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This paper reports on the effect o f  argon plasma on the high density polyethylene surface. The aim 
is to alter the surface in a manner and scale resulting in a stronger metal/polymer valence. The 
specimens are exposed to the direct current discharge, the irradiation time and pow er being 
variables. Electron paramagnetic resonance and X-ray photoelectron spectroscopy (EPR and XPS, 
respectively) are employed to determine the plasma effect. The surface wettability is studied by 
goniometry. The plasma treatment leads to radical generation and activation o f  such agents as 
oxygen, thus the surface wettability is significantly increased. The evolution ofthe treated surface in 
different media is studied. The influence o f  an increased oxygen concentration and the storage 
medium on the concentration gradient within the surface monolayers is proved. The EPR data show 
a gradual and very slow decrease in the number o f  radicals present on the treated surface after 
2000 h. Also evidence is given fo r  partial dissolution o f  the treated surface in water.

K eyw ords:  argon plasma, h igh density polyethylene, goniom etry, X -ray photoelectron  
spectroscopy, electron paramagnetic resonance.

In trod u ction . Polym ers have been  applied su ccessfu lly  in  m any fields such as 
adhesion, biom aterials, protective coatings, friction and wear, com posites, m icroelectronic 
devices, and thin-film  technology. In general, special surface properties w ith regard to 
chem ical com position, hydrophilicity, roughness, crystallinity, conductivity, lubricity, and 
cross-linking density are required for successfu l applications in  various fie ld s. H ow ever, 
the “raw-pristine” polym er surface is inert and the m odification techniques need to be 
used [1].

Plasm a treatment, w hich  is know n to m odify  chem ical and physical states o f  the 
surface w ithout altering the bulk properties, has becom e an important tool used in industry 
[2, 3]. Plasm a effect is versatile and strongly depends on the experim ental conditions 
chosen. Take for exam ple polyethylene, its plasm a treatment leads to creation o f  new  
chem ical groups, branching and crosslinking o f  m acrom olecules [2 ], and to formation o f  
low  m olecular w eight oxid ized  structures. O w ing to ablation, the surface topography o f  
the polym er is affected too. These alterations are also w ell know n to result in the 
formation o f  reactive sites for the interaction w ith the m etal atom s such as copper and 
aluminum. The m etal polym er adhesion has been  o f  h ighest interest recently and every  
attempt to elucidate their interaction is greatly appreciated.

The aim o f  this study is introduction o f  reactive sites to the high density polyethylene 
(H D PE ) surface by  argon plasm a treatment. Further, the evolution o f  wettability, radical 
concentration, and chem ical structure is thoroughly investigated. The surface w ettability is 
studied by  goniometry. X -ray photoelectron spectroscopy (X P S ) is carried out to observe 
the surface chem ical structure and electron paramagnetic resonance spectroscopy is 
em ployed for determination o f  the radical number. The experim ent and the above­
m entioned m ethods y ield  a com plex insight into the evolution o f  the H D PE  plasm a treated 
surface.
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E xp erim en ta l. P olym er an d  P lasm a P aram eters Specification . Oriented H DPE in 
the form o f  50 jum thick fo ils w as used  in the present experiment. The fo ils were supplied  
by Granitol Ltd., C zech Republic. The sam ples w ere treated in a direct current discharge 
generated using Balzers SC D  050 device. The further discussed plasm a effect was 
obtained under the fo llow ing  conditions (gas purity 99.997%  and the flow  rate 0.3 l/s,
pressure 10 Pa, electrode distance 50 m m  and its area 48 cm  , chamber volum e approx.

3 31000 cm  , plasm a volum e 240  cm  , and pow er 8.3 W ). The treated polym er sam ples were
stored under laboratory conditions, exposed  to ambient atmosphere.

D iagn ostic  M eth ods . The contact angle, characterizing the surface wettability, was 
m easured using distilled water at room  temperature w ith  a Kernco G-1 goniom eter 
(Japan). The “static” contact angle dependence on the tim e after treatment w as obtained 
[4].

A n  O m icron N anotechnology ESCAProbeP spectrometer w as used to observe the 
treated surface. The dim ensions o f  the area analyzed were 2X  3 mm. The X -ray source was 
m onochrom ated at 1486.7 eV. The spectra were measured stepw ise w ith a step in binding  
energy o f  0.05 eV. In order to understand the cause forthe decrease in the oxygen  content 
w ithin several surface m onolayers, the spectra were collected  at six  angles betw een the 
detector and the surface normal (A R X PS). The data were processed by the CasaXPS  
program.

The concentration o f  free radicals w as determ ined using an electron paramagnetic 
resonance spectroscopy w ith  an x-band spectrometer o f  type E lexsys E -540, 
Bruker-Biospin w ith  a relative error o f  10%. The sam ples were p laced in a quartz tube and 
m easured at room  temperature. The experim ental conditions were as follow s: the 
m agnetic field  range 600 mT, sw eep tim e 180 s, m agnetic m odulation 0.4 mT, field  
m odulation 100 kHz. The standards M n/ZnS and Cr/M gO w ere used  for the g-factor 
calibration and for quantitative evaluation o f  the spectra. Identification and determination 
o f  signals w ere perform ed by  com parison w ith  the standards.

R esu lts and  D iscussion . G oniom etry. The dependence o f  the water contact angle on  
the plasm a treatment tim e is show n in  Fig. 1. The tim e after the plasm a treatment is a 
parameter o f  the curves. The higher the treatment tim e the low er the contact angle, 
namely: the angle decreases from 100° (pristine HD PE) to 10° (240 s treated HDPE). The 
increasing tim e after the plasm a treatment leads to an increase in the contact angle. The 
increase is more distinct for longer plasm a treatments. A s has been  reported in a recent 
study [5], the present m easurem ents confirm  the dependence o f  the contact angle 
(wettability) on the tim e after the A r plasm a treatment. The cause for this is the diffusion  
o f  the low -m ass oxid ized  fragments and orientation o f  the polar groups towards the 
specim en bulk and this phenom enon is referred to as hydrophobic recovery [6 , 7].

E lectron P aram agn etic  R esonance S pectroscopy (E PR ). The number o f  radicals 
form ed on the surface w as m onitored by the EPR. Figure 2 show s the number o f  radicals 
for sam ples stored in  different “m edia.” The “water” sam ple w as stored in  water for 12 
hours, and then dried and exam ined. The “air” sam ple w as kept in  an ambient atmosphere. 
The low er number o f  radicals for a “w ater” sam ple results from the storage in  water, 
w hich  caused the rem oval o f  low -m olecular-w eight oxid ized  material from the treated 
surface [8 ]. This material contains a portion o f  the introduced radicals. Figure 2 also 
clearly show s a slow  decrease in the number o f  radicals during storage. The free radical 
centers are “trapped” inside the crosslinked layer and are o f  low  chem ical reactivity, even  
i f  the surface is exposed to water [9].

X -ray P hotoelectron  Spectroscopy . The chem ical structure o f  the plasm a treated  
HDPE stored subsequently in air or water w as exam ined using the X PS. It w as reported 
that the surface o f  the Ar plasm a treated H DPE contains groups o f  pristine PE (-C H 2) and 
oxygen  introduced during the treatment (-C = O , -C O O , and -C O C -)  [5].
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Thin Surface Layer o f  Plasma Treated Polyethylene

Fig. 1 Fig. 2

Fig. 1. Evolution o f the contact angle dependence on the plasma treatment time. The numbers 
represent hours elapsed after the treatment.
Fig. 2. Dependence o f spin number o f the plasma treated samples on time after the treatment. The 
samples were treated successively stored 12 h in water ( • )  resp. air (O ) and measured.
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Fig. 3. The dependence o f oxygen concentration on the detector to surface normal angle. The 
samples were plasma treated and preceding the measurement stored in air for 1 h (Air 1) and 24 h 
(Air 24). The sample (Water 24) was stored 24 h in water.

In the EPR study it w e found that a portion o f  the treated surface is d issolved  during 
storage in water. In order to confirm  this result and also to learn more about the evolution  
o f  the first surface layers (w ithin approx. 5 nm) after the treatment, the angle-resolved  
X PS has been carried out [10, 11]. Figure 3 show s the dependence o f  the oxygen  
concentration on the angle betw een the surface normal and the detector. The higher the 
angle, the thinner layer is studied, i.e ., an angle o f  80° allow s studying the structure o f  the 
surface m onolayers. Figure 3 show s that the oxygen  concentration in the sam ples treated 
and stored in air for 1 h  and 2 4  h (Air 1 and A ir 24 , respectively) decreases towards the 
bulk o f  the sam ple. It has already been  stated that the surface is oxygenated during the 
treatment. The post treatment oxygen  incorporation is rather uncertain and som e authors 
are in favor o f  it [12] w hile others are not [13]. W hat is worth noticing is that the oxygen  
concentration o f  the “Air 24” sam ple is low er than that o f  “A ir 1.” This has been  shown  
by goniom etry, the results o f  w hich  proved increasing hydrophobic character after the 
treatment, i.e ., during aging. Another important conclusion  m ade from the A R X PS data is 
that the oxygen  concentration in  the water stored sam ple “Water 2 4 ” at h igh angles is
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low er than that in  the “A ir 1”sample. This suggests that a portion o f  the surface, especially  
o f  the oxid ized  material, is d isso lved  in water. This has been confirm ed by  the EPR in  this 
work, as w ell as by  the IR spectroscopy o f  the material d issolved  in  water [8 ]. Finally, the 
only explanation for the increase in the concentration o f  oxygen  w ith a decrease in  the 
angle for the “Water 24 ” sam ple is that the oxygen  concentration increases into the depth 
o f  the m aterial(within the nm  scale). A t a depths o f  the order o f  10 nm  w e expect a sharp 
decrease in  oxygen  concentration. This is confirm ed by  Rutherford back scattering (RBS) 
analyses carried out on this sam ple [8 ].

C onclusions. The effect o f  the HDPE treatment in the Ar plasm a discharge on its 
properties has been  studied by  different techniques. We have proved that the discharge- 
induced surface alterations lead to an im m ediate increase in  the surface wettability. 
M oreover, this effect is not permanent and the w ettability decreases during the tim e after 
treatment. The EPR data show  a gradual and very slow  decrease in the number o f  radicals 
present on the treated surface; partial d issolving o f  the treated surface in water is also 
observed. The backbone o f  this report is the X PS observations, w hich  revealed an 
increased oxygen  concentration w ithin the treated surface. Furthermore, it has been  
proved that the water storage causes an increase in  the oxygen  concentration gradient 
w ithin the surface m onolayers. On the contrary, w hen the sam ple is stored in air, the 
oxygen  gradient decreases.
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