УДК 551.46(269.4)

Ю.В.Артамонов

Морской гидрофизический институт НАН Украины, г.Севастополь

ИССЛЕДОВАНИЕ СЕЗОННОЙ ИЗМЕНЧИВОСТИ ЦИРКУЛЯЦИИ ВОД ЮЖНОЙ АТЛАНТИКИ ПО ДАННЫМ СПУТНИКОВОЙ АЛЬТИМЕТРИИ

Исследован сезонный цикл течений на поверхности Южной Атлантики по данным спутниковой альтиметрии за период с 1992 по 2002 гг. Показано, что западные и восточные течения усиливаются с фазовой разницей в несколько месяцев, тогда как их широтные смещения квазисинхронны. Для течений тропической зоны наблюдается запаздывание сезонного сигнала с запада на восток в среднем на 2 – 3 месяца, в полярных широтах оно увеличивается до 6 месяцев.

Успехи в исследовании циркуляции вод Атлантического океана относятся в основном к описанию изменчивости течений Северного полушария и течения Ломоносова. О сезонном цикле ветвей Южного пассатного течения (ЮПТ), Южного экваториального противотечения (ЮЭП), Южного Атлантического течения (ЮАТ), ветвей Антарктического циркумполярного течения (АЦТ) известно очень мало [1 - 4]. Это связано, прежде всего, с тем, что в зимний период Южная Атлантика значительно меньше охвачена наблюдениями, чем летом. В последние десятилетия при исследовании циркуляции вод нашли широкое применение спутниковые измерения уровня океана [4 - 8]. Эти работы базировались в основном на относительно коротких (1 – 3 года) рядах наблюдений. В настоящее время накоплен почти 10 летний ряд данных спутниковой альтиметрии. Цель данной работы – исследовать сезонную изменчивость аномалий уровня океана и геострофических течений на поверхности океана на основе современного массива спутниковых данных по альтиметрии.

Материалы и методика. В работе использованы поля аномалий уровня океана (АУО) с одноградусным осреднением по пространству и с пятидневным интервалом по времени, охватывающие период с ноября 1992 г. по август 2002 г., представленные на сайте NASA (daac.jpl.nasa.gov). При расчете полей АУО были учтены все поправки, вносимые методами спутниковой альтиметрии [4]. По пятидневным значениям АУО рассчитаны средние для каждого месяца значений АУО за весь период наблюдений. Скорости на поверхности океана вычислялись по стандартному геострофическому соотношению по разностям динамических высот, которые, в свою очередь, вычислялись как сумма АУО и среднегодовых значений динамических высот, рассчитанных по массиву [9] относительно 1000 м. Расчеты соотношения среднеквадратического отклонения внутригодовой и межгодовой изменчивости АУО показали, что сезонный сигнал в зонах интенсивных течений превышает межгодовую изменчивость на большей части акватории Атлантики. Это дало основание для надежного выделения сезонного сигнала в осредненных по месяцам за 10 лет аномалиях уровня океана.

Результаты. Распределение АУО в первую половину года указывает на

© Ю.В.Артамонов, 2005

Рис. 1. Распределение средних АУО (мм) в период 1992 – 2001 гг. в феврале (*a*) и августе (б).

понижение уровня в Северном полушарии и на его повышение в Южном. Во вторую половину года наблюдается обратное распределение (рис.1). На картах отмечается ряд зонально ориентированных областей аномалий уровня океана, вытянутых вдоль крупномасштабных течений. Распределение АУО на широтно-временных развертках показывает ряд экстремумов, связанных с повышением и понижением уровня поперек разных течений (рис.2). В годовом цикле прослеживаются меридиональные смещения областей аномалий уровня одного знака, которые согласуются с сезонными смещениями течений, рассчитанными по гидрологическим данным [1]. Сезонный ход значений АУО на северной и южной границах течений косвенно характеризует величину наклона поперек течения и, тем самым, изменение его интенсивности. По этому признаку максимальная интенсивность Северной ветви ЮПТ и Южного экваториального противотечения наблюдается в октябре. Для Центральной ветви ЮПТ максимум интенсивности отмечается в апреле. Качественно такой сезонный цикл течений совпадает с их изменчивостью по гидрологическим данным [1]. Сезонный цикл течений воспроизводится лучше с привлечением среднегодового уровня океана, рассчитанного по гидрологическим данным. Аналогичный подход был опробован в [5, 6].

Широтные распределения зональной составляющей скорости течений по месяцам показывают, что амплитуды внутригодовых вариаций скорости достигают 20 – 30 см/с в пределах южных тропиков и не превышают 10 – 20 см/с в субтропических и полярных широтах. Сезонный сигнал Северной ветви ЮПТ запаздывает в направлении с востока на запад. Максимальная скорость

(30 см/с) наблюдается на 10° з.д. в июле, на 30° з.д. – в сентябре (рис.3). В Центральной ветви ЮПТ максимум интенсивности запаздывает в направлении с запада на восток. На 30° з.д. максимум скорости (35 см/с) наблюдается в апреле. На Гринвиче максимум скорости (40 см/с) достигается в июле.

Сезонный цикл Южного экваториального противотечения на 20 и 10° з.д. изменяется почти в фазе с ЦВ ЮПТ, достигая максимальных значений скорости (12 см/с) в июле. На 30° з.д. и на Гринвиче его сигнал запаздывает, и максимумы скорости наблюдаются в августе и сентябре (15 и 10 см/с соответственно). Южная ветвь ЮПТ имеет максимумы скорости на 30° з.д. (14 см/с) и 20° з.д. (9 см/с) в марте, на 10° з.д. и на Гринвиче (9 см/с) – в январе.

В сезонной изменчивости интенсивности ЮАТ наблюдается запаздывание сигнала с запада на восток почти на полгода. Максимум скорости (20 см/с) на 50° з.д. отмечается в марте. На Гринвиче он уменьшается (8 см/с) и наблюдается в сентябре.

Северная ветвь АЦТ в западной части океана между 50 и 40° з.д. имеет максимум скорости (9 см/с) в октябре. Далее на восток максимум скорости запаздывает и наблюдается в марте на 30° з.д., в апреле на $20 - 10^\circ$ з.д. и в мае на Гринвиче. Заметное фазовое запаздывание сезонного сигнала наблюдается также в Центральной ветви АЦТ. На западе региона на 50° з.д. максимум скорости (7 см/с) наступает в декабре. Восточнее, он смещается на 30° з.д. на февраль, на 20° з.д. на март, на 10° з.д. на июль и на Гринвиче на август. Таким образом, сезонный сигнал в интенсивности течений субантарктической и полярной зон запаздывает в направлении с запада на восток примерно на полгода.

Сезонные смещения стрежней течений, полученные по альтиметрии, согласуются с изменением границ Южного субтропического антициклонического круговорота по гидрологическим данных [10]. В обоих случаях для ЦВ ЮПТ, ЮЭП, ЮВ ЮПТ на 30° з.д. наблюдается одинаковый сигнал с максимальным приближением к экватору в марте и наибольшим отдалением от него в крайнее южное положение в октябре. Течения южной периферии Южного субтропического антициклонического круговорота и полярной

Р и с. 3. Внутригодовой ход скорости (сплошная линия) и положения стрежней (пунктир) зональных геострофических течений по данным альтиметрии (на врезке: время наступления максимума геострофической скорости для разных течений).

зоны (ЮАТ, СВ и ЦВ АЦТ) занимают крайнее южное положение в первую половину года с марта по май.

Сравнение характеристик течений по спутниковой альтиметрии и гидрологическим данным показало, что фазы сезонного сигнала большинства течений, полученные по двум независимым базам данных, качественно согласуются между собой. Однако абсолютные значения скоростей и широты расположения стрежней течений могут значительно отличаться. Величины скоростей по альтиметрии превышают их абсолютные значения, полученные динамическим методом, а стрежни течений по альтиметрии практически во всех случаях располагаются южнее, чем по гидрологическим данным.

Полученные разными методами результаты расходятся: во-первых, изза погрешностей спутниковой альтиметрии [7 – 8], во-вторых, из-за недостатков динамического метода, в-третьих, из-за различной обеспеченности обоих массивов измерениями. Погрешность определения АУО не превышает 3 – 5 см, что существенно меньше перепада уровня океана, достигающего в зоне интенсивных геострофических течений 50 - 70 см [3]. Основной вклад в различия между циркуляцией вод, рассчитанной по гидрологическим данным и по альтиметрии, вносят погрешности динамического метода, который не учитывает баротропную составляющую течений. Известно, что в полярных течениях значительный вклад вносит баротропная составляющая, и это может существенно занижать скорости течений, полученных динамическим методом. Ошибка может возникать из-за не всегда правильного выбора отсчетной поверхности. В данной работе динамические высоты рассчитывались от отсчетной поверхности 1000 м, несмотря на то, что в тропической зоне бароклинный сдвиг лучше проявляется в верхнем 500-метровом слое [1, 3], а в полярных широтах он заглубляется до 2000 – 3000 м [3]. Выбор разной глубины отсчетной поверхности может изменять поверхностную геострофическую скорость на 30 %. Использование сложных диагностических моделей, учитывающих баротропную и бароклинную составляющие течений, позволяет минимизировать различия между характеристиками течений, полученными по гидрологическим и спутниковым данным [2, 8].

Заключение. Выполненные расчеты показали, что спутниковые данные по альтиметрии, являются хорошим инструментом для исследования сезонной изменчивости крупномасштабной циркуляции вод и полученные этим методом фазы сезонного сигнала для большинства течений качественно согласуются с результатами по динамическому методу. Использование альтиметрических данных позволило установить, что в тропиках, ближе к Южной Америке, интенсивность западных и восточных течений меняется асинхронно. Вследствие запаздывания сезонного сигнала в Центральной ветви ЮПТ с запада на восток, ее интенсивность между 20° и 10° з.д. изменяется в фазе с Южным экваториальным противотечением.

В Южной Атлантике во всех течениях, кроме Южной ветви ЮПТ, сезонный сигнал распространяется с запада на восток, при этом его максимальное фазовое запаздывание наблюдается в Южно-Атлантическом течении и в Северной ветви Антарктического циркумполярного течения, составляя в обоих случаях почти 6 месяцев.

Список литературы

- 1. Артамонов Ю.В., Булгаков Н.В., Ломакин П.Д. Циркуляция вод деятельного слоя Южной Атлантики. Препринт.– Севастополь: МГИ НАНУ, 2001.– 86 с.
- Didden N., Schott F. Eddies in the North Brazil current retrofletion region observed by GEOSAT altimetry // J. Geophys. Res. – 1993. – 98. – P.20121-20131.
- Peterson R.G., Stramma L. Upper-level circulation in the South Atlantic Ocean // Prog. Oceanogr.- 1991.- 26.- P.1-73.
- Костяной А.Г., Гинзбург А.И., Лебедев С.А., Франкиньюль М., Делиль Б. Фронты и мезомасштабная изменчивость в южной части Индийского океана по альтиметрическим данным TOPEX / POSEIDON и ERS-2 // Океанология.– 2003.– 43, №5.– С.671-682.
- Chelton D.B., Schlax M.G., Witter D.L., Richman J.G. Geosat altimeter observations of the surface circulation of the Southern Ocean // J. Geophys. Res.– 1990.– 95, №C10.– P.17877-17903.

- 6. *Le Traon P.Y., Nadal F., Ducet N.* An improved mapping method of multisatellite altimeter data // J. Atmos. Oceanic Technol.– 1998.– 15.– P.522-533.
- Park Y.H., Gamberoni L. Large-scale circulation and its variability in the South Indian Ocean from TOPEX / POSEIDON altimetry // J. Geophys. Res.– 1995.– 100, №C12.– P.24911-23929.
- Carton J. A., Kats E.J. Estimates of the zonal slope and seasonal transport of the Atlantic North equatorial countercurrent // J. Geophys. Res.- 1990.- C95, №C3.-P.3091-3100.
- 9. Levitus, S., Boyer, P.T. World ocean Atlas. U.S. CD-ROM Data Sets.– National Oceanographic Data Center, Ocean Climate Laboratory, Washington, D.C, June.– 1994.
- 10. Артамонов Ю.В. Сезонная динамика крупномасштабных круговоротов, гидрологических фронтов и поверхностных водных масс в Южной Атлантике // Системы контроля окружающей среды. – Севастополь, 2004. – С.211-213.

Материал поступил в редакцию 12.05.2005 г.