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Starting with the rigorous expressions, derived previously for the generalized transport coefficients of a multi-
component fluid, we obtained several exact relations for partial conductivities of ionic charge-asymmetric
mixtures. For a simpler case of a charge-symmetric binary mixture such kind of relations was discovered
experimentally by Sundheim more than 50 years ago and is known as the “universal golden rule”. Some
more complicate models, describing in particular the cases of ternary and multi-component mixtures, are
considered. The general relation for partial ionic conductivities is derived for a multi-component ionic fluid. It
is shown that such relations can be considered in fact as an example of a more general class of rigorous
expressions valid for (k, w)-dependent quantities.

Key words: lonic liquids, transport coefficients, mutual diffusion coefficient, ionic conductivity, molten salt

PACS: 66.10.cg, 66.10.Ed, 82.45.Gj, 47.10.-g

Introduction

About 50 years ago a phenomenological “universal golden rule” for the ratio of partial conduc-
tivities of ions in molten salts was proposed by Sundheim [I] from the analysis of experimental
data. This rule is expressed in a very simple form

- (1)
o_ my
Recently, there were made several theoretical attempts [2] to derive this relation using the equations
of motion, the Langevin equation as well as molecular dynamics studies for the model of binary
charge symmetrical molten salts. A few years later using similar approaches such relation was also
obtained for pseudo-binary molten salt KC1-NaCl [3].

Our goal is to consider this problem in a more general framework. We start with the rigorous
relations derived by us previously for generalized transport coefficients of a multi-component fluid
|4, 15]. We obtain the “universal golden rule” for (k,w)-dependent partial conductivities of an ionic
charge-asymmetric binary mixture as well as the relations for the partial ionic conductivities in
some cases of ternary and four-component ionic liquids.

1. Theoretical framework

Let us start with some introductory remarks and consider the general framework that can
be used for the description of both kinds of multi-component mixtures, in particular mixtures of
neutral particles as well as mixtures containing charged particles. In general case we deal with a
v-component fluid in the volume V, containing N, particles in the ath species (o = 1,2,...,v).
To derive hydrodynamic equations one has to define the microscopic basic set of the slowest (hy-
drodynamic) variables [5], which for a multi-component mixture may be introduced as follows
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Pli‘yd = {Nk, jk, Ek}, where Ny = {Nka} is a column-vector with the components

Na
Nk,a = Z exp{ikR{'}, (2)

i=1
being the number density of particles in the a-th species; Jy is the density of the total current,

Nao
jk = ij,aa jk,a = Zp? eXp{ikRia}v (3)

=1

with jk,a being the current densities of particles in the a-th species, and

No
By = Z Ek,a = Z Z e exp{ikR{'} (4)

a =1

is the total energy density, where the one-particle energy e can be expressed via the sum of kinetic
energy and potential energy of pair interactions:

e® — w + Z Vﬂa
7 2my, it -
1#3,8

The set of dynamic variables Plilyd = {Nk,jk,Ek} includes the densities of all the additive
integrals of motion for a mixture. In the case of longitudinal dynamics, as it follows from the sym-
metrical properties, the scalar densities Nk o and F interact only with the longitudinal component
of J k, namely j{;, that is the projection of Jx onto the direction of wave-vector k. Hence, the total
number of longitudinal hydrodynamic variables for v-component mixture is equal to v + 2, namely
PL = {PL} with 1 =1,2,...,v+2.

In practical applications it may be more convenient [4, [5] to use the set of orthogonalized
dynamic variables possessing the following properties (Pﬁ, Pfk) =0,x (Pﬁ, Isfk). Such an orthog-
onalized set of longitudinal hydrodynamical variables can be defined as follows

p&‘:{j\?kajlgaf{k} (5)

where . . o o R .
Hk = Ek - (Ek,NJ)(Nk,NJ)ilNk = (]- - P./\/)Ek

is the so-called enthalpy density, the Mori-like projection operator denotes as

Pyx...= ( .- aNlj_)(NkaJ)ilj\A/ - Z( .- aka,Ot) (Nkv'/vlj)c:’i Nk,’Y? (6)
oy
and the notation (...,...) is used for the definition of an equilibrium correlation function

(4, B) = ((A— (4))(B - (B)))
with (...) denoting the equilibrium averaging.
The generalized hydrodynamic fluxes IfiL can be defined in the standard way:
ikl , = (1 - Pu)iLn Dy, (7)

where Py is the Mori-like projection operator, constructed on the set of all hydrodynamic variables
@), and iLy is the Liouville operator. Thus, for the number density flux one can easily obtain
o ik /4 MaCq 31,
lka,a = m_ (‘]k,a - m Jk) ) (8)

«
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where m,, is the particle mass in the a-th species, ¢, = No/N = n,/n denotes concentrations,
and m =Y coMm, is the mean mass per particle.

(03
The generalized (k, z)-dependent transport coefficients are defined via the generalized fluxes
IfiL as follows [4, 15]

o0

L. (k,2) = é/ dt exp{—=zt} (Ifi“exp{f(l - PH)iLNt}Iﬂky,i) . 9)
0
Note that the expression (@) has the structure of the well-known Green-Kubo formulas [6], but

the evolution operator is more complicated and additionally involves the projection operator Py.
However, in the hydrodynamic limit (k,z) — 0 one gets the expression

L,,= lim L,.(k, z)

k,z—0

<|m

/ dt (I¢, exp{—iLnt}I7), (10)
0

that is commonplace in numerous textbooks (e.g. [7]) and has been routinely employed in computer
simulations.

In the context of this paper we are mainly interested in the behavior of the generalized mutual
diffusion coefficients Dq (k, z) that are simply related to the corresponding transport coefficients
L*V(k, z). Namely, one has

LY (k, z) = ncacyDo~y(k, 2) [ kBT, (11)

where n = N/V. The explicit frequency dependence in (@) can be found by taking into account
that z = iw + ¢ and € — +0.

In general for a v-component mixture the matrix of mutual diffusion coefficients D(k,w) =
| Do~ (k,w)| has v x v elements. Due to the symmetry properties Do (k,w) = Dyo(k,w) this
number is reduced to the v(v 4+ 1)/2 independent elements. However, there are still additional
v explicit relations that follow from the total momentum conversation law. Namely, taking into

account that
MaCa 71\ _
§ mall, = E (Jk’a - Jk) =) (12)

a=1

and using the definition (@), the set of new useful relations for generalized transport coefficients, that
involve the processes caused by number densities fluctuations, can be easily derived. In particular,
one gets

Z MaCaDary(k,w) = Z Doy (k,w)eymy = 0. (13)
y=1

Hence, taking into account the relations (I3]) one can conclude that the total number of independent
matrix elements in the matrix D(k,w) = ||Dq(k,w)]| is equal to v(v — 1)/2. In a particular case
of binary mixture (v = 2) we have v(vr —1)/2 =1 and

Du(kw) = macy Du(k,w) _ m3c; (14)
Dia(k,w)  miecr’ Dyo(k,w)  mict’

These relations directly follow from the identity (I3]). Being valid for an arbitrary binary mixture,
they are of rather general character.

2. Binary mixture of charged particles

Let us now consider the case of a binary mixture composed of oppositely charged particles with
charges g4 and g_, masses my and m_, and densities ny, n_. The total electroneutrality condition
is satisfied, so that ¢yn4 +¢g-_n_ = 0.
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The electrical conductivity can be calculated by means of the Green-Kubo formula [, |9]

7 (19(£)1%(0)), (15)

<|R

where 19(t) = > I2(¢) with

«
Nao
I (t) = gana Z vi
=1

being the partial ionic electrical current (o = 4, —). Ionic conductivity is also connected with the
mutual diffusion coefficients [9]:

n
—TZQaQLiCaCﬁDaB ) (16)
a,B

where mutual diffusion coefficients are defined as follows

Nqo Nﬁ

D at ( J(0))
=N, Ng Z / (0)
4,j=1
with a, 8 = +, —. In the center of mass reference frame the expression (6] can be easily derived

from (I3 with the help of equations (8), @) and (II). For generalized (k,w)-dependent ionic
conductivity one can use the definition

n
o(k,w) = T az; 40 q3CatsDap(k,w). (17)

It is seen from (7)) that the total ionic conductivity can be presented as the sum of partial
ionic conductivity ¢ = o4 4+ o_, where g, ~ gucCqo 25 gscgDag, so that for the ratio of partial
ionic conductivity one gets

o+ _ ¢33 Dyy +qpepqc Dy
o-  ¢2AD__+gqyciqoc Dy’

(18)

This expression can be significantly simplified if we use the relations that follow from (I4l),
namely: Dy /D__ = (mZ/m3)(c2/c}), Dyt/Dy = —(m—/my)(c—/cy), D__/D_; =
—(m4/m_)(cq/c-), Dy— = D_,. Taking into account the electroneutrality condition ¢ycy +
q—c_ =0, one gets

o_(k,w) q— my
In the case of charge-symmetric systems with g_ = —g4 (in particular, for molten salts NaCl, KCI,
NaF, KF, RbBr) we obtain

0'+(]€,W) _ E ) (20)
o_(kyw) my
In fact, the expression (20) represents the generalized version of the so-called “universal golden
rule” () valid for binary charge-symmetric ionic liquids with arbitrary values (k,w). In a more
general form (I9) such a relation is derived for a charge-asymmetric binary mixture by means of
the rigorous expressions (I3)) obtained for the generalized mutual diffusion coefficients of a multi-
component fluid.
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3. Ternary mixtures

3.1. Charged particles in solvent

Let us consider a more complicated model of a ternary mixture that is composed of oppositely
charged particles in neutral solvent with the particle charges ¢4 and ¢g_, the particle masses m,
m_, and mg, and concentrations ¢, c_, ¢g (¢ +c_~+cg = 1). The total electro-neutrality condition
can be written in the form: gycy +¢g_c— =0.

From the relations (I3]) one obtains the equations

mycyDyy(k,w)+m_c_D_i(k,w)+ mocgDos(k,w) = 0,
mycyDy_(k,w)+m_c_D__(k,w) +mocoDo—(k,w) = 0,
mycyDyo(k,w) +m_c_D_o(k,w)+ mocoDoo(k,w) = 0, (21)

where Dog = Dgao. The electroneutrality condition enables us to express the concentrations of
charged particles via cg, namely: c; = (1 —co)g—/(q— — q+), c— = (1 — ¢0)g+/(q+ — q—). It is
obvious that

2 2
q2 C2 _ q2 02 _ (1 _ 00)2 a39- = Q2
o T (qr —q-) ’
2 2
q349- o 2
qiciqc. = —(1—co)—— =-Q%
(¢+ —q-)?

Therefore, one gets 0 = Q?(Dyy —Dy_) and o = Q*(D__ — D, _), so that the expression (18]
for the ratio of partial ionic conductivities can be rewritten in the form

U+(kaw) _ D++(k7w) — DJr*(kaw)

o (o) D (kw) =Dy (ko) (22)
Combining the first two equations in (ZI]), one can obtain:
mycy(Dyy —Dy) —m_c(D__ — Dy_) +moco(Dot — Do) =0 (23)
or
mycioy —m_c_o_ + mocoA =0, (24)

where the quantity A = Q?(Do, — Do_) is expressed in terms of the mutual diffusion coefficients
for ions in solvent. The relation (24]) could be considered as the generalization of “universal golden
rule” for solutions of electrolytes. Note that in the limit ¢g — 0 the expression (22]) can be easily
recovered from (22)).

3.2. Pseudo-binary molten salts

A special class of ternary ionic liquids is formed by the so-called pseudo-binary molten salts,
for instance KCl — NaCl. In this case we deal with a ternary mixture of ions. In particular, for
KCl — NaC(Cl in the system with the elementary charge e = 1 the ionic charges are gna = gx = 1
and gc; = —1 with the electro-neutrality condition cn, 4+ ¢k = cc1, where exa + ¢k + cop = 1.

For the mutual diffusion coefficients from (I3)) one has:

mlchu(k,w) +m202D21(k,w) +m303D31(k,w) = 0,
mic1Dio (k’, w) + maocaDag (k’, w) + mgc3D3o (k’, w) = ,
mic1 D13 (k’, w) + maocoDag (k’, w) + msc3 D33 (k’, w) = 0, (25)
where {K, Na, Cl} +» {1,2,3}.
Using the definition for partial ionic conductivities o, (k, w),
a(k,w) = qaCa Y _ qscsDap(k,w), (26)

B

43602-5



I. Mryglod, V. Kuporov

we obtain the expressions:

O'K(k’,w) = 01(](3,&)) =C1 [chu(k,w) —+ cleg(k,w) — C3D13(k,W)],
aNa(kz,w) = O'Q(k',w) = Co [Cngl(kJ,w) + CQDQQ(k,W) — 03D23(k,w)],
001(k,w) = Ug(k,w) = —cC3 [61D31(k',w) + CQDgg(k’,w) — 03D33(kz,w)]. (27)

If we multiply each equation in (21 by m1, ma and (-mg3), respectively, add them and use the
identities ([28)), it is easy to obtain the following relation

myo1(k,w) + maoa(k,w) = mgosz(k,w), (28)
or
mKaK(k,w) —+ mNaoNa(k,w) = mcmC](k,w). (29)

In the hydrodynamic limit when (k,w) — 0 this result was obtained in [3] by means of the Langevin
equation and confirmed directly by molecular dynamics simulations. We note that relation ([29)is
valid for arbitrary (k,w).

Using (28) one can write

maoa(k,w) +mpog(k,w) = mior(k,w), (30)

for a pseudo-binary electrolyte AI — BI with ion charges ga = ¢ = —qi.

4. Multi-component mixture of charged particles

Let us now consider the model of a multi-component fluid composed of N, ions with charges
o in the ath species (a = 1,2, ...,v). Mutual diffusion coefficients Dyg(k,w) of the system should
satisfy the relations (I3]). For partial ionic conductivities one has the definition (26]), so that if we
multiply o4 (k,w) by ms/q one can write

«

m

Z —2 oo (k,w) = Zmaca ZqﬂCBDaﬂ(k:,w) = Z qpcs [Z macaDaﬂ(k,w)] ) (31)
do > 3 5 =

Taking into account (I3)) we finally obtain

37 g (kyw) = 0. (32)

= o

This is a rather general result that includes, as a particular case, the relation ([B0)), derived above.
For example, using ([B2) it is easy to obtain the relation for partial ionic conductivities for pseudo-
binary four-component mixture A,I; — B Y; with different charges of ions.

A more complicated case corresponds to the model of a (v+7)-component fluid that is composed
of N, ions with charges ¢, (o« =1,2,...,v) and N5 neutral particles belonging to the ath species
(@ =1,2,...,7). In this case the equation (BI]) should be rewritten in the form

174

> % galk,w) =Y qpes [Z macaDaﬂ(kw)] == qpep [Z maCaDaﬂ(kvw)] ;o (33)
« B=1 a=1 B=1 a=1

a=1

where the relations (I3]) have been used. Note that the index & denotes the neutral particles.
Therefore, on the right hand side of [33)) the effects of mutual diffusion of all the ions in solvent are
included. Tt is obvious that in particular case of a ternary mixture of charged particles in neutral
solvent, the expression (24)) can be easily recovered from (33).
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The expression (33) can be further simplified if we introduce two new densities, namely the
mass density of solvent M (formed by neutral particles only) and the charge density Qk

Mk = Z de&Nk,d ; Qk = Z QQcaNk,a . (34)

a=1
Now we can rewrite (34) in the form

v

3 % 0o (k,w) = —Duq(k,w), (35)

where the generalized transport coefficient

v

DMQ(kz,w) = Z Z MaCa D&B(kaw) 4pcp

a=1p=1

describes the diffusive ion-solvent cross-correlations. The relation (B5]) yields, in fact, the most
general form of identity valid for partial ionic conductivities of classical systems of charged particles
at arbitrary (k,w).

5. Conclusions

It is shown that the general relations, that link partial ionic conductivities in a binary mixture
of charged particles, three- and four-component pseudo-binary molten salts as well as in multi-
component classical fluids of charged particles, can be derived by means of rigorous expressions,
obtained previously for the mutual diffusion coefficients of multi-component liquids. Some of these
relations generalize the results known in the literature (see, for instance, [2]), but most of them
are new. Moreover, all of these relations are valid for (k,w)-dependent quantities and this, in
particular, explains the results of molecular dynamic simulations of the frequency-dependent partial
conductivities carried out |10] for molten NaCl and Nal.
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Aesiki cTpori cniBBiAHOLWEHHS ANF napuiasbHUX NMPOBIAHOCTEN B
IOHHUX piauHax

I. Mpurnod®2, B. Kynopog?

1 IHCTUTYT @i3nKM KoHaeHcoBaHuX cuctem HAH Ykpainum, 79011 JibBiB, Byn. CBEHUiLbKOrO, 1

2 IHCTUTYT NpuKnagHoi MaTeMaTtukm i yHaaMmeHTanbHMX Hayk HauioHanbHOro yHiBepcuteTy “JIbBiBCbka
nonitTexHika”, 79013 JlbBiB, YkpaiHa

CTapTyloum 3 TOYHUX CMiBBIAHOLLIEHb, O OYN1 BUBEAEHI HAMU HELLOAABHO ANS y3arajibHEHUX KOeiLieHTIB
nepeHocy B 6araTOKOMMOHEHTHUX MJIMHAX, MW OTPUMAaSIN Kiflbka CTPOrMX CNiBBiAHOLLEHb A8 napLujianbHNX
NPOBIOHOCTEN B IOHHUX 3apSiAOBO-aCMMETPUYHMX CyMiwax. [ns HannpocTiworo BMMNAAKy 3apsigoBO-
cuMeTpryHOi BiHapHOi cMcTeMM Take CniBBIAHOLEHHS BYNO BUsIBNIEHE ekcrnepuMeHTanbHo CyHaxXeliMoMm
GinblWw HiX 50 pokiB Tomy i BigoMe sk “yHiBepcasbHe 3050Te npaBwio”. PO3rMsHYTO TakoX JeskKi
OinblU cKnagHi MoAeni, Wo OonucyioTb, 30kpemMa, BUNnagkm noTpinHMX Ta 6araToOKOMMOHEHTHUX CyMiLLIe.
BuBeneHO 3aranbHe ChiBBIOAHOWEHHS Ans napuiasbHUX iOHHMX MPOBIOHOCTEN 6araTOKOMMOHEHTHOrO
iOHHOrO NMAKnHyY. MNMokasaHo, Lo Takoro TMMy CniBBiAHOLIEHHS € GaKTUYHO NNLIe O4HUM 3 NPUKNIaAIB GinbLu
LUIMPOKOrO KNlacy BMPasiB, LLO AiAcHI ans (k, w)-3aN€XHMX BESINHUH.

Knio4oBi cnoBa: ioHHi pignHn, koediluieHTn nepeHocy, koeiuieHTr B3aeMHOI angyasii, ioHHa
rpPoBIAHICTb, PO3r1s1aBu Conel
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