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The deformation and fracture behavior o f  Zr50Ti165Cu15Ni185 bulk amorphous metal in the form o f  a 
thin ribbon have been determined in tensile test at room temperature. The fracture is localized in a 
major shear band and the fracture angle between the tensile stress axis and the fracture plane is 
close to 45°. Fractographic observations have revealed that the fracture surface o f  the amorphous 
metallic glass consists mainly o f  a vein-like pattern morphology We present a scheme o f  three 
zones o f  fracture surface morphology: progressive smooth sliding region (A), dominating vein like 
pattern (B), and river-like ripples (C)

K eyw o rd s : fracture, bulk amorphous alloy, vein -like pattern.

In trod uction . Am orphous m etallic alloys in  the form o f  ribbons w ith  thickness less 
than 50 fxm are prepared by  rapid m elt quenching on a rotating disc [1]. The deform ation  
o f  m etallic glass is inhom ogeneous in  nature at low er temperatures. O w ing to the absence 
o f  the long-range order, amorphous m etallic alloys exhibit a very h igh y ield  stress 
resulting in  a very large accum ulation o f  strain energy [2]. These glasses show  very little 
plasticity  under tensile loading. Recently, several m ulti-com ponent m etallic alloys w ith an 
excellent glass form ing ability have been reported. R educed cooling rates are sufficient to 
achieve bulk sam ples in  the amorphous state (e.g ., rods a few  m illim eters in  diameter) [3]. 
We present the fracture surface analysis o f  an amorphous ribbon prepared from the 
Z r-T i-C u -N i type o f  alloy, capable o f  achieving amorphous structure at low er cooling  
rates.

E xp erim en ta l. Sam ples m ade from a bulk amorphous a lloy  w ith the nom inal 
com position o f  Zr50Ti16.5C u15N i18 5 (at.%) were used in  the experim ents. The 300 ,«m thick  
and 3 -5  m m  w ide amorphous ribbons w ere prepared by  rapid m elt quenching on a 
spinning m etallic disc. The thickness o f  the prepared ribbon substantially exceeds the 
m axim um  thickness o f  ribbons prepared from standard amorphous alloys. The amorphous 
structure o f  a sam ple w as confirm ed b y  X -ray diffraction. Structure properties were 
characterized by  differential scanning calorimetry (Perkin Elmer D SC  7). Ribbons were 
fractured by  a tensile test on the m achine w ith the stiffness o f  10 kN /m m , the deform ation_3 _1
rate being 2 . 6 -10 s at 300 K. A  scanning electron m icroscope Tesla B S 340  w as used  

for fractographic observations.
R esu lts and  D iscussion . A  w ide temperature region o f  undercooled liquid state 

above the glass transition temperature Tg (592 K) up to the crystallization temperature 
Tx (629 K) is typical for the amorphous a lloy  Zr50T i16.5Cu15N i1g.5 as demonstrated by  the 
D SC  thermogram in Fig. 1. The ribbon sam ples w ere loaded under uniaxial tension. The 
measured fracture stress w as 1.53 ± 0 .1 5  GPa w hich  is similar to that reported in  [4, 5].

_3 _1The stress-strain curve for Z ^ T i^ .sC u ^ N i^ .s  at a strain rate o f  2 .6 -1 0  s at 300 K  

under uniaxial tension is show n in  Fig. 1 on the right side. M ultiple serrations were
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observed prior to failure. The origin o f  the serrated flow  in  m etallic g lasses is still unclear, 
it is defin itely related to the formation o f  shear bands. The formation o f  the individual 
shear band is m anifested in a single serration and all o f  the w ork done in  producing the 
shear band is dissipated as heat [6 ].

Fig. 1. DSC trace of Zr50Ti165Cu15N i185 at a heating rate o f 20 K/min (a). Stress-strain curve at 
strain rate o f 2 .6 -10_3 s_1 under uniaxial tension at temperature 300 K (b).

The observed m acroscopic plastic deform ation w as just about 0.5%. The fracture is 
localized  in  a major shear band and the fracture angle betw een the tensile stress axis and 
the fracture plane is c lose to 45° -  the failure in  the m axim um  shear stress plane. The 
reduced free volum e results in  the deviation o f  the shear banding direction from the 
m axim um  shear stress [7].

The m ain fracture surface feature observed w as the vein  pattern m orphology created 
by the process o f  m eniscus instability [8 ]. A  ridge (vein) on the fracture surface results 
from a connection o f  tw o adjacent cavities that grow  under the action o f  external stress. 
Such a vein  pattern m orphology show s a mirror im age on tw o opposite sides o f  the 
created fracture surface.

The left side o f  the fracture surface presented in Fig. 2a show s a vein  free area 
form ed during an initial stage o f  the local shear at the w heel side o f  the ribbon. This area 
corresponds to zone A  o f  the schem e show n on the right side o f  Fig. 2. The schem e  
sum marizes all typical features observed on the fracture surface o f  300 jum thick  
amorphous ribbons w ith a w ide undercooled liquid state region and fractured by ductile 
shear failure.

Fig. 2. Fracture surface in the vicinity of a sample edge. An intensive shear near the edge of the 
fracture surface (a) and the scheme o f areas with three characteristic morphologies observed on the 
fracture surface o f a 300 /im  thick amorphous ribbon (b).
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For standard amorphous m etallic alloys in  the form o f  ribbons the failure is initiated 
m ostly  at surfaces and on ly  occasionally  at extraneous particles or intersections o f  shear 
bands [9]. O n the fracture surface o f  a 300 fxm thick ribbon w e observed the areas w ith  
radial veins. These radial veins com e out from the central flat area as Fig. 3a clearly  
shows.

Similar m orphology o f  radial veins w as observed on Zr59Cu20A l10N igTi3 bulk  
amorphous alloy failed in tensile m ode [10]. The fracture nucleates at the central flat part 
as a consequence o f  tw o processes: (i) the nucleation and (ii) the propagation o f  cores. A  
subsequent cavity growth proceeds through the form ation o f  radial veins w hich  becom e  
finally linked to the m ain vein  around the w hole ce ll -  Fig. 3a. The cell contains a flat and 
radial parts enclosed  w ith secondary vein  rings o f  a cellular unit. N o  extraneous particles 
or visib le  defects are present at flat centers.

a b

Fig. 3. Cellular vein-like morphology together with areas o f radial primary veins -  zone B (a). 
“River morphology o f fracture surface” corresponding to zone C o f the scheme in Fig. 2b.

The fractographic analysis o f  ductile shear failure o f  a 300 /xm  thick amorphous 
m etallic ribbon has show n that its m orphologic characteristics are close to the features 
observed on the ductile fracture surface o f  bulk amorphous m etallic materials in a w ide  
variety o f  forms [9]. The fracture surface is form ed through the m eniscus instability  
process inside an adiabatic thin shear band.

A  com plex stress field  at the final fracture stage forms distinct re lie f structures on  
the fracture surface w ith  a number o f  aligned veins. The re lie f fracture surface contains 
ridges w ith  the m ain vein  at their tops and ditches betw een them  -  Fig. 3b. A ligned  
primary veins propagate from the rivers to the ridges and link into the m ain one. This type 
o f  the vein  organization observed on the fracture surface o f  Pd40Cu30N i10P20 bulk  
amorphous alloy is called the river m orphology o f  fracture surface [11]. Similar fracture 
surface m orphology o f  Zr-based bulk m etallic glass matrix com posites and C u-based bulk  
glass after com pression testing w as observed in  [12]. H ow ever, the round cores w ith radial 
veins w ere also observed in com pression at elevated temperatures [13].

The tensile failure criterion [14] indicates that tensile failure is controlled by  both the 
normal stress o  and the shear stress r  (where o  0 is the normal fracture stress and r 0 is 
the shear fracture stress):

2 2o  2 r  2
- 1 (1)

o 0 r 0

H ow ever, the dependence o f  the shear stress x on the normal stress o  is not linear 
as the M ohr-C oulom b criterion. The influence o f  the normal stress presence during the 
creation o f  zones B  and C  at failure causes the principal difference in the fracture surface
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m orphology betw een zone A  and zones B  and C. The sm ooth surface o f  zone A  created 
under the pure shear stress at the first stage becom es, due to increasing normal stress, 
more multifarious (zone B). The increased influence o f  the normal stress in  final stages o f  
deform ation and failure and more com plex deform ation conditions associated w ith  
serration on the loading-deform ation curve leads to higher surface profile w ith ripples 
(zone C). Sim ilar distinguishing o f  fracture stages in  the case o f  a polym er failure was 
described in [15].

The results suggest that the catastrophic fracture is no longer a pure shear process, 
w hereas the normal stress p lays a remarkable role.

C onclusions. The fractographic analysis o f  the fracture surface o f  Zr50Ti16.5Cu15N i18.5 
amorphous m etallic a lloy  in  the form o f  a 300 fxm thick ribbon fractured in tensile tests 
reveals the presence o f  shear failure by  the m eniscus instability m echanism . Features 
similar to the fracture m orphology o f  bulk amorphous alloys are formed in the catastrophic 
shear band and presented on the fracture surface.

We have described three different distinct pattern m orphologies. Primary progressive 
sliding in  the first region (A ) is fo llow ed  by  the general fracture that consists o f  tw o  
regions. The presence o f  the vein -like pattern w ith frequent radial ve in  forms is typical o f  
the second fracture region (B). The last -  third -  region o f  the fracture surface (C) has a 
more pronounced re lie f and is covered w ith a river-like pattern. The vein -like pattern o f  
the second region covers a dominant part o f  the final fracture surface.
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