1B

UDC 519.876

N.A. Bazhenov
National Technical University “Kharkov Polytechnical Institute”, Kharkov, Ukraine
nabazhenov(@gmail.com

Combining probabilistic tagging with rule-based
multilevel chunking for requirements elicitation

In this paper author describes a multi-layered NLP approach for the elicitation of ontology relevant information from
free requirements text. To automate the requirements elicitation process from textual information of stakeholders, as
well as to transform it into structured and validated fashion the combination of probabilistic and rule-based
NLP methods are proposed. The developed methodology includes a multi-level chunking strategy as its core
principle.

Introduction

Within the software development process the problem of requirements elicitation is
one of the main complicated questions, which needs to be solved in unconventional case.
Obviously the requirements information quite often exists in a not explicit and ambiguous
textual format. In this case the elicitation of domain specific concepts poses many difficul-
ties to the requirements engineer. The software development process implies the transform
requirements from text specifications to the special kinds of intermediate predesign models [1],
[2]. For solving this task the different NLP (Natural Language Processing) techniques can be
proposed [3].

The goal of the work was to develop an approach to process a free requirements text,
to elicit the relevant requirements-driven information, and to transform it into structured,
available for system end-user validation and interaction view. To succeed in this goal the
following tasks were stated:

— tokenization texts;

— allocation of possible linguistic characteristics;

— lemmatization;

— sentence limits detection;

— reduction of the characteristics of categories and disambiguation;

— chunking;

— implementation heuristic rules as e.g. conversion of categories;

— output in XML format.

Hence a NLP system for supporting the software designer to make implicit textual in-
formation easier to trace was developed. The methodology is a combining probabilistic and
rule-based parser, which processes the free text using morphosyntactic, sentence-semantic
and phrasal information and enriched in XML format available.

The proposed methodology includes algorithms for tagset mapping, pre-chunking and
multi-level chunking of free English requirements text, the main layers are:

1. The tagging task carried forward to QTAG, a probabilistic tagger written in Java by
O. Mason [4].

2. The mapping engine we developed for splitting up and reinterpreting the standard
QTAG-Set.

6 «HckyccTBeHHbIM nHTEIEKT» 2°2010

Combining probabilistic tagging with rule-based multilevel chunking for requirements.... 1B

3. The identification of compound nouns. We suppose that implicitness is very often mo-
tivated through ambiguity of complex terms, e.g. unclear structure of compounds or other
groups of words.

4. The extraction and generation of inflectional word forms.

5. Some other morphological information extraction.

6. Multi-words units and idiomatic expression identification.

7. Verb subclass identification.

8. Some chunking heuristics needed for grouping words to morphological units and
syntactical chunks, which we chose as candidates for conceptualization nodes in the onto-
logy layer.

Related work

For tagging English free texts many open source systems like the decision based “Tree-
tagger” [5], the rule- and transformation-based “Brill tagger” [6], the maximum-entropy ““‘Stan-
ford POS Tagger” [7], the trigram based probabilistic “QTAG” [8] etc. are available. We
chose “QTAG” because it is an extendable, trainable, language independent tagger.

There are also approaches including components for chunking, e.g. “MontyLingua” [9],
“MontyKlu” (an online-version of “MontyLingua” developed by members of the research
group in Klagenfurt [10]) and the “NLTK Toolkit” [11]. These systems mainly provide stan-
dardized and acceptable output, but as we know they have been developed for educational
purposes only. According to ontology engineering needs they are not really useful.

General procedure

In our NLP system (fig. 1) the data flow from the input state through processing
blocks into the output state. The input is a raw text in “.doc” or “.txt” format, the existing
free APIs, the QTokenizer [4] & QTAG, are used for producing tagged text. Between the
blocks Q-Tag and QTokenizer there is the block “Tokenize Correction”, which corrects some
well-known tokenization problems, such as possessive case of nouns (e.g. Peter’s), double
adjectives, numbers with points, etc.

For the transformation to the extended tagging format we use a mapping engine which
is based on a set of mapping rules.

Then after all possible information from Q-Tag output is extracted we need to get extra
tagging information. The next processing step we call the pre-chunking procedure. It inclu-
des the correction of a possibly wrong QTAG output, it solves some simple ambiguity prob-
lems and it identifies certain verb subclasses according to those heuristic rules, which are
based on internal heuristics. These procedures make the natural language material ready for
chunking. Also on this stage our system makes lemmatization, corelex nouns identification.
In the case of wrong tagged result one can create additional lexicons with needed entries of
tags and its frequencies. These lexicons can be used as “before-consulted” resources for tag-
ger and thus, text can be retagged for corrected result obtaining.

The chunking procedure consists of multi-words units and idiomatic expressions de-
tection, default chunking rules engine and elements of fine-granulated chunking methods.
The chunking rules engine operates step by step depending on their level numbers and the
chunk trees are built up respectively.

«IlItyuynnii inTenexT» 2°2010 7

Bazhenov N.A.
1B

v
Vo2

Input Lexicon Matrix
IEl .doc) fAr:ay el Corrected
ext . of strin text
—— QTokenizer Correction QTags @
= txt F
Tagged Additional
text Lexicons
_———
User N Mapping 4
-~ - Mapped Mapping rules
Output —d N\ ta‘geifd
Fitered []
T iow text text -
_Xm| [Tre view tex Chunking Chz;ﬁ(ing

f///// /

@ LingvoException
| Corelex
Multi-words units @

Chunking rules

$ S
N N
\/‘ § ~
Idiom phrases Partial verbs Dictionary Nouns Types

Figure 1 — Conceptual scheme of our NLP system

As a result of this approach we receive an extended POS (part-of-speech) tagged text
in tree view with the root node <text>. We store the output in the XML format, which allows
us to review it with any XML editor and of course to interpret it in the next stage of the work-
flow. Note that in principle all processing blocks work automatically in the default configu-
ration, but the user can change the settings also manually. These possibilities are imaged with
dashed arrows.

Details of linguistic processing

The mapping step. We use QTAG as the primary parsing and tagging engine. The out-
put is needed for further processing. But as we pointed out the QTAG output had to be adop-
ted for requirements engineering workflow needs since both systems have different view
structures. So, we propose, that:

1. QTAG carries out the basic processing step.

2. We extract relevant information from the QTAG output and transform it into the
enriched tagset format.

3. We have to use some additional methods and heuristics to elicit semantic informa-
tion needed during the further processing steps of the requirements engineering workflow.

We propose that mapping from the shallow, standardized QTAG-Set [4] to the onto-
logy-oriented tagset (developed in project NIBA [1], [12]), which consists of basic main
POS-categories with arrays of attributes (e.g. vO with subclass attribute “tvag2”(=mono-
transitive verb with agentive subject), is necessary for the identification of ontological key
relations and terms. Figure 2 shows how part-of-speech tags are extracted from the QTAG
output and reassigned using the NIBA tagset notation (e.g. v0, n0, a0, etc.).

Additional information about concrete part-of-speech instances is presented by using
fine-granulated attributes. As an example, the verb “is” in QTAG gets the tag <BEZ>. This

8 «MckyccTBeHHbIN nHTEEKT» 2°2010

Combining probabilistic tagging with rule-based multilevel chunking for requirements.... 1B

tag decodes, that “is” is an auxiliary verb with the inherent morphosyntactic values present tense,
singular, third person and having the “be” as the base form. After mapping and restructuring
we receive the main class tag <v0> and an explicit set of attributes belonging to this tag: verb-
class="aux”, temp="pres”, form="ind”, num="sg” ps="3", baseform="be”.

Figure 2 — Mapping process)
Mappi

Pre-Chunking. For the next step our aims are more sophisticated. We p?;go%%tsg:eévc> (temp=""pt

ding information about verb subclasses [12],%@&%@8%&21, the base forms o sapd —o o

. . . .) s . . => <nC> (tyy
about some other inflectional parameters like passiyesypice construction. For solving this tas <JJR> => <ai
we used some heuristics based on basic English ggapymar rules. -

Disambiguation of auxiliary verbs. Quite often auxiliary verbs (like “be” or “have”)
function as main verbs. WRB

As a result of the mapping procedure our system assigns the value “aux” to all inflec-
tional forms of “to be”, “to do”, “to have” and the modal verbs in the default case. In conse-
quence we need to eventually reinterpret the subclass value “aux” as “copV/possV” (table 1)
depending on the concrete syntactic context.

For solving this problem the following heuristic procedure is chosen. The filtering
engine goes through all tagged words, identifies the auxiliary verbs and then CQBEE% => <v0:
contextual conditions. .

The following formal definitions are-reld®mBEdis-purpose: ~ verbclass="aux” temp=""p

S —set of all sentences, S=S{S; €S, j=l,n}; ps="3" ba:

W — set of all output words in the same way;
T — set of all output tags;

V*™* _ set of enriched output tags, which are agreed with auxiliary modeless verbs,

V™ ={v0 VO j.Velrbclass="aux" A V0 j.form # "modal",v0 i € V},V —set of all verb tags.

Thus, the rule can be written as (for i =1, N s):
\v VOiZ VOi S Vaux, VOi IS Sk; 3 VOjZ VOj IS Sk, VOj.form #”modal”
— v0;.verbclass = copV, (1)

A4 VOi : V()i € Vaux’ VOi € Sk, VOi.baseform ="have”; EVOJ- 1 v0.

i € Sk, v0 ..form #’modal”

J

— v0,.verbclass = possV. (2)

Verb transitivity disambiguation. According to the requirements engineering purpo-
ses we also need to identify other verb subclasses (Table 1).

«tyunwmii inTenexr» 2°2010 9

Bazhenov N.A.

1B
Table 1 — Verb subclasses

Ne | Abbreviation Description
1 |aux Auxiliary verb
2 | eV Ergative verb
3 |1V Intransitive verb
4 | lokV Locations verb
5 | possV Possessive verb
6 | psychV Mental verb
7 | tvag2 Monotransitive verb with agent subject
8 | tv3 Ditransitive verb
9 |sentV Perception verb
10 | copV Copula verb
11| tv2 Monotransitive verb without agent subject

Due to the fixed and transparent subject-verb-object (SVO) structure of English, nor-
mally verb transitivity identification is a quite simple and straightforward task. Nevertheless
we have to take into account that the phrasal structure very often inhibits simple solutions
like for example counting of nouns.

In our approach we used the following algorithm to cope with the problem of phrasal
complexity:

1. Create a set of rules which can operate on simple singular term subjects and objects
(e.g. proper nouns and personal pronouns).

2. Consult the exception database with already-assigned verbal subclass tags using trai-
ning sentences which include default argument patterns.

3. Reconstruct the structure of the primarily assigned phrases if relevant morphosyn-
tactic features don’t fit.

4. Leave open the possibility to manually change wrong/exceptional assignments or
to add new information about verb classes.

Presupposing the above defined default heuristic rules we add the following definitions
for verb transitivity identification explained in (1) and (2) above:

aux n n n n
WWO0; eV,v0; €V v0; € Sk;EIti_,, = n0.type =" proper" | pron0.type =" pers" =

Iw; . ="in"|"on",w; . € Sy — v0;verbclass ="lokV", (3)
3t = ”POJH_,, € Sk — vOl-.verbclass ="tvag2" &)

1 2 2.1 2
3, =nPOU¢,, = nPO; W w ;11,f € S, — v0.verbclass ="tv3" (5)

Note that nPO (noun pseudo-object) decodes word groups, which can include more than
one noun. We identify those groups as noun compounds which can be taken as pseudo-ob-
jects for transitivity disambiguation. In the following example:

1 write a system requirements document
the sequence of three nouns in the right context of the verb is interpreted as one argument
and in consequence as a compound noun. That’s why we classify “write” as a monotransi-
tive verb. This process we call pseudo-object identification, because it doesn’t presuppose
any syntactic analysis.

In the next example sentence:

He gave Peter balls

10 «MckyccTBeHHbIN nHTEEKT» 2°2010

Combining probabilistic tagging with rule-based multilevel chunking for requirements.... 1B

we identified two nouns in object position representing two different objects because of the
missing congruence between these nouns with respect to proper/common opposition. Thus, we
classify “give” as a ditransitive verb.

Passive voice identification. For ontological design needs we have to detect passive
constructions.

In the default case passive constructions are built with the auxiliary verb “to be” and
the participle II of a main verb.

So, presupposing the definitions above, we define the following heuristic rule (for

i= I,NV).
Vv0; :v0; € V,v0; € Sk,vOi.baseform ="be";Iv0; 1 :v0, | € Sy V0, temp =" perf"

—>v0,.mode =" pass",v0,, . mode =" pass". (6)

During the development of this approach the use of the additional trigger for passive
identification was concluded. This one takes into account the reduced form, so-called parti-
cipial construction:

vv0,:v0, €V ,v0.temp =" perf",3w,, € PrepPassList — v0.mode =" pass". (7)

This rule is used for the reduced form identification and only in the case if the current
verb is used with one of the predefined preposition. For example:

Parents or legal guardians are filling in an application provided by the day nursery.

Verbal base form generation. During the pre-chunking procedure we relate the inf-
lectional variants of a verb to the base form through synchronization of the main class tags
and diversification of attributes which are used to identify the verbal variants (e.g. v0 is as-

9 ¢ % ¢

signed to “see”, “saw”, “seen”; type: perception verb (“sentV”) is assigned to all three forms,
“past” is assigned to “saw”, “perf” is assigned to “seen”).

For this purpose the procedure of base form generation was developed (fig. 3). Verb
forms are extracted from the dynamically-extendable dictionary with the following verbal
entry structure: <base-form>=<related form1> <related form2>.... If a certain word is found in
the dictionary, the engine simply returns all needed information. If the searched word is not
in dictionary, one of two possible strategies is executed. In one case default endings are as-
signed depending on the paradigm of regular verb forms. In the other case the user is offered
the possibility to interact with the system. He can define base forms and/or inflected forms

himself (fig. 3).

Yes
Verb Baseform | | Lookup Receive Results
generation in Dictionary forms

i i No
Default Special NLP specialist <baze—form>
Case Case Q <3% form>
) <past form>
i i <continuous form>
<participle Il form>
3; f°;f“ -(e)s Manually
ontin — In
Past — edg set
Participle Il - ed ‘ . Dictionary.properties
Store L P =— PSRRI
[I"| Dictionary

Figure 3 — Verbal base form generation

The common chunking rules. Based on some variants of the X-bar Theory [13] and
on some core definitions in the project NIBA [1], [12] we composed a set of chunking rules
for English for the production of syntactically and morphosynctactically motivated chunks
(Table 2).

«IlItyuynnii inTenexT» 2°2010 11

1B Bazhenov N.A.
Table 2 — Excerpt from chunking rules
Rule (Summands — Result) Rule Rule descriptions Examples
level
n0+n0 — n0 | Compound Noun blood pressure
[pt0]+a0 — a2 1 Adjective Phrase very nice
[a0]+a0 — a2 1 Adjective Phrase bright green
[pt0]+q0 — g2 1 Quantor Phrase very many
[q0]+q0 — g2 1 Quantor Phrase one million
[pt0]+adv0 — adv2 1 Adverb Phrase very often
[advO]+adv0 — adv2 1 Adverb Phrase yesterday noon
pron0(type=pers) — n3 1 Noun Phrase she
O(verbclass=aux)+[adv0]+v0 . .
Lsggty;;:zoiﬁ)ex[)a VOJ+v 1 Complex Verb will certainly go
VO(Verbcla_ss=aux)+ptO(typ c=neg)+v0 1 Complex Verb would not write
—v0(type=complex)
vO-+ptO(type=verbal)
Sv0(type=complex) 1 Complex Verb wake up
q2+q2 — q2 2 Quantor Phrase W(r)nlilllfgged
pron0(type=poss)+n0 — n3 2 Noun Phrase his mother
[detO]+[a2]+[q2]+n0 — n3 3 Noun Phrase the nice two girls
the three busy
[detO]+[g2]+[a2]+n0 — n3 3 Noun Phrase <cientists
p0+n3 — p2 4 Prepositional Phrase of blood pressure
measurement

There are several types of chunking rules, which are arranged in a certain order that
should be followed during the chunking process. Summands are the array of input nodes
which are needed for building the next resulting upper node of the chunking tree. Some of
summands are strictly required for rule producing, they are written without square brackets,
but some are not obligatory, they are placed inside brackets.

The chunking process starts on the first level of the rule system, e.g. with the identifi-
cation of compound nouns and complex verbs, and climbs up the rule hierarchy, ending up
at the fourth level of the rule system with the identification of prepositional phrases. The step
of constructing compound nouns is a very important precondition for ontology elicitation,
because compounds normally serve as specialization terms in domain ontologies. In general
we think that the number of simple nouns involved in compound correlates with the degree
of specialization.

Multi-words units. Multi-word units are phrases that function grammatically as single
words, e.g. conjunction so that or preposition in spite of, receive a single POS tag, so they
are treated here as single words.

Before the work of the common chunking rules engine the phase of multi-word unit’s
assignment is run. Since these collocations have only grammatical function we don’t com-
bine them into the new node of more high level, but only assign to the parts of these units
the relevant attributes. Algorithm of this procedure is the same as for the chunking rules with
the exception of that we don’t create new node here. One of the particular cases of multi-
word units is partial (or phrasal) verbs.

Idiomatic expressions identification. Building up the chunking tree begins with pre-
defined node phrases lists comparison. In English there are a lot of stable set expressions,
e.g. idiomatic expression. That’s why for a good phrase-based parsing it is very important
use these expressions for identifying POS-phrase on a much higher level. For this purpose
we have extendable lists for different POS nodes and compare the entries from these lists

12 «MckyccTBeHHbIN nHTEEKT» 2°2010

Combining probabilistic tagging with rule-based multilevel chunking for requirements.... 1B

with our sentence constructs. And if one would find this construct, the new node on the next
level would be created.

Fine-granulated chunking rules. After that all default simple chunking rules and pre-
defined patterns of idiomatic expressions are applied, the chunked tree of raw text is not
complete. English as each modern language has a lot of complex internal structures, whose
identification is a very important and implicit thing in NLP today. For the requirements eli-
citation sense it is also very useful to extract some of that things, turns of speech and others.
These tasks can be implemented with using of some predefined heuristics based on the com-
mon rules of English usage. So, consider the things, which are relevant for this work, and
methods which help to implement them:

Preposition phrase as the post-modifier of the noun phrase. In our approach the follo-
wing heuristic method is proposed (8):

Vs, :s,€8", s, = p2,s,.head € N3P2List,

: ~ - 8
s, ,:s,, €8, s, =n3—>s,_ .children, 6 =s,, (®)

1

. cur _ . . .
s, ,:5,,€8", s, =p2—>s, .children,,.children, =s

Defining this rule the notations from previous definitions are used and some additional:
— s,.head — the children of the node s,, which means the head of relevant phrase.

In this case it is the preposition;

— N3P2List — the list of prepositions, which signal about the post-modifier case. It con-
sists of the following: “of”, “for”, “with”, “to”, “in”, “as”;

— children,,, — the element of the array “children” with the highest index.

Note that the identification of post-modifier prepositional phrases should be realized
as LIFO process, the searching engine must go through the sentence form right to left.

Parenthesis is an explanatory or qualifying word, clause, or sentence inserted into a
passage with which it doesn’t necessarily have any grammatical connection, and from which
it is usually marked off by round or square brackets, dashes, or commas. In the capacity of
parenthesis could be the noun groups or the whole sentence construct. To fix the idea let
confine ourselves only to use brackets for parenthesis identification:

Vis}i{she S i=lm, s, =(,s,,=")

Js, € {s,}:s, =v0 > 5, | = sentence,s, ,.type = parenthesis,s, ,.children="(U{s,}U")', (9)
Js, & {s,}:s, =v0—> s, =n3,s, type = parenthesis,s, ,.children =""U{s,} U")’'

= s, ,.children,, =s, |

Homogeneous parts are parts of the same category standing in the same relation to other
parts of the sentence a “contracted” sentences:
Vis) s} eSvi=kor,
Js;:s;=""vs; =con0,s, .type = coord, j = i(imod2 = 0) N, (10)
ds,:5,=s,,,,/=i(imod2 #0) > s, =5,,5,.children = {s.} ,s,.type = homogeneous
Descriptions of relative clause, infinitive groups, subordinate sentences and post-chun-
ked verb subclasses assignment verification are omitted here for brevity.

Conclusion and further work

NLP driven ontology engineering is certainly one of the key technologies in the requi-
rements engineering realm of the upcoming decade [14-16]. The proposed approach, based
on the combining probabilistic POS-tagging with multilevel chunking, allows to proceed

«tyunwmii inTenexr» 2°2010 13

Bazhenov N.A.

1B

from free requirements texts into the special ontology-oriented linguistic model enriched with
the set of elicited attributes, relations and different characteristics. Parts of our approach are
based on the algorithms which we described in this paper. The involved procedures are heu-
ristically founded and follow a multi-level chunking strategy.

This extended ontology-oriented linguistic model can be used further to generate the
conceptual predesign requirements model [2] and fill its glossaries with concepts and model
elements. For this actions the interpretations transformations should be used.

Literature

1. Fliedl G. NIBA Project: Overview / G. Fliedl, Ch. Kop, J. Vohringer, Ch. Winkler // ER 2005: 24th Inter-
national Conference on Conceptual Modeling, Alpen-Adria-Universitit Klagenfurt, 2005.

2. Shekhovtsov V.A. Capturing the Semantics of Quality Requirements into an Intermediate Predesign Mo-
del / V.A. Shekhovtsov, Christian Kop, Heinrich C. Mayr // SIGSAND-EUROPE Symposium 2008. —
Marburg, Germany, 2008. — P. 25-38.

3. Manning C.D. Foundations of statistical natural language processing / C. Manning. — The MIT Press,
1999. — 680 p.

4. Oliver Mason’s. Webpages [DnexrpoHHslii pecypc] / O. Mason. — Pexxum nocryna : http://www.english.
bham.ac.uk/staff/omason/index.html.

5. Schmid H. Probabilistic part-of-speech tagging using decision trees / H. Schmid // Proceedings of the Inter-
national Conference on New Methods. — In Language Processing. — 1994.

6. Brill E. Unsupervised learning of disambiguation rules for part of speech tagging / E. Brill / Proceedings
of the 3rd Workshop on Very Large Corpora. — 1995. — P. 1-13.

7. Goldwater S. A fully Bayesian approach to unsupervised part-of-speech tagging / S. Goldwater, T. Grif-
fiths // Proceedings of the 45th Annual Meeting of the ACL. — Prague, 2007. — P. 744-751.

8. Mason O. Programming for Corpus Programming: how to do text analysis with Java / O. Mason. — Edin-
burgh University Press, 2000. — 224 p.

9. Montylingua : a free, commonsense-enriched natural language understander [DnexTpoHHEBIN pecype] —
Pexxum nocryma : http://web.media.mit.edu/~hugo/montylingua.

10. Monty Klu Web v0.1 [3nekrpoHHBIi pecypc]. — Pexxum moctyma : http://montyklu.knospi.com.

11.Bird S. Natural Language Processing in Python [Dnextponnsiii pecypc] / S. Bird, E. Klein, E. Loper. —
Pexxum noctymna : http://nltk.org/doc/en/book.pdf.

12. Weber G. NIBA<tag> Aspekte der Implementierung eines erweiterten Taggers fiir die automatische Tex-
tannotation in NIBA. Master Thesis / G. Weber. — Alpen-Adria-Universitit Klagenfurt, 2007. — 114 p.

13. Black C.A. A step-by-step introduction to the Government and Binding theory of a syntax [OnexTpoHHbIit
pecype] / C.A. Black. — Pesxxum moctyma : http://www.sil.org/americas/mexico/ling/E002-IntroGB.pdf.

14. MexyeB B.U. Ncnonp3oBaHne OHTONOTHN KakK MpenaMeTHBIX obmacrei / B.M. Mexyes // ckyccTBeHHBII
uHTesekT. — 2009. — Ne 4. — C. 4-11.

15. 3sennropoackuit A.C. Konuenuusa u 3aayd MOHUMaHMSI CMBIC]IA TEKCTa B CHCTEMaX HCKYCCTBEHHOIO
unremwiekra / A.C. 3Benuroponckuii // MckyccrBennstit naremiekt. — 2009. — Ne 3. — C. 6-10.

16. llleBuenko O.10. Metox noOymoBH IHTEIEKTyalbHHX CHCTEM OOpOOKH iH(pOpMAaIii Ta JOKYMEHTOOOIry
3a I0MoMOroro oHrosoriusol 6a3u 3uaub / O.10. IlleBuenko, M.B. KiimoBsa // VICKyCcCTBEHHBIN HHTEIICKT. —
2009. —Ne 2. — C. 91-97.

H.A. Bascenos

CoueTanne BepOSITHOCTHOTO TETHPOBAHNS ¢ OCHOBAHHBLIM Ha MPaBUJIAaX MHOTO0YPOBHEBbIM
CHHTAKCHYEeCKHM aHAJU30M /I M3BJIeYyeHUs TpedoBaHMIi

Crarbs nocssitieHa onucanuio NLP noaxoza k M3BIEYEHHIO COOTBETCTBYIOLIEH OHTOIOIMYECKOI HH(OpMaInK
13 HeOOPaOOTaHHBIX TEKCTOB TPeOOBaHWH. J1J11 aBTOMATH3AIMH MPOIIecca U3BJICUEHHS TPEOOBAaHUI U3 TEKCTOBOM
MH(OPMAINK 3aMHTEPECOBAHHBIX JIHLI, a TakoKe Ul e€ TpaHc(OpMaluK B CTPYKTYPUPOBAHHYIO U IIPUTOJHYIO
JUTs Banuany popMy IpeiaraeTcs UCIob30BaTh COYETaHNE BEPOSTHOCTHBIX M OCHOBAHHBIX Ha MpaBHIIax
MetozoB NLP. PazpaboTaHHast METOOIOTHS B KA4ECTBE OCHOBHOT'O TIPHHIIUIIA BKITFOYAET B ce0sl MHOTOYPOBHEBYIO
CTPaTEru0 CHHTAKCHUECKOTO aHaIu3a.

M.O. Bascenos

IMoennanns iMOBIDHICHOTO TeryBaHHS i3 3ACHOBAHMM HA MPABHJIAX

0araTopiBHEBUM CHHTAKCHYHHM AHAJTI30M JISl BUTATY BHMOT

Crarrsa npucBsaeHa ormiucy NLP mimxony 1o BHTATY BIOOBIOHOI OHTONOTIYHOI iH(GOPMAIT 3 HEOIPabOBAHIX
TekcTiB BUMOT. Jtst aBTOMaTH3allii porecy BUTATY BUMOT 3 TEKCTOBOI iH(hopMallii 3alikaBIeHnX 0cCi0, a TAKOXK
Ju1s Tl TpaHcdopMalii B CTPYKTYPOBaHY 1 IPHAATHY [UIs Basliialiil (popMy HPOIIOHYETHCS BUKOPHCTOBYBATH TOEJHAHHS
IMOBIPHICHHX Ta 3aCHOBaHHX Ha npaBmnax MetosiB NLP. Pozpobnena meTonomorist y sIKOCTI OCHOBHOTO NPHHIIAITY
BKJIIOUa€ B cebe 0araTopiBHEBY CTPATETii0 CHHTAKCHYHOTO aHaIi3y.

Cmamos nocmynuna 6 pedaxyuto 01.04.2010.

14 «MckyccrBeHHbIl nHTEIEKT 2°2010

