

matrix ( ) p mg t  of the system (2). The impulse response matrix of the system (2) is given by
( ) ( ) ( ) for 0g t C t B D t t .                                                      (15)

Substitution of (3) into (2b) for 0 0x  yields
0

( ) ( ) ( ) ( ), 0
t

y t C t Bu d Du t t .                   (16)

The formula (15) follows from (16) for ( ) ( ).u t t
Theorem 3. The continuous-time fractional system (2) is externally positive if and only if its

impulse response matrix (15) is nonnegative, i.e. ( ) for 0p mg t t .                                           (17)
Proof. The necessity of the condition (17) follows immediately from Definition 2. The output ( )y t

of the system (2) with zero initial conditions for any input ( )u t  is given by the formula

0

( ) ( ) ( )
t

y t g t u d                                                                (18)

which can be obtained by substitution of (15) into (16). If the condition (17) is met and ( ) ,mu t  then

from (18) we have ( ) for 0.py t t  From (15) and (13) it follows that if A is a Metzler matrix and
(14) holds then the impulse response matrix (15) is nonnegative. Therefore, we have the following two
corollaries: 1. The impulse response matrix (15) of the internally positive system (2) is nonnegative.

2. Every continuous-time fractional internally positive system (2) is also externally positive.
A example of electrical circuit composed of a resistance R, capacitance C and voltage source

described by fractional differential equation is given in [18].
Discrete-time linear systems. 1. Discrete-time fractional systems. The following definition of the

fractional difference will be used
0

( 1)
k

j
k k j

j

x xj , 0 1 ,                                              (19)

where R  is the order of the fractional difference, and

1, for 0
( 1) ( 1) , for 1, 2,...

!

j
j j j

j

                            (20)

Consider the fractional discrete-time linear system, described by the state-space equations

1 ,k k kx Ax Bu u Z k k ky Cx Du  ,                                (21a,b)
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where ,n
kx ,m

ku p
ky  are the state, input and output vectors and ,n nA

,n mB ,p nC .p mD
Using (19) we may write the equations (21) in the form

1

1 1
1
( 1) ,

k
j

k k j k k
j

x x Ax Bu k Z
j k k ky Cx Du .                       (22a,b)

Definition 3. The system (22) is called the (internally) positive fractional system if and only if n
kx  and

,p
ky k Z  for any initial conditions 0

nx  and all input sequences ,m
ku .k Z

Theorem 4. [8] The solution of equation (22a) is given by
1

0 1
0

k

k k k i i
i

x x Bu ,              (23)

where k  is determined by the equation
1

1
1 1

2
( ) ( 1)

k
i

k n k k i
i

A I
i

 with 0 .nI (24)

Theorem 5. Let 1 1

0
det ( )

M
i

n M i
i

I z Az a z                                                        (25)

be the characteristic polynomial of the system (22). Then the matrices 0 1, ,..., M  satisfy the equation

0
0

M

i i
i

a .                                                                            (26)

Proof. From definition of inverse matrix and (25) we have
11 1

0 0
Adj ( )

M
i i

n i m i
i i

I z Az z a z ,                                (27)

where AdjF denotes the adjoint matrix of  F.
Comparison of the coefficients at the same power Mz  of the equality (27) yields (26) since degree

of 1 1Adj[ ( ) ]nI z Az  less than M.
Theorem 5 is an extension of the well-known classical Cayley-Hamilton theorem for the fractional

system (20). Note that the degree M of the characteristic polynomial (25) depends on k and it increases to
infinity for .k  In practical problems it is assumed that k is bounded by some natural number L. If k L
then ( 1).M N L

2. Positivity of discrete-time fractional systems. The following two lemmas are used in the proof of
the positivity of the fractional system (23).

Lemma 2. [8] If 0 1 ,  then 1( 1) 0i
i     for 1, 2,...i                                            (28,29)

Lemma 3. [8] If (29) holds and
n n

nA I , then
n n

k   for 1, 2,...k                      (30,31)
Theorem 6. Let (28) be satisfied. Then the fractional system (28) is positive if and only if

,n n
nA I ,n mB ,p nC p mD .                             (32)

Proof is given in [8, 18].

Example 2. Consider the fractional system (22) for 0 1  with 1 0 0, , ( 2)0 1A B n .    (33)

The fractional system is positive since
2 21 0

0 0nA I .

Using (24) for 0,1,...k  we obtain diagonal matrices of the forms
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1 0

2
2 1 0

1 0( ) ,0 0
1 5 2 0( ) ,2 0 (1 )2

n

n

A I

A I

3 2 1 0

2

( )
2 3

3( 5 2)( 1) ( 1)(2 5) 01
6 0 (1 )( 2)

nA I
.                                    (34)

From (23) and (24) we have
1

0 1
0

0
1

k

k k k i i
i

x x u ,                                                       (35)

where k  is given by (34).
Definition 4. The discrete-time fractional system (22) is called externally positive if

,p
ky k Z  for every input sequence ,m

ku k Z  and 0 0.x
Theorem 7. The discrete-time fractional system (22) is externally positive if and only if its response

matrix 1
, for 0

, for 1,2,...kk
D kg CA B k  is nonnegative, i.e. p m

kg  for k Z .                    (36,37)

The proof is similar to the proof of Theorem 3.
Remark 4. The impulse response matrix (36) of the internally positive system (22) is nonnegative

and every discrete-time fractional internally positive system is also externally positive.
Reachability of positive fractional discrete-time systems. Consider the positive fractional discrete-

time linear system (22).
Definition 5. A state n

fx  of the positive fractional system (22) is called reachable in q steps if

there exist an input sequence m
ku , 0,1, , 1k q  which  steers  the  state  of  the  system  from  zero

0( 0)x  to the final state fx , i.e. q fx x .

Let ,ie ni ,...,1  be the i-th column of the identity matrix .nI  A column iae  for 0a  is called a
monomial column.

Theorem 8. The positive fractional system (22) is reachable in q steps if and only if the reachability
matrix 1 1: [ , ,..., ]q qR B B B                                                                (38)
contains n linearly independent monomial columns.

Proof. Using (22) for k q  and 0 0x , obtain
1 1

21
0 0

q q
qf q q i i q

i

u
ux x Bu R
u

.                  (39)

From Definition 5 and (39) it follows that for every n
fx  there exists an input sequence ,m

iu
0,1,..., 1i q  if and only if the matrix (38) contains n linearly independent monomial columns.

Example 3. Consider the positive fractional systems (22) for 0 1  with (33).Using (24) and (38)
we obtain

2 1 3 1 2
0 0 0 0 0[ , ] , [ , , ]1 0 1 0 0,5(1 )R B B R B B B

’

4

0 0 0 0
(1 ) (1 )( 2) ,...1 0

2 6
R                                                                                    (40)

Note that the matrices (40) contain only one linearly independent monomial column. Therefore, by
Theorem 8 the system (22) with (33) is unreachable.
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Example 4. Consider the fractional systems (22) for 10  with 0 1, , ( 2)1 2 0A B n .     (41)

The system is positive since 2 20 0
1 2nA I R . Using (24) for 0k  we obtain

1 0( )nA I 0 0
1 2 . The reachability matrix (38) for 2q  has the form

1
1 0[ , ] 0 1qR B B .

It contains two linearly independent monomial columns. Therefore, the positive fractional system
with (41) is reachable in two steps.

Remark 5. From (24) and (38) it follows that the positive fractional system (22) is reachable only if
the matrix [ , ]nB A I                                                                                   (42)
contain n linearly independent monomial columns.

The controllability of positive fractional discrete-time linear systems has been considered in [8] and
the reachability of positive fractional continuous-time linear systems in [10].

Realisation problem for positive fractional continuous-time linear systems.
1. Problem formulation. Using the Laplace transform it is easy to show that the transfer matrix of the

systems is given by the formula 1( ) [ ]nT s C I s A B D .                                             (43)

The transfer matrix is called proper if and only if lim ( ) p m

s
T s K R   and it is called strictly proper if

and only if 0K . From (43) we have lim ( )
s

T s D , since 1lim[ ] 0ns
I s A .                                 (44)

Definition 6. Matrices (14) are called a positive fractional realization of given transfer matrix ( )T s
if they satisfy the equality (43). A realization is called minimal if the dimension of A is minimal among all
realizations of ( )T s .

The positive realization problem can be stated as  follows.  Given a proper  transfer  matrix ( )T s , find its
positive realizations (14). In this section sufficient conditions for the existence of positive fractional realizations will
be established and procedure for computation of the positive fractional realizations will be proposed.

Problem Solution. The realization problem will be solved for single-input single-output (SISO)
linear fractional systems with the proper transfer function

1
1 1 0

1
1 1 0

( ) ( ) ...
( )

( ) ( ) ...

n n
n n

n n
n

b s b s b s bT s
s a s a s a

.                                      (45)

Using (44) we obtain lim ( ) ns
D T s b                                                                (46)

and the strictly proper transfer function has the form
1 2

1 2 1 0
1

1 1 0

( ) ( ) ...
( ) ( )

( ) ( ) ...

n n
n n

sp n n
n

b s b s b s bT s T s D
s a s a s a

 ,                         (47)

where , 0,1,..., 1k k k nb b a b k n .                                                        (48)
From (48) it follows that if 0ka  and 0kb  for 0,1,...,k n  then also 0kb  for 0,1,..., 1k n .

Theorem 9. There exist positive fractional minimal realizations of the forms

0 1 2 1

0 1 1

0 1 0 ... 0
0 0 1 ... 0

,
0 0 0 ... 1

...
0

, ... ,0
1

n

n n

A

a a a a

B C b b b D b

2 0
2

12

11

0 0 ... 0
1 0 ... 0

, ,0 1 ... 0
...

0 0 ... 1
0 ... 0 1 ,

nn

n

a ba bA Ba
ba

C D b

            (49a,b)
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1 2 1 0

1 1 0

... 11 0 ... 0 0 0, ,0 1 ... 0 0
00 0 ... 1 0

... ,

n n

n n

a a a a

A B

C b b b D b

1 1
2

11
00

1 0 ... 0
0 1 ... 0

, ,
0 0 ... 1
0 0 ... 0

1 0 ... 0 ,

n n
n

n

a ba
A B ba ba
C D b

     (49c,d)

of the transfer function (45) if a) 0kb  for 0,1,...,k n , b) 0ka  for 0,1,..., 2k n  and

1 1 0n n nb a b .

Proof. Taking into account that for (49) 1
1 1 0det[ ] ( ) ( ) ...n n

n nI s A s a s a s a   and
1Adj[ ] [1 ... ( ) ]n

nI s A B s s  it is easy to verify that
1 2

1 1 2 1 0
1

1 1 0

Adj[ ] ( ) ( ) ...
[ ]

det[ ] ( ) ( ) ...

n n
n n n

n n n
n n

C I s A B b s b s b s b
C I s A B

I s A s a s a s a
.

The matrix A is Metzler matrix if and only if 0ka  for 0,1,..., 2k n  and arbitrary 1na . Note that the

coefficient of matrices C and D are nonnegative if the conditions a) is met and 1 1 1 0n n n nb b a b . The
proof for (49b), (49c) and (49b) are similar (dual). The matrices (49) are minimal realizations if and only if
the transfer function (45) is irreducible. If the conditions of Theorem 9 are satisfied then the positive minimal
realizations (49) of the transfer function (45) can be computed by use of the following procedure.

Procedure. Step 1. Knowing ( )T s  and using (46) find D and the strictly proper function (47). Step 2.
Using (49) find the desired realizations.

Example 5. Find the positive minimal fractional realizations (49) of the irreducible transfer function
2

2
2( ) 5 1( )
( ) 2 3

s sT s
s s

.                                                        (50)

Using Procedure and (50) we obtain the following. Step 1. From (46) and (50) we obtain
2

2
2( ) 5 1lim 2
( ) 2 3s

s sD
s s

     and 2
7( ) ( )

( ) 2 3sp
sT s T s D

s s
.     (51,52)

Step 2. Taking into that in this case 0 17, 1b b  and using (49) we obtain the desired positive
minimal fractional realizations

0 1 0, , [7 1], 23 2 1A B C D ; 0 3 7, , [0 1], 21 2 1A B C D ;  (53a,b)

2 3 1
, , [1 7], 2

1 0 0
A B C D ;

2 1 1
, , [1 0], 2

3 0 7
A B C D .               (53c,d)

An extension of this method for multi-input multi-output positive fractional continuous-time linear
systems has been given in [11]. The presented method can be easily extended for positive fractional discrete-
time linear systems.

Cone Fractional Discrete Time Systems And Their Reachibility.

Definition 7. Let
1 n n

n

p
P

p
 be nonsingular and kp  be the k-th ( 1,...,k n ) its row.

The set
1

: : 0
n

n
k

k
x p xP                                                          (54)

is called a linear cone generated by the matrix P.
In a similar way we may define for the inputs u  the linear cone

1
: : 0

m
m

k
k

u q uQ                                                          (55)
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generated by the nonsingular matrix 1 m m

m

q
Q

q
   and for the outputs y , the linear cone

1
: : 0

p
p

k
k

y v yV                                                        (56)

generated by the nonsingular matrix
1 p p

p

v
V

v
.

Definition 8. The fractional system (22) is called (P Q V, , ) cone fractional system if kx P  and

ky V , k Z   for every 0x P , ku Q , .k Z
The  (P Q V, , )  cone fractional  system (4)  will  be shortly called the cone fractional  system. Note

that if nP , ,mQ pV   then  the ),,( pmn cone system is equivalent to the classical
positive system [2, 5].

Theorem 10. The fractional system (22) is (P Q V, , ) cone fractional system if and only if

,1 nnPAPA ,1 mnPBQB ,1 npVCPC mpVDQD 1            (57)
Proof. Let ,kk Pxx kk Quu         and kk Vyy , Zk .                               (58)

From Definition 8 it follows that if kx P  then ,n
kx  if ku Q  then m

ku  and if

ky V then .p
ky  From (22) and (58) we have

1 1
1 1

1 1 1 1
1 1

( 1) ( 1) ,
k k

j j
k k j k k j k k k k k k

j j
x x Px Px PAx PBu PAP x PBQ u Ax Bu k Z

j j

and 1 1 ,k k k k k k k ky Vy VCx VDu VCP x VDQ u Cx Du k Z .                   (59a,b)

It is well-known [5] that the system (59) is the positive one if and only if the conditions (57) are satisfied.
Definition 9. A state fx P  of the cone fractional system (22) is called reachable in q steps if there

exists an input sequence ku Q , 0,1,..., 1k q  which  steers  the  state  of  the  system  from  zero  initial
state 0( 0)x  to the desired state fx , i.e. .q fx x  If every state fx P  is reachable in q steps then the

cone fractional system is called reachable in q steps. If for every state fx P  there exists a natural number
q such that the state is reachable in q steps then the cone fractional system is called reachable.

Theorem 11. The cone fractional system (22) is reachable in q steps if and only if the matrix

],...,,[ 1
1

1
1

1 BQPBQPPBQR qq                                              (60)

contains n linearly independent monomial columns.
Proof.  From the relations (58)  it  follows that  if kx P  then n

k kx Px  and if ku Q  then
m

k ku Qu  for .k Z  Hence by Definition 8 and 9 the cone fractional system (22) is reachable in q
steps if and only if the positive fractional system (59) is reachable in q steps.

Using (24) and (57) it is easy to show that k  of the system (59) with k  of he system (22) are

related by 1PPk  for 0,1,...k  .                                                  (61)

Taking into account that 1 1 1, 1, 2,..., 1k k kB P P PBQ P BQ k q              (62)
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we may write
1 1

1 1 1
1 1

[ , ,..., ]

[ , ,..., ]
q q

q

R B B B

PBQ P BQ P BQ
.                                   (63)

By Theorem 8 the positive fractional system (59) is reachable in q steps if and only if the matrix (60)
contain n linearly independent monomial columns.

Example 6. Consider the cone fractional system (22)

for

1 1 , [1],1 1

, 0, 0 11 1

P Q

aA aa

           (64)

and for the following two forms of the matrix B

0,, 21 b
b
b

B
b
b

B .

The P -cone generated by the matrix P is shown in
Fig..  In  case  1  we  shall  show  that  the  cone  fractional
system is not reachable.

Using (57) and (64) we obtain
1

1
1 1

11 1 0 1 1 1( ) , 01 1 1 1 1 1 1 02
1 1 2 , 01 1 0

d n
a a aA P A I P aa

b bB PB Q bb

.           (65)

The system (59) with matrices (65) is a positive fractional system. Using (60) for 2q , (64) and
taking into account that 1 dA  we obtain

1 1
2 1 1 1 1 1

1 1 2 2( 1)[ , ] [ , ] 0 21 1 ( 2)d
b ab b a bR PB Q P B Q P B A B bb a b .            (66)

The matrix (66) contains only one (the first) monomial column. Thus by Theorem 11 the cone
fractional system is unreachable.

In case 2 we have 0,
2
0

11
111

22 b
bb

b
QPBB .                                (67)

The system (59) with matrices dA  and 2B  given  by  (65)  and  (67)  is  also  a  positive  fractional
system. Using (60) and (64) we obtain the matrix

2 2 2
1 1 0 2[ , ] , 0, 01 1 2 0d

b ab abR P B A B a bb ab b ,                                       (68)

which contains two linearly independent monomial columns. Therefore, by Theorem 11 the cone fractional
system is reachable.

The controllability to zero of the cone fractional discrete-time linear systems has been considered in [9].
Positive Fractional 2d Linear Systems And Their Reachibility And Their Reachibility.
1. Fractional 2D linear systems. The positive fractional 2D linear systems have been introduced in

[15, 16] and the positive 2D hybrid linear systems in [17].
Definition 10. The ( , )  orders fractional difference of and 2D function ijx  is defined by the formula

,
,

0 0
( , ) ,

ji

ij i k j l
k l

x c k l x  , 1 , 1 , {1, 2,...}n n n n n N ,         (69)

where ,
ij i j ijx x  and

,

1 for 0 or/and 0
( 1)...( 1 ) ( 1)...( 1 )( , ) ( 1)

! !
for 0

k l

k l
k lc k l
k l

k l

.               (70)

x2

x1

x2 = -x1

x2 = x1

0
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The justification of Definition 10 is given in [15].
Consider the ( , )  order 2D fractional linear system, described by the state equations

,
1, 1 0 1 1, 2 , 1 0 1 1, 2 , 1i j ij i j i j ij i j i jx A x A x A x B u B u B u ij ij ijy Cx Du ,            (71a,b)

where , ,n m p
ij ij ijx u y  are the state, input and output vectors and ,n n

kA

, 0,1, 2,n m
kB k , .p n p mC D

Using Definition 10 we may write the equation (71a) in the form
11

1, 1 0 1 1, 2 , 1 1, 1 0 1 1, 2 , 1
0 0

0

( , )
ji

i j ij i j i j i k j l ij i j i j
k l
k l

x A x A x A x c k l x B u B u B u ,          (72)

where 0 0 nA A I , 1 1 nA A I , 2 2 nA A I .
From (69) it follows that the coefficients (70) in (69) strongly decrease when k and l increase.

Therefore, in practical problems it is assumed that i and j are bounded by some natural numbers L1 and L2. In
this case (72) takes the form

1 21 1

1, 1 0 1 1, 2 , 1 1, 1 0 1 1, 2 , 1
0 0

( , )
L L k

i j ij i j i j i k j l ij i j i j
k l

x A x A x A x c k l x B u B u B u .     (73)

Note that the fractional systems are 2D linear systems with delays increasing with i and j.
The boundary conditions for the equation (72) and (73) are given in the form

0 0, and ,i jx i Z x j Z .                                                    (74)
Theorem 12. The solution of equation (72) with boundary conditions (74) is given by

1

, 1 1 0 1 0 1, 2 0 2 0 1, 1 0 0
1 1 1

1 11

1, 1 0 0 1, 1 0 00 1, 1 0 1, 1 1 , 1 2
1 0 0 0 0

( ) ( )

( )

ji i

ij i p j p p i j q q q i p j p
p q p

j j ji i

i j q q i j i p j q pq i p j q i p j q pq
q p q p q

x T A x B u T A x B u T A x

T A x T A u T B u T B T B u

(75)
where the transition matrices pqT  are defined by the formula

0 1, 1 1 , 1 2 1, ,
0 0

2

for 0

( , ) for 0

0 (zero matrix) for 0 or/and 0

n
p q

pq p q p q p q kl
k l

k l p q

I p q

T A T AT A T c p k q l T p q

p q

.                 (76)

Proof is given in [16]. Let
1 21 1

1 1 1 1
1 2 1 2 0 2 1 2 2 1

0 0
( , ) ( , )

L L
k l

n n
k l

G z z I I c k l z z A z z A z A z                        (77)

and
1 1

1 21 2 , 1 2
0 0

det ( , )
N N

k l
N k N l

k l
G z z a z z .                                                  (78)

It is assumed that i and j are bounded by some natural numbers 1 2,L L  which determined the degrees 1 2,N N .
Theorem 13.  Let  (78)  be  the  characteristic  polynomial  of  the  system (71).  Then  the  matrices klT

satisfy the equation
1 2

0 0
0

N N

kl kl
k l

a T .                                                                 (79)

Proof is given in [16].
Theorem 13 is an extension of the well-known classical Cayley-Hamilton theorem for the 2D

fractional system (71).
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2. Positivity of the fractional 2D systems
Lemma 4. [16]
a) If 0 1  and 1 2  then ( , ) 0 for 1, 2,...; 2,3,...c k l k l                         (80a)

b) If 1 2  and 0 1  then ( , ) 0 for 2,3,...; 1, 2,...c k l k l .                     (80b)

Lemma 5. [16] If (80) is met and n n
kA  for 0,1, 2,k                                              (81)

then n n
pqT  for ,p q Z .                                             (82)

Definition 11. The system (71) is called the (internally) positive 2D fractional system if and only if
n

ijx  and , ,p
ijy i j Z  for any boundary conditions Zix n

i ,0 Zix n
j ,0 and all

input sequences .,, Zjiu m
ij

Theorem 14. The 2D fractional system (71) for 10  and 21  is positive if and only if

, , 0,1, 2, ,n n n m p n p m
k kA B k C D .               (83)

Proof is given in [16].
Remark 6. From (70) and (71) it follows that if , 0 1  then ( , ) 0 for 1, 2,...c k l k l

and the fractional 2D system (71) is not positive.
3. Reachability of the positive fractional 2D systems.
Definition 12.  The  positive  2D  fractional  system  (71)  is  called  reachable  at  the  point

( , )h k Z Z  if and only if for zero boundary conditions (74) 0 0( 0, , , )i jx i Z x j Z  and every

vector n
fx  there exists a sequence of inputs m

iju  for

( , ) {( , ) : 0 ,
0 , }

hki j D i j Z Z i h
j k i j h k

                                              (84)

such that .fhk xx  A vector is called monomial if and only if its one component is positive and the remaining
components are zero.

Theorem 15. The positive 2D fractional system (71) is reachable at the point ),( kh  if and only if
the reachability matrix

1 1 2 2
0 1 2 1 11 1 21[ , ,..., , ,..., , ,..., , ,..., ]hk h k k hkR M M M M M M M M M

1
0 1, 1 0 , 1 1 1, 1 0

2
1, 1 2 1, 1 0

1, 1 0 , 1 1 1, 1 2

, , 1,...,

, 1,...,

, 1,..., , 1,...,

h k i h i k h i k

j h k h k j

ij h i k j h i k j h i k

M T B M T B T B i h

M T B T B j k

M T B T B T B i h j k

              (85,86)

contains n linearly independent monomial columns.
Proof. Using the solution (75) for kjhi ,  and zero boundary conditions we obtain

( , )f hkx R u h k ,                                                                  (87)

where 00 10 0 01 0 11 1 21 ,( , ) [ , ,..., , ,..., , ,..., , ,..., ]T T T T T T T T T T
h k k h ku h k u u u u u u u u u                                   (88)

and T denotes the transpose.
For the positive 2D fractional system (71) from (86) and (85) we have 1

0 , ,n m n m
iM M

2 , , 1,..., , 1,...,n m n m
j ijM M i h j h  and [( 1)( 1) 1] .n h k m

hkR  From (87) it follows that there

exists a sequence m
iju  for ( , ) hki j D  for  every n

fx  if  and  only  if  the  matrix  (85)  contains  n
linearly independent monomial columns.

The following theorem gives sufficient conditions for the reachability of the positive 2D fractional system (71).
Theorem 16. The positive 2D fractional system (71) is reachable at the point ( , )h k  if rank hkR n

and the right inverse r
hkR  of the matrix (85) has nonnegative entries
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1 [( 1)( 1) 1][ ]r T T h k m n
hk hk hk hkR R R R .                                             (89)

Proof. If rank hkR n  then there exists the right inverse r
hkR  of the matrix .hkR  If the condition

(89) is met then from (87) we obtain [( 1)( 1) 1]( , ) r h k m
hk fu h k R x  for every .n

fx
Example 7. Consider the positive 2D fractional system (71) with

0 1 2 0 1 2
0 1 1 0 1 0 1 0 1, , , , , ,1 0 0 1 1 1 0 1 1A A A B B B .                        (90)

To check the reachability at the point ( , ) (1,1)h k  of the system we use Theorem 15. From (86) and
(85) we obtain

1 2
0 0 1 1 1 2

1 0 1, , , 00 1 1 ijM B M B M B M  for 1, 1i j ,

1 2
11 0 1 1

1 0 1[ , , ] 0 1 1R M M M .                                                                                 (91)

The first two columns of (91) are linearly independent monomial columns and by Theorem 15 the
positive 2D fractional system (71) with (90) is reachable at the point (1,1).  The sequence of inputs steering

the  state  of  the  system  from  zero  boundary  conditions  to  an  arbitrary  state 2
fx  at the point (1,1)  is

given by 00
10 f

u xu  and 01 0.u  Using (89) and (91) we obtain

1
1

1 0 2 112 1[ ] 0 1 1 21 2 31 1 1 1
r T T
hk hk hk hkR R R R .                                    (92)

From (92) it follows that the condition (89) is not satisfied in spite of the fact that the system is
reachable at the point (1,1).  Note  that  the  system  is  reachable  at  the  point (1,1)  for any fractional order

( , ) 0 1 , 1 2  (or 1 2 , 0 1 ) and any matrices , 0,1, 2.kA k
Necessary and sufficient conditions for the controllability to zero of positive fractional 2D linear

systems have been established in [16].
Concluding remarks and open problems. An overview of some resent developments and new

results  in  the  theory  of  fractional  positive  and  cone  1D  and  2D  linear  system  have  been  given.  The  state
equations and their solutions for fractional continuous-time and discrete-time linear systems have been
proposed. Necessary and sufficient conditions for the internal and external positivity and reachability of the
systems have been established. The realization problem for positive fractional continuous-time linear
systems has been formulated and solved. A new class of cone fractional discrete-time linear systems has
been introduced. The positive fractional 2D linear systems have been also introduced and their reachability
has been investigated. From the long list of the open problems in the fractional systems theory the following
are the natural steps:

- 1D and 2D fractional linear systems with delays,
- Positive 1D and 2D fractional linear systems with delays,
- Positive fractional 2D hybrid systems with and without delays,
- Standard and positive 2D fractional continuous-time systems,
- Standard and positive 1D and 2D nonlinear systems.

This work was supported by Ministry of Science and Higher Education in Poland under work No NN514
1939 33.
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