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SUMMARY REPORT

1. Introduction

At the request of TFS Directors a modelling workshop was held at the
Institute of Hydrology on 10/11 May 1989. The aims of the workshop
were {a} to provide a forum for scientists within TFSD to present
their modelling research;
(b) to provide information on modelling techniques available
within TFSD;:
(c} to exchange ideas on new techniques or new areas of
model application;
(d) to identify areas of collaboration across institutes;
(e} to identify factors limiting the development and

application of models.

2. Meeting Report

The response to the first letﬁer of invitation to the meeting was
extremely encouraging with over 25 modelling papers/presentations
offered and interest from 50 TFSD scientists. The final programme
(shown in Appendix 1) consisted of 19 presentations with 44
participants (see Appendix 2 for list of attendees). The 19 papers
ranged from descriptions of detailed mechanistic models of processes
in rivers, lakes, catchments and ecological systems through to

system models that could be used for management purposes.

A common problem with any modelling meeting is to agree a common
definition of modelling terms that can be used by all participants.

Appendix 3 was provided for the meeting and contains a glossary of
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terms commonly used in mathematical modelling. This list should

also assist non-modellers to become familiar with the jargon.

The meeting was considered very successful by the participants and
fulfilled most of the objectivee Specified above. It was
particularly interesting to hear of the modelling research being
undertaken or contemplated at institutes and to have an opportunity
to discuss ideas and problems boﬁh during the meeting and at an
informal function in the evening of the 10 May. What was
particularly striking was the different approaches in the
institutes, the different level of skills and future scope for

modelling.

As might be expected the Institute of Hydrology makes most use of
models with models providing both a process investigation role to
assess mechanisms end interactions and a management role for
environmental impact assessment end'for planning, design and
operational purpoees. The techniques and software developed are
used to keep IH at the forefrontiof the science as well as generate
significant contract income. There have beeh similar moves in this
direction by IFE in recent yearsjparticularly in the development of
lake flow and chemical models and aluminium speciation models. Also
within ITE there is increasing use of models for studying forest
growth, atmospheric deposition processes and ecological
interactions. In many ways the IH lead in modelling is to be
expected given the more guantitative nature of the research and the
availability of physical laws and chemical equations that can be

subjected relatively easily to modelling techniques. Biological
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systems are inevitably more difficult to model. Indeed, there has
been a traditional view by quélitative biologists that the inherent
instability and diversity of biological systems precludes a systems
modelling approach. This encouragingly did not seem to be the view
of TFSD biologists'attending thé meeting. There seemed to be a
concensus that biological models linked to physico-chemical models
were of value in determining controlling mechanisms and for
predictive purposes. Some interesting comments on modelling
bioclogical systems and the response to the meeting are given in

letters in Appendix 4.

3., Resources and Future of Modelling in TFSD

The final session of the workshop was devoted to resource

problems and the future of modélling in TFSD. It was clear from
the meeting that whilst at IH modelling was well established this
was not the case at IFE or ITE. At both these institutes there

are excellent modelling initiatives but there are simply not the
resources Or the skills to pro?ide a broad modelling strategy for
the future. This problem caant be overcome without employing a
different type of scientist to‘these institutes. It is

difficult, i1f not impossible, ﬁo teach a scientist trained in a
traditional biclogy/ecoclogy diécipline the techniques of modelling.
Unfortunately there are no university courses that meet the TFSD
requirements of biological/ecological modelling. Perhaps this needs
to be raised with NERC higher education sections. Learning the
techniques of modelling is far more than just running a computer
based model because this is often easy - there are plenty of user-

friendly models available. To really make use of models, however,
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it is necessary to understand the mathematical basis of them, the
inherent dynamical behaviour, the interactions between model
components and the limitations of the models. Thus it is necessary
to recruit into ITE and IFE modellers with a mathematical, physics
or engineering background who are capable of understanding the
technical modelling aspects but who also can work closely with
biologists and ecologists. The concept of multidisciplinary teams
working on medelling is probably the best way forward for TFSD. To
some extent this is already being pursued with inter-disciplinary
groups being_establiéhed at ITE ﬁush on deposition modelling and IFE
have joined forces with Universiiy Groups such as Birmingham on lake
modelling and IH on modelling Ca?sium transport. Within IH nearly
all projects have built intp them modellers with mathematical
knowledge at the very outset to énsure that relevant data is
collected for model calibration énd validation and that dominant

processes and mechanisms are identified and properly researched.

There are also new areas of reseérch that make a modelling
response by TFSD essential. For:example, climate change studies
will inevitably have a major modelling component since mocdels are
probably the only realistic method of assessing impacts. Many
experiments designed to assess climate change process should

also be viewed as a means of calibrating and validating models.
There are other areas such as the programme on River Ecology in
which models could be particularly useful (see Appendix 5 on

models of Algal Growth in the River Thames).



4. Conclusions

The modelling workshop proved to be an informative, interesting and
successful meeting with many new links established between
institutes. The concensus of the meeting was that an annual meeting
was not required but that a meeting every other year would be very

beneficial and allow sufficient time for new modelling initiatives

to have been developed and progressed.
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Appendix 1

TFSD MODELLING WORKSHOP
to be held at the Institute of Hydrology, Wallingford
10-11 May 1989

Wednesday, 10 May

Arrival and Lunch at IH.

Welcome by Mr Frank M Law, Head of Engineering
Hydrology, 1H

Modelling Envirommental Systems - An Overview - Paul Whitehead (IH)

MAGIC - A model to assess long term trends - Alan Jenkins (IH)
in acidification

Prohlems of Mcdelling Wet and Dry —~ Neil Cape (ITE)
Deposition in Upland Catchments

FORTNITE — A model to assess forest growth - Phil Ineson (ITE)
and Forest Nutrient Cycling

Neil Crout (ITE)

Dynamic Modelling of Radionuclides in
Upland Ecosystems

Tea
River Chemical Process Modelling - Alan House (FBA)

Richard Williams (IH)

QUASAR ~ A model for simulating flow and
guality in river systems

Steve Ormerod

Modelling biclogical behaviour in Rivers
Modelling Physical Processes in Lakes - Glen George (FBA)
Modelling Chemical Processes in Lakes - Bill Davidson (FBA)

Disperse to Hotels
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09.00

09.15

09.30

09.45

10.00

10.15

10.35

10.55

11.10

ii.20

11.45

12,30

13.00

Thursday, 11 May

Flood Event Modelling

A Simple Framework for Assessing
Performance of Dynamic Models

Dynamic Hydroclogical Models - lumped
conceptual approach

Dynamic Hydrological Models - distributed
mechanistic approach

Coffee
Interactive Ant and Butterfly Population
Models

Modelling Cyclic Behaviour in Grouse
Populations

Mcdelling Interactions between the
Cinnabar Moth and its Food Supply

PHABSIM - A model linking hydrology
and stream ecology

General Circnlation Models ~ the IH/Met
Office Modelling Programme

Other Short Presentations and Brain
Storming Session

a) Current Gaps in Modelling

- David Boorman (IH)

- Nick Bonveisin {TH)

~ Charles Eeles (IH)

Ann lver (IH)

Graham Elmes {ITE)

1

Malcolm Mountford (ITE)

—~ Ken Lakhani (ITE)

|

Alan Gustard (IH}

- Hans Dolman

b) Collaboration between Institutes and Universities

¢} Modelling Strateqgy for TFSD

d} Resources and Funding - A Community Programme?

Lunch

Demonstrations of QUASAR, MaGIC, Flood Model,

Framework Modelling Package, HYROM, etc
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PARTICIPANTS - MODELLERS GROUP WORKSHOP

Participant

Paper

Appendix 2

ITE Bush

Dr Neil Cape

Dr M Cannell

Mr Stephen Robinson (student)

ITE Merlewood

Dr Phil Ineson
Dr David Lindley
Brita Svensson
Bengta Carlsson
Dr J M Sykes

Dr T V Callaghan
Dr M Hornung

ITE Banchory

Dr Malcolm Mountford

ITE Monks Wood

Dr Ken Lakhani

Dr Mike Roberts

Dr Keith Bull

Dr T M Roberts (11 May only)
Dr Clive Pinder

Dr ‘Arthur Marker

Dr Mark Hill

ITE Furzebrook

Dr Graham Elmes
Dr Steve Chapman (il May only)
Dr Ralph Clarke

ITE Nottingham

Dr Neil Crout

FBA Windermere

Dr Glen George
Dr Bill Davison
Ms Margaret Hurley

FBA Wareham

Dr Alan House
Dr Hugh Dawson

UwWCC
Dr Steve Ormerod

NERC Unit Newcastle

Dr Trevor Cooper
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MODELLERS GROUP WORKSHOP - IH PARTICIPANTS

Participant

Paper

Frank Law

Paul Whitehead
Alan Jenkins
Richard Williams
David Boorman
Nick Bonvoisin
Charles Eeles
Ann Calver
Alan Gustard
James Bathurst
Alice Robson
Hans Dolman
David M Cooper
David Waters
Trevor Staples

e T



APPENDIX 3




NN NN NNENNNNNEENNENNNNNNNNENNNNNNNNNN]

A Glossary of Terms used
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Modeling Terminology

This glossary has been provided to clarify the terms used
in mathematical modeling. The terms have been grouped logically,
and these groups of definitions are intended to be read

together, so that contrasting definitions may be easily

compared.

For reference purposes, an index is provided. The nuimber

appearing against each term is its sequence number in the

glossary.



INDEX TQ APPENDIX 1

Autoregression

Black Box model (see input-output)

Coefficient (see parameter)

Compartment (see compartmental model)

Constituent (see state)
Correlation

Deterministic
Deterministic simulation
Design model

Difference Equation
Differential Equation
Discrete time equation
Distributed parameter model
Dynamic

Dynamic time series analysis
Flux

Empirical

Estimation

tExogenous

Forecasting

Generated data

Holistic modeling
Input-output model
Least squares regression

Lumped parameter model

Mass balance (or conservation)

Mathematical model

34
4]
19
15
17
33

24
13
10

20

40
11

27
18
22
26
42
!

28
21



Mechanistic {conceptual)
Monte Carlo (see stochastic simulation)
Moving average
Noise
Operational model
Parameter
Period?c {see seasonal)
Planning model
Prediction
Recursive
Reductionist modeling
Seasonal
State
Statistical Properties of time series
Steady state
Stochastic
Stochastic simulation
Time series
Time series analysis
Trend
Turnover (see flux)

White noise

25
35
36
14
19
32
12
23
39
43
32
17
30

25
29
38
31

11
37




o9 O 999 -.._.7
'1

00 00 0000000000000 0000006O6S

“! statist1cs. ue—can ascribe a

R and’ is capable of being any

© APPENDIX 1:

1. 'Mathemat:i‘célﬂodel

A mathematical model 1s a J

logxcal statements expre351

- MODEL NG TERM i
O |

et offéquatiohs’which, together with

,gfre1etioﬂsfbetween-the variebieSjof

1nterest, represents {or apfroxtmates to w1th1n the required

accuracy) the behav:our of -
often categorised as stocha
or dynamic, mechan1st1c or<
- a further categorisatlon, o:
objective, is useful AT] ¢
thzs g]ossary, '

‘he system. Mathemat1ca1 models are

,tlc or-determ1nxstic; steady-state

For the present purpoees
! the basis of the model's

ﬂmpirical

f these categor1es are defined in

2. Stochast1c (probab11xst1

e

If any of the variables xnjb?e model are regarded as random then

these are termed stochastzc i

of raxn fa111ng on any one'd‘i

pred1cted.- However. from a

ra1n, Smm. lnmm, etc., fa111|

can therefore be regarded as.

1_arlahles. For examp]e, the amount -

.y in the future cannot be: reltably
: owledge of prevzous rainfall :
probabil}ty-of,.for_example,,no 7
g on that day.. The amount of rainfall
hav1ng a known probability dlstrlbution,

ne of a number of values, each with-

a known certain probabilrty.1 A further example is the treatmente

of run-off from agricultura1

3. Deterministic

iand as a stochastic Input.

If any of the variables 1n the model are'regarded as free from

random’ variations then they a

determlnistic medel of a rive

phenomena that characterise the,river can he_explained_preciselyé.

“e cal]ed determin1stic terms., A

- is one wh1ch assumes : that all

AR 2 AEN




in other words changes in ! envwronmental conditions, biochemical

reactions etc., are all known perfect]y and the model reproduces

the response to these phenomena exactly. A deterministic term

can be mechanistic or emp1*1cal.
. !

il

]
4. Mechanistic (conceptuai)

4‘ . I i1
® O 0 9 99 @

These terms are those which are, for example, based upon the

phy51cs, chemistry and b1ology of the processes involved.
The equation relating the mass transpert of a conservat1ve

chemical compound present ih the river in terms of its initial

concentration, the river ve10c1ty and a di

spersion co-efficient
f

s a mechanistic equation.

|
1!
5. Empirical .
Empirical terms have litt]eyphysical basis, but are included in

a model because they have been found to fit observations made in
the real system.

The fbi]owrng equation relating the reaeration

of a river in terms of depth‘ velocity, percentage saturation and
temperature is an empirical equat1on.

d = 0.508 y-067 -0 (e -0y

6. Steady State

The values of the varfebleS‘ﬁhich would obtain if all inputs

5 & & O O O 'R E B EEEREEREENE)]
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remained constant, and if the various mechanisms involved

reached an equilibrium. Thisiis called the steady state

condition. ;

7. Dynamic ﬁ
A dynamic model s concerned wlth the variat1on of the variables

in time (often ogver relattve]yishort periods) when the system is

il

d

: _

. : 1l :
L
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:7‘;ff 9 Discrete t1me eauat1on e |

subaected to t1me varying COndztions, such as the transient 1nput-f
ajrof eff1uent 1nto a. r:ver sysgem.3 ‘Dynamic models can be in the
fbrmﬂof d1fférent3al equat1ors which represent continuous time
systems of d:fference equatluns-which repreSent_discrété'ﬁime

"systems,‘*-

8. Differential Equation - |

An'eduatidn'relatiné'tﬁe”fnét&ntaneous change in a Vaf‘ab‘e (t"e

' usrwndwfferentia! coefficient) to Lhe 1nstantaneous value of ‘that -

variab]e (and poss1b1y other yar1ab1es} Such an equat10n is

: used to describe the ccntlnuo s time var1at10n of a physical/
biologica! system and is usua ]y nbtarned by recourse to phys:ca]/
f‘- bio]ogica1 laws, such as Newt&n s Laws of motlon or mass
conservation. For a spec1f1et samp11ng 1nterva1 the so]ut1on

o of a cant1nuous~t1me d1fferent1a1 equation can be expressed in

. A
£ terms of a d1screte-t1ma or: dyfference equation.
s A (R

An equation relating the value of a system vartable at a given

hz_ tlma instant to the va]ue of that var1able (and possibly other

*fivar1ables) at'previous instanté of time, VHerenthe *sampling

o ;interva] betueen time 1nstantu isfushal1y constant and defined.

1 BiffErence equation i “f\?

:An equation re]ating the_chan_ $'§n a system variable over

,'discrete interva]s of time to'the hange that have occurred

f1n that variable (and possahiy Bther variables): dur1ng previous

,time interva]s. A discrete—t1qe equatton can always be converted

1nto a dtfference ‘equation if dp51red
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11. Flux or turnover

The rate of change of some system variable, such as mass.

12.  Planning Model

A model which can be used to investigate the overall conditions

of a river system and the effect upon it of generalised alternative
effluent disposal strategies. In the past this type of model

has usually been steady state and deterministic, but we feel it

should at least take probability into acéﬁhut.

13. Design Model

A model which can be used to determine the ‘average’ effect upon
a given section of river of a particular discharge (possibly

in terms of a probability distribution or the ‘moments' of the

distribution).

14. Operational Model

A model which can be used to calculate the effect of variations
in inputs on the river and hence to develop short-term control
strategies (e.g. for flood alleviation, control of algal growth).

Such models will normally be dynamic and may include stochastic,

mechanistic and empirical terms.

15. Compartmental Model

A model consisting of a number of linked compartments. FEach
compartment is a conceptual area (or volume) within a system
in which all of the boundaries are defined. Inputs or outputs
of information may occur across these boundaries. Variables

internal to the compartment are termed state or endogenous
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variables, and variables affecting the compartment from outside

are termed exogenous or input variables. The dynamic modeling
techniques used here estimate the dynamic mass balances of
various variables within the compartment. The dynamic
behaviour of adjacent compartments may also be linked, via

input variables, so that an overall estimate of the behaviour

of the system may be gained.

16. Mass balancg far.conservation)

The concept that all mass in a pﬁysica? system must be accounted
for in some manner. For example the mass flow at the output of
a compariment must be accounted for in terms of the input mass
flow, and the sources and sinks of mass within the compartment.

A similar conservation conéept'can be applied to enerqgy,

momentum etc. ,

17. State (constituent)

Any variable whose distribution in distance and time is central

to and is to be calculated by the model. Dissolved oxygen, BOD

S

ammonia, nitrate, chioride are examples of states. {The concept

of state has 3 precise mathematical meaning but this is unimportant

in the present ‘context).

18.  Exogenous

Any variable which acts as an input to the system and whose
distribution in distance and time is regarded as known. Air
temperature and rainfal] are often exogenous variables as their

values, or distribution, are supplied to the model as known
inputs.
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19. Parameter or coefficient

An unknown appearing in an equation whose value is to be
estimated by comparing (fitting) the quality observed in
the river to that calculated by the model using the same
conditions. The following equation is usually used to

express the rate of decay of BOD:

L= LoE - kt.

In this equation k is the parameter and it is.estimated by

using BOD values at points in the river system.

20. Distributed parameter model

A distributed parameter model is a spatio-temporal model

usually in the form of partial differential equations.

21. Lumped parameter model

A Tumped parameter model is a purely temporal (ordinary

differential equation) description of a system at a specific

spatial lacation.

22. Forecasting

The production of values for a variable which are expected
to occur at specified times in the future, from a know]e&ge
of the values of that variable (and possibly other variables)
up to the present time. Forecasting is usually performed for
short time periods ahead in relation to the total time span
of the available data. Forecasting is usually based on time-

series analysis (see later).
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23, prediction I G
?.fue prediciiun of.vafueeufeﬁiédvarieble uhicﬁ:ﬁféﬁtireasonébTy-‘-;7:"{?
aiff ﬁezekpecfed,fu_uceurﬁat af§:ven time in the future if assumpt1ons o
ff:uade‘about'other Factors te;g size and 1ocat1on of. sewage
dlscharges) apply. at that fbture time._ Prediction is usuai]y
| performed for 1ong t1me periods ahead comnared to the time span
of avatlable data Predzct on is. of ceurse, reIated to forecastrng |
aud-may_use t1me-series”methods or mechanistic models.

24. Determ1n1stic s1mu1at1(u‘

Solutlon of a determintstxcﬁmodel usually ui£ﬁ5a7c0mputer,
|'i
under speC1f1ed input and pjrameter conditiuns in order to

assess the behavxour of thekmodel under these condItions.,

00 0000000000000 00000000060600060600000

| "'_25 Stochast1c s1mulat10n dr Monte Cario Analys1s

' If the assumpt1ons made 1n ired1ctton or. forecast1ng include
fi stochastzc terms: then the pjed1ct1on takes the form of. a |
-f.probab111ty distribut1on The calculation is performed a Iarge
‘number of times, each t1me Jith randomly choseu values for the i
stuchastic terms, and each tume y:e1d1ug a different result for -
‘the var1ab1e of 1nterest.-;ﬂnen all the results are taken together
o the required probabillty dtsfrihution can be found. Tuie operatxou -

fihislcalied.stochastic simu?atwon.‘; o

'26; Generated data -

:The values of the stochast1c'terms‘uSedfinfa‘stucﬁAEtit simulation
. are called generated (ur syn hetfc)rdata“aud‘muet be:ehosen-to
preserve the structure (defi(ed later) exhiblted hy those variables ;
v;‘in ;he_available data. This?ts usual?y carr1ed out ona computer

witﬁ-thefrandom‘eiemEnts‘generatedafrom»'uhite;noise:

[ i
I 0

|
i




{see later) sources.-

27. Estimation

The determination of the 'best' values for the parameters of the
model, for example, by the comparison of observed values in the
river with values calculated using the model under conditions
identical to those which actually occurred. Many estimation
procedu}es are available from simple deterministic fitting to

sophisticated statistical estimation methodology.

28. Least squares regression

A method of estimation in which the 'best set' of parameters 1is
defined as those which minimise the sum of the square of the
difference between the observed and calculated quantities

over all observation points.

29. Time series

A time series is a set of values for a variable observed at
regular intervals of time (e.qg. daily river flows at a particular
point). Time-series analysis is the analysis of a time-series

in order to characterise its behaviour in model terms (see

later).

30. Statistical properties of time series

These may include any or all of the following components:
31. Trend
A persistent change in the variables. In the case of
river data it may arise from, for example, slow climatic
changes, increases in population, urbanisation.

32. Seasonal (periodic)

A reqular pattern of a fixed length (the period) which



is repeated throughout the ddta (for example temperature
is seasonat thh pertods ef Jne day and one- year)
'|73,3.' Corretation e | |
A component which refleots the dependence of a var1ab1e
on values of one or-more othe= variables.

i 34. Autoregression

An expre551on whvch refﬁects the dependence of a varlabie
at one 1nstant of time en fts values etoearlzer times.

35., Mov1ng average

An expre551on which ref eots the dependence of a var1able o
at one instance of t:me on the vaTues of another var1able(s) at
| the present and prev1ous 1nstant of time.
36 Noise ol -

The measurements of var1ab1es assoc1ated w1th a system may

be part1a11y obscured by randof vartations in the data These

random var1at10ns are often cdiled nouse and the tlme seraes
formed by subtractwng the mndeg generated estlmates of the system
var1ab1es from the measured orig1na1 tlme series is called a nouse
or: residual sequence.- This series may also have genera! stat1st1cal

properties., n

S?ji white n015e _;[;

A series of’ serra!!y uncqrrelated random numbers taken from
a normal d1stribution WIth zerq mean and a coostant specified

varlance (hy ana?ogy with whité Iight)

38 Time series analysi&'”

A general term for statiétical methods specifically used
for the analysis of a time-serifs to determine its Statisttcal
properttes 1n mndeling terms.;hither within the series 1tse1f
or- tn tenms of a sum1lar serleo!for other exogenous varlah1es

Usually the parameters of such limefserles_mode]s_are constant.

p ‘ B U O
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Howewver, it is appreciated that when analysing time-series
it is possible that the underlying ‘processes are “non-stationary"

and, therefore, the model parameters may be changing with time.

39. Recursive analysis

Serial processing of data, in which data is entered and processed

a sample at a time whilst working serially through the entire

data set.

40. Dynamic time series analysis

This is an extension of simpler techniques and allows the estimates
of each parameter to vary as further points are_addeﬁ to the
series. This allows for the analysis of non-stationary series

and ensures that the ‘currentiy best' model is available for

forecasting.

41.  Input-output (or Black Box) model

One which is formulated by relating observed variations of a
variable to observed variations in the same or other variables

without regard to the physical {mechanistic) processes occurring

within the system.

42. Holistic modeling

The conception and modeling of a multi-compartment system as a

complete entity. Identification and estimation are carried out

on the complete system.

43. Reductionist modeling

Conception and modeling of the system as a collection of sub-systems

in which each sub-system is modelled independently and the sub-
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systems are assembled together to provide a model of the complete
system. Here jdentification and estimation are carried out on

the separate sub-systems.
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To: P G whitehead o

From: D.M. COOper - Inetituxe of Hydrology
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az'think”fhe-maeeliing wor]
-olarifying ideas. I came
_impression the quite maj
‘biological and non-biolog
_basioally a branch of geo

-or ooeanography. The dive

.clearly seen as 1ntegrate
the former. There are the

'models, based on.

jrtheory. where approximatj
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principles; there are no obvious fundamental laws, and
pocpulation dynamics is far more complex than any part of
hydrology. While some linkage may be possible, copportunities
for integrated hydrological/ecological modelling seem rather
itimited. Examples might be the use of hydrological
information as input to ecological medels, in the same way
as meteorological information, and feedback from biological
communities to hydrology through changes in
evapotranspiration or rates of chemical reactions governed
by microbiological activity.

As far as integrated hydrological and
hydroechemical modelling 1s concerned a good place to start
might be with the c¢ycling of particular elements. The
carbon, nitrogen and phosphorus cycles are already well
understood because of their agricultural importance. It
might be useful to study the cycling of other elements
within particularly simple catchments. This falls into the

framewerk of points 1 to 5.
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UNIVERSITY OF NOTTINGHAM
DEPARTMENT OF PEYSIOLOGY AND ENVIRONMENTAL SCIENCE

SUTTON BONINGTON
LoucHBOROUGH LE12 6RD
Telex: 37346 UNINOTG
Facstmile: (05097) 3917

NorrincHAM {C602) 484848
Ext:

Ref NMJC/AK i
12/5/89

Dear Paul,

thankyoﬁ for allowing me to participate, as a non-NERC
person, in this week®s modelliﬁg workshop. You asked for any
comnents on the meet1ng, and I@may as well pass mine oniwhile
they’re still fresh in my mind. I

1 think the meetlng compared favourably with the
equlvalent AFRC workshop. which | tnok place last month, indeed

the fact that it took place over 2 half days was a definite

advantage as this enabled more wideranging conversatLons in
the pub. However, if one of the objectives is to encourage
collaborafion between the variqps institutes and universities
then perhaps the | nie_e!':ing” shduid be made open to university
groups, such as ourselves, who'ﬁave related interests. This is
certainly the approach the AFRO have taken. Indeed, this may-
overcome some of the ohaections to an annual meeting, wvoiced
by Bill Davidson, namely that ;here wouldn’t be anything new

to talk about in such a shert time!
I hope these these‘thoughtg‘are helpful,

. Kindest #egards,

Nl

or Neilicrout
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Dr. Paul Whitehead,

Institute of Hydrology,

Crowmarsh Gifford,

Wallingford.

Oxon. 12th May, 1989.

Dear Paul,

I enjoyed the TFS modelling workshop. Thanks for giving me
the opportunity to present some work.

I'm sure I came away thinking of fruitful areas of
collaboration, and have now written to Alan Gustard with this in
mind. It strikes me that use of the Brianne Data on flow,
habitat characteristics and biology could provide for an
interesting application of PHABSIM to upland streams. Indeed, it
could give us a much needed tool for assessing the biological
effect of climate-induced changes on flow pattern. We would, of
course, need to find some funding.

If you do write to Bernard Tinker, therefore, it might be
worth putting a few thoughts to him:- : )

1) That ecological models CAN be married to produce useful
results. This has been shown in the MAGIC studies.

2) That the collaboration between ourselves at UWCC and IH has
already led to useful information used by government in both
policy formation and heuristic studies.

3) That something like PHABSIM might provide scope for further
collaboration in a similar vein.

All the best.

Yours sincerely,

Neus—

s(;eﬁ’

Is there any chance of help from NERC with my expense for
the workshop?

P.S.

University of Wales College of Cardiff
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MODELLING ALGAL BEHAVIOUR IN THE RIVER THAMES

®
P. G. WHITEHEAD' and G. M, HORNBERGER®
‘Institute of Hydrology. Wallingford, England and *Department of Environmental Sciences, University
of Virginia, Charlottesville, VA 22903, US.A.

{Received August 1982)

Absteact—Forecasting the movement and growth of algae in river systems is particularly fmportant for
operational managers responsible [or the distribution and supply of potable water. Algae affect the taste
and smell of water and pose considerable filtration problems at water treatment plants. In a collaborative
study with the Thames Water Authority, algal models have been developed for the River Thames. The
non-linear processes controlling algal growth are examined using a generalized sensitivity analysis
technique and the dominant parameters controlling system behaviour are identified. The extended Kalman
filter (EKF} is then used to estimate these important parameters. The technique of using generalized
sensitivity analysis prior to EKF estimation is suggested as a pragmatic approach to the problem of
identifying the subset of physically. chemically or biologically meaningful parameters controlling system

behaviour in mechanistic models.

Key words—algal models, River Thames. model identification, parameter estimation, sensitivity analysis,

Kalman filter, water guality modelling

lNTRbDUC'I‘lON

With the increasing demands on the Thames as the
principal source of water for London, it is not
surprising that in recent years concern over present
and future water quality has been expressed, Water
quality problems of immediate interest to the Thames
Water Authority reflect the multiple use of the river
as the principal disposal pathway of industrial and
domestic effluent in addition to being a major source
of water for agricultural, industrial and domestic
purposes. In particular, progressively increasing lev-
els of nitrates in surface and groundwater systems
have exceeded WHO and EEC standards and the
Thames Water Authority have restricted abstractions
during periods when concentrations of nitrate in the
river are high (Onstad and Blake, [980). Further-
more, major algal blooms occur on the river and
these present operational management problems for
the Water Authority. Abstracted water is pumped
into reservoir storage prior to distribution to water
treatment plants and algal growth affects water taste
and smell and causes filtration problems. The predic-
tion of algal growth, transport and decay is, there-
fore, of considerable importance in water supply
management. In the paper an algal model is described
and & sensitivity analysis technique utilized to identify
key parameters controlling algal behaviour. Finally,
the extended Kalman filter is employed to estimate
these parameters using data from the River Thames.

MODELLING APPROACH

Mass-balance mode!
Algal distribution and growth processes in the

River Thames have been the subject of research by a
number of biologists this century (Fritsch, 1902,
1903, 1905; Rice, 1938; Kowalczewski and Lack,
1971; Lack, 1971; Bowles, 1978), but modelling tech-
niques have not been used heretofore to obtain an
adequate description of the system. There have been
few modelling studies of algal growth and transport
processes in rivers in general, although the analysis of
flow and quality data using modelling techniques
have developed considerably in recent years (Tho-
‘mann, 1972; Beck and Young, 1976; Whitehezd et al.,
1979, 1981). In this paper the development of mech-
anistic models for algal transport and growth is
stressed. By mechanistic we mean a model containing
mathematical expressions for the various physical,
chemical and biological phenomena controlling sys-
tem behaviour. We examined initially a mass-balance
model as applied to three years of weekly algal data
over 1974, 1975 and 1976 for six reaches of the river
shown in Fig. 1.

The aim of this study was to determine to
what extent transport alone could explain the
observed variations in chiorphyll-a data. The results
of this analysis are .given in Whitehead and
Hornberger (1984). It was found, not surprisingly,
that transport alone could not account for the
observed variations in algal levels but that complex
processes of algal growth and death or sedimentation
were occurring. In order to model such behaviour it
is necessary to hypothesize mechanisms for these
Processes.

Rather than take a standard model developed for
a particular system the approach herein has been to
cvaluate the most likely factors controlling algal
growth and losses and to represent these mathe-

9245
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matically. The four factors considered particularly
important for algal growth are:

(i) the growth coefficient;

(ii) the effect of solar radiation which under condi-
tions of unlimited nutrient availability provides the
main driving force for aigal growth;

(iii) the eflect of turbulence which tends to increase
with increasing flow causing resuspension of sedimen-
ted material and reducing light penetration;

(iv) the self-shading factor in which algal popu-
lations grow to the point where light penetration is
reduced by algae themselves.

" The loss processes were assumed to be related to
the concentration of algae via & first order decay term
but nonlinear forms were used for the light limitation
terms. The basic mass balance equations for de-
scribing concentrations of live and dead algae are
similar to those developed by Beck (1978} but include
rnathematical terms to describe the four factors dis-
cussed above. The equations are as follows:

Live afgae

dx
d[::) =k Q{1 u(t) ~ k; Qu(1) x(1) — by %, (1)
HA ky 1) &
th 0.(1) (ka + (x[(:))‘-‘) ( ke ) |
ky

xexp[l -(%’-) ] ()
Dead algae
SO - Q0 5Ok @)

where x,(r) and x,(1) represent the live and dead algae
respectively at the output (downstream) boundary of
the reach, measured as chlorophyll-a (ug 17'); w (1)
represents the input (upstream) algae concentration
{ug 1™ Q.(r) and Q. (1) represent the upstream and
downstream flow rates; /{t) is the solar radiation level
(W cm™?); k, determines the residence time character-
istics of the model such that k,0,(¢) = |/t where 7 is
the residence time; k; is the algal death rate; &; is the
growth coefficient; & is a half-saturation level for the
sell-shading function, {k/{k,+ (x(0))]} and & is
included as a power term on x;(7) fo enhance the
self-shading factor at high algal concentrations; &,
represents the optimal solar radiation level in the
term [J{(YkJ* exp {1 —[{{1)kJ*"} which accounts
for the decrease in algal growth under low light
intensity and the apparent decrease in growth under
extremely high light intensity conditions in the
Thames (Steele. 1978); %, enhances the effect of this
solar radiation term; k, is included in the dead algae
equation to account for the loss of algae by sedimen-
tation. An additional parameter £, is included in the
model as a temperature thresheld below which algal
growth is zero, i.e. k; =0for T < &, where T is waler
temperature “C.

Estimation of mode! parameters

Many researchers have developed phytoplankton
growth models for simulation purposes. In general,
the approach to parameter estimation has been to
select parameters quoted in the literature and assume
that these values pertain to the system under in-
vestigation. Formal methods of parameter estimation
have been used in few studies; e.g. Lederman et al.
(1976) applied non-lincar parameter estimation tech-
niques to data from batch cultures of phytoplankton
to directly estimate model parameters and Whitehead
(1980} used an instrumental variable algorithm ap-
plied to differential equation models of water quality
to estimate parameters. In this paper the extended
Kalman filter (EKF) technique has been used to
estimate model parameters.

The EKF is a recursive algorithm in which an
estimate of the unknown parameter vector d is up-
dated while working serially through the data. The
estimate & of « at the kth instant in time is given by
an algorithm of the following form:

Gp=@  + G V=% (3)

where the second term on the right hand side is a
correction factor based on the difference between the

. Jatest measurement y, and the estimate §, _, of that

determinand derived from the model using estimated
model coefficients obtained at the previous time
point. Gy, is a weighting matrix whose elements
are caleulated essentially as a function of the levels of
uncertainty (or error) specified for the model in the
output response and the unmeasured input dis-
turbances. A full description of the technique can be
found in Jazwinski (1970) or Young (1974) and
applications of the EKF for modelling nitrate, chlo-
ride, dissolved oxygen and BOD are given by White-
head er af. (1981) for the Bedford Guse River system
and by Beck and Young (1976) for the River Cam.

Estimating parameters in mechanistic models is
often difficult because of the non-linear nature of the
process equations and the interdependence of param-
cters. In the case of the algal model there are nine
interrelated parameters to determine and estimation
is particularly difficult. This is an important aspect of
the modelling study since it is generally not possible
to obtain relizble estimates of the large number of
parameters in most simulation models. It is prefera-
ble to eliminate parameters that cannot be identified
with a given data set or to set those parameters which
are thought to be well known and to then estimate the
remaining parameters. Up to now there has been no
systematic method of selecting the subset of parame-
ters {or optimization. A trial and error procedure is
normally used to select these parameters but given the
non-linear nature of most simulation models such an
approach can present problems of interpretation and
is certainly not rigorous. A generalized sensitivity
analysis can aid in this parameter selection to ensure
that the optimal set of parameters are obtained. Such



‘ ! ! : ! I ' ! ‘ ‘ ’ ' ’ ' . . . .
b

948 P. G. WiiTkHEAD and G. M. HorNBERGER

a technique has been developed by Spear and Horn-
berger (1980) and applied to aquatic ecosystem prob-
fems by Hornberger and Spear (1981).

Generalized sensitivity analysis

The generalized sensitivity analysis technique is
based on the utilization of a simulation medel to-
gether with a classification algorithm. The
classification algorithm allows the mode! outputs to
be identified as either representative or as not repre-
sentative of the observed behaviour. The idea is to
inject uncertainty into the simulation model by select-
ing the parameters from specified probability distri-

butions rather than from experimentally derived -

values. The simulation is repeated vsing different
parameter sets and the parameter set classified as
either producing or not preducing a behaviour. Sub-
sequent to these Monte Carlo trials, statistical anal-
ysis of the parameter sets is used to identify the key
parameters causing the model to reproduce the ob-
served behaviour. The theory behind this statistical
analysis is based on the separation between the
cumulative probability distributions of two parame-
ter sets, and a Kolmogorov-Smirnov two sample test
is utilized to test the separation. The test is described
by Spear and Hornberger (1980) and the statistic 4,;,
is determined as the maximum vertical distance be-
tween the cumulative probability distribution curves
for n behaviours and m non-behaviours. Thus, large
values of d,,, indicate that the parameter is important
for simulating the behaviour. The value of d,,,, can be
compared with a 90% confidence bound value to
check that it is statistically significant. Further
refinements of the technique are presented by Spear
and Homberger (1980) and Hornberger and Spear
(1980, 1981).

APPLICATION TO THE THAMES ALGAL MODEL

In the algal modelling study on the Thames it is
first necessary to define the system behaviour. The
two important features of algal growth within the
niver are the presence of a spring bloom and the
subsequent fall to relatively low levels in early sum-
mer. On this basis simulations are classified as a
behaviour if the algal concentration, x,, is at any
time, above 100 ug [*' and below 400 ug 1" during
a S week period in spring and if, in addition x, falls
below 100 pg [ ' and remains below this level for at
least 2 weeks during the § weeks after the spring
bloom.

The model parameters were selected initially on the
basis of published information such as travel times
for the Thames determined by the Water Authority
or growth rates for algae in the Thames. As pre-
viously discussed there is considerable uncertainty
associated with many of the parameters in the model.
In the case of prowth rates, for example, Swale
(1962), measured a growth rate lor Stephansdiscus
hantzschii of 0.46 day~' and Bowles (1978) deter-
mined & growth rate for Asterionefla of 1.28 day™'
from loading studies on the Thames. Lund (1549)
also determined a growth rate for Asterionella for-
mosa of 1.73 day™' under ideal growth conditions
although this reduced to 0.138 day~' under field
conditions. The situation in the Thames is compli-
cated by the changing nature of the river with rela-
tively slow flow in the lower reaches compared with
the flow in upper reaches between Buscot and Swin-
ford. :

A complete list of the mean parameter values for
the Monte Carlo simulation runs is given in Table 1.

In the Monte Carlo runs the parameter values are

Tuble 1. Monte Carlo umulatton results for reach S of the River Thames

Monte Carlo smulation runs 3 i 4
Critical d,, at 90°,
0.326 0430 0.470 .

confidence level
Parameter value (P)

Distribution separulion (St P § p 5 P 8 P
k, related (o travel

tume t.

Q.= it 0.5 02 0.16 0.14 GI6  0.34 0.14
&, ulgal death rate :

{weeks ™'} 93 02 03 ulé ¢y 019 0.6
%y algal growth rate -

{weeks™ ") 12 G.1$ 80 0.33 0 048 12
k, ulgal saluration , -

level (g 1 ") o 017 00 01 0 017 10y
&, power in saturation )

term M | 25 068 1 0KY 3
&, optimal solar radition h

{W hours cm ¥ per week! X000 0510 13000 05 15000 651 10000
k. power in light E - -

atienuation term R R o042 2o 2
k, sedimentation

rale (weeks ') ni of3 0y ule Y 035 0.3
k, temperature threshold

elfect (Cy & Il 8 0ls 5 017 ]
“. behuviour (bused on 100
stmulations) 487, v, 8o, yET,

*Suatistics invalid since distribution of non-behrvionrs indeterminable from X*,, of simulations.
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Table 2. Stauistics for 9 parameters n stmulation ran i
Normalized mean Normalized mean

Pararmeter under behaviour under nem-bechuviour
i 0.21 0.1l
k- -0.24 0,57
k. 310 018
k, 0.62 0.
k. . 054 - 0,70
A, -0.56 .42
k. 0.34 -0.24
k, -84 0.53
ky —(EEI —-0.18

selected randomly assuming 4 rectangular distribu-
tion with a range of +50% of the mean of the
parameter. This ensures that a wide spread of param-

eter values is selected and that behavioural patterns .

are fully explored.

“Table | shows the parameter values used.in four
sets of Monte Carlo simulations together with the
maximum separation between the parameter distribu-
tions and the critical scparation d,,, at the 90%;
confidence level. It is particularly interesting to note
that relatively few parameters appear to be significant
in determining behaviour. Over the four simulations
only three parameters are clearly identified as critical,
these being the growth rate k;, the power term in the
saturation factor ks and the optimal solar radiation
level k. In the first simulation only 482 of the runs
satisfy the behaviour criteria. From analysing the
behaviour-producing parameters it is possible to de-
termine whether to increase or decrease the mean
values of parameters in order to increase the per-
centage of behaviour. For example, in the case of the
power term parameter & in the saturation function,

the normalized mean under the behaviour is 0.54 as .
shown in Table 2 suggesting that this parameter’
should be increased. By increasing this parameter the -
shape of the saturation function is altered thus en--

hancing the effect of the saturation level. Similarly in

250

g & 8
T 1

Chiorophyll g{mg m™3

8
T

" the case of k,. the optimal solar radiation level. the

" normalized mean is —0.56 suggesting a reduction in
this parameter. The Monte Carlo simulations there-

~ fore can be used as a crude estmation procedure and

the percentage of behaviours increased [rom 48 to
98° over the four runs using this approach.
From u systems potnt of view what is particularly

" significant is that only three of the nine parameters

control system behaviour. In most modelling studies
of ecological or hydrological systems 1t is con-
ventional to assume that each parameter is equally
important. As previously mentioned. in many simu-
" lation studies a trial and error procedure of model
calibration occurs in which a subset of the parameters
is adjusted until a reasonable model fit is obtained.
With large complex models this process can be partic-

. ularly difficult because of interactions between pa-

rameters and mechanisms. The generalized sensitivity
analysis approach can therefore be used in this
situation to determine the dominant parameters con-
trolling behaviour in a systematic manner.

APPLICATION OF THE EKF

In the Thames algal model is proved impossiblc to
apply a technique such as the extended Kalman filter
to estimate all nine parameters. The EKF technique
applied in this situation gives parameter values which
are either clearly incorrect or show colinearity in
which one parameter increases as another decreases
to cancel out its effect. Thus in order to oblain
reasonable parameter estimates the EKF is applied to
the three critical parameters indicated by the sensi-
tivity analysis with the remaining parameters set 10
values estimated from independent laboratory or field
measurements.

The estimation results obtained by the EKF for the
fourth and fifth reaches are typical of those for the

Weeks from 1174
Fig. 2. Estimated (——) and observed {@) chlorophyll-z for 5tk reach.
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Weeks from 1.1.74
Fig. . Estimated state x, (dead algae) in 5tk reach.

entire stretch of river considered. Figures 2, 3 and 4
for the fifth reach show, respectively, the estimated
and observed chlorophyll-a, x;, the estimated *“dead™
algal state, x,, and the parameter estimates obtained
from the EKF analysis. In general, the estimated
values correspond well with the observed
chlorophyll-a values and the parameters k;, ks and &,
are reasonably time invariant. The parameters show
some movement at week 90. This corresponds with a
data period when the model estimate is below the
observed levels; in this situation the parameters are
adjusted by the EKF algorithm to compensate for the
lack of fit. Figure 5 shows the pheopigment levels for
the same simuldtion time period. Comparing Figs 3
and 5 onc observes that the dead algal estimate, x,,

compares reasonably with the observed pheopigment
levels. The pattern of behaviour and concentration
tevels are similar and it appears possible to use the
pheopigment as a surrogate measure of dead algae
within the reach.

The simulation results and parameters obtained by
the EKF analysis for the fourth reach, as shown in
Figs 6 and 7, are more variable than those for the fifth
reach, The power in the algal saturation term reduces
from 4 down to 3.3 and the growth coefficient
increases over the 1976 summer period. These
changes may be due to the different types of algae

- dominating the river system. For example in summer

1976 there was az major bloom of Microcystis and
self-shading is different because of the different size,
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Weeks from 1.1.74
Fig. 4. Estimated model parameters &y, &k, and k, for 5th reach.
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clustering and buoyancy characteristics of Micra-
erszis compared with other algae. Thus, although the
time variation ol parameters in reach 4 is greater than
for reach 3. the variation is not extreme and corre-
sponds to observed biological changes in the river.

APPLICATIONS OF THE ALGAL MODEL

The algal modelling study has been undertaken
within the context of an extensive Thames nitrate
modelling project (Whitehead and Williams, 1982).
Having established a satisfactory model for fore-
casting algal (chlorophyll-a) concentrations, it is
possible to consider combining the algal and nitrate
model to account for the uptake of nitrate by growing
algae and subsequent recycling of nitrate after algal
death. At present, the nitrate model simulates the
overall loss processes which include denitrification
and algal uptake by a single temperature dependent
first order rate coefficient (Toms e &l., 1975). Linking
the algal model to the nitrate mode! would provide a
means of separating these processes thereby im-
proving the predictive capability of the model.

A second area of application is the forecasting of
algal levels at key abstraction sites along the Thames.
A daily version of the model could be used in a real
time context to provide operational management
with estimates of day to day concentrations. A similar
on-line scheme for operational managemient has al-
ready been established on the Bedford Ouse to fore-
cast such variables as nitrate, dissolved oxygen and
ammonia (Whitehead er al., 1983). In this case, data
from water quality outstations are telemetered te a
control mini-computer and [orecasts of flow and
quality are obtained using a mathematical model
stored in the computer. A similar scheme could be
established on the River Thames to provide informa-
1ion to water resource managers on the movement of
algal blooms down the river.

CONCLUSIONS

The complex dynamic behaviour of algae within
river systems has been studied using a number of
systems analysis techniques. Where algal growth pro-
cesses dominate, a mechanistic model is required to
account for the highly non-linear behaviour. In this
situation model identification and estimation is par-
ticularly difficult and a generalized sensitivity analysis
technique can be used to determine the important
parameters and hence restrict the number of param-
eters requiring estiration.

In the case of the Thames algal miodel three
significant parameters have been identified out of the
nine mode! parameters using the generalized scmsi-
tivity analysis technique. Having identified these pa-
rameters the EKF technique has been applied to
estimate final parameter values.

The application of the generalized sensitivity anal-
ysis approach prior to EKF analysis is suggested as

a valuable approach, providing mformation on pa-
rameter indentification which can be used o reduce
the estimation problem to a manageable level.
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