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CTaTMYecKne M AMHAMUYECKMEe UCMbITaHUS TOHKOMIMCTOBOW CTanu
Ha casur
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MpeacTas/eH SHepre TUHECKWIA aHarM3 CTaTUYeCKOro paspyLLeHNs TOHKUX CTa/lbHbIX IMCTOB M0
Tuny Kuw. Mpu gHaMUYecKmx UCTIbImaHusxX MUCMo/b30Basiock 060pyaoBaHMe Anid 06pasLos Tvna
LLapriv. CTaTunyeckvie UCTIbITaHNA TPEX BUAOB CTa/lbHbIX IMCTOB Ha paspblB CBUAETENLCTBYIOT,
YTO /IMHeliHOe COOTHOLLIEHVe Mast-KoTTpenia crnpasefMBo A 06pasLioB C LLMPYHOWA paboyeit
yacTu o 30 mm. B yKasaHHOM [viana3oHe yaenbHas paboTa paspylleHus e onpegensieTcs B
COOTBETCTBUM C Mogenbo Mas-KoTTpenna. Vccneaosanach KMHeTUKa e B 3aBMCMMOCTY OT
TOWWHLI McTa B, pagnyca KpuBM3Hbl P U CKOPOCTUW Harpy>keHus V. YCOoBepLLEHCTBOBaHHAsS
MOZE/b BKMOUaET NMHeHOe OTHOLLIEHWe p/ W. Kpome Toro, U3MeHeHVe CKOPOCTU Harpy>keHust V
oT 1 go 300 MWMWMH MOKas3ano, YTO YAenbHasi paboTa paspylleHnsi e He 3aBUCMT OT Hee
YCTaHOB/MEHO HE3HAUMTESbHOE CHU>KEHVE AMHAMMYECKOA TpeLLmHocToMKkocTY J  d.

KnwoueBble c/ioBa: BA3KOE paspylleHue, o06pasubl A8 UCMbITAaHUIA Ha paspbiB MO
Tuny Kuw, paboTa paspyleHus, ycTaHOBKa [ANf WUCNblTaHUA o6pasuoB Tuna
Wapnu.

Notation

A - elongation

a - crack length

aph - distance between the root and the leg free edge
B - specimen thickness

b - ligament length

bph - distance of plastic hinge travel

dUe - elementary elastic strain work

dUp - elementary total nonessential work of fracture
duy - elementary plastic bending work

du2 - elementary plastic unbending work

dx - elementary length of the legs

E - Young’s modulus
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1cosw - confidence interval at 95%

J - J Hdntegral

jo - toughness at crack initiation

Jad - dynamic toughness at crack initiation
K 1c,st - Static mode | stress intensity factor
K 1c,d - dynamic mode | stress intensity factor
L - middle leg length

Lph - length of the middle leg after the second stage
Me - elastic moment

Mp - Plastic moment

mp1 - Plastic bending moment

Mmp2 - limitplastic bending moment

m - striking mass of the middle leg

n - work hardening exponent

Re - VYield strength

R, - ultimate strength

Ro - flow stress

Rad - dynamic flow stress

n - mode Il toughness ratio

2 - mode | toughness ratio

P - external force

sp - standard deviation

T - tearing modulus

Td - dynamic tearing modulus

u - displacement of the load application point
U - work spent on fracture

vi - initial velocity of the hook

v - final velocity of the hook

% - loading rate

w - leg width

a,B - constants

e - total strain

ee - celastic component of the total strain
€ - plastic component of the total strain
Fre - essential work of fracture

P - radius of curvature

pe - elastic radius of curvature

P, - plastic radius of curvature

0] - stress

oo - stress value per unit strain

Vi - ~-factor

°p - total plastic angle

6ph1 - Middle leg rotation at the “built-in” end (root)
6ph2 - angle of the root at the plastic hinge
A - relative error

awr - change of rotational energy
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Introduction. The toughness of some extremely ductile materials such as
swaging steels cannot be described with the classical fracture mechanics criteria
such as the critical stress intensity factor or the critical value ofthe J-integral. For
thin sheets in particular, Cotterell and Reddel [1] have developed the initial idea
of Broberg [2] who stated that two regions are necessarily found around the crack
tip. The first one is the fracture process region and the second one, which
surrounds the first region, is called the screening region [3]. The total work of
fracture is composed of the work required in the crack process region and the
work spent in the screening region [4]. The work in the first region is called
“essential work of fracture” and is mainly concerned with crack propagation. Mai
and Cotterell [5] performed two-leg and three-leg trouser tests for tearing of
ductile sheet materials, where gross plasticity is developed following crack
propagation. For the analysis, they assumed that the work of plastic bending and
unbending of the legs during the tearing process is described by the mean radius
of curvature p. With the use of an incremental rigid plastic energy balance to
describe the process, their solution for the tearing force is simply a symmetrical
two-legged trouser tear, assuming that the behavior of the sheet material is
governed by the stress-strain relationship of a power law type. They show a linear
behavior between the force per unit thickness and the tab width. The specific
essential work of fracture Te is determined by extrapolation of the linear curve.

In the present work, we investigate tearing of thin steel sheets in mode Il
considering a theoretical approach as well as experimental tests.

Thus,

a) The Mai-Cotterell analysis [5] is extended to take into account the elastic
contribution to the energy balance by adding the work spent during elastic
deformation.

b) Tests are conducted for studying the effect of the width exceeding 30 mm,
the radius of curvature, and thickness on the specific essential work of fracture.

c) The influence of the loading rate V on Te (calculated from Mai-Cotterell
analysis [5]) is considered for the values of V between 1 and 300 mm/min.

d) Moreover, dynamic tearing tests (V = 3¢105 mm/min) of thin sheet steel
are performed. A new original experimental method is proposed and a
comparison is made between the values of the specific essential work and the
dynamic fracture toughness at initiation.

Static Tearing Tests.

Theoretical Analysis. The trousers tearing tests determine the essential work
of fracture Te for thin metal sheets in mode Ill tearing. Mai and Cotterell [5]
considered only the energy balance in tearing of thin metal sheets. If the legs of a
specimen are large enough, the elastic as well as the plastic strain work induced in
the legs is negligible. Thus, the work of the external force P is mainly spent on
breaking the specimen. Hence, the energy balance is expressed by the following
relation:

Pdu = TeBda, @

where B is the specimen thickness, u is the displacement of the load application
point, a is the initial value of the crack length (Fig. 1a), and Te is the essential
work of fracture.
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Geometrical considerations lead to the equation u = 2a. Then Eq. (1) gives

2P )
re=1T" @
If the specimen legs are not large enough, the elastic and plastic strain work
in the legs must be taken into account in the energy balance. The energy balance,
in this case, is expressed by

"eBdx
Pdx = —-9—+ dU B (3)

where dUp is the total nonessential work necessary to bend and unbend the
length dx of the legs.

The curvature ¥p of the leg is the sum of the elastic curvature
corresponding to the yield stress Re, the curvature 1/p e, and the plastic curvature
during bending of the leg with the curvature of Y p 0. The total strain £ is equal
to

£=£fe+ £p. )]
Here £e and £p are the elastic and plastic components of the total strain,
respectively.

Y N

|
€= :y\—+— (5)
p \pe poO

where y is the distance between the neutral axis and the outer fiber (Fig. 1b),
while the elastic curvature 1/p e is given by
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1 2Re
. BE (6)

Here Re is the yield strength and E is the Young modulus. We considered the
elastic moment defined by

bfZ/ \ WEB -
M e =2W - Eydy= @)
0U e, Tipi

where W is the specimen leg width (Fig. la). The elementary elastic work is
equal to

dUue= dx medll dx. ®)
0 \P 6E

In the plastic field, the material behaves following the power law:
a=a0f , (9)

where a0 and n are the stress value of the unit strain and the work hardening
exponent, respectively.
Figure 1b represents a specimen after ductile tearing. The plastic bending
moment is given by
B2
M pl = 2W f aydy. (20)
0

Combination of Egs. (5), (9), and (10) leads to

a OB>(,‘T‘§\-5V

Mpl=
P pn(n+ 2)2n+1 (11)

The elementary plastic work dU 1 required to bend the length dx ofthe leg
is given by
1/Pe.+f1/P0 1
dU 1= dx M p1d (12)

1/Pe

Upon integration, Eq. (12) takes the following form:

n+l n+l
a 0B n+2W 1
dUu1l= + — dx. (13)
2n+l(n+ 1)(n+2) Ipe po Ip et
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When the plastic moment given by Eq. (11) reaches its limit, the specimen
leg develops plastic unbending. With respect to relation (11), the limit moment
M p2 is equal to

a 0B n+2W 1 1

Mp2= — + — 14
P (n+2)2n+1 po 14)

where p is the radius of curvature during unbending. The elementary plastic
work dU 2 required for unbending of the element dx of the specimen leg is

given by
1RP X
L _p

By using (14) and integrating (15), we arrive at the following equation:

1 1
dU 2 a oB n+2W 4
U = X. 16
2n+l(n+ 1)(n+ 2) (16)

The total elementary nonessential plastic work dUp is the sum of (13) and
(16), and is defined by the following relation:

n+l n+l
a oB n+2W
dUn=dU1l+dU2= " dx, (17a)
p 1 2 2 (n+1(n+2)
+
OB oW | 1\n+11-fp\o"nl
dUn=dUl+dU2=" N e 1— dx. (17b)
P 1 2 2n+tl(n+1)(n+2) _poj 2pe)

Relation (17a) describes the contributions of the plastic and the elastic strain
energies per unit length. The relative contribution of the plastic strain energy to

the elastic one is given by the ratio (p o/2p e)n  as indicated in relation (17b).

In our case, for a VM97-30 magnetic steel sheet, we obtained 8.4-10'3

<(p0/2pe)nl < 3.9-10“2, and for a ST37-2 steel sheet5.7-10"‘§<

< (p0/2pe)n+tl< 1.12-10_2. Using these values and those from (8) and (17b),
and knowing other parameters of the latter relation, we obtain the relative elastic
energy contribution compared to the plastic one, which is equal to 3.77% for a
VM97-30 magnetic steel sheet and 1.6% for a ST37-2 steel sheet. These values
allow the elastic energy contribution to the energy balance given by (17a) to be
neglected, and thus, relation (3) takes the form

n+l
TeBdx  aws ™2 1

Pdx = +
(n+ )(n+2)\po

(18)
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Finally, the last equation is reduced to

n+i
P a Ow

B 2 (n+i)(n+2)\po (i9)

With the use of (19), Mai and Cotterell [5] have shown the possibility to
determine the essential work of fracture Te by extrapolating the linear
relationship between the tearing force per unit thickness P/B and the width of
the specimen leg W.

M aterials Studied. The tests are conducted on three different steel sheets. A
sheet of cutting steel ST37-2 of thickness B = 1and 1.5 mm used in electrical
engine manufacturing and a sheet of magnetic steel VM97-30 of thickness
B = 0.3 mm used for electric engine air-gap section. These steels are referenced
with respect to the DIN standard (Table 1).

For our tests, specimens are cut in the material rolling direction. Mechanical
properties of the materials, namely, yield strength Re, ultimate strength Rm,
elongation A (in %), dynamic flow stress R0Od, and the values of 00 and n,
which characterize the power law, are presented in Table 2.

Table 1
Chemical Composition (in %) of Investigated Steels
Type Chemical compounds
of steel sheets C Si Mn P S Cr Ni N
VM97-30 0.0i4 32 0.06 - 0.02 0.06i 0.i -
ST37-2 max - - max max - - max
0.i9 0.05 0.66 0.008
Table 2
Mechanical Properties of Investigated Steels
Type Mechanical properties
of steel sheets Re, MPa  Rm>MPa A % n a0, MPa  Rod>MPa
ST37-2 2i0 324 28.30 0.23 3i0 524
VM97-30 292 3i3 i0.80 0.ii 27i -

Experimental Results and Analysis. The tearing force per unit thickness
P/B is plotted as a function of the width W (Fig. 2), and the essential work of
fracture for different steel sheets is determined by extrapolaté'ng the linear curves.
The values of Te are equal to 853, 1866, and 620 kJ/m for the steel sheet

ST37-2 with B =1 mm, ST37-2 with B = 1.5 mm, and the magnetic steel sheet
VM97-30 with B = 0.3 mm, respectively.

These results confirm the previous conclusion [5] concerning the dependence
of the essential work of fracture Te on the thickness. The test results for a
ST37-2 thin steel sheet of different thickness (B = 1and 1.5 mm), showed that the
values of Te increase with thickness. This confirms the nonintrinsic character of
the essential work of fracture Te. The latter can be considered as a mechanical
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characteristic of a thin steel sheet only for a single value of the thickness.
Moreover, it is noteworthy that the tear per unit thickness P/B increases with W
as long as the specimen width W does not exceed 30 mm. Upon reaching this
limit, a decrease in p B is noticed, which makes us think that the approximation
of the linear behavior is no longer valid within the whole domain W studied.

1ST37-2; B=1.5 mm
i ST37-2; B=1.0 mm
VM97-30; B=0.3 mm

W (mm)
Fig. 2. The tearing force per unit thickness, P/B, versus leg width, W.

In accordance with Muscat-Fenech and Atkins [6], p increases with W
(Fig. 3), and manifests itself in a linear growth according to the following
relation:

p=3W + a, (20)

where 3 and a are constants whose values for each material tested are presented
in Table 3.

The introduction of the linear relationship p = fSW+ a in Eq. (19),
assuming 1/p =1/p o, makes it possible to formulate the so-called Corrected
Mai-Cotterell (CMC) relation in the form:

re a 0B n+1 WO
— +
B 2 (n+1(n+2)(3W + a)n+l.

?21)J

In this model, Te is evaluated using the force value obtained during the test
and the corresponding radius of curvature and leg width. Expression (21) shows
that the variation of P/B according to W is not linear any more. Comparison of
the Te values with the use of the two models [MC model (Eq. 19) and CMC
model (Eq. 21)] proposed in this study is presented in Table. 4. With regard to the
scattering of experimental data on the P/B vs W relation (Fig. 2), we
supplemented re calculated according to the CMC model (Eq. 21) with a
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Table 3
Constants a and |3
Type of steel sheets B, mm R a
ST37-2 10 0.22 7.32
VM97-30 0.3 0.28 0.39

W (mm)

Fig. 3. The radius of curvature p as a function of the leg width W.

statistical analysis from which we determined the standard deviation and the
confidence interval at 95% of the average Te (Table 4). The results presented in
Table 4 show that:

1. High values of the standard deviation confirm a large scattering of the
experimental data on the P/B vs W relation (see Fig. 2).

2. The confidence interval at 95% shows that the Te value determined in
this sample analysis is a good estimation of the average Te value in the CMC
model for each material tested.

3. The value of T~v determined by the CMC method as compared to the

reference value determined by the MC model [see respective A (%)], is high for
ST37 steel and very close in the case of VM97 steel. This variation is probably
due to the nature of the materials used in our tests, particularly, the coupling
influence of p(W) and the work hardening exponent n, which appears in the
power form in the CMC model (Eq. 21).

Effect of the Loading Rate on the Essential Work of Fracture. Tests are
conducted on trousers tearing test specimen (ST37-2; B = 15 mm) with the
loading rate V varying between 1 and 300 mm/min. Four values are tested in this
range. The essential work of fracture Te is determined by the MC model (Eq. 19)
for each value of V. It is obtained by extrapolating the linear relationship between
the tearing force per unit thickness P/B and the width of the specimen leg W for
a zero leg width (Fig. 4).
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Table 4
Comparative Table of I'e Values
ST37-2; B=1mm VM97-30; B =0.3 mm
e (kd/m2 le (kJYm2  Relative error  Te (kJ/m2 le (kJm?  Relative error
according to  according to A (%) according to  according to A (%)
MC model CMC model MC model CMC model
S53 1156 K3 620 622 oR
(average) (average)
SD =132 SD =110
Cl®% = 50 Cl%% =50
Note: Relative error A = E&——— '-OVC
e,MC
Table 5
The Essential Work of Fracture Fe for Different Loading Rates
V, mm/min 1 10 0 0
e, kJ/im2 1866 1547 1543 1512

a W (mm) b W (mm)

Fig. 4. Essential work of fracture T'e for different loading rates (ST37-2 steel, B = 1.5 mm):
(@ V =30 mm/min; (b) V = 300 mm/min.

A slight decrease in Te (-3%) is observed when the loading rate V varies
between 1 and 300 mm/min (Table 5). The magnitude of V seems to have a little
effect on the values of Te. Such insensitivity is in accordance with Eq. (19) in
which V does not appear.

Dynamic Tearing Tests.

For dynamic tearing tests, three-leg trousers specimens are used, in which
the middle leg is provided for aring (Fig. 5a and b). These tests are performed on
a Charpy test apparatus in which the hammer is replaced by a hook to seize the
ring. In these dynamic tearing tests, the only variable parameter is the ligament
length b (Fig. 6a), whereas the leg width is kept constant in all tests. The
similarity that exists between the fracture process of dynamic tests and petalling
of thin metallic sheets allows us to evaluate the material toughness according to
the formulations of Landkroft and Goldsmith [7] and Kawano et al. [8].
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Evaluation of the Energy Absorbed in Bending of the Middle Leg. As
shown in Fig. 5b, petal formation results from bending of the specimen middle leg
due to the pressure of the hook. Assuming the Landkroft and Goldsmith study [7],
analysis of this process should be based on the following assumptions:

1 The force exerted by the hook is always applied at the tip of the middle leg
in the normal direction to the plate.
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2. Geometrical effects due to large deformation are neglected.

3. The material is regarded as rigid perfectly plastic so that no deformation
occurs when the bending moment at the middle leg cross section is smaller than
the plastic moment M p and infinite large strain can occur when it exceeds M p.

4. Only the plastic moment is taken into account in the energy balance.

5. The crack propagation rate is assumed to be always higher than the plastic
hinge velocity.

Since bending of the middle leg is initiated at the moment of impact and
growth in length L with outward crack propagation, it may be assumed that at
each stage of the hook motion, one deals with a cantilever beam of constant
thickness and rectangular shape. The fixed end of this beam moves outward with
crack propagation. The situation is described in Fig. 6b. There are two stages in
the absorption process. During the outward crack propagation, there will be
parallel outward motion of the plastic hinge in the middle leg until the hinge
arrives subsequently at this “built-in” end (the root of the middle leg). At the end
of this phase, the middle leg experiences rotation dphl. After the first stage, the
moving hook and the middle leg possess kinetic energy; therefore, additional
motion will take place. In this case, the plastic hinge is fixed at the root by the
magnitude of the angle dph2, which is sufficient to ensure free passage of the
hook. At the end of this second stage, the middle leg may have some residual
kinetic energy, especially in the case ofthin plates. In this case, the rotation ofthe
middle leg exceeds dph2 and it is detached completely from the test specimen.

The energy absorbed at the first stage of deformation is calculated. The
solution of this problem was presented by Landkroft and Goldsmith [7].
Calculations were made for a triangular cantilever beam. This approach is
followed here. The middle leg is modeled by a rectangular cantilever beam of
constant thickness B and length L (Fig. 6a). The variable plastic moment of this
geometry is given by

2WB2 db
dMP = 4 -I[pﬁ [ ] (22)
The pure plastic moment is
2WB2 bph
Mp =Re— . (23)
ph

Here 2W is the width of the middle leg, a is the crack length, L is the initial
lateral dimension of the specimen (as illustrated by Fig. 6a), while bph and Lph
are the distance of the plastic hinge travel and the length of the middle leg after
the second stage, respectively (Fig. 6b). The parameter aph appearing in Fig. 6b
is the distance between the root and the free edge of the leg. From experimental
observations, it is found to be equal to 6.7 mm. At the second stage of motion, a
rigid-body rotation of the middle leg at the fixed end takes place. The energy
balance for this stage is given by
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U=Mpeph2 =Ff(v2- V2)+AWr, (24)

where vt and vj are the initial and the final velocity of the hook, respectively,
m is the striking mass, and AWr is the change in the rotational energy of the
middle leg during the second stage of motion. Scibetta et al. [9] assumed that
-integral can be interpreted as the energy-rate release per unit crack area:

_1.du
" 2B db (25)
with
dU = 0ph2dM p. (26)

For the practical evaluation of the J-integral, Akourri et al. [10] assume that
the fracture toughness is proportional to the work spent on fracture per unit
ligament area, and ~-factor is introduced in the J-integral formulation:

J="2B"- CT

For a rigid perfectly plastic material, it is easy to establish the ~-factor as a
function of the plastic moment. The combination of Eqs. (25) and (27) yields

e=dbif. '28,

Combination of Egs. (24), (26), and (28) gives

dMp bph
ANDTM Tp m (29)

The introduction of relations (22) and (23) in Eqg. (29) permits us to obtain
the value of the ~-factor:
V=\ (30)

Therefore, Eq. (27) takes the form

J  2Bbph" (31)

The absorbed energy is evaluated by Kawano et al. [8] in the following
manner. Generally, a typical /-integral resistance (J —R) curve can be given as
shown in Fig. 7. In region 1, a crack initiates when the J-value reaches a certain
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characteristic value for the material, J 0. This is followed by region 2, where the
gradient of the J - R curve, dJ/da, decreases with the crack growth, but the
crack extension is small. Then dJ/da reaches an approximately constant value in
region 3. Since the crack is not short in this study, it is assumed that the J-integral
value can be expressed by the dotted line in Fig. 7. Using the definition of the
tearing modulus [9]

E dJ
T R2da’ (32)
this function can be written as follows:
R;
J= -LdU g0, 7 T, (33)

2B da

where RO is the flow stress and J 0 is the material toughness at the initiation of
fracture. Hence, if we identify the first term of Eq. (31) with relation (33), we can
write

n

r @
=N __ = -
= %emn =4t Ta (34)

For our dynamic tearing tests, relation (34) is rewritten as

n R 0d

J= [ 35
2Bbyy = Jod + (35)

where RO0d is the dynamic flow stress, JO0d is the dynamic toughness at
initiation, and Td is the dynamic tearing modulus.

Fig. 7. Schematic illustration of a typical /-resistance curve.
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Table 6
Geometry of the Dynamic Specimens
a, mm 5 10 15 20 25 0 35
alL 0.08 0.15 023 031 0.38 0.46 0.54

Test Specimens. Specimens are cut in the rolling direction of the material
and tests are conducted on ST37-2 steel sheets with thickness B = 1.5 mm. The
specimen geometry and dimensions are given in Fig. 8. Various values of the
crack length a and ratio a/L used during the tests are presented in Table 6.

Experimental Results and Analysis. The tests allow the measurement of
the absorbed energy U for tearing initiation and propagation for each value of the
crack length a (Fig. 9a). The value of the dynamic toughness at initiation J0d is
obtained from the straight-line relationship between the absorbed energy per unit
area J = Uj(2bphB) and the crack length a by extrapolation to zero crack length
(Fig. 9b), where J0,d = 1443 kJ/m2 and Td = 30.

Fig. 9. Absorbed energy, U, and specific absorbed energy, J, vs various crack lengths, a
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Table 7
Fe and JOd
Type of steel sheets B mm Toughness (kJ/m2
ST37-2 15 Static Dynamic
(V =1and 300 mm/min) (V= 3-105 mm/min)
™ =1842 J0,d = 1443
V (mm/min)

Fig. 10. The values of Te and JOd versus the loading rate V.

The values of Te and Jod characterize fracture initiation toughness at
static and dynamic tearing, respectively. We compared the values of Te andJO0d.
Different values of Te and J0,d are shown in Fig. 10 and tabulated in Table 7.

All these results revealed the following:

1 When the quasi-static loading rate increases (from 1to 300 mm/min), the
Te and V relations are linear, and the relationship that relates Te and V is as
follows:

Te=1868- 9.3log V. (36)

2. When the loading rate is increased by a factor of one thousand (1000) to

3105 mm/min, no significant variation of the fracture initiation toughness value
occurs as shown by the JOd and Fe ratio:

r =J~ L=0.78. (37)
Ne
For comparison, let us consider the Golovechkin and Touzlokova [12] ratio
obtained in mode | fracture on aluminum and titanium alloys and on thin steel
sheets:
Ked

r2=-2" =°36, (38)
K lc,st
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where Klcd and Klcst are the dynamic and static mode | stress intensity
factors, respectively.

Comparison between the r1 and r2 values can be modeled according to the
relationship Kc = EJlc. We notice that for our study, the ratio between the

dynamic and the static values of toughness is higher than that obtained according
to Golovechkin and Touzlokova [12], which indicates that the fracture toughness
of thin sheet metal in mode | fracture is more sensitive to the dynamic loading
effects.

Conclusions. We have shown that when the elastic contribution is negligibly
small compared to the plastic one, the tearing force P/B is related to the width W
ofthe specimen leg by a linear relationship. The experimental data are found to be
in agreement with the above behavior, provided W does not exceed 30 mm. For
large values of W, such an approximation of the linear behavior is no longer
valid. The radius of curvature p increases with W indicating that the second
term in Egs. (19) and (20), which describes the crack propagation share in the
tearing process, is not negligible, its value depends on the nature of materials
used. For highly ductile materials such as ST37-2 steel, its influence is more
significant. Moreover, the experiments also show that Te increases with the
thickness B. For several loading rates V varying from 1 to 300 mm/min, the
experiments indicate that Te is not affected by V, while Te remains constant up
to the value of V 300 mm/min. In the second part of this work, dynamic tests are
performed on a Charpy-test apparatus. Dynamic toughness at initiation, J0d, is
determined. The relation between this parameter and Te is calculated, which
shows a slight decay of J0d in relation to Te. It seems that in the case of mode
Il tearing of a thin steel sheet, the toughness is relatively insensitive to the
loading rate.

Pe3tome

MpeAcTaBMeHO €HEPreTUYHUI aHani3 CTaTUYHOr0 PYMHYBaHHA TOHKWX CTalbHUX
nuctie 3a tunom Kuw. Mpn guHamiyHux BUNPOOGYBaHHAX BUKOPWUCTOBYBANOCh
obnagHaHHA Ans 3paskie Tuny LWapni. CTaTW4yHi BMNPOoOYyBaHHA TPbOX BUAIB
CTaNbHWX [AWUCKIB Ha PpO3pWUB CBiguaTb, WO NiHiliHe cniBBigHOWEHHA Mas-
KoTTpenna cnpasefnvse Ans 3paskis i3 WMpUHOW poboyoi yacTuHu go 30 mm. Y
TakoMy fiana3oHi nutoma po6oTa pyiHyBaHHA Te BM3HaA4yaeTbCs Yy BigNOBIfA-
HocTi 3 mogennto Mas-KoTTpenna. focnigxkysanach KiHeTuka Te B 3aneXHOCTI
Bif TOBWMWHW nucTa B, pajiyca KpUBUHW p | WBUAKOCTI HaBaAHTaXeHHA V.
Y ooCKOHaneHa MoAenb BKAKOYAE cniBBigHOWEHHA p/W. OKpim TOro, 3MiHKO YK
WBMAKICTb HaBaHTaxeHHs V Big 1 go 300 MM/xB, BCTaHOBJIEHO, WO NUWTOMA
po60Ta pyilHyBaHHA Te He 3aneXWUTb Bifg Hei. MoKa3aHO He3HAYHE smeHweHHS
AVHaMIiYHOT TpiwmnHocTinKocTi Jod.
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