UDC 004.031

Witodzimierz Khadzhynov, Mateusz Maksymiuk

Technical University of Koszalin, Department of Electronics & Informatics
ul. Sniadeckich, 2, 75-453 Koszalin, Poland

e-mail: hadginov@ie.tu.koszalin.pl; mateuszmaksymiuk@wp.pl

Execution of replication in heterogeneous database systems

Database replication is a mechanism which allows distributed databases
stay in synchronized and consistent state. In heterogeneous case there is a
set of databases with different platforms, what additionally complicates this
process. High demand for this technique causes that replication issue is de-
veloped very fast nowadays. Database replication mechanism consists in in-
tercepting data modifications and propagating them to other databases
where they are executed again. This process is very complex and there are
many variants and types of replication. In this paper are discussed database
replication classification (synchronous, asynchronous, multiple master,
master slave), kinds of replication conflicts with resolving strategies, data
modification capturing and publication-subscription model. There is intro-
duced an example for realization of replication in heterogeneous environ-
ment. Also are discussed aspects of independence database assess mecha-
nism from specific platform, what can be used in implementation of hetero-
geneous database replication.

Key words Replication mode, Two-Phase Commit protocol, Master-Slave
replication model, Multiple Master replication model, Replication conflicts,
Hibernate package.

1. Introduction

Precise definition of term «replication» was agreed in the middle of 90s. It de-
scribes database replication as a process of generating a distinct copy of data from one
or more sources and delivering them to one or more destination nodes. Term «node»
represents a single database, which is a part of distributed database system and takes
part in replication process. Term «group of nodes» means a set of all nodes that take
part in replication process.

Database replication is applied in many areas:

— synchronization of distributed databases;

— database security achieved through increase of data (data excess);

© Wtodzimierz Khadzhynov, Mateusz Maksymiuk

ISSN 1560-9189 Peectpamis, 30epiranas i 06podka xannx, 2006, T. 8, Ne 1 55

mailto:hadginov@ie.tu.koszalin.pl
mailto:mateuszmaksymiuk@wp.pl

Wiodzimierz Khadzhynov, Mateusz Maksymiuk

— increasing of system availability in the case of node failure;

— load distribution;

— data transfer from OLTP to DSS in order to increase efficiency;

— location of data in place where it is the most needed (limits communication
cost).

2. Replication profile

An ideal model of database replication should meet the following criteria:

— data integration and consistency with transaction support (1-copy-serializability
[L, 5]);

— synchronization (immediate transaction execution at all nodes);

— symmetrics (modifications allowed in every node);

— transparency;

— efficiency;

— scalability (efficient work regardless of a number of nodes);

— failure resistance.

Implementation of an ideal model is impossible because of physical limitations.
Therefore there were created many different variants of database replication. Everyone
of them offers only a subset of above-mentioned requirements.

2.1. Synchronous replication mode (Eager replication)

Synchronous replication realizes immediate execution of a transaction in all nodes
[4]. Most often this mode uses such protocols as Two-Phase Commit — 2PC (Fig. 1).
Besides there are many other protocols [2], which are generally named RMC protocols
(Replica Majority Control). In the first phase of transaction commitment of 2PC proto-
col, there is made a common decision: commit or abort. In the second phase, the
choosen decision is executed at all nodes. Unfortunately the main disadvantage of such
protocols as 2PC, 3PC and others similar is large time consumption, which greatly de-
creases system efficiency [2, 3].

Transaction abortion

V@ Ab/rt'@

Phase 1 Phase 2

Transaction commitment

/@ CW@

Phase 1 Phase 2

Fig. 1. Two-Phase Commit protocol (2PC)

56

Execution of replication in heterogenous database systems

In order to ensure concurrent access to data — there are used various resource
blocking protocols. The most common used is Two-Phase Blocking protocol — 2PL
(Fig. 2).

Node 1 —{BOTHRx) HWx}——]UpdF——> Legend:

BOT - Begin of Transaction
request ack change R(x) - data read
W(x) - data write
Node 2 Lock Upd Lock - lock acquire
ITI P request - lock request
request _ack change ack - lock acknowledgement
i | change - change request
Node 3 Lock Upd Upd - data update execution

Fig. 2. Two-Phase Locking protocol (2PL)

Read of data is executed locally, therefore lock for reading is acquired only in local
node. Write of data is performed at all nodes in a group, therefore locks for writing are
acquired in every node. This technique is known as «Read one/Write all» (ROWA). Its
disadvantage is requirement of all nodes availability. Because of this, there was devel-
oped another method named ROWAA, which means «Read one/Write all available». In
this method the write is executed only at those nodes, which are available at the mo-
ment. Unfortunately, the use of blocking causes existence of deadlocks, which greatly
decrease system efficiency [3].

Advantages:

— data consistency and integrity (1-copy-serializability);

— real-time data up-to-date.

Disadvantages:

— low efficiency caused by use of 2PC and 2PL protocols;

— low scalability;

— low failure resistance.

2.2. Asynchronous replication mode (Lazy replication)

Asynchronous replication (Fig. 3) does not require permanent network connection
between all nodes. Each node operates separately and communication occurs periodi-
cally [4]. All reads and writes are performed locally, but every data change is captured
and stored in appropriate buffers (usually FIFO queues). Each item stored in buffer in-
cludes significant informations, which allows to re-execute given modification in other
nodes. Some of these informations are: modification time, table name, record key value,
record field values before and after modification. Next, there occurs data synchroniza-
tion at all nodes in the group. It may be executed periodically, by user demand or soon
after modification occurs (case of asynchronous replication, which is near real-time). In
synchronization process, all captured data changes in every node are propagated (trans-
mitted) to all other nodes, where they are re-executed.

ISSN 1560-9189 Peectpamis, 30epiranas i 06podka xannx, 2006, T. 8, Ne 1 57

Wiodzimierz Khadzhynov, Mateusz Maksymiuk

source node

| 1
' source | modification = .| messages |'
I > » buffer > . I
1| table capture transmitter |,
b i o e e e e G o) i i o o) o sy (] o ——|
Idestination node . 7 :
1 e R
| dest. | modification |_ _ messages |
< : < buffer [« . I
1| table execution reciver |,

Fig. 3. Asynchronous replication

Asynchronous mode is frequently used with publication-subscription model. It al-
lows selection only a subset of database tables which are included in replication proc-
ess. The main disadvantage is lack of data consistency and integrity between consecu-
tive replication executions. Furthermore, during the replication there may occur replica-
tion conflicts. This issue is described in the further paragraph.

Advantages:

— efficiency — lack of protocols such as 2PC and 2PL;

— scalability;

— no permanent connection requirement;

— failure tolerance;

— optimization possibility (multiple modifications of the same record are replaced
by only one).

Disadvantages:

— lack of full consistency and integrity of data;

— occurrence of replication conflicts.

2.3. Master-Slave replication model (Primary Copy)

In Primary Copy model [5, 6] all data modifications are executed at only one node
(so-called Master node). At all other nodes (so-called Slave nodes) there are performed
only data read operations. Every data modification submitted at Slave nodes, is redi-
rected to Master node, where it is executed. After execution in Master node its result is
propagated (usually asynchronous) to Slave nodes (Fig. 4).

W(X) KLl LR?)eng: ta read (performed locally)
x) - data read (performed locally,
—> slave 1 |.., | > W(x) - data write
- F:W(x) - redirection of W(x)
P:W(x) master | P-WI(x) - propagation of W(x)'s result
R(x) '
—>» slave 2 |<- |-3-W(X)

Fig. 4. Master-Slave replication model

This model realizes unidirectional replication (from Master to Slave) which is
asymmetrical (Master can read and write, Slave can only read). Such a conception sig-

58

Execution of replication in heterogenous database systems

nificantly simplifies execution of replication process, because of exclusion the most im-
portant problems:

— better efficiency caused by elimination of RMC protocols (2PC & 2PL);

— lack of replication conflicts in asynchronous mode.

On the other hand, system disadvantages are:

— bottleneck of Master node;

— sensitivity to Master node failures;

— lack of full concurrency in data access (only read).

Unidirectional replication model is often used for increment data security (data
multiplication). Also it is applied for data transfer from OLTP to DSS systems for better
efficiency achievement.

2.4. Multiple Master replication model (Update Everywhere)

Multiple Master model [5, 6] does not require that data modifications are executed
only in a single node. Every modification can be executed in any node in the group.
This makes the system symmetric (all nodes have full read/write access to data), and
replication is bidirectional. A diagram of Multiple Master model is presented below

(Fig. 5).
W1 (x) Legend:
A) Whn(x) - data modification in w n-th node

PAWA (X} < ‘:‘E":W1 (x) P:Wn(x) - propagation of modification Wn(x)

»op 4
20 ot D4 o DY
"F":'"(;()">

Fig. 5. Multiple-Master model

Because every node has write access to data, there can appear conflicts. Conflict
occurs when at least two nodes execute modification of the same record. For synchro-
nous mode it will be a locking conflict and for asynchronous mode — a replication con-
flict.

Conflicts occurred in replication process require appropriate resolving strategies.
Deep analysis of this issue is described in further paragraphs.

Advantages:

— system symmetrics — data read and write in all nodes;

— less failure susceptibility.

Disadvantages:

— reduced efficiency, caused by requirement RMC protocols usage in synchronous
mode;

— occurrence of replication conflicts.

2.5. Database platform uniformity — homogenous
and heterogeneous replication

Each node, which is taking part in replication process, represents a specific data-
base platform. Case, where all nodes represent an identical database platform, is called

ISSN 1560-9189 Peectpamis, 30epiranas i 06podka xannx, 2006, T. 8, Ne 1 59

Wiodzimierz Khadzhynov, Mateusz Maksymiuk

homogenous replication. Much more complicated is a heterogeneous replication case
(Fig. 6), where all nodes represent on different database platforms. This causes various
problems:

— different binary formats of transaction log;

— incompatibility of data types;

— incompatibility in SQL syntax (and its procedural extensions).

replication universal data
logic format
adaptive adaptive adaptive data format
layer layer layer transformation

A A A

\4 \ 4 \4

platform specyfic
data format

platform 1 platform 2 platform 3

Fig. 6. Heterogenous replication

In order to solve above problems, there are required special mechanisms, which
must be created separately for every database platform, taking part in replication proc-
ess.

Among them, we can distinguish the following elements:

— database connection class libraries;

— transaction log reading mechanism;

— data type translation modules (between different platforms);

— SQL generation procedures.

To solve these problems, replication system should be divided into two layers:

— system logic layer (independent from any specific platform);

— adaptive layer (specific for given platform).

In system logic layer, there are defined replication algorithms, universal data types,
abstract classes and interfaces, which are implemented in an adaptive layer. Every ele-
ment in this layer is not associated with any specific database platform.

An adaptive layer is responsible for specific database platform access. It can read
transaction log, some system tables, generate and execute SQL code or translate plat-
form specific data types to universal data types defined in a system logic layer. Such
architecture ensures independency from specific database platform and could be easily
extended to support other platforms, through definition of new adaptive layers.

2.6. Data modifications capturing

Process of capturing data modifications executed in database is essential part of
replication issue and it could be realized in various methods:

— transaction log reading;

— usage of triggers or rules;

— usage of network sniffer for capturing SQL commands sended to database;

60

Execution of replication in heterogenous database systems

— creation own database layer access (eg. Jdbc driver).

— creation proxy application in database access.

Transaction log reading ensures good efficiency and full system transparency, but
is tightly connected to specific database platform and very difficult. Triggers are easy in
implementation and universal, but cause large overhead and decrease efficiency. Creat-
ing own database driver causes small overhead but is not easy. The proxy application,
which receives database commands, does not ensure system transparency.

2.7. Asynchronous replication conflicts

There are several kinds of asynchronous replication conflicts:

— Insert-Insert;

— Update-Update;

— Update-Delete.

Insert-Insert conflict occurs when two or more nodes try to insert record with the
same primary key value. This will violate uniqueness constraint and prevents effective
execution of these inserts.

Update-update conflict occurs when two or more nodes try to update the same re-
cord. To solve this problem it is necessary to make decision about final values of record
that will be written to database.

Update-delete conflict occurs when the same record is updated in one node and de-
leted in another node. To solve the conflict it is necessary to make decision what action
should be done, modification or deletion?

2.7.1. Conflict avoidance

2.7.1.1. Globally unique identifiers generation

The globally unique identifier problem [7] is essential for elimination of occurrence
the insert-insert conflicts. The most frequently used methods that solve this problem are:

— identifier division into two parts : database identifier and sequence value;

— assignment for each node, sequence with separate value ranges.

The first technique divides identifier into two parts: unique node (database) identi-
fier within nodes group and sequence value (same sequence for each node). These two
values together guarantee globally identifier uniqueness.

The second way is assignment for each node, appropriate sequence with separate
value ranges, ie. {0,..., 9999999}, {10000000,..., 19999999} etc.

Another method is usage of randomly generated GUID (Globally Unique Identi-
fier) numbers, but it is seldom used and its main disadvantage is low efficiency.

2.7.1.2. Data ownership

In this method [8] every node is allows to modify only this data, which it owns.
Every new-inserted record has strict membership to node, in which insertion has taken
place (mother node). During replication process each record is replicated to all nodes in
the group, but given record can be modified only in its mother node. In other nodes, re-
cord can be only read. For asynchronous mode such technique guarantees elimination of
update-update and update-delete conflicts. It is achieved, because each record can be
modified or deleted only in one node (mother node). Although this method is very ef-

ISSN 1560-9189 Peectpamis, 30epiranas i 06podka xannx, 2006, T. 8, Ne 1 61

Wiodzimierz Khadzhynov, Mateusz Maksymiuk

fective its usage is limited. In many cases there is requirement for full data access con-
currency, which excludes usage of this method.

2.7.2. Conflict resolving

These conflicts, which were not avoided, must be solved using appropriate strate-
gies (algorithms). In this paragraph many various methods are discussed.

2.7.2.1. Primary key uniqueness conflict (Insert-Insert)

In case of primary key uniqueness violation, most often is used one of the follow-
ing methods:

— addition (concatenation) to key field, the server name (for text fields);

— addition (concatenation) to key field, sequence value;

— insertion abort.

2.7.2.2. Methods of executing UPDATE modification

Important issue during Update-Update conflict resolving is the way of record modi-
fication. There are several options possible:

— modification applied to only changed columns;

— modification applied to defined groups of columns;

— modification of entire record (all columns).

First method enables modification of separate columns in different nodes. Changes
will be consolidated into single UPDATE statement. In second method there are defined
related column groups which must be updated simultaneously (ie. «postal code», «city»
and «street»). Modification of entire record, according to values from the given node,
discards any changes from other nodes.

2.7.2.3. Time-stamps

In this popular technique [7], decision about approvement or abortion of modifica-
tion bases on modification occurrence timestamp. On this basis it could be decided,
which modification would be accepted and which one would be discarded. The algo-
rithm chooses only the most earliest or most latest modification. It could also sort all
modifications by their timestamps and then execute each of them in proper order.

2.7.2.4. Node priority

Another technique bases on priorities assigned for each node [7]. Precedence of re-
cord modification has node which has the highest priority. Disadvantage of this tech-
nique is necessity of priorities (the best different) assignment for each node, what could
be not easy.

2.7.2.5. Mathematical functions

Usage of mathematical functions [7] is frequently used for number fields (ie. inte-
ger, float). There are used various functions, such as:

— maximum,;

— minimum,;

— average;

— other algorithms.

62

Execution of replication in heterogenous database systems

3. Example implementation of asynchronous replication
system in heterogeneous environment

In this paragraph there is discussed an application named «Universal Database Re-
plicator». It realizes database replication in asynchronous mode. The project is devel-
oped within the confines of research in WEiPK at database laboratory on master’s stud-
ies. Replicator realizes replication in heterogeneous environment, supporting three plat-
forms: Sybase SQL Anywhere, MS SQL Server and PostgreSQL. Because of modular
architecture and broad configuration’s range, there is a possibility to extend the system
with other platforms support.

3.1. Guidelines

During the system designing, there were taken the following guidelines:

— asynchronous replication, based on publication-subscription model;

— update everywhere model (multiple master);

— heterogeneous environment (SQL Server, Sybase SQL Anywhere,
PostgreSQL);

— usage of conflict resolution strategies (timestamps, priorities);

— generation of globally unique identifier for primary key fields.

3.2. Implementation

The system was created on Java platform. Furthermore, there were used: DDL
Utils class library and Hibernate environment. Because of this there was achieved isola-
tion of a system logic from a database layer.

3.2.1. DDL Utils

DDL Utils library includes a set of classes designed for database’s metadata man-
agement. It supports various database platforms, what ensures much flexibility and easy
migration between different platforms. The library performs such operations as meta-
data reading, database objects creation, modification or deletion. DDL Utils enables
easy and simple reading of database model into object oriented model. Because of this,
there can be obtained necessary information about database and its tables. The main us-
age of this library is creation of appropriate log tables (required for asynchronous repli-
cation) — for original database tables.

3.2.2. Hibernate

Hibernate package realizes relational database mapping to its object equivalent. It
gives easy database access, reduces application code length and eliminates necessity of
SQL statements creation. Hibernate implements the universal data access layer, which is
separated from application business logic. It is used for accessing (read/write) replicator
system tables. Because Hibernate supports various database platforms — it gives much
flexibility.

ISSN 1560-9189 Peectpauis, 30epiranns i o0podka nanux, 2006, T. 8, Ne 1 63

Wiodzimierz Khadzhynov, Mateusz Maksymiuk

3.3. Structure and processing

There can be distinguished several parts in replication system:

— replicator application;

— replicator database part — includes its system tables;

— user database part — includes user tables, taking part in replication process.

Replicator application contains many modules, which include classes responsible
for performing various tasks (Fig. 7).

GUI main manager replication conflict

manager resolver
| |

system table record change
log creator _ ——
manager applier
| | [|

JDBC Connection

Fig. 7. Replicator structure — modules

To execute a replication process, there must be completed the following steps in
each node (database):

1) database preparation;

2) publication and subscription of database tables;

3) synchronization execution.

The first phase includes creation of replicator’s system tables (see Table) in a given
database. This step is realized automatically by Hibernate environment. These tables
contain informations about published and subscribed tables and remote databases which
are taking part in replication process.

Replicator system tables

Table content Table fields
log table list log table id, original table name, log table name, trigger name,
stored procedure name, information about publication
remote databases list remote database id, host address, database type, database name,
login, password, port, instance name
subscriptions list remote table id, remote table name, remote database reference,
local table name, index of last imported change identifier
main table log change id, change kind, change time, log table id
dedicated table log change id, record fields values before and after change

In the second step, there are performed publication and subscription of database ta-
bles. Publication of tables makes them available to other nodes (databases) for subscrip-
tion. Subscription of table means registering for selected publication, which enables im-
port of data from remote databases. All modifications performed on published or sub-
scribed tables must be captured and saved. They are captured by table triggers and

64

Execution of replication in heterogenous database systems

saved to appropriate log tables. Triggers are created on original database tables, which
are selected by user for replication. Log tables are special replicator’s system tables, de-
signed for storing modifications. We can distinguish two kinds of log tables:

— main log — occurs in single number;

— dedicated table log — occurs in plural number — one log for each pub-
lished/subscribed table.

Main log contains informations common to all tables. Dedicated table log contains
informations specific for a given table, which it concerns.

Dedicated log is created separately for each published or subscribed table with us-
age of DDL Utils library. SQL code of triggers and stored procedures is defined in pa-
rametrized text files. This separates SQL code from application code, so it can be easily
modified without recompilation requirement.

The third stage is the database synchronization process. The current node reads all
changes from log tables which are subscribed. There is established connection with each
remote database, which is defined in replicator’s system table. After connection estab-
lishing, there occurs reading of modifications executed on tables which are subscribed.
When all modifications from remote databases are read, the synchronization process in
a local node (database) begins. Because the possibility of replication conflict occur-
rence, there are applied several methods of conflicts resolving, mentioned earlier.

Below there is presented a diagram of replicator operation (Fig. 8).

source node 1 conflict replicator
source : _ resolver
table 6 trigger @ log \\ T@ @‘

@ iy buffer SQL

: # generator
source node N /
source 1, trigger > log [?aetjté <_©
table @ @ dest. node

Legend:
1) modifications capturing, 2) log writting, 3) modifications reading to buffer,

4) conflicts resolving, 5) SQL generation, 6) SQL execution

Fig. 8. Replicator operation

4. Summary

Database replication is currently in very dynamic development phase. There are
still created new models and replication techniques, which offer possibilities that were
impossible so far. The leading solutions existed few years ago, nowadays are obsolete
and unusable. The globalization of informatic systems and commonly used distributed
systems is undoubtedly a stimulus for replication developing. The main goal is develop-
ing such techniques which will give well consistency and integrity with preservation of
good efficiency and scalability. The Universal Database Replicator, proposed above,

ISSN 1560-9189 Peectpauis, 30epiranus i 06podka xannx, 2006, T. 8, Ne 1 65

Wiodzimierz Khadzhynov, Mateusz Maksymiuk

was tested on various platforms with distributed database systems: Sybase, PostgreSQL,
MS SQL Server. There was shown efficiency of asynchronous replication mode. Usage
of Java platform with Hibernate and DDL Ultils library enables replicator independence
from database and operating system platform.

1. Manassiev K: Scalable and Highly Available Database Replication through Dynamic Multiver-
sioning. — University of Toronto, 2005. — P. 87. — http://www.cs.toronto.edu/~kaloianm/docs/ut-thesis.pdf

2. Guerraoui R., Oliveira R., Schiper A. Atomic Updates of Replicated Data. — 1996. — P. 16. —
http://citeseer.ist.psu.edu/guerraoui96atomic.html

3. Bausch W. Integrating Synchronous Update-Everywhere Replication into the PostgreSQL Data-
base Engine. — Swiss Federal Institute of Technology (ETH). — Zurich. — 1999. — P. 55. —
http://www.iks.inf.ethz.ch/publications/files/bausch_postgres r.pdf

4. Kemme B. Database Replication for Clusters of Workstations. — Swiss Federal Institute of Tech-
nology (ETH). — Zurich. — 2000. — P. 155. — http://www.cs.mcgill.ca/~kemme/papers/phd-dina4.pdf

5. Lin Y. Database Replication in Wide Area Networks. — 2005. — P. 20. —
http://www.cs.mcgill.ca/~ylin30/paper/proposal.pdf

6. Wiesmann M., Pedone F., Schiper A., Kemme B., Alonso G. Database Replication Techniques: a
Three Parameter Classification. — Swiss Federal Institute of Technology (ETH). — Zurich. — 2000. —
P. 10. — http://citeseer.ist.psu.edu/wiesmannOOdatabase.html

Received 06.03.2006

66

	Execution of replication in heterogeneous database systems
	1. Introduction
	2. Replication profile
	2.1. Synchronous replication mode (Eager replication)
	2.2. Asynchronous replication mode (Lazy replication)
	2.3. Master-Slave replication model (Primary Copy)
	2.4. Multiple Master replication model (Update Everywhere)
	2.5. Database platform uniformity — homogenous
	and heterogeneous replication
	2.6. Data modifications capturing
	2.7. Asynchronous replication conflicts
	2.7.1. Conflict avoidance
	2.7.1. Conflict avoidance
	2.7.1. Conflict avoidance
	2.7.1.1. Globally unique identifiers generation
	2.7.1.2. Data ownership

	2.7.2. Conflict resolving
	2.7.2. Conflict resolving
	2.7.2. Conflict resolving
	2.7.2.1. Primary key uniqueness conflict (Insert-Insert)
	2.7.2.2. Methods of executing UPDATE modification
	2.7.2.3. Time-stamps
	2.7.2.4. Node priority
	2.7.2.5. Mathematical functions

	3. Example implementation of asynchronous replication
	system in heterogeneous environment
	3.1. Guidelines
	3.2. Implementation
	3.2.1. DDL Utils
	3.2.2. Hibernate
	3.3. Structure and processing
	4. Summary

