
В.И.Большаков, Н.А.Гладков, В.И.Вишняков

ОСОБЕННОСТИ ФОРМИРОВАНИЯ ГАЗОПРОНИЦАЕМОЙ ОСЕВОЙ ЗОНЫ ДОМЕННОЙ ПЕЧИ

Выполнен расчет показателей программ загрузки с подачей коксовых порций в осевую зону доменной печи. Приведен анализ результатов оценки распределения шихтовых материалов на колошнике при изменении профиля засыпи и массы порций, загружаемых в осевую зону печи.

Одним из основных направлений совершенствования доменной плавки является обеспечение устойчивого хода и экономичной работы доменной печи (ДП). Немаловажную роль в решении этой задачи играет разработка приемов формирования рациональной структуры столба шихтовых материалов путем рационального распределения рудной нагрузки (РН) по сечению колошника, что обеспечивает эффективное использование тепловой и химической энергии газов в печи, определяет расход кокса [1].

Один из способов решения этой задачи — формирование умеренно развитого осевого потока газов. Если на печах малого объема с конусными загрузочными устройствами обычно содержание CO_2 в газе осевой зоны составляет 8-12%, то на печах, оснащенных БЗУ эта величина составляет от 2 до 5% (рис.1).

- Рис.1. Газовые диаграммы радиального отбора проб газа, характерная для ДП-9 КГМК «Криворожсталь» в период ее работы с февраля по май 2004г.
- распределение CO_2 при следующих параметрах работы печи: количество дутья 6700 м³/мин; давление дутья 3,55 ати; температура дутья 1010^0 С; давление колошниково-

го газа — 1,7 ати; уровень засыпи — 1,2 м; рудная нагрузка — 3,8 т/т;

— распределение CO_2 при следующих параметрах работы печи: количество дутья -7200 м^3 /мин; давление дутья -3,50 ати; температура дутья -1100^0C ; давление колошникового газа -1,7 ати; уровень засыпи -1,2 м; рудная нагрузка -3,7 т/т.

Решение главной задачи — повышение эффективности доменной плавки требует формирования рациональных параметров осевого потока газов, разработки теоретических и прикладных методов управления диаметром газопроницаемой осевой зоны. Для решения этих задач необходимо определить, что следует принимать в качестве границы осевой зоны, и как влияют на ее газопроницаемость исходный профиль шихты, масса и геометрия линзы кокса, выгружаемого в осевую зону.

Распределение химсостава газов зависит не только от распределения РН. Опыт наблюдения за работой ДП-9 «Криворожстали» показывает, что при некоторой заданной и описанной в настоящей программе загрузки изменение дутья от 6700 м³/мин до 7200-7300 м³/мин приводит к существенному изменению диаграммы распределения газов: осевая воронка становится широкой при расходе дутья 6700 м³/мин и существенно сужается при расходе дутья 7200 м³/мин (рисунок 1). Таким образом, распределение химсостава газов в доменной печи ощутимо зависит от расхода дутья, качества шихтовых материалов и формирующейся в зависимости от их сочетания поверхности засыпи. Поэтому теснота корреляционной связи между распределением рудных нагрузок и химсостава газов увеличивается при стабильных условиях работы печи. Однако, по нашим оценкам при любых режимах работы коэффициенты корреляции между указанными параметрами достаточно высоки (0,65-0,9), что свидетельствует о существенном влиянии распределения РН на распределение химсостава газов в ломенных печах.

Произведен расчет формирования коксовых линз (КЛ) на колошнике доменной печи. За исходные данные взяты геометрические параметры ДП №9 ОАО КГМК «Криворожсталь» после капитального ремонта I-го разряда 2003г с бесконусным загрузочным устройствам лоткового типа [2]. Для трех исходных профилей рассчитывались линзы по 2,5т, 5т, 10т, 15т и 20т кокса (рис.2). Предполагалось, что распределительный лоток находится в нулевом положении, при котором кокс высыпается вертикально. При этом образуется усеченный конус с образующей под углом наклона α=28° и верхним основанием радиусом 0,5 м. Параметры коксовых линз зависят от того, на каком профиле поверхности засыпи они формируются. На горизонтальном профиле поверхности засыпи радиус и высота коксовой линзы зависят только от объема кокса (рис.2а). На V-образной поверхности засыпи параметры КЛ зависят от объема кокса, а также формы и размеров углубления на поверхности засыпи (рис.26). На поверхности засыпи (рис.2в) параметры КЛ зависят от объема кокса, ширины периферийных полок, угла наклона основной поверхности, радиуса и угла наклона осевой воронки. Поэтому при одинаковом объеме кокса на горизонтальном профиле радиус коксовой линзы будет больше остальных, а высота меньше. Самые высокие линзы с меньшим радиусом образуются на профиле, показанном на рис.2в.

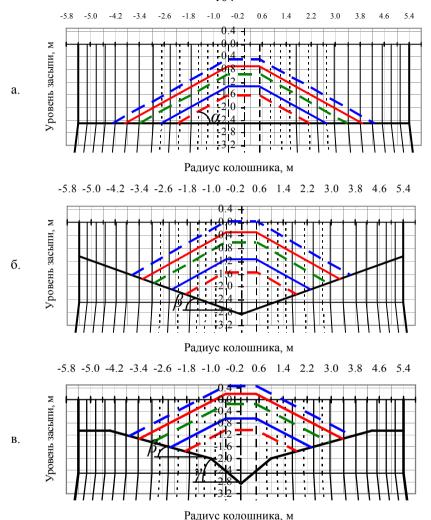


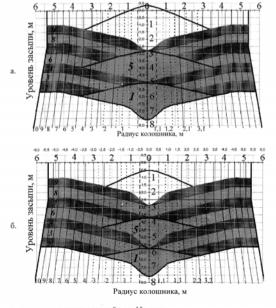
Рис.2. — Формирование коксовых линз на разных профилях поверхности засыпи. а — кокс, высыпанный на горизонтальную поверхность; линзы №1 массой 2,5т, 5т, 10т, 15т и 20т. Угол откоса α =28°; δ — кокс, высыпанный на V—образную поверхность с углом наклона β =18°; линзы №2 массой 2,5т, 5т, 10т, 15т и 20т. Угол откоса α =28°; в — кокс, высыпанный на V—образную поверхность с горизонтальными полками шириной 1м на периферии печи, с осевой воронкой радиусом 1м и углом наклона γ =41°, угол наклона основной поверхности β =16°; линзы №3 массой 2,5т, 5т, 10т, 15т и 20т. Угол откоса α =28°.

Результаты оценки показали, что изменения исходного профиля не оказывают существенного влияния на величину радиуса коксовой линзы, так разница радиусов линз для случаев «а» и «в» на рис.2 при массе порции кокса 20т составляет 4,28-3,71=0,57 м, а при массе порции 5т – 2,7-2,34=0,36 м. При изменении массы порции от 20т до 2,5 разница радиусов линз в случае «а» составляет 4,28-2,15=2,13 м, а в случае «в» 3,71-1,86=1,85 м.

В качестве исходного профиля для этой печи был взят V-образный профиль с образующей под углом наклона β =16°, горизонтальными полками шириной 1м на периферии печи и осевой воронкой радиусом 1м под углом наклона γ =41°. За основу была взята программа загрузки, применявшаяся на ДП-9 с февраля по май 2004г (табл.1), цикл из 9-ти порций из которых 1-я и 5-я центральные коксовые порции. Для данного периода работы печи характерна газовая диаграмма, приведенная на рис.1.

Таблица 1. Базовая программа загрузки ДП-9

№ п/п	Вид материала	Масса, т	Угловые положения лотка				
	Кокс	21.0	3-1				
1.	NOKC	21,8	3-1				
2.	Агломерат + конверторный шлак	99 (75+24)	9–6				
3.	Кокс	21,8	8-5				
4.	Агломерат + окатыши	108 (75+33)	9–3				
5.	Кокс	21,8	3-1				
6.	Кокс	21,8	8-4				
7.	Агломерат + окатыши	108 (75+33)	8-4				
8.	Кокс	21,8	8-4				
9.	Агломерат + окатыши	108 (75+33)	9-3 исходный профиль				
Рудн	Рудная нагрузка, т/т РН=3,88						


Для упрощения расчета принято равномерное распределение загружаемых материалов всех порций за исключением №1 и №5 по радиусу колошника. Такое допущение принято в первом приближении, поскольку в работе ставилась цель оценки влияния коксовых линз на распределении шихты и РН в осевой зоне печи. По исходным данным табл.2 произведен расчет двух программ загрузки с двумя центральными порциями кокса по 15т и по 5т в цикле загрузки. Для соблюдения базовой РН и сохранения коэффициента догонки меры остаток кокса из центральных порций распределяли в другие коксовые порции цикла загрузки.

Все порции кроме 1–й и 5–й формируются с горизонтальной полкой на периферии и наклонной образующей под углом β = 16^0 в промежуточной части между осью и периферией. Предполагалось, что материалы в рассматриваемой части печи опускаются с одинаковой скоростью. В колошниковой части они опускаются вертикально вниз, а в верхней части

шахты печи шихта движется по лучам, исходящим из воображаемой точки пересечения образующих конических стен шахты и оси печи.

Таблица 2. Программы загрузки с двумя центральными коксовыми порциями 15 и 5т

№	Design versions of the	Mac	Угловые поло-		
п/п	Вид материала	Программа №1	Программа №2	жения лотка	
1.	Кокс	15	5	0 в ось	
2.	Агломерат + конвертор-	99 (75+24)	99 (75+24)	9-6	
	ный шлак				
3.	Кокс	28	34	8-5	
4.	Агломерат + окатыши	108 (75+33)	108 (75+33)	9–3	
5.	Кокс	15	5	0 в ось	
6.	Кокс	23	31	8-4	
7.	Агломерат + окатыши	108 (75+33)	108 (75+33)	8-4	
8.	Кокс	28	34	8-4	
9.	Агломерат + окатыши	108 (75+33)	108 (75+33)	9-3 исходный	
				профиль	
Рудн	ая нагрузка, т/т	3,88	3,88		

а. – программа загрузки с подачей в ось 15т кокса;

На рис.3 представлены результаты расчета слоев материалов по программе загрузки с подачей в осевую зону 15т (рис.3.а) и 5т (рис.3.б) кокса в каждой центральной порции.

Рис.3. — Результат расчета программ загрузки с подачей кокса в ось в каждой центральной коксовой порции.

а. – программа загрузки с подачей в ось 15т кокса;

б. – программа загрузки с подачей в ось 5т кокса.

После расчета формы слоев вычислили распределение руд-

б. - программа загрузки с подачей в ось 5т кокса.

ных нагрузок в десяти равновеликих по площади зонах. Результаты моделирования распределения РН по радиусу печи, представлены на рис.4. Первую, вторую и третью зоны дополнительно разбили на равные по площади части, первую зону на четыре, а 2-ю и 3-ю на две равных части. На математической модели ИЧМ выполнен расчет распределения материалов на поверхности засыпи колошника для ДП-9. Математическая модель не только учитывает угловые положения лотка, а также перетекание кокса по поверхности засыпи при загрузке железосодержащих материалов на него. Расчет производился по программе загрузки представленной в табл.1. В результате расчета получен график рудной нагрузки для базовой программы загрузки (рис.5).

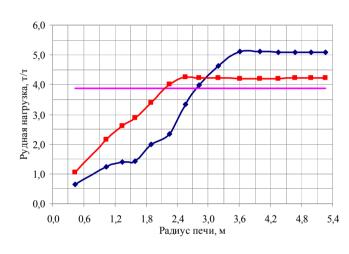


Рис.4. – Распределение рудных нагрузок по радиусу колошника

- ——, средняя рудная нагрузка, т/т;
- •, распределение рудных нагрузок по зонам программы загрузки №1, т/т;
- , распределение рудных нагрузок по зонам программы загрузки №2, т/т.

Коэффициент корреляции распределения рудных нагрузок (рис.5) и распределения углекислоты (рис.1), типичных для данного периода, составил 0,85÷0,65 ед. Также был произведен расчет распределения материалов на колошнике для программ загрузки, приведенных в таблице 3. На рисунке 6 представлены графические результаты расчета распределения рудных нагрузок для четырех программ загрузки, с различной массой порций, загружаемых в осевую зону.

Учитывая, что рудные нагрузки по радиусу колошника распределяются аналогично распределению CO_2 в колошниковом газе [4], есть основания предполагать, что распределение CO_2 в печи после установки рассмотренных программ будет аналогичным распределению PH, показанных на рис.6. Ввиду отсутствия экспериментальных данных для оценки достоверности распределения PH по рассмотренным программам загруз-

ки, кроме базовой, для сопоставления результатов сравнили базовую программу с остальными.

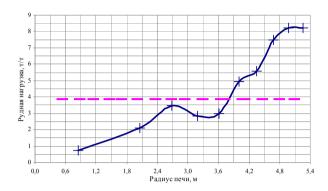


Рис.5. — Распределение рудных нагрузок по радиусу колошника при использовании базовой программы загрузки. — тередняя рудная нагрузка, т/т; — распределение рудных нагрузок по зонам базовой программы загрузки, т/т.

Таблица 3. Программа загрузки ДП-9

No	Вид материала	Масса, т				Угловые		
п/п		Прогр. №3	Прогр. №4	Прогр. №5	Прогр. №6	положения лотка		
1.	Кокс	2,5	5	15	20	0		
2.	Агломерат + конверторный шлак	99 (75+24)	99	99	99	9–6		
3.	Кокс	37	34	28	23	8-5		
4.	Агломерат + окатыши	108 (75+33)	108	108	108	9–3		
5.	Кокс	2,5	5	15	20	0		
6.	Кокс	30	31	23	23	8-4		
7.	Агломерат + окатыши	108 (75+33)	108	108	108	8-4		
8.	Кокс	37	28	34	23	8-4		
9.	Агломерат + окатыши	108 (75+33)	108	108	108	9–3		
Рудн	Рудная нагрузка, т/т РН=3,88							

Анализ показал, что все программы загрузки кроме второй (табл.2) широко открывают осевую зону, пересечение линии РН по зонам со средней РН находится в пределах 2,7 — 4,0м. Распределение материалов второй программы загрузки обеспечивает более узкую осевую зону, пересечение прямой и кривой РН находится на расстоянии 2,15м от оси печи. В первых двух программах разница между значениями точек линии средней РН и точками линии рудных нагрузок в 6–10 кольцевых зонах не так значительна как в 3-й — 6-й программах загрузки (рис. 4, 6). Распределение рудных нагрузок базовой программы загрузки (рис.5) и 3-й — 6-й про-

(рис.6) имеет одинаковый характер, особенно в грамм загрузки промежуточной зоне (равновеликие зоны 3-8). Корреляционная связь между базовой программой загрузки и 3-6-й программами находится в пределах 0.91÷0.97 ед. соответственно. Основное отличие рассматриваемых программ загрузки (рис. 5, 6) в осевой и периферийной зонах. Осевая зона третей и четвертой программы загрузки подгружена больше, на 3-й равновеликой зоне выходят на значение средней РН, периферийные зоны (9-я, 10-я равновеликие зоны) меньше подгружены, чем при 5, 6 программах. Это дает основание предполагать, что в периферийной зоне печи установится устойчивый ход колошникового газа. Меньшая разница значений РН 3-й, 4-й программ загрузки (1÷8,5 ед.) с достаточными выраженными осевой и периферийной зонами указывает на установление рациональных параметров коксовых линз.

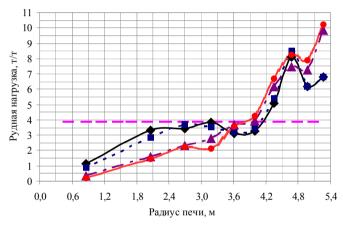


Рис.6. - Распределение рудных нагрузок по радиусу колошника для четырех программ загрузки изменением массы порций кокса, загружаемых в осевую зону (табл. 3). – средняя рудная нагруз-

ка, т/т;

- распределение рудных нагрузок по зонам программы загрузки с коксовыми линзами 2,5т, т/т;
- ■ распределение рудных нагрузок по зонам программы загрузки с коксовыми линзами 5т, т/т;
- •▲- – распределение рудных нагрузок по зонам программы загрузки с коксовыми линзами 15т, т/т;
- распределение рудных нагрузок по зонам программы загрузки с коксовыми линзами 20т, т/т.

По расчетным данным определено расположение центров тяжести шихтовых материалов по радиусу колошника (табл.4) [5] относительно оси печи.

Таблица 4. Расчетные значения центров тяжести рудных нагрузок при средней РН 3,88 т/т

Параметры загрузки	Программы загрузки
--------------------	--------------------

	Базовая	№ 1	№2	№3	№4	№5	№6
Центр тяжести, м	4,24	3,96	3,73	4,07	4,11	4,34	4,40

Целесообразно распределять шихтовые материалы так чтобы, центр тяжести располагался ближе к оси, оставляя в оси зону с меньшим количеством железорудных материалов или с РН близкой к нулю, а на периферии оставлять кольцо, в котором РН была бы ниже чем в промежуточной [1]. Таким образом, формируется осевая отдушина в центре печи и периферийное кольцо (отдушина) у стен печи [6, 7]. Надлежащим образом сформированные осевая и периферийная отдушины обуславливают рациональное газораспределение и ровный ход печи. Рациональная осевая отдушина обеспечивает стабильный ход печи, уменьшение потерь тепла, увеличение степени использования тепловой и восстановительной энергии газового потока и уменьшение расхода кокса. Периферийная отдушина в свою очередь позволяет форсированно работать и обеспечить ровный ход ДП.

В настоящее время ведется разработка программ загрузки, при которых осевая зона ярко выражена как во 2-й программе, а периферийная зона похожа на 3-ю и 4-ю программы загрузки. Это дает основания предполагать, что восстановительная способность газа будет лучше использована.

Заключение. Ровный, экономичный ход и эффективность доменной плавки существенно зависят от распределения шихтовых компонентов по радиусу колошника, и характеризуется диаграммой распределения химсостава газа и показателем степени использования его восстановительной способности.

Анализ параметров распределения шихтовых компонентов по шести программам загрузки с различной массой порций, загружаемых в осевую зону, свидетельствует о взаимосвязанном характере изменения в различных кольцевых зонах печи величин распределения РН и химсостава газа, принятых в качестве показателей распределения шихтовых материалов в печи

Результаты исследования показывают, что исходный профиль засыпи не оказывает существенного влияния на диаметр коксовых линз. А основным инструментом влияния на размеры газопроницаемого канала с уменьшенной рудной нагрузкой является масса порций кокса, загружаемых в осевую зону печи.

Анализ особенностей формирования материалов в верхней части печи, позволяет целенаправленно формировать программы загрузки для печей, оборудованных бесконусными и другими загрузочными устройствами, обеспечивающими загрузку кокса непосредственно в осевую зону печи. Управление показателями распределения шихты (управление сверху), является эффективным и требует согласования с дутьевыми параметрами.

- 1. *Большаков В.И*. Теория и практика загрузки доменных печей. // М.: Металлургия, 1990.-256 с.
- 2. *Исследование* состояния БЗУ, колошника и шахты доменной печи объемом 5000 м³ после выдувки на капитальный ремонт /В.И. Большаков, С.Т.Шулико, В.И.Вишняков и др. // Теория и практика производства чугуна Тр. международной научно—технической конференции к 70—летию КГТМК «Криворожсталь» Кривой Рог. –Днепропетровск: Пороги, 2004 С.415–421.
- 3. Оценка изменения профиля засыпи шихты в доменной печи радиолокационным уровнемером / В.И. Большаков, С.Т. Шулико, И.Г. Муравьева, Ю.С. Семенов и В.С. Листопадов // Металлургическая и горнорудная промышленность, №2. 2004. С.117–121.
- Влияние параметров загрузки и качества железорудных материалов на степень использования газов в доменной печи / В.И. Большаков, Н.А. Гладков, Ф.М.Шутылев // Металлургическая и горнорудная промышленность. –2001 –№1. – С. 10–14.
- Показатели радиального распределения шихтовых материалов в доменной печи / В.И. Большаков, Ю.А. Богачев, Н.А. Гладков, Ф.М. Шутылев // Металлургическая и горнорудная промышленность. – 2000. – №6. – С.5–8.
- 6. *Роль* отдушин в структуре столба шихты и формировании газовых потоков / В.И. Большаков, Н.А. Гладков, Ф.М. Шутылев, С.Т. Шулико, Ю.А. Богачев, //Фундаментальные и прикладные проблемы черной металлургии. Вып.4. К.:«Наукова думка», 2001. С.70–76.
- 7. Научно—технические подходы к рациональному распределению шихтовых материалов в доменной печи / В.И.Большаков, Н.А.Гладков, Ф.М.Шутылев, С.Т.Шулико, Ю.А.Богачев, // Фундаментальные и прикладные проблемы черной металлургии. Выпуск 4. К.: «Наукова думка», 2001. С. 11–13.

Статья рекомендована к печати к.т.н. Н.М.Можаренко