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Выполнен линейный расчет напряженно-деформированного состояния тонких пластин 
численным методом, базирующемся на использовании мультиквадратических радиальных 
базисных функций. Показано, что данный метод оказывается весьма гибким при расчетах 
объектов со сложной геометрией, поскольку не требует сеточного разбиения и нечувст­
вителен к их пространственным координатам. Полученные численные результаты сравни­
ваются с данными решений на основе теории пластин Кирхгофа.
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Introduction. The purpose of this paper is the application of radial basis 
functions, to the analysis of thin plates. Hardy [1] was the first to develop the 
multiquadrics method (MQ) as a general scattered data approximation algorithm 
to approximate two-dimensional geographical surfaces. The MQ method was 
found to be one of the best interpolation schemes for scattered data by Franke [2]. 
The method used in this paper is based on the work of Kansa [3] where a 
modified MQ scheme was proposed for the solution o f partial differential 
equations. The numerical solution of partial differential equations (PDEs) is 
traditionally dominated by finite element methods, finite volume methods or finite 
difference methods. All of these methods are based on local interpolation 
strategies and depend on a mesh for local approximation. In these methods 
although the function is continuous across meshes, its partial derivatives are not
[4-6]. T  
form g  (

ie MQ method depends on the distance to a center point x j  and is of the 
). The radial basis functions (RBF) may  also depend on a shapex — x

parameter c, in which case g( ) is replaced by g ( c) [3, 7].

The multiquadrics solution depends o f the choice o f the shape parameter, a 
user-defined parameter. This choice is still an open discussion. This method was
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previously applied with success to some engineering problems [8] and to 
composite materials by Ferreira et al. [9-11].

In this paper it is investigated the application of the MQ method in the 
solution of thin plates, which is a relevant problem for mechanical, civil and 
structural engineers. The numerical solutions are compared with Kirchhoff theory.

1. The Multiquadric Method. Consider a set of nodes x 1, x  2 ,.. .,  x N E
Q C f i " . The radial basis functions centered at x ,• are defined as

g j  ( x ) = g  ( x — x ) e  R n, j  = 1,..., N, (1)

where x — x ,• is the Euclidian norm. Some of the most common RBFs are

multiquadrics: g j (x ) = ( 

inverse multiquadrics: g j  ( x ) = (

Gaussians: g j ( x ) = e

x — x j + c 2) 1/2,

x — x

—c II x —x  .

+ c 2)
2N — 1/2

(2)

(3)

(4)

thin-plate splines: g j (x ) = x — x
2m

log x — x m = 1,2,..., n , (5)

where c is a shape (user-defined) parameter.
In this paper we will concentrate on the multiquadrics approach. Radial basis 

functions are insensitive to spatial dimension, making the implementation of this 
method much easier than, e.g., finite elements. Illustration of a network of nodes 
is given in Fig. 1.

Fig. 1. Illustration of a network of nodes.

2

2

2

An important feature of the RBF method is that is does not require a grid. 
The only geometric properties needed in an RBF approximation are the pairwise 
distances between points. Working with higher dimensional problems is not 
difficult as distances are easy to compute in any number of space dimensions.
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In this paper, it is proposed to use Kansa’s unsymmetric collocation method 
[3]. Consider a boundary-valued problem with a domain Q C fi"  and a linear 
elliptic partial differential equation of the form

Lu(x) = s(x) C R n, 

Bu( x  ) dQ = f  ( x ) e  Rn ,

(6)

(7)

where dQ represents the boundary of the problem. We use points along the 
boundary (x j , j  = 1,..., N B ) and in the interior (x j , j  = N B + 1,..., N ).

Let the RBF interpolant to the solution u(x ) be

N

s( x , c ) = 2  aj g ( 
j=i

x — x , c ). (8)

Collocation with the boundary data at the boundary points and with PDE at 
the interior points leads to equations

N

sb ( x , c ) = 2  aj Bg ( 
j=i

x —x j c) = A(x i ), i = 1,..., N b , (9)

N
SL(x ,c) = 2 ajLg(\ x — x j ||, c)=  0 ( x f ), i = N b + 1,..., N , (10) 

j=i

where A(x i ) and 0 (x  i ) are the prescribed values at the boundary nodes and the 
function values at the interior nodes, respectively.

This corresponds to a system of equations with an unsymmetric coefficient 
matrix, structured in matrix form as

'Bg" T
[a ] = O (11)

2. Thin Plate Analysis.
2.1. Thin Plate Theory. It is considered a thin plate, subjected to lateral 

transverse loads q = q(x , y ). The symbol D is used to represent the flexural 
rigidity of the plate:

D =
Eh :

12(1— v 2 )
(12)

In the plate problem, the unknown transverse displacement, w, is calculated 
by solving the boundary-valued problem, defined by the differential equation:
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d 4 w d 4 w d 4 w q(x , y  ) 

dx4 dx 2dy2 dy4 D
(13)

The boundary conditions are defined, for example, for a simply-supported 
edge parallel to the x-axis at y  = b as

[w] y=b = 0
d 2 w 

dx 2
= 0.

y=b
(14)

The flexural moments are obtained by

M x  = - D
2d2w

+ v
2d2w

dx
(15)

M y = - D

I -.2 -.2  ̂d w d w

dx 2 + dy 2
(16)

Mxy = D(1 — v  )
d 2 w 
dxdy (17)

2.2. M ultiquadrics Interpolation for the Governing Equation. Applying 
the multiquadrics method previously explained, the differential equation (13) is 
now interpolated for each node i, as

N XN

2 <p J
j=1

-, 4 -.4 -.4
d g j  d g j  d g  

+ 2 --- :rj  +
dx 4 - . 2 ^ 2  dx dy dy

q( x,  y  )
D (18)

where g  i was defined in Eq. (1).
2.3. M ultiquadrics Interpolation for B oundary Conditions. For each 

boundary node, the multiquadric interpolation for each boundary node follows the 
approach in Eq. (8). A simply-supported condition in x = a edge imposes two 
boundary conditions (see Fig. 2)

2 2  d w d w
wx=a = 0 and —r  + v T T  = 0  (19)dx 2 dy 2

In this collocation method, we chose to impose the first boundary condition 
on node with x  = a and the second boundary condition on node with x  = a ± d 
when d is a very small number. This approach was previously applied by Jang 
et al. [13] to differential quadrature method on plates. It is really important to 
apply this methodology due to the improvement of the quality of solution when
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ô is used. The collocation points, after the inclusion of Ô, can be seen on Fig. 3,
for various point cloud density.
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Fig. 3. Regular discretization for N = 9, 13, 17, and 21.

The multiquadrics interpolation of equations (19) leads to a change in the 
global equations system. As an example, for each node i where w = 0, the 
following multiquadric equation is imposed:

NX N ___________________________

2 ^  W  ( x i ~  x j )2 + (y i  ~  У j )2 + c 2 = 0  (20)
j=1
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3. Discussion of Results. The analysis of square and circular Kirchhoff 
plates is performed, for simply-supported and clamped conditions. All plates are 
subjected to a uniform unit load. Square plates have unit side and circular plates 
have unit radius.

In figures below, N  is considered as the number of nodes per side in square 
plates and the number of nodes per radius in circular plates. In all problems a unit 
bending stiffness is considered. The objective of the numeric studies is to evaluate 
the accuracy of the model with exact Kirchhoff results, as presented by 
Timoshenko [12].

The influence of various parameters in the quality of the solutions is 
investigated. In particular the effect of the shape-parameter, c, and the 6 
parameter in the solution error are considered.

The root-mean-square error (RMS) was calculated using:

N x N -NB
RMS = ------------------  У

N  x  N  -  N b \

I \ 2wexact wMQ
we

(21)

Solutions for the transverse displacement curve are presented.
In Fig. 4 it is illustrated the deformed shape of a simply-supported square 

plate, for N  = 23, and d = 1-10_7. It can be seen a very smooth deformation 
pattern, that presents very accurate forms when compared with exact solution as 
can be seen in Fig. 5 where an error study is conducted. In this figure it is 
presented the evaluation of the root-mean-square error with N . The convergence 
to exact results is exponential. After about 20 nodes per side the solution is almost 
exact, with very small RMS error.

Fig. 4. Transverse displacement for a simply supported square plate with N = 21, 6 = 10 7, and
c = 2/4N .
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Further calculation for square plates considered N  = 19 due to the good 
behavior as seen in Fig. 5.

The influence of shape-parameter c in the RMS error is plotted in Fig. 6. All_3
values of c G [0,1] produce errors around 10 . However, values in range 

[0.4-1.0] should be preferred. Our usual choice is c = 2 /V N , which matches this 
interval and in fact produces one of the smallest error. This choice was previously 
proposed by Fasshauer [7].

Fig. 5. RMS error dependence on N  for a simply supported square plate with ^ = 1-10 5 and
c = 2/VN.

Fig. 6. RMS error dependence on c for a simply supported square plate with N = 19 and 
(5 = 1-10_5.

78 ISSN 0556-171X. npodxeMbi npounocmu, 2005, N9 2



Analysis o f  Thin Isotropic Rectangular and

Figure 7 plot the variation of RMS error with d parameter. This parameter is 
necessary to adequately introduce the second set of boundary conditions and 
needs to be a very small number. The variation of RMS error with d is in general 
linear, with a few exceptions.

The evaluation of RMS error for the transverse displacement with N  is 
plotted in Fig. 8. A very  fast convergence is obtained. A good solution quality is 
obtained after 18 points per side.

Fig. 7. RMS error dependence on d for a simply supported square plate with N = 19 and
c = 2/VN.

Fig. 8. RMS error dependence on N for a clamped square plate with d = 1 • 10 5 and c = 2/4 N .
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In Figs. 9 and 10 the evaluation of RMS with c and RMS with d are 
plotted. The results follow the same good pattern as for simply-supported plates.

In Fig. 11 are illustrated some meshes of circular plates for various ‘mesh’ 
densities. Near the external boundary nodes a new set of nodes is placed in order 
to apply a second set of boundary conditions. This ‘d-approach’ already used by 
Jang et al. [13] will affect significantly the quality of the solution as will be seen 
in figures below.

Fig. 9. RMS error dependence on c for a simply supported square plate with N = 19.
RM S (w)

Fig. 10. RMS error dependence on d for a clamped square plate with N = 19 and c = 2/vN. 
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In Fig. 12 the vertical (transverse) displacement for each node is plotted, 
corresponding to a cloud of nodes representing the deformation of the plate. The 
deformation of the plate is presented for N  = 23 for a simply-supported plate. 
N  represents the number of nodes in a single radius of the plate.
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Fig. 11. Regular discretization for a circular plate with N = 8, 12, 16, and 20.

Fig. 12. Regular discretization for a simply supported circular plate with N = 13, d = kj 100, and
c = 2/VN.

In Fig. 13 the evolution of root-mean-square curve (transverse displacement) 
with the shape parameter c is presented for simply-supported circular plates. 
Similar curves are obtained for N  = 11, 19, 25. There is a fast convergence to 
final results for every N  .

The RMS error was calculated only for node where maximum displacement 
is taking place using:
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NX N- N b

RMS  = 2N  X N  -  N B ]j
wmax, exact wmax, MQ

wmax, exact
(22)

Keeping d = k /100, the evolution of RMS error with the shape-parameter 
for clamped circular plate is illustrated in Fig. 14, for various grids. Significant 
dependence of RMS error is noticeable. However, for N  > 9, c > 0.2 very small 
errors are produced. In particular, c = 2 /V N  is included in such range which 
confirms the results of Fasshauer [7].

RM S <w)

Fig. 13. RMS error dependence on c for a simply supported circular plate d = k/100.
RM S (w)
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Fig. 14. RMS error dependence on c for a clamped circular plate b = к/100.

ISSN 0556-171X. Проблемы прочности, 2005, № 2

1



Analysis o f  Thin Isotropic Rectangular and

In Tables 1 and 2, the results from the present model and the exact 
(Kirchhoff) values [12] are presented. In Table 1, the results are presented for 
simply-supported and clamped square plates. In Table 2, the results are presented 
for simply-supported and clamped circular plates. The present results are in very 
good agreement with exact values.

T a b l e  1
Model and Exact Values of w and Mx for Thin Square Plates

Simply supported 
д = 10“ 7

Clamped 
д = 10_7

N w(0,0) Mx (0,0) w(0,0) Mx (0,0)
10 0.0039329 0.046740 0.00100 0.0196
15 0.0040110 0.047431 0.00110 0.0890
21 0.0040104 0.047436 0.00120 0.0225

Exact 0.0041600 0.047900 0.00126 0.0231

T a b l e  2
Model and Exact Values of w and Mx for Thin Circular Plates

Simply supported 
д=к / 100 д= 

Cla

kk 
! 

00 
ed

N li 0) Mx (r = 0) r li 0) Mx (r = 0)
6 0.0510 0.1727 0.0132 0.0740
10 0.0599 0.1962 0.0150 0.0796
14 0.0622 0.2023 0.0154 0.0807
16 0.0627 0.2036 0.0155 0.0809

Exact 0.0637 0.2062 0.0156 0.0813

Conclusions. In this paper, the multiquadrics method was applied to the 
structural analysis of square and circular plates. The method is most adequate to 
analyze any geometry with the same governing equations provided adequate 
boundary conditions are imposed. The quality of the solution converges 
exponentially for both square and circular plates. Given the collocation procedure, 
a ‘д-approach’ was used in order to impose a second set of boundary conditions. 
This procedure provides a significant improvement in the quality of the solution. 
In general, the model agrees very well with the exact Kirchhoff theory for plates. 
This method can be a good alternative to the finite element method and to the 
finite difference method in the analysis of such structures.

Р е з ю м е

Виконано лінійний розрахунок напружено-деформованого стану тонких плас­
тин числовим методом, що базується на використанні мультіквадратичних 
радіальних базисних функцій. Показано, що даний метод є досить гнучким 
при розрахунках об’єктів зі складною геометрією, оскільки не потребує
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сіткового розбиття і нечутливий до їх просторових координат. Отримані 
числові результати порівнюються з даними розв’язків на основі теорії 
пластин Кірхгофа.
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