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The traditional formalism in liquid state theory based on the calculation of the pair distribution function is
generalized and reviewed for nematic fluids. The considered approach is based on the solution of orientation-
ally inhomogeneous Ornstein-Zernike equation in combination with the Triezenberg-Zwanzig-Lovett-Mou-Buff-
Wertheim equation. It is shown that such an approach correctly describes the behavior of correlation functions
of anisotropic fluids connected with the presence of Goldstone modes in the ordered phase in the zero-field
limit. We focus on the discussions of analytical results obtained in collaboration with T.G. Sokolovska in the
framework of the mean spherical approximation for Maier-Saupe nematogenic model. The phase behavior of
this model is presented. It is found that in the nematic state the harmonics of the pair distribution function con-
nected with the correlations of the director transverse fluctuations become long-range in the zero-field limit. It
is shown that such a behavior of distribution function of nematic fluid leads to dipole-like and quadrupole-like
long-range asymptotes for effective interaction between colloids solved in nematic fluids, predicted before by
phenomenological theories.
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Introduction

The pair distribution function g(12) plays central role in the modern fluid theory. It establishes
a bridge between microscopic properties modeled by interparticle interactions and the macroscopic
ones such as structural, thermodynamic, dielectric and other properties. For homogeneous fluids
the integral equation methods have been intensively used in fluid theory during the last decades
[1, 2]. This technique is based on the analytical or numerical calculation of the pair distribution
function by the solution of the Ornestein-Zernike (OZ) equation within different closures: Percus-
Yevick (PY), hypernetted chain (HNC), mean spherical approximation (MSA) and its different
modifications. In the presence of an external field the fluid becomes inhomogeneous and is de-
scribed by the singlet distribution function ρ(1) that appears instead of the bulk density of the
homogeneous liquid [3]. The external field determines the symmetry of the singlet distribution
function and its dependence on coordinates of the fixed molecule 1. The transition from homoge-
neous to inhomogeneous state leads to the broken symmetry of the system. As a result, the pair
distribution function of inhomogeneous fluids loses the uniform invariance and does not have the
symmetry of the pair potential. Besides external fields, the inhomogeneity can also be caused by a
change of the system symmetry as a result of phase transition. Such a typical situation takes place
in the case of crystallization, where at certain values of the density the periodic singlet distribution
function branches off the uniform one.

Thus, in the inhomogeneous case, the OZ equation includes the singlet distribution function
ρ(1) and, besides the closure for the OZ equation, an additional relation between singlet and
pair distribution functions is needed [1–3]. There are at least two exact relations that can be
used for this aim. It could be the first member from the hierarchy of the Bogolubov-Born-Green-
Kirkwood-Yvon (BBGKY) equation [1, 4] or the Triezenberg-Zwanzig-Lovett-Mou-Buff-Wertheim
(TZLMBW) equation [1, 5–7]. We should note that in accordance with Bogolubov’s idea about the
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quasiaverages [8] for a correct treatment of the system with spontaneously broken symmetries, an
external field of infinitely small value should be introduced in order to stabilize the system.

For molecular fluids, the inhomogeneity can be caused by the broken rotational invariance in
addition to the break of the translational invariance. Such a situation appears at the phase tran-
sition from isotropic to nematic liquid crystal phase, when at certain thermodynamical conditions
the orientational-dependent singlet distribution function branches off the isotropic one. Similarly
to the crystallization case, the pair distribution function loses the translational invariant form as
a result of the broken symmetry. It loses its rotationally invariant form in the nematic case. The
change of the fluid from isotropic to nematic state in the absence of external fields induces col-
lective fluctuations, which develops orientational wave excitations, the so-called Goldstone modes.
This leads to the divergence of the corresponding harmonics of the pair distribution function in
the limit of zero wave vector k.

Recently much effort has been devoted to generalization of the integral equation theory to
orientationally ordered (anisotropic) fluids. In order to investigate the properties of molecular
fluids in the nematic phase some Ansatzes based on the construction of an effective isotropic state
are used [9, 10]. Another description of the isotropic-nematic phase transition is connected with the
application of the TZLMBW equation, with the assumption that the direct correlation function in
the nematic phase can be approximated to it by the form which is reduced in the isotropic case, i.e.,
by its rotationally invariant form. This procedure was used by Lipszyc and Kloczkowski [11] and
Zhong and Petschek [12, 13]. They made an attempt to calculate the single-particle distribution
function and the pair distribution functions in a self-consistent way on the basis of the OZ equation
and the so-called Ward identity. The Ward identity relates the singlet distribution function to an
integral of the pair direct correlation function. Later Holovko and Sokolovska [14] showed that
this is nothing else than the TZLMBW equation in the functional differential form. Treating the
direct correlation function in the PY approximation as the effective potential, Zhong and Petschek
[12, 13] supposed that the direct correlation function should be rotationally invariant just like the
initial potential. In order to remake the PY closure in a rotationally invariant form, they used
a procedure named in [15] as an unoriented nematic approximation. It was shown that with the
modified PY closure, the Ward identity is implemented and yields an infinite susceptibility in the
limit of zero wave vector for the Goldstone modes. However, Holovko and Sokolovska [14] showed
that the requirement of the rotational invariance for correlation functions leads to an incorrect
conclusion about the divergence of the nematic structure factor in the limit of zero wave vector.
In contrast to the TZLMBW, the BBGKY equation does not reproduce the correct zero-field
divergence in the transverse susceptibility of nematic fluids [16]. Thus, it seems better to build a
theory using the TZLMBW equation instead of the BBGKY one.

The generalization of the integral equation theory for orientationally inhomogeneous molecular
fluids was formulated by Holovko and Sokolovska [14, 17]. In this approach the self-consistent
solution of the OZ and TZLMBW equations are used for the calculation of the pair and single-
particle distribution functions in nematics. The developed method does not impose any additional
approximations other than a closure for the OZ equation. A principal point of this approach is the
use of exact relations obtained from TZLMBW equation for the nematic phase. In accordance with
the Bogolubov idea [8] there was introduced an external field of infinitely small value which fixes
the orientation of the nematic director. It was shown that the application of TZLMBW equation
provides a correct description of the Goldstone modes in full accordance with the fluctuation theory
of de Gennes [18]. Only harmonics of the distribution function connected with correlations of the
director transverse fluctuations have to diverge at κ = 0, the others being finite.

The developed integral equation approach was applied to the hard sphere Maier-Sauper nematic
model. There was obtained an analytical solution for this model in MSA approximation [14, 19],
which was used for the description of phase behaviour of the considered model [20]. The properties
of hard sphere Maier-Saupe model were also studied by numerical solution of orientationally inho-
mogeneous OZ equation in PY, MSA, HNC and reference HNC approximations [16, 21, 22]. The
considered integral equation theory was also applied to the investigation of a planar nematic fluid
in the presence of a disoriented field [23–26]. The obtained analytical results in MSA approximation
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for hard sphere Maier-Saupe nematic model were used in Henderson-Abraham-Barker approach
[1, 27] for the investigation of a nematic fluid near hard wall in the presence of orienting field
[28, 29]. These results were applied to the investigations of colloidal interactions in nematic-colloid
dispersions [30–35].

This paper reviews the recent studies of nematic fluids within the framework of integral equation
theory for orientationally inhomogeneous molecular fluids. This review is devoted to the memory of
Tatjana Sokolovska who passed away a year ago. The remainder of the paper is organized as follows.
The general formulation of integral equation, the orientational expansions of the pair correlation
and the singlet distribution functions are presented in the first section. The solution of the MSA
for hard sphere Maier-Saupe nematic model in the presense and in the absence of an external field
is discussed in the second section. In that section, thermodynamic properties and phase behavior
of this model are discussed. In the third section the integral equation approach is used for the
description of a nematic fluid near hard wall that interacts with a uniform orienting field. Some
aspects of intercolloidal interactions in a nematic fluid are studied by integral equation theory and
are also discussed in this section.

1. Integral equations for orientationally inhomogeneous fluids:
general relations

In this paper we consider a fluid of spherical particles with diameter σ having an orientation
specified by the unit vector ω. The fluid is subject to an external ordering field of the form

v(1) = −W2

√
5P2(cosϑ1) with W2 > 0 (1.1)

which favors an order parallel to the direction n, P2(cos ϑ) = 3
2 (cos2 ϑ − 1) – is a Legendre poly-

nomial of second order, ϑ is the angle between vectors ω and n, 1 indicates both position r1 and
orientation ω1 of the molecule.

We confine that in the interactions between the fluid particles, the orientational component
is essentially a Maier-Saupe term [36] and assume that the intermolecular potential v(12) can be
presented in the form

v(1, 2) = vh(r12) + v0(r12) + v2(r12, ω1, ω2) (1.2)

where vh(r12) is the hard sphere potential

vh(r) =

{

∞, for r < σ,
0, for r > σ.

(1.3)

The long-range attraction has an isotropic part

v0(r) = −A0
exp(−z0r)

r
(1.4)

and an anisotropic part

v2(r, ω1, ω2) = −A2
exp(−z2r)

r
P2(cosϑ12) (1.5)

where P2(cos ϑ12) is the second Legendre polynomial, ϑ12 is the angle between the axes of molecules
1 and 2. The parameters z0, z2 and A0, A2 determine the range and the strength of the coupling
interactions.

The molecular Ornstein-Zernike equation for orientational inhomogeneous fluids can be written
in the form [1–3]

h(1, 2) = C(1, 2) +

∫

d3ρ(3)C(1, 3)h(3, 2) (1.6)

where d3 = dr3dω3, h(12) = g(12)− 1 and C(12) are, respectively, the total and direct correlation
functions.
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A some closure relation which relates the correlation functions C(12) and h(12) to the pair
potential v(12) should be added. In this paper we will use MSA closure, according to which

h(1, 2) = −1 for r12 < σ, (1.7)

C(1, 2) = −βv(1, 2) for r12 > σ. (1.8)

Condition (1.7) is exact for the considered model since g12 = 0 for r12 < σ. The condition (1.8)
assumes that the long-range asymptote of C(12) = −βv(12) is correct for the whole intermolecular
distance r > σ.

For orientational inhomogeneous fluid ρ(1) = ρf(ω), where ρ is the number density of the
ordered phase, f(ω) is a single particle distribution function which can be written in the form [37]

f(w) =
1

Z
exp(−βv(1) + C(1)) (1.9)

where the constant Z can be found from the normalization condition
∫

f(ω)dω = 1, (1.10)

β = 1
kBT

, kB is the Boltzmann constant, T is the temperature, C(1) is the singlet direct correlation

function, which is the first in the hierarchy of direct correlation functions.
By using the functional differentiation technique we can define the total and the direct pair

correlation functions as [37]

− 1

β

δρ(1)

δv(2)
= ρ(1)δ(1, 2) + ρ(1)ρ(2)h(1, 2) , (1.11)

−β
δv(1)

δρ(2)
=

δ(1, 2)

ρ(1)
− C(1, 2) . (1.12)

where δ(12) is the Dirac δ-function of all coordinates of the molecules 1 and 2. In accordance with
(1.9) the second of these relations can be written in the form of Ward identity introduced by Zhong
and Petschek [12, 13]

δC(ω1)

δρ(ω2)
=

∫

dr12C(r12, ω1, ω2). (1.13)

It is important to note that after the inclusion of an external field v(1), the system instead of
a rotational invariance possesses a rotational covariance [8]. This means that the Hamiltonian and
the average values, like correlation functions, are rotationally invariant if the external field and the
molecules are simultaneously rotated. As a result of this symmetry, one gets

∇ω1
ρ(ω1) =

∫

dr12dω2
δρ(ω1)

δv(ω2)
∇ω2

v(ω2), (1.14)

∇ω1
v(ω1) =

∫

dr12dω2
δv(ω1)

δρ(ω2)
∇ω2

ρ(ω2) (1.15)

where for the considered case of linear molecules [38]

∇∇∇ω = [̂r×∇∇∇] = −eϑ
1

sin ϑ

∂

∂φ
+ eφ

∂

∂ϑ
(1.16)

is the angular gradient operator, eω and eϕ are two orthogonal unit vectors perpendicular to the
unit vector r̂.

Combination of the relations (1.11)–(1.12) and (1.14)–(1.15) yields integro-differential equations
for the singlet distribution function – the TZLMBW equations for spatially homogeneous but
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orientationally non-uniform systems

β∇ω1
v(ω1) + ∇ω1

ln ρ(ω1) = −β

∫

dr12dω2h(r12, ω1, ω2)ρ(ω2)∇ω2
v(ω2), (1.17)

β∇ω1
v(ω1) + ∇ω1

ln ρ(ω1) =

∫

dr12dω2C(r12, ω1, ω2)∇ω2
ρ(ω2). (1.18)

From equation (1.17) it follows directly that to have a non-trivial solution for ρ(ω1) the integral
∫

dr12h(r12, ω1, ω2) should diverge in the limit v(ω) → 0+. The divergence signals the appearance
of the Goldstone modes.

The equation (1.18) in the zero-field limit can be written in the form

∇ω1
ln ρ(ω1) =

∫

C(ω1, ω2)∇ω2
ρ(ω2)dω2 (1.19)

which is an integro-differential form of the Ward identity (1.13), C(ω1, ω2) =
∫

C(r, ω1, ω2)dr.
The next step of the integral equation theory for molecular fluids is usually connected with

spherical harmonics expansions for orientational dependent functions g(12) or h(12), c(12) and
f(ω). Due to orientational inhomogeneity of the fluid the traditional orientational invariance tech-
nique [1, 38] should be slightly modified [14].

In uniaxial fluids, the orientational distribution function f(ω) is axially symmetric around a
preferred direction n and depends only on the angle ϑ between the molecular orientation ω and
n. It allows us to write the relation (1.9) for f(ω) in the form

f(ω) =
1

Z
exp

{

∑

l>0

BlYl0(ω)

}

(1.20)

where the spherical harmonics Ylm(ω) satisfy the standard Condon-Shortey phase convention [38].
The nematic ordering is defined by the parameters

Sl = 〈Pl(cosϑ)〉 =

∫

dωf(ω)Pl(cosϑ), (1.21)

where Pl(cosϑ) =
√

1
2l+1Yl,0(ω) are the Legendre polynomials.

In the space-fixed coordinate system with z-axis parallel to n the direct and total pair correlation
functions can be written in the form

f(r, ω1, ω2) =
∑

m,n,l

µ,ν,λ

fµνλ
mnl(r)Ymµ(ω1)Y

∗
nν(ω2)Ylλ(ωr) (1.22)

where f(r, ω1, ω2) = h(12) or C(12), r is a separation vector of molecular mass center, ωr being its
orientation.

Due to invariance of a uniaxial system with respect to rotations around z-axis, µ+λ = ν. Since
the pair potential (1.2) is independent of orientation of the intermolecular separation vector r, the
harmonic coefficients that survive in the expansion (1.22) have only l = λ = 0 and µ + ν = 0. This
permits to attain notational simplification from six indexes to three. In the MSA for the considered
model, the expansion (1.22) reduces to

f(r, ω1, ω2) = f000(r) + f200(r)
[

Y20(ω1) + Y20(ω2)
]

+
∑

|µ|≤ 2

f22µ(r)Y2µ(ω1)Y
∗
2µ(ω2). (1.23)

It should be noted that for isotropic case f200(r) = 0.
Due to the uniaxial symmetry of a nematic the OZ equations for harmonics with different values

of µ decouple. In the MSA for µ 6= 0 harmonics, we have

h22µ(r12) = C22µ(r12) + ρ〈Y 2
2µ(ω)〉ω

∫

C22µ(r13)h22µ(r32)dr3 (1.24)
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with the closure

h22µ(r12) = 0, r12 < σ, (1.25)

C22µ(r12) = β
1

5
A2

1

r12
e−z2r12 , r12 > σ,

where 〈. . . 〉ω =
∫

f(ω)(. . . )dω. The spherical harmonics Ymµ(ω) are normalized in such a way that

∫

Ymµ(ω)Y ∗
nν(ω)dω = δmnδµν . (1.26)

For the case µ = 0, we obtained a more complex OZ equation. In Fourier space it may be presented
in a matrix form

Ĥ(k) = Ĉ(k) + Ĉ(k)ρ̂Ĥ(k), (1.27)

where

Ĥ(k) =

(

h000(k) h020(k)
h200(k) h220(k)

)

, (1.28)

Ĉ(k) =

(

C000(k) C020(k)
C200(k) C220(k),

)

, (1.29)

ρ̂ = ρ

(

1 〈Y20(ω)〉ω
〈Y20(ω)〉ω 〈Y 2

20(ω)〉ω

)

, (1.30)

hmnµ(k) = 4π

∞
∫

0

r2dr
sin kr

kr
hmnµ(r) . (1.31)

The closures of the equation (1.27) in the r-space are as follows for r < σ:

h000(r) = −1,

h020(r) = h200(r) = h220(r) = 0, (1.32)

and for r > σ:

C000(r) = βA0
e−z0r

r
,

C020(r) = C200(r) = 0, (1.33)

C220(r) =
1

5
βA2

e−z2r

r
.

The space-fixed x, y, z-components of the angular gradient operator are given by∇∇∇ω = il, where
l is the angular momentum operator. Using the relations [38]

(∇ω)y =
l+ − l−

2
, (1.34)

l±Ymµ(ω) =
[

m(m + 1) − µ(µ + 1)
]

1

2 Ym,µ±1(ω) (1.35)

and expressions (1.20), (1.22) the y-component of (1.18) is obtained in the form

∑

l

√

l(l + 1)(Bl + βW2

√
30)

[

Yl,1(ω1) − Yl,−1(ω1)
]

=
∑

l′

∑

mnµ

∫

Cµµ0
mn0(r)Ymµ(ω1)

× Y ∗
nµ(ω2)

√

l′(l′ + 1)Bl′
[

Yl′,1(ω2) − Yl′,1(ω2)
]

ρ(ω2)dω2dr . (1.36)
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Taking into account that only quantities independent of the azimuthal angle ϕ yield non-zero
average values and using the orthogonality of Ylm(ω) one gets the following equation

L = ĈŶ L + βW2

√
30l , (1.37)

where L is a column with Ll =
√

l(l + 1)Bl, Ĉ and Ŷ are matrices with elements

Cmn =

∫

drC110
mn0(r), (1.38)

Ymn = ρ

∫

dωf(ω)Ym1(ω)Y ∗
n1(ω), (1.39)

l is a column with δl,2. After integration by parts the equation (1.18) can be written in the form

β∇∇∇ω1
v(1) +∇∇∇ω1

ln ρ(ω1) = −
∫

ρ(ω2)dω2∇∇∇ω2
C2(ω1, ω2). (1.40)

Hence,
L = ĈP + βW2

√
30l (1.41)

where P is the column with
Pl = ρ

√

l(l + 1)(2l + 1)Sl . (1.42)

Equations (1.37) and (1.41) connect the system order parameters Sl, zero Fourier transforms of the
direct correlation function harmonics C110

mn0(r), the intensity of external field W2 and the coefficients
Bl of the single particle distribution function f(ω). In the MSA approximation for the considered
model (m, n) = (0, 2) and the equations (1.37) and (1.41) reduce to

B2 = C22Y22B2 + βW2

√
5 , (1.43)

B2 = 5 ρC22S2 + βW2

√
5 . (1.44)

As a result, for a single particle distribution function f(ω) we will have

f(ω) =

√

3
2 β W eff

2

D
(√

3
2 β W eff

2

) exp
[

β W eff
2 P2(cos ϑ)

]

, (1.45)

where

β W eff
2 =

β W2

√
5

1 − C22Y22
, (1.46)

D(x) is Dawson’s integral

D(x) = e−x2
x

∫

0

ey
2
dy. (1.47)

In the absence of the external field W2 = 0 and in accordance with (1.44), (1.45)

1 = C22 Y22 , (1.48)

B2 = 5 ρ C22 S2 . (1.49)

Thus, in the absence of any field a the single distribution function f(ω), the problem results in the
well-known Maier-Saupe equation [36]

S2 =

∫

P2(cos ϑ) exp
[

MS2P2(cosϑ)
]

dω
∫

exp
[

MS2P2(cosϑ)
]

dω

(1.50)
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where

M =
5

〈|Y21(ω)|2〉ω
. (1.51)

After integration the equation (1.50) can be written in the form

S2 =
3

4

[

1

xD(x)
− 1

x2

]

− 1

2
, (1.52)

MS2 =
2

3
x2 . (1.53)

The Maier-Saupe theory predicts a first-order phase transition from isotropic phase with S2 = 0
to nematic phase S2 6= 0. From the OZ equation for µ 6= 0 (1.24) using the equation (1.48) it
is not difficult to prove that in the absence of external field the harmonics with µ = ±1 have
a divergence. This divergence is connected with Goldstone modes. In the MSA approach for the
considered model, this is the harmonic h221(r).

2. Hard sphere Maier-Saupe model: MSA description

In this section we consider the analytical solution of OZ equation with MSA closure for the
model considered in previous section. The obtained results will be used for the description of
structure, thermodynamics, and phase behavior of this model. By the factorization method of
Baxter and Wertheim [19, 39] the integral equation (1.24) for µ 6= 0 under conditions (1.25) can
be reduced to a system of algebraic equations

12

5
η 〈|Y2µ(ω)|2〉ω

βA2

σ
= D

(

1 − Q̃2µ(z2)
)

, (2.1)

2πg̃22µ(z2)
[

1 − Q̃2µ(z2)
]

=
D

2
exp [−2z2 σ] [1 − 2πg22µ(z2)], (2.2)

−C = [1 − 2πg22µ(z2)] D (2.3)

where η = 1
6 πρσ3, C and D are dimensionless coefficients of the Baxter factor correlation function

Q2µ(r) =
z

ρ〈|Y2µ(ω)|2〉ω

[

q0µ(r) + De−z2r
]

(2.4)

with the short-range part

q0µ(r) =

{

C
[

e−z2r − e−z2σ
]

, r < σ,
0, r > σ,

(2.5)

Q̃2µ(z2) and g̃22µ(z2) are the dimensionless Laplace transforms of Q2µ(r) and h22µ(r)

Q̃(z2) = ρ〈|Y21(ω)|2〉ω
∞
∫

0

e−z2tQ(t)dt, (2.6)

g̃221(z2) =
ρ〈|Y21(ω)|2〉ω

z2

∞
∫

σ

e−z2th221(t)tdt. (2.7)

From the definition of the factor correlation function it follows that

1− ρ〈|Y2µ(ω)|2〉ω
∫

C22µ(r)dr = |Q2µ(k = 0)|2 (2.8)

where

Q2µ(k) = 1 − ρ〈|Y2µ(ω)|2〉ω
∞
∫

0

dreikrQ(r). (2.9)
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The joint use of (2.8) for µ = 1 and (1.43) gives us the additional equation to determine ρ〈|Y21(ω)|2〉ω

Q21(k = 0) =

√

βW2

B2
(2.10)

and in the explicit form

f = D + dc, f = 1−
√

βW2

B2
(2.11)

where d = e−z2σ∆1(z2σ). Here and below we use the symbols

∆n(x) = ex −
n

∑

l=0

1

l !
xl. (2.12)

Formulas (2.11), (2.2), and (2.3) yield the expression for D

D = − 1

2a

(

b +
√

b2 − 4ac
)

(2.13)

where

a = −d exp (−2z2σ) − (d − 1)
[

d − f∆2
0(−z2σ)

]

, (2.14)

b = (d − 1)
c

f
+ f

[

∆2
0(−z2σ)f − d

]

+ df exp (−z2σ), (2.15)

c = f
[

2d − ∆2
0(z2σ)

]

. (2.16)

Now from equation (2.1) for µ = 1 we can obtain the dependence between the ordering parameter

ρ〈|Y21(ω)|2〉ω and the system parameters η, βA2
1
σ , W2σ

A2
and z2σ

βA2

σ
η ρ 〈|Y21(ω)|2〉ω =

5

24
D

[

2 − f

d
∆2

0(z2σ) − D

(

1− ∆2
0(−z2σ)

d

)]

. (2.17)

In the absence of external field (W2 = 0) f = 1. If we put in this case 〈|Y21(ω)|2〉ω = 1 we will
obtain the instability condition of the isotropic phase with respect to the nematic phase formation
[14, 40]. If we put 〈|Y21(ω)|2〉ω = 1.1142 we get the bifurcation of the nematic solution with the
smallest value of the order parameter S2 = 0.3236. Since this is the first order phase transition
these two conditions are not equivalent. In the presence of an orienting field (W2 > 0) the fluid
can exhibit only uniaxial paranematic and nematic phases. When W2 < 0, the same fluid provides
the phase transition into a biaxial nematic phase. At strong disorienting field (W2 → −∞) the
molecules align perpendicularly to the field and the phase transition into a limiting biaxial phase
takes place [23]. In [24] it was shown that the fluid becomes orientationally unstable with respect
to spontaneous biaxial nematic ordering under the condition

1 − ρ〈|Y22(ω)|2〉ωρ

∫

C222(r)dr = 0. (2.18)

This condition reduces to (2.17) after 〈|Y21(ω)|2〉ω changes to 〈|Y22(ω)|2〉ω . At the infinite field if
we put 〈|Y22(ω)|2〉ω = 15

8 equation (2.18) gives us the instability condition with respect to the
limiting biaxial phase [23].

Figure 1 shows dependence of the order parameter S2 on the product (βa2η)−1 calculated from
(2.17) at different values of z2σ. Here and below we consider that An = anσ(znσ)2, where n = 0
and 2. This allows us to consider the mean field result as the Kac potential limit z2σ → 0 and/or
z0σ → 0 [41]. For z2σ = 3 and βa2 = 1, η has a non-physical value. As we will see later, in this
region the system goes to crystallization.
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Figure 1. The dependence of the order parameter S2 on density η and temperature (βa2)
−1

at different values of z2σ calculated in the MSA approximation for nematogenic Maier-Saupe
model.

For µ = 0, using the factorization method of Wertheim-Baxter [18, 39], the integral equation
(1.27) under the condition (1.32–1.33) can be reduced to the system of integral equations

2πr Cij(r) = −q
′

ij(r) +
∑

k,l

∫

dtq
′

ik(r + t)ρklqjl(t), (2.19)

2πr hij(r) = −q
′

ij(r) + 2π
∑

k,l

∫

dt(r − t)hik(|r − t|)ρklqlj(t). (2.20)

It follows from the asymptotic behavior of the factor correlation functions that qij(r) has the form
(i, j = 0, 2)

qij(r) = q0
ij(r) +

∑

n=0,2

D
(n)
ij e−znr (2.21)

where the short-range part

q0
ij(r) =







1
2q

′′

ij(r − σ)2 + q
′

ij(r − σ) +
∑

n=0,2
C

(n)
ij

(

e−znr − e−znσ
)

, r < σ,

0, r > σ.
(2.22)

Below we shall use the following designations for dimensionless properties

c
(n)
ij =

ρ

zn
C

(n)
ij , d

(n)
ij =

ρ

zn
D

(n)
ij , (2.23)

g̃ij(zn) =
ρ

zn

∞
∫

σ

[hij(t) + δi0δj0] te
−zntdt, (2.24)

Q̃ij(zn) = ρ

∞
∫

0

qij(t)e
−zntdt. (2.25)

Finally, we obtain a system of algebraic equations for coefficients of factor correlation functions
and Laplace transforms of a pair correlation function harmonics

− c
(n)
ij =

∑

l

[

δil − 2π
∑

k

g̃ik(zn)Skl

]

d
(n)
lj , (2.26)

12

2n + 1
βAn

1

σ
η δinδjn =

∑

k

d
(n)
ik

[

δkj −
∑

l

SklQ̃jl(zn)

]

, (2.27)
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2π
∑

k

g̃ik(zn)

[

δkj −
∑

l

SklQ̃lj(zn)

]

=
6

π
ηe−znσ

[

q
′′

ij

(znσ)3
+

q
′

ij

(znσ)2

]

δi0

−
∑

m=0,2

zm

zm + zn
c
(m)
ij exp

(

−(zm + zn)σ
)

, (2.28)

where Ŝ = 1
ρ ρ̂, ρ̂ is given by (1.30).

Figure 2. The harmonics of the pair correlation functions in the Fourier space and the structure
factor for nematogenic Maier-Saupe model in isotropic phase (z0σ = z2σ = 1, βa0 = 0.1, βa2 =
1, η = 0.28).

In (2.27) we should expect that multiple solutions occur, of which only one is acceptable [42].
To choose the physical solution one can utilize the condition

det
[

1 − ŜQ̂(s)
]

6= 0 for Re s > 0. (2.29)

Using the obtained analytical solution of OZ equation for the considered model it is possible to
calculate the structure factor and harmonics of the pair correlation functions. In figures 2 and 3 one
can see the structure factor, and the Fourier-transforms of the pair correlation function harmonics
hmnµ(k) for the isotropic and nematic phases correspondingly in the absence of the external field.
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Figure 3. The harmonics of the pair correlation functions in the Fourier space and the struc-
ture factor for nematogenic Maier-Saupe model in the nematic phase (z0σ = z2σ = 1, βa0 =
0.1, βa2 = 1, η = 0.315).

The structure factor of the system

S(k) = 1 + ρ

∫

f(ω1)h(k, ω1, ω2)f(ω2)dω1dω2

= 1 + ρ
[

h000(k) + 2h020(k)〈Y20(ω)〉ω + h220(k)〈Y20(ω)〉2ω
]

. (2.30)

We should note that in isotropic phase h220(k) = h221(k) = h222(k) and h200(k) = h020(k) = 0.
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In the nematic phase the contributions of these harmonics are very important. One can see in
figure 3 that in the nematic phase the off-diagonal elements h200(k) = h020(k) at small k have
comparable to h220(k) absolute value and opposite sign. Due to this the contributions of different
harmonics into S(k) compensate at small k and S(k) in this region behaves similarly to isotropic
case (figure 2). The small peak at small k in the nematic phase (figure 3) in S(k) is attributed to the
appearance of additional interparticle effective attraction due to parallel alignment of molecules.
It is important to note that h221(k) is the only harmonic that tends to infinity at k = 0 and this
harmonic does not give any contribution to the structure factor which is finite at k = 0.

Using equation (1.24) it is possible to show [14] that

ρ 〈|Y21(ω)|2〉ω h221(k → 0) −→ (z2σ)2

(kσ)2
4

[(z2σ)2C exp (−z2σ) − 2]
2 (2.31)

which implies the asymptotic behavior

h221(r → ∞) −→ 1

6

(z2σ)2

[(z2σ)2C exp (−z2σ) − 2]
2
η 〈|Y21(ω)|2〉ω

σ

r
. (2.32)

It can be shown that this harmonic is connected with the correlations of the director fluctuations.
This result confirms the prediction from the fluctuation theory of de Gennes [18].

Now we consider the thermodynamic properties. The structure factor at k = 0 gives us an
isothermal compressibility

1

β

(

∂ρ

∂P

)

T

= S (k = 0) . (2.33)

The average energy of interparticle interaction at the absence of external field is calculated by

β∆E

N
= β2πρ

∞
∫

0

r2dr

∫

dω1f(ω1)

∫

dω2f(ω2) [v0(r) + v2(r, ω1, ω2)]

×
[

g000(r) + h200(r)Y20(ω1) + h020(r)Y20(ω2) +
∑

µ

h22µ(r)Y2µ(ω1)Y
∗
2µ(ω2)

]

= 12η
βA0

σ

[

g000(z0σ) + 2
√

5S2h200(z0σ) + 5S2
2h220(z0σ)

]

+ 12η
βA0

σ

×
[

5S2
2g000(z2σ) + 2

√
5S2〈|Y20(ω)|2〉ωh200(z2σ) +

∑

µ

(

〈|Y21(ω)|2〉ω
)2

h22µ(z2σ)

]

.

(2.34)

Similarly, we can calculate the virial pressure

β∆Pv

ρ
= −βρ

2

3
π

∞
∫

0

r3dr

∫

dω1f(ω1)

∫

dω2f(ω2)

[

g000(r) + h200(r)Y20(ω1)

+ h020(r)Y20(ω2) +
∑

µ

h22µ(r)Y2µ(ω1)Y
∗
2µ(ω2)

]

∂

∂r
[vh(r) + v0(r) + v2(r, ω1ω2)]

= 4η
[

g000(σ+) + 2
√

5S2h200(σ+) + 5S2
2h220(σ+)

]

+
1

3

β∆E

N

+ 4η
βA0

σ
z0

∂

∂z0

[

g000(z0σ) + 2
√

5S2h200(z0σ) + 5S2
2h220(z0σ)

]

+ 4η
βA2

σ
z2

∂

∂z2

[

5S2
2g000(z2σ) + 2

√
5S2〈|Y20(ω)|2〉ωh200(z2σ)

+
∑

µ

(

〈|Y21(ω)|2〉ω
)2

h22µ(z2σ)
]

, (2.35)
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where g000(r) = 1 + h000(r), g000(znσ) and hmnµ(znσ) are Laplace-transforms of corresponding
functions at znσ.

Figure 4. Some isotherms of equation of state for nematogenic Maier-Saupe model.
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Some isotherms calculated using the equation of state (2.35) are presented in figure 4 for three

different regimes [43]: 1. The isotropic attraction is stronger than the anisotropic one
(

a0
a2

= 2
)

;

2. Isotropic attraction is absent (a0 = 0); 3. Strong anisotropic attraction and isotropic repulsion
(

a0
a2

= −0.7
)

. For simplification we consider that z0σ = z2σ = 0.5. Nematic and isotropic branches

are denoted by N and I correspondingly. At the first case when isotropic attraction is stronger than
the anisotropic one at smaller densities and lower temperature (βa0 = 1) there is condensation
between two isotropic phases which disappears at high temperature (βa0 = 0.9). In the second case
when isotropic attraction is absent at high temperature (βa2 = 0.9) we observe the weak isotropic-
nematic phase transition. At the lower temperature (βa2 = 1) we observe condensation in the
nematic region. In the third case (a0

a2
= −0.7) at the lower temperature (βa2 = 4.25) we observe

the liquid-gas phase transition between two nematic phases. The entire liquid-gas coexistence region
including the critical point is within the nematic region.

For the description of phase diagram we need to have the expression for the chemical potential
of fluid which can be obtained by generalization of the Hoye-Stell scheme [44]. Unfortunately, this
problem has nor been solved yet. We will consider it in a separate paper. Here we will instead use
the density functional scheme developed by us in [20] for the chemical potential and the expression
(2.35) for the pressure. For simplification we consider the case a0 = 0.

Figure 5. Phase diagram of nematogenic Maier-Saupe model for different values of z2σ in the
plane density-temperature.
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Figure 6. Phase diagram of the nematogenic Maier-Saupe model for different values of z2σ in
the plane temperature-pressure.

In figures 5 and 6 we present a phase diagram for the considered model at the planes η −
kT
a2

(density-temperature) and kT
a2

− Pη
ρa2

(temperature-pressure) at different z2σ. Dash-dotted

line corresponds to the stability condition for the isotropic phase. As we can see, this condition
overestimates the region of anisotropic phase. This overestimation increases with the increase
of z2σ. But we should take into account that with the increase of z2σ the accuracy of MSA
decreases. For z2σ = 0.5 at high temperature we observed a weak nematic transition of the first
order. With decreasing temperature, the jump of density at the phase transition increases and at
low temperature the orientational order is accompanied by condensation. The peculiarity of this
condensation is that it occurs without a critical point. It means that there is no phase transition
“nematic – condensed nematic”. In figure 7 the temperature dependence of the order parameter at
the phase transition region is presented. In figure 5 the dotted line represents the crystallization

Figure 7. Temperature dependence of the order parameter S2 at the phase transition region for
the nematic phase.
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transition line. It was obtained using the Hansen-Verlet criterion [45]. According to this criterion
the fluid becomes unstable when the height of the main peak in the structure factor S(k) becomes
equal to 2.9 ± 0.1. Figure 6 gives evidence of the existence of temperature at which three phases
coexist (isotropic, nematic, and solid). As we can see with the increase of z2σ, the triple point shifts
to the region of higher pressure and lower temperature. Since with the increase of temperature the
density of crystallization increases we can see that at high enough temperature the crystallization
can forestall the nematic transition. We can note that for not so large value of z2σ the phase
diagram presented in figure 5 agrees quite well with the results of [16] obtained in the framework
reference HNC and from computer simulation.

Figure 8. The dependence of reduced elastic constants on density and temperature.

Let us consider the elastic properties of the considered model. Formal expressions for elastic
constant in biaxial nematics in terms of direct correlation function have been given by Poniewiersky
and Stecki [46]. It includes three elastic constants K1 (splay), K2 (twist) and K3 (bend) [47]. Since
for the considered model correlation functions depend only on the angle ω12, the description of
elastic properties reduces to one-constant approximation

βK1 = βK2 = βK3 = βK =
1

6
ρ2

∫

drdω1dω2r
2ḟ(ω1)ḟ(ω2)nx(ω1)nx(ω2)C2(r, ω1ω2) (2.36)
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where ḟ(ω1) =
∂f(ω)
∂ cosϑ

.
In the MSA approximation

βK = 10πρ2S2
2

∫

r4drC221(r). (2.37)

Another way of calculating the elastic constants is connected with the application of the theory of
hydrodynamic fluctuations [46]. In this way in one-constant approximation

1

βK
=

1

3
lim
k→0

k2h221(k)
〈|Y21(ω)|2〉ω
〈|Y20(ω)|〉2ω

. (2.38)

The results of our calculations are presented in figure 8. It is important to note that in our
calculations both expressions (2.37) and (2.38) give the same results.

The effect of a disorienting field on the phase diagram and on the elastic properties of the ordered
fluids was studied by us in [23, 24]. It was shown that a disorienting field significantly increases the
region of an ordered fluid. In the case of a strong disorienting field when the temperature decreases
the orientational phase transition of the second order becomes a transition of the first order at a
tricritical point. A disorienting field increases the ordering and the elastic properties of the model
under consideration.

3. Application of the integral equation theory to colloid-nematic dispersi-
ons

In this section we review the results of recent publications of T. Sokolovska, R. Sokolovskii
and G. Patey [28–35] about the generalization of the integral equation theory for colloid-nematic
systems. The starting point of this generalization is the OZ equations for a two-component mixture
of colloidal and nematic particles

hCC(12) = CCC(12)+

∫

d3ρC(3)CCC(13)hCC(32) +

∫

d3ρN(3)CCN(13)hCN(32), (3.1)

hCN(12) = CCN(12)+

∫

d3ρC(3)CCC(13)hCN(32) +

∫

d3ρN(3)CCN(13)hNN(32), (3.2)

hNN(12) = CNN(12)+

∫

d3ρC(3)CNC(13)hCN(32) +

∫

d3ρN(3)CNN(13)hNN(32) (3.3)

in combination with TZLMBW equations for density distributions of colloidal and nematic parti-
cles, respectively

β∇vC(1) + ∇ ln ρC(1) =

∫

d2CCC(12)∇ρC(2) +

∫

d2CCN(12)∇ρN(2), (3.4)

β∇vN(1) + ∇ ln ρN(1) =

∫

d2CNC(12)∇ρC(2) +

∫

d2CNN(12)∇ρN(2), (3.5)

where the label 1 denotes the coordinates (r1, ω1) for nematogen and for spherical colloids 1 = (r1).
Here we consider a dilute nematic colloids case for which OZ equations (3.1)–(3.3) reduce to

hNN(12) = CNN(12) +

∫

d3ρN(3)CNN(13)hNN(32), (3.6)

hCN(12) = CCN(12) +

∫

d3ρN(3)CCN(13)hNN(32), (3.7)

hCC(12) = CCC(12) +

∫

d3ρN(3)CCN(13)hNC(32) (3.8)

in combination with the usual TZLMBW equation (1.18) for a nematic subsystem

β∇ω1
vN(1) + ∇ω1

ln ρN(1)

∫

d2CNN(12)∇ω2
ρn(2). (3.9)
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Equation (3.6) coincides with equation (1.6) for bulk nematic fluids. Equation (3.7) describes
nematic fluids near colloidal particles. The function ρN(1) [1 + hNC(12)] gives distribution of a
nematic fluid about a colloidal particle. This function takes into account all the changes at a given
point r1 induced by a colloidal particle at the point r2. These include the changes in the local
density and in the orientational distribution of the nematic fluid. Equation (3.8) describes the
colloid-colloid correlations. It gives the colloid-colloid mean interaction force which at the HNC
level is conveniently given by

β wCC(12) = β vCC(12) + CCC(12) − hCC(12), (3.10)

where vCC(12) is the direct pair interaction potential between colloidal particles.
For nematic we consider the same model as in the previous sections. This is the model of hard

spheres with an anisotropic interaction in the form (1.2). For simplification we put here A0 = 0.
The nematogen interaction with the external field is given by (1.1). The model colloidal particles
(C) are taken to be hard spheres of diameter R. Van der Waals or other direct colloid-colloid
interactions could be included through the vCC(12) term in equation (3.10). We consider the size
of a colloid to be much larger than the size of a nematic particle. The properties of a nematogenic
fluid near the surface can then be described in the Henderson-Abraham-Barker (HAB) approach
[27]. This approach reduces to equation (3.7) in the limit R → ∞. In this case we can switch from
the colloid-nematic distance to the colloid-surface distance s12. The interaction of nematogens with
the surface of a colloidal particle (anchoring) is modeled as was done for the flat wall case [28, 29]

vNC(12) =

{

−AC exp
[

−zC

(

s12 − 1
2σ

)]

P2(ω, ŝ12) for s12 > 1
2σ,

∞, for s12 < 1
2σ,

(3.11)

where s12 is the vector connecting the nearest point of the surface of colloid 1 with the center of
nematogen 2, and ŝ12 = s12

s12
. Note that the positive and the negative values of AC favor respectively

the perpendicular and the parallel orientations of nematogen molecules with respect to the surface.
The strength of the nematogen-colloid interaction is determined by AC and zC.

We start with solving the OZ equation (3.7) for the wall-nematic correlation function with the
MSA closure

hWN(ŝ|ω̂1, s1) = −1, s1 <
1

2
σ,

CWN (ŝ|ω̂1, s1) = −βvWN (ŝ|ω̂1, s1) , s1 >
1

2
σ. (3.12)

After application to correlation functions hWN and CWN orientational harmonics expansion

fWN(ŝ|ω̂1, s1) = fWN
000 (s1) + fWN

200 (s1)Y20(ŝ) + fWN
020 (s1)Y20(ω1) +

∑

µ

fWN
22µ (s1)Y2µ(ŝ1)Y2µ(ω1).

(3.13)

OZ equation (3.7) reduces to the system of equations for harmonics coefficients fWN
mnµ(s1). For µ 6= 0

hWN
22µ (s1) = CWN

22µ (s1) + ρ〈|Y2µ(ω)|2〉ω
∫

hWN
22µ (s2)C

NN
22µ(r12)dr2 (3.14)

and for µ = 0

hWN
ij0 (s1) = CWN

ij0 (s1) +

∫

dr2ρ
∑

i′j′

hWN
ii′ ,0(s2)〈|Yi′0(ω)Yj0(ω)|〉ωCNN

j′j0(r12) (3.15)

where the indices can be 0 or 2.
To solve equations (3.14) and (3.15) we can directly follow the Baxter-Wertheim factorization

technique developed for calculating the wall-particle distribution functions [48]. As a result, for
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s > 1
2σ and for µ = 0, equations (3.14) and (3.15) can be written correspondingly in the form

ĝWN(s) −
∞
∫

0

ĝWN(s − r)ρ̂q̂(r)dr = v̂WN

[

1 − q̂T (zC)
]−1

e−zCs +

(

1 0
0 0

)

[1− q̂(s = 0)]

(3.16)

and for µ 6= 0

hWN
22µ (s) = ρ

〈

|Y2µ(ω)|2
〉

ω

∞
∫

0

hWN
22µ (s − r)q22µ(r)dr +

1

5
βAC

exp
[

zC

(

1
2σ − s

)]

1 − ρ 〈|Y2µ(ω)|2〉ω q22µ(zC)
(3.17)

where the matrix ĝWN(s) has the elements gWN
ij (s) = δi0δj0 + hCN

ij (s), v̂WN has the elements

vWN
ij = 1

5βACδi2δj2 exp
[

1
2σzC

]

. The matrices ρ̂ and Baxter functions q̂(r) and q22µ(r) and its
Laplace transforms q(zC) are discussed in previous sections. The right-hand sides of equations (3.16)
and (3.17) determine the contact values of ĝWN

(

1
2σ

)

and hWN
22µ

(

1
2σ

)

for µ 6= 0. One can solve
equations (3.16) and (3.17) at any distance s using the Perram method [47], for example.

The wall-nematic distribution gWN(12) in the form (3.13) can be used to examine the structure
near the wall. Using this distribution function it is reasonable to introduce the density profile which
is defined as

ρ(ŝ|s) =

∫

gCN(ŝ1|ω1s1)ρN(ω1)dω1 . (3.18)

In contrast to the usual fluids, the nematic density profile depends not only on the distance from
the wall s1, but also on the wall orientation ŝ.

Noting the tensorial nature of orientational ordering near the wall, it is useful to define a
generalized order parameter

S(d̂) =

∫

P2(ω̂ · d̂)ρN(ω̂)dω̂ (3.19)

where d̂ is an arbitrary unit vector. For the considered nematic model the unit vector d̂m that
maximizes S(d̂) is chosen as a director. In the presence of an aligning field the bulk director is

always parallel to this field and S(d̂m)/ρ = S2. The density-orientational profile of the generalized
order parameter can be defined as

S(ŝ1, s1, d̂) =

∫

P2(ω̂1d̂)ρN(ω1)g
WN(ŝ1, s1, ω1)dω1 . (3.20)

For a large distance from the wall s1 the distribution function gCN(ŝ1s1, ω1) tends to 1 and S(d̂)

tends to the bulk value S(d̂) = ρs2P2(d̂ n̂). By analogy with the bulk definition, the unit vector d̂m

that maximizes S(s, ŝ, d) at a given distance s1 can be taken to define a local director. The vector
field dm(s1, ŝ) gives the director field configuration (the defect) around the wall. The maximum
value Sm(s1) = S(s1, dm) gives the degree of local ordering at s1.

From the investigation of [28, 29], for an orienting wall special long-range correlations were
identified that are responsible for the reorientation of the bulk nematic at the zero external field.
These correlations become stronger as the wall-nematic interaction is increased in range. They
become longer ranged as the orienting field is weakened. The local director orientation can vary di-
scontinuously with the distance from the wall when the orienting effect of the field and wall-nematic
interaction are antagonistic. At high densities, when wall-nematic interaction favors orientations
perpendicular to the surface, smectic-like structures were observed.

An important property that can be calculated from (3.18) is the adsorption coefficient which
describes the surface density excess. In contrast to usual fluids, for anisotropic fluids the adsorption
coefficient depends on the surface orientation ŝ with respect to the external field and has the form

Γ(ŝ) = ρ

∞
∫

1

2
σ

ds1

∫

dω1fN(ω1)
[

gCN(s, ω1, s1) − 1
]

. (3.21)
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Above we introduced a generalized order parameter (3.20) related to a certain direction d̂. The
adsorption excess per unit area associated with this order parameter is given by

Γ(ŝ, d̂) = ρ

∞
∫

σ

2

ds1

∫

dω1P2(d̂ · ω̂)
[

gWN(ŝ1ω̂, s1) − 1
]

f(ω1). (3.22)

The maximum of this function gives information about the direction in which particles are mostly
reoriented, and the minimum indicates the direction which they mostly abandon.

There is a significant flaw in the HAB description of the MSA approach due to ignoring the
non-direct interaction between colloid and nematic in the case of the inert hard wall (AC = 0).
This problem has recently been solved in the framework of the inhomogeneous equation theory
[50] (the so-called OZ2 approach [3]).

Now we can return to colloid-nematic systems described by equations (3.7)–(3.8). To this end,
we can use the results that had been obtained for a nematic near hard wall. We need to introduce
the center-center colloid-molecule vector r12 which is parallel to ŝ1 and whose length is s1 + 1

2R,
where R is the diameter of the colloidal particle. For example, the colloid-nematogen interaction
vCN(12) can be expressed in terms of the vector connecting the nearest point on the surface of
colloidal particle 1 with the center of nematogen 2. This transformation is the simplest for a
spherical colloid

vCN(12) = vCN(r12, ω̂2) = vWN(s = r12 −
r̂12

2
R, ω̂ = ω̂2)

= −AC exp

[

−zC

(

r12 −
1

2
(σ + R)

)]

P2(r̂12 · ω̂2). (3.23)

For a sufficiently large colloidal particle, curvature effects are unimportant (for micron and submi-
cron colloids), which suggests an ansatz that the direct correlation function CCN(12) can be taken
from the wall-nematic solution

CCN(r12, ω̂2) = CWN(s = r12 −
r̂12

2
R, ω̂ = ω̂2). (3.24)

This was found to be a good approximation [31, 32] because the wall-nematic direct correlation
function is truly short-ranged outside the surface, while inside the core it rapidly tends to a function
of ω̂2 that depends only on bulk properties. Thus, the direct correlation function is not very sensitive
to the surface curvature.

Now the nematic distribution around a colloidal particle and colloid-colloid mean force potential
can be found from equations (3.7) and (3.9) by means of the Fourier transformation. As we already
discussed in the previous section, the correlation functions CNN(12) and hNN(12) in the MSA
approximation can be presented in the form (1.21) and the corresponding OZ equation reduces to
equations (1.24) and (1.27) for harmonics h22µ(r) when µ 6= 0 and for harmonics hNN

mn0(r) when
µ = 0. The colloid-nematic correlation functions hCN(12) and CCN(12) can also be written as a
spherical harmonic expansion

fCN(r12, ω2) = fCN
000 (r12) + fCN

200 (r12)Y20(r̂12) + fCN
020 (r12)Y20(ω2)

+
∑

|µ|62

fCN
22µ(r12)Y2µ(r̂12)Y2µ(ω2). (3.25)

The axial symmetry of the bulk nematic allows equation (3.7) to be factorized into equations with
different µ. These equations can be Fourier transformed to obtain k-space equations in terms of
Hankel transforms of harmonics of the correlation functions

fCN
mnµ(k) = 4πim

∞
∫

0

r2drjm(kr)fCN
mnµ(r), (3.26)
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where jm(x) is a spherical Bessel function. After Fourier transformation equation (3.7) for spherical
harmonic coefficients can be written in the following form for µ = 0

ĤCN(k)
[

1 − ρ̂ ĈNN(k)
]

= ĈCN(k), (3.27)

where the hat denotes matrices with elements

CCN
mn(k) = 4πim

∞
∫

0

r2drjm(kr)CCN
mn,0(r), (3.28)

HCN
mn(k) = 4πim

∞
∫

0

r2drjm(kr)hCN
mn,0(r). (3.29)

The matrix ĈNN(k) can be expressed in terms of the bulk Baxter functions (2.21)

1 − ρ̂NĈNN(k) =
[

1 − ŜNQ̂(−ik)
] [

1 − ŜNQ̂T (ik)
]

. (3.30)

One can then immediately solve equation (3.27) for the Hankel transforms of harmonics hCN
mn,0(r).

Similarly for µ 6= 0
hCN

22µ(k)
[

1 − ρ
〈

|Y2µ|2
〉

ω
CNN

22µ

]

= CCN
22µ(k) (3.31)

and in terms of Laplace transforms

hCN
22µ(k) [1 − Q22µ(−ik)] [1 − Q22µ(ik)] = CCN

22µ(K). (3.32)

Finally, using the inverse Hankel transformation

hCN
mnµ(r) = 4π

(−i)m

(2π)3

∞
∫

0

k2dkjm(kr)hCN
mnµ(k) (3.33)

the total pair correlation function can be found in the r-space

hCN(r12, ω2) =
∑

mn

hCN
mn0(r12)Ym0(r̂12)Yn0(ω2) +

∑

µ6=0

hCN
22µ(r12)Y2µ(r̂12)Y

∗
2µ(ω2). (3.34)

In this numerical calculation for CCN(r12, ω2) the ansatz (3.24) was used.
The non-direct part of the potential of the mean force for a pair of colloidal particles can be

written in the form

− βwCC(12) = hCC(12) − CCC(12) = −
∑

l=0,2,4

βwCC
l (r12)Yl0(r̂12). (3.35)

After spherical harmonic expansions of the correlation functions using Fourier transforms of the
coefficients of correlation functions in accordance with (3.8) we can write

−βwCC(k) = ρ
∑

mn

∑

n′m′

∑

µ

CCN
mnµ(k)hNC

n′m′µ(k)
〈

Ynµ(ω)Y ∗
n′µ(ω)

〉

Ymµ(k̂)Y ∗
m′µ(k̂)

= ρ
∑

mn

∑

µ

[

hCC
mn′µ(k) − Cmn′µ(k)

]

Ymµ(k̂)Y ∗
m′µ(k̂), (3.36)

where indexes m, m′, n, n′ are equal to 0 or 2.
Note that [38]

Ymµ(k̂)Ym′µ(k̂) =
∑

l

[

(2m + 1)(2m′ + 1)

(2l + 1)

]
1

2

(

m m′ l
µ −µ 0

) (

m m′ l
0 0 0

)

Yl0(k̂) (3.37)
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Figure 9. (a) Maps of the director dm(r) and the local ordering SN(r) in the isotropic regime
(η = 0.2) and zero external field βW2 = 0. The colloidal particle is shown as a white circle of
radius 1

2
R = 25. The axes denote the distance from the center of colloidal particle in units of

σ. The director field is indicated by bars showing the director orientation. The local ordering
1

ρ
SN(r) is shown by color, red regions are more ordered. Positions where 1

ρ
SN(r) equals the bulk

order parameter S2 are shown by thin black lines. (b) The potential of mean force βwCC(12)
at η = 0.2 and βW2 = 0. One colloidal particle is shown as a white circle of radius 1

2
R and

the grey stripe of width 1

2
R surrounding it denotes the region inaccessible to the center of the

other colloidal particle due to the hard-core repulsion. The center-center distance in units of σ

are indicated on both axes, and the color code is shown on the right. The blue regions are most
attractive. The positions where the potential changes sign βwCC(12) are shown by solid black
lines.

and expression (3.36) can be rewritten in the form (3.35). In (3.37) l changes from 0 to m +

m′. It means that l = 0, 2, 4.

(

m m′ l
µ−µ 0

)

and

(

m m′ l
0 0 0

)

are the corresponding Clebsch-Gordon

coefficients [38]. Due to the axial symmetry the contributions from different µ are separated again.

Some results of such calculations taken from [30, 33] are presented in figures 9–12 for perpendi-
cular anchoring (AC > 0). These illustrate the assorted structure and interactions that can occur
in nematic colloids under different conditions. Pictures labelled (a) are maps of the local ordering
and director field around single colloidal particles. Note that the local ordering in the bulk is ρS2,
where ρ and S2 are the bulk density and the order parameter. Pictures labelled (b) present the re-
sulting potentials of mean force between colloidal pairs. Equilibrium configurations of two colloidal
particles are defined by absolute minima of the potential of mean force shown with blue. We plot
the results for two densities η = 1

6πρσ3, which describe two different regimes. η = 0.2 corresponds
to an isotropic phase at zero external field, whereas at η = 0.35 the fluid is a stable nematic.
One can see that in the isotropic regime the external field promotes the chain formation of colloids
along its direction (figure 10). In the nematic regime tilted chains of colloidal particles (figure 11)
can be transformed by increasing the external field, which promotes colloidal aggregation in the
phase perpendicular to the field direction (figure 12). In sum, a rich variety of equilibrium colloidal
structures can be promoted by different fields without changing the composition of the system.

Finally we consider the long-range behavior of colloid-colloid interactions [34]. These interac-
tions result from colloid-induced distortions of nematic order and have been mainly described in
the framework of phenomenological elastic theories [51, 52] which address the director distribu-
tion around a single colloidal particle. In the integral equation theory in MSA approximation, the
asymptotes connected with elastic behavior are determined by the OZ-relations among harmonics
with µ = ±1. In the k-space these are
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Figure 10. As in figure 9, but at non-zero external field βW2 = 0.1. The field is directed along
the vertical axis.

Figure 11. As in figure 9, but in the nematic region, η = 0.35.

Figure 12. As in figure 11, but at non-zero external field βW2 = 1. The field is directed along
the vertical axis.

hNN
221(k) = CNN

221 (k) + CNN
221(k)ρ

〈

|Y21(ω)|2
〉

ω
hNN

221(k), (3.38)

hCN
221(k) = CCN

221(k) + CCN
221(k)ρ

〈

|Y21(ω)|2
〉

ω
hNN

221(k) (3.39)

= CCN
221(k) + hCN

221(k)ρ
〈

|Y21(ω)|2
〉

ω
CNN

221(k), (3.40)

hCC
221(k) − CCC

221(k) = CCN
221(k)ρ

〈

|Y21(ω)|2
〉

ω
hNN

221(k). (3.41)
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The equation (3.38) gives

hNN
221(k) =

CNN
221 (k)

[

1 − ρ 〈|Y21(ω)|2〉ω CNN
221(k)

] . (3.42)

In the limit k → 0 in accordance with (1.43)

1 − ρ
〈

|Y21(ω)|2
〉

ω
C221(k) =

βW2

B2
+ k2B2 + O(k4), (3.43)

where

B2 =

〈

|Y21(ω)|2
〉

ω
βK

[15ρS2
2 ]

, (3.44)

the elastic constant K is given by (2.37). Now if we put (3.43) into (3.42), after the inverse zeroth-
order Hankel transformation, we will have

hNN
221(r)

r→∞−−−→ C
exp (−r/ξ)

r
(3.45)

where the decay length

ξ =
[

K/(W2ρS23
√

5)
]1/2

(3.46)

and the prefactor

C =
[

4πρB2
〈

|Y21(ω)|2
〉

ω

]−1
=

3B2
2

4πβK
. (3.47)

In zero-field limit W2 = 0, ξ → ∞ and the result (3.45) coincides with our result (2.32) from the
previous section.

For a sufficiently large spherical colloidal particle, the ansatz (3.24) was suggested. Noting that

j2(x) = x2

15

(

1 − x2

14 + · · ·
)

at zero field

CCN
221(k)

k→0−−−→ −4π
hWN

221 (s = 1
2σ)

30zc
BR3k2 + O(k4) (3.48)

where hWN(s = 1
2σ) is the contact value of hWN

221 (s). From (3.34)

hCN
221(k) = CCN

221(k)
[

1 − ρ
〈

|Y21(ω)|2
〉

ω
CNN

221 (k)
]−1

. (3.49)

Now using (3.48) and (3.43) in the limit k → 0 we have

hCN
221(k) = −4π

30

hWN
221 (s = 1

2σ)

BzC
R3 + O(k2). (3.50)

Inverting the Hankel transform

4π

(2π)3
i2

∞
∫

0

k2dkj2(kr) = − 3

4π

1

r3
(3.51)

one finds

hCN(12)
r→∞−−−→ 1

10

hWN
221 (s = 1

2σ)

BzC

R3

r3
12

[Y21(r̂12)Y
∗
21(ω2) + c.c.] (3.52)

where c.c. denotes the complex conjugate of the first term within the square brackets.
For a pair of colloidal particles labelled by subscripts C and C ′ from equations (3.40) and (3.41)

we have

hCC′

221 (k) − CCC′

221 (k) =
CCN

221(k)ρ
〈

|Y21(ω)|2
〉

ω
CNC′

221 (k)

1 − ρ 〈|Y21(ω)|2〉ω CNN
221 (k)

. (3.53)
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At zero field and small k equation (3.53) takes the form

hCC′

221 (k) − CCC′

221 (k) → ρ
〈

|Y21(ω)|2
〉

ω
(4π)2

1

zC
hWN

221 (s =
1

2
σ)

1

zC
hW ′N

221 (s =
1

2
σ)

R3R′3k2

302
. (3.54)

The contribution of µ = ±1 terms to the Fourier transforms of colloid-colloid potential of mean
force is
[

hCC′

221 (k) − CCC′

221 (k)
] [

Y21(k̂)Y ∗
21(k) + c.c.

]

=
[

hCC′

221 (k) − CCC′

221 (k)
]

2

[

1 +
1

7

√
5Y20(k̂) − 4

7
Y40(k̂)

]

= β
∑

l=0,2,4

wCC′

l (k)Yl0(k̂). (3.55)

Although in k-space three terms occur on the right-hand side of equation (3.55), at zero field the

Y40(k̂) term alone determines the asymptotic behavior of the potential of mean force in r-space. Us-

ing the inverse Hankel transformation for l = 4 and noting that k2Y40(k̂) becomes 105Y40(r̂)/(4πr5)
in r-space we obtain

βwCC′(r)
r→∞−−−→ 8π

15

hWN
221 (s = 1

2σ)

zC

hW ′N
221 (s = 1

2σ)

zC′

ρ
〈

|Y21(ω)|2
〉

ω

R3R′3

r5
Y40(r̂). (3.56)

This result was obtained taking into account only the “elastic harmonics” (µ = ±1) in expansion
(3.36). It is assumed that elastic deformations of the director field are dominant at long distances.
However, this assumption becomes unsatisfactory near phase boundaries where fluctuations in local
ordering are large.

These are results for the case when external field is absent and ξ → ∞. But the correlation length
also influences the orientational behavior of the effective colloid-colloid interaction. The so-called
quadrupole interaction (3.56) that determines the long-range behavior at infinite ξ transforms into
a superposition of screened “multipoles” when ξ is finite [34]

−βwCC′(r)
r→∞−−−→ 4π

ξ5
C(R, zC)C(R′, zC′)ρ

〈

|Y21(ω)|2
〉

ω
(3.57)

×
[

−2K0(
r

ξ
) − 10

7
K2(

r

ξ
)P2(r̂) +

24

7
K4(

r

ξ
)P4(r̂)

]

where

C(R, zC) =
hWN

221 (s = 1
2σ)

30zC

[

R4

8ξ
+ R3

]

, (3.58)

K0(x) =
e−x

x
, K2(x) =

1

x3

(

3 + 3x + x2
)

e−x, (3.59)

K4(x) =
1

x5

(

105 + 105x + 45x2 + 10x3 + x4
)

e−x .

In the latest publication of T. Sokolovska [35] the problem of wall-colloid interaction in nematic
solvents was discussed for “quadrupole” colloids. At weak field this interaction was obtained in the
following form

−βwWC(ξ) =
π

2
ρ

〈

|Y21(ω)|2
〉

ω

hWN
221 (s = 1

2σ)hCN
221(s = 1

2σ)

zW zC

× exp

[

−1

ξ
(s − 1

2
σ)

]

sin2(2ϑs)
1

ξ2

[

R4

8ξ
+ R3

]

. (3.60)

This is a new type of an effective force acting on colloidal particles in the presence of an external
field. In contrast to the so-called “image” interaction [53] that is always repulsive at long distances,
the force identified in [35] can be attractive or repulsive, depending on the type of anchoring at
the wall and colloidal surface (AW

2 , AC
2 ). The effective force on a colloidal particle decreases with

the distance s from the wall as exp(−s/ξ).
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4. Conclusions

The generalization and application of modern liquid state theory to the nematic and other liquid
crystalline systems opens up new possibilities for the development of microscopic theory of liquid
crystals. The leading role in this theory is played by the pair and singlet distribution functions, the
knowledge of which makes it possible to describe the structure, thermodynamics, phase behavior,
elastic and other properties depending on the nature of intermolecular interaction. A traditional
way of calculating the pair distribution function is connected with the development of the integral
equation theory which usually reduces to the solution of OZ equation with a corresponding closure
relation.

In this paper we present the review of the integral equation theory for orientationally ordered
fluids. The considered approach is based on self-consistent solution of OZ equation for the pair
distribution function together with the TZLMBW equation for the singlet distribution function.
It is shown that such an approach correctly describes the behavior of correlation functions of
anisotropic fluids connected with the presence of Goldstone modes in the ordered phase in the
zero-field limit. Due to this peculiarity in the orientationally-ordered state, the harmonics of the
pair distribution function connected with correlations of the director transverse fluctuations become
long-range ones in the zero-field limit. It is important to note that these harmonics do not give a
direct contribution into the structure factor of nematic fluids. This phenomenon ensures the finite
value of the structure factor in the limit of zero wave vector. The presence of Goldstone modes in
an ordered phase is responsible for some specific properties of anisotropic fluids such as its elastic
properties, multipole-like long-range asymptotes for effective interaction between colloids solved in
nematic fluids and so on.

The capabilities of the formulated approach are illustrated through analytical results obtained
in the framework of the mean spherical approximation for the Maier-Saupe nematogenic model.
Out of the equation of state we select three types of phase diagrams depending on the ratio between
isotropic and anisotropic interactions. For a strong isotropic attraction, we have the following phase
transition between translational homogeneous phases: isotropic gas – isotropic liquid, isotropic gas
– nematic and isotropic liquid – nematic. For a strong anisotropic interaction we observed a phase
transition only between phases with different symmetries. In the isotropic repulsion case we also
observed the nematic gas – nematic liquid phase transition. Using the Hansen-Verlet criterion [45]
for crystallization, the point of coexistence of isotropic, nematic and crystalline phases was found.
The effect of the disorienting field can significantly increase the region of the ordered fluid [23, 24].

The integral equation approach was also extended to a description of nematic fluid near a
planar wall and a colloidal surface, as well as to colloidal-colloidal interaction in the presence of a
uniform orienting field. The function ρNC(ω, r12) = ρf(ω) [1 + hNC(ω, r12 = r1 − r2)] provides the
distribution of nematic fluid about the colloidal particle. This function takes into account all the
changes at a given point r1 induced by the colloidal particle at r2. They include the changes in
the local density and in the orientational distribution of the nematic fluid. The function ρNC(ω, r)
defines the density-orientational profile of the generalized order parameter

SC(r, d̂) =

∫

P2(ωωωd)ρNC(ω, r)dω (4.1)

which is connected with the director field configuration around the colloid d̂m that maximizes
SC(r,d) at a given point r.

The application of anisotropic integral equation theory opens up new possibilities for the de-
scription of intercolloidal interactions in nematic solvents. Contrary to elastic theories [51, 52]
which describe intercolloidal interactions only for asymptotically large distances, when correlation
lengths are much larger than the particle size, the integral equation theory can describe the in-
tercolloidal interactions at small and intermediate distances in the presence of an external field.
These interactions are important for the description of colloidal phase diagrams and structure as
well as other colloidal properties in order to be controlled with external fields. In contrast to phe-
nomenological elastic theories, the integral equation method does not assume boundary conditions
at colloidal surfaces but instead calculates them. From investigations of potentials of the mean force
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for pairs of identical colloidal particles with perpendicular anchoring [33] it was concluded that
effective colloid-colloid interactions are determined by three main factors, namely the phase tran-
sition in confined geometry, depletion effects and elastic interactions between the nematic coating
surrounding the colloidal particles. Varying the external field shifts the relative importance of these
factors and significantly alters the effective interactions. In the framework of the integral equation
theory it is also possible to involve colloidal particles of different size and form, ranging up to
wall-colloid interactions. Effective potentials for colloidal pairs with asymmetric anchoring (e. g.
perpendicular and parallel) are of interest as well. This can be also attributed to the effect of the
presence of a third species in nematic colloids. A small amount of the second solvent (e. g., alkane
impurities) can play a crucial role in opening the biphasic regions, and the consequent colloidal
network formation [54].

In this paper we restrict ourselves to the consideration of the Maier-Saupe nematogenic model.
The considered approach can be used for other anisotropic fluids. In [55, 56] this approach was
used in the theory of magnetic fluids. This method can be also applied to several other interesting
cases, such as the nematic phase of hard convex bodies, as well as dipolar and ferro-fluids.
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Теорiя iнтегральних рiвнянь для нематичних флюїдiв

М.Ф.Головко

Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького, 1, Львiв, 79011, Україна

Традицiйний формалiзм у теорiї рiдин, що базується на розрахунку парної функцiї розподiлу,
узагальнений на нематичнi плини. Розглядуваний пiдхiд базується на розв’язку орiєнтацiйно-
неоднорiдного рiвняння Орнштейна-Цернiке в поєднаннi з рiвнянням Трайцiнберга-Цванцiга-
Ловета-Моу-Бафа-Вертгайма. Показано, що даний пiдхiд коректно описує поведiнку кореляцiйних

функцiй анiзотропних флюїдiв, обумовлену наявнiстю голдстоунiвських мод у впорядкованiй фазi
при вiдсутностi упорядковуючого зовнiшнього поля. Ми зосереджуємось на обговореннi аналiти-
чних результатiв отриманих у спiвпрацi з Т.Г. Соколовською в рамках середньо-сферичного набли-
ження для нематогенної моделi Майєра-Заупе. Представлена фазова дiаграма цiєї моделi. Вста-
новлено, що в нематичному станi гармонiки парної кореляцiйної функцiї, пов’язанi з кореляцiями

флуктуацiй поперечних до напрямку директора, стають далекосяжними при вiдсутностi впорядко-
вуючого поля. Показано, що така поведiнка функцiї розподiлу нематичного флюїду приводить до

дипольно- та квадрупольно-подiбних далекосяжних асимптотик ефективної мiжколоїдної взаємодiї
в нематичних флюїдах, передбаченої ранiше феноменологiчними теорiями.

Ключовi слова: парна функцiя розподiлу, теорiя iнтегральних рiвнянь, нематогенна модель

Майєра-Заупе, моди Голдстоуна, колоїдно-нематична сумiш
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