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The major problem of the mechanics of a deformable solid body is the
development of methods for constructing physically grounded, mathematically
rigorous constitutive relationships that allow not only describing, but also
predicting, at various levels of accuracy, the behavior of a wide class of materials
existing in nature in a broad range of variation of the conditions of their
deformation.

Despite the achievements in using the phenomenological approach to the
construction of constitutive relationships and a large number of proposed models
[1- 10], at present, this approach does not allow for a complete solution to the
above problem, particularly when applied to arbitrary deformations and types of
symmetry in the properties of viscoelastic-viscoplastic materials.

The fact that the theory of simple in Noll’s sense materials (hereinafter
referred to as simple materials, media, continua), is still general enough to include
practically all known purely mechanical phenomenological models of material
deformation that are governed by the principle of a specimen, and the success in
constructing constitutive relationships for simple elastic, viscoelastic, and elasto-
plastic continua by the methods of rational continuum mechanics [11, 12] testify
to a great potential for using this approach in developing constitutive relationships
for viscoelastic-viscoplastic media.

In this paper, the media with viscoelastic-viscoplastic behavior have been
distinguished within the class of simple materials [11], whose arbitrary
deformations and types of symmetry in properties are expressed by constructed
general constitutive relationships in which the long-term fading memories of the
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deformation and time histories take place, and the approaches to their specialization
have been developed.

Let us single out simple viscoelastic-viscoplastic materials by postulating the
following basic properties:

(i) stresses depend on the path shape in the tensor strain space (deformation
history) and on the history of traversing this deformation history in time (time
history);

(if) the time history memory of the materials within the active and passive
deformation fades in time;

(iii) the independent of time memory of the deformation history within the
active deformation fades along the length ofthe path in the tensor strain space;

(iv) the total strains can in some way be divided into elastic and plastic
components;

(v) a certain yield criterion is true;

(vi) a certain law of yielding is fulfilled.

Hereafter, in considering scalar or tensor functions p at the present moment
and in the past, it will be convenient to characterize the past moment t by the
positive value s = t —t' [11], where t is the present moment of time. The history
of the function p up to the moment t will be defined by pt, its value being

p t(s):
pt=pt(s)=p(t—s).

Here t is fixed and s > 0. For every t, the history of p t is defined over [0, °°).

We describe the behavior of a viscoelastic-viscoplastic material by a general
constitutive relationship for a simple material [11]:

oR = G(Ct), (1)

where o is the Cauchy stress tensor, o R is defined by o R = RToR, R is the

rotation tensor in multiplicative decomposition F = RU = VR ofthe deformation
gradient F, U and V are the right and left stretch tensors of the deformation,
respectively, RT is the transpose 3f R, C s the history of the right Cauchy-

Green tensor, and G denotes a mapping of histories Ct onto symmetric tensors.

Proceeding from the first key property of viscoelastic-viscoplastic materials
and using the data from [13, 14], Eq. (1) can be presented as

0R=G(Ct)= G(C*; £1), @)

where C* is the deformation history ofthe ofthe right Cauchy-Green tensor, * is
the arc length along the strain path determined according to [15], and *t is the

time history of traversing C* or simply the time history.

Later throughout this text we shall consider the processes of deformation as
those starting at a certain reference moment of time t0 from an unstressed and
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unstrained reference configuration k0 assuming that the active process begins
with the onset of the deformation process, unloading is absent, and C£ and £1

are smooth continuous parameter functions differentiated as many times as
necessary.

Let us assume that viscoelastic-viscoplastic materials have a long-term
fading in time memory (hereinafter referred to as the fading memory), and this
memory represents a property that can be mathematically expressed using the
function of the simple material response.

Having taken the history of C£ in (2) to be constant, we vary £t .For this

family of the deformation processes, Eq. (2) takes the following form:

oR = G(£1). 3)

Basing on relationship (3), consider the difference between the static
response and all other responses. Just as f | designates the history up to the

moment t of the arbitrary function f over (—te, + Te), we designate the history
of the constant function f , whose value always equals to a, by ac:

ac(s) = a, 0< s <Te. (4)

Thus, £(t)c represents a constant history (or a history constant) corresponding

to the current value £(t) of the arc length £ along the strain path for point in
reference configuration X in the history C£.In order to enable consideration of

the static case outlined here, just as it was done by the author of [11], we assume
that if £t is the history belonging to the domain D: of the response G

definition, then for each s over [0, Te) the constant history (£t(s))c also belongs

to D1 The value G(£(t)c) of the response G represents the stresses

corresponding to being at rest in the state obtained from k0 during deformation
along the path C£ whose arc length equals to £(t).

In an elastoplastic material, particularly with a fixed C£ history, the stresses

are always static for all £t in D1 [13]:

OR=0R=G(Ct)= G(£t)= G(CE£)= G(£(t)c) = g(£(1)), (5)

where os is the value of the static stress.
The main idea of the fading memory in a viscoelastic-viscoplastic material is

that when the history £t is close to the constant history £(t)c, the stresses G(£t)
are close to the static stresses. In other words, a small deviation from the constant
history £(t)c induces the stresses, which are only slightly different from those in
an elastoplastic material that correspond to £(t)c. We specify the notions of
“smallness” and “closeness” with the help of topology. When the topologies are

8 ISSN 0556-171X. Mpo6nemb! npouHocTyH, 2009, N 1



Construction of Constitutive Relationships

introduced, we can speak of continuity in precise terms and formulate a precise
and general axiom of continuity as an essential condition for the fading memory:

the response G is continuous in each constant history £(t)c in D~.

Just as it was done by the author of [11], we consider real functions that are
summable with respect to some Lebesque-Stieltjes measure i on a real line R
and assume that the following relationship is true [11]

where |+ |and | «| are, respectively, the norm and the semi-norm.
The measure i is generated by a real non-decreasing function i in a
well-known manner

i(s-0)=i(sX I {[a,b)}=i(b)- i(a) (7)

for all real values of a and b. We consider only those histories that represent the
functions set over [0,00) and assume [11] that the past only makes a finite
contribution to the semi-norms of the bounded histories. Let us call the measure
I an obliviating measure, if [11]

i(s)=0 at s<0, limi(s) =M <o. (8)
AN

This implies that transferring any interval of the line infinitely far in the past
reduces its measure to zero:

limi{[a+c,b+c)}=0 9

We call semi-norm (6) calculated from the measure satisfying condition (8)
m history memory, which corresponds to this measure. The collection of m
histories, for which the semi-norm 1m|| is finite, forms a functional space, which
is a subspace of the space of all the histories measurable with respect to i. This
subspace is called here the space of histories with finite memory. It includes all
the bounded measurable histories and, in particular, all constant histories £(t)c.

Just as the author of [11] did it, we assume that a certain obliviating measure i
has been established once and for all keeping in mind that our results depend on
the choice of this measure. Suppose that the definition domain D1 of the
response G from (3) is a connected subset of the space of histories with a finite
memory with respect to i.

Consider the materials, which satisfy the axiom of continuity for the
topology obtained on the basis of the obliviating measure, and give the following
definition.

Definition. A viscoelastic-viscoplastic material has a weak fading memory if
it satisfies the axiom of continuity, with the discontinuity determined using the
obliviating measure:
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oR=G(£t)=g(£(t))+ o(1) for |[||t-£(t)c||—0. (10)

Thus, on condition that the memory of the difference of the history £t and
constant history £(t)c is rather small, the stresses are close to those in an
elastoplastic material corresponding to £(t).

In particular, the remainder term in (10) identically equals to zero in an
elastoplastic material. That is why, for (10) to hold true, the obliviating measure
should be such that

I[Et- £(t)c||= 0. (11)

Inversely, if, according to this definition of the memory, relationship (10) is
true with the remainder term equal to zero, the material is elastoplastic. The
function P, which defines a obliviating measure of this kind, is a single jump at
s=0.

Each time we assume the material to have a weak fading memory, we choose
some function y3

Definition [11]. Let £t be atime history. Then the time history £ defined

by
£t = \E£(t°), S=£t- t°,
£} [EtO(s- (t- 10)), s>t- 10,

is called the static continuation of the given time history.

Using the notion of static continuation, the phenomenon of stress relaxation
in a viscoelastic-viscoplastic material is modeled based on the assertion that, if
some neighborhood ofthe particle X has been maintained in the state of rest for
quite a long time, the stresses in X approach the value they would have had if
this neighborhood had always been in the state of rest.

Stress Relaxation Theorem. For any fixed moment t and any history £t in

D 1, the history of static continuation £ also belongs to D1, and the limit

G (£ {0}) at 10 —-w exists and represents static stresses corresponding to £(t):
lim (G (£{0})) = G(£(t)c) = g(£(1)). (12)
10~—w \Y

A similar theorem for viscoelastic materials was proved in [11] with some
limitations. Analysis has shown that this proving is also true for the above case.
We take the history memory £t in the form proposed by Coleman and Noll

[11]:
w

I£112 = B |£(1)]2+F k()| £(s)]2 ds, (13)
0

where B is a positive constant. We call the function k a obliviator or an
influence function.
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Similarly to the way it was done in [11], we construct approximations that
are higher than (10). To this end, assume that the principle of the fading memory
of the nth order is as follows: for static history £(t)c, the response G is n times

Frechet-differentiable. Then

aR=G(£1)= g(E(1) Gi(Et —E(t)c) + o (JIEt —E(D)c|In),  (14)
i=1

where G} are the bounded homogeneous polynomial mappings of the ith degree
dependent on the variable £(t) at a fixed C£. In the Frechets expansion, the

above mapping is replaced by the sum of simpler mappings with an error tending
to zero faster than the nth degree of the memory 1£t —£(t)cl of the difference

between the true history £t and the corresponding constant history £(t)c.

The viscoelastic-viscoplastic materials considered herein exhibit the long-
term fading memories of the deformation and time histories on the active
deformation. These two types of the fading memory are independent and are
governed by different laws of fading. With a constant strain value and varying
time, the material considered shows the long-term memory of the time history
fading in time, whereas the long-term fading memory of the deformation history
is absent. During passive deformation, the material has the fading memory alone
(viscoelastic behavior).

If we assume that the material has the fading memory of the first order, then
Eq. (14) approximates the deviations from the stresses in an elastoplastic material
with the help of the bounded linear functional. The collection of all the histories
with the finite memory forms the Hilbert space, and, according to the Frechet-
Riss theorem, each bounded linear functional in the Hilbert space admits
presentation in the form of a scalar product. Assume that the fading memory of
the Coleman-Noll type is being considered, then, according to (13), we obtain

aR=g(E(1) + f h(s)K(E(T), s)[Et(s) —E(D)]ds + o(|lEt —E£(t)cl]),  (15)
0

where the kernel K is the second-rank tensor such that

f |K(E(1), s)|2ds<X.
0

If we truncate the correction term, we obtain a relationship independent of
the reference system, which can be used at large deformations for describing the
behavior of a viscoelastic-viscoplastic material with a fading memory and
arbitrary symmetry of properties.

Constitutive relationships for simple hardening elastoplastic materials with a
long-term fading memory of the deformation history based on Eq. (5) were
constructed elsewhere [16-18].
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