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Bulk metallic glasses have a very high corrosion resistance and mechanical strength. Bulk metallic 
glasses show elastic-perfectly plastic behavior with an extended region o f  elastic strain (~  2%). But 
at room temperature their macroscopic plasticity is weak even though a local plastic strain is 
observed in shear bands. A relaxation analysis allowed studying micro-mechanisms o f  plastic 
deformation and estimating the apparent activation volume (~  2000 Â3).
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Introduction . Amorphous m etallic alloys also called m etallic glasses are characterized 
by absence o f atom ic long-range order. B ulk  m etallic g lasses (B M G ) exhibit a very h igh  
strength ( ~  1,6 GPa) and elasticity ( ~  2%). H ow ever, at room  temperature, they have low  
ductility because of the localization of the plastic strain w hich is concentrated in a few  thin 
shear bands. Deform ation behavior of B M G s is com pletely different than crystallized metals 
(no dislocation). Spaepen [1 ] and A rgon [2 ] describe the deformation as the result o f jumps 
o f  respectively single-atom  or group o f  atoms in “h o les” (free volum es) large enough.

Zr-based B M G  have a h igh GFA (G lass Form ing A bility) and particularly the alloy  
Zr57Cu20A l10Ti8N i5 w hich  is the studied alloy in this paper.

B M G  S yn th esis and  C h aracteriza tion . Initially, the five pure elem ents are m elted  
by electrom agnetic induction heating in  a w ater-cooled  copper crucible under He 
atm osphere (Fig. 1a). From 20 to 35 g o f  B M G s are obtained by  re-m elting using  
electrom agnetic levitation under He atmosphere and casting into a copper m old (Fig. 1b).

D ifferent shapes o f  sam ples are produced, depending on the subsequent use: 
2 0 X 35X 5 m m  sheets for com pression tests, rods w ith 10 m m  diameter for transm ission  
electron m icroscopy analysis and w edge shaped sam ples for the evaluation o f  the glass 
form ing ability (GFA).

For com pression tests, rectangular shaped sam ples, 4X  4 m m  o f  cross-sectional area 
and 6 m m  height, were m achined and then polished.

X -ray diffraction and TEM  analysis were carried out to control the amorphous state 
o f  the as-cast sam ples (presence o f  broad diffuse peaks for X R D , and diffuse rings for 
TEM).

The glass transition temperature (Tg =  660 K) and the crystallization temperature 
(Tx =  719 K) o f  the alloy were m easured using differential scanning calorimeter (DSC) 
and the liqu idus tem perature T i  =  1156 K) w as m easured u sin g  DTA . H eating rate o f  
20 K /m in  w as applied for each analysis.

M ech an ica l B ehavior. U niaxial com pression test under quasi-static loading at room  
temperature w as performed. B M G  exhibits a perfect elastic deformation behavior follow ed  
by a catastrophic brittle fracture w ith no y ield ing (Fig. 2). The fracture stress is 1634 MPa 
and the region o f  elastic strain is extended (~  2%). Though m acroscopic p lasticity is low, 
local plastic strain is observed in  shear bands (Fig. 3).

Typical m orphology o f  the fracture surface o f  a BM G , at room-temperature in  
com pression, is show n in Fig. 4. Veins w ith  liquid droplets were observed in  the entire 
fracture surface. It w as demonstrated that shear localization  induces a temperature rise 
(more than 900°C at the final-fracture m om ent, i.e ., higher than Ti ) and that deform ation  
is then related to a local decrease o f  the v iscosity  in the shear bands [3].
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Fig. 1
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Fig. 2

Fig. 1. (a) water-cooled copper crucible (b) electromagnetic levitation.
Fig. 2. Stress-strain curve of the Zr57Cu20A l10N i8Ti5 BMG deformed at room temperature at a strain 
rate o f 2 - 10_5 s_1.

Fig. 3 Fig. 4

Fig. 3. View o f free surface, parallel to the compression direction, with visible shear bands. Shear 
band thickness is about 20 nm [5].
Fig. 4. Fracture surface with veins and liquid droplets (insert).

The fracture angle w as measured for tw o samples: one w as 41° (Fig. 5), the other 45°. 
These values indicate that B M G  fo llow s the M ohr-C oulom b criterion for plastic yielding  
in com pression. This behavior is observed for m any BM G , such as Zr574C u164N i82A l10 
[4].
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Fracture
surface

Fig. 5. Fractured sample.

Stress R elaxation  A n alysis . A  relaxation test w as perform ed at room  temperature to 
approach the m icrom echanism s o f  deformation. In literature, m ost experim ents were 
conducted at temperatures close to Tg [1, 6], B M G  having hom ogeneous deform ation at 
these temperatures. In our experim ent, an attempt is m ade to exam ine the localized
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deform ation in shear bands. R elaxation is a m ethod allow ing the m easurem ent o f  the 
rheologic and the m echanistic parameters w ithout failure o f  the sam ple and at a 
m acroscopic scale (in contrast to the nano-indentation investigating confine plasticity).

The sam ple is loaded w ith a strain rate o f  £ =  5 - 1 0 5 s 1. The displacem ent o f  the 

cross head o f  the testing m achine is stopped just before the catastrophic failure o f  the 
sample. The total deform ation is remained constant until the end o f  the experim ent 
(~  160,000 s). Consequently, since total deform ation is the result o f  plastic and elastic 
deformation:

elastic ‘ (1)

The shear stress variation as a function o f  tim e is plotted in Fig. 6. Three domains 
are defined to describe the curve. B etw een 300 s (onset o f  the relaxation) and 8000 s, the 
stress decreases slow ly  (A r max =  7 M Pa) fo llow ing the classical logarithm ic relation. 
Then, after a transitory plateau, the curve g lobally  increases until 100,000 s and finally  
stabilizes in  the third part.
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Fig. 6. Plot o f the shear stress variation as a function o f time.

I. The first dom ain fo llow s the logarithm ic function [7]:

Аг = г - г о = -  y -  ln ^ + C  j ,  (2 )

where r is applied shear stress, r  0 is applied shear stress at the beginning o f  the 
relaxation, t  is tim e, Vapp is apparent activation volum e, C  is tim e factor, k  is 
Boltzm ann constant, and T  absolute temperature. Vapp is the atom ic volum e involved  in  
an elem entary therm ally activated event. A t the onset o f  the relaxation, the slope is almost 
infinite and Vapp equal to zero. Then the curve can be perfectly fitted betw een 1000 and 
3500 s by the logarithmic relation and the activation volum e Vapp is estim ated to 2000  A 3 
(corresponding to 1 5 0 0 , w here O is the average atom ic volum e), w hich  is reasonable 
compared to h igh temperature m easurem ent [8].

II. A n  increase o f  r  is observed, w hich  is probably related to an energy release. 
Such behavior is rather unusual. It w as verified that it w as not in relation w ith  experim ent 
artifact: stress variations induced by  the m achine w ere m easured as neglig ib le  compared  
w ith the sam ple relaxation. M oreover, experim ents are perform ed in  a room  w ith constant 
temperature and the system  (sam ple-m achine) dilatation cannot be taken into account to 
explain the phenom enon.
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So the change betw een dom ain I  and II  could be related to the variations in 
micro-structure w hich  is m ost lik ely  a crystallization in  shear bands [9]. A t T  >  Tg , N ieh  
et al. [10] consider amorphous phase as a N ew tonian  fluid and nanocrystalline particles as 
having a superplastic behavior. The plastic deform ation strain rate is consequently  
expressed by

y plastic ~  (1 _  f v Jy am f vy  cryst ~  (1 _  f v )Ar +  f v B  , (3)

where f v is volum e fraction o f  the crystalline phase, A  and B  are material constants, 
y am and y cryst strain rates caused by  the am orphous and the crystalline phase, 
respectively , and r  the applied flow  stress.

Though experim ent is carried out at room  temperature, deform ation occurring in 
shear bands w here temperature rises should be described consisten tly  by  Eq. (3). 
Consequently, the plastic deformation induces a decrease o f  the applied stress. Nevertheless 
the microstructure variation could  be at the origin o f  an internal stress release. The 
measured stress w hich  increases g lobally  w ould  be the sum o f  the internal stress and the 
applied stress.

III. Finally, the stress reaches a value threshold, m eaning no longer plastic  
deform ation.

C onclusions. B M G s are produced by  rapid cooling o f  a m etallic alloy, avoiding  
atom ic long-range order. That g ives specific properties to the material like no ductility  
because o f  the localization  o f  the plastic strain in  shear bands. Stress relaxation allow ed  
estim ating an apparent activation volum e associated  to a p lastic deform ation and 
observing an evolution o f  deform ation m ode involving m ost likely  a partial crystallization  
phenom enon.

Acknowledgments. This work was supported by the DGA within the framework o f a “Recherche 
Exploratoire et Innovation” (REI No. 05C0145) under the contract No. 0634030004707565 for the 
PHD of one o f the authors (SN). The authors are also grateful to J. L. Bonnentien, A. Valette, and 
M.-F. Trichet for technical support.

1. F. Spaepen, Acta Metall., 25, 407 (1977).

2. A. S. Argon, Acta Metall., 27, 47 (1979).

3. B. Yang, P. K. Liaw, G. Wang, et al., Intermetallics, 12, 1265 (2004).

4. R. T. Ott, F. Sanchez, T. Jiao, et al., Metall. Mater. Trans., 37A, 3251 (2006).

5. A. L. G. Y. Zhang, Appl. Phys. Lett., 89, 071907-1 (2006).

6. O. P. Bobrov, V. A. Khonik, K. Kitagawa, and S. N. Laptev, J. Non-Crystalline Solids, 342,
152 (2004).

7. J. Bonneville, P. Spaig, J.-L. Martin, Proc. M.R.S. Symp., 364, 369 (1995).

8. M. Bletry, P. Guyot, Y. Brechet, et al., Intermetallics, 12, 1051 (2004).

9. W. H. Jiang, F. E. Pinkerton, and M. Atzmon, Scripta Mater., 48, 1195 (2003).

10. T. G. Nieh, T. Mukai, C. T. Liu, and J. Wadsworth, Scripta Mater., 40, 1021 (1999).

Received 28. 06. 2007

170 ISSN 0556-171X. npo6neMbi npouHocmu, 2008, №  1


