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Within the framework of local gradient approach the stressed state of a cylinder is examined du-
ring the process of its heating. The obtained relations are used for the study of surface tension and
dependence of tensile strength of cylinder on temperature and size of the body. It is shown that
dependence of tensile strength breaking point and surface tension on the uniform temperature of
the body is linear. The values of nearsurface stresses are changing in the process of heating cau-
sing the change of parameters of strength and surface tension. The results agreement with those
known in literature is shown.
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Introduction. The elements of real constructions and devices are usually found in the
complex conditions of interaction with surroundings which to a great extent can chan-
ge their operating characteristics, including strength parameters. Therefore it is impor-
tant to develop models with account for materials structure and adequate describing of
the behavior of the real bodies. Local gradient approach in thermomechanics [1, 2, 4, 6]
allows description of tensile strength dependence on temperature and admixtures. Wi-
thin the framework of this approach [1, 2, 4] the dependence of tensile strength on
a steady over time temperature is studied and the matching of obtained results with the
known experimental data is shown. There exists a considerable practical and scientific
interest to research of the influence of variable over time temperature on the stressed-
strained state and strength properties of bodies, including thin films and fibers that are
widely used in modern mechanical engineering. It is known, that in such elements the
contribution of surface and volume factors to internal energy is rateable and they feature
size effects. It is practically impossible to conduct the proper experimental researches
in the case of variable temperature.

The paper considers the local gradient approach in thermomechanics of the stres-
sed-strained state of an infinite solid cylinder in the process of its heating. On this basis
the influence of temperature on surface tension, tensile strength breaking point and
proper size effects is investigated.
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1. Problem formulation

Let us consider an isotropic thermoelastic cylinder (domain » <R in the cylindrical co-
ordinates {r, ¢, z}). At infinity z — + o cylinder is loaded by effort p=(0,0,7R>p).
Suppose that at the free of force load surface » = R the value of chemical potential
N. # 0 is stated. In the initial moment of time t =0 the temperature of the cylinder is
uniform and equal 7%. For time T > 0 at the body surface » = R there is stated the tem-
perature value T, different from the initial (7, # T+).

For considered external action the one-dimensional over spatial coordinate r si-
tuation in the body is realized

6=6(r,1), n=n(r,1), 0=0(r,1),

where & is the stress tensor, 0 = 7 — T« is the temperature 7 disturbance with respect to
the initial value 7.

Accept as wanted functions the nonzero components of stress tensor 6, chemi-
cal potential n and temperature 6. The complete set of linearized equations for a ther-
moelastic cylinder at local gradient approach describing quasistatical situation in the
body has the form [2]

do, + 27 % =0, 6o, 0 ° +2po,n—2u0,0 |,

or r or or\3i+2u

o* o
» GZ‘P +2 Oy _acr :i }’2 Ao +2H(xmr|—2“(xte ,

or or or or| or\3\i+2u
n 1on 5, . 00 2’0 100
—+——-KN-K,0-k30=0, —=a|—+——|, 1
ot ror m=e : ot ort ror M

where o,, 6, G, are stresses; c=6:1, [ is identity tensor; A, {1, o, oy, K; are the con-

stants ( j =1,3). Denote neglecting of the stresses and chemical potential effects

on temperature in the last equation of (1).
The initial and boundary conditions for the temperature are written in the form

0(x,0)=0, O(R,7)=0,=T,-T.. ()
Chemical potential and stresses should satisfy the conditions

=0 3)

n|r=R =MNg> N0 r=R

at the body surface » = R with external normal vector 7 and the condition

% ”GZ rdrdo=p 4)

r<R

in the arbitrary cross-section z = const of the cylinder.
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2. Problem solution

From (1) it is easy to see that at the first stage the temperature can be found with
following determining of the stresses and chemical potential.
According to [3] temperature in the cylinder is described by formula

_o 15 2Jovur) 2
G(r,r)—ea[l ;vnRJI(vnR)eXp( vnar)j, (5)

where v, are real zeros of equation Jy(Rv)=0, n=1, 2, ..., Jy and J; are Bessel func-
tions of the first kind.

Taking temperature in the form (5) the chemical potentials and nonzero stresses
find from first four equations of (1) and conditions (3), (4)

_ 10(&’”) o, 2JO(V I") —viat
B =, + LO(E,R) }e zl( Jv RLOBS

Gr(l”,T)=AC|: L&)  LER) } ibmcn|: Jilv,r) 1 :|e—Via‘r’
g1y (ER)  SRI,(ER) i VaR [V Sy (v, R) v, R

G¢(7,T):Ac|:10(&r)— L&) _ LER) }r

1y(ER)  &rlo(ER)  SRIH(SR)

i {Jo(vnr) Ji(v,r) 1 }e‘vi‘”
Jv,R|J,(vV,R) v, rJiy(v,R) V,R

b

6. (n)= p+ A{[o(@”) 211@13)} eaibmc{Jo(vnr)_ 2 }vga,@

1y(ER) &R, (ER) VR Ji(v,R)  V,R

Here J; and [, are Bessel and modified Bessel functions of the first kind (k= 0, 1),

n=1

4, - b,, Klzna+1<§2p+1<§6 _apo Z:c exp(—v2ar) ’
2x(ER) 3 (VR
2

by=ap Mg, pluts x(éR)=1—D(1——2I‘(E’R) J

A+20 £ GRIy(ER)

37\,+2u o, E;t

= ,Cp,=—+ , 8 =% +b,x5, & =x3-b

t }V"‘ZH A C o, & +V2 g’ Kl K2 ‘t:t K3 K2

With increase of the radius R for «thick» cylinders (ER >> 1), considering that

L(ER)/ (ERIN(ER)) vanishes as (ER) ', for stresses we obtain

G (}" ‘C)= Ahll(gr)_i_e ibmcn Jl(Vn}") _ 1 e—viar
U gy ER) ‘S v,R| v, (v,R) VR ’
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oD =4, LO (ER) &1y (ER)

+0 ibmcn JO(Vnr)_ Jl(an’) _ 1 efvga‘r
S VR J(V,R) v,rJ (V,R) V,R

L&) 1) }

b

1 & 2
G, (I”,’E) — p+Ah 0(&’/') +eazbmcn JO(Vnr) _ 2 efvnar’ (7)
IO(aR) n=l1 VnR Jl(VnR) VnR
b kP, +k2p+120,  4DO, 2. e
where Ah —_m 1Ma 22p 3Va a Z n .
2 K 1-D ;5 (v,R)

For 1 — oo cylinder approaches equilibrium state, in which stresses are expres-
sed by formulas

o (roo) b Kfnam%pﬂc%e{ L&) LER) }
U2 & qER &rly(ER) ERI,(ER) |
o, (ra0) = K%nawc%pﬂciea{fo@r)_ L&) _ LR }
2 E2(ER) Ip(ER)  Erly(ER)  ERI,(ER)
6. (rro0) = p+ b KN+ k3P + K36, {Io(g’”) _2LER) } ®
) 2 E2(ER) Iy(ER)  ERIH(ER)

Nonzero stressed-strained state of the considered body at equilibrium without external
force load is brought about by nearsurface nonhomogeneity caused by different particles
interaction conditions the in inner and nearsurface regions. In this case parameter & ' is
characteristic size of the nearsurface nonhomoheneity region. Note also that relations (8)
describe the stressed state in the initial moment of time t =0, if replaced by 0,=0.

Specific values o, =2GW/(n(x)bm ) , we{r,o}, o, =2(Gz—p)/(n(x)bm) of stresses dist-
ribution, where n(x)z(Klzn ot K% p+ nga ) / g2, for parameters 0,0,/ 0,m™ =0,2, &= 10,

D =0,25, amK§R2 /o, =1, are shown in Fig. 1 for relative time T=at/R*=1.
From above formulas we arrive to conclusion that temperature does not have an

influence on the characteristic size of the nearsurface nonhomogeneity region, however
can substantially change the quantitative values of chemical potential and stresses.

3. Surface tension

Use the obtained solution for determination of surface tension that is the integral cha-
racteristic of the nearsurface stretching stresses in the unloaded cylinder. The nearsur-
face stresses o, 0. in the cylinder are stretching. They decrease with distance from sur-

face r = R and vanish to zero at » =r;” and r = r; , correspondingly. In the inner regions

r<r) and r <r; of the body stresses are negative (see Fig. 1).
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Fig. 1. Specific stresses distribution in cylinder,
curves 1-3 represent 6 ,, 6 ,and ¢ .

In [2] it is shown that the point in which stresses change their sign does not de-

pend on the uniform body temperature. On this base for 7 and . determining we get
equations

L&) LER

[0 (éra(p) - &]/‘a(p éR

, Io@r;)—éll (€R)=0. ©)

The second equation disregarding notation is the same as the one obtained in [2].
Solution of (9) we find approximately in the form

o _ R(l_ ln(aR)J i R(l_ In(&R)  In(2) _In(&R) J (10)
’ &R )" R ER2(eR)

Take into account that the point where stresses change the sign is close to the
surface = R of the cylinder and the value of dimensionless radius ER for the real bo-
dies is considerably greater than 1

r,— R
R

<<1, ER>>1,

and use well-known asymptotic for the Bessel functions

Io(r):%{l+8%+o(%ﬂ, Il(r):%g{l—g—i+o[%ﬂ.

On the base of above approximations and solution (6) for surface tension we obtain
relations

34



ISSN 1816-1545 ®i3snko-maTemaTUyHe MoAentoBaHHs Ta iHpopmauinHi TexHonorii
2008, Bun. 7, 30-39

( 2D j 1 1., 1+D SRJ

_ +—R+ = |+

"1-p)er 27 T1-DeR

b c SR 1o JvRERT)
+0 Z:: ((1 ER)( Ji(v,R) J+2m v RJ(V.R) ]exp( viar). (11)
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O a2l JilVaRA=R)] L
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2 2 0 2
K] K3 c, exp(—v;art) _ In(ER)
where f, = —2g(1 D)(nag +0, 2 4De“,§—(vnR)2 ],sn T

For surface tension in cylinders of sufficiently large radius we write

2
fy= (na—+9 ~app, xRV, “T)Il—ln@)}, (13)

26(1-Dy| ¢ g2 o (R &R
b Klz K% c, exp(—v,, ar)]( 21n(E,R)j
- m +60,—=-4D6 . 14
T ["“ g ‘e Zl (V,R)? ER (i

From formulas (13), (14) follow that surface tension f, is larger than £ and the
difference vanishes with cylinder radius increase. With R — oo these tensions tend to
the value of surface tension in the half-space. Note also, that dependence of f, on R is
of same kind as the dependence of surface tension in a layer on its thickness [2].

With time increase (1 — o) surface tension f,, 1. tends to

b(nawng)( ln(é,R)J - bm(naml+ex3)( 21n(§R)j.
v 2(1- D)&3 &R ) F 2(1- D)g’ &R

Here we see that in the stationary state the dependence of surface tension on temperature
is linear.
Size effect of surface tension is illustrated in Fig. 2 as reduced surface tensions

f(: =fo / f]? and fz* =f. / fKO dependence on specific dimensionless cylinder radius &R
for such parameters values D = 0,25, 0,5,,0,/a,.f«=0,2, o K3R2/oc, =1,t=1. Here

12 = b,m,/(28) is the value of tension fy in the initial moment of time.

In the process of heating due to temperature influence on stresses the surface tension
changes. In Fig. 3 reduced surface tension dependence on specific time ¢ = at/R* for

parameters D = 0,25, o, 5,0,/ 0, f« = 0,2, angRz/a, =1, ER =50 is shown.
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Fig. 3. Surface tension dependence
on time (fq:‘ curve 1, £, curve 2)

4. Strength of the cylinder during heating

In the case of stretching force load (p > 0) the surface value of stresses c.(R, 1) is the
largest stresses in the cylinder. During heating process they are changing from value

5 (RO):wb_mK%nam%p{l_ 211(&13)}
o 2 EER) | ERLER) |

at the initial moment of time to value

b_mKlzna +K§p+K§ea |:1_ 211(§R) :|
2 E71(ER) ERIH(ER) |

that is arrived at T — oo according to formula

| 2LER) }_ bug §y o PAGR).
ERI, (ER) 2 n=1 VoR

6,(R,©)=p+

GZ(R,‘C):p+AC|:
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The above relations will be used for investigation of strength of the cylinder du-
ring heating (8, > 0). As a criterion we accept the criterion of the first classical theory
of strength [5]. Suppose that the body will fracture instantly if at any point of the body
maximum stresses reach critical for the body material value ¢*". Using above formulas
for critical value p'” of the intensity of external force loading causing fracture we obtain

kr — ZX(EJR) Gkr _I—X@R) Klzna +2K§ea + 4bmea icne_\/ﬁa; ] (15)
1+%(ER) 1+%(ER) K 1+%(CR) ;5 (v, R)

Denoting o. the intensity of critical loading causing fracture of large radius cy-
linders (R >> 1) at initial temperature (6 = 0)

— D 2
(e) :Mckr — m

T 2-D 2-D «2

2

the formula (15) takes the form

2
27D aER) { D (&R _l—x@R)]K_l

1-D 1+%(ER) ~ 1-D1+y(ER) 1+%(ER)

~ l—x(iR)K_g_ 4b,, icne—wz,ar
1+x(ER) k2 1+%(ER) 5 (v,R)>

2 a
K3

0,. (16)

For large radius cylinders neglecting the size effects at arbitrary temperature this
relation becomes
v2

4t

D K_%_ 4b, Sc,e
2-D«2 2-DZ (v,R)?

P (=0, - 0,. (17)

Right hand side of formulas (16), (17) may be interpreted as relations describing
cylinder strength during heating with and without account for size effect respectively.
For 1 — oo intensity of critical load for thin fibers (Fig. 4) tends to

o ooy = 222 _AER)_ +( D 1(&R) _kx(&R)Jﬁ LIaER K3 o
1-D 1+x(ER) = \1-D1+x(ER) 1+x(ER) )2 ' 1+xER) 2 ¢

and for cylinders with radius being far greater than the characteristic size of the near-
surface nonhomogeneity region, the intensity of the critical load tends to

D Kz

kr 3
©0)=0, ———— .

p ( ) + 2 D % a

Right hand side of the last two formulas may be interpreted as relations describing the
strength of the cylinder under uniform temperature.
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Fig. 4. Dependence on time of the force loading intensity causing
cylinder fracture (R = 10 curve 1, ER =25 curve 2)

One can see that the force loading intensity causing brittle fracture of the cylin-
der nonmonotonously decreases with time. Relation (17) may be used for finding the
time of body fracture for given intensity of loading in the case this would happen due
to temperature factor. Accepting p“'(t) = p and using (17) we get the following trans-
cendental equation for finding the time of cylinder fracture

2 0 —viar
D k3 4b, c,e

2-D«? 2-DZ (v,R)

G, — 0,=p.

If solution T of this equation exists, it will be the moment of the time when cylinder
fractures. In opposite case (the equation has no solution) breaking point will not be reached.

The dependence of some parameters of the body mechanical state on the tempe-
rature was considered above. The reason for its change over time lays in the change of
temperature described by (5). So there exists a correlation of the processes of surface
tension and breaking point limit change over time. This dependence may be written
using (13), (14), (16).

Conclusions. On the basis of carried out investigations we can state the following:

e The value of force loading causing brittle fracture of the cylinder is determined by
its physical-mechanical properties, surface values of chemical potential and
temperature and quality of its change in time.

e Within the framework of the considered model the dependence of the breaking
point and surface tension on the body homogeneous temperature is linear.

e The temperature change in the course of time (heating, cooling) causes the change
of nearsurface stresses in a cylinder and thus affects strength parameters, surface
tension and their size effects.
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MoBepxHeBUN HATAr i MiUHICTb NTIOKaNbHO
HeoAHOpPIAHOrO UMNiHApa y npoueci HarpiBaHHSA

Tapac HaripHuii, KoctaHTuH YepBiHka

YV pamxax noxanvro epadienmmnozco nioxo0y 00cnioHceHo HanpysHceHuli CmaH HeOOMEHCEeHO20 YUTIHOpA
¥ npoyeci tioeo nHazpieanns. Ompumani cniéGioHOWEHHS BUKOPUCTNAHO OJiA GUEYEHHS NOBEPXHEBO20
Hamszy ma 3aneHCHOCMi Mexci MiyHocmi yurinopa 6io 1io2o po3mipie i memnepamypu. Ilokaszano,
WO 3ANeAHCHICMb MedCci MIYyHOCMI ma NOBePXHEe8020 HamA2y 8i0 0OHOPIOHOI memnepamypu miia €
JiHitiHoI0. Y npoyeci nazpieantsa 3MIHIOIOMbCA 3HAYEHHS NPUNOBEPXHEBUX HANPYIICEHb, WO NPU3EO-
oums 00 3MIHU napamempie MiyHocmi ma nogepxmesoco Hamsazy. Braszano ma y3eodxcenicmv
00€ePACAHUX Pe3YTbMAmIE i3 8100MUMU Y Timepamypi.

NMoBepXHOCTHOE HaTAXEeHMEe N MPOYHOCTb NTOKalIbHO
HeogHOpoOAHOro umnuHAapa B npolecce HarpeBsa

Tapac HarnpHbin, KoHcTaHTUH YepBuHKa

B pamxax nokanero epaduenmnozo nooxooa uccie008anHo HanpANCeHHoe COCMOAHUE DECKOHEUHO20
yuruHopa 8 npoyecce e2o nHazpesa. Ilonyuennvle cOOMHOWEHUA UCNONB30BANL OIS USYHEHUSA NO-
BEPXHOCIHO20 HAMANCEHUS U 3A8UCUMOCTIU NPedeid NPOYHOCIU YUTUHOPA OM €20 PA3Mepos U
memnepamypol. IIokazano, ymo 3a8Ucumocms npeoena NPOYHOCMU U NOBEPXHOCHIHO20 HAMANCEHUS
O 0OHOPOOHOU MeMNEPAmypbl meia AGIAemcs JuHelHol. B npoyecce Haspesa UsMeHAIOMCSA 3HAYEHUs
NOBEPXHOCHIHBIX HANPAMCEHUL, YMO 8e0en K USMEHEHUIO NAPAMEMPO8 NPOUHOCU U NOBEPXHOCIHO20
Hamsircerus. [Iokazano co2naco8aHHOCHIb NOIYYEHHBIX Pe3YIbNANO8 C U3BECHIHbIMU 8 IUMepantype.

Otpumano 14.02.08
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