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Представлен энергетический анализ статического разрушения тонких стальных листов по 
типу Kш. При динамических испытаниях использовалось оборудование для образцов типа 
Шарпи. Статические испытания трех видов стальных листов на разрыв свидетельствуют, 
что линейное соотношение Мая-Коттрелла справедливо для образцов с шириной рабочей 
части до 30 мм. В указанном диапазоне удельная работа разрушения Ге определяется в 
соответствии с моделью Мая-Коттрелла. Исследовалась кинетика Ге в зависимости от 
толщины листа B, радиуса кривизны р и скорости нагружения V. Усовершенствованная 
модель включает линейное отношение р / W. Кроме того, изменение скорости нагружения V 
от 1 до 300 мм/мин показало, что удельная работа разрушения Ге не зависит от нее. 
Установлено незначительное снижение динамической трещиностойкости J  d.

Ключевые слова : вязкое разрушение, образцы для испытаний на разрыв по 
типу K  ш , работа разрушения, установка для испытания образцов типа 
Шарпи.

N o t a t i o n

A -  elongation
a -  crack length
aph -  distance between the root and the leg free edge
B -  specimen thickness
b -  ligament length

bph -  distance of plastic hinge travel
dUe -  elementary elastic strain work
dUp -  elementary total nonessential work of fracture
dUy -  elementary plastic bending work
dU 2 -  elementary plastic unbending work
dx -  elementary length of the legs
E -  Young’s modulus
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I C  95% - confidence interval at 95%
J - J  -integral
J  0 - toughness at crack initiation
J  О, d - dynamic toughness at crack initiation
K Ic,st - static mode I stress intensity factor
K  Ic, d - dynamic mode I stress intensity factor
L - middle leg length
L ph - length of the middle leg after the second stage
M e - elastic moment
M p - plastic moment
M p 1 - plastic bending moment
M p 2 - limit plastic bending moment
m - striking mass of the middle leg
n - work hardening exponent
R e - yield strength
R

m - ultimate strength
R  0 - flow stress
R  О, d - dynamic flow stress
r1 - mode III toughness ratio
r2 - mode I toughness ratio
P - external force
S D - standard deviation
T - tearing modulus
Td - dynamic tearing modulus
u - displacement of the load application point
U - work spent on fracture
v i - initial velocity of the hook

v f - final velocity of the hook
V - loading rate
W - leg width
a, ß - constants
е - total strain
е e - elastic component of the total strain

Є p - plastic component of the total strain
Гє - essential work of fracture
P - radius of curvature
P e - elastic radius of curvature
P 0 - plastic radius of curvature
О - stress
О О - stress value per unit strain
V - ^-factor

°  p - total plastic angle
6 ph1 - middle leg rotation at the “built-in” end (root)
6 ph 2 - angle of the root at the plastic hinge
А - relative error
a w r - change of rotational energy
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In troduc tion . The toughness o f some extremely ductile materials such as 
swaging steels cannot be described w ith the classical fracture mechanics criteria 
such as the critical stress intensity factor or the critical value o f the J -integral. For 
thin sheets in particular, Cotterell and Reddel [1] have developed the initial idea 
o f Broberg [2] who stated that two regions are necessarily found around the crack 
tip. The first one is the fracture process region and the second one, which 
surrounds the first region, is called the screening region [3]. The total work of 
fracture is composed o f the work required in the crack process region and the 
work spent in the screening region [4]. The work in the first region is called 

“essential work o f fracture” and is m ainly concerned w ith crack propagation. Mai 
and Cotterell [5] perform ed two-leg and three-leg trouser tests for tearing of 
ductile sheet materials, where gross plasticity is developed following crack 
propagation. For the analysis, they assumed that the work o f plastic bending and 
unbending o f the legs during the tearing process is described by the m ean radius 
o f curvature p . W ith the use o f an incremental rigid plastic energy balance to 
describe the process, their solution for the tearing force is simply a symmetrical 
two-legged trouser tear, assuming that the behavior o f the sheet m aterial is 
governed by the stress-strain relationship o f a power law type. They show a linear 
behavior between the force per unit thickness and the tab width. The specific 
essential work o f fracture Te is determined by extrapolation o f the linear curve.

In the present work, we investigate tearing o f thin steel sheets in mode III 
considering a theoretical approach as w ell as experimental tests.

Thus,
a) The M ai-C otterell analysis [5] is extended to take into account the elastic 

contribution to the energy balance by adding the work spent during elastic 
deformation.

b) Tests are conducted for studying the effect o f  the w idth exceeding 30 mm, 
the radius o f curvature, and thickness on the specific essential work o f fracture.

c) The influence o f the loading rate V on Te (calculated from M ai-Cotterell 
analysis [5]) is considered for the values o f  V between 1 and 300 mm/min.

d) Moreover, dynamic tearing tests (V =  3 • 105 mm/min) o f thin sheet steel 
are performed. A  new original experimental m ethod is proposed and a 
comparison is made between the values o f the specific essential work and the 
dynamic fracture toughness at initiation.

S tatic T earing Tests.
T heoretical Analysis. The trousers tearing tests determine the essential work 

o f fracture Te for thin metal sheets in mode III tearing. M ai and Cotterell [5] 
considered only the energy balance in tearing o f thin metal sheets. I f  the legs o f a 
specimen are large enough, the elastic as w ell as the plastic strain work induced in 
the legs is negligible. Thus, the work o f the external force P  is m ainly spent on 
breaking the specimen. Hence, the energy balance is expressed by the following 
relation:

Pdu = TeBda, (1)

where B is the specimen thickness, u is the displacement o f the load application 
point, a is the initial value o f the crack length (Fig. 1a), and Te is the essential 
work o f fracture.
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Geometrical considerations lead to the equation u =  2a. Then Eq. (1) gives

2P
Ге =  I T '

(2)

I f  the specimen legs are not large enough, the elastic and plastic strain work 
in the legs m ust be taken into account in the energy balance. The energy balance, 
in this case, is expressed by

Г eBdx
Pdx = --------- +  dU  p ,2 р (3)

where d U  p is the total nonessential work necessary to bend and unbend the 
length dx o f  the legs.

The curvature 1/ p  o f the leg is the sum o f the elastic curvature 
corresponding to the yield stress R e, the curvature 1/p e, and the plastic curvature 
during bending o f the leg with the curvature o f 1/ p  0 . The total strain £ is equal 
to

£ =  £ e +  £ p . (4)

Here £ e and £ p are the elastic and plastic components o f the total strain, 
respectively.

У I 1 ^  1
є =  =  у \ —  +  —

p  \ p e p 0
(5)

where y  is the distance between the neutral axis and the outer fiber (Fig. 1b), 
while the elastic curvature 1/ p  e is given by
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1 2Re
BE (6)

Here R e is the yield strength and E  is the Young modulus. W e considered the 
elastic mom ent defined by

b /2 / \ 
M e = 2W f  | —

0 U e,
Eydy =

WEB -

T i p i
(7)

where W is the specimen leg w idth (Fig. 1a). The elementary elastic work is 
equal to

p  /1d U e =  dxJ  M edl — 
o \P 6E

dx. (8)

In the plastic field, the m aterial behaves following the power law:

a  =  a  0 £0 , (9)

where a  0 and n are the stress value o f the unit strain and the work hardening 
exponent, respectively.

Figure 1b represents a specimen after ductile tearing. The plastic bending 
m om ent is given by

B/2
M p1 =  2W f aydy. (10)

0

Combination o f Eqs. (5), (9), and (10) leads to

>«+2T
M  p 1 =

a 0B ,T2W

p  n ( n +  2)2 n+1 (11)

The elementary plastic work dU  1 required to bend the length dx o f the leg 
is given by

1/Pe  + 1 /P 0

dU  1 =  dx f M
1

p1d (12)
1/Pe

Upon integration, Eq. (12) takes the following form: 

d U 1 =
a  0 B n+2W

2 n+1( n +  1)( n +  2)

1
n+1 n+1

I p  e
+  —  

p  0 I p  et
dx. (13)

e
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W hen the plastic m om ent given by Eq. (11) reaches its limit, the specimen 
leg develops plastic unbending. W ith respect to relation (11), the lim it moment 
M p2 is equal to

M  p 2 =
а  о B n+2W

( n +  2)2 n+1
1 1

—  +  — 
p  о p

(14)

where p  is the radius o f curvature during unbending. The elementary plastic 
work dU  2 required for unbending o f the element dx o f  the specimen leg is 
given by

1 /Po / 1 \

. . .  (15)
1/Pe

1/p° 1 1 
d U 2 =  dx J  M p 2dl — 

1/p _p

By using (14) and integrating (15), we arrive at the following equation:

dU  2 =
а  о B n+2W

2 n+1( n +  1)( n +  2)

n+1 n+1
dx. (16)

The total elementary nonessential plastic work d U p is the sum o f (13) and 
(16), and is defined by the following relation:

а  о B n+2W
dU  n =  dU  1 +  dU  2 =  ,,

p 1 2 2 ( n +  1)( n +  2)

n+1 n+1
dx , (17a)

а о B n+2W I 1
dU  n =  dU  1 +  dU  2 =  ^ ^ ---------------- 1 —

P 1 2 2 n+1( n +  1)( n +  2) _ p  о

\ n+1 I \ n+1
1 - [ p о^

_2 p  e)I
dx. (17b)

Relation (17a) describes the contributions o f the plastic and the elastic strain 
energies per unit length. The relative contribution o f the plastic strain energy to
the elastic one is given by the ratio ( p o /2 p e) n as indicated in relation (17b). 

In our case, for a VM 97-30 m agnetic steel sheet, we obtained 8.4-10 -3

<  ( p 0/2 p e )n+1 <  3 .9-10“ 2 , and for a ST37-2 steel sheet 5 .7 -1 0 “ 3 <

<  ( p 0/2 p e )n+1 <  1.12-10_ 2. Using these values and those from (8) and (17b), 
and knowing other parameters o f  the latter relation, we obtain the relative elastic 
energy contribution compared to the plastic one, which is equal to 3.77% for a 
VM 97-30 magnetic steel sheet and 1.6% for a ST37-2 steel sheet. These values 
allow the elastic energy contribution to the energy balance given by (17a) to be 
neglected, and thus, relation (3) takes the form

— -3

Pdx =
TeBdx а  W B n+ 2

+
1

n+1

( n +  1)( n +  2) \ p  о
dx. (18)

ISSN Ü556-171X. Проблемыг прочности, 2ÜÜ3, N  4 45



M. Aberkane, A. Ouibrahim, G. Pluvinage, Z. Azari

Finally, the last equation is reduced to

P a  0W
n+i

B 2 ( n +  i)( n +  2 ) \ p  0
(i9 )

W ith the use o f  (19), M ai and Cotterell [5] have shown the possibility to 
determine the essential w ork o f fracture T e by extrapolating the linear 
relationship between the tearing force per unit thickness P /B  and the width of 
the specimen leg W .

M ateria ls  S tudied. The tests are conducted on three different steel sheets. A 
sheet o f  cutting steel ST37-2 o f thickness B =  1 and 1.5 mm used in electrical 
engine manufacturing and a sheet o f m agnetic steel VM 97-30 o f thickness 
B =  0.3 mm used for electric engine air-gap section. These steels are referenced 
with respect to the DIN standard (Table 1).

For our tests, specimens are cut in the material rolling direction. M echanical 
properties o f the materials, namely, yield strength R e, ultimate strength Rm , 
elongation A (in %), dynamic flow stress R 0 d , and the values o f o 0 and n, 
w hich characterize the power law, are presented in Table 2.

T a b l e  1
Chemical Composition (in %) of Investigated Steels

Type 
of steel sheets

Chemical compounds
C Si Mn P S Cr Ni N

VM97-30 0.0i4 3.2 0.06 - 0.02 0.06i 0.i -
ST37-2 max

0.i9
- - max

0.05
max
0.66

- - max
0.008

T a b l e  2
Mechanical Properties of Investigated Steels

Type 
of steel sheets

Mechanical properties
Re, MPa Rm> MPa A, % n a0, MPa R0,d > MPa

ST37-2 2i0 324 28.30 0.23 3i0 524
VM97-30 292 3i3 i0.80 0.ii 27i -

E x p erim en ta l R esults and  A nalysis. The tearing force per unit thickness
P /B  is plotted as a function o f the width W  (Fig. 2), and the essential w ork of
fracture for different steel sheets is determined by extrapolating the linear curves.

2
The values o f Te are equal to 853, 1866, and 620 kJ/m  for the steel sheet 
ST37-2 w ith B =  1 mm, ST37-2 w ith B =  1.5 mm, and the magnetic steel sheet 
VM 97-30 with B =  0.3 mm, respectively.

These results confirm the previous conclusion [5] concerning the dependence 
o f the essential w ork o f fracture Te on the thickness. The test results for a 
ST37-2 thin steel sheet o f  different thickness (B =  1 and 1.5 mm), showed that the 
values o f Te increase w ith thickness. This confirms the nonintrinsic character o f 
the essential work o f fracture Te. The latter can be considered as a mechanical
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characteristic o f  a thin steel sheet only for a single value o f the thickness. 
Moreover, it is noteworthy that the tear per unit thickness P /B  increases w ith W 
as long as the specimen w idth W does not exceed 30 mm. U pon reaching this 
limit, a decrease in p B  is noticed, which m akes us think that the approximation 
o f the linear behavior is no longer valid w ithin the whole domain W studied.

1 ST37-2; B=1.5 mm 

і ST37-2; B=1.0 mm 

VM97-30; B=0.3 mm

W (mm)

Fig. 2. The tearing force per unit thickness, P/B, versus leg width, W.

In accordance w ith M uscat-Fenech and Atkins [6], p  increases w ith W 
(Fig. 3), and manifests itself in a linear growth according to the following 
relation:

p  =  3 W  + a , (20)

where 3  and a  are constants whose values for each material tested are presented 
in Table 3.

The introduction o f the linear relationship p  =  f$W +  a  in Eq. (19), 
assuming 1/p  = 1 / p  o, makes it possible to formulate the so-called Corrected 
M ai-C otterell (CMC) relation in the form:

P  r e a  0B n+1 W
— = + ------ 0------------------------------- (21)

B 2 (n + 1)( n +  2 ) (3 W  +  a )  n+1 . ( J

In this model, Te is evaluated using the force value obtained during the test 
and the corresponding radius o f  curvature and leg width. Expression (21) shows 
that the variation o f P /B  according to W is not linear any more. Comparison of 
the T e values w ith the use o f the two models [MC m odel (Eq. 19) and CMC 
model (Eq. 21)] proposed in this study is presented in Table. 4. W ith regard to the 
scattering o f experimental data on the P /B  vs W relation (Fig. 2), we 
supplemented r e calculated according to the CMC m odel (Eq. 21) with a
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T a b l e  3
Constants a and j3

Type of steel sheets B, mm ß a
ST37-2 1.0 0.22 7.32

VM97-30 0.3 0.28 0.39

W (mm)

Fig. 3. The radius of curvature p  as a function of the leg width W.

statistical analysis from w hich we determined the standard deviation and the 
confidence interval at 95% o f the average Te (Table 4). The results presented in 
Table 4 show that:

1. High values o f the standard deviation confirm a large scattering o f the 
experimental data on the P /B  vs W relation (see Fig. 2).

2. The confidence interval at 95% shows that the Te value determined in 
this sample analysis is a good estimation o f the average Te value in the CMC 
model for each material tested.

3. The value o f T^v determined by the CMC m ethod as compared to the

reference value determined by the MC m odel [see respective A (%)], is high for 
ST37 steel and very close in the case o f VM 97 steel. This variation is probably 
due to the nature o f the materials used in our tests, particularly, the coupling 
influence o f p (W ) and the work hardening exponent n, which appears in the 
pow er form in the CMC m odel (Eq. 21).

Effect o f the  L oad ing  R ate  on the  E ssential W o rk  of F rac tu re . Tests are 
conducted on trousers tearing test specimen (ST37-2; B =  1.5 mm) w ith the 
loading rate V varying between 1 and 300 mm/min. Four values are tested in this 
range. The essential w ork o f fracture Te is determined by the MC m odel (Eq. 19) 
for each value o f V . It is obtained by extrapolating the linear relationship between 
the tearing force per unit thickness P /B  and the w idth o f the specimen leg W  for 
a zero leg w idth (Fig. 4).

48 ISSN 0556-171X. npoôëeMbi npounocmu, 2003, N  4



Static and Dynamic Tearing o f  Thin Steel Sheets

T a b l e  4
Comparative Table of Ге Values

ST37-2; B = 1 mm VM97-30; B = 0.3 mm
Ге (kJ/m2) 

according to 
MC model

Ге (kJ/m2) 
according to 
CMC model

Relative error 
А (%)

Ге (kJ/m2) 
according to 
MC model

Ге (kJ/m2) 
according to 
CMC model

Relative error 
А (%)

S53 1156
(average)

35 б20 622
(average)

O.32

SD = 132 
CI 95% = 50

SD = 110 
CI 95% = 50

, . r e,MC CMCNote: Relative error A = —!——-----!-----.
ê ,MC

T a b l e  5
The Essential Work of Fracture Fe for Different Loading Rates

V , mm/min 1 10 3O 3OO
Ге, kJ/m2 18бб 1S47 1S43 1S12

a W (mm) b W (mm)

Fig. 4. Essential work of fracture Ге for different loading rates (ST37-2 steel, B = 1.5 mm): 
(a) V = 30 mm/min; (b) V = 300 mm/min.

A  slight decrease in Te ( -3 % ) is observed w hen the loading rate V varies 
between 1 and 300 m m /m in (Table 5). The magnitude o f V seems to have a little 
effect on the values o f Te. Such insensitivity is in accordance w ith Eq. (19) in 
w hich V does not appear.

D ynam ic T earing Tests.
For dynamic tearing tests, three-leg trousers specimens are used, in which 

the middle leg is provided for a ring (Fig. 5a and b). These tests are perform ed on 
a Charpy test apparatus in which the ham m er is replaced by a hook to seize the 
ring. In these dynamic tearing tests, the only variable param eter is the ligament 
length b (Fig. 6a), whereas the leg width is kept constant in all tests. The 
similarity that exists between the fracture process o f dynamic tests and petalling 
o f thin metallic sheets allows us to evaluate the m aterial toughness according to 
the formulations o f Landkroft and Goldsmith [7] and Kawano et al. [8].
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E valua tion  o f the  E n erg y  A bsorbed  in  B ending o f the  M iddle Leg. As
shown in Fig. 5b, petal formation results from bending o f the specimen middle leg 
due to the pressure o f the hook. Assuming the Landkroft and Goldsmith study [7], 
analysis o f  this process should be based on the following assumptions:

1. The force exerted by the hook is always applied at the tip o f the middle leg 
in the normal direction to the plate.
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2. Geometrical effects due to large deformation are neglected.
3. The m aterial is regarded as rigid perfectly plastic so that no deformation 

occurs when the bending m om ent at the middle leg cross section is sm aller than 
the plastic m om ent M p and infinite large strain can occur when it exceeds M p .

4. Only the plastic m om ent is taken into account in the energy balance.
5. The crack propagation rate is assumed to be always higher than the plastic 

hinge velocity.
Since bending o f the m iddle leg is initiated at the m om ent o f im pact and 

growth in length L with outward crack propagation, it m ay be assumed that at 
each stage o f the hook motion, one deals with a cantilever beam  o f constant 
thickness and rectangular shape. The fixed end o f this beam  moves outward with 
crack propagation. The situation is described in Fig. 6b. There are two stages in 
the absorption process. During the outward crack propagation, there will be 
parallel outward m otion o f the plastic hinge in the m iddle leg until the hinge 
arrives subsequently at this “built-in” end (the root o f  the m iddle leg). A t the end 
o f this phase, the middle leg experiences rotation d phl. A fter the first stage, the 
m oving hook and the m iddle leg possess kinetic energy; therefore, additional 
m otion will take place. In this case, the plastic hinge is fixed at the root by the 
m agnitude o f the angle d ph2, which is sufficient to ensure free passage o f the 
hook. A t the end o f this second stage, the m iddle leg m ay have some residual 
kinetic energy, especially in the case o f thin plates. In this case, the rotation o f the 
m iddle leg exceeds d ph2 and it is detached completely from the test specimen.

The energy absorbed at the first stage o f deformation is calculated. The 
solution o f this problem  was presented by Landkroft and Goldsmith [7]. 
Calculations were made for a triangular cantilever beam. This approach is 
followed here. The m iddle leg is m odeled by a rectangular cantilever beam  o f 
constant thickness B and length L (Fig. 6a). The variable plastic mom ent o f  this 
geometry is given by

2WB2 db
dM P = T ~  ■ (22)4 Lph

The pure plastic mom ent is

2WB2 bph 
M p = R e —  . (23)

ph

Here 2W is the width o f the m iddle leg, a is the crack length, L is the initial 
lateral dimension o f the specimen (as illustrated by Fig. 6a), while bph and Lph 
are the distance o f the plastic hinge travel and the length o f the middle leg after 
the second stage, respectively (Fig. 6b). The param eter aph appearing in Fig. 6b 
is the distance between the root and the free edge o f the leg. From experimental 
observations, it is found to be equal to 6.7 mm. A t the second stage o f motion, a 
rigid-body rotation o f the middle leg at the fixed end takes place. The energy 
balance for this stage is given by
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U = M p eph2 =  f ( v 2 -  V2 ) + A W r , (24)

where v t and v j  are the initial and the final velocity o f the hook, respectively, 
m is the striking mass, and AW r is the change in the rotational energy o f the 
middle leg during the second stage o f motion. Scibetta et al. [9] assumed that 
./-integral can be interpreted as the energy-rate release per unit crack area:

with

1 dU
J  = ---------

2B db

dU  = 0 ph2 dM  p.

(25)

(26)

For the practical evaluation o f the J-integral, Akourri et al. [10] assume that 
the fracture toughness is proportional to the work spent on fracture per unit 
ligament area, and ^-factor is introduced in the J-in tegral formulation:

J  =  ’ 2 B ^ -  C T

For a rigid perfectly plastic material, it is easy to establish the ^-factor as a 
function o f the plastic moment. The combination o f Eqs. (25) and (27) yields

• = d b i f .  '2 8 ,

Combination o f Eqs. (24), (26), and (28) gives

dM p bph
^ ^ b T M T p  ■ (29)

The introduction o f relations (22) and (23) in Eq. (29) permits us to obtain 
the value o f the ^-factor:

V = \  (30)

Therefore, Eq. (27) takes the form

J  2Bbph ' (31)

The absorbed energy is evaluated by Kawano et al. [8] in the following 
manner. Generally, a typical /-in teg ra l resistance (J  — R) curve can be given as 
shown in Fig. 7. In region 1, a crack initiates when the J-va lue  reaches a certain
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characteristic value for the material, J 0. This is followed by region 2, where the 
gradient o f the J  -  R curve, dJ / da, decreases w ith the crack growth, but the 
crack extension is small. Then dJ /da  reaches an approximately constant value in 
region 3. Since the crack is not short in this study, it is assumed that the J-integral 
value can be expressed by the dotted line in Fig. 7. Using the definition o f the 
tearing modulus [9]

E dJ

T R 2 da ’ (32)

this function can be written as follows:

J = _L d U
2B da = J  о +

R ;
Ta, (33)

where R 0 is the flow stress and J 0 is the m aterial toughness at the initiation of 
fracture. Hence, i f  we identify the first term  o f Eq. (31) with relation (33), we can 
write

и  r  02
J  =  ^ —  = J  0 + —  Ta. 2Bbph 0 E (34)

For our dynamic tearing tests, relation (34) is rewritten as

J =
и

2Bbph
' =  J  o,d +

R 0,d
(35)

where R 0 d is the dynamic flow stress, J 0 d is the dynamic toughness at 
initiation, and Td is the dynamic tearing modulus.

Fig. 7. Schematic illustration of a typical /-resistance curve.
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T a b l e  6
Geometry of the Dynamic Specimens

a, mm 5 10 15 20 25 30 35
a/L 0.08 0.15 0.23 0.31 0.38 0.46 0.54

Test Specim ens. Specimens are cut in the rolling direction o f the material 
and tests are conducted on ST37-2 steel sheets with thickness B =  1.5 mm. The 
specimen geometry and dimensions are given in Fig. 8. Various values o f the 
crack length a and ratio a/L  used during the tests are presented in Table 6.

E x p erim en ta l R esults an d  A nalysis. The tests allow the measurem ent o f 
the absorbed energy U  for tearing initiation and propagation for each value o f the 
crack length a (Fig. 9a). The value o f the dynamic toughness at initiation J 0 d is 
obtained from the straight-line relationship between the absorbed energy per unit 
area J  =  U j(2 b phB ) and the crack length a by extrapolation to zero crack length 
(Fig. 9b), where J 0,d =  1443 kJ/m 2 and Td =  30.

Fig. 9. Absorbed energy, U, and specific absorbed energy, J, vs various crack lengths, a.
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T a b l e  7
Г е a n d  J 0d

Type of steel sheets B mm Toughness (kJ/m2)
ST37-2 1.5 Static

(V = 1 and 300 mm/min)
Dynamic 

(V = 3 -105 mm/min)

Г '"' = 1842 J0, d = 1443

V  (mm/min)

Fig. 10. The values of Te and J0 d versus the loading rate V.

The values o f Te and J 0 d characterize fracture initiation toughness at 
static and dynamic tearing, respectively. We compared the values o f Te and J 0 d . 
Different values o f T e and J 0,d are shown in Fig. 10 and tabulated in Table 7. 
A ll these results revealed the following:

1. W hen the quasi-static loading rate increases (from 1 to 300 mm/min), the 
Te and V relations are linear, and the relationship that relates T e and V is as 
follows:

Te =  1 8 6 8 -  9.3 log V. (36)

2. W hen the loading rate is increased by a factor o f one thousand (1000) to 
3 • 105 mm/min, no significant variation o f the fracture initiation toughness value 
occurs as shown by the J 0 d and Fe ratio:

r  =  J^ L =  0.78. (37)
 ̂e

For comparison, let us consider the Golovechkin and Touzlokova [12] ratio 
obtained in mode I fracture on aluminum and titanium  alloys and on thin steel 
sheets:

K  I2c d
r2 =  - 2 ^  =  ° .36, (38)

K  Ic , st
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where K Ic d and K  Ic st are the dynamic and static mode I stress intensity 
factors, respectively.

Comparison between the r1 and r2 values can be m odeled according to the 
relationship K c =  E J Ic. We notice that for our study, the ratio between the

dynamic and the static values o f toughness is higher than that obtained according 
to Golovechkin and Touzlokova [12], which indicates that the fracture toughness 
o f thin sheet metal in m ode I fracture is more sensitive to the dynamic loading 
effects.

C onclusions. We have shown that w hen the elastic contribution is negligibly 
small compared to the plastic one, the tearing force P /B  is related to the width W 
o f the specimen leg by a linear relationship. The experimental data are found to be 
in agreement w ith the above behavior, provided W does not exceed 30 mm. For 
large values o f  W, such an approximation o f the linear behavior is no longer 
valid. The radius o f curvature p  increases w ith W  indicating that the second 
term in Eqs. (19) and (20), which describes the crack propagation share in the 
tearing process, is not negligible, its value depends on the nature o f materials 
used. For highly ductile materials such as ST37-2 steel, its influence is more 
significant. Moreover, the experiments also show that Te increases w ith the 
thickness B. For several loading rates V varying from 1 to 300 mm/min, the 
experiments indicate that Te is not affected by V , while Te remains constant up 
to the value o f V 300 mm/min. In the second part o f this work, dynamic tests are 
perform ed on a Charpy-test apparatus. Dynamic toughness at initiation, J 0 d , is 
determined. The relation between this param eter and Te is calculated, which 
shows a slight decay o f J 0 d in relation to Te. It seems that in the case o f mode 
III tearing o f a thin steel sheet, the toughness is relatively insensitive to the 
loading rate.

Р е з ю м е

Представлено енергетичний аналіз статичного руйнування тонких стальних 
листів за типом K  ш . При динамічних випробуваннях використовувалось 
обладнання для зразків типу Ш арпі. Статичні випробування трьох видів 
стальних дисків на розрив свідчать, що лінійне співвіднош ення М ая- 
Коттрелла справедливе для зразків із шириною робочої частини до 30 мм. У 
такому діапазоні питома робота руйнування Те визначається у  відповід­
ності з моделлю М ая-Коттрелла. Досліджувалась кінетика Те в залежності 
від товщини листа В, радіуса кривини p  і швидкості навантаження V . 
Удосконалена модель включає співвідношення р / W . Окрім того , змінюючи 
швидкість навантаження V від 1 до 300 мм/хв, встановлено, що питома 
робота руйнування Те не залежить від неї. Показано незначне з м є н ш є н н я  

динамічної тріщиностійкості J  о d .
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